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Abstract: The objective of the study presented in this paper is to develop innovative 

approaches for the integration and analysis of information from multiple sensors which 

allow timely detection and diagnosis of crop status in precision agriculture. Our hypothesis 

was that sensing based nutrient management of crops can be improved by combining 

structure and bio-chemistry based vegetation indices and also taking into account the 

spectral changes over the growing season. Good relations were found between the sensor 

measured vegetation index WDVI and LAI and TCARI/OSAVI with nitrogen status based 

on SPAD measurements which were consistent over different growing seasons. Based on 

the calculated Euclidian distance of individual plot vectors with the reference plot vector, 

the development of crop status over time could be assessed. This approach will be further 

developed including the assignment of thresholds based on a so-called control chart 

approach. 
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1. Introduction 

Changing needs in food production and associated food safety issues are challenging the 

agricultural sector to develop a new generation of sustainable agricultural systems. The use of global 

navigation satellite systems, remote sensing, tractor-based near-sensing instruments and in situ 

wireless sensor networks provides the modern farmer with a wealth of data [1,2]. For example in the 

case of fertilization, novel practices are required that improve nitrogen use efficiency by adjusting 

nutrient application rates based on precise estimation of crop needs [3]: type of fertilizer, improved 

timing, and placing nitrogen more precisely in the soil or on leaf. Therefore, to improve site-specific 
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nitrogen management, plant growth models require accurate information on the whole cropping 

system, including the crop nitrogen status, and supply and losses from the soil with high temporal and 

spatial resolution [4]. However, there is still a lack of scientific knowledge and models to convert 

complementary data streams into spatial-temporal data products which can be used for optimizing field 

operations and use of resources in precision agriculture. Currently, the spatial resolution and also the 

temporal coverage of satellite sensors (e.g., Worldview-2, RapidEye, DMC, future Sentinel-2) are 

approaching the required specifications (< 10 m on a weekly basis). However, in temperate regions 

cloud cover is still limiting continuous data acquisition. To improve the frequency of spectral 

measurements, sensor data-streams of remote sensing and ground-based sensors on tractors need to be 

combined. In addition, the use of Unmanned Aerial Vehicles (UAV) provides a flexible intermediate 

observation platform which could improve the continuous aspect of data-acquisition. As a result there 

is a need to standardize vegetation indices from different sensor systems [5] and establish cross-sensor 

relationships. Such capability diminishes the trade-off of spatial resolution at the expense of temporal 

resolution (and vice versa), thus allowing observation of short-term variations in biochemical 

processes. 

The objective of the study presented in this paper is to develop innovative approaches for the 

integration and analysis of information from multiple sensors which allow timely detection and 

diagnosis of crop status in precision agriculture. Our hypothesis is that sensing based nutrient 

management of crops can be improved by combining structure and bio-chemistry based vegetation 

indices and also taking into account the spectral changes over the growing season. We investigated the 

hypothesis based on a detailed field experiment which was conducted for two potato fields in the South 

of the Netherlands. This paper describes an overview of this case study, the available sensor data 

streams and the time-series analysis techniques. 

2. Material and methods  

During the 2011 growing season a broad range of sensors was adopted to monitor the status of a 

potato crop for an agricultural parcel (51° 19’ 04.55” N and 5° 10’ 11.29” E) in the South of the 

Netherlands close to the village of Reusel. Within the field different fertilization treatments were 

prepared resulting in a total of 12 different treatment levels (Figure 1). Within every treatment level, a 

plot of 30 by 30 m was laid out in which on a weekly basic crop conditions were determined (LAI, 

biomass, nitrogen status) and for which measurements with satellite-, ground-based and hand-held 

sensors were taken. In the next section these measurements shortly will be elaborated. 

