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Genesis
 
Het was de zesde dag. Adam stond klaar. 
Hij zag de eiken met hun volle greep 
in het niets. Macht is een kwestie van vertakkingen. 
hij had de bergen gezien, opbergruimtes van 
alleen maar zichzelf, hoge leegstaande kelders. 
En herten. Met poten zo dun als stethoscopen 
stonden ze te luisteren aan de borst van de aarde, 
en zodra ze iets hoorden, liepen ze weg, 
de uitvinding van het pizzicato met zich meenemend, 
verten in. Herten. 
En hij had de zee gezien, het laden en het lossen van drukte, 
waar je rustig van werd. En de lege, hetzerige gebaren 
van de wind, van kom mee, kom mee, en niemand volgde. 
En diepte, afgronden waar je moeilijk van werd. En zwijgen, 
want dat deed het allemaal, en te groot zijn. 
En toen zei God: en nu jij. Nee, zei Adam.

H. de Coninck 
(In: ‘De hectaren van het geheugen’, 1985) 
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Chapter 1

Meiosis generates variation
Life evolves by adapting continuously to its ever-changing environment. Sexual repro-
duction evolved in complex organisms (Eukaryotes) to facilitate this adaptation by ac-
tively changing allele combinations on chromosomes. A greater part of this variability 
is generated in the highly specialised  process of meiosis. The unique combination of 
homologous pairing, crossover formation and balanced segregation of recombinant 
chromosomes creates novel alleles and novel allele combinations on chromosomes. As a 
major driving force of all this genetic variation, meiosis can be placed at the very heart 
of evolution, domestication, and also of plant breeding. The key to the creation of new 
crop varieties lies in the systematic exploration of genetic variation and the selection 
of new phenotypes. While meiotic recombination provides plant breeders with count-
less numbers of allele combinations, the unpredictability of such variation leads to time 
consuming breeding practices (Dirks et al. 2009; Wijnker and de Jong 2008). Improving 
breeding thus requires improving both the processes of variation generation and discov-
ery as well as methods of selection. Only if we are able to understand the mechanisms 
governing meiotic recombination, we will be able to control meiotic recombination, and 
manage it for breeding purposes. I will therefore raise questions of how plants generate 
variation during meiosis, determine what patterns underlie this variation and to what 
extent this can help improving the management of variation for plant breeding. 

As explained above, meiosis plays a pivotal role in creating novel genetic variants/
genotypes by recombining variation that before existed in different genotypes. It does 
so in two consecutive divisions and along few entirely different processes. It generates 
new allele and chromosome combinations, while reducing the somatic chromosome 
number by half during gamete production (Gerton and Hawley 2005). This is achieved in 
a controlled sequence of unique events starting with an S-phase in which chromosomes 
are duplicated, generating two sister-chromatids that remain joined together at their 
centromeres until the metaphase of the second division. Following duplication, plants 
produce about 100-500 double strand breaks (DSBs) along the whole length of their chro-
mosomal DNA (Pawlowski et al. 2003; Sanchez-Moran et al. 2007), a process that initi-
ates homology search and recombination. At the same time, chromosomes progressively 
condense while assembling proteinaceous lateral axes that subsequently serve as a base 
for homologous chromosomes to join together along their entire lengths. This joint tri-
partite proteineous structure is known as the synaptonemal complex (SC) (Moses 1968; 
Westergaard and von Wettstein 1972). 

While chromosomes begin to synapse, DSBs are processed and repaired through ho-
mologous recombination (HR). This is a specific DNA repair pathway in which DNA re-
pair proteins use homologous DNA sequences as template for DSB repair (Puchta 2005). 
While mostly leading to genuine repair, HR in meiosis also generates true reciprocal ex-
changes between non-sister chromatids. These so-called meiotic crossovers originate 
when a chromatid is repaired by joining one end of it to the other end of a homologous 
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(non-)sister chromatid, thus generating a recombinant chromatid. Recombinant chromo-
somes (i.e., the chromatids) thus consist of new allele combinations of both homologues. 
While the paired homologues disjoin, their SC disassembles and homologues remain to-
gether only at sites of their crossovers, which are now microscopically visible as chias-
mata in cell complements at late meiotic prophase I (diplotene to metaphase I). Here we 
see evidently that homologues are joined by at least one chiasma, which is essential for 
proper orientation of the bivalents on the metaphase I divisional plane. Shortly later, at 
anaphase I, the half-bivalents (homologues) segregate equally to their poles, and then 
undergo a second division in which sister centromeres disjoin, similar to mitosis. The 
tetrad stage marks the end of meiosis, when the meiocyte contains four spores that each 
carry half the chromosome number of the parent. These spores can then further develop 
into gametes (like pollen and egg cells) that can then fuse with one another, thus re-
establishing the somatic chromosome number.
Crossover recombination ensures that the dual roles of meiosis are properly executed: 
•  crossovers form chiasmata that are important for joining homologous chromosome 

together, enabling them to segregate equally to opposite poles at the first meiotic 
division and reduce the chromosome number of the cell to half (the reductional divi-
sion).

• crossovers generate new variation directly by creating new allele combinations on 
chromosomes, while facilitating random chromosome assortment. 

Meiosis generates novel genetic combinations in a highly regulated way, but interest-
ingly, the precise outcome of the genetic content of their daughter cells is always differ-
ent by the reshuffling of alleles during meiosis. The total genetic blending by recombina-
tion and independent chromosome assortment, depends on the number and position of 
the crossover sites (intrachromosomal recombination) and the number of chromosomes 
(interchromosomal recombination). While the chromosome number is normally fixed, 
crossover incidence varies between bivalents, chromatids, cells, sexes, individuals and 
species (Baudat et al. 2010; Lenormand and Dutheil 2005). As a result, no meiotic prod-
ucts are identical. 

Meiosis and breeding
While the generation of random variation is pivotal to breeders, it also poses them with 
tough challenges because meiotic recombination, which is essential for generating fa-
vourite combination of valuable traits, also produces allele combinations that are un-
desired and hence useless in the breeding program. Plant breeders found a way of deal-
ing with this by preserving specific allele combinations in (near) homozygotes such as 
inbred families and doubled haploids (Forster et al. 2007). Although the homologues of 
inbreds still form crossovers at meiosis, the identical homologues ensure that no new 
allele combinations will be generated. Plant breeders produce and hold vast collections 
of homozygous (often -inbred lines,) that are used in controlled crosses to generate het-
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erozygous F1 hybrids. The varieties of most crops today, are F1’s, which are tested on 
their performance in different environments. Breeders need to switch between steps 
that require recombination (for the generation of new allele and chromosome combina-
tions) and steps in which the new allele and chromosome combinations are fixed for later 
use, i.e., the generation of homozygous breeding material. 

One of the classical breeding strategies for broadening the genetic base of crops is in-
trogressive hybridisation. Desirable traits from a wild relative or donor species (specific 
accessions) are transferred to the recipient crop by intra- or interspecific hybridisation 
followed by backcrossing and consecutive selections. The introgression of a specific lo-
cus e.g. conferring disease resistance, drought resistance etc. is often far from straight-
forward. Chromosomes contain thousands of linearly arranged loci, and introgression 
of precisely one locus requires the occurrence of crossovers on either side of that locus, 
after which repeated backcrosses are required for eliminating all other unwanted alleles 
at other loci. When the homoeologous donor and recipient chromosome regions differ 
in collinearity (e.g. by inversions or translocations or repeat content), the chance of a 
crossover very close to the region of interest is low, if not zero. This problem, known as 
linkage drag, is one of the major problems in breeding programs aiming at replacement 
of desired wild genes to the crop species.

The number and positions of crossovers on the chromosome pairs are subjected to 
processes, which regulate or confine their formation. First of all, the number of crosso-
vers is highly restricted. In all cases, bivalents, even for the smallest chromosomes have 
always at least one crossover, which is needed for balanced disjoin of the half bivalents 
at anaphase I. Without that mechanism, achiasmatic chromosomes (univalents) will seg-
regate randomly, giving rise to spores that contain unbalanced, variable chromosome 
numbers, many of which are not viable or form aneuploid offspring. Meiosis with large 
numbers of crossover events are uncommon; in many cases not more than 1-2 crossovers 
per chromosome arm are observed. In Arabidopsis, for example, female meiosis experi-
ences hardly more than one crossover per homologue pair, whereas male meiosis has 
about two (Giraut et al. 2011). In addition, a bivalent with more chiasmata per chromo-
some arm, often tends to keep these crossover events well separated by a mechanism 
known as genetic (crossover- or chiasma-) interference. Most crossovers are so called 
“interference dependent”, i.e belonging to the subset of class I crossovers that comprises 
the far majority in Arabidopsis (Mercier et al. 2005) (Higgins et al. 2004), tomato (Lhu-
issier et al. 2007) maize (Falque et al. 2009) as well as in other model organisms like 
mouse (de Boer et al. 2006) and budding yeast (de los Santos et al. 2003). The second 
class of crossovers are are formed through a different pathway and are not subjected to 
crossover interference. Only a small proportion (i.e. 10-15%) of crossovers in the species 
mentioned above originate from the second pathway, however, but some organisms like 
fission yeast that lack the class I crossover pathway all repair their DSBs through the 
interference insensitive pathway (Osman et al. 2003).
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Another mechanism that shapes the recombination landscape is the way in which 
single copy and repetitive sequences are organised along the chromosome. In most eu-
karyotic species satellite and tandem repeats as well as “gypsy” and other types of long 
terminal repeat (LTR-) retrotransposons are most prevalent in heterochromatin areas 
around the centromeres (pericentromeres) and at distal chromosome ends, but are rare 
in euchromatin (Gaut et al. 2007; Stack 1984). This differentiation of repeats in hetero-
chromatin and single copy sequences in euchromatin has a clear effect on where crosso-
vers reside. To some extent this can be intuitively understood, since sequences for which 
on the homologue no matching sequence exist, will not be able to repair the break from 
a non-sister template (Goldfarb and Lichten 2010). 
There is much more to this story that we currently do not understand well. In many spe-
cies, crossovers have a strong preference for euchromatic regions, whereas heterochro-
matin (like pericentromere domains in larger genomes like tomato) have a much lower 
likeliness of containing crossovers (Sherman and Stack 1995). In the model plant Arabi-
dopsis, crossover frequencies are in fact somewhat enhanced close to the centromere (Gi-
raut et al. 2011). Heterochromatic regions being more highly methylated, led researchers 
to question what the effect of DNA de-methylation is on crossover frequencies. Recombi-
nation was reported to increase in euchromatin but remains equal in heterochromatin 
or even decreases (Melamed-Bessudo and Levy 2012; Mirouze et al. 2012; Yelina et al. 
2012), whereas very centromere proximal crossovers might increase (Yelina et al. 2012). 
A more straightforward link between recombination and chromatin modifications is 
H3K4 methylation of histones, which mouse and human associate with crossover and re-
combination hotspot sites (Baudat et al. 2010; Borde et al. 2009; Grey et al. 2011). The same 
was reported for yeast (Borde et al. 2009), but might not hold true (Tischfield et al. 2012).

Understanding and controlling meiotic variation
Systematic studies of inheritance have a long history, tracing back to the pea experi-
ments by Gregor Mendel in 1865 (Mendel 1866 (for 1865)) and the discovery of genetic 
linkage in 1915 (Sturtevant 1915). Because recombination is a stochastic process, the pre-
cise assessment of crossover frequencies was never easy, since it requires the study of 
relatively large populations of individuals or meiotic cells. The comparison of mapping 
populations (like populations derived through male and female meiosis) can point to 
sex differences in recombination frequencies (Vizir and Korol 1990). Alternatively, the 
cytological structures of crossover sites (e.g., late recombination nodules in the electron 
microscope, or immune detection of MLH1) can be counted directly on chromosomes in 
developing meiocytes (Chelysheva et al. 2010). In the last decade a variety of new tools 
have been developed and can help the study of meiotic recombination and facilitate 
crossover (and CO-interference-) assessment at much faster rates. These are replacing 
classical morphological and DNA markers and multilocus platforms such as AFLPs with 
generic genotyping systems (like BeadArray or KASPar assays) that can be used to ef-
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ficiently genotype large offspring numbers. This allows for the subsequent construction 
and study of recombination landscapes (Giraut et al. 2011; Mirouze et al. 2012). The dis-
covery of the Arabidopsis QUARTET mutant was a leap forward, and allowed mapping 
in relation to centromere positions, and the analysis of the products of single meiosis 
events (Copenhaver et al. 1999) This approach was later improved by expressing fluores-
cent proteins under the control of pollen specific promoters. Pollen tetrads now allow 
the quantifications of crossovers and interference (Berchowitz and Copenhaver 2008). 
Similar fluorescent transgene-based marker systems were developed for seeds (Mela-
med-Bessudo et al. 2005) to measure recombination frequencies in large populations at 
the seed level. The study of meiotic recombination has certainly been more intense in 
recent years, but is still far from easy and quick. The use of pollen tetrads requires that 
all studies have to be performed in a quartet background. Fluorescent markers must 
be introduced to desired backgrounds, and even the use of high throughput genotyping 
platforms can become rather costly when detailed recombination studies are scaled up 
to the level of large sized populations. 

The interest of breeders in meiotic recombination lies in the panoply of applications. 
One of the most compelling ones, is to increase the recombination frequency which would 
speed up breeding schemes that now require very large populations to obtain sufficient 
recombination events. The discovery of mutants that show increased recombination has 
taken a long time, which is easily understood when one considers the difficulty of per-
forming screens for such processes. Methods for inducing significant increases in re-
combination frequencies are not established (Wijnker and de Jong 2008), but the recent 
discovery of that the mutation of the crossover suppressor FANCM leads to threefold 
increases in recombination frequencies in Arabidopsis is very promising (Crismani et al. 
2012). FANCM is an apparent suppressor of class II crossover formation, and its mutation 
elevates recombination through this interference-independent pathway. The temporal 
suppression of such genes will speed up some breeding programs significantly. Another 
recent discovery that merits attention is the action of methyltransferase PRDM9, a pro-
tein with zinc-finger domain in mouse and human meiosis, which directs meiotic recom-
binases to specific sequences (Baudat et al. 2010). This methyltransferase can bind to 
specific DNA sequences during meiosis, and directly (through binding of recombinases 
to PRDM9) or indirectly (through H3K4 methylation) defines about 40% of crossover 
hotspots (Baudat et al. 2010). Although we cannot currently assess whether such a pro-
tein is easily transferable to plants, it at least suggests that we might develop similar 
methods to direct recombination to sites of interest in the future (Bogdanove et al. 2010).

Modifying the recombination frequencies or site-directed crossover formation pro-
vide the tools for the steering of genetics. An eminent question is then what processes 
govern pairing between sequences of the homologues or homoeologues, even if they dif-
fer to some extent in their DNA sequences? Breeders frequently try to enrich their breed-
ing material with alien introgressions from related species. Introgressed segments are 
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less likely to engage in crossover formation, for which the reasons are not all too clear. 
Recent studies showed that SNP polymorphisms do not limit crossover formation per se 
(Salome et al. 2012). Extensive research in allohexaploid wheat, shows that the homoeo-
logues from the A, B and D genome in wild type wheat do not form crossovers, unless the 
Ph1 locus is deleted or mutated. Ph1 (Preferential pairing of Homologues) is a presumed 
epi-allele of a cyclin dependent kinase (CDK), a cell cycle regulator that mediates chro-
matin remodelling during the meiotic prophase. Under wild type conditions, CDK activ-
ity is constitutively low, leading to differential condensation of chromatin between ho-
moeologues. It was shown that this is accompanied by much more similar condensation 
patterns in the subtelomere heterochromatin (Colas et al. 2008). When Ph1 is function-
ally absent, CDK activity increases (because expression of the gene is regulated from one 
of the homoeologous chromosomes), and crossovers are formed between homoeologous 
chromosomes (Greer et al. 2012). A recent study showed that ph1 mutant like effects can 
be induced in wheat by the artificial upregulation of kinase activity through application 
of the phosphatase inhibitor okadaic acid (Knight et al. 2010). 

The most dramatic changes affecting HR in meiosis are found in inversion heterozy-
gotes. Such segments completely abolish meiotic recombination between the non-homol-
ogous regions (Wijnker and de Jong 2008). The study of chromosome collinearity (and 
genome evolution) that shows such inversions, has a long history in cytogenetic research. 
The recent use of bacterial artificial chromosomes (BACs) as fluorescent probes in FISH 
(Fluorescent in-situ hybridisation) studies, has recently shown its use in plants (Lou et 
al. 2010; Peters et al. 2012; Szinay et al. 2012). BACs of known genomic position in one 
species can be hybridized to nuclei of related species to study large-scale chromosome 
rearrangements, which may be a major cause of linkage drag and thereby can many be a 
major obstacle for the introgression of single loci of interest from a donor- into a recipi-
ent background. Although there are currently no known methods for making inversions 
undone, simply learning about the presence of inversions is of great help to help breeders 
understand why some crosses will not lead to expected outcomes. 

The rapidly advancing methods of next generation sequencing and micro-arrays have 
recently propelled our understanding of meiosis even further. The studies allow the pre-
cise dissection of whole meiotic tetrads for the presence of crossovers and gene-con-
versions in fission yeast (Lu et al. 2012; Mancera et al. 2008; Qi et al. 2009). Gene-conver-
sions are recognized as footprints of so-called non-crossovers (NCOs): non-reciprocal 
nucleotide exchanges between homologues as a result of HR events that did not lead to 
crossovers. Such studies give unparalleled insights into the precise outcomes of meiotic 
recombination. It was shown that NCOs contribute to about 1% of new variation in yeast 
(Mancera et al. 2008) whereas in plants NCOs contribute only a fraction of that. High 
density genotyping can now even help making personalised recombination maps as was 
shown for a human male (Wang et al. 2012). 
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While crossovers and random assortment of chromosomes at meiotic prophase I are 
beneficial for the generation of new variation, they will also generate such large varia-
tion that the genome of a heterozygote becomes completely scrambled in its gametes. 
Prevention of this scrambling is not possible, and breeders have but one way to preserve 
valuable allele combinations, which is the preservation of these in homozygous lines. A 
well-known method for achieving homozygosity is using a series of recurrent backcross-
es in which a locus of segment of choice is introgressed into a known recipient genotype. 
Repeated cycles of selfing will also lead to homozygosity but requires many generations. 
The quickest method surely is the use of doubled haploids in which the genotype of a 
gamete is immediately fixed by growing the gamete directly into a homozygous diploid 
plant. A strategy holding much promise for the development of efficient haploid induc-
tion in plants was the discovery that targeted alterations to the CENTROMERE HISTONE 
3 can lead to the production of haploid plants. Arabidopsis with engineered CENH3 “tail 
swaps” (i.e., carrying the protein tail of regular histones) can be used as inducer lines 
to generate haploids after crossing with a donor plant (Ravi and Chan 2010). Alternative 
ways have previously been proposed for the direct fixation of genotypes, among which 
apomixis has received most attention in literature (van Dijk 2008). Apomictic plants re-
produce clonally through seeds, requiring the formation of a gamete that is genetically 
identical to the mother plant. Recently it was shown that meiosis can be modified to gen-
erates such gametes, by mutating single or multiple genes simultaneously to turn meio-
sis into a mitosis (d’Erfurth et al. 2009; Olmedo-Monfil et al. 2010; Ravi et al. 2008). As 
expected, the combination of such mutants with the haploid inducing potential of CENH3 
tailswap inducers could be used to achieve a synthetic form of apomixis, in which these 
diploid gametes were grown into clonal offspring (Marimuthu et al. 2011). The fixation 
of heterozygous genomes is a great tool for turning segregating heterozygotes directly 
into clonally propagating lines, however does imply the intrinsic problem that thereaf-
ter any cross with such a plant would again imply the segregation of traits which makes 
improvement of the variety impossible. 

