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Predicted global warming will be most pronounced in the Arctic and will severely affect permafrost environments. Due to its large
spatial extent and large stocks of soil organic carbon, changes to organic matter decomposition rates and associated carbon fluxes
in Arctic permafrost soils will significantly impact the global carbon cycle. We explore the potential of soil spectroscopy to estimate
soil carbon properties and investigate the relation between soil properties and vegetation composition. Soil samples are collected in
Siberia, and vegetation descriptions are made at each sample point. First, laboratory-determined soil properties are related to the
spectral reflectance of wet and dried samples using partial least squares regression (PLSR) and stepwise multiple linear regression
(SMLR). SMLR, using selected wavelengths related with C and N, yields high calibration accuracies for C and N. PLSR yields a
good prediction model for K and a moderate model for pH. Using these models, soil properties are determined for a larger number
of samples, and soil properties are related to plant species composition. This analysis shows that variation of soil properties is large
within vegetation classes, but vegetation composition can be used for qualitative estimation of soil properties.

1. Introduction

The Arctic is experiencing the highest rates of warming
compared with other world regions [1] that will likely
have great impacts on high-latitude ecosystems [2, 3]. The
large and potentially volatile carbon pools stored in Arctic
soils have the potential for large emissions of greenhouse
gases in the form of both CO2 and CH4 under warmer
and potentially drier conditions, resulting in a positive
feedback to global warming [4]. Further, climatic changes
may impact vegetation development and affect water and
energy exchange in tundra ecosystems, with consequences
for permafrost thaw depth [5, 6] and concomitant soil
carbon release to the atmosphere [7–9]. The response of soil
organic matter decomposition to increasing temperature is a
critical aspect of ecosystem responses to global change [10].

It has been suggested that a warmer and drier climate in
Arctic regions might increase the decomposition rate and,
hence, release more CO2 to the atmosphere than at present
[11, 12].

Besides expected changes within the soil itself, changes
on the vegetation development are observed and expected for
future warming. Plant species composition may greatly affect
rates of soil processes, including decomposition [13]. In
general, species within a growth form (graminoids, evergreen
shrubs, deciduous shrubs, and mosses) are more similar in
their effects on decomposition than species belonging to
different growth forms, with graminoid litter having the
fastest rate and litter of deciduous shrubs and mosses having
the slowest rates [14, 15]. Gough et al. [16] found that soil pH
was significantly correlated with plant species richness and
density at larger spatial scales.
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Abiotic soil factors have a strong influence on vege-
tation development, since plant growth in tundra regions
is typically limited by temperature and nutrient availabil-
ity [17, 18]. Without knowledge of the present chemical
composition of the soil it is not possible to estimate how
and with which magnitude vegetation changes will take
place, thus limiting our understanding of climate-vegetation-
permafrost feedbacks. Arctic vegetation is expected to be
more shrub dominated with rising temperatures [18], which
may positively feedback to summer atmospheric heating by
decreasing the surface albedo [19, 20]. On the other hand, an
increase in shrub cover may concomitantly also lead to sum-
mer soil cooling and decreasing permafrost thaw by shading
the soil surface [6], thus potentially slowing down soil carbon
turnover. More knowledge on the relationships between soil
properties and vegetation composition is however required
to accurately predict the consequences of climate-induced
vegetation shifts for soil carbon pools in the Arctic.

Due to the large carbon stocks in the permafrost soil
and the potential high release of large quantities of carbon
dioxide and methane, the role of tundra permafrost soils on
global climate processes is significant. Therefore, we need
to know how large the carbon content of the soil is, and
how this varies in space. Furthermore, we need to determine
other soil properties like pH and nutrients, in order to
estimate how these may influence carbon turnover rates and
vegetation development. However, costs for soil analysis are
high and fieldwork faces many logistic difficulties due to the
inaccessibility of the tundra areas.

