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Abstract

Biomarker profiling, as a rapid screening approach for detection of hormone abuse, requires well selected candidate
biomarkers and a thorough in vivo biomarker evaluation as previously done for detection of growth hormone doping in
athletes. The bovine equivalent of growth hormone, called recombinant bovine somatotropin (rbST) is (il)legally
administered to enhance milk production in dairy cows. In this study, first a generic sample pre-treatment and 4-plex flow
cytometric immunoassay (FCIA) were developed for simultaneous measurement of four candidate biomarkers selected from
literature: insulin-like growth factor 1 (IGF-1), its binding protein 2 (IGFBP2), osteocalcin and endogenously produced
antibodies against rbST. Next, bovine serum samples from two extensive controlled rbST animal treatment studies were
used for in vivo validation and biomarker evaluation. Finally, advanced statistic tools were tested for the assessment of
biomarker combination quality aiming to correctly identify rbST-treated animals. The statistical prediction tool k-nearest
neighbours using a combination of the biomarkers osteocalcin and endogenously produced antibodies against rbST proved
to be very reliable and correctly predicted 95% of the treated samples starting from the second rbST injection until the end
of the treatment period and even thereafter. With the same biomarker combination, only 12% of untreated animals
appeared false-positive. This reliability meets the requirements of Commission Decision 2002/657/EC for screening methods
in veterinary control. From the results of this multidisciplinary study, it is concluded that the osteocalcin – anti-rbST-
antibodies combination represent fit-for-purpose biomarkers for screening of rbST abuse in dairy cattle and can be reliably
measured in both the developed 4-plex FCIA as well as in a cost-effective 2-plex microsphere-based binding assay. This
screening method can be incorporated in routine veterinary monitoring programmes: in the European Union for detection
of rbST abuse and in the control of rbST-free dairy farms in the United States of America and other countries.
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Introduction

Many different techniques are available for detection of

hormone abuse in sports doping and veterinary control, which

all have to fulfil the requirements to be reliable, comparably fast

and affordable. Biomarker profiling was suggested as a rapid

screening approach for detection of doping practices because of its

many advantages over the direct detection of the particular abused

substances [1]. Biomarker profiles are indicative for more than one

administered agent as they reflect the physiological effect, hence,

the abuse of unknown compounds can also be detected [1,2].

Furthermore, in many cases, the analysis of biomarker profiles

enables the detection of abused substances for a longer time

period, because the biological effect lasts longer than the abused

substance itself can be detected in the body [3,4]. A lot of work was

focused on the identification of indicative biomarkers and the

development of assays for detection of those [2,5–10]. But the

suitability and discriminative power of each biomarker has to be

evaluated in controlled studies where a treated group is compared

with an untreated one [11–13].

Extensive studies were done for the biomarker-based detection

of recombinant somatotropin (ST; or growth hormone, GH) in

sports doping, where ST is abused by athletes for their

performance enhancement [14–18]. A similar screening approach

can be chosen for the detection of recombinant bovine ST (rbST)

abuse in dairy cattle, where the hormone is administered for

enhanced milk production [19,20]. The administration to dairy

cattle is approved by the U.S. Food and Drug Administration in

the United States of America and allowed in several other

countries [21]. But treating cows with rbST is forbidden in the

European Union since 1999 because of animal health and welfare

reasons [22]. By European regulation, screening and confirmatory

methods should be available for the detection of (ab)used

veterinary drugs, with for screening, a maximum false-compliant

rate of 5% (ß error) [23]. In contrast to the well-established human

biomarker-based screening approach, the issue of rbST-dependent

biomarker detection is still in its infancy: actually, routine

veterinary control for rbST abuse has not been implemented at

all, despite the EU ban. So far developed methods which detect

rbST directly, such as immunoassays or mass spectrometry-based
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methods, suffer from the short half-life of rbST. Although biweekly

injections containing slow-release formulations are used to prolong

the presence of rbST in the cows’ body, the protein levels in

treated animals cannot be distinguished from the background level

throughout the whole two-week inter-injection period and large

inter-individual differences in blood rbST levels were reported

[19,20,24–27]. Furthermore, rbST immunoassays were not

capable to distinguish the almost identical recombinant and

endogenous forms of bST [19,20,24,25] and mass spectrometry-

based methods on the other hand required very tedious sample

preparation procedures [26,27]. For screening of rbST in cattle, a

few biomarker-based methods were developed, but focused on a

single candidate biomarker only [4,9,28–30]. In a recent study,

three candidate biomarkers were combined in one screening tool,

but the ,5% false-compliant rate target could not be achieved

[31]. Nevertheless, biomarker-based screening for rbST can be

considered a very promising start for detecting rbST abuse in dairy

cows.

Biomarkers indicative for ST abuse are described in detail in

literature and several of them are listed and referenced in Table 1.

From these, we selected four different candidate biomarkers.

These included two biomarkers of the IGF-1 axis, which respond

quickly upon rbST treatment, namely insulin-like growth factor-1

(IGF-1) and IGF binding protein 2 (IGFBP2). The other two

biomarkers were expected to show a delayed but long-lasting

response; these are osteocalcin (marker of bone turnover) and

antibodies which are endogenously produced against rbST (anti-

rbST-antibodies).