Alternative strategies have been proposed for the fixation of complex genotypes, the 
so-called “reverse breeding” strategies. Reverse breeding strategies aim at doing the 
exact opposite of traditional breeding: instead of crossing two lines to generate a het-
erozygote, these strategies attempt to create homozygous parents from a starting hete-
rozygote. The best known example by now is surely reverse breeding in which crossover 
recombination is suppressed in a heterozygote of choice. This leads to the (binomial) 
distribution of non-recombinant chromosomes into gametes. Since crossovers are ab-
sent, most of the gametes of such a plant are unviable due to aneuploidy, but balanced 
gametes are formed by chance at low frequency, and these can be grown into (doubled) 
haploids or used in pollination experiments. In such a DH population, all plants carry 
precisely half of the (unscrambled) chromosomes of the chosen heterozygote. By simply 
selecting among these plants, a combination of DHs can be identified that together per-
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fectly reconstitute the genome of the starting heterozygote (Dirks et al. 2009; Wijnker et 
al. 2012) . An alternative approach has been suggested, in which diploid gametes are used 
that arise from a meiosis that omitted the second meiotic division. Such gametes are dip-
loid, but – different from mitotic divisions - are homozygous for their centromeres and 
genes linked to the centromeres. When grown directly into plants, such plants would 
fixate directly the centromere parts of the starting heterozygote, and in subsequent gen-
erations (either through selfing of the production of DHs of these plants) homozygous 
parents can be obtained. 

Layout of this thesis
During my research I have addressed both fundamental as well as more applied aspects 
of meiotic recombination. In chapter two I discuss some of the most basic aspects of mei-
otic recombination by examining (male) Arabidopsis meiosis at the highest detail. During 
early meiotic prophase Arabidopsis produces a surprisingly large number of 120-235 dou-
ble strand breaks (DSBs) along the chromosomes axes (Chelysheva et al. 2010; Sanchez-
Moran et al. 2007). And though essential for the formation of crossovers (Grelon et al. 
2001), the far majority of DSBs do not lead to the formation of meiotic crossovers, since 
only about 10 crossover events are observed in a typical meiosis. Using whole genome se-
quencing, we took a detailed look at meiosis products: both by sequencing doubled hap-
loid offspring as well as whole meiotic tetrads, in which the genomes of all four offspring 
from a single meiosis event were sequenced. The excess DSBs are repaired presumably 
through very small gene-conversion tracts. In addition, we show that CO-sites in Arabi-
dopsis preferentially localize at sites of constitutively open chromatin, and we describe 
the surprising presence of consensus motifs at recombination sites in Arabidopsis, sug-
gesting that crossovers may be directed to, or be promoted by specific sequences.

In chapter three focus shifts from crossover formation to the regulation of CO forma-
tion and the placement of crossovers along the chromosome axis. Crossover formation is 
studied in an allelic series of hypomorphic mutants of CDKA;1, the main cell-cycle regu-
lator of Arabidopsis. These hypomorphis mutants have varying levels of CDKA;1 activity, 
and help to dissect the requirement of this cell-cycle for meiosis. CDKA;1 activity is re-
quired for a variety of processes in early meiosis (in chromosome condensation, sister-
chromatid cohesion and crossover formation) as well as late meiosis (i.e. in the progres-
sion through meiosis II). One of the studied hypomorphic alleles provides insights into 
the regulation of crossover positioning. In a nutshell, our data suggest that low CDKA;1 
activity leads to low levels of crossover interference, and the distal positioning of crosso-
vers. Inversely, high CDKA;1 activity leads to high interference, coupled to a placement of 
crossovers in the middle of chromosomes. This together suggests that CDKA;1 activity is 
an active player shaping the recombination landscape, and could very well cause differ-
ences in recombination landscapes between sexes (heterochiasmy).
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In chapter four attention shifts to a yet higher level of integration, by closely examin-
ing the chromosome structure between related species in the genus Solanum. Within 
this genus there is a variety of important crops (tomato, potato, eggplant) for which 
there are extensive breeding programs. A proper understanding of the way in which the 
genomes of these species are organised (i.e. to what extent the chromosomes are co-line-
ar), is very important. From a breeding point of view, the collinearity of chromosomes of 
different species ultimately defines whether traits (genes of alleles) can be introgressed 
from one species into the other, or whether inversions would lead to extensive linkage 
drag resulting from inversions. From a more evolutionary point of view, the co-linearity 
of chromosomes can be used to trace chromosome evolution. 

Having examined some of the most fundamental aspects of meiosis that influence 
meiotic recombination, I will then focus more on breeding itself. The identification of 
more and more meiotic genes in Arabidopsis and other plants in the last decade (Mer-
cier and Grelon 2008), it becomes more and more clear that there is a huge potential 
in modifying meiosis for breeding. In chapter five the various possibilities of modify-
ing meiosis are reviewed from a breeding perspective. The possibilities of increasing 
meiotic recombination, inducing recombination in (homoeologous) regions that would 
normally not recombine, the (im-)possibilities of breeding with chromosomes that show 
high sequence divergence or inversions and the possibilities of suppressing meiotic vari-
ation for breeding. 

Addressing all possible ways of modifying meiosis through experiments lies well be-
yond the scope of this (and probably any) thesis. Instead, we focused on developing one 
strategy in high detail. Chapter six introduces reverse breeding: an anticipated breeding 
method based on the suppression of crossover recombination. It is explained how the 
suppressing crossover recombination in combination with doubled haploid technology 
can bring about breeding strategies that allow breeders to fix an uncharacterized het-
erozygous genotype by constructing homozygous parents for it. It would allow breeders 
to select interesting heterozygotes that can be brought into breeding programs by (re-)
constructing parental lines. Simultaneously, reverse breeding provides a relatively sim-
ple method for the production of chromosome substitution lines that have great uses in 
the genetic dissection of complex traits.

Penultimate chapter seven describes the practise of reverse breeding, by presenting 
a proof of concept in the model plant Arabidopsis. Arabidopsis is the species of choice for 
the plant geneticist: as it can easily be transformed, haploids can be readily generated 
and its genome sequence is completely known.. We demonstrate, that reverse breed-
ing in Arabidopsis is perfectly feasible, and as expected, generates parental lines from a 
starting heterozygote. 
Last chapter eight then discusses the various topics addressed in this thesis, and identi-
fies new challenges and possibilities using knowledge and insights on meiosis for future 
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breeding applications. The possibilities that reverse breeding generates for the dissec-
tion of complex traits and heterosis will therefore be extensively discussed. 
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On simply enjoying science…

[...]

See the world in green and blue 
See China right in front of you 
See the canyons broken by cloud 
See the tuna fleets clearing the sea out 
See the Bedouin fires at night 
See the oil fields at first light 
And see the bird with a leaf in her mouth 
After the flood all the colours came out 

It was a beautiful day 
Don’t let it get away 
Beautiful day 

[…]

U2

(In: ‘Beautiful day’. All that you can’t leave behind, 2000)
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Abstract
Meiotic recombination has long been studies in the model plant Arabidopsis but major questions still 
remain about the repair of double strand breaks (DSBs), the number and tract lengths of gene conver-
sions and the positioning of recombination events. We set out to answer these questions using whole-
genome sequencing in the most detailed study of Arabidopsis meiosis so far. Deep sequencing of five 
complete meiotic tetrads and ten homozygous doubled haploids reveals the precise genetic makeup of 
crossover and non-crossover positions. A typical tetrad displays about ten COs, six CO associated gene 
conversions (GCs) and five to six non-crossovers. CO-associated GCs have significantly longer conver-
sion tracts than NCOs (~500 vs ~153-~282 bp). The latter estimate is unreliable because of the relatively 
low SNP density in Arabidopsis. CO recombination sites occur in the genome irrespective of promoter- 
or otherwise annotated regions, but preferentially occur near poly-A sequences which are known to be 
free from nucleosomes. Such a localization pattern is highly reminiscent of meiosis in yeast (Saccharo-
myces cerevisiae). Surprisingly, we find a palindromic CTTCTTCTTCT microsatellite repeat overrepre-
sented at CO sites, which has high similarity to a (TL1) known binding site of a heat shock transcription 
factor. 

Introduction
Homologous recombination during the meiotic prophase is initiated by the formation 
of double strand breaks (DSBs). When the repair of these breaks is directed through a 
non-sister chromatid this can lead to the formation of crossovers (COs), non-reciprocal 
exchange of chromosome segments between non-sisters. Alternatively DSBs can also be 
resolved as non-crossovers (NCOs). In that case strand invasion leads to heteroduplex 
formation (Allers et al. 2001), which are subsequently corrected and, depending of the 
direction of repair, give rise to a 2:2 or 3:1 segregation of loci in tetrads. Loci that segre-
gate in a 3:1 ratio are also known as gene conversions (Zickler 1934). Gene conversions 
not only result from NCOs, but can also form at crossover sites, known as CO-associated 
gene conversions (CO-associated GCs; see Figure 1). In the yeast, Saccharomyces cerevi-
siae, COs are thought to form through a recombination intermediate known as the dou-
ble Holiday Junction (Schwacha and Kleckner 1995; Szostak et al. 1983), whereas NCOs 
are currently thought to be formed mainly through an alternative pathway, known as 
Synthesis Dependent Strand Annealing (SDSA) (McMahill et al. 2007). Excellent reviews 
provide further details on these recombination pathways: (Filippo et al. 2008; Mazón et 
al. 2010; Osman et al. 2011). 

The central question on how DSBs are being repaired during meiosis is still open. 
Arabidopsis forms between 120-235 DSBs per meiotic event (Chelysheva et al. 2007; 
Sanchez-Moran et al. 2007; Vignard et al. 2007) which is in far excess of the what actually 
becomes manifested as the nine to ten COs that are commonly observed (Armstrong 
and Jones 2003; Lu et al. 2012). Most breaks must thus employ other modes of repair. 
Mouse and yeast, that produce ~250 and ~150 DSBs respectively, also produce relatively 
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high numbers of DSBs (Buhler et al. 2007; Moens et al. 1997), whereas Drosophila mela-
nogaster and the nematode Caenorhabditis elegans produce substantially less DSBs, with 
~20 DSBs (Jang et al. 2003) and ~12 DSBs (Mets and Meyer 2009) per genome. 

Yeast meiosis is has been studied thoroughly using tetrad studies and estimates 
revealed that the 150 DSBs are resolved in about 90 COs and approximately 60 NCOs 
(Mancera et al. 2008; Qi et al. 2009). The fraction of nucleotides subject to gene conver-
sion in yeast during a single meiosis adds up to 1% of the total genome size, highlight-
ing the significant contribution of GC to meiotic recombination in that species. In most 
eukaryotes the analyses of gene conversion in meiotic tetrads are difficult or impossible 
because spores separate after meiosis (Sun et al., 2012), but the discovery of the quartet 
mutant in Arabidopsis thaliana (Preuss et al. 1994) makes studies into gene conversion 
rates feasible sun (Lu et al. 2012; Sun et al. 2012). Sun et al (2012) recently estimated that 
3.5×10−4 conversions take place per locus per meiosis. 

Most data provided by Sun et al. (2012) could however not distinguish NCOs from 
CO-associated GCs. Lu et al. (2012), in which eight offspring from two complete Arabi-
dopsis meiotic tetrads were sequenced, showed that both NCOs and CO-associated GCs 
occur. Gene conversions events were found to accompany about half of CO events and 
the tract length was estimated at ~558 bp. Four NCOs were recovered in their study 
with tract lengths ranging from one (three events) to 1799 bp. This low number of NCOs 
is remarkable in view of the ~120 - ~235 DSBs formed. One theory (Lu et al., 2012) sug-
gests that DSBs are predominantly repaired via the (identical) sister chromatid instead 
of the homologous chromosome (hence leaving no detectable NCOs). Alternatively, het-
eroduplexes arising during NCO formation might be preferentially repaired towards the 
broken strand, thereby restoring the original genotype, and preventing the detection of 
gene conversion. Finally, NCOs might have very short tract lengths in plants and their 
detection might require higher levels of polymorphisms for their detection than present 
in Arabidopsis, which amounts to ~1 per 200 bp on average (Lu et al. 2012). However, the 
latter hypothesis seems difficult to reconcile with their claimed long NCO of 1799 bp. A 
reliable estimate of CO conversion tracts (COCTs) and NCOs would be most helpful in der-
ivation of new hypotheses. Ratios for lengths of COCTs and NCOs have previously been 
estimated for human and yeast, in which COCTs were found to be consistently longer: 
~460 and 55-290 bp respectively in human (Jeffreys and May 2004) and 2 Kb and 1.8 Kb 
in yeast (Mancera et al. 2008). 

Other intriguing questions with respect to CO formation concern their precise place-
ment. From yeast it is known that COs predominantly occur in promoter regions (Pan et 
al. 2011; Wu and Lichten 1994), presumably associated with the presence of open, accessi-
ble chromatin through the positioning of nucleosomes at the onset of meiosis (Berchow-
itz et al. 2009; Pan et al. 2011). For plants this is as of yet unclear, although the pattern of 
transposon insertion, which localize to open chromatin, shows a remarkably similar dis-
tribution to meiotic recombination landscapes in maize, suggesting that open chroma-



26

Chapter 2

tin might strongly correlate with DSB-formation (Liu et al. 2009). A completely different 
relation between recombination hotspots in Arabidopsis and transposable elements was 
suggested through a study of hotspots derived from haplotypes of natural accessions 
(Horton et al. 2012). These authors showed that historical hotspots preferentially local-
ize in regions annotated as transposable elements. A relation to open chromatin was 
however not suggested. Meiotic CO hotspots have been shown to also occur in Arabidop-
sis experimental populations (Giraut et al. 2011; Yelina et al. 2012), but what determines 
the placement of these hotspots in plants is not known. 

Recombination hotspots in human and mouse were recently shown to be closely as-
sociated with specific histone marks such as H3K4me3 methylation, which is actively 
imposed onto chromosomes in early meiotic prophase. This presumably is the result of 
PRDM9 (Baudat et al. 2010; Buard et al. 2009; Smagulova et al. 2011), a methyltransferase 
with a zinc finger DNA binding domain. As to whether H3K4me3 methylation also de-
fines recombination hotspots in yeast is still under investigation with conflicting find-
ings reported thus far (Buard et al. 2009; Tischfield et al. 2012). The involvement of the 
DNA binding methyltransferase PRDM9 in CO formation in some (but not all) mammals 
(Muñoz-Fuentes et al. 2011; Oliver et al. 2009) also points to the fact that specific sequence 
motifs may influence the propensity of a sequence to form DSBs and thereby become a 
hotspot for DSB and CO formation. Common sequence motifs have so far been reported 
for yeasts (Wahls and Davidson 2010; White et al. 1993), Arabidopsis (Horton et al. 2012) 
and several Drosophila species (Comeron et al. 2012; Miller et al. 2012; Stevison and Noor 
2010). Although the precise ways in which such sequences promote DSB formation (and 
hotspot localization), studies in yeast suggest that at least part of such sequences pro-
vide binding sites for specific transcription factors that promote meiotic hotspot for-
mation (Wahls and Davidson 2010; White et al. 1993) like PRDM9 in human and mouse. 
Inversely, the presence of a recombination hotspot itself has been suggested to change 
the local DNA itself, leading to an enrichment of GC content at the hotspot site. This has 
was suggested to result from preferential repair of heteroduplex mismatches from A/T 
to G/C basepairs, a phenomenon known as biased gene conversion (BGC) (Galtier et al. 
2001). However, to date no evidence for BGC or enriched GC content has been reported for 
Arabidopsis (Giraut et al. 2011; Horton et al. 2012).

The possibility of making doubled haploids (DH) in Arabidopsis, that provides the op-
portunity to directly turn (F1 derived-) gametes into homozygous plants, allows the easy 
detection of recombination footprints like NCOs (Ravi and Chan 2010). Also the possibil-
ity of studying F1-derived meiotic tetrads could be of great help (Preuss et al. 1994) to 
study CO-associated GCs and NCOs as was done by Lu et al (2012). Here we use both ap-
proaches in combination with a whole-genome sequencing approach at high depth to ac-
curately estimate gene conversion tract lengths and frequencies for both COs and NCOs. 
Using this approach, we can obtain a detailed view of the localization of COs and NCOs 
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in Arabidopsis meiosis, and relate these to genomic features like histone methylation, 
consensus sequences and regions known to represent open chromatin.

Materials and Methods

Plant materials
Doubled haploid Arabidopsis lines were selected from a previously established Columbia 
(Col) – Landsberg erecta (Ler) DH population (Wijnker et al. 2012). For the generation of 
meiotic tetrads, a Col - Ler hybrid in a quartet1 background was made by crossing qrt1 
-/- Col (N660403) to Ler (N8050) lines which were obtained from the Nottingham Arabi-
dopsis Stock Centre (NASC) (http://Arabidopsis.info/). Single meiotic quartets from this 
F1 were picked up with a single hair under a dissecting microscop and transferred onto 
individual style of a virgin flower (Copenhaver et al. 2000) of a male sterile Cape Verde 
Islands (CVI), that was selected from a EMS mutation screen (by M. Koornneef). These 
plants were grown under long day (14 hours light) conditions in a growth chamber. Over 
700 unique pollinations were made accordingly. The resulting siliques were harvested 
individually and when four seeds were recovered from one silique, they were grown 
under short day conditions (8 hours light) to maximize rosette size before harvesting. 
Plants were genotyped using a previously described SNP marker set (Wijnker et al. 2012) 
to verify that all markers segregate in the expected tetrad 2:2 ratio. 

Sample- and library preparation and Sequencing
DNA samples of parental lines, DHs and tetrad offspring were extracted from fully grown 
rosettes using a CTAB method, with a nuclei extraction step to remove mitochondrial 
and chloroplast DNA. Rosette leaves (0.5-1 gram) were ground to a fine powder in liquid 
nitrogen using mortar and pestle and transferred to a 15-mL polyethylene centrifuge 
tube containing 10 mL of ice-cold nuclei extraction buffer, consisting of 10 mM TRIS-HC1 
pH 9.5, 10 mM EDTA pH 8.0, 100 mM KC1, 500 mM sucrose, 4 mM spermidine, 1 mM sper-
mine and 0.1% beta-mercaptoethanol. The suspended tissue was mixed thoroughly with 
a wide-bore pipette and filtered through (by a brief spin at less than 100g for 5 seconds) 
two layers of Miracloth (CalBiochem, http://www.merckmillipore.com/) to an ice-cold 
50-mL polyethylene centrifuge tube. Lysis Buffer (2 mL), consisting of 100mM Tris ph7.5, 
0.7M NaCl, 10 mM EDTA, 1% BME (2-mercaptoethanol) and 1% CTAB in MQ water, was 
added to the filtered suspension and mixed gently for 2 min on ice. The nuclei were pel-
leted by centrifugation at 2000g for 10 min at 4 °C. 500 µL CTAB extraction buffer was 
added to nuclei pellet, mixed well by inverting tube and incubated for 30 min at 60 °C. 
Samples were cooled at RT for 5 min. after which 350 uL chloroform/iso amyl alcohol 
(24:1) was added and inverted and mixed gently for about 5 min and spun for 6k rpm for 

http://Arabidopsis.info/
http://www.merckmillipore.com/
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10 min. The upper layer (450 µL) was transferred to a new 2 mL tube containing 450 µL 
isopropanol, and mixed by inverting several times and pellet DNA by spinning 13000 rpm 
for 3 min. After washing the DNA pellet in 75% EtOH, the DNA was resuspended in sterile 
DNase free water (containing RNaseA 10 μg/mL). The sample was incubated at 65 °C for 
20 min to destroy any DNases, and stored at 4 °C until use. DNA concentration and qual-
ity was determined with a Nanodrop 1000 (Peqlab; http://www.peqlab.de), a Qubit® 
2.0 Fluorometer (Life Technologies™; http://www.lifetechnologies.com/) and on a 1% 
agarose gel. DNA samples were concentrated to more than 50 ng × µL-1 with a speed-vac 
when necessary. 

