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1 Introduction

In s01l momtoring we are often interested in whether the soil property of interest has
been changed. Think for instance of changes in the soil carbon stock. With more
than two sampling times we may be interested in the average change per time umt
(for instance decade), which is equivalent to the linear trend. The average change
per time unit generally will vary in space, some soil profiles respond quickly, others
slowly. When we do not have enough budget for mapping the linear trend at point-
locations, an alternative aim is to estimate the regional trend, defined as the linear
trend of the spatial mean of the soil property of interest. In recent papers we have
shown that this linear trend can be defined in different ways (Brus and de Gruijter]
2012). In this short paper I will elaborate on these definitions and illustrate
sampling strategies for the trend with a simulated space—time field of soil organic
matter (SOM) content (Figure [I])

2 Trend defined as population parameter

The linear trend can be defined as as a linear combination of the spatial means at
the sampling times:
r
ZJ—I -E} z.? - Z}

Zj:l (tj - t_}

with r the number of sampling times, f the mean of the sampling times, and Z the
mean of the spatial means. You may recognize this as the Ordinary Least Squares
(OLS) estimator of the slope of a linear model for Z (dependent or response vari-
able) and ¢ as predictor. However, here the trend is not a model parameter, but
a population parameter. The pupulﬂ,tinn or universe of interest consists of a fimite
set of (Infinite or finite) spatial populations, Y = {81, 82--- &}, with &; the spa-
tial population at sampling time #1, ef cetera. This universe 1s a subset only of the

b= (1)
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Figure 1: Simulated space-time field of soil organic matter content. The five panels
show the spatial fields at the sampling times. The sampling interval is constant (e.g
10 years).
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U=38 xT with T the temporal universe Qter Braak et a].L |2008D. I will not go mmto
sampling approaches for this definition of the trend.

Parameter b as defined in Eq. |2 can also be seen as the slope parameter that 1s
obtained when the response variable is known for all population units (exhaustive
fit). Here the population ‘units’ are not sampling units (points) but populations
themselves, viz. the spatial populations at the r sampling times. The response
variable 1s the spatial mean of SOM. When the spatial means are known for all
population umits, 1.e. at at all sampling times, then parameter b 1s also known
without error, see hereafter.

Eq. can be rewritten as a linear combination of the spatial means at the
sampling times:

Yot =Dz
b= = =Y w;z (2)
SCENERP I
with the weights w; equal to

t; —t
>ty —1)?

This shows that the trend can be estimated via estimation of the spatial means
at the sampling times, and as a consequence a design-based sampling approach 1s
recommendable. I will elaborate now on estimation for space—time designs with no or
complete overlap (static-synchronous, independent synchronous, serially alternating)
and for space-time designs with partial overlap (supplemented panel, rotating panel).

(3)

wy; =

2.1 Space—time designs with no or complete overlap

With space—time designs in which the spatial samples at the sampling times t -- -,
have no overlap, 1.e. no locations are revisited, or complete overlap, 1.e. all locations
are revisited, the spatial mean at a given time 1s estimated on the basis of the mea-
surements at that time only, using the well-known design-based estimators. Given
these estimated means the linear trend can be estimated as a linear combination of
the estimated means

j=1

2.2 Space—time designs with partial overlap

For space—time designs with partial overlap such as the supplemented and the ro-
tating panel, the precision of the estimated mean at a given sampling time can be
increased by using the measurements at the other times as covariates. This can be
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achieved by Generalized Least Squares (GLS) estimation of the spatial means. First
panel-specific estimates of the spatial means are computed, referred to as ‘elemen-
tary estimates’. A panel is a group of locations observed at the same set of sampling
times. These elementary estimates are then combined into one estimate of the mean
per time t; by

zZals = (X'C'X) ' X'C 'z, (5)
with z. the vector of elementary estimates of the spatial means, X the design ma-

trix with 0’s and 1’s, and C, the estimated covariance matrix of the elementary
estimates. Hopefully you recognize this equation from your statistics courses on
regression analysis as the GLS-estimator of the regression coefficients. In linear
regression analysis we have observations on a target variable and one or more pre-
dictors, covariates. In ordinary linear regression it 1s assumed that the observations
are independent. Correlation between the observations can be accounted for by esti-
mating the variance-covariance matrix of the observations, and using this matrix in
GLS fitting of the linear model. Here the observations of the target variable are the
elementary estimates of the spatial means at ¢, ---f,. The predictors are indicators
for the sampling times. There are as many predictors as there are sampling times.