To be able to screen for these four candidate biomarkers in

serum, we developed a 4-plex flow cytometric immunoassay

(FCIA) enabling parallel biomarker analysis in a single sample. For

IGF-1, IGFBP2 and osteocalcin, a competitive inhibition assay

format was chosen, where the respective candidate biomarker is

covalently coupled to one set of colour-encoded microspheres. The

different microsphere sets can be discriminated by a red laser

(Figure 1). Biomarker-specific and generic fluorescent secondary

antibodies are used for quantification with a green laser. Due to

the inhibition format, high sample biomarker concentrations yield

low fluorescence signals and vice versa. For the anti-rbST-

antibodies, a direct assay format with an rbST-coupled colour-

encoded microsphere set was used, where the anti-rbST-antibod-

ies bind and can be detected by fluorescently labelled anti-bovine

detection antibodies. Here, a high biomarker level leads to a high

fluorescence signal. With this 4-plex FCIA, biomarker profiles

were measured in serum samples. Based on the biomarker profiles

of 67 untreated animals from different origins, we assessed the

inter-individual and physiological variability of these biomarkers

within dairy cattle and determined decision limits, beyond which a

sample could be classified rbST-treated. Then, we used a large set

of serum samples obtained from two independent controlled rbST

animal treatment studies to evaluate the discriminative power of

each candidate biomarker and of all combinations of biomarkers

for distinguishing rbST-treated from untreated cows. Following

thorough statistical evaluations, the value of individual and

multiple biomarkers was assessed for the prediction of rbST abuse

in dairy cows.

The overall aim of the study was the development and

validation of a chemical analytical method for rbST-dependent

biomarker detection according to European legislation for

screening methods [23] and a data analysis approach for

identifying biomarker combinations, which can reliably predict

rbST abuse. This aim was reached with the help of a statistical

prediction model based on the biomarker combination endoge-

nously produced antibodies against rbST and osteocalcin.

Results and Discussion

For the prediction of rbST abuse in dairy cows, we selected

candidate biomarkers based on information found in literature

(Table 1). These were markers of the IGF-axis (such as IGF-1 and

IGFBP2) and bone markers (such as osteocalcin), known to be

influenced by somatotropin and previously examined by the GH-

2000 group for detecting somatotropin abuse in athletes [13,32].

Furthermore, the immune response of cows treated with rbST was

Table 1. Candidate biomarkers for ST abuse and their expected response upon ST treatment in human and cows.

Biomarkers response to ST described for reference

Acid labile subunit (ALS) increase human [45]

Anti-rbST-antibodies increase bovine [30,31,33,34]

Apolipoprotein A-1 (APOA1) decrease human [8]

C-terminal cross-linked telopeptide of collagen I
(ICTP)

increase human [13,45,46]

C-terminal propeptide of procollagen I (PICP) increase human [13]

Haemoglobin a-chain (HbA1) increase human [6]

IGF binding protein 2 (IGFBP2) decrease bovine [31,47]

IGF binding protein 3 (IGFBP3) increase human [45]

Insulin-like growth factor (IGF-1) increase human [45,46]

Inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4) decrease human [8]

Leucine-rich a-2-glycoprotein (LRG) increase human [9]

N-terminal propeptide of procollagen I (PINP) increase human [12,45]

N-terminal propeptide of procollagen III (PIIINP) increase human [12,13,45,46]

Osteocalcin increase human [12,13]

Transthyretin (TTR) increase human [8]

a-1 antitrypsin (AAT) increase human [8]

doi:10.1371/journal.pone.0052917.t001
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examined thoroughly and we used the presence of the specific

endogenous antibodies against rbST as a biomarker for its abuse

[4,30,33,34]. Although PIIINP, a marker of collagen turnover, is

known to show potential in human and bovine hormone abuse

detection [10,18], it has not been included into our biomarker

panel yet because of the lack of a suitable commercially available

standard protein and antibody.

Development of a 4-plex flow cytometric immunoassay
For the simultaneous detection of these four candidate

biomarkers, we developed a generic sample pre-treatment and

4-plex flow cytometric immunoassay (FCIA). To this end, our

previously reported 3-plex assay [31] was extended with the

biomarker osteocalcin. Adding osteocalcin to the existing triplex

FCIA did not result in major interferences of any of the assay

components of the four combined biomarker assays (data not

shown). IGF-1 and osteocalcin concentrations of tested serum

samples were calculated based on the obtained standard curves in

serum-matched buffer (Figure S1). The 4-plex FCIA is capable of

determining IGF-1 and osteocalcin concentrations in the relevant

range in serum, namely 64–400 ng mL21 for IGF-1 and 32–

320 ng mL21 for osteocalcin (note that serum samples were

diluted 80-times prior to analysis, thus the standard curves cover

protein concentrations of 0.8–5 ng mL21 for IGF-1 and 0.4–

4 ng mL21 for osteocalcin). For IGFBP2, the standard protein

could not completely inhibit the B0 signal; therefore, we decided to

work with normalized responses (B/B0) for the data analysis. For

the induced anti-rbST-antibodies, we worked with the responses

normalized to a single standard serum (B/Bd).

The generic sample pre-treatment was necessary for releasing

IGF-1 from its binding protein-complex and preventing non-

specific binding in the detection of anti-rbST-antibodies. The

rather harsh pre-treatment protocol did not affect the detection

quality of osteocalcin, thus it could be adopted for the combined 4-

plex FCIA. Note that adding IGF-2 in excess, as done in

commercially available human IGF-1 immunoassays, improved

neither the normalized standard curves nor the detection of

biomarker level differences in between treated and untreated

animals. The developed assay showed high reproducibility for all

measured candidate biomarkers (Table 2) and a comparable

sensitivity to previous single biomarker methods [35,36]. However,

the newly developed 4-plex FCIA has several advantages, such as

the simultaneous measurement of all four markers in one sample

from one well of a microtiter plate, which saves sample material,

work load and time. Additionally, only one washing step was

required compared to an average of six washing steps in a

conventional enzyme-linked immunosorbent assay, making the 4-

plex FCIA much faster and easy-to-use. The whole assay

procedure, starting from a serum sample until the results from

the flow cytometer for all four candidate biomarkers, takes

3.5 hours for a whole 96 well microtiter plate. This demonstrates

that the 4-plex FCIA is a rapid and promising screening tool for

the detection of the four candidate biomarkers in serum.

Single candidate biomarker profiles of untreated and of
rbST-treated cows

After successful development of the 4-plex flow cytometric

immunoassay, decision limits for each single candidate biomarker

were calculated by analysis of sera from 67 untreated dairy cows

(see paragraph 9.1 in the materials and methods section).