Library preparation and sequencing
At least 500 ng of high-quality (260/280 ratio > 1,8) genomic DNA was fragmented on 
a COVARIS S2 (http://covarisinc.com/) to achieve a mean length of 300 bp followed by 
DNA purification with PCR purification columns (QIAquick PCR purification kit, QIA-
GEN; www.qiagen.com/). Libraries were generated using the Illumina Genomic DNA 
TruSeq sample kit (www.illumina.com/) according to the manufacturer’s instruc-
tion (TruSeq DNA sample preparation v2 guide, Illumina) with Sciclone G3 robot-
ics using the TruSeq DNA protocol by Caliper (Caliper Life Sciences, Hopkinton, MA; 
www.caliperls.com/). Libraries were quality assessed with a Bioanalyzer (Agilent 2100, 
Agilent, www.genomics.agilent.com/) and then quantified by fluorometry, immobilized 
and processed onto a flow cell with a cBot (Illumina) followed by sequencing-by-syn-
thesis in 100 bp paired-end runs on a Illumina Genome Analyzer GAIIx (Col parent of DH 
lines, DH lines 1 to 4) or an Illumina HiSeq2000 (Ler parent of DH lines, Col (qrt), Ler (qrt) 
and CVI, DH 5 to 10 and five deep-sequenced tetrads). After the run read data were ex-
tracted with the software package CASAVA (Version 1.8, Illumina; www.illumina.com/) 
to prepare the .fas/.qual read pairs. Sequencing yield per sample is listed in Supplemen-
tary Table S1.

Resequencing analysis
We applied the resequencing pipeline SHORE to each of the samples (Ossowski et al. 
2008). First, reads were trimmed based on quality values. High quality reads were then 
aligned against the reference sequence using GenomeMapper as alignment tool (Arabi-
dopsis_Genome_Initiative 2000; Schneeberger et al. 2009). After using read pair infor-
mation to remove repetitive reads, we performed consensus calling to assess reference 
position-specific counts for all alleles, in addition to a SHORE quality score (Supplemen-
tary Figure 1).

http://
http://www.merckmillipore.com/
http://covarisinc.com/
http://www.illumina.com
http://caliperls.com
http://www.genomics.agilent.com/
http://www.illumina.com/
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Marker definition for DH genome analysis
Based on the resequencing results of the parental accessions, Col-0 and Ler, we defined 
a set of high quality markers that we used for initial genotyping of all DH samples. Posi-
tions that account for valid markers had support for the reference allele within the rese-
quencing of one Col-0 sample with a SHORE quality value of 25 or greater and support for 
a homozygous SNP in the resequencing analysis of Ler with a resequencing quality value 
of 40. Even though the reference sequence was based on the genome of Col-0, valid mark-
ers also included the rare cases where the resequencing of Col-0 supports a non-refer-
ence allele (with a SHORE quality value of 25 or greater) and Ler features the reference 
allele (again quality value of 25 or greater). The coverage at all valid marker positions 
was required to be between 50 and 150 read alignments for the resequencing of Ler, in 
order to remove regions with different copy number in the genome of Ler, in comparison 
to the reference sequence. This identified 438,919 positions as markers, which were used 
to genotype the double haploid lines. 

Genotyping followed by CO and NCO assignment in DH genomes
The recombinant genomes of DH lines were established at all previously identified mark-
er positions by assigning one of five different states to each marker. These five states 
included both parental alleles (if there was a resequencing quality score higher than 15 
and more than three read alignments), ambiguous markers (if evidence for both alleles 
was present), the presence of a third allele and finally all markers with less than three 
alignments were assigned a non-informative state. This initial genotyping was used 
to identify COs by counting consecutive markers of the same genotype. Blocks with at 
least 25 consecutive markers were used as “seeds” and COs were called in between seeds 
with different genotypes. COs positions were improved by extending the seeds until the 
nearest block of opposing markers, featuring more markers than the preceding block, 
is identified. COs assessment partitioned the genomes in regions of different parental 
backgrounds, which descended from the respective parent.

NCOs positions were identified by identification of markers differ from the parental 
background. Only markers with unique support for one of the parental alleles were con-
sidered (Supplementary Table S2). These initial NCOs were then filtered for occurrence 
of the same NCO within more than one DH line, in order to exclude NCO annotations that 
are due to systematic errors. This last step would exclude NCOs that happen indepen-
dently and convert the same marker (Supplementary Table S2). The total amount of 
these occurrences was 42. Manually inspections of the short read alignments at these 
positions showed that the coverage at each single marker was drastically reduced, or the 
resequencing indicated large-scale disruptions.
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Figure 1: Genome composition of a doubled haploid (above) and tetrad (below). Chromsome numbers 
are indicated on the left. Landsberg erecta alleles given in blue, Columbia in red. Enlargement in DH 
shows the presence of a NCO. Inset in tetrad shows a CO-associated GC. Note here the 3:1 segregation 
of Col-alleles. Black bars represent the preicentromere areas.
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Marker definition for tetrad genome analysis
In contrast to the DH analysis, three different parents contributed to the tetrad offspring. 
This thus required a different set of markers for genotyping. Valid markers included all 
positions with resequencing scores higher than 24 in the analysis of Col-0 and CVI and a 
non-reference allele with a quality score of 40 within the analysis of Ler. Naturally, the 
alleles of Col-0 and Ler needed to be different at valid markers.

Genotyping and CO and NCO assignment in tetrad genomes
Initial genotyping and CO location identification was performed as outlined for the Col-
Ler DH lines. In contrast to the DH analysis, tetrad samples involve a third genotype, 
CVI (i.e. a Col-Ler F1 was crossed onto a CVI female receptor and so is heterozygous). 
In order to avoid unreliable resequencing calls we excluded all marker positions that 
overlapped with annotated transposable elements and those markers, which reside in 
regions that are likely to have a different copy number in any of the parents, as identified 
within the SHORE resequencing analysis of the parental alleles. For NCO detection we 
need to distinguish two different scenarios. In the first case a putatively converted allele 
differs from the recipient parent (CVI) and at the same time differs from the parental 
genotype. NCOs can be confidently identified by observing an additional, unexpected 
genotype (type 1 NOCs). In the second case the recipient parental allele is different from 
the expected allele of the second allele and hence the absence of an expected allele is re-
quired for identification of NCOs (type 2 NCOs). However, confidently identifying absence 
is more challenging than identifying the presence of alleles. 

In detail, valid type 1 NCOs required a minimal quality score of 35 and in addition a 
minimum coverage of 25 alignments per marker, of which at least 15 had to support the 
unexpected converted allele. In contrast, type 2 NCOs were only scored if there were 
more than 50 short read alignments present, of which no more than two represented the 
putatively absent allele. For these NCO predictions we applied hard cutoffs, even though 
the coverage between the different lines varies. This accounts for the fact that genomes 
sequenced at low coverage do not provide the power for the recalling the same number 
of events. In fact, for the estimation of the total amount of NCOs we considered only 
those markers that featured enough sequencing reads and quality scores high enough as 
to reveal NCOs. This drastically reduces number of markers (Supplementary Table 3), 
however it allows our analysis to settle on a set of markers for which we can confidently 
say that they have or have not undergone a conversion. Like for the NCOs identified in 
the DH samples, we filtered for those NCOs that were identified in more than one back-
ground and removed 178 NCOs from our analysis.
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Refinement of tract lengths of COs and NCOs
Marker definition based on next-generation resequencing usually suffers from incom-
pleteness. Conservative thresholds that aim at reducing false positives naturally exclude 
a substantial fraction of the real polymorphisms. In particular, more complex changes 
are unlikely included within the set of polymorphisms that are confidently identified by 
short read alignments. Consequently, our marker sets are unlikely to include all types 
of polymorphisms existing between the parental accessions. In order to get a complete 
picture of the COCTs and conversion tracts of NCOs that were identified with the sparse 
marker as defined above, we manually refined all CO and NCO tracts by visually parsing 
the short read alignments. This allowed us to explore all polymorphisms within each of 
the conversions tracks and to reveal the real extent of all tracts identified. 

Statistics
We used the 2-sample Kolmogorov-Smirnov test (2-sided) to test whether the observed 
size distributions of CO-associated GCs and NCO tract lengths are different. Since sample 
sizes differed (32 and 28 observations respectively), the critical D-value (α=0.01) was 
calculated as Dcrit.=1.63*√ ((32+29)/(32*29)) = 0.443.

Functional annotation of polymorphism within conversion tracts
The functional annotation of CO sites in DH lines and tetrads follows TAIR10 
(http://www.Arabidopsis.org/). In tetrad offspring, the annotation of a CO position can 
in specific cases differ between two offspring, when the flanking SNPs of a CO conversion 
tract are differently annotated (Figure 1). To compare the annotation of COs in tetrads 
and DH lines, we used the annotation of DH CO sites and the annotation of one offspring 
per CO position from the tetrad data. 

Motif search
We searched for consensus motifs at CO-sites identified in the tetrad offspring employ-
ing highly restrictive to inclusive search methods. Performing motif searches only on se-
quences revealed by CO-associated GCs ensures that the sequences were subjected to DSB 
repair. As GC are not necessarily centered on the location of the respective DSB, addition-
al inclusion of flanking sequences of different lengths can increase the probability of in-
cluding sequences in which the actual DSB was formed. These sets are described in Table 
1 and range from most restrictive (Set 1) to most inclusive (Set 8). Candidate motifs were 
identified with MEME (Bailey et al. 2006), which was ran with the “zoops” model, while 
correcting for the genomic background. Searches were done for all eight sets above. For 
matching a found consensus sequence against known transcription factor binding sites, 
we used JASPAR (Portales-Casamar et al. 2009) (http://jaspar.cgb.ki.se) and TRANSFAC 
(Matys et al. 2003) (www.gene-regulation.com/pub/databases.html#transfac).

http://www.arabidopsis.org
http://jaspar.cgb.ki.se
http://www.gene-regulation.com/pub/databases.html%23transfac
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Nucleosome occupancy
For determining nucleosome occupancy at CO sites, sequences of their positions and 
their flanking regions were pasted to NXsensor (www.sfu.ca/~ibajic/NXSensor/) 
(Luykx et al. 2006). For determining the minimal distance from a CO-site to the near-
est nucleosome free area (Figure 8), annotated the distance from the CO-midpoint to 
nucleosome-free areas as defined by An, n ≥ 10 (poly-A); Tn, n ≥ 10 (poly-T) and (C/G)3-
N2-(C/G)3-N2-(C/G)3.

RESULTS

Experimental design and data analysis
NCOs leave a genetic footprint in the form of converted single nucleotide polymorphisms 
(SNPs) or insertion/deletions, and such small changes are most easily detected through 
whole-genome sequencing of homozygous samples. We therefore selected ten random 
doubled haploids from a DH population made from the accessions Columbia (Col) and 
Landsberg erecta (Ler) (Wijnker et al. 2012). These DH offspring carry the genome com-
plement of one meiotic spore. DH offspring do not allow the study of CO-associated GCs, 
since information on sister chromatids was found to be essential for defining such gene 
conversions (see below).

We therefore generated and sequenced offspring of five spore tetrads (the four 
spores from one meiosis) by crossing the four pollen that result from one meiosis onto a 
receptor line of the accession Cape Verde Islands (CVI). As a male we used a Col-Ler F1, 
homozygous for a mutation in quartet1, a mutation that prevents the separation of pollen 

Set Sequences

1 32 converted SNPs, with 50 bp on either side

2 32 converted SNPs, with 250 bp on either side

3 32 converted SNPs, with 500 bp on either side

4 33 converted COCT SNPs plus 50 bp on either side, 
plus maximal COCTs smaller than 200 bp

5 40 converted COCT SNPs plus 250 bp on either side, 
plus maximal COCTs smaller than 500 bp

6 51 converted COCT SNPs plus 1000 bp on either side, 
plus maximal COCTs smaller than 2000 bp

7 52 All CO tracts

8 52 All CO tracts with 500 bp on either side

Table 1:  Description of different sets used for MEME motif searches in tetrad offspring.

http://www.sfu.ca/~ibajic/NXSensor/
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after meiosis (Preuss et al. 1994). These tetrads allow the precise examination of CO sites 
and associated GCs, as well as the identification of NCO events. However, heterozygosity 
of the offspring complicates their analysis for NCOs. In short, we need to distinguish two 
different scenarios. First, the identification of NCOs, where a putatively converted allele 
differs from the recipient parent (CVI) and at the same time differs from the parental 
genotype, can be identified by observing an additional, unexpected genotype (type 1). In 
the second scenario, where the recipient parental allele is different from the expected al-
lele of the second allele, the absence of an expected allele is required for identification of 
NCOs (type 2). Lu et al. (2012) raised the same issue, when they backcrossed a Col x Ler F1 
onto a Col recipient parent, but solved it by removing the type 2 NCOs from their analysis 
completely, which comes at the costs of excluding around 50% of the genome (Lu et al. 
2012). In our case we have called both types of NCOs using strict coverage requirements 
when calling type 2 NCOs (see materials and methods).

Crossover conversion tracts in Arabidopsis
Sequence analysis allowed us to determine the genome composition of DHs (Figure 1, 
Supplementary Figure S2). We identified 61 COs in the ten DHs (for positions and CO-ID 
numbers see Supplementary Table S4). DH offspring typically reveal half of the expect-
ed CO numbers in a meiotic tetrad and our DHs were chosen from a previously described 
DH population that show CO frequencies identical to previously published populations. 
Most of these show a clear cut transition from one parental genotype to the other with-
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Figure 2: The minimum and maximum lengths of 52 crossover conversion tract (COCT) lengths, sorted 
by maximum length with the smallest shown left. The smallest maximal length (127 bp) marks the lower 
limit of our COCT length estimate (lower red line). The dark base of different bars represents the mini-
mal COCT lengths. The upper limit of our COCT tract length estimate (upper red line) is marked by a 
minimal tract length of 663 (fourth from left). The largest minimal tract length may represent an excep-
tional case (see text for details). Little over half COCTs have very short or no minimum lengths and are 
not visible in the graph (e.g. the 7 COCTs shown left). Please note that maximum tract lengths are only 
shown for lengths < 1500 bp.
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out irregular patterns of genotype changes. In one CO event we detected the footprint of 
a complex conversion tract by the recovery of an NCO flanking the CO breakpoint. Spore 
tetrads provide much higher detail at the CO make-up, as they allow the segregation ra-
tios of markers near CO breakpoints to be checked (Figure 1). The genome compositions 
of all tetrads are shown in Supplementary Figure 3. A 3:1 segregation ratio of markers 
between CO breakpoints defines CO-associated GCs which were found to accompany 32 
out of 52 COs (61%) (Supplementary Tables S5-S7). Most COCTs show one sided (full) 
conversions in which all converted SNPs are solely derived from one of the strands in-
volved (Stahl and Foss 2010). Mismatches in the conversion tract are thus favorably re-
solved to one side and not randomly in either way. We observed 14 and 18 full conversions 
to Ler and Col respectively, which is not significantly different (χ2 test, α < 0.05).

Two conversion tracts show more complex patterns, in which converted SNPs are 
derived from both strands (CO 21 and CO 42, Supplementary Table S6). A detailed align-
ment of CO 21 is shown in Supplementary Figure S3. Three out of 30 investigated gam-
etes (i.e., ten DHs and 20 tetrad offspring) that together show 165 recombinant sequences 
show such complex patterns in our study. This corresponds to a (3/165=) 1,8 % probabil-
ity of finding its footprint in any given gamete. Four COCTs (7,7%) were found to span 
complex, diverged regions of the Arabidopsis genome (CO 1, 12, 15 and 26, Supplementary 
Table S6) with single (4 and 12 bp) or multiple deletions. Two examples of COCTs span-
ning such diverging regions are shown in Supplementary Figure S4.
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Figure 3: size distribution of CO-associated gene conversions and NCO tract lengths (in bp). Note the 
one long CO-associated GC conversion tract (1229 bp). The NCO tract length distribution is more skewed 
to the left.
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Minimal COCT lengths can be derived from the distance between converted markers 
in a COCT, whereas the distance between the flanking markers defines the maximal tract 
length. Such values can be used to estimate COCT length ranges. The shortest maximal 
length is 127 bp, which represents a tentative lower limit to COCT lengths (see Figure 
2). The COCTs showing converted SNPs range from 1 to 1229 bp (Figure 2) and most (20 
out of 32 = 69%) span more than 1 converted marker. A size distribution shows that the 
largest minimal COCT (CO 12) is nearly ten times larger than the smallest maximal tract 
length (Figure 3). If we consider this one an exception, the second largest minimal COCT 
length provides a conservative upper limit to the COCT length of 663 bp. We found 16 
COCTs of which the maximal length is smaller than 663 bp. COCTs in Arabidopsis range 
between 127 and 663 bp, and might average at 400 bp. 

Non-crossovers in Arabidopsis
Among the 20 tetrad offspring we detected 28 NCOs, all of which are supported by a 3:1 
segregation of markers in the tetrad as a whole. Of these, 22 show a single converted SNP 
while six conversion tracts span more markers, with the longest measuring 282 bp. In the 
ten DHs we identified a total of 11 NCOs. This equals to 1.1 per genome and is close to the 
1.4 NCOs per genome we observed in the tetrads. Eight of these show only one converted 
SNP, whereas two others show 2 and 3 converted SNPs and have minimal tract lengths 

800

1000

1200

1400

in
 b

p
Lengths of 28 NCO conversion tracts

Maximum length

0

200

400

600

800

Le
ng

th
 g

Minimum length

Figure 4: The minimum and maximum lengths of 28 NCO tract lengths. The tract lengths are sorted by 
maximum length, with the smallest shown left. The smallest maximal length (153 bp) marks the lower 
limit of our NCO tract length estimate (lower red line). The dark base of different bars represents the 
minimal NCO tract length. The upper limit of our NCO tract length estimate (upper red line) is marked 
by the largest minimal tract length (third from left, 282 bp). 21 NCOs have a minimum length of 1 bp 
and are not displayed in the graph. Please note that maximum tract lengths are only shown for lengths 
< 1500 bp.
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of 86 and 69 bp (Supple-
mentary Table S8).

The minimum and 
maximum lengths of all 
NCO tracts are shown 
in Figure 4. The largest 
minimal length (282 bp) 
is longer than the shortest 
maximum length (153 bp). 
The average minimal NCO 
tract length is 25 bp, which 
is smaller than the 271 bp 
average for CO-associated 
GCs. The length distribu-
tion of minimal conver-
sion tract lengths of NCOs 
is shown in comparison 
to COCTs in Figure 3. 
NCOs are smaller than 
COCTs and were found to 
be significantly different 
in length (Kolmogorov-
Smirnov test, α < 0.01). We 
wondered whether the 
smaller size of NCOs rela-
tive to CO-associated GCs 
could be attributed to a 
lower SNP density at NCO 
sites. The average lengths 
of the flanking intervals 
for COs and NCOs is 725 
and 1352 bp respectively. 
We found these distances 
to be are statistically different (t-test; two sample, unequal variance; p < 0.01) (Supple-
mental Figure S6). Detected NCOs thus occur in areas of low SNP density. This might 
have biological relevance, but could also point to a NCO detection bias towards less com-
plex regions. The best size estimate for NCO tract lengths is 153-282 bp, but we note that 
size estimates become less reliable at the low SNP densities as found between (these) 
accessions in Arabidopsis. 
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Figure 5: Expected numbers of detected NCOs per tetrad at different 
tract lengths. All distributions based on 1000 random samplings of 
150 DSBs over the genome.
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We observed 1.1 and 1.4 NCOs per DH and tetrad respectively and found these to be 
relatively small (~220 bp). Given the ~120 to ~235 DSBs that were reported in male Arabi-
dopsis meiosis (Chelysheva et al. 2007; Sanchez-Moran et al. 2007; Vignard et al. 2007), we 
asked whether this number would be expected. We therefore performed random sam-
pling throughout the Arabidopsis genome (excluding the pericentromere heterochroma-
tin as defined by Giraut et al. determine how many NCOs would have been detected at 
different tract lengths (Giraut et al. 2011) (Figure 5). We assumed a conservative number 
of 150 DSBs, considered inter-homologue repair only and assumed that all DSBs lead to 
detectable NCOs. It then becomes clear becomes clear that only very small NCO tracts 
can explain the observed NCO numbers. At a tract length of 200 bp, we would expect 
~20 NCOs per tetrad, which equals to ~5 NCOs per offspring genome. At a tract length 
of 50 bp, the median number of expected NCOs is eight per tetrad (i.e., two per offspring 
genome). Under our rather conservative estimation of ~150 DSBs, we would expect to 
detect more NCOs that we actually do. These date could be reconciled if in the case of 
NCOs mismatch repair is random to either chromatid, which would be different than as 
we observe in COCTs. Please see our discussion for possible explanations. 