Reflectance spectroscopy has proven to be a powerful tool
for fast assessment of multiple soil properties [21, 22] in both
laboratory and field setups [23]. However, the applicability of
reflectance spectroscopy relies on the construction of a cali-
bration database, which is in general site specific. Although
numerous papers have been published on the estimation of
soil organic carbon and other soil properties in various envi-
ronments [24], to our best knowledge none of them focused
on highly organic tundra soil, and therefore no models are
available to determine soil properties from their reflectance.
Since bare soil surfaces occur rarely in tundra environments,
the use of remotely sensed vegetation proxies will be essential
for possible spatially continuous estimates of soil properties.

The objectives of this study are (1) to evaluate if
reflectance spectroscopy operated in the field or in slightly
controlled conditions can be successfully applied to assess
soil properties that influence carbon turnover and vegetation
development in a Siberian arctic tundra environment (2) to
investigate the variation and distribution of major soil prop-
erties in this area, and (3) to investigate the relation between
vegetation composition and soil properties of the organic
layers and evaluate if plant species composition can be used
as a proxy to estimate soil properties. We use reflectance
measurements to calibrate partial least square regression
(PLSR) models and stepwise multiple linear regression
models (SMLR) for total C, total N, pH, total K, total P, and
soil moisture. Selected models with a good performance are
then applied to estimate properties for a larger number of soil
samples. Finally, the relations between soil properties, and
their relation with plant species composition are discussed.

2. Materials and Methods

2.1. Site Description and Measurements. Measurements are
made in a low-Arctic tundra site within the Kytalyk nature
reserve in North East Siberia, Russia (70◦49′N, 147◦28′E).
The research site covers an area of ca 9 km2 and is located
on the north bank of the Berelekh (Yelon) river, a tributary
of the Indigirka river, approximately 30 km north West of the
town Chokurdakh. The study area consists of a floodplain
area along the river and an extensive plain with thaw lakes
and drained thaw lakes. The only large elevation difference
(ca 20–30 m) is caused by the presence of a Pleistocene
river terrace. The mean annual air temperature is −10.5◦C,
with a mean January temperature of −34.2◦C and a mean
July temperature of +10.4◦C. Annual mean precipitation
amounts to 212 mm, of which about half falls as snow [25].
The soil is frozen for most part of the year, but the permafrost
thaws to max. 50 cm depth during summer. Although there
are only minor differences in topography in the area, there is
a large variation in micro topography and hydrology, which
results in a large variation in vegetation types. The vegetation
at the research site consists of a mixture of graminoids, forbs,
mosses, and shrubs and is classified as G4 (tussock-sedge,
dwarf shrub, and moss tundra) and S2 (low-shrub tundra)
on the Circumpolar Arctic Vegetation Map (CAVM) [26].
Fieldwork is done in the summer of 2008, including spectral
measurements of soil and vegetation, combined with the
collection of soil samples and vegetation descriptions.

2.2. Methodology

2.2.1. Soil Description and Sampling. Soil sampling is done
in two ways to get a good impression of the differences
and spatial variation in soil properties and types. First, soil
profile descriptions are made along short transects (ca 2–
9 m length), to study the variation in soil profile under
the dominating plant functional types. This is done for
three locations: transect 1 is located on the Pleistocene river
terrace, transect 2 on the slope down from this terrace
towards the drained thaw lake, and transect 3 is located
in the drained thaw lake (Figure 1). The soil is described
down to the frozen layer (horizons and thickness, texture,
decomposition stage, Munsell color), and for one location
within each transect a permafrost drill is used to sample
frozen layers. Second, soil samples are collected for 37 plots
throughout the area. Sampling is done randomly within
the different main vegetation types, ensuring a comparable
number of samples for all main vegetation types. For these
plots, the thickness of the decomposed (no plant fibers
visible anymore) and slightly decomposed (plant remains
still observable) organic layer is measured and samples are
collected for spectral analysis. All samples (N = 128) are
air-dried to determine the moisture content and prepare
them for laboratory spectral measurements. Vegetation
descriptions are made in the plots where soil samples are
collected, whereby we noted species identities and estimated
plant fractional cover.