Compared to the number of tested athletes in human studies,

the number of tested control animals may seem to be rather low,

but the variation within the dairy population is expected to be

much lower, because of several reasons: First, only female cows

have to be taken into account. Second, milking only occurs after

first calving (usually at 20–24 months of age), thus after puberty, in

which levels of IGF-1, IGFBP2 and osteocalcin are mainly

changed due to growth and are more stable thereafter [37–39].

Third, since in this region of Europe mainly Frisian Holstein cows

are used for milk production, we focussed on this particular race

for the development of the test. And fourth, we do not need to

consider sick animals, since their milk will not be allowed for

consumption due to the presence of veterinary drug residues and

therefore treatment with rbST is useless for sick dairy cows. Thus,

the overall relative variation expected in dairy cows is anyway

much lower than in athletes, where gender, different ethnicities,

the effect of sports discipline, injury and all age groups need to be

considered.

Decision limits were 216 ng mL21 for IGF-1, 0.52 B/B0 for

IGFBP2, 1.62 B/Bd for anti-rbST-antibodies and 160 ng mL21

for osteocalcin and are shown as green horizontal lines in Figure 2.

Results of samples exceeding this limit were considered positive.

Then, biomarker profiles of the dairy cows from both animal

studies were measured (Figure 2). Results of the cows from animal

study I are shown in dotted lines whereas the results of animal

study II are shown in solid lines. Note that the animals from

animal study I received two additional weekly rbST injections after

the biweekly treatment period (the treatment schedules of both

animal studies are indicated by the black horizontal bars above the

graphs and shown in Figure S2).

IGF-1 levels were found to be elevated directly after rbST

treatment (Figure 2A.1) and returned back to baseline before the

next treatment. This short response time was observed before in

human studies, where IGF-1 concentrations were back to baseline

one week after termination of somatotropin treatment [32].

Nevertheless, in athletes, IGF-1 stayed elevated throughout the

treatment period. This difference in IGF-1 response to somato-

tropin treatment could be due to the fact, that athletes were

injected daily and, although a slow-release formulation was used in

the here presented study, the biweekly treatment schedule does not

reflect the same situation of permanently present somatotropin in

circulation. IGF-1 levels of untreated animals (Figure 2A.2)

remained below the decision limit. The found IGF-1 concentra-

tions are consistent with previously reported serum IGF-1

concentrations in dairy cows [31,40].

IGFBP2 levels (Figure 2B) are expected to decrease upon rbST

treatment [32,41]. The IGFBP2 assay is of an inhibition format,

thus B/B0 levels are inversely correlated with the concentration.

Hence, higher B/B0 levels are expected after rbST treatment. For

some of the rbST-treated cows, a slight increase in B/B0 levels can

be observed after treatment (Figure 2B.1) with a decrease to

baseline before the next treatment. But this pattern is not as

pronounced as for IGF-1. Furthermore, only occasionally a value

exceeded the decision limit. Only the results of one cow were

clearly above the decision limit, but these values were observed

already during the adaptation period. In humans and despite large

Figure 1. Work flow for serum preparation, generic serum pre-treatment and 4-plex FCIA for serum candidate biomarkers. A
detailed description can be found in Materials S1. Abbreviations: h – hour, IGF-1 – insulin-like growth factor 1, IGFBP2 – IGF binding protein 2, GS I –
glycine solution I, GS II glycine solution II, min – minutes, PBST – phosphate-buffered saline with 0.05% (v/v) Tween-20, PBSTB – 0.1% (m/v) BSA in
PBST, PE – phycoerythrin fluorescent label, rbST – recombinant bovine somatotropin, RT – room temperature, sec – seconds.
doi:10.1371/journal.pone.0052917.g001
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inter-individual differences, mean IGFBP2 levels responded quite

well upon ST treatment, but the athletes were treated daily on

three subsequent days [32]. B/B0 levels of untreated animals

(Figure 2B.2) remained below the decision limit at almost all times.

For the antibodies, endogenously produced by the cow as an

immunological response upon rbST treatment [30], a delayed

increase in signal was observed (Figure 2C.1). Most of the cows

developed antibodies approximately 2 weeks after the first rbST

injection and a maximum in response could be seen around the

third injection (four weeks after start of rbST treatment).

Thereafter, the responses declined slowly. Zwickl et al. reported

an increase of antibody formation within the first three months of

rbST treatment and a decline thereafter, but the amount of rbST

administered in their study was much higher than recommended

by the manufacturer and applied here [34]. For the untreated

cows in our studies (Figure 2C.2), only one result was found to be

above the decision limit.

For osteocalcin, a slow increase in concentration was observed

after rbST treatment (Figure 2D.1) compared to the untreated

cows where the concentrations remained below the decision limit

at almost all times. A similar effect on osteocalcin levels was

observed in the human GH-2000 study [13]. Osteocalcin

concentrations in our studies increased consistently in the 8 week

treatment period, no gradual decline was observed as for the anti-

rbST-antibodies. A slow osteocalcin decrease was noticed after

rbST withdrawal but values remained above the decision limit for

some of the cows until the end of the animal study.

For all of the candidate biomarkers large inter-individual

physiological differences in biomarker levels were apparent as

for example seen in the adaptation period of the treated animals.

IGF-1, IGFBP2 and osteocalcin levels differed quite a lot between

individual animals. Biomarker levels are known to be influenced

by many factors such as age and state of lactation. Nevertheless,

the expected variation is much smaller than in athletes tested for

ST abuse as already discussed above. Note that we accounted for

the variation in our untreated reference population used to assess

the decision limits. Also the response upon rbST treatment

differed in every individual cow. Some cows showed a big increase

in IGF-1 levels short after injection while others did not show any

response above decision limit (non-responders). Also for osteocal-

cin, some cows hardly showed any response after treatment.