CO and NCO annotation
COs do not localize randomly over the genome, but are associated with genomic fea-
tures like the accessibility of DNA for recombinases, specific chromatin marks, sequence 
divergence and motifs that may promote CO formation. Horton et al. (2012) suggested 
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Figure 6: Annotation of CO-sites. a) Annotation of all CO sites (dark colour) compared to randomly sam-
pled sites over the genome (light colours, with error bars). b) Precise annotation of the CO sites anno-
tated as “intergenic” in Figure 5a. Observations given in orange, simulations in yellow. Errorbars in both 
a and b show 90% confidence intervals, defined by 0.5 and 0.95 quantiles based on 10,000 replications.
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that transposable element (TE) annotated sequences are overrepresented among CO-
hotspots. We therefore looked whether the annotation of sequences at CO sites in DH 
and tetrad offspring suggests a preference for specific regions. The annotation of CO 
sequences (whether they are placed in genic-, intergenic-, promoter- and 5’ UTR regions) 
is shown in (Figure 6). The annotation of the 113 CO sites detected in DH and tetrad 
offspring are compared with randomly sampled sites over the genome, for which 95% 
confidence intervals were determined by bootstrapping. CO-sites in Arabidopsis thus do 
not show a preference for specifically annotated regions. Since we identified only 29 NCO 
sites, we did not compare the sequences of these sites.

Histone H3K4 methylation
Hotspot sites in mouse were shown to be closely associated with trimethylation of H3K4 
(Buard et al. 2009; Grey et al. 2011). In Arabidopsis the position of a CO hotspot was also 
shown to co-localize with a H3K4me3 site known from somatic tissues (Yelina et al. 2012). 
We analysed whether known sites of H3K4 trimethylation coincide with the established 
CO positions in tetrads. Supplementary Figure S8 shows four random CO-positions in 
relation to known H3K4 trimethylation sites in Arabidopsis rosettes (Dijk et al. 2010). In 
13 out of 52 CO sites we found the CO-position at positions rich in H3K4me3. 

CO motifs and nucleosome occupancy
Previous studies showed that specific sequences are associated or regulate CO- or CO-
hotspot sites a variety of species (Baudat et al. 2010; Comeron et al. 2012; Horton et al. 
2012; Oliver et al. 2009). We therefore asked whether we could detect specific sequences 
at CO-sites in Arabidopsis. We used the sequences of CO positions from our tetrad data 
to search for consensus sequences at CO-sites. We excluded the CO positions of DH lines 
because tetrad CO sites are defined by two rather than only one flanking marker. Since 
we do not know where, if any, motifs occur, we designed various sets ranging from very 
strict (the minimal COCT length) to most relaxed sets as defined by the maximum con-
version tract lengths (see Materals and Methods; Table 1).
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Our searches revealed the presence of two motifs that are significantly overrepre-
sented at CO sites (using sets 3 and 6; Table 1). One motif is a 14 bp poly-A-like motif 
AAGAAA[AG]AAA[AC]AAA (e-value of 2.9e-8) that was found in 31 out of 32 sequences 
used in set 3. The second motif we recovered is a palindromic CTT like microsatellite 
[TG]CT[TC]CTTC[TG][TC]C motif (e-value of 3.5e-11) present in 23 out of 32 sequences 
(see Figure 7). The alignments of CO sequences with the recovered motifs are shown in 
Supplementary Figure S8. 

We investigated whether any of the other two recovered sequences are of known 
function, and found the CTT-like palindrome to be near identical to the GAAGAAGAA 
motif of the TRANSLOCON 1 (TL1) cis-element, a known binding site for a heat-shock 
factor-like transcription factor (Pajerowska-Mukhtar et al. 2012; Wang et al. 2005). The 
identified motif of 14 bp is longer than the  element. Of the 23 sequences that show 
the 14 bp motif, the  binding site is preserved with no (n=6), one (n=8) or two (n=6) 
mismatches. 

Poly-A motifs and nucleosome occupancy
The recovery of a poly-A-like motif is reminiscent of previous reports on the presence of 
especially adenine-rich repeats (such as poly-A motifs) at CO-hotspot sites in Arabidop-
sis (Horton et al. 2012). Homogeneous poly-A motifs (>10 bp) are common in eukaryote 
genomes and known as sequences prohibiting nucleosome occupancy (Suter et al. 2000). 
Specific CG-rich sequences ([C/G]3-N2-[C/G]3-N2-[C/G]3) also serve the same function 
(Wang and Griffith 1996). Using the webtool NXSensor, we noted the regular occurrence 
of nucleosome-free sites in our COCTs (Luykx et al. 2006), and asked whether nucleosome 
free areas are overrepresented at CO sites. The shortest distance from all CO-midpoints 
to the nearest nucleosome free region was compared with a distance distribution based 
on randomly sampled sites (Figure 8). Our CO sites did occur more often near nucleo-
some free areas (t-test, α < 0.05). We then asked whether the nucleosome-free poly–A 
sequences overlap with our identified poly-A-like motif. Interestingly, there is overlap in 
only 3 out of 31 cases, suggesting that the identified poly-A-like motif is a motif different 
from homogeneous poly-A motifs.

GC content
It has previously been suggested that mismatch repair proteins have a GC-bias by repair-
ing heteroduplexes preferentially towards GC rather than AT bases. This can lead to GC 
enrichment at recombination sites (Galtier et al. 2001; Pessia et al. 2012). We calculated 
the GC content for 32 sequences involved in crossovers (sets 1 and 3 as described in Table 
1) as well as their flanking sequences (5 Kb on either side of the CO position). The GC con-
tent for these sets is 33, 33 and 34% respectively, suggesting that GC content at CO sites 
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not higher than the Arabidopsis genome average of 35% (Arabidopsis_Genome_Initiative 
2000).

Discussion
Our analysis presents the most detailed sequence based report of Arabidopsis CO sites 
so far. Using whole-genome sequencing of doubled haploids and intact spore tetrads we 
set out to answer how the ~120 to ~235 DSBs are repaired in Arabidopsis (Chelysheva et 
al. 2007; Sanchez-Moran et al. 2007; Vignard et al. 2007). We determined the tract lengths 
of COs and NCOs, found specific motifs that accompany CO sites, which gave insight into 
the extent to which new gene combinations are introduced from one generation to the 
next one.

We were able to map 113 CO positions and 28 NCOs to the nearest SNP. At the onset of 
this research we hypothesized that it might be difficult to separate NCOs from inciden-
tal closely spaced COs. The very small size of all recovered NCOs makes confusion with 
double crossovers very unlikely. Even though NCOs are more easily recovered using ho-
mozygous DH lines, meiotic tetrads provide more information that allowed the estima-
tion of COCT lengths and allow the detection of three consensus sequences associated 
with COs.
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Figure 8: Overlay of normalized distributions of distance from randomly chosen sites (grey) and CO-
midpoints (red, narrow bars) to the nearest nucleosome exclusion motif. The expected distribution is 
connected by a line. Note that CO-sites are located closer to nucleosome-free sites than is expected, 
when compared to the distribution based on random sampling.
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CO and NCO tract lengths and DSB repair in Arabidopsis.  
CO sites in Arabidopsis are accompanied by a conversion tract in 61% of events, which is 
similar to yeast (69.1%) (Mancera et al. 2008). We estimated the size of conversion tracts 
accompanying CO sites at 127-663 bp based on minimum and maximum converted tract 
lengths (Figure 2). However, such tracts occasionally are longer than 1kb. Our length 
estimate is in the same range of that mouse (500 bp) (Cole et al. 2010) and human (460 bp) 
(Jeffreys and May 2004), but significantly smaller than the 2Kb tracts of yeast (Mancera 
et al. 2008). A previous estimate for Arabidopsis of 558 bp (n=6) was based on “midpoint 
lengths”, in which the COCT length were approximated by the minimal tract length plus 
half the lengths of flanking intervals (Lu et al. 2012). That approach likely introduces a 
bias to overestimate COCT lengths because of low SNP density in Arabidopsis. 

COCTs occasionally span regions that show many polymorphisms, which concurs 
nicely with an earlier observation, in which a COCT spanning a 86 bp deletion was re-
ported (Lu et al. 2012). When a CO-associated GC is formed we usually observe a full con-
version of markers, in which the converted SNPs are derived from one chromatid. Few 
COCTs show complex conversion tracts (1.8%) in which adjacent converted markers are 
derived from two, instead of only one strand. This incidence is about 10-fold lower than 
the 11.1% reported for yeast (Mancera et al. 2008). 

With a length of 153-282 bp, conversion tracts of NCOs are shorter than conversion 
tracts of COs. A previous reports in maize suggested that 17 Kb conversion tracts could 
have arisen through NCO formation (Yao et al. 2002), which would pose a large contrast 
to our data. The shorter lengths of NCOs in comparison to COCTs, compares well with 
yeast and mouse in which concurring ratios were reported (2000/1800 and ~500/16-117 
bp. respectively) (Cole et al. 2010; Mancera et al. 2008). Four Arabidopsis NCOs were previ-
ously reported, one of which has a minimal length of 1799 bp (Lu et al. 2012). We revisited 
these data, and found two of these NCOs (including the one of 1599 bp) to represent du-
plications which are not present in the Col reference sequence, because they show a read 
surplus and imperfect alignments (data not shown). As such, these two NCOs (including 
the one of 1799 bp) reported by Lu et al. (2012) should be considered incorrect.

The tract length estimate we obtained for NCOs (153-282 bp) is a rough approximation 
based on nine observations only, while the lower limit is based on just one observation 
(Figure 4). The majority of observed NCOs (30 out of 39 = 77%) represent just 1 converted 
marker. The Arabidopsis SNP density in our analysis (i.e., the SNPS that we could reliably 
call based on short reads) corresponds to about 1 SNP per 200 bp, which is simply too low 
for reliable assessment of these short tracts. Simulations predict ~2 recovered NCOs per 
genome when tract lengths measure 50 bp and 5 NCOs per genome at a tract length of 200 
bp. This means that we face a 2-5 fold difference between our simulations and observed 
data. It is not easy to reconcile these differences. In our simulations we assumed that all 
mismatches would lead to detectable gene conversions. This might however not be the 
case. Random repair of heteroduplexes would restore the original genotype, and bring 
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our observations in concordance with our simulations. In COCTs we hardly ever observe 
random repair (when there are multiple SNPs). If random repair takes place in NCOs, 
these would be repaired following a different mechanism. 

While we have narrowed down the NCO tract length size other uncertainties should 
also be considered , their exact lengths and numbers of formed DSBs numbers still have 
a considerable error margin. The observation that gene conversions can occur in maize 
centromeres (Shi et al. 2010) suggests that DSBs can also form in heterochromatic areas 
that we excluded from our simulations (e.g., the regions spanned by the pericentromere 
heterochromatin). This may render our simulated numbers of DSBs too high. It might 
be possible that (some) heteroduplexes are not resolved until the first pollen mitosis, 
rendering some of them to go undetected in offspring. Alternatively, intersister repair 
might take place in regions in which the broken strand finds no homology. A hypothesis 
that proposes preferential intersister instead of interhomologue DSB repair in Arabidop-
sis (as was proposed by Lu et al. (2012) is at least less likely in the light of the recovery 
of short NCO tracts (and exclusion of a previously reported very long tract). In yeast, 
mouse and Drosophila all meiotic DSB repair is thought to be primarily directed through 
homologous recombination (Cole et al. 2010; Mancera et al. 2008; Schwacha and Kleckner 
1997; Sturtevant 1925). Based on our observations we currently see no obvious reasons to 
suggest that this is different for plants. Finally, our results might also show a systematic 
error. The distance between a converted SNP and its flanking markers was found to be 
longer in COCTs than in NCOs. This could point to the possibility that we are less likely to 
detect NCOs in more diverged regions. If we preferentially detect NCOs in less complex 
regions, the likeliness of multiple SNPS being involved in NCOs becomes much smaller.

In a recent study Sun et al. (2012) based on fluorescent markers 1 gene conversion 
was observed per marker per 2,833 meiotic tetrads. This equals to a conversion rate of 
(1/11332=) 8.86×105 per marker per genome. We used 7698191 markers to call CO and NCO 
events in 30 offspring plants (Supplementary Tables S2 and S3) and identified a total of 
141 converted polymorphisms in CO and NCO conversion tracts (Supplementary Tables 
S6 and S8); note we excluded the indels that were not used for calling COs/NCOs). This 
equals a gene-conversion rate of 1.8×105 per marker per genome. This is 4.9 fold lower 
than the estimate by Sun et al. (2012). We have missed some NCO events because we may 
have applied too stringent filters for NCO detection. However these differences might 
simply represent interlocus variation, already shown to exist by Sun et al. (2012). Our ob-
servations that CO events are overrepresented at sites of constitutively open chromatin 
suggests that transgenes used for NCO detection represent open chromatin themselves, 
and may therefore be more prone to gene conversion. Alternatively, the transgenes may 
have inserted in or near open chromatin and therefore have a higher chance of being 
subjected to gene conversion.
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CO and NCO positioning in relation to DNA sequence motifs and H3K4me3
We looked for correlations of CO sites with a variety of genomic features previously 
suggested to correlate with CO positioning. The annotation of CO sites does not sug-
gest a preference of COs to be directed to specific genomic regions. This contrasts to 
two reports that suggested CO hotspots to be preferentially located in transposable el-
ements and intergenic regions (Horton et al. 2012; Kim et al. 2007). Different reasons 
could account for these differences. The presence of recombination hotspots in these 
studies were inferred from haplotype blocks in natural populations and their data sug-
gest that CO-sites in transposable elements could be selected for in Arabidopsis. On the 
other hand, the method for hotspot-detection by Horton et al. (2012) was based on a SNP 
set in which TE-derived markers are more abundant (i.e. 20% of their SNPs were anno-
tated as TE elements, whereas in our study this amounts to ~10%). The use of SNPs in 
transposable elements can only be done reliably when the SNP-calls are from identical 
sites within the genome and it could be hypothesized that transposition of transposable 
elements could introduce a bias in their data. During our analyses we noted that TE ele-
ments recurrently introduce false positives in calling COs and NCOs. 

The occurrence of high GC content at hotspot sites in a variety of organisms has been 
suggested to result from biased mismatch repair, favoring repair of mismatches to GC 
pairs (Duret and Galtier 2009; Galtier et al. 2001). We found a GC content of 33-34% at our 
CO sites, which is slightly lower than the genome average of 35% (Arabidopsis_Genome_
Initiative 2000). Sequences near recombination sites were thus not found to be enriched 
for GC content in our study, corroborating previous findings (Giraut et al. 2011; Horton 
et al. 2012) and model based predictions (Marais et al. 2004). About 50% of recovered 
recombination sites in our study is located in both introns and exons of genes. Coding re-
gions in Arabidopsis were reported to have an average CG content of 44% (Arabidopsis_
Genome_Initiative 2000), because of which we would expect to have found a higher GC 
content simply by correlation. Possibly, the association of CO sites with open chromatin 
(i.e. usually poly-A (-T) tracts), might causes the relatively low GC content at Arabidopsis 
recombination sites.

 The importance of H3K4 trimethylation for mouse and human recombination 
initiation has been well established, but its importance for yeast is under debate (Tisch-
field et al. 2012). We found no obvious pattern of co-localization, when comparing H3K4 
trimethylation (as determined in rosettes) with CO sites. A previous record of a single 
hotspot coinciding with a H3K4 site in Arabidopsis (Yelina et al. 2012) could be an excep-
tion rather than the rule. It should be noted that in mouse and human, H3K4 methylation 
is actively induced at prospective DSB sites through the methyltransferase PRDM9 (Grey 
et al. 2011). To determine whether H3K4 trimethylation marks recombination sites in 
Arabidopsis, establishing H3K4me3 sites in meiotic cells would be of highest importance. 
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Sequence motifs
A last genomic feature that has been associated with DSB formation is the accessibility 
of DNA/open chromatin. The accessibility of chromatin in meiosis of mouse and human 
appears to be actively regulated through the binding of the methyltransferase PRDM9 
at specific sequences, leading to local chromatin remodeling (Berg et al. 2010; Grey et al. 
2011). Research in yeast showed that 90% of DSBs localize to constitutively nucleosome 
free regions (Pan et al. 2011), which might be modified by the presence of specific tran-
scription factors (Pan et al. 2011). We showed that nucleosome-free regions are also over-
represented near our CO-sites. This suggests the presence of structurally open chro-
matin provides a target for the Arabidopsis recombination machinery, as has previously 
been suggested for maize (Liu et al. 2009). We detected a poly-A like motif in 97% of the 
CO sites. Whether these are also regions of constitutively (nucleosome-free) open chro-
matin is currently unknown. The association of CO events and open chromatin might 
hold the key to observations that changing temperatures can influence recombination 
frequencies in Arabidopsis (Francis et al. 2007). These observations suggest that studies 
relating nucleosome occupancy to meiosis could bring a better understanding of plant 
meiosis. In line with our findings, a recent study showed the overrepresentation of uni-
form poly-A, as well as non-uniform poly-A motifs near Drosophila recombination sites 
(Comeron et al. 2012). 

The palindromic consensus motif (CTTCTTCTTCT) present in 66% of CO sites was 
found to be very similar to the Arabidopsis TL1 binding motif, that commonly occurs in 
the promoter regions of genes important for systemic acquired resistance (Wang and 
Griffith 1996). This motif is the binding site of HSFB1, a heat shock factor like transcrip-
tion factor (Pajerowska-Mukhtar et al. 2012). HSFB1 is known to interact with the histone 
acetylase HAC1, an Arabidopsis CREB binding protein orthologue and can induce tran-
scriptional activation (Bharti et al. 2004) by recruiting HAC1 to DNA. This corresponds 
with the yeast Saccharomyces cerevisieae where transcription factors were suggested to 
promote recombination (Pan et al. 2011; White et al. 1993). In fission yeast, Schizosaccha-
romyces pombe (Kon et al. 1997; Steiner et al. 2002; Wahls and Smith 1994; Yamada et al. 
2004), a protein complex able to recruit histone acetylases to recombination through of 
an ATF/CREB-family transcription factor complex suggests regulation in Arabidopsis in a 
similar way. However, we currently have no evidence that HSFB1 indeed is active during 
Arabidopsis meiosis.