 

Monitoring of crop parameters 

The potato crop status was monitored on a weekly basis in the period May 30 till August 29, 2011 

resulting in 13 observations. For the 12 experimental plots (Figure 1), the nitrogen status was measured 

using the Minolta SPAD-502 chlorophyll meter. Within every plot, four rows were measured and for 

every row six plants and for every plant three leafs to characterize the variability within the plot. For 

this study, an average SPAD reading as proxy for nitrogen was used as input for the data analysis. 
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Figure 1: Overview of fertilizer treatments in the experimental potato field near the village of 

Reusel in the Netherlands 

Simultaneously, the leaf area index (LAI) was measured with the LAI-2000 instrument for the same 

rows in the experimental plots. At the beginning and end of the row an incoming radiance 

measurement above the canopy was taken, and divided over the row six measurements below the 

canopy. Based on these measurements and with the LAI-2000 accompanying processing software a 

LAI value per row was calculated. In addition, three PASTIS-57 (PAI Autonomous System from 

Transmittance Instantaneous Sensors oriented at 57°) sensors were positioned in one of the plots for 

continuous monitoring of plant area index. The PASTIS-57 sensors are made of photodiodes that 

measure the incoming light in the blue wavelength to maximize the contrast between vegetation and 

sky and limit multiple scattering effects in the canopy. The measurements of the PAI gave additional 

information on the diurnal cycle of the vegetation and could be used to both validate ground based, 

close and remote sensing LAI or cover products. 

 

Acquisition of sensing data 

Crop reflectance was measured weekly with a Cropscan Multispectral Radiometer (MSR16R) for 

12 observations in the period May 30 till August 29, 2011. The Cropscan is a handheld 16-band 

radiometer, which measures simultaneously the reflected and incoming radiation in narrow spectral 

bands [6]. Reflectance is measured through a 28° field-of-view (FOV) aperture and incoming radiation 

is measured through a cosine-corrected sphere. Calibration is performed by pointing the 28° FOV 

aperture towards the sun using an opal glass. Using this calibration, spectral reflectances are derived. 



Sensing a Changing World 2012                     

 

 

4 

Next to this close sensing data were acquired in the first 6 weeks of growing season for five 

observations using the commercial greenseeker (GS) instrument. The GS sensor measures crop 

reflectance using an integrated LED emitting light in the red (656 nm) and NIR (774 nm). Six GS 

sensors were mounted on the spraying beam behind the tractor resulting in a regular point sampling of 

the field depending on the velocity during acquisition. Sensor measurements were acquired during 

regular agricultural management activities (e.g., fungicide application). 

Finally, remote sensing imagery acquired with the UK-DMC-2 satellite (B1: 520 - 610 nm; B2: 630 

- 690 nm; B3: 770 - 900 nm) were available on a regular basis resulting in a total of 8 observations 

over the growing season between May 30 till August 29, 2011. 

 

Data analysis 

In this study the following vegetation indices have been evaluated for the remote estimation of 

SPAD nitrogen content: REP, MTCI, MCARI/OSAVI, TCARI/OSAVI, CIgreen and CIred edge [6]. NDVI 

and WDVI have been evaluated for the estimation of LAI. For the cropscan spectra all indices could be 

evaluated, while for the greenseeker and remote sensing imagery only the WDVI and NDVI were 

available for estimation of the LAI. Based on the R
2
 and RMSEP for the relations between crop 

parameters and vegetation indices optimal relationships were established and also the comparison with 

found relations in previous years was evaluated. 

Normally, sensing data of one moment in the growing season often the most actual one is used to 

assess the crop status. However, it would be relevant to take also the crop development into account in 

crop status assessment as this can give an indication of nitrogen use history or biomass development. 

This means that although at a certain stage two cropping locations can have a comparable nitrogen 

status but their nitrogen use history can be completely opposite (e.g., exhaustion vs. reserve) which 

requires different management strategies. To investigate these processes we applied time-series 

analysis methods to the cropscan sensing data to investigate if these processes are present and if they 

can be identified. For this study we adopted the Minkowski distance between two individual time 

series f
p
(t) and f

q
(t) collected at time t for pixels p and q respectively which is given by [7]: 

 

 

 

Where is the f
p
(t) time series value at moment t and is the f

q
(t) time series value at moment t. N is the 

number of samples in the time series and r is a user defined integer where for r=2 it defines the 

Euclidean distance (DE). In this analysis the most optimal fertilized plot (plot F) was used as reference, 

and the Euclidean distance between this plot and the other 11 plots over time was calculated. This 

means that an increasing distance from the reference plot indicates deviating nitrogen conditions and a 

potential need for a management action. 