The predictive power of each candidate biomarker was

assessed by calculating true-positive rates for all samples from

rbST-treated cows in their treatment and withdrawal period

(Figure 3). False-positive rates were calculated from untreated cows

during the whole animal experiment (adaptation period samples

from all cows and all the samples from untreated cows). High true-

positive rates were reached by IGF-1 already at the beginning of

the treatment period. Similar response patterns were observed for

both studies. Only the double injections in study I led to a changed

IGF-1 pattern. Also for the anti-rbST-antibodies, high true-

positive rates of 75% were seen after the second rbST injection.

But the response was study-dependent: while the animals from

study I (equal age of 5 years) were found positive after the second

injection until the end of the study period, a gradual decrease of

the number of positively found animals was observed in study II

(age ranged from 2 to 8 years). This could be due to the different

ages of the animals in study II. We saw that the antibody response

tended to be higher in the older animals. Younger animals also

showed antibody response, which declined more quickly than for

the older animals. For osteocalcin, as already seen in Figure 2D.1,

some of the rbST-treated cows did not show osteocalcin

concentrations beyond the decision limit in both studies. The

increase of true-positive found samples at the end of the treatment

period in study I was due to the double rbST injections. As already

expected from the biomarker profiles (Figure 2B.1), IGFBP2 did

not show high true-positive rates, i.e., none of the animals from

study I and only some animals in study II were found above the

decision limit. For all of the candidate biomarkers, false-positive

rates were quite low, indicating a high specificity of all of the

biomarkers towards rbST treatment. Nevertheless, none of the

candidate biomarkers reached the targeted 95% true-prediction

(,5% false-compliant) rate at any time point required for a

screening method according to Commission Decision 2002/657/

EC [23].

Additive biomarker analysis
Since no single candidate biomarker was capable of predicting

95% of the rbST-treated samples correctly, we tested different

possibilities of combining biomarker results for improvement of

the predictive power of our 4-plex FCIA. One approach to do this

is the additive biomarker analysis. In Figure 4, the number of

candidate biomarkers responding above decision limit per cow and

per time point within the animal studies is shown. As already

described in paragraph 2 of the results section, there were big

inter-individual differences: some cows responded in many

markers, others only in one or two for some time points. There

were also two extreme cases: one cow responded in all four tested

Table 2. 4-plex FCIA assay performance characteristics for the single candidate biomarkers.

Candidate biomarkers

Performance characteristics IGF-1 IGFBP2 Anti-rbST antibodies Osteocalcin

IC50 1.5a 9.5a - 1.1a

Inter-assay variation 15.7b 7.9b 22.3b 17.1b

Intra-assay variation 6.4b 5.7b 9.4b 9.5b

Decision limit 216a 0.52c 1.62d 160a

Stability The 4-plex FCIA can be performed stably over several months by different staff.

Specificity No unwanted interaction in between the assays (analytes and antibodies) observed.

IC50 related to 80-times diluted samples.
ain ng mL21.
bin %.
cof B/B0.
dof B/Bd.
doi:10.1371/journal.pone.0052917.t002
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markers above decision limit at one time point and another rbST-

treated cow did not show any response above decision limit at any

day. On the other hand, there were untreated cows, which showed

positive responses in one of the candidate biomarkers. Figure 5

shows the true-positive rate obtained for the rbST-treated cows of

both animal studies considering a sample positive, when at least

one biomarker reacted above the respective decision limit.

Although the true-positive rate obtained with the additive

biomarker analysis was much higher than for the single candidate

biomarkers, the 95% true-positive rate required for a screening

method was only reached at some time points in study I within the

biweekly treatment period. After the double rbST injection in

study I, all of the cows were found positive, but this treatment

frequency will not be found in real practice. Furthermore, also

with the additive biomarker analysis, quite some false-positive

results were obtained throughout the whole study.

Statistical multiple biomarker analysis
Since the single biomarker analysis and additive biomarker

analysis, which were both based on decision limits, did not deliver

satisfying results for predicting rbST abuse, a different biomarker-

combining approach was chosen for analysis of the data. K-nearest

neighbours (kNN), a statistical prediction tool, was used to build a

model from one group of data (Group A: all animals of animal

study II and untreated animals from animal study I) and predict

the results of Group B (rbST-treated cows of animal study I and 67

independent untreated cows) on basis of the built model. Eleven

different models (one for every possible combination of two to four

biomarkers) were evaluated to find the optimal biomarker

combination for rbST abuse prediction. True-positive rates of

Group B data were calculated for every biomarker combination

over the time of the whole animal study and are shown in Figure 6

(Table S1 shows corresponding data). Six of the eleven different

models yielded true-positive rates above the 95% true-positive rate

required for a screening method at several time points. For the

biomarker combinations IGF-1 - IGFBP2 - anti-rbST-antibodies

(IBA) and IGFBP2 - anti-rbST-antibodies - osteocalcin (BAO),

only one time point within the biweekly treatment period was

above 95%. Note that in total, samples from eleven time points

were obtained and analysed during the biweekly treatment period

of animal study I. For the biomarker combinations IBAO and IA,

four and six time points within the biweekly treatment period were

above the 95% target respectively. Seven time points above the

95% target within the biweekly treatment period were reached by

the prediction models based on the biomarker combinations IAO

and AO. For the three best performing models (IA, AO and IAO),

true-positive rates above 95% (,5% false-compliant) were reached

following the second rbST injection. For IA, a true-prediction rate

of almost 60% was observed already one week after the first rbST

injection, whereas AO only showed 30%, which is in accordance

with expectations since IGF-1 is a quick responding biomarker and

osteocalcin has a delayed response time. Since all of the rbST-

treated cows were detected by the three best performing models

(IA, AO, IAO) at the end of the biweekly treatment period, no

further increased prediction rate was observed due to the

subsequent two weekly injections. After withdrawal of rbST, the

true-positive rate of the models based on IA, AO and IAO

remained above 95% for two more weeks and then declined to

70% four weeks after withdrawal.