Conclusions
Our analyses have shown the possibility of reliably detecting meiotic crossovers and 
gene conversion events using whole-genome sequencing. The use of appropriate filters 
was found to be of the highest importance, as alignment errors resulting from segmental 
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duplications or transposable elements easily give rise erroneous NCO calls. CO and NCO 
tracts were shown to be measure ~500 and ~153-282 bp respectively. These sizes suggest 
that Arabidopsis preferably compares to mouse in which COCTs and conversion tracts 
of NCOs are of roughly similar lengths. The question of how DSBs in Arabidopsis are re-
paired is not completely resolved, but these short tract lengths open up the possibility 
that we simply miss most of the NCOs because of very short lengths. Marker density in 
Arabdopsis surely poses strict limits to our ability to resolve this question in the future. 
Where our tract length estimates suggest similarities to mouse, the recombination pat-
tern in Arabidopsis compares better to yeasts (Saccharomyces cerevisieae and Schizosac-
charomyces pombe) than that of mouse. In the latter chromatin is known to be actively 
remodeled by PRDM9 that thereby creates open chromatin and provides a target for the 
recombination machinery. Recombination in Arabidopsis and S. cerevisiae primarily tar-
gets genomic regions that are constitutively free of nucleosomes. 
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Supplementary Figure S1: Read coverage of sequenced DH lines and tetrads. Distributions shown read 
coverage (x-axis) and the number of reads per class.
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Supplementary Figure S2: Genome composition of DH offspring. Columbia sequences shown in red, 
Landsberg erecta sequences in blue. For each genome composition chromosomes are ordered from 1 
(top) to 5 (bottom). Black short lines indicate centromere positions.
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Supplementary Figure S3: Genome composition of tetrads. Note that each tetrad is represented by 
four spores, that are numbered 1 through 4 from top to bottom. Columbia derived sequences are 
shown in red, and Landsberg erecta sequences are shown in blue. Chromsomes are ordered from 1 
(top) to 5 (bottom). Black short lines indicate centromere positions.
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Ler                1 TTTTCCTTAAAGTCAGCGAAGTAATTATTCTATAAAAACTAAGAGTTGCT     50 
                     |||||.|||||||||||||||||||||||||||||||||||||||||||| 
Col-0              1 TTTTCTTTAAAGTCAGCGAAGTAATTATTCTATAAAAACTAAGAGTTGCT     50 
 
Ler               51 CTATCTAGATATATATACAATTGTGGACTACTTCTTTAAAAATTAAATAA    100 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0             51 CTATCTAGATATATATACAATTGTGGACTACTTCTTTAAAAATTAAATAA    100 
 
Ler              101 ATTGGTAAAGTTTAAAGGTACGTCTCCCAAGCAGAAACTGAACTAAAGAA    150 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0            101 ATTGGTAAAGTTTAAAGGTACGTCTCCCAAGCAGAAACTGAACTAAAGAA    150 
 
Ler              151 TTCAGGACCAAACTCCTTTGAAGGGAAACACTCAAAAAACAAAAACAAAA    200 
                     |||||||||||||||||.|||||||||||||||||||||||||||| ||| 
Col-0            151 TTCAGGACCAAACTCCTCTGAAGGGAAACACTCAAAAAACAAAAAC-AAA    199 
 
Ler              201 AAAAGATTCATTTGGTAAACATAATAATAGTGAAGAAAATATAATATGCC    250 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0            200 AAAAGATTCATTTGGTAAACATAATAATAGTGAAGAAAATATAATATGCC    249 
 
Ler              251 AAAAGTGGGTTTTGAACTCATGTCCTTATGGAAGTGCAAGTTTACGTATT    300 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0            250 AAAAGTGGGTTTTGAACTCATGTCCTTATGGAAGTGCAAGTTTACGTATT    299 
 
Ler              301 AATGTATTATTCAAGTGTACTAATCGCAAGTAAGAAAGGACGAGAAGTTC    350 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0            300 AATGTATTATTCAAGTGTACTAATCGCAAGTAAGAAAGGACGAGAAGTTC    349 
 
Ler              351 AGAAGCTGTGTTCGGGATTTGTTGCTTTTCCTTCAGTGTCTCTAGTCTGT    400 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0            350 AGAAGCTGTGTTCGGGATTTGTTGCTTTTCCTTCAGTGTCTCTAGTCTGT    399 
 
Ler              401 TTTAGTTCTCGGATTTTTATTGGTTTATGTCTAAGTGTTGTACGTAGTCT    450 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0            400 TTTAGTTCTCGGATTTTTATTGGTTTATGTCTAAGTGTTGTACGTAGTCT    449 
 
Ler              451 ACTTATTCTAATTTTAGATCGTGTTGTTTTAGTGTTTCTTGCTAGTCTCC    500 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0            450 ACTTATTCTAATTTTAGATCGTGTTGTTTTAGTGTTTCTTGCTAGTCTCC    499 
 
Ler              501 GAAGTTTCTTTATTCGGCTTTTTCTCCTGAGATACCAAAGTATATTTTAA    550 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0            500 GAAGTTTCTTTATTCGGCTTTTTCTCCTGAGATACCAAAGTATATTTTAA    549 
 
Ler              551 TATGTATATGTTGGCTTTGTTTTATTCGTGTTCTTCGGTCCTTTGATGTA    600 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0            550 TATGTATATGTTGGCTTTGTTTTATTCGTGTTCTTCGGTCCTTTGATGTA    599 
 
Ler              601 TGTTCTCAGCCTTTCGACAACAAATCCAATATATAACTTAGATGACAAAG    650 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0            600 TGTTCTCAGCCTTTCGACAACAAATCCAATATATAACTTAGATGACAAAG    649 
 
Ler              651 AAAAGAAATAAAAAACCCCATATCCTTATATACTATCTGAAACTAGCCAT    700 
                     |||||||||||||||||.|||||||||||||||||||||||||||||||| 
Col-0            650 AAAAGAAATAAAAAACCTCATATCCTTATATACTATCTGAAACTAGCCAT    699 
 
Ler              701 TTAAACAACCTTCGCTATTTATTTTACTTAAGCGATGAATGGTAATTGAT    750 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0            700 TTAAACAACCTTCGCTATTTATTTTACTTAAGCGATGAATGGTAATTGAT    749 
 
Ler              751 GTACAAAATCAGACAAGTAGTAAACTTAGGGGTTTTTAGTAAGCTTAGTT    800 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0            750 GTACAAAATCAGACAAGTAGTAAACTTAGGGGTTTTTAGTAAGCTTAGTT    799 
 
Ler              801 CGTATCGAGAATCAATGGACGTAACTTTGAGGTTTAACTCTCCTCCTTAA    850 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0            800 CGTATCGAGAATCAATGGACGTAACTTTGAGGTTTAACTCTCCTCCTTAA    849 
 
Ler              851 CACTTTTTATGATATATCAAATCAAATATATTTTTTTACTAAGATTGGTG    900 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0            850 CACTTTTTATGATATATCAAATCAAATATATTTTTTTACTAAGATTGGTG    899 
 
Ler              901 TTCTTCAATTAATGTTTCATCTCTTTTAGGTTCTTTGCACAATAAGTTTT    950 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0            900 TTCTTCAATTAATGTTTCATCTCTTTTAGGTTCTTTGCACAATAAGTTTT    949 
 
Ler              951 TCATGAGCTATCTAAGTTCTTAGCTTATTGTTACAAACATAATTTTCCT-    999 
                     ||||||||||||||||||||||||||||  ||.|.|.|.|||      |  
Col-0            950 TCATGAGCTATCTAAGTTCTTAGCTTAT--TTTCTATCTTAA------TA    991 
 
Ler             1000 ---CTTTCAATCATTGTTATAAACATAATTTTCCTCTTTTAAAATAAACG   1046 
                        ||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0            992 AAGCTTTCAATCATTGTTATAAACATAATTTTCCTCTTTTAAAATAAACG   1041 
 
Ler             1047 TATATGTAAATAAGTAATATATTCACAAATAAATATAAAACTTTTAAACT   1096 
                     ||||||||||||||||||||||||||||||||||||||||||||.||||| 
Col-0           1042 TATATGTAAATAAGTAATATATTCACAAATAAATATAAAACTTTAAAACT   1091 
 
Ler             1097 AAGATACTGAAAAATATTTTTGATAGTTTTATAATTAAAAATCAATCTCT   1146 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           1092 AAGATACTGAAAAATATTTTTGATAGTTTTATAATTAAAAATCAATCTCT   1141 
 
Ler             1147 TTTTATATCTCAATTGTAAAAAACACTGCAAAACAAACCTCAATATAAAC   1196 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           1142 TTTTATATCTCAATTGTAAAAAACACTGCAAAACAAACCTCAATATAAAC   1191 
 
Ler             1197 AATATTAGTTATTTTCCACAACCAAATTTTACATTACAAATTTACAATTA   1246 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           1192 AATATTAGTTATTTTCCACAACCAAATTTTACATTACAAATTTACAATTA   1241 

Supplementary Figure S4: Example of COCT with complex conversions. Alignment of the genomic se-
quence of Ler and Col-0 of CO 21, tetrad 2 on chromosome 5: 15608224::15611905. All six polymor-
phisms within the conversion tract were fully converted to Ler, except for a 1 bp deletion, that originates 
from the Col parent. Note that the COCT terminates near a highly polymorphic region (here at 977-1003 
bp). Regions highlighted in yellow mark the maximum conversion tract. Red regions show polymor-
phisms within maximum conversion tract.
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Ler             1247 TATCTTCTAGGCTTGCTAAGTCTAACTAACTGAAGCTCATAGCATGTGGT   1296 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           1242 TATCTTCTAGGCTTGCTAAGTCTAACTAACTGAAGCTCATAGCATGTGGT   1291 
 
Ler             1297 TTGATTTTAACCTATTTACTGGAACCCTCTAAAATGAACCCAAAGCTCTA   1346 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           1292 TTGATTTTAACCTATTTACTGGAACCCTCTAAAATGAACCCAAAGCTCTA   1341 
 
Ler             1347 AAAGAGTCGAGCTTTTTTGGGTTTGAGTCTGAGGCGTAGACTAAAACAAC   1396 
                     |||||||||||||||||||||||||||||||||| ||||||||||||||| 
Col-0           1342 AAAGAGTCGAGCTTTTTTGGGTTTGAGTCTGAGG-GTAGACTAAAACAAC   1390 
 
Ler             1397 AAATGAGTCAATTTGCGTCATCTTTTAATTCTTGGACCTTAGGCAAATTG   1446 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           1391 AAATGAGTCAATTTGCGTCATCTTTTAATTCTTGGACCTTAGGCAAATTG   1440 
 
Ler             1447 ACCCCACGGAAGAAAAACTTCATCGATACCTTCTTGTTTTGCTTGACCTG   1496 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           1441 ACCCCACGGAAGAAAAACTTCATCGATACCTTCTTGTTTTGCTTGACCTG   1490 
 
Ler             1497 AAAAGTCAATGGTTGACCAAGTGAGTCACTCACCACCCATTAGTCTCTTA   1546 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           1491 AAAAGTCAATGGTTGACCAAGTGAGTCACTCACCACCCATTAGTCTCTTA   1540 
 
Ler             1547 TCTTCTCAAAATTCTTCAATTCTCTTCTCG-TTTTTTTTTTTTATCAATT   1595 
                     |||||||||||||||||||||||||||||| ||||||||||||||||||| 
Col-0           1541 TCTTCTCAAAATTCTTCAATTCTCTTCTCGTTTTTTTTTTTTTATCAATT   1590 
 
Ler             1596 CCAATGATCTGTCACGTTTTAGTAATTTTCACTATTCTCGTTTCCGCCGT   1645 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           1591 CCAATGATCTGTCACGTTTTAGTAATTTTCACTATTCTCGTTTCCGCCGT   1640 
 
Ler             1646 CGTCGACGCAACGGCGTCGTATGAGCCCACTGATGTCTTTCTCATCAATT   1695 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           1641 CGTCGACGCAACGGCGTCGTATGAGCCCACTGATGTCTTTCTCATCAATT   1690 
 
Ler             1696 GCGGCGATACCTCCAACAACGTGGACTACAGTGGCCGGAACTGGACGGCG   1745 
                     ||||||||||||||||||||.||||||||||||||||||||||||||.|| 
Col-0           1691 GCGGCGATACCTCCAACAACATGGACTACAGTGGCCGGAACTGGACGACG   1740 
 
Ler             1746 GAGAATCGGAAATTTATGTCATCGAATGCAGTTGACGACGCGTCGTTCAC   1795 
                     |||||||.|||||||||||||||||||||||||||||||||||||||||| 
Col-0           1741 GAGAATCCGAAATTTATGTCATCGAATGCAGTTGACGACGCGTCGTTCAC   1790 
 
Ler             1796 TTCATCTGCGTCATACCAAGAATCAGGGATTCCTCAAGTGCCGTACTTGA   1845 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           1791 TTCATCTGCGTCATACCAAGAATCAGGGATTCCTCAAGTGCCGTACTTGA   1840 
 
Ler             1846 AAGCTAGGATTTTCCGATATGATTTCACTTACAGTTTTCCAGTCTCTCCC   1895 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           1841 AAGCTAGGATTTTCCGATATGATTTCACTTACAGTTTTCCAGTCTCTCCC   1890 
 
Ler             1896 GGCTGGAAATTCCTCCGGTTATACTTTTATCCGACCCGTTACGGATCCGA   1945 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           1891 GGCTGGAAATTCCTCCGGTTATACTTTTATCCGACCCGTTACGGATCCGA   1940 
 
Ler             1946 TTTCGACGCCGTTAAATCCTTCTTCTCCGTCAACGTCAACCGTTTCACTC   1995 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           1941 TTTCGACGCCGTTAAATCCTTCTTCTCCGTCAACGTCAACCGTTTCACTC   1990 
 
Ler             1996 TCTTGCATAACTTCAGTGTAAAAGCTTCCATACCGGAGTCAAGTTCTCTA   2045 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           1991 TCTTGCATAACTTCAGTGTAAAAGCTTCCATACCGGAGTCAAGTTCTCTA   2040 
 
Ler             2046 ATCAAAGAGTTTATCGTTCCGGTTAACCAAACTCTTGATCTCACGTTCAC   2095 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           2041 ATCAAAGAGTTTATCGTTCCGGTTAACCAAACTCTTGATCTCACGTTCAC   2090 
 
Ler             2096 GCCCTCTCCGAATTCATTAGCTTTCGTTAACGGAATCGAGATTATCTCCA   2145 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           2091 GCCCTCTCCGAATTCATTAGCTTTCGTTAACGGAATCGAGATTATCTCCA   2140 
 
Ler             2146 TGCCTGACCGGTTTTACTCAAAGGGAGGATTTGACGACGTTGTAAGAAAC   2195 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           2141 TGCCTGACCGGTTTTACTCAAAGGGAGGATTTGACGACGTTGTAAGAAAC   2190 
 
Ler             2196 GTTGGTAGGGACGTTGACTTCGAGATAGACAACTCCACGGCTTTCGAGAC   2245 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           2191 GTTGGTAGGGACGTTGACTTCGAGATAGACAACTCCACGGCTTTCGAGAC   2240 
 
Ler             2246 CGTTTATCGGGTAAACGTAGGTGGAAAAGTGGTGGGCGACGTCGGAGATT   2295 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           2241 CGTTTATCGGGTAAACGTAGGTGGAAAAGTGGTGGGCGACGTCGGAGATT   2290 
 
Ler             2296 CGGGAATGTTCCGGCGTTGGCTTTCCGATGAAGGTTTCTTACTCGGTATT   2345 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           2291 CGGGAATGTTCCGGCGTTGGCTTTCCGATGAAGGTTTCTTACTCGGTATT   2340 
 
Ler             2346 AATTCGGGAGCCATTCCGAATATAACAGGTGTAAAGATCAACTACACGGA   2395 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           2341 AATTCGGGAGCCATTCCGAATATAACAGGTGTAAAGATCAACTACACGGA   2390 
 
Ler             2396 TAAAACTCCCGCGTACGTTGCGCCGGAAGATGTATACACGACGTGTCGCC   2445 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           2391 TAAAACTCCCGCGTACGTTGCGCCGGAAGATGTATACACGACGTGTCGCC   2440 
 
Ler             2446 TGATGGGGAACAAAGACAGTCCTGAGCTAAACCTGAATTTCAACCTGACG   2495 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           2441 TGATGGGGAACAAAGACAGTCCTGAGCTAAACCTGAATTTCAACCTGACG   2490 
 
Ler             2496 TGGCTCTTTGAAGTCGATGCCGGGTTTGCCTATATAGTGAGGCTTCATTT   2545 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           2491 TGGCTCTTTGAAGTCGATGCCGGGTTTGCCTATATAGTGAGGCTTCATTT   2540 
 
Ler             2546 CTGTGAGACGCAACCGGAAGTCAACAAAACGGGTGACCGCGTCTTCTCCA   2595 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           2541 CTGTGAGACGCAACCGGAAGTCAACAAAACGGGTGACCGCGTCTTCTCCA   2590 
 
Ler             2596 TCTTCTTCGGATATCAACTGGCCATGCGTGAAATGGACGTGTTTCGGCTG   2645 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           2591 TCTTCTTCGGATATCAACTGGCCATGCGTGAAATGGACGTGTTTCGGCTG   2640 
 
Ler             2646 AGTGGTGGTTTTCGGCTACCGATGTATCTAGATTTCAAGGTACTTGTCGA   2695 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           2641 AGTGGTGGTTTTCGGCTACCGATGTATCTAGATTTCAAGGTACTTGTCGA   2690 
 
Ler             2696 CGCCGACGGAACTAGCCAGAGACCTAGTCTTCGAGTTGACTTGACACCTT   2745 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           2691 CGCCGACGGAACTAGCCAGAGACCTAGTCTTCGAGTTGACTTGACACCTT   2740 
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Ler             2746 ACAAAGAGGACTATCCAACCTATTACGACGCTATTTTGAGTGGTGTAGAG   2795 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           2741 ACAAAGAGGACTATCCAACCTATTACGACGCTATTTTGAGTGGTGTAGAG   2790 
 
Ler             2796 ATTCTCAAGCTGAGTAATTCTGATGGTAATCTTGCGGGGCTTAATCCAAT   2845 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           2791 ATTCTCAAGCTGAGTAATTCTGATGGTAATCTTGCGGGGCTTAATCCAAT   2840 
 
Ler             2846 TCCTCAACTAAGTCCACCACCACAATCTATAACGCCACTAAAAGGAAAAG   2895 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           2841 TCCTCAACTAAGTCCACCACCACAATCTATAACGCCACTAAAAGGAAAAG   2890 
 
Ler             2896 GCAAGTCATCACATGTTTTGCCAATAATAATTGCAGTGGTTGGTTCTGCA   2945 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           2891 GCAAGTCATCACATGTTTTGCCAATAATAATTGCAGTGGTTGGTTCTGCA   2940 
 
Ler             2946 GTTGCGCTAGCGTTTTTTGTTCTTGTTGTTGTCCTCGTTGTTATGAAGAG   2995 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           2941 GTTGCGCTAGCGTTTTTTGTTCTTGTTGTTGTCCTCGTTGTTATGAAGAG   2990 
 
Ler             2996 AAAGAAGAAGAGCAACGAGTCTAGTGTAGATACCACGAACAAGCCTTCTA   3045 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           2991 AAAGAAGAAGAGCAACGAGTCTAGTGTAGATACCACGAACAAGCCTTCTA   3040 
 
Ler             3046 CGAACTCGTCATGGGGTCCTCTTCTGCACGGGACAGGCTCTACAAATACA   3095 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           3041 CGAACTCGTCATGGGGTCCTCTTCTGCACGGGACAGGCTCTACAAATACA   3090 
 
Ler             3096 AAATCTGCCTCATCTCTTCCATCAGATCTCTGCCGTCGATTCTCCATCTA   3145 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           3091 AAATCTGCCTCATCTCTTCCATCAGATCTCTGCCGTCGATTCTCCATCTA   3140 
 
Ler             3146 CGAAATCAAATCCGCCACAAATGATTTCGAGGAAAAACTAATCATAGGAG   3195 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           3141 CGAAATCAAATCCGCCACAAATGATTTCGAGGAAAAACTAATCATAGGAG   3190 
 
Ler             3196 TAGGCGGGTTTGGTTCTGTCTACAAAGGACGAATAGACGGTGGAGCCACA   3245 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           3191 TAGGCGGGTTTGGTTCTGTCTACAAAGGACGAATAGACGGTGGAGCCACA   3240 
 
Ler             3246 CTTGTTGCGGTTAAACGGCTGGAAATTACATCGAACCAAGGTGCTAAAGA   3295 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           3241 CTTGTTGCGGTTAAACGGCTGGAAATTACATCGAACCAAGGTGCTAAAGA   3290 
 