2.2.2. Spectral Measurements and Laboratory Element Analy-
sis. The spectral reflectance of the soil samples is measured
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Figure 1: Panchromatic GeoEye-1 image with an overview of the study area including the locations of the profile descriptions and sample
locations. The arrow on the overview map indicates the location of the study area in Russia.

with an ASD Fieldspec Classic FR, ranging from 350–
2500 nm, combined with an ASD contact probe. A white
spectralon calibration panel is used as reference. For most
samples this is done under field conditions (N = 118, further
referred to as fieldspectra), although this was not possible
for 10 samples originating from the frozen mineral soil. For
all samples (N = 128), the moisture content is determined
by weighing the fresh and air dried samples. Additionally,
the reflectance of the air dried samples is measured (further
referred to as labs pectra). The frozen samples are included
in this dataset, after defreezing and drying them. Part of
the soil samples (N = 38) are sent to the laboratory (Inst.
Of Physicochemical and biological Problems in Soil Science,
Pushchino) for chemical analysis. To ensure that the full
range of full properties is represented, these samples are
selected in such a way that samples from all horizons, land-
scape elements, and from under all main vegetation types are
included. Organic soil samples (N = 33) are analyzed for pH,
Total P, K, N, and C, while the mineral soil samples (N = 5)
are additionally analyzed for Mg, CaO, and Fe2O3.

Different regression methods are used to relate the chem-
ical analysis to the spectral measurements. As a reference
technique, we use Partial Least Square Regression (PLSR)

for all soil properties (Total C, Total N, pH, Total P, and
Total K and moisture). This method has been used frequently
to develop soil property models to determine, for example,
organic carbon in laboratory, field and airborne settings
[27–29]. PLSR is done in Parles [30], where all reflectance
spectra are converted to apparent absorbance, mean centre
transformation is done, and spectra are denoised using a
Savitzky-Golay filter. Models are evaluated by leave-one-out
cross validation, using the root mean square error (RMSE)
and Akaike Information Criterion (AIC) to select the proper
number of latent variables.

Furthermore, we investigate the possibility to use known
absorption features in the reflective domain to estimate soil
carbon and nitrogen. Because the samples are highly organic,
we assume that absorption features related to carbon and
nitrogen in plant material (e.g., in components like lignin
and cellulose) can still be observed in the soil reflectance
spectra. Therefore, we use the carbon-and nitrogen-related
wavelengths described by Curran [31] in combination with
stepwise multiple linear regression (SMLR) for the estima-
tion of Total C and Total N in the soil samples. Regression
models are fitted for lab spectra and field spectra and
evaluated by means of leave-one-out cross validation, using
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the R software package [32]. Model performance is evaluated
using the R2, RMSE, and ratio of performance to deviation
(RPD), according to the criteria defined by Chang and Laird
[33]. If appropriate prediction models can be established, soil
properties are estimated for all soil samples. This results in a
full analysis of all described soil profiles and an analysis of the
slightly decomposed and strongly decomposed organic layers
for the 37 locations for which full vegetation description is
done.

Due to the continuous vegetation cover, nondestructive
measurements of soil reflectance are not possible. Since
plant species composition is related to abiotic factors and
are a potentially important source of variation in soil pro-
cesses, including decomposition rates [13], we investigated
the relation between plant species composition and soil
properties. The vegetation descriptions are classified into
four major plant functional types (dry tussock evergreen
shrub, deciduous shrub, moist Sphagnum sedges, and wet
sedge pools), using the two-way indicator species analysis
(TWINSPAN) for Windows v2.3 [34] as described in Blok
[35]. Boxplots of physical and chemical soil properties per
vegetation class are made to investigate the relation between
soil properties and vegetation type.