Once the means are estimated by GLS, the trend can be estimated as a linear
combination of these estimated means:

bars = W'ZaLs (6)

with w as before (Eq. . With small spatial sample sizes the estimated samphng co-

variance matrix C, can be poorly defined, leading to extreme values for the estimated
trend. In such cases I recommend to estimate the trend with Eq.

2.3 Effect of number of sampling locations on variance of
estimated trend

The sampling variance of the estimated trend can be reduced by increasing the
number of samphng times and the number of sampling locations per time. Besides,
there is a clear effect of the type of space—time design (Fig. and of the spatial
design. Fig. [3| shows the standard error of the estimated trend as a function of the
number of sampling locations per time, for a static-synchronous space—time design
and simple random sampling in space. If the entire study area would be sampled
all five times, the standard error would be 0. There 1s no uncertainty left about
the trend. Figure |3 (subfigure in the middle) shows the true spatial means at the
five times plotted against the sampling time and the estimated linear trend. As
can be seen the true spatial means are not located precisely on the fitted line. In
regression analysis we would say that there 1s a residual variance. As a consequence
in regression analysis the variance of the estimated regression coefficients (intercept
and slope) is not 0 but a positive value.
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Figure 2: Histograms of 10,000 repeated estimates of the trend of the mean defined
as population parameter, for static-synchronous (SS), independent-synchronous (IS),
serially alternating (SA) and supplemented panel (SP) sampling, five sampling times
and 20 locations per time selected by simple random sampling (sampled from the
space—time field of Figure . In supplemented panel sampling 10 locations are revis-
ited. For SP the trend is estimated both by Eq. |4/ (SP(HT)) and by Eq. |6/(SP(GLS)).
Note the long tails of the sampling distribution of the estimated trend with SP(GLS),
caused by the poorly defined covariance matrix. The serially alternating design had
the smallest sampling variance of the estimated trend
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Figure 3: Left: standard error of the estimated trend, defined as a population param-
cter (black) or as a model parameter (red), as a function of the number of points per
time. Sampling design: static-synchronous with simple random sampling in space.
Middle: true spatial means of simulated space-time field (Fig. , plotted against
the sampling time, and the linear trend of the spatial means. Right: true spatial
means and linear trend fitted by OLS for 10 realizations of the space time model
used m simulating Fig.

3 'Trend defined as model parameter

Fitting the straight line of Fig. 3| by OLS with standard statistical software results
mm an estimated trend of 0.255 which 1s equal to the estimated trend defined as
a population parameter. However, the standard dewviation of the estimated trend
equals 0.027, which 1s small, but definitely larger than 0. The reason that in standard
regression analysis the variance i1s not 0 1s that the true spatial means are considered
as realizations of random wvariables. In OLS fitting of the simple Iinear model the
spatial means at the sampling times are assumed to be 1dentically and mmdependently
distributed with expectation 8; + (33 - t and constant variance (the variance of the
residuals). The coefficients 3; and 3, are model parameters, the intercept and the
slope, respectively. The parameter [, describes the average change of the spatial
mean per time unit, the linear temporal trend. This 1s the target parameter to be
estimated. So, contrary to the previous section a time-series model 1s introduced for
the spatial means

Z(tj)) =P+ Pa-tj+nlt;) j=1---r (7)
where 7(t;) is the model residual (model error) of the spatial mean at time ¢;. The
spatial mean at time ¢; 1s now 1 capital, indicating that 1t 1s a random variable.
With the trend defined as a model parameter the sampled space—time field of Fig.
1) is treated as just one realization of a stochastic space-time process. I simulated
10 of these space—time fields, computed for each simulated space—time field the true
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spatial means at the five times, and fitted the model by OLS. The result i1s pre-
sented 1n Fig. (subfigure at the right). The fitted trend clearly varies between
the model-realizations. The variation is even much larger than expected from the
estimated variance of the trend as obtained with OLS fitting (standard deviation
0.027). This can be explained by the correlation of the spatial means. In OLS it
is assumed that these spatial means are uncorrelated (identically independently dis-
tributed, 11d), however this assumption is clearly violated by the space-time model
used 1n simulating the space—time fields. The spatial means are correlated in time,
amplifying the variance of the trend between model realizations. Fig. |3 (subfigure
on the left) shows that the standard error of the estimated trend, defined as a model
parameter, with exhaustive spatial sampling 1s about 0.083.