Ler             3296 GTTCGATACAGAGCTCGAGATGCTTTCAAAGCTTCGACATGTACACCTCG   3345 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           3291 GTTCGATACAGAGCTCGAGATGCTTTCAAAGCTTCGACATGTACACCTCG   3340 
 
Ler             3346 TCTCTCTAATCGGATATTGCGATGACGACAACGAGATGGTACTTGTCTAT   3395 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           3341 TCTCTCTAATCGGATATTGCGATGACGACAACGAGATGGTACTTGTCTAT   3390 
 
Ler             3396 GAGTATATGCCACATGGTACACTTAAAGATCATCTTTTCAGGAGAGACAA   3445 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           3391 GAGTATATGCCACATGGTACACTTAAAGATCATCTTTTCAGGAGAGACAA   3440 
 
Ler             3446 GGCCTCTGATCCTCCATTGTCATGGAAACGAAGGCTAGAGATTTGCATTG   3495 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           3441 GGCCTCTGATCCTCCATTGTCATGGAAACGAAGGCTAGAGATTTGCATTG   3490 
 
Ler             3496 GAGCAGCTCGTGGATTACAGTATCTTCATACTGGAGCCAAGTACACGATC   3545 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           3491 GAGCAGCTCGTGGATTACAGTATCTTCATACTGGAGCCAAGTACACGATC   3540 
 
Ler             3546 ATACATAGAGACATCAAAACCACAAACATACTTCTCGATGAGAACTTCGT   3595 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           3541 ATACATAGAGACATCAAAACCACAAACATACTTCTCGATGAGAACTTCGT   3590 
 
Ler             3596 CGCTAAAGTATCTGACTTTGGTTTATCAAGAGTTGGTCCTACTAGTGCTT   3645 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           3591 CGCTAAAGTATCTGACTTTGGTTTATCAAGAGTTGGTCCTACTAGTGCTT   3640 
 
Ler             3646 CTCAAACGCATGTCTCCACCGTCGTTAAAGGAACGTTTGGTTACTTGGAT   3695 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           3641 CTCAAACGCATGTCTCCACCGTCGTTAAAGGAACGTTTGGTTACTTGGAT   3690 
 
Ler             3696 CCCGAGTACTATCGCCGTCAAATCTTGACCGAAAAATCCGACGTGTACTC   3745 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           3691 CCCGAGTACTATCGCCGTCAAATCTTGACCGAAAAATCCGACGTGTACTC   3740 
 
Ler             3746 TTTTGGAGTTGTTCTGTTGGAGGTTTTGTGCTGTAGACCGATCAGAATGC   3795 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           3741 TTTTGGAGTTGTTCTGTTGGAGGTTTTGTGCTGTAGACCGATCAGAATGC   3790 
 
Ler             3796 AAAGTGTTCCACCGGAACAAGCAGATTTGATCCGATGGGTGAAGTCAAAT   3845 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           3791 AAAGTGTTCCACCGGAACAAGCAGATTTGATCCGATGGGTGAAGTCAAAT   3840 
 
Ler             3846 TTCAATAAAAGAACCGTTGATCAGATCATTGACTCAGATTTAACCGCTGA   3895 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           3841 TTCAATAAAAGAACCGTTGATCAGATCATTGACTCAGATTTAACCGCTGA   3890 
 
Ler             3896 TATCACTTCGACCTCGATGGAGAAGTTTTGTGAGATAGCCATTAGATGTG   3945 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           3891 TATCACTTCGACCTCGATGGAGAAGTTTTGTGAGATAGCCATTAGATGTG   3940 
 
Ler             3946 TTCAAGACCGTGGTATGGAACGGCCACCGATGAACGACGTTGTTTGGGCG   3995 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           3941 TTCAAGACCGTGGTATGGAACGGCCACCGATGAACGACGTTGTTTGGGCG   3990 
 
Ler             3996 CTTGAGTTTGCTCTTCAGCTTCACGAGACTGCTAAGAAGAAGAATGACAA   4045 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           3991 CTTGAGTTTGCTCTTCAGCTTCACGAGACTGCTAAGAAGAAGAATGACAA   4040 
 
Ler             4046 CGTGGAGTCTCTGGATCTAATGCCAAGTGGTGAAGTTGGTACGACCACGG   4095 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           4041 CGTGGAGTCTCTGGATCTAATGCCAAGTGGTGAAGTTGGTACGACCACGG   4090 
 
Ler             4096 ACGGAGAAGATGACTTGTTTAGTAGGACTACAGGACACGTTGGGAAATCG   4145 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           4091 ACGGAGAAGATGACTTGTTTAGTAGGACTACAGGACACGTTGGGAAATCG   4140 
 
Ler             4146 ACCACGACCGATGACTCTGTTCTAGTTGTTGGTGATGAGAGGAGTGGTTC   4195 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           4141 ACCACGACCGATGACTCTGTTCTAGTTGTTGGTGATGAGAGGAGTGGTTC   4190 
 
Ler             4196 GAGTTGGGGAGTATTTTCGGAGATCAATGAACCTAAAGCACGGTAGATTT   4245 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           4191 GAGTTGGGGAGTATTTTCGGAGATCAATGAACCTAAAGCACGGTAGATTT   4240 
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Ler             4246 GATGGCTTGGTAAACAAGTATCACATTCTGGTTAGGGTTGATATATATTT   4295 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           4241 GATGGCTTGGTAAACAAGTATCACATTCTGGTTAGGGTTGATATATATTT   4290 
 
Ler             4296 GTGTATGTATAATTGTTGAATAAACACATTATTGTATTTAAATTACATTT   4345 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           4291 GTGTATGTATAATTGTTGAATAAACACATTATTGTATTTAAATTACATTT   4340 
 
Ler             4346 TGATGATTATTTAGCAGCTTAAATTTAGATATTATATACTTGCTTTTATT   4395 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           4341 TGATGATTATTTAGCAGCTTAAATTTAGATATTATATACTTGCTTTTATT   4390 
 
Ler             4396 TGACCAGAGATAAAGTTGGATTTTTTTTTGGCGGTTCGTAACGGTTGAGA   4445 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           4391 TGACCAGAGATAAAGTTGGATTTTTTTTTGGCGGTTCGTAACGGTTGAGA   4440 
 
Ler             4446 ATATGTTTGACATTTGTCTCAAAATGCAATCAAAAAAGTTTTGCAATATA   4495 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           4441 ATATGTTTGACATTTGTCTCAAAATGCAATCAAAAAAGTTTTGCAATATA   4490 
 
Ler             4496 AAATTTTGTTAAATACAGTCGTTAAAAAAAACAAAATTGTTAAATAAGTT   4545 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           4491 AAATTTTGTTAAATACAGTCGTTAAAAAAAACAAAATTGTTAAATAAGTT   4540 
 
Ler             4546 CCTTCGCCATTTCACGTGGCTCTTAAGTCATAACCTAGTTATGAAAAATG   4595 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           4541 CCTTCGCCATTTCACGTGGCTCTTAAGTCATAACCTAGTTATGAAAAATG   4590 
 
Ler             4596 AAAAACACCTAATCTTTTCTTTTTCAACTTCAATACCAAATGATCCGTCA   4645 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           4591 AAAAACACCTAATCTTTTCTTTTTCAACTTCAATACCAAATGATCCGTCA   4640 
 
Ler             4646 CGCTTTGTTAATATTCTCTATTCTCGTTTCCACCACCATAGTAGGAGAAG   4695 
                     ||||||||||||||||||||||||||||||||||.||||||||||||||| 
Col-0           4641 CGCTTTGTTAATATTCTCTATTCTCGTTTCCACCCCCATAGTAGGAGAAG   4690 
 
Ler             4696 GAGCAACGTCGACGTATGAACCCACCGATGTCTTTCTCTTCAACTGCGGC   4745 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           4691 GAGCAACGTCGACGTATGAACCCACCGATGTCTTTCTCTTCAACTGCGGC   4740 
 
Ler             4746 GACACTTCAAACAACGTCGACGTTAGTGGCCGAAACTGGACGGCGGAAAA   4795 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           4741 GACACTTCAAACAACGTCGACGTTAGTGGCCGAAACTGGACGGCGGAAAA   4790 
 
Ler             4796 TCAGAAAATTCTATCGTCAAATTTAGTCAACGCTTCGTTCACTTCACAAG   4845 
                     |||||||||||||||||||||||||||||||||||||||||||.|||||| 
Col-0           4791 TCAGAAAATTCTATCGTCAAATTTAGTCAACGCTTCGTTCACTGCACAAG   4840 
 
Ler             4846 CGTCATACCAAGAATCAGGAGTTTCTCAGATTCCGTACATGACAGCTCGA   4895 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           4841 CGTCATACCAAGAATCAGGAGTTTCTCAGATTCCGTACATGACAGCTCGA   4890 
 
Ler             4896 ATATTCCGATCTGAGTTCACCTACAGTTTTCCAGTCACTCCCGGTTCAAA   4945 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           4891 ATATTCCGATCTGAGTTCACCTACAGTTTTCCAGTCACTCCCGGTTCAAA   4940 
 
Ler             4946 TTTTCTCCGGTTATACTTTTACCCGACCCGATACGGTTCCCAATTCAACG   4995 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           4941 TTTTCTCCGGTTATACTTTTACCCGACCCGATACGGTTCCCAATTCAACG   4990 
 
Ler             4996 CCGTCAAATCCTTCTTCTCCGTCAAAGTCAACGGCTTCACTCTCTTGAAC   5045 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           4991 CCGTCAAATCCTTCTTCTCCGTCAAAGTCAACGGCTTCACTCTCTTGAAC   5040 
 
Ler             5046 AACTTCAGCGCTGACTTAACGGTAAAAGCATCTAAACCCCAAACGGAGTT   5095 
                     ||||||||||||||||||||||||||||||||||||||.||||||||||| 
Col-0           5041 AACTTCAGCGCTGACTTAACGGTAAAAGCATCTAAACCGCAAACGGAGTT   5090 
 
Ler             5096 TATAATCAAAGAGTTTATTATTCCGGTTTACCAAACGTTGAATCTCACTT   5145 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           5091 TATAATCAAAGAGTTTATTATTCCGGTTTACCAAACGTTGAATCTCACTT   5140 
 
Ler             5146 TCACGCCGTCTTTAGATTCCTTAGCTTTCGTTAACGGAATCGAGATTGTC   5195 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0           5141 TCACGCCGTCTTTAGATTCCTTAGCTTTCGTTAACGGAATCGAGATTGTC   5190 
 
Ler             5196 TCCATACCTAACCGGTTTTACTCAAAGGGAGGATTTGACG   5235 
                     |||||||||||||||||||||||||||||||||||||||| 
Col-0           5191 TCCATACCTAACCGGTTTTACTCAAAGGGAGGATTTGACG   5230 
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Ler                  AACATGGCATCTCATGACATTGAAGATCGCACTTGGAGTGGCTCTTGTCT 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                AACATGGCATCTCATGACATTGAAGATCGCACTTGGAGTGGCTCTTGTCT 
 
Ler                  CTGTCATTCTAGGTATCATTGTTGGGAAAAATTATTGATTTCTTTTTGTT 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                CTGTCATTCTAGGTATCATTGTTGGGAAAAATTATTGATTTCTTTTTGTT 
 
Ler                  TTATTTATGAAAGATTTGTTTGTTTGATTGTTTCGTGGTTCTAAGAATTT 
                     .||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                ATATTTATGAAAGATTTGTTTGTTTGATTGTTTCGTGGTTCTAAGAATTT 
 
Ler                  TTGCTTCTACCATACTTTTATTTCTTATTGACCAAGCAAGACCACACTAG 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                TTGCTTCTACCATACTTTTATTTCTTATTGACCAAGCAAGACCACACTAG 
 
Ler                  AATCTGATTCATTCTAACAATATCGTTGGAATTTGGAAACCGTTCATCGA 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                AATCTGATTCATTCTAACAATATCGTTGGAATTTGGAAACCGTTCATCGA 
 
Ler                  AATTGAATTGAAAAATGATAAAGCCATTAGATTTATGCGAATATTATCAC 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                AATTGAATTGAAAAATGATAAAGCCATTAGATTTATGCGAATATTATCAC 
 
Ler                  GTGTCTTACGGAAATCTATACTTTATTTCCGATTTTCAGTTATTTTTAGA 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                GTGTCTTACGGAAATCTATACTTTATTTCCGATTTTCAGTTATTTTTAGA 
 
Ler                  TTTTAGCGAGATATTGTTTGATATGATTTGCAGGTCCTTAAGGGTTTTAA 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                TTTTAGCGAGATATTGTTTGATATGATTTGCAGGTCCTTAAGGGTTTTAA 
 
Ler                  GGAAAAAGGAAACTTAAAAGATAAATAAGGAAGTCAAAAAAAAAAAGGAA 
                     ||||||||||||||||||||||||||||||||||  |||||||||||||| 
Col-0                GGAAAAAGGAAACTTAAAAGATAAATAAGGAAGT--AAAAAAAAAAGGAA 
 
Ler                  AAAGAGAGTCCAATTTCAATCCA------------AAATGTTTTGGTTAT 
                     |||||||||||||||||||||||     ||||||||||||||| 
Col-0                AAAGAGAGTCCAATTTCAATCCAAAAAAAAGGATTAAATGTTTTGGTTAT 
 
Ler                  ATATAATAGACACAGTAGACACCTCAATTTCACAATTCACACCACACACG 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                ATATAATAGACACAGTAGACACCTCAATTTCACAATTCACACCACACACG 
 
Ler                  CAAACAAATCACAGCTCTCTGTTTTATTTCTTTCTGAAAGTAAAACTAAC 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                CAAACAAATCACAGCTCTCTGTTTTATTTCTTTCTGAAAGTAAAACTAAC 
 
Ler                  CATGGCTGATCACAACAACACTCCTCCCTTTGACCTAACGAAACTCGACC 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                CATGGCTGATCACAACAACACTCCTCCCTTTGACCTAACGAAACTCGACC 
 
Ler                  ATTACATCAAATACCAACCACGAGAAGAAGCTGAAGATTTTTTTGTTCAT 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                ATTACATCAAATACCAACCACGAGAAGAAGCTGAAGATTTTTTTGTTCAT 
 
Ler                  GTCGAGGTCAAGGTTCTCGGAAAAGGATCTTCTCCGTTAGAGATCTCCTT 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                GTCGAGGTCAAGGTTCTCGGAAAAGGATCTTCTCCGTTAGAGATCTCCTT 
 
Ler                  CTCAACTTCGGTCTATGAATTCGTCTGGGAAGACGAAGATTGTTATGAGT 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                CTCAACTTCGGTCTATGAATTCGTCTGGGAAGACGAAGATTGTTATGAGT 
 
Ler                  TAGTTGAACTCTACGAATTCTTTACCGAGGATGCTGGAATAGATGCATTC 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                TAGTTGAACTCTACGAATTCTTTACCGAGGATGCTGGAATAGATGCATTC 
 
Ler                  GAGGCTCAGTTCTTGGTCAATGACTTGATTTTGTACGTTAATAAGACGAC 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                GAGGCTCAGTTCTTGGTCAATGACTTGATTTTGTACGTTAATAAGACGAC 
 
Ler                  ACGACCGCTTGATGAGGACTTCACTGGAGTTTTCAAGTTGATGGCCGAAG 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                ACGACCGCTTGATGAGGACTTCACTGGAGTTTTCAAGTTGATGGCCGAAG 
 
Ler                  TTACGTTAAAACCGGTCCAGCTTAACCATGCCGGTTCACAGAAAACCGAA 

Supplementary Figure S5: Alignment of two COCTs covering complex genomic regions. Pairwise align-
ments of the genome sequence of Ler and Col-0 of CO 1 (tetrad 1, chr. 1). This conversion tract shows 
full conversion to Ler alleles. CO 15 (tetrad 2, chr. 3) shows full conversion to Col alleles.

The COCT is highlighted in dark blue for conserved regions and in red for genomic differences between 
Col and Ler. The region between the converted polymorphisms and the flanking markers are highlighted 
in grey. The flanking polymorphisms are highlighted in green. Both alignments show stark sequence 
divergence in the COCT.
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                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                TTACGTTAAAACCGGTCCAGCTTAACCATGCCGGTTCACAGAAAACCGAA 
 
Ler                  TCCCAACAACCGTAGGGCTTGTTACTTGGAAGAAAATCATAGACTTTTAG 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                TCCCAACAACCGTAGGGCTTGTTACTTGGAAGAAAATCATAGACTTTTAG 
 
Ler                  TTTTATGTTTTTCCTTTTTTTTCAACCAAAAAAATTTGGATTTGTCTTTT 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                TTTTATGTTTTTCCTTTTTTTTCAACCAAAAAAATTTGGATTTGTCTTTT 
 
Ler                  CAATTCGATTAAAGATATCTCTGAGCTTCAAATTGTGTTAACCCTAATAA 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                CAATTCGATTAAAGATATCTCTGAGCTTCAAATTGTGTTAACCCTAATAA 
 
Ler                  TAAAAAGTATTTCGTAAAGCAGAGGCAACAATTGGTATTTGATGATTTAG 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                TAAAAAGTATTTCGTAAAGCAGAGGCAACAATTGGTATTTGATGATTTAG 
 
Ler                  AGATTTCTATATGAGTTGTAATAATTAGATTCATCTATTGTTATAATTGC 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                AGATTTCTATATGAGTTGTAATAATTAGATTCATCTATTGTTATAATTGC 
 
Ler                  AGAAAATCATTAGAAAAACGCGCAATTCTGTGAGATTAAAGCTATTAACT 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                AGAAAATCATTAGAAAAACGCGCAATTCTGTGAGATTAAAGCTATTAACT 
 
Ler                  ATACCAATCCAAGAGCAAGACAAATTAATTTAAGTACTAGAGAGTAGAGA 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                ATACCAATCCAAGAGCAAGACAAATTAATTTAAGTACTAGAGAGTAGAGA 
 
Ler                  TCCAAATACAAACCATAATATGTTCGTCTCACAAAGTATTACAAGAAAAT 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                TCCAAATACAAACCATAATATGTTCGTCTCACAAAGTATTACAAGAAAAT 
 
Ler                  AATAAACAAAAAATAGAGAATTTATACAATAAGGCTGGAGAGAATAATAA 
                     ||||||||||||||||||||||||||||||||||||||||||   ||||| 
Col-0                AATAAACAAAAAATAGAGAATTTATACAATAAGGCTGGAGAG---AATAA 
 
Ler                  TAATAATTCACATCACATTCACATAAACTCGTCATAAATAGACCATCCCA 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                TAATAATTCACATCACATTCACATAAACTCGTCATAAATAGACCATCCCA 
 
Ler                  ATTCCCAAATGGCTTAGAAGCAAATGTCCAGGGCACAACAGCAACACATG 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                ATTCCCAAATGGCTTAGAAGCAAATGTCCAGGGCACAACAGCAACACATG 



62

Chapter 2 - suppl.