Since we used all of the untreated animals of both animal

studies for model building, false-positive rates for the eleven

different models were calculated based on the results of the 67

independent untreated cows (Table S2). For the three best-

performing prediction models IA, AO and IAO, false-positive

rates ranged from 10.6% to 14.7%, which was quite acceptable,

since samples screened positive must be analysed by a subsequent

confirmatory analysis method according to Commission Decision

2002/657/EC anyway [23]. The confirmation method is based on

the detection of an N-terminal peptide of somatotropin, which has

Figure 2. Biomarker profiles of rbST-treated (left) and untreated (right) dairy cows. Profiles from animal study I (dotted lines) and animal
study II (solid lines) are shown. Sera from adaption period (3 sera from every cow), treatment period (13 sera per cow from animal study I and 9 sera
per cow from animal study II) and withdrawal period (5 sera per cow from animal study I and 6 sera per cow from animal study II) were measured in
duplicate. Biomarkers shown are concentrations of IGF-1 (A), B/B0 levels of IGFBP2 (B), B/Bd levels of antibodies against rbST (C) and concentrations of
osteocalcin (D). The rbST treatment schedules for both animal studies are indicated by two black horizontal bars and decision limit per biomarker by
the green horizontal line. Note that cows from animal study II received two additional rbST injections after the biweekly treatment period.
doi:10.1371/journal.pone.0052917.g002

Figure 3. Predictive power of each single candidate biomarker
for indicating rbST abuse. True-positive rates were calculated for all
samples from rbST-treated cows in their treatment and withdrawal
periods of study I and II. False-positive rates were calculated for all
samples from untreated cows from the two animal studies (adaptation
period samples from all cows and all the samples from untreated cows).
Samples were considered positive if their biomarker value exceeded the
respective decision limit. The treatment schedules of the two controlled
animal studies are indicated by black horizontal bars on top of the
graph. The targeted 95% true-positive (,5% false-compliant) rate
according to 2002/657/EC is indicated by the dotted horizontal line.
doi:10.1371/journal.pone.0052917.g003
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a different terminal amino acid in the recombinant form of the

hormone [26].

We concluded from the results of the here presented studies that

the AO biomarker combination is the preferred model for

predicting rbST abuse. It yielded seven out of eleven time points

above the 95% target and if two biomarkers are equally well-suited

for prediction as three biomarkers, the simpler version is favoured.

The results obtained proof that the developed 4-plex FCIA

reduced to an AO biomarker combination 2-plex FCIA, applied to

an in vivo evaluation and combined with a thorough statistical

multiple biomarker analysis can detect more than 95% of the

rbST-treated cows truly positive directly after the second rbST

injection until the end of their treatment period and even

thereafter. This meets the requirements of Commission Decision

Figure 4. Number of biomarkers reacting above the respective decision limit. Results shown per cow (in animal studies I and II) and day of
the controlled animal studies. Each row represents one individual cow. Vertical dotted lines indicate the treatment time points in both animal studies.
doi:10.1371/journal.pone.0052917.g004

Figure 5. Predictive power (shown as true-positive and false-positive rates) of the additive biomarker analysis. True-positive rates
were calculated for all samples from rbST-treated cows in their treatment and withdrawal periods of study I and II. False-positive rates were calculated
for all samples from untreated cows from the two animal studies (adaptation period samples from all cows and all the samples from untreated cows).
Samples were considered positive if one of the candidate biomarkers exceeded its respective decision limit. The treatment schedules of the two
animal studies are indicated by black horizontal bars on top of the graph. The targeted 95% true-positive (,5% false-compliant) rate according to
2002/657/EC is indicated by the dotted horizontal line.
doi:10.1371/journal.pone.0052917.g005
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2002/657/EC for a screening assay for the detection of banned

veterinary drugs such as rbST [23].

When comparing with previously reported results of a 3-plex

FCIA combining IGF-1, IGFBP2 and anti-rbST-antibodies [31],

the models presented here seemingly perform somewhat less,

especially at the beginning of the rbST treatment but the new

models are much more realistic: Note that here, two completely

independent groups were used for model building (Group A) and

prediction (Group B), whereas in the 3-plex experiments [31],

sample data used for prediction were from the same cows as the

data on which the model was built, leading to an overestimation of

true-positive results in that work.

Discussion

For the first time, to the best of our knowledge, a 4-plex

biomarker assay development and data evaluation model is

presented for the detection of rbST abuse, which fulfils the

requirements of Commission Decision 2002/657/EC for screen-

ing assays [23]. Furthermore, the extensive in vivo validation with

two independent rbST animal treatment studies followed by

statistical analysis revealed that a combination of just two

candidate biomarkers is actually adequate for detection of rbST

treatment. Therefore, even a 2-plex version (namely the combi-

nation of anti-rbST-antibodies and osteocalcin) of our assay would

already be fit-for-purpose based on the data presented here.

Nevertheless some issues should be considered. First of all, for

obvious ethical and cost reasons, the rbST treatment period was

limited to 8 weeks in our animal studies, so we do not know yet

how the prediction models would perform for long-term treated

animals. As it can be seen in Figure 2C.1, the antibody biomarker

response declined somewhat in course of the treatment period and

we do not know whether this would influence the prediction

quality in a prolonged treatment. Second, in the presented animal

studies, cows were treated with rbST for the first time in their lives

Figure 6. True-positive rates following statistical multiple biomarker analysis. True-positive rates, obtained with the prediction models
based on the eleven different biomarker combinations, were calculated for rbST-treated cows from animal study I in their treatment and withdrawal
period. The treatment schedules of animal study I is indicated by black horizontal bars on top of the graphs. The targeted 95% true-positive rate
according to 2002/657/EC is indicated by the dotted horizontal lines.
doi:10.1371/journal.pone.0052917.g006
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and there are no data about biomarker levels during a second