3. Results and Discussion

3.1. Soil Profiles and Chemical Properties. Soil profile descrip-
tions made for three short transects are shown in Figure 2.
Within each transect, the microtopography and active layer
thickness are measured at fixed distances of 10 cm, and at
representative locations in terms of vegetation composition
the full profile is described. The depth from the horizontal
plane, shown on the y-axis, is the relative height compared to
the highest point within the corresponding profile. Because
of the presence of permafrost within the first meter, all
soils are classified as Gelisol according to the USDA soil
taxonomy. On the Pleistocene ridge (transect 1), the soils
consist of an organic layer on top of clayey/silty parent
deposits. The organic layer can mostly be subdivided in an
O horizon, followed by an Ao horizon with decomposed
organic material. On some locations, an Oi horizon is visible,
with slightly decomposed organic material. The presence
of an O horizon depends on the vegetation type (e.g.,
Eriophorum vaginatum hummocks) and hydrological condi-
tions (e.g., wet conditions with Sphagnum (peat mosses)).
Organic layer thickness mostly varies between 5 and 15 cm,
but occasionally thicker layers occur (up to 25 cm). The
mineral B horizon consists of clay/loamy clay, with an olive
to dark olive grey color and continues beyond our maximum
sampling depth (92 cm). Spots of iron oxidation can be seen
in the thawed soil, which indicates that aerobic processes
do occur above the permafrost. The total C content of the
mineral soil lies between 1.97% and 4.86%. The higher C
content is found at a depth of >60 cm and is caused by some
small organic remains. The soil profiles in transect 2, on the
slope of the Pleistocene ridge to the drained thaw lake basin,
shows no large differences with transect 1 on top of the ridge,
although thick O horizons are absent. The mineral B horizon
has the same texture as on the ridge, and oxidation marks are
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Figure 2: Soil profile descriptions along three transects (green =
organic material, orange slightly decomposed organic = soil,
brown = decomposed organic soil, and grey = mineral soil). Names
of occurring plant species are given in the Appendix, including the
estimated fractional cover.

observed. The profiles in the drained thaw lake basin differ
from the other locations by the absence of an Oi horizon.
Either a small organic layer is present at the drier locations,
or a thick wet organic layer (H horizon) is present at the
lower parts. Usually, a small organic layer with decomposed
material is found between the organic layer and the mineral
B horizon, only the profile on the location with Sphagnum
lacks this Ao horizon. At the time of sampling, the top of the
permafrost follows the top of the mineral soil, which suggests
that permafrost thaw is related to the soil composition or
vegetation composition.

The soil sampling of the B horizon down to a maximum
depth of 92 cm reveals an average carbon content of 2.84% in
the frozen mineral soil along all transects, with a maximum
value of 4.86% on the Pleistocene ridge. Compared to
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Table 1: Summary of chemical analysis and correlations (R) between soil properties.

pH Total P (mg/100 g) Total K (mg/100 g) Total N (%) Total C (%)

Min 3.88 62 195 0.29 1.97

Max 6.78 201 1700 2.16 44.66

Mean 4.92 129 860 1.07 20.75

Stdev 0.66 38.23 426.16 0.50 11.47

pH 1

Total P −0.29 1

Total K 0.63 −0.62 1

Total N −0.45 0.72 −0.89 1

Total C −0.62 0.60 −0.97 0.88 1
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Figure 3: Frequency histograms of the 38 analyzed soil samples. The x-axis shows the ranges of the soil property and the y-axis the frequency.

an average C content of 2.56% in Yedoma soils [36], our site
shows slightly higher C contents for the sampled depth. This
means that an increase in active layer thickness will expose a
slightly higher amount of C to decomposition than estimated
by Zimov et al. [36].

In general, very large differences in soil composition
are observed at short distances, making continuous spatial
mapping of soil properties a difficult task. The strong spatial
variation in soil composition corresponds with the spatial
variation in microtopography, surface hydrology, and plant
species composition. For example, thickness of the organic
layer can vary between 5 to 25 cm within a distance of less
than a meter.