 

CO 15 
 

 
Ler                  CACGGTCTCATCCACAAGATATGCGATGGAGCTACCGCGGAGACTTTCCC  
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                CACGGTCTCATCCACAAGATATGCGATGGAGCTACCGCGGAGACTTTCCC 
 
Ler                  CGGATTCGAAGAGATGAGGACGGAGGCACTCACTGCAGCCGAAACAGGAG 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                CGGATTCGAAGAGATGAGGACGGAGGCACTCACTGCAGCCGAAACAGGAG 
 
Ler                  TGGTTGACGGTCACGGATTCTATGAGGATAGCTACAAGCTCCTCCACGTT 
                     |.|||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                TTGTTGACGGTCACGGATTCTATGAGGATAGCTACAAGCTCCTCCACGTT 
 
Ler                  GTGGCTCAATGCGACGGCCACGTTGAAGCTTGCGATTGCGGCGAGTGCAT 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                GTGGCTCAATGCGACGGCCACGTTGAAGCTTGCGATTGCGGCGAGTGCAT 
 
Ler                  AAGTTCAGCCGCGGCAGCAGCAGCAGAAGAGTGTCGGTGGTCCATAGCCG 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                AAGTTCAGCCGCGGCAGCAGCAGCAGAAGAGTGTCGGTGGTCCATAGCCG 
 
Ler                  GACAAATATACTTAGAAGGGTGCCACGTCGGTTATACATATCACCCACAT 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                GACAAATATACTTAGAAGGGTGCCACGTCGGTTATACATATCACCCACAT 
 
Ler                  GAACTTCCCAATGATTCATACCACGGTACGTACAGTTATTAAAGAAAACT 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                GAACTTCCCAATGATTCATACCACGGTACGTACAGTTATTAAAGAAAACT 
 
Ler                  GAACCAAAACAAATATCAGTTGATTATGTACTTAAGTTGCGAATTGTTTC 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                GAACCAAAACAAATATCAGTTGATTATGTACTTAAGTTGCGAATTGTTTC 
 
Ler                  TTTTGACAGAAGAAGGTTCAAAAGTAAACACGGGGAAGTCGTTGGCGATT 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                TTTTGACAGAAGAAGGTTCAAAAGTAAACACGGGGAAGTCGTTGGCGATT 
 
Ler                  GTTGTAGGAGGAGTAGCGGCATTGGTCTTTGTTGCTATCTTTTTTATGTT 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                GTTGTAGGAGGAGTAGCGGCATTGGTCTTTGTTGCTATCTTTTTTATGTT 
 
Ler                  CCTAAAAAGCTTGCGGAAAAAAGGAGATGGTAAGTTATTACTATTAGATG 
                     |||||||||||||||||||||||||||||||||||||||||||||||||. 
Col-0                CCTAAAAAGCTTGCGGAAAAAAGGAGATGGTAAGTTATTACTATTAGATT 
 
Ler                  TGATATCGTTTTACTCTATTTTTTTTTTAATTTGAAAAGAAAACATTATA 
                     |||||||||||||||||| ||||||||||||||     |||||||||||| 
Col-0                TGATATCGTTTTACTCTA-TTTTTTTTTAATTT-----GAAAACATTATA 
 
Ler                  ATGTAGAGACATGCTACTAGATGACAAAAAAATAAATAGAAACATGCTAA 
                     |||||||||||||||             ||.||||| .|||||||||||| 
Col-0                ATGTAGAGACATGCT-------------AATATAAA-CGAAACATGCTAA 
 
Ler                  TTATAAACGAAAATATTAGAAACT--TAATTATATAGATCCCATGTTTAT 
                     ||||||||||||||||||||||||  |||||||||||||||||||||||| 
Col-0                TTATAAACGAAAATATTAGAAACTTATAATTATATAGATCCCATGTTTAT 
 
Ler                  GAAGTT----------TGTTAAAACTATTTAATTATGTACATACAAAATT 
                     ||||||          ||||..|||||||||||||||||||||||||||| 
Col-0                GAAGTTCTTACACAAATGTTCTAACTATTTAATTATGTACATACAAAATT 
 
Ler                  GAATTGACTAA-T--TTATCCTATTGCAGATTGTTGAAGGGTACATGATC 
                     ||||||||||| |  ||||||||||||||||||||||||||||||||||| 
Col-0                GAATTGACTAATTAATTATCCTATTGCAGATTGTTGAAGGGTACATGATC 
 
Ler                  AGAGAGATGTTGGGAAAATAATTCTGTTCCTTGTATTTGTTCTACCAACC 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                AGAGAGATGTTGGGAAAATAATTCTGTTCCTTGTATTTGTTCTACCAACC 
 
Ler                  AAGGAAAACCTCCTTCTTTCCATTTTTCGATTGTGGAAATAAAAGTGGTA 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                AAGGAAAACCTCCTTCTTTCCATTTTTCGATTGTGGAAATAAAAGTGGTA 
 
Ler                  GGATACGTAATTTTAATCATGTAAATATTTGTACTGAAATAAATATTTGC 
                     ||||||||||  |||||||||                  |||.||||||| 
Col-0                GGATACGTAA--TTAATCATG------------------TAACTATTTGC 
 
Ler                  CCTAAAAGTTATATAACATCCTTTAATAACTACGACGTTTGCTTTAAC-A 
                     |||||||||||||||||||||||||||||||||||||||||||||||| | 
Col-0                CCTAAAAGTTATATAACATCCTTTAATAACTACGACGTTTGCTTTAACAA 
 
Ler                  AAAAAAAAAATAACTACAGTACGACGTTTGAAGTAAGAAGATTATATATT 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                AAAAAAAAAATAACTACAGTACGACGTTTGAAGTAAGAAGATTATATATT 
 
Ler                  TATGTTTTGTAACCCCCAGAACTAATACATATCAGGTTATAGCCCATAAC 
                     ||||||||||||||||||||||||||||||||||.||||||||||||||| 
Col-0                TATGTTTTGTAACCCCCAGAACTAATACATATCACGTTATAGCCCATAAC 
 
Ler                  TTTTATTTAATTATGCTGTGCTTTTTAGTCAATGGGCCTATTTTAATGGA 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                TTTTATTTAATTATGCTGTGCTTTTTAGTCAATGGGCCTATTTTAATGGA 
 
Ler                  CCTACACAATCATGGAAATAAATCTGGAAATAAATCTGTCCACGACGGAA 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
Col-0                CCTACACAATCATGGAAATAAATCTGGAAATAAATCTGTCCACGACGGAA 
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Supplementary Figure S6: Distance to flanking SNPs for COs and NCOs. The average distance between 
converted markers and flanking markers in CO-associated GCs (left) and NCOs (right) are shown in bp. 
The distance from a converted marker by an NCO to the nearest flanking marker is longer than those for 
CO-associated GCs. Error bars give standard error.
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Supplementary Figure 7: Crossover positions in relation to H3K4me3 trimethylation. Each graph 
shows 10 Kb windows in which the CO is positioned in the middle. H3K4me3 trimethylation enrichment 
is shown in red. The graphs show representative images, in which H3K4 methylation does (left) or does 
not (right) coincide with CO-positions.
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Supplementary Figure 8: Alignments of CO-sequences with consensus sequence. Sequences of COCTs 
are compared to the identified common motifs identified using MEME software. The poly-A like
motif is shown on the left and the CTT-like motif is shown on the right.
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Supplementary Table S1: Read number and alignments.  

      

Sample Sample type Sequenced 
read pairs

Read_
length

Aligned read 
pairs used*

Alignment  
target

Avg. nuclear 
genome 
coverage

Col Parent 12940490 151 12599414 TAIR10 16.6

Ler Parent 77936067 101 63518844 TAIR10 101.2

DH 1 Double Haploid 23403771 151 4336637 TAIR10 8.7

DH 2 Double haploid 24654019 151 8552413 TAIR10 18.2

DH 3 Double haploid 20065118 151 7961734 TAIR10 17

DH 4 Double haploid 21516922 151 9889499 TAIR10 21.1

DH5 Double haploid 66952956 101 49330593 TAIR10 71.1

DH6 Double haploid 55917926 101 47162497 TAIR10 71.8

DH7 Double haploid 52135752 101 45232912 TAIR10 68.5

DH8 Double haploid 49620686 101 38441915 TAIR10 58

DH9 Double haploid 55399712 101 46187638 TAIR10 70.7

DH10 Double haploid 65204463 101 53859721 TAIR10 79.6
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Supplementary Table S1 – continued: Read number and alignments.

Sample Sample type Sequenced 
read pairs

Read_
length

Aligned 
read pairs 
used*

Alignment 
target

Avg. nuclear 
genome 
coverage

Col_tetrad Parent 52078668 101 43303695 TAIR10 56.5

Ler_tetrad Parent 46554725 101 34207322 TAIR10 49.4

Cvi_tetrad Parent 56429489 101 41212019 TAIR10 63.2

1_1 tetrad 31566060 101 19820222 TAIR10 28.5

1_2 tetrad 28529159 101 22237059 TAIR10 41.0

1_3 tetrad 96662553 101 66079176 TAIR10 96.5

1_4 tetrad 53379191 101 35360375 TAIR10 51.9

2_1 tetrad 63055319 101 40605530 TAIR10 59.6

2_2 tetrad 37908618 101 25276663 TAIR10 38.6

2_3 tetrad 45485638 101 27041540 TAIR10 39.7

2_4 tetrad 48428343 101 32847111 TAIR10 47.8

3_1 tetrad 39470042 101 27004256 TAIR10 36.9

3_2 tetrad 48073711 101 35452303 TAIR10 52.0

3_3 tetrad 37102772 101 25158766 TAIR10 36.7

3_4 tetrad 76672532 101 53138435 TAIR10 75.6

4_1 tetrad 74332245 101 53442589 TAIR10 79.4

4_2 tetrad 45843587 101 34104496 TAIR10 49.4

4_3 tetrad 43763556 101 33451664 TAIR10 49.4

4_4 tetrad 1,02E+08 101 67772426 TAIR10 98.4

5_1 tetrad 50565207 101 34967278 TAIR10 51.6

5_2 tetrad 51571962 101 38639574 TAIR10 53.4

5_3 tetrad 45271453 101 31677562 TAIR10 46.4

5_4 tetrad 50373376 101 37322244 TAIR10 53.9
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Supplementary Table S2:  Markers used in DH analysis. 

ID Markers 
genotyped

Total number 
of markers 

used for call-
ing NCO/CO

Number of markers used for calling NCO/CO

Col  
Background

Ler  
Background

Ambiguous Non-
informative

DH 1 438915 406223 295708 110515 584 32108

DH 2 438915 426102 156412 269690 3290 9523

DH 3 438915 418899 199729 219170 9228 10788

DH 4 438915 428542 183681 244861 1190 9183

DH 5 438915 416177 117433 298744 19869 2869

DH 6 438915 426699 231652 195047 9453 2763

DH 7 438915 424753 266647 158106 11307 2855

DH 8 438915 420545 133381 287164 16136 2234

DH 9 438915 427817 188967 238850 8420 2678

DH 10 438915 421480 293546 127934 15165 2270
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Supplementary Table S3:  Markers used in tetrad analysis.     

Sample Markers genotyped (1) Markers used for calling NCO/
CO (4)

1_1 354977 54694

1_2 354977 124721

1_3 354977 258500

1_4 354977 193783

2_1 354977 226621

2_2 354977 114762

2_3 354977 124921

2_4 354977 180583

3_1 354977 84909

3_2 354977 187477

3_3 354977 96861

3_4 354977 246457

4_1 354977 247892

4_2 354977 173739

4_3 354977 178677

4_4 354977 257029

5_1 354977 196294

5_2 354977 184519

5_3 354977 153040

5_4 354977 195475
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Supplementary Table S4:  Crossing over sites and their positions in DH offspring.

Sample CO-ID Chr Begin End

DH 1 16 Chr2 7995651 7996021

DH 1 17 Chr3 19659682 19661374

DH 1 18 Chr4 14820839 14821272

DH 1 19 Chr5 6045145 6045248

DH 1 20 Chr5 14294240 14294466

DH 2 1 Chr1 16130894 16131373

DH 2 2 Chr1 24497411 24498026

DH 2 3 Chr2 6694469 6694810

DH 2 4 Chr3 10770271 10770691

DH 2 5 Chr4 5165967 5166637

DH 2 6 Chr5 13901059 13901168

DH 3 7 Chr1 11379900 11380518

DH 3 8 Chr2 11095697 11095784

DH 3 9 Chr2 18809685 18809986

DH 3 10 Chr3 23360434 23361259

DH 4 11 Chr1 12256399 12256672

DH 4 12 Chr2 1994684 1995104

DH 4 13 Chr3 1230066 1230404

DH 4 14 Chr5 8408206 8408326

DH 4 15 Chr5 17302925 17303130

DH 5 21 Chr1 3473648 3474347

DH 5 22 Chr1 15922557 15922622

DH 5 23 Chr2 9579983 9580578

DH 5 24 Chr4 10007430 10007762

DH 5 25 Chr4 15988038 15991333

DH 5 26 Chr4 17512230 17512537

DH 5 27 Chr5 21481654 21482180
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DH 6 28 Chr1 2245324 2246148

DH 6 29 Chr2 5660821 5661013

DH 6 30 Chr3 8880723 8880778

DH 6 31 Chr4 7837100 7837675

DH 6 32 Chr5 3480602 3480742

DH 6 33 Chr5 15878487 15879014

DH 7 34 Chr1 5407433 5408280

DH 7 35 Chr1 18914464 18915314

DH 7 36 Chr2 6947299 6947738

DH 7 37 Chr2 17981163 17982103

DH 7 38 Chr3 8686510 8687570

DH 7 39 Chr4 11220881 11222041

DH 7 40 Chr5 6832134 6832292

DH 7 41 Chr5 22337799 22337975

DH 8 42 Chr1 469655 473429

DH 8 43 Chr2 9171354 9171524

DH 8 44 Chr4 9240644 9241336

DH 8 45 Chr5 4979856 4980118

DH 8 46 Chr5 17157500 17158113

DH 9 47 Chr1 772303 772458

DH 9 48 Chr1 26948393 26949224

DH 9 49 Chr2 9837379 9838028

DH 9 50 Chr2 15787110 15787184

DH 9 51 Chr3 19595156 19595927

DH 9 52 Chr4 7574005 7574566

DH 9 53 Chr4 15314953 15321002

DH 9 54 Chr5 3824133 3824879

DH 10 55 Chr1 18216192 18216483

DH 10 56 Chr1 24451497 24453758

DH 10 57 Chr1 29578939 29579904

DH 10 58 Chr3 3427419 3427867

DH 10 59 Chr5 1010853 1010912

DH 10 60 Chr5 21377456 21378060
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Supplementary Table S7:  Locations of the transition between parental alleles 
within the single plants. Nearly all crossing over events release genome se-
quences with a clear non-interrupted transition from one parental allele to the 
other one. This table list all transitions regions identified in the tetrad and DH 
lines, along with their location in respect to the reference.
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Sample CO-ID Chr Begin End

Tetrad 1 Chr1 1557671 1558004

Tetrad 1 Chr1 1558051 1559010

Tetrad 2 Chr1 16895874 16896048

Tetrad 2 Chr1 16896049 16896222

Tetrad 3 Chr1 23497124 23498063

Tetrad 3 Chr1 23498063 23498622

Tetrad 4 Chr2 7918187 7918425

Tetrad 4 Chr2 7918426 7918663

Tetrad 5 Chr2 15154598 15156204

Tetrad 5 Chr2 15156204 15156880

Tetrad 6 Chr3 17728032 17728344

Tetrad 6 Chr3 17728345 17728656

Tetrad 7 Chr4 6796827 6797261

Tetrad 7 Chr4 6797262 6797695

Tetrad 8 Chr4 17653068 17653271

Tetrad 8 Chr4 17653272 17653474

Tetrad 9 Chr5 10876774 10877054

Tetrad 9 Chr5 10877172 10877520

Tetrad 10 Chr1 2213217 2213284

Tetrad 10 Chr1 2213628 2213877

Tetrad 11 Chr1 19093540 19093678

Tetrad 11 Chr1 19094144 19094388

Tetrad 12 Chr1 24809419 24809664

Tetrad 12 Chr1 24810892 24810980

Tetrad 13 Chr2 7726474 7726863

Tetrad 13 Chr2 7726864 7727253

Tetrad 14 Chr2 17645816 17646954

Tetrad 14 Chr2 17646954 17647565

Tetrad 15 Chr3 1160294 1160742

Tetrad 15 Chr3 1161151 1161237

Tetrad 16 Chr3 8880855 8881161

Tetrad 16 Chr3 8881244 8882075

Tetrad 17 Chr3 19163980 19164271

Tetrad 17 Chr3 19164272 19164563

Tetrad 18 Chr4 118032 118482
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Tetrad 18 Chr4 118483 118932

Tetrad 19 Chr4 11295554 11295992

Tetrad 19 Chr4 11295993 11296431

Tetrad 20 Chr5 809355 809907

Tetrad 20 Chr5 810310 810388

Tetrad 21 Chr5 15608224 15608316

Tetrad 21 Chr5 15608978 15611905

Tetrad 22 Chr1 1643314 1644172

Tetrad 22 Chr1 1644236 1645247

Tetrad 23 Chr1 16271774 16272591

Tetrad 23 Chr1 16273129 16273478

Tetrad 24 Chr2 9739200 9739757

Tetrad 24 Chr2 9739758 9740314

Tetrad 25 Chr2 14700261 14700976

Tetrad 25 Chr2 14700979 14701311

Tetrad 26 Chr3 8557068 8557632

Tetrad 26 Chr3 8558200 8558265

Tetrad 27 Chr3 23161397 23161891

Tetrad 27 Chr3 23161891 23162155

Tetrad 28 Chr4 8365173 8365306

Tetrad 28 Chr4 8365307 8365440

Tetrad 29 Chr5 532301 532619

Tetrad 29 Chr5 532620 532938

Tetrad 30 Chr5 16501638 16501828

Tetrad 30 Chr5 16501829 16502018

Tetrad 31 Chr1 7842859 7843170

Tetrad 31 Chr1 7843211 7843292

Tetrad 32 Chr1 16473123 16473701

Tetrad 32 Chr1 16473824 16474232

Tetrad 33 Chr1 25676514 25677885

Tetrad 33 Chr1 25677886 25679256

Tetrad 34 Chr2 7252497 7252882

Tetrad 34 Chr2 7253017 7253486

Tetrad 35 Chr2 12414849 12417912

Tetrad 35 Chr2 12417912 12418705

Tetrad 36 Chr2 14495108 14495471
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Tetrad 36 Chr2 14495472 14495835

Tetrad 37 Chr3 9335488 9336490

Tetrad 37 Chr3 9336630 9337106

Tetrad 38 Chr3 17951154 17951338

Tetrad 38 Chr3 17951339 17951522

Tetrad 39 Chr4 7369829 7370284

Tetrad 39 Chr4 7370285 7370740

Tetrad 40 Chr4 17463448 17464026

Tetrad 40 Chr4 17464140 17464290

Tetrad 41 Chr5 10486315 10486369

Tetrad 41 Chr5 10486369 10486602

Tetrad 42 Chr5 22704512 22704753

Tetrad 42 Chr5 22704754 22704994

Tetrad 43 Chr1 4899961 4900403

Tetrad 43 Chr1 4900404 4900846

Tetrad 44 Chr1 21763389 21763781

Tetrad 44 Chr1 21763990 21764082

Tetrad 45 Chr1 26328821 26328885

Tetrad 45 Chr1 26328886 26328949

Tetrad 46 Chr2 8548811 8549049

Tetrad 46 Chr2 8549288 8549573

Tetrad 47 Chr2 19020888 19020959

Tetrad 47 Chr2 19020959 19030799

Tetrad 48 Chr3 15615636 15615740

Tetrad 48 Chr3 15616063 15616191

Tetrad 49 Chr4 6257906 6258844

Tetrad 49 Chr4 6259275 6260351

Tetrad 50 Chr4 14919739 14920040

Tetrad 50 Chr4 14920040 14923965

Tetrad 51 Chr5 8194916 8195145

Tetrad 51 Chr5 8195145 8195394

Tetrad 52 Chr5 21896525 21896648

Tetrad 52 Chr5 21896931 21897982
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On nearly understanding randomness in meiosis…

God, vertwijfeld: ‘Maar ik dacht…’
De mensen:’U moet niet denken! U moet dobbelen!’

Zij zwaaien met hun vingers, bedreigen hem 
en bidden,
offeren hun verveling en hun wildste fantasie.
‘Wij eisen gerechtigheid!” roepen zij. 
Zij zien het bloed van zijn behoedzaamste daden, 
horen hem talmen en aarzelen,
Maar hij dobbelt niet.