treatment period after calving. According to the manufacturers’

treatment schedule, dairy cows are treated starting from 9 weeks

after calving until the end of the lactation (typically a biweekly

treatment) and the following year again. Eppard et al. and Zwickl et

al. reported that repeated treatment periods did not cause an

immunological memory effect with enhanced antibody production

in the second treatment period [33,34]. For both situations, long-

term treatment and repeated treatment, the IA, AO and IAO

biomarker combinations should be tested and possibly the

inclusion of other biomarkers could be considered. Since blood

sampling in routine veterinary monitoring programmes might not

be justified in some countries, we suggest a tiered approach

according to Commission Decision 2002/657/EC. This would

consist of three steps: First, a fast screening for anti-rbST-

antibodies in tank milk using our previously described milk FCIA

[29]. Second, in case of suspicious findings, a more detailed

individual bovine serum biomarker profiling using the IA, AO or

IAO FCIA presented here will provide additional evidence, since

they are based on more biomarkers and data for individual cows.

Note that in practice, a whole stable and not an individual cow is

treated with rbST, thus increasing the chance of detecting rbST

use. And third, for final confirmation of rbST itself in serum

samples of suspect individual cows, a highly sensitive mass

spectrometric confirmatory method, which fulfils the 2002/657/

EC confirmatory method requirements, is to be used [26].

Conclusions

In this study a multidisciplinary approach was used for the

development of an in vivo validated screening assay for rbST abuse

in dairy cows. Four candidate biomarkers for rbST abuse were

assessed using a newly developed 4-plex flow cytometric immu-

noassay, in vivo validation studies and advanced statistics.

Biomarkers indicative for rbST administration were evaluated

based on two extensive animal studies with rbST-treated and

untreated animals and an additional untreated reference popula-

tion. Different data evaluation approaches were tested. The

prediction tool kNN using a biomarker combination endogenously

produced antibodies against rbST and osteocalcin proved to be

very reliable and correctly predicted 95% of the treated samples

starting from the second rbST injection until the end of the

treatment period and even thereafter. This reduced 2-plex FCIA

method (consisting of biomarkers anti-rbST antibodies and

osteocalcin) combined with the statistical analysis approach was

shown to be a fast, reliable and cost-effective approach to screen

for rbST abuse in dairy cattle. These methods and models can be

included in routine veterinary control programmes in the

European Union for detection of rbST abuse and also in the

control of rbST-free dairy farms in the United States of America

and other countries.

Materials and Methods

Ethics statement
Permission for animal study I (EC2007/71) was obtained from

the Ethical Commission of the Faculty of Veterinary Medicine of

Ghent University (Belgium) on basis of the Dutch law on animal

studies (Wet op de Dierproeven). For animal study II, permission

(EC2010-21) was obtained from the Ethical Commission of the

Animal Science Group of Wageningen University and Research

Centre in Lelystad (The Netherlands).

Chemicals and instruments
Ultrasonic bath, monosodium phosphate monohydrate (NaH2-

PO46H2O), potassium dihydrogen phosphate (KH2PO4), sodium

chloride (NaCl), sodium azide (NaN3) and Tween 20 were

obtained from VWR International (Amsterdam, The Nether-

lands). Microcentrifuge Model 16K was purchased from Bio-Rad

(Veenendaal, The Netherlands). Protein LoBind Tubes, Safe Lock

Tubes (amber) and Centrifuge 5810R were obtained from

Eppendorf (Hamburg, Germany). 1-Ethyl-3-(3-dimethylaminopro-

pyl)carbodiimide (EDC), 2-(N-morpholino)ethanesulfonic acid

(MES) hydrate, ovalbumin and bovine serum albumin (BSA) were

obtained from Sigma-Aldrich (St. Louis, MO, USA). MultiScreen

HTS filter plates were purchased from Millipore (Billerica, MA,

USA). Purified bovine osteocalcin and mouse anti-bovine osteo-

calcin antibodies were obtained from Haematologic Technologies,

Inc. (Essex Junction, VT, USA). Insulin-like growth factor-I (IGF-

I; human recombinant) was purchased from Fitzgerald Industries

International (North Acton, MA, USA). Insulin-like growth factor

binding protein-2 (IGFBP-2; bovine recombinant, receptor grade)

was purchased from IBT (Reutlingen, Germany). Mouse anti-IGF-

1 was supplied by LifeSpan BioSciences, Inc. (clone SPM406,

Seattle, WA, USA) and the rabbit anti-IGFBP-2 was from United

States Biological (Swampscott, MA, USA). Monsanto rbST

standard was obtained from the National Hormone & Peptide

Program (NHPP) of Dr Parlow (Torrance, CA, USA). R-

Phycoerythrin (PE)-labelled goat anti-bovine immunoglobulins

(GAB-PE) were from Santa Cruz Biotechnology (Santa Cruz, CA,

USA) and R-Phycoerythrin (PE)-labelled goat anti-mouse immu-

noglobulins (GAM-PE) and goat anti-rabbit immunoglobulins

(GAR-PE) were purchased at Prozyme (San Leandro, CA, USA).

Donor adult bovine serum was from HyClone (South Logan, UT,

USA). Sodium hydroxide (NaOH), disodium hydrogen phosphate

dihydrate (Na2HPO462 H2O) and hydrochloric acid (HCl) were

purchased from Merck (Darmstadt, Germany). SeroMAP micro-

spheres (microsphere sets 025, 050, 078 and 084) and sheath fluid

were obtained from Luminex (Austin, TX, USA). The Luminex

100 IS 2.2 system consisting of a Luminex 100 analyser and a

Luminex XY Platform was purchased from Applied Cytometry

Systems (ACS, Dinnington, Sheffield, South Yorkshire, UK).