Table 1 shows the statistical summary of laboratory
analysis and correlations between soil properties. The values
show that the ranges in all soil properties are large and
that variation is high. Soils are in general acid, although in
some cases neutral pH levels were measured. As expected the
Total C content is high on average, with lower levels for the
mineral soil. Total K and total C show a very high correlation
(R = −0.97), and both properties are clearly correlated with
total N (R = 0.88 with total C and R = −0.89 for total
K). Total P and pH are not strongly correlated with any of

the other soil properties. Frequency histograms are shown
in Figure 3, which show that the selection of samples for
chemical analysis was done well, since the full range of all
soil properties is nicely covered.

3.2. Soil Spectral Analysis. In general, the mineral soil has
the lowest reflectance when measured in the laboratory
(Figure 4). Major absorption features around 1400 and
1900 nm are caused by remaining water in the samples. The
slightly decomposed horizons show a higher reflectance in
the near infrared and more pronounced water absorption
features. First derivatives emphasize the presence of small
absorption features at 1535 nm, between 1700 and 1800 nm
and between 2200 and 2320 nm, which correspond with
absorption features for plants, caused by the presence of
lignin, starch, cellulose, nitrogen, and proteins [31]. The
absorption features are most pronounced in the slightly
decomposed samples, but present in the decomposed sam-
ples as well. In the mineral soil spectra, an absorption
feature around 2200 nm is present, caused by the fact that
clay is the parent material [37], but also the organic layers
do show a minor absorption feature at this wavelength.
Field observations revealed the presence of iron oxides in
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Figure 4: Spectral signatures of three horizons sampled at the same geographic location. The left graph shows the reflectance spectra, the
right figure shows the first derivative of the reflectance spectra.

Table 2: Performance of model fits using lab spectra of dried samples, evaluated with leave-one-out cross-validation.

pH Total P (mg/100 g) Total K (mg/100 g) Total N (%) Total N (%) Total C (%) Total C (%) Moisture (%)

Method PLSR PLSR PLSR PLSR SMLR PLSR SMLR PLSR

No. of factors 5 2 2 8 2 2 9 2

R2 0.50 0.38 0.79 0.73 0.80 0.79 0.95 0.42

RMSE CV 0.47 29.77 193.92 0.26 0.23 5.17 2.59 10.09

RPD CV 1.42 1.28 2.20 1.93 2.18 2.22 4.43 1.33

RMSE CV: root mean square error of cross-validation, RPD CV: ratio of performance to deviation of cross-validation, PLSR: partial least squares regression,
SMLR: stepwise multiple linear regression.

the mineral soil, which was supported by the chemical
analysis. However, the spectral signature of the mineral soil
shows no clear absorption feature for iron oxides.

Using the lab spectra, good calibrations are found for
Total K and Total C, using PLSR (Table 2). The good fit
for Total K is mainly caused by the strong correlation with
Total C and Total N (Table 1), instead of specific absorption
features by K. The PLSR model for Total N yields somewhat
lower results with a R2 of 0.75 and RPD of 1.97, which just
classifies it as a moderate model for prediction, but 8 factors
are used to fit this model. This is relatively high, given the size
of the calibration data set. For pH a moderate model (class
B according to the classification of Chang and Laird [33])
model can be fitted for prediction as well, but with a RPD of
1.42 this model is on the lower level of this class, indicating
that the predicted pH values should rather be interpreted
qualitatively than quantitatively. Total P cannot be predicted
well from the spectral data. The RPD of 1.28 and R2 of 0.38
indicate that this PLSR model cannot reliably be applied on
other soil spectra.