3. Results 

A total of 144 observations was available to relate sensor derived vegetation indices with field 

measured LAI development and crop nitrogen status over the growing season (Figure 2). The WDVI 
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gave the best relationship with LAI with a linear relation when all observations were included. The 

relation for NDVI gave the characteristic saturation effect resulting in uncertain LAI in the range 3-8. 

Figure 2 shows the gradual increase of LAI till the end of June when the potato crop its establishing its 

maximum LAI. The relation between WDVI and LAI for 2011 was compared to a relation which was 

derived in a comparable experiment for the growing season 2010. For higher LAI values the relation is 

comparable, however in the lower LAI range till 4 a clear deviation can be observed. This could be 

attributed to difference in aboveground structure of the potato canopy at the end of the growing season. 

The TCARI/OSAVI index gave the best relation with the nitrogen status of the potato crop (Figure 

2) with relations which also have been observed for other agricultural crops. An important advantage 

of the TCARI/OSAVI index compared to indices like REP and NDRE (result not shown) is the 

robustness to background effects like soil. Comparison of the 2011 and 2010 relationship gave a high 

degree of similarity which indicates that the established relations are robust over different growing 

seasons.  

Figure 3 and 4 present the results of the time-series analysis, showing the difference based on 

Euclidian distance between vegetation index measurements for 11 experimental plots compared to the 

reference plot. It can be observed that at the start of the growing season already three plots which got a 

low initial fertilization (C, D, L) start to deviate from the growth of the reference plot F (Figure 3). 

Apart from plot K and I which also deviate at a later stage, the plots stay quit close together which 

indicates that in general the development of aboveground biomass (as indicated by WDVI) over the 

field is comparable for higher fertilization levels. This shows that fertilization effects on aboveground 

biomass only can be observed for plots with extreme (low) nitrogen availability. However, when we 

evaluate the difference in Euclidian distance for the TCARI/OSAVI index (Figure 4), then clear 

difference can be observed between clusters of experimental plots over the growing season. From the 

start of the growing season, plot B en D with low initial fertilization levels are already deviating. After 

two weeks also plot C and after three weeks a group of plots (A, K en I) start to deviate from the 

reference plot F. This latter process cannot be observed from the WDVI data (=biomass) but is mainly 

related to the nitrogen condition of the plant. 

 

  
Figure 2: Relation for weighted difference vegetation index and Leaf Area Index for experimental 
plots in 2011 compared to regression line for field in 2010 (left); and relation for TCARI/OSAVI 

vegetation index and nitrogen determined with SPAD instrument for for experimental plots in 
2011 compared to regression line for field in 2010 (right). 
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Figure 3: The difference based on Euclidian distance based on WDVI for 11 experimental plots 

compared to the reference plot F for sensor observations over the 2011 growing season. 

 
Figure 4: The difference based on Euclidian distance based on TCARI/OSAVI for 11 experimental 

plots compared to the reference plot F for sensor observations over the 2011 growing season. 
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4. Conclusions and outlook 

In this paper, we have presented a multi-temporal dataset on the relation between close and remote 

sensing observations and potato crop characteristics in order to monitor crop status for precision 

agriculture applications. Good relations were found between the vegetation index WDVI and LAI and 

TCARI/OSAVI with nitrogen status based on SPAD measurements. The relations found for the potato 

field in 2011 showed comparable trends compared to these relations measured for another potato 

parcel in 2010. This shows that these relations seem to be generic over time and even over different 

potato varieties. 

As a next step, instead of assessing differences in fertilizer treatments at one moment in time, we 

compared time-series of vegetation index values of all treatment plots with the reference plot for which 

optimal yields were observed. Based on the calculated the Euclidian distance of the individual plot 

vectors with the reference plot vector, the development of crop status over time could be assessed. 

Clear differences between plots could be observed at specific points over the growing season. This 

approach will be further developed including the assignment of thresholds based on a so-called control 

chart approach. This would allow the detection of areas within an agricultural parcel which are above a 

pre-defined warning limit or which pass an action limit defining the application of additional fertilizer. 

In 2012, the TCARI/OSAVI will be tested for operational implementation of variable rate application 

of nitrogen fertilizer over the growing season. 
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