Snijder Test tube rotator was from Omnilabo International

(Breda, The Netherlands). 10 mL polypropylene tubes were

obtained from Greiner Bio-One (Alphen aan de Rijn, The

Netherlands). Glycine was purchased from Duchefa (Haarlem,

The Netherlands) and sulfo-N-Hydroxysuccinimide (Sulfo-NHS)

from Fluka (Buchs, Switzerland). Sodium dodecyl sulphate (SDS)

was obtained from Serva (Heidelberg, Germany). The microtiter

vari-shaker was purchased from Dynatech (Guernsey, UK).

PosilacH (rbST) 500 mg single dose syringes and syringes with

only the slow release formula were obtained from Monsanto

Company (St. Louis, MO, USA) for animal study I and from

Elanco Animal Health (Greenfield, IN, USA) for animal study II.

Buffers and solutions
Buffers and solutions were prepared as follows: phosphate-

buffered saline (PBS; 154 mM NaCl, 5.39 mM Na2HPO4,

1.29 mM KH2PO4, pH 7.4), PBST (PBS, 0.05% v/v Tween-

20), PBSTB (0.1% w/v BSA in PBST), glycine solution I (GS I;

27.5 mM glycine, pH 0.5 adjusted with HCl), glycine solution II

(GS II; 400 mM glycine, 0.3% w/v SDS, pH 10 adjusted with

NaOH), MES buffer (50 mM, pH 5), blocking buffer (PBS, 0.1%

w/v BSA, 0.02% v/v Tween-20, 0.05% w/v NaN3).
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Sample materials
Samples from different sources were used for analysis. Serum

samples from two independent controlled animal treatment studies

were used. In animal study I, eight Holstein cows were selected.

These cows were all about 5 years old, divided in two groups of 4

animals each and treated with 500 mg rbST in slow-release

formula or slow-release formula only. After a two-week adaptation

period, they received an injection every second week, in total 4

times in accordance with the suggested treatment schedule by the

manufacturer (http://www.fda.gov/downloads/AnimalVeterinary/

Products/ApprovedAnimalDrugProducts/FOIADrugSummaries/

ucm050022.pdf; accessed 2012 Apr 4). Since we did not know

for sure whether we would see any response, the cows were

thereafter treated two times more but with a weekly interval,

followed by a final 4-week withdrawal period. In animal study

II, 10 Holstein dairy cows were divided in two groups. In

contrast to animal study I, these cows were of different age (2–8

years). After a 2-week adaptation period, 8 cows were treated

every second week with 500 mg rbST in a slow-release formula

during 8 weeks and 2 control cows were treated with the slow-

release formula only. The biweekly treatment period according

to manufacturers’ guidelines was directly followed by a 4-week

withdrawal period. In both studies, blood sampling was

scheduled similarly: During the two week adaptation period,

blood samples were collected weekly; during the treatment period,

blood samples were collected a day before, a day after and a week

after injection and during withdrawal, blood samples were collected

weekly for four more weeks, which yielded 21 serum samples per

cow in animal study I and 18 serum samples per cow in animal

study II. The treatment schedule and blood sampling time points

are shown in Figure S2. Unfortunately, one untreated cow died in

the beginning of animal study I because of swollen hocks, which led

to general inflammation and sepsis. Therefore in study I, results

could be obtained for 4 rbST-treated and 3 untreated cows.

Furthermore, one cow from animal study II fell sick (hock joint

inflammation, lung infection and sepsis) in course of the experiment

and its biomarker level results were excluded from statistical

analysis. For investigation of natural physiological variations in

biomarker levels, sera from 67 healthy, lactating cows varying in the

age of two to eleven years, from two different locations, in different

stages of their lactating cycle were analysed, to reflect a normal

population of untreated dairy cows. Based on the origin of these

animals the assumption of being untreated with rbST was justified.

Standard preparation
Protein standards of IGF-1, IGFBP2 and osteocalcin, prepared

in serum-matched buffer (80 mg mL21 BSA in PBS), were used

for standard curves ranging from 0.08 to 20 ng mL21 for IGF-1

and osteocalcin and from 0.2 to 50 ng mL21 for IGFBP2. Also

blank standard samples (80 mg mL21 BSA in PBS without any

IGF-1, IGFBP2 and osteocalcin) were measured. Note that no

standards are commercially available for anti-rbST-antibodies.

Sample pre-treatment
A generic sample pre-treatment procedure which was crucial for

removing non-specific interferences and making the candidate

biomarkers accessible for detection was described previously

[4,28,29], is depicted in Figure 1 and described in-depth in

Materials S1.

Microsphere preparation
Covalent coupling of 100 mg mL21 Monsanto rbST standard,

100 mg mL21 IGF-1 and 10 mg mL21 IGFBP2 to seroMAP

microspheres (sets 050, 025, 078 respectively) was described

before [4,28,29]. Coupling 75 mg mL21 osteocalcin to micro-

spheres (set 084) was done following the same procedure.

Four-plex flow cytometric immunoassay procedure
The assay procedure for detection of three biomarkers was

described before [31] and is similar for four biomarkers in the

present study and summarized in Figure 1. The samples were

analysed in duplicate in the flow cytometer at 1 mL s21 until 50

microspheres per set were counted, up to a maximum of 50 mL per

sample. A typical analysis of a full 96 well microtiter plate takes

3.5 hours starting from raw serum until the results are obtained.

Data analysis
Raw median fluorescence intensities (MFIs) were measured by

the flow cytometer for every single candidate biomarker. Every

sample was measured in duplicate and MFIs were averaged before

further analysis. For IGF-1, IGFBP2 and osteocalcin, B/B0 values

were calculated per sample by dividing the measured MFI by the

MFI of a blank biomarker-free standard. Then, concentrations

were recalculated from standard curves (non-linear four-parameter

curve fit) using GraphPad Prism program (GraphPad Software

Inc., San Diego, USA) for IGF-1 and osteocalcin. For IGFBP2, no

complete inhibition could be obtained with the available standard

protein, therefore, no actual concentrations were determined and

B/B0 values were simply used. For anti-rbST-antibodies, which

are endogenously produced by the cow in response to rbST

treatment, no standard was available. To be able to normalize,

measured sample MFIs were divided by the MFI of one serum

sample, which was measured every time (B/Bd). This serum was

donor adult bovine serum which was a mixture of sera from many

cows from one herd. Since this is produced in large amounts, it can

be used for a long time with constant quality.