T. Tellegen

(In: ‘Tijger onder de slakken’, 1994)
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Abstract
Crossover (CO) formation during meiosis is tightly regulated, with only small variation in crossover 
numbers and a tightly regulated crossover distribution. Such COs are not equally distributed along the 
chromosome axes, but keep some distance to each other (CO-interference). Remarkably, their number 
and distribution differ between male and female meiosis, leading to stable, sex specific recombination 
landscapes (Drouaud et al. 2007; Petkov et al. 2007). How these processes are controlled is nonethe-
less largely unknown. Using an allelic series of the central Arabidopsis cell-cycle regulator CDKA;1 that 
is homologous to Cdk1/Cdc2/Cdc28 we show that CDKA;1 controls chromosome condensation, chromo-
some pairing and CO formation at meiotic prophase I. At later stages, high levels of CDKA;1 activity are 
required for sister chromatid cohesion as well as a the execution of the second meiotic division. While 
low kinase activity during meiosis does not lead to viable spores, hypomorphic mutants with interme-
diate kinase activity produce plants with a wildtype phenotype, except for reduced fertility. Genetic 
analyses of male offspring of this mutant show a completely altered recombination landscape. COs 
are placed much closer to distal chromosome ends, and CO-interference is strongly reduced. Our data 
strongly suggest that CDKA;1 is a key constituent of different meiotic processes, as well regulator able 
to shape recombination landscape. 

Introduction
Meiosis is a specialized cell cycle in which a single DNA replication phase (S phase) is 
followed by two consecutive cell divisions (meiosis I and meiosis II). The first meiotic 
division generally reduces the chromosome number of the cell by separating homolo-
gous chromosomes, and the second segregates sister chromatids, typically leading to the 
formation of four haploid cells. To ensure proper disjunction of homologues at meiosis I, 
formation of at least one crossover (CO) per chromosome pair (crossover assurance) is 
required (Shinohara et al. 2008). These COs then reciprocally exchange genetic material 
between non-sister chromatids, while at the same time provide physical links between 
the homologues until metaphase I. 

In male meiosis CO formation starts with the formation of ~120-~235 double strand 
breaks (DSBs) in an early meiotic cell complement (Chelysheva et al. 2007; Sanchez-Mo-
ran et al. 2007; Vignard et al. 2007). This number is much higher than the number of COs 
that actually becomes manifested (~6.7 in female- and ~11.5 in male meiosis (Giraut et al. 
2011). Most of these DSBs are probably resolved as non-crossovers (NCOs) (see chapter 2). 
The decision of which breaks are resolved as COs or NCOs is thought to be a crucial mo-
ment in shaping the recombination landscape. In yeast, this decision takes place as early 
as DSB formation (Bishop and Zickler 2004; Shinohara et al. 2003). 

Once formed, COs are usually non-randomly distributed along the synapsed chro-
mosomes, and well-spaced by a phenomenon called CO-interference (Sturtevant 1915). 
Recent studies in plant meiosis revealed that 85% of COs are sensitive to interference 
(known as class I COs), and form through the ZMM pathway (Higgins et al. 2004; Mercier 
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et al. 2005). This pathway was named after the diverse proteins that act in it: ZYP1, Mer3 
(Chen et al. 2005), MSH4 and MSH5 (Higgins et al. 2004; Higgins et al. 2008b). A second 
pathway generates interference independent (class II) COs, mediated by other proteins 
like MUS81 (Higgins et al. 2008a) and EME1.

The mechanism that controls interference is largely unknown, but there is experi-
mental evidence that CO-interference is highly correlated to the physical length of the 
synaptonemal complex (SC), a proteinaceous structure that - through its transverse fila-
ments - joins the axes of homologous chromosomes during meiotic prophase I. The SC 
is completely assembled during pachytene, when chromosomes are said to “pair” along 
their entire length. Short SCs, as found in male mouse and female Arabidopsis, correlate 
with strong CO-interference and low CO numbers (Drouaud et al. 2007; Petkov et al. 2007; 
Vizir and Korol 1990). CO-interference is thus tightly linked to chromatin organization 
and both play an important role in shaping the “recombination landscape”, i.e., the spe-
cific stable distribution of COs along paired chromosomes. 

In the nematode Caenorhabditis elegans specific subunits of the condensin protein 
complex were shown to control meiotic chromosome structure and concomitantly, 
guide DSB formation and shape the resulting CO-landscape (Mets and Meyer 2009). They 
showed that SC lengths increased in condensin mutants while simultaneously CO-inter-
ference strength decreased and the CO landscape changed when certain genetic inter-
vals increased in length relative to others. 

Progression through the meiotic cell cycle is controlled by cyclin dependent kinases 
(CDKs) which regulate a variety of processes (Malumbres and Barbacid 2005; Morgan 
1997; Pines 1999; Satyanarayana and Kaldis 2009). Cdc28, the main CDK of budding yeast 
is essential for the generation of double strand breaks by phosphorylation of Mer2, a 
Spo11 ancillary protein (Henderson et al. 2006; Murakami and Keeney 2008). The use of 
conditional mutants (that allowed the knock-down of Cdc28 after DSB formation, led to 
impaired SC formation (Zhu et al. 2010) and showed the requirement of Cdc28 at later 
processes. Similarly, Cdk2 is indispensable for meiosis in mammals, since knock-out 
mice were found to be female and male sterile, and did not form synaptonemal complex-
es (Berthet et al. 2003; Ortega et al. 2003). Mouse Cdk2 and Cdk4 could be visualized as 
distinct foci on SCs (Ashley et al. 2001), as was the case for Cdc28 in yeast (Zhu et al. 2010). 

Bulankova et al. (2010) have shown the requirement of high CDKA;1 kinase activity 
during Arabidopsis meiosis I and II which is in line with with the observation that hypo-
morphic mutants of the Cdk1/Cdk2 homolog CDKA;1 are viable, but completely sterile due 
to aberrant microspore production (Dissmeyer et al. 2007; Dissmeyer et al. 2009; Nowack 
et al. 2012). CDKs depend for their kinase activity on binding to cyclins, two of which 
have shown to be essential for proper meiotic progression in Arabidopsis. SOLODANCERS 
(SDS) has similarities to A- and B-type cyclins and is crucial for CO formation. SDS forms 
active complexes with CDKA;1 and not with other Arabidopsis CDKs (Harashima and 
Schnittger 2012). The second one, TARDY ASYNCHRONOUS MEIOSIS (TAM, CYCLIN A1;2) 
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(Bulankova et al. 2010; Wang et al. 2010; Wang et al. 2004), also forms active complexes 
with CDKA;1 (Cromer et al. 2012) and is essential for the transition of meiosis I to meiosis 
II and functions in a complex regulatory network with late meiotic genes (Bulankova et 
al. 2010; d'Erfurth et al. 2010).

Additional evidence of the involvement of CDKs in plant meiosis comes from studies 
on Pairing homoeologous 1 (Ph1) in allohexaploid wheat, a locus that controls homologue 
recognition. When present, homologous chromosomes pair and recombine, whereas de-
letion of Ph1 leads to pairing and CO formation between not only homologues, but also 
homoeologues of the A, B and D genome. Ph1 harbors a number of inactive Cdk2-like al-
leles (Griffiths et al. 2006), that suppress the activity of Cdk2 like genes on other chromo-
somes. The artificial upregulation of kinase activity phenocopies ph1 like effects (Knight 
et al. 2010), suggesting that high Cdk2 activity leads to homoeologous pairing. Doing the 
opposite (i.e., increasing Ph1 dosages) was shown to lead to a loss of CO-formation and 
the presence of univalents at metaphase I (Feldman 1966). This suggests that the fidelity 
of CO formation is heavily dependent on CDK dosages. 

We set out to elucidate the function of CDKA;1 in male Arabidopsis meiosis, at the cyto-
logical and molecular level. Using an allelic series of hypomorphic mutants, we show that 
CDKA;1 is required for chromosome condensation, CO formation and the transition from 
meiosis I to interkinesis and the completion of meiosis II. Importantly, in a hypomorphic 
allele in which meiosis is only mildly compromised, CO-interference is released and the 
recombination landscape profoundly changed towards a more distal CO-localization on 
chromosomes. Our data suggest that CDKA;1 is crucial for the imposition of CO-interfer-
ence on class I crossovers and points to interference strength as a key component for 
shaping recombination landscapes. We also show results that suggest that CDKA;1 gives 
rise to differences between male and female genetic maps in Arabidopsis.  

Materials and methods

Plant materials
We used three previously generated hypomorphic alleles of CDKA;1, called CDKA;1T161D 
(cdka;1-D), CDKA;1T14D;Y15E (cdka;1-DE) and PROCDKA;1:CDKB1;1 (Dissmeyer et al. 2007; Diss-
meyer et al. 2009). A fourth allele cdka;1-DBD was constructed as follows. The construct 
was fused by PCR with Pfu polymerase (fermentas) to wild-type Arabidopsis CDKA;1 
(At0g12345) cDNA and CYCLINB1;1 (At0g12345) genomic DNA. The fusion was flanked 
by Gateway attB1 and -2 sites and recombined in pDONR201 (Invitrogen). Primer com-
binations used for the CDKA;1 fragment were ND10-ss_attB1:CDKcoreN and ND18-as_
CDKcoreC:DBovlpN and ND19- ss_DBcoreN:CDKovlpC and ND21-as_DBcoreC:attB2 for 
the CYCLINB1;1 part (Table 1). The two fragments were fused in a final PCR with ND10-
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ss_attB1:CDKcoreN and ND21-as_DBcoreC:attB2. The destruction box motif 30-RQVLG-
DIGN-38 was changed by two substitutions (C/Arg>G/Gly and C/Leu>G/Val) to 30-Gxx-
VxxIxN-38 according to (Weingartner et al. 2004) by site-directed mutagenesis on the 
previously described entry clone with PfuTurbo (Stratagene) using primers ND90-ss_
B11_dead and ND91-as_B11_dead in order to generate the CDKA;1-DBD variant. After se-
quencing, the obtained Gateway entry clones were recombined with the binary Gateway 
destination vector pAM-PAT-GW-ProCDKA;1 (Nowack et al. 2006). Resulting expression 
vectors conferring phosphinothricin resistance were retransformed into Agrobacterium 
tumefaciens GV3101-pMP90RK (Koncz and Schell 1986) and transformed into heterozy-
gous cdka;1+/- by floral dip (Nowack et al. 2006).

To study meiotic recombination in cdka;1-DBD, a Col-0 (heterozygous for cdka;1-1 and 
cdka;1-DBD) was crossed with a newly isolated cdka;1 allele (cdka;1-3) in the Landsberg 
erecta (Ler) background (heterozygous for cdka;1-3 and cdka;1-DBD). We obtained Col/
Ler F1 hybrids in a cdka;1-/- DBD background. Backcrosses to either Col or Ler were made 
to generate cdka;1-DBD BC1 populations. We made control crosses with WT Col-Ler F1’s 
reciprocally to Col, generating both male and female derived BC1 populations. All crosses 
were made at the same moment, under similar growth conditions in a greenhouse under 
standard long day growth conditions. For construction of the cdka;1-1/spo11 double mu-
tant, we used the spo11-1-1 allele N646172. Plants were grown under standard greenhouse 
conditions under long day regimes (16 hrs day). Primer sequences used for spo11 geno-
typing: N646172U and N646172L (Table 1).

Cytogenetic analysis 
Meiotic cell spreads and slides for Fluorescent in situ hybridization (FISH) were made 
from whole flower buds, using standard protocols (Ross et al. 1997). We used probes for 
the coding sequences of the 18S–25S rDNA plasmid PTa71 of Triticum aestivum (Gerlach 

ND10-ss_
attB1:CDKcoreN

AACACAAGTTTGTACAAAAAAGCAGGCTTCAACAATGGATCAGTACGAGAAAG

ND18-as_
CDKcoreC:DBovlpN

AGAAGTCATCATAGGCATGCCTCCAAGATCCT

ND19-ss_
DBcoreN:CDKovlpC

GGAGGCATGCCTATGATGACTTCTCGTTCGATTGTTC

ND21-as_
DBcoreC:attB2

GGGGACCACTTTGTACAAGAAAGCTGGGTTCAAACAATCTTTTCTTTCT-
GTTTCTTCT

ND90-ss_B11_dead GTAGCGAAAGGAAGAAACGGTCAAGTTGTTGGTGATATCGGTAATGTTG

ND91-as_B11_dead GAACAACATTACCGATATCACCAACAACTTGACCGTTTCTTCCTTTCGC

N646172U: AATCGGTGAGTCAGGTTTCAG

N646172L: CCATGGATGAAAGCGATTTAG

Table 1. Primer sequences used in this study
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and Bedbrook 1979) and plasmid PCt 4.2 containing the Arabidopsis full coding sequence 
of 5S rDNA (GenBank: M65137.1). These were directly labeled with 7-Diethylaminocou-
marin-3-carboxylic acid succinimidyl ester (DEAC; Perkin Elmer, http://www.perki-
nelmer.com) and Cyanine dye 3.5 (CY3.5; Amersham, http://www.gelifesciences.com/) 
respectively and hybridized using a standard protocol (Tang et al. 2008). Immunolabel-
ling also followed standard protocols (Chelysheva et al. 2010). A Zeiss Axioplan micro-
scope equipped with an epifluorescence filterset was used for analysis. Images were 
captured with a Photometrics Sensys 1305 x 1024 pixel CCD camera, and processed with 
ImageJ (http://rsbweb.nih.gov/ij/) and Adobe Photoshop.

Genetic analysis 
BC1 offspring were genotyped using a previously described marker-
set (Wijnker et al. 2012) based on co-dominant KASPar SNP probes 
(http://www.kbioscience.co.uk/reagents/KASP.html). Genetic maps were constructed 
with Joinmap (Stam 1993) using regression mapping and a fixed order of makers based 
on known map positions (http://www.kyazma.nl/index.php/mc.JoinMap/)

Statistics 
A χ2 goodness of fit test was used to see whether the observed number of COs per chro-
mosome fits a Poisson distribution. We combined observed CO counts for the smallest 
classes to ensure that the expected Poisson estimate was at least 5. We used α=0.01, and 
applied a Bonferroni correction to correct for multiple testing. 

Results

CDKA;1 localizes on chromosome axes during meiotic prophase
For a detailed understanding of the role of CDKA;1 in meiosis, we first analyzed the ex-
pression pattern of CDKA;1 using plants that express a StrepIII-tag-CDKA;1 fusion con-
struct known to completely rescue the cdka;1 mutant phenotype (Pusch et al. 2012). In 
figure 1 all chromosomes are fully stained with an Immunofluorescent signal, that ap-
pears to be continuous, except for the nucleolar organizer and pericentromere regions.

Meiotic progression in cdka;1 D/DE hypomorphs 
The previously described hypomorphic alleles cdka;1-D and -DE have strongly reduced 
kinase activity and were found to exhibit identical meiotic phenotypes during male 
meiosis (see materials and methods). In wildtype (WT) meiosis chromosomes condense 

http://www.gelifesciences.com/
http://rsbweb.nih.gov.ij/
http://www.kbioscience.co.uk/reagents/KASP.html
http://www.kyazma.nl/index.php/mc.JoinMap/
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during early prophase, leading to full pairing during pachytene (Figure 2 WT: a). The 
chromosome structures then diffuse, followed by chromosome condensation towards 
diakinesis (Figure 2 WT: b). Five pairs of bivalents become visible, that align on a meta-
phase I plane, and homologues segregate to opposite poles at anaphase I, giving rise to 
two daughter nuclei separated by an organelle band (interkinesis). The nuclei then un-
dergo a second meiotic division in which chromosome condensation is followed by the 
segregation of sister chromatids, generating a tetrad with four haploid spores (Figure 2 
WT: c-f).

Chromosome morphology in the cdka;1 hypomorphs resembles WT at early meiotic 
stages, but the typical pairing of a pachytene stage is absent (Figure 2 cdka;1 DE: a). Chro-
mosomes then condense at diakinesis, but univalents become visible instead of bivalents 
(Figure 2). These are rod shaped and show fuzzy borders. The univalents in mutant late 
diakinesis cells are about twice as big as single chromatids in WT telophase II, suggest-
ing that cdka;1 chromosomes consist of two chromatids and did undergo premeiotic S-
phase. In 4 out of 30 metaphase/anaphase I cells we observed sister-chromatid segrega-
tion at metaphase I.

Meiotic progression in cdka;1 hypomorphic mutants is highly disturbed after di-
akinesis, and hence made unequivocal interpretation of subsequent stages impossible. 
Chromosomes either form loosely organized groups or remain as single chromosomes 
following meiosis I that decondense into chromatin masses. At least part of the cells give 

Figure 1. Immunolocalization of CDKA;1 on a WT male prophase nucleus. a) DAPI stained chromatin 
of a pachytene nucleus. Note the strongly stained centromeres and rDNA (a.o. lower left) that appear 
as bright white spots; b) Immunofluorescence of CDKA;1 shows all chromosome axes, except for cen-
tromeres and rDNA; c) ASY1, a protein marker for prophase chromosome axes co-localizes with DNA 
and centromeres; d) overlay of a, b and c.

Figure 2 (next page)
Meiotic atlas of cdka;1 hypomorphs and double mutants. All images are DAPI stained nuclei of pollen 
mother cells. WT: d) interkinesis; e) metaphase II; f) Tetrad stage. cdka;1 DE: d) interkinesis, e) tetrad-
like late meiocyte (note there are roughly 10 chromosome domains), f) typical microspore. cdka;1/
spo11: e) telopase I or possibly metaphase II, f) tetrad like stage, g) typical image of microspore like 
stage in which three chromatin masses are visible. PROcdka;1:CDKA1;1: e) telophase I / metaphase II like 
stage, f) interkinesis, g) tetrad like stage. cdkb1;1-DBD e) interkinesis, f) anaphase II (note the long, de-
condensed chromosomes), g) tetrad stage.
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rise to interkinesis-like stages where two daughter nuclei are separated by a clear or-
ganelle band. In these interkinesis nuclei, the chromosomes occupy apparent distinct 
domains within a nucleus like structure. A clear second meiotic division has not been 
observed. Occasionally, a phragmoplast becomes visible within the organelle band at 
interkinesis (5 out of 42 cells), indicating that cell division is in progress at this stage 
(Figure 2 d-f). We also find numerous polyads in which chromosomes display as about 
ten unstructured chromatin masses, after which cytokinesis commences. These cells do 
not display a clear well defined organelle band. The observation that microsporocytes 
contain about 10 chromosomes in loose aggregates suggests that sister chromatids do 
not separate. Moreover, we have no indications that these cells undergo a second meiotic 
division.
 

Asynapsis in cdka;1 does not result from impaired function of SPO11 or SDS
To genetically disentangle the function of CDKA;1 we constructed the double mutant of 
hypomorphic cdka;1-D with spo11. Such mutants show a phenotype different from cdka;1 
(Figure 2, cdka;1/spo11). The meiotic prophase of the double mutant is asynaptic (like 
the spo11 and cdka;1-D single mutants, leading to the formation of univalents at diaki-
nesis). Univalents in cdka;1/spo11 double mutants are indistinguishable from the spo11 
single mutant, in being rounded and having sharp edges, and differ from the more dif-
fuse univalents in cdka;1 hypomorphs. This implies that spo11 is epistatic over cdka;1 and 
suggests that the poor condensation phenotype of the cdka;1 single mutant results at 
least in part from DSB formation. Equally, the higher chromosome condensation in the 
cdka;1 spo11 double mutant suggests that SPO11 is at least partially active in the cdka;1 hy-
pomorphs, which is consistent with the occasional fragments that we observe in cdka;1 
meiocytes. Homologues segregate at meiosis I, forming dyads or polyads after meiosis 
I. However, we did not find metaphase II cells and we did not observe cells with a phe-
notype similar to cdka;1 hypomorphs with polyad-like cells showing loose aggregates of 
decondensed chromosomes. 

To further analyze the requirement of CDKA;1, we performed immunofluorescence 
microscopy of ASY1 (Sanchez-Moran et al. 2007) and DMC1 on meiotic prophase I nuclei 