SMLR using the absorption features described by Curran
[31] yields very good results for the prediction of total N
and total C (Table 2). Especially for total,C the estimations
improve strongly, to an RMSE of 2.59%; half of the RMSE
was achieved by the PLSR model, which is also expressed
with a high R2 (0.95) and RPD (4.43). It has to be noted that
the number of wavelengths that are kept for the final multiple
linear regression model is rather high for total C, which may
limit the use of this model for other areas. The RMSE is
larger than results obtained in other studies [24], but is very
acceptable given the range in the dataset and high levels of
total C in this study. For total N, the model performance also
improves, although less stronger than for total C, but next to
that the number of factors used in the regression is largely
reduced. Because total K has a very strong correlation with
Total C we checked if an indirect estimation of Total K, using
the predicted Total C values and relation between the two
properties, yields a better prediction. This is not the case, but
results are comparable with the values obtained with PLSR
on the spectra directly. Scatterplots of the observed versus
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Table 3: Performance of model fits using spectra of samples under field conditions, evaluated with leave-one-out cross validation.

pH Total P (mg/100g) Total K (mg/100g) Total N (%) Total N (%) Total C (%) Total C (%) Moisture (%)

Method PLSR PLSR PLSR PLSR SMLR PLSR SMLR PLSR

No. of factors 4 2 2 2 4 4 8 1

R2 0.45 0.16 0.44 0.34 0.43 0.45 0.74 0.11

RMSE CV 0.48 34.93 314.73 0.40 0.39 8.38 6.03 12.7

RPD CV 1.35 1.09 1.35 1.24 1.28 1.37 1.90 1.05

RMSE CV: root mean square error of cross validation, RPD CV: ratio of performance to deviation of cross validation, PLSR: partial least squares regression,
SMLR: stepwise multiple linear regression.

Table 4: TWINSPAN vegetation classes and dominant plant species per class.

TWINSPAN class Dominant plant species

Dry tussock evergreen L edum decumbens, Eriophorum vaginatum, Salix glauca, and Vaccinium uliginosum

Moist deciduous shrub Betula nana, Salix pulchra, and Arctagrostis latifolia

Moist Sphagnum sedge Spagnum spp, Carex aquatilis, and Salix fuscescens

Wet sedge pools Eriophorum angustifolium

predicted values for the best performing methods are shown
in Figure 5.

Using fieldspectra (i.e., wet soil samples) the model
performance decreases drastically, mostly to levels that are
not acceptable for quantitative prediction of soil properties
(RPD < 1.4). Only for total C a reasonable model could
be fitted, using SMLR, but the RMSE is more than two
times larger than the RMSE found for dried samples. This
accuracy is comparable with the results using fieldspectra
only of Knadel et al. [38], for their study site in Denmark,
which shows comparable ranges in carbon. The difference
in accuracy between labs pectra and fieldspectra is very
likely related to soil moisture, which generally decreases
the prediction capabilities of visible and near infrared
spectroscopy. Interestingly, the moisture content cannot be
estimated from the fieldspectra using PLSR (RPD = 1.05,
Table 3), but using the dried spectra some correspondence
can be found with the reflectance measurements (RPD =
1.33, Table 2). The low accuracy for soil moisture is most
probably caused by the very high levels of soil moisture (20–
95%). Since the absorption features that are related to water
may saturate at lower moisture levels already, observing
differences between these high levels is not possible from the
reflectance spectra.

3.3. Soil Properties per Horizon. The identified models for
lab spectra are used to predict soil properties for all samples
collected at the 37 locations for which detailed vegetation
descriptions are done and all samples collected from the soil
profiles. Box plots of pH, total K, total C, and total N are
made for the different horizons (Figure 6). Total K and pH
show a gradual increase when going deeper into the soil.
The content of total C and total N decreases with depth.
There are clear differences in the median and quartile values
for the different horizons, although there is overlap in the
minimum and maximum ranges. Further, there is a large
variation in all soil properties within the slightly decomposed
and decomposed layer, as can be seen from the width of

the boxes, showing the 25% and 75% quantile ranges
(Figure 6). Only for the mineral soil the variation is more
constrained for all soil properties. The levels of total C in
the organic layers are comparable to those presented by
Michaelson et al. [39] for the Coastal Plain and Northern
Foothills in Alaska, but the mineral soil samples in their study
show a larger variation in observed values, due to the large
geographic extent of their study.