In practice the spatial means are unknown, and must be estimated from a sample.
When these spatial means are estimated from probability samples and design-based
estimators, then the space—time sampling approach becomes a hybrid, design- and
model-based approach. To explamn this approach I will first consider the simple
situation where we have only one estimate of the mean per time, and then proceed
with the situation with more than one elementary estimate per time, as obtained
with space—time designs with partial overlap.

3.1 Space—time designs with no or complete overlap

In the hybnd approach 1t 1s assumed that the spatial means can be described by a
linear mixed model

Z=Dp+n, (8)

with Z the r-vector with true spatial means at the sampling times, D the r x p
design-matrix, 3 the p-vector with regression coefficients and n the r-vector with
model errors. This matrix equation 1s equivalent to the model of Eq. |7 for a design-
matrix D with the first column a vector of ones and the second column a vector with
the sampling times. The model errors 17 have zero mean and an r x r covariance
matrix Ce. This 1s the matrix with the variances and covariances of the spatial
means between realisations of the space—time model. In practice the spatial means
are unknown, and in the hybrid approach these means are estimated from spatial
probability samples. With no or complete overlap these spatial means are estimated
by design-based estimators. The sampling introduces an additional error component
in the model:

Z=DB+n+e, 9)

with € the r-vector with sampling errors. The sampling errors have zero mean and
an r x r covarlance matrix C,, the sampling covariance matrix of the estimated
spatial means that we have seen many times before. The model errors and sampling
errors are independent, as they originate from independent stochastic processes. The
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overall covariance matrix of the estimated spatial means equals

With known covariance matrix Cg,, the regression coefficients can be estimated by

3= (D'C,/D)'D'C,'Z (11)

3.2 Space—time designs with partial overlap

Model [J] is reformulated so that multiple estimates of the spatial mean at a given
time are accounted for:

Ze=D.f+Xn+e.. (12)
Design matrix D, now has dimension £ x p with E the total number of elementary
estimates. X is a random-effect design matrix (dimension E x r) with zeroes and
ones selecting the appropriate element of 7. Vector 1) 1s as before, but vector €,
now has length E as we have multiple sampling errors per sampling time, one per
elementary estimate. The overall covariance matrix of the estimated spatial means
equals

Ce, =XC X'+ C,, . (13)

with covariance matrix C¢ as before (dimension 7 x r) and Cg, the sampling covari-
ance matrix of the elementary estimates (dimension E x E). With known covariance
matrix Cgp, the regression coeflicients can be estimated by

3 = (D.C.,'D.) 'D.C,, Z. (14)

With small spatial sample sizes the estimated covariance matrix can be not posi-
tive definite or poorly defined, leading to missing values or extreme estimates. In this
case a simple alternative 1s to estimate the spatial means at the sampling times by
the design-based estimators, as well as as their sampling variances and covariances,
and then proceed as in the previous section for samples with no or complete overlap.

4 Which definition?

The question remains what definition can best be chosen. I think the definition 1s at
least partly determined by the aim of the momtoring project. If the aim 1s to describe
the trend during the monitoring period, then a definition in terms of a population
parameter 1s more appropriate than as a model parameter. A definition of the trend
as a model parameter comes into scope 1f we want to use the results for forecasting,
1.e. predicting the status in the future. If we use the estimated trend of the mean
defined as a population parameter and its standard error for this, then this may lead
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to too optimistic estimates of the precision. Clearly, for forecasting the structure of
the trend 1s extremely important. In the case study on SOM a hinear trend might not
be very realistic when forecasting over long terms. It 1s more likely that the trend 1s
asymptotically towards a maximum (or minimum in case of a negative trend), which
can be modelled, for instance, by an exponential decay (in increasing or decreasing
form). In this case the aim would be to estimate the parameters of this exponential
model.

Another factor that may help in choosing a definition can be the feasibility of
the statistical samphng approach. The definition of the trend has implications for
the statistical sampling approach. When defined as a model parameter, a hybrid
approach 1s needed. This sampling approach requires the calibration of a time-series
model for the spatial means. which can be difficult. The more samplhng times, the
more mnformation 1s obtained on the model. With a few sampling times only, the
building of the model can become unfeasible. Strong assumptions are then needed, for
mstance on stationarity of the spatial mean and on the covariogram model. Besides,
the model parameter estimates may become very unreliable. The quality of the
estimates, especially the variance of the estimated regional trend, depends on the
quality of these assumptions and estimates. With a few sampling times only, we
might prefer a model-free sampling approach. Judging a hybrid sampling approach
as unfeasible entails that we must abandon the trend defined as a model parameter,
and embrace the trend defined as a population parameter as in Eq. [2| as the space—
time parameter to be estimated.
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