To assess the 4-plex FCIA quality and compare it to other

methods, assay performance characteristics were calculated, such

as IC50, inter-assay and intra-assay variation (describing precision

and ruggedness). For IGF-1, IGFBP2 and osteocalcin, IC50 was

read from standard curves at 50% inhibition of the signal of the

blank. For all candidate biomarkers, inter-assay variation was

determined by measuring 8 different serum samples on 8 days.

Mean of results (concentrations for IGF-1 and osteocalcin, B/B0

for IGFBP2 and B/Bd for anti-rbST-antibodies), standard

deviation and percentaged standard deviation (%CV) were

calculated for every serum. The average of the 8 percentaged

standard deviations was the inter-assay deviation. Intra-assay

variation was calculated the same way from 8 repetitions of 8 sera

within one microtiter plate.

Single biomarker analysis approach. Using a single

biomarker for prediction of unknown samples as rbST-treated or

untreated, the calculation of decision limits for each biomarker

was necessary. These were based on the results obtained from a

population of 67 untreated dairy cows being diverse in age, in

lactation stage and in origin. For every biomarker, results were

averaged and two-times the standard deviation was added to

obtain the decision limit. Samples found to show concentrations

(for IGF-1 and osteocalcin), B/B0 (for IGFBP2) or B/Bd (for anti-

rbST antibodies) beyond the respective calculated decision limit,

were considered as rbST-treated (positive). True-positive and false-

positive rates could be calculated for every single biomarker from

the results of the controlled animal studies.

Additive biomarker analysis. After evaluating biomarker

profiles and true-positive rates based on single biomarkers, an

additive biomarker approach was tested. Here, a sample was

considered as rbST-treated when at least one of the candidate
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biomarkers reacted above decision limit and also here, true-

positive and false-positive rates were calculated.
Multiple biomarker statistical approach. After evaluating

single candidate biomarkers and testing the additive biomarker

approach, we assessed how well a statistical combination of two to

four markers was capable to predict rbST abuse. Therefore, a k-

nearest neighbours prediction model (kNN) in the R environment

[42] and functions available in R package e1071 [43] were used to

evaluate all eleven theoretical combinations of two to four

biomarkers. As in the single biomarker approach, recalculated

concentrations for IGF-1 and osteocalcin and B/B0 signals for

IGFBP2 as well as B/Bd signals for rbST-induced antibodies for

every sample from the animal studies were included in the data

analysis. For obvious ethical reasons, we had only a limited

number of rbST-treated animals available. Therefore, all serum

sample time points per cow (21 time points in the trial period of 14

weeks for animal study I and 18 time points in the trial period of

13 weeks for animal study II) were used for data analysis, despite

the fact that these were not completely independent. However,

only data from independent cows were used for model building

and sample prediction.

First, the whole data set was divided into two groups: Group A

data were used to build the time-point-independent prediction

model. Therefore and to use sufficient sample numbers for the

model building, this group contained all data from animal study II

(diverse population with biweekly treatment only). Furthermore,

since two control animals were not enough to represent untreated

cows, Group A also contained the data from the untreated animals

of animal study I. In total, 98 samples from treated and 119

samples from untreated cows were used for model building. Group

B data were used for prediction based on the Group A model.

Group B contained the data from the rbST-treated cows of animal

study I (uniform in age with biweekly treatment and two additional

weekly injections) and the 67 untreated cows. Note that these are

sample data independent from Group A data.

For model building of the Group A data, a training and test set

were chosen by using a stratified repeated random sub-sampling

approach, which means that 70% of the rbST-treated and 70% of

the untreated samples were selected for the training set and the

remaining 30% of both groups for the test set for internal

validation, which is necessary to build a strong model. Subse-

quently, concentrations, B/B0 and B/Bd values of the training set

were auto-scaled and a kNN model was built on the training set

data. The optimal number of k (1#k#10) was chosen based on the

bootstrapping approach [44] leaving out 10% of the training data

(randomly with replacement), which was repeated 10-times. The

resulting model was validated with the test set data and thereafter

used for predicting Group B data. To obtain an average

performance of the model, this procedure was run 10,000 times;

every time different randomly chosen training and test sets of

Group A data were applied. Correctly and falsely predicted results

were evaluated for Group B and a true-positive rate and false-

positive rate could be calculated for every Group B sample.

Supporting Information

Figure S1 Standard curves of the three rbST-dependent
biomarkers IGF-1, IGFBP2 and osteocalcin. Each data

point is the mean of 8 separate measurements in a serum-matched

buffer (80 mg mL21 BSA in PBS solution). All curves relate to 80-

times diluted sera.

(TIF)

Figure S2 Treatment schedule and sampling time
points for animal studies I and II. Arrows indicate the

treatment of the cows with rbST in slow-release formula or the

slow-release formula only; bold vertical lines indicate blood

sampling time points.

(TIF)

Materials S1 Serum preparation, generic serum pre-
treatment and 4-plex FCIA for serum candidate bio-
markers.

(DOCX)

Table S1 True-positive rates of the statistical multiple
biomarker analysis. True-positive rates, obtained with the

prediction models based on the eleven different biomarker

combinations, were calculated for rbST-treated cows from animal

study I in their treatment (day 16–71) and withdrawal period (day

72–99).

(DOCX)

Table S2 False-positive rates of the statistical multiple
biomarker analysis. Results were calculated for 67 indepen-

dent untreated cows predicted with the eleven different biomarker

combination models.

(DOCX)
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