With the data we gathered, it is not possible to assess
the total carbon stock of our research site. To make such
predictions the maximum soil sampling depth should be
increased and bulk density has to be determined for each
sample. Under current conditions, the total organic layer
is thawed early in the summer season, but on a gram per
carbon basis deep permafrost mineral soils show carbon
release raters similar to organic soils for some soil types [40].
Further, changes in hydrology will have a large influence on
carbon decomposition as hydrological conditions determine
if the carbon fluxes to the atmosphere are released under aer-
obic (mainly CO2) or anaerobic (high CH4 rates) conditions.
According to Lee et al. [40], aerobic conditions have a greater
effect on climate when compared with a similar amount of
permafrost thawing in an anaerobic environment.

3.4. Relation between Soil Properties and Vegetation Type.
The twinspan classification results in four vegetation classes,
for which the dominant plant species are given in Table 4.
Figure 7 shows boxplots of the predicted soil properties for
the vegetation classes. Separate boxplots are made for the
slightly decomposed layer (Oi horizon) and the decomposed
organic layer (Ao horizon).

The average pH of the soil is comparable for all vegetation
types, but the variation within the plant communities shows
large differences. The dry tussock evergreen shrub and the
wet sedge pools, dominated by Eriophorum angustifolium,
show a large variation in pH of the slightly decomposed
organic layer. For the moist Sphagnum sedge vegetation,
the pH in the slightly decomposed horizon hardly varies.
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Figure 5: Scatterplots of the observed versus predicted values for multiple soil properties, based on PLSR or SMLR using lab spectra.
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The soil in the decomposed organic layer is on average less
acid, with a slightly higher pH for the moist Sphagnum-
sedge vegetation, compared to other vegetation types. The
observed pH values correspond well with values in literature
[16]. Soils under all vegetation types are more acidic than
the optimal pH for methanogenesis of around 6 [41], but
methanogenesis has been shown to occur at low pH (pH =
3.1) [42]. Plant growth in the tundra system can be limited
by a number of factors, such as soil temperature and nutrient
availability. The measures of nutrients do not indicate direct
deficiencies, but if pH is lower than 6, P starts forming
insoluble compounds with iron (Fe) and aluminium (Al).
Concentrations of N are less sensitive to pH, but efficient
use by plants depends on availability of several nutrients.
Therefore, the amounts of nutrients available for plant
growth is probably limited by soil pH, in combination with
low decomposition activity due to low temperatures and low
quality of organic material.

The total C content of the slightly decomposed layer is in
general higher than for the decomposed layer. Furthermore,
total C in the upper layer shows more variation for the
different plant communities. Most vegetation types showed
large differences in total C content between the slightly

decomposed and decomposed layer. The sedge dominated
tussock/evergreen shrub class is characterized by large
amounts of standing litter and dense roots, which causes
the high amount of total C in the slightly decomposed
layer. Also the thickness of the organic layer shows large
variation within the different vegetation classes. On average,
the total organic layer is the thinnest under the deciduous
shrubs. Combined with the fact that the total C content
is relatively low, this vegetation type may contribute least
to soil carbon stocks in the arctic tundra. However, large
aboveground shrub biomass can also constitute a significant
carbon pool, thus contributing to the total carbon stock in
shrub tundra areas. Several studies suggest that an increase
in temperature will lead to an increase in shrub growth in
arctic tundra [17, 18, 43–45]. This implies that the future
total C accumulation in tundra soils will decrease, since the
thickness of the organic layers will on average decrease and
the total C content is not higher than for other vegetation
types. However, there will be a trade off with the fact that
increased abundance of deciduous shrubs with future climate
warming will promote carbon storage, because of their rela-
tively large allocation to woody stems that decompose slowly
[14].
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Figure 7: Boxplots of the predicted soil properties for the four vegetation classes.

The total N content in the slightly decomposed layer does
not show large variation between the different vegetation
classes. Remarkable is the low variation within the wet sedge
vegetation class. The total N content of the decomposed
layer is generally about 0.5% lower than for the slightly
decomposed layer, although the difference is small for the
deciduous shrub vegetation class. The C/N ratio is overall
rather high, indicating that the organic material in the soil
does not contain large amounts of humus. This is mainly the
case for the dry tussock evergreen shrub class, which consists
of dense graminoid species (Eriophorum vaginatum) with
low evergreen shrubs with dense roots and relatively large
amounts of litter.

Plots dominated by deciduous shrubs show a lower active
layer thickness (ALT), which corresponds with the results
from a shrub removal experiment by Blok et al. [46], showing
that shrubs can reduce energy transfer to the soil by shading
the soil surface and thus can reduce ALT. Sphagnum and
sedge-dominated wet areas show a higher ALT, probably
due to the high soil moisture levels, increasing soil thermal

conductivity. Strong relations between vegetation composi-
tion and ALT have, for example, been shown in a large-
scale study conducted in Alaska, where strong differences in
ALT were observed between vegetation types along a gradient
from shrub-dominated to barren tundra [47].

As expected, the soil moisture content is highest for
the wet vegetation classes (Sphagnum sedge and wet sedge
pools), but the difference in soil moisture content under
the other vegetation types is not that large, probably due
to the fact that we sampled early summer. As a result, soil
moisture content is high (>40%) for most samples, under all
vegetation types, which prohibits a good estimation of soil
properties by in situ reflectance measurements.

3.5. Implications for Spatially Continuous Mapping of Soil
Properties. The relationships between plant species compo-
sition and soil properties allow qualitative estimations for
C and N in the different organic layers, due to the limited
variation within the vegetation classes, but the relationships
are not distinctive enough to be used as a proxy for
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quantitative estimates. Knowing the vegetation type, it can
be determined if a high or low C and N can be expected.
Concerning the pH, qualitative estimation will be possible
for some vegetation classes for some horizons. Especially for
moist Sphagnum sedges, the range in pH is small for both the
slightly decomposed and the decomposed organic layer.

The fact that the presence of certain plant species is
related to the soil properties opens possibilities for applica-
tion of vegetation spectroscopy and remote sensing. Field
reflectance measurements can be used to estimate presence
and fractional cover of different species, for example, by
using spectral unmixing techniques [48]. Given the large
spatial variation in plant species composition, the use of
air- or spaceborne remote sensing data requires both a high
spatial (<1 m) and spectral resolution. Nowadays, these can
only be acquired from airborne platforms. Next to this, cok-
riging techniques, using the vegetation as proxy variable in
combination with a well-designed spatial sampling strategy,
may offer possibilities for spatial mapping of soil properties
in the arctic tundra. The presented spectral methods do allow
fast and cheap intensive measurement of the soil properties
in our study area. Possibilities to map vegetation classes com-
parable to the twinspan classification have to be investigated,
since twinspan determines class assignments based on occur-
rence and quantity of individual species, which is practically
impossible to determine with remote sensing data.

4. Conclusions

The presented results show that reflectance spectroscopy can
be used for fast quantification of multiple soil properties
in the Siberian tundra, although drying of the soil samples
is required before measuring reflectance. As such, it can
be a useful tool to achieve a higher sampling density for
soil properties in tundra ecosystems, where logistics limit
the collection and chemical analysis of a large number
of samples. In situ reflectance spectroscopy can be used
to determine total C. Soil properties show large variation
over short distances, requiring intensive sampling to achieve
good regional estimates of, for example, carbon stocks.
To allow good estimates of carbon stocks in the area, it
is important to increase maximum sampling depth and
determine bulk density for each sample. Because of the
relation between vegetation species and soil properties,
plant species composition can be used to give a qualitative
indication about the soil properties below the surface.

Appendix

For more details see Table 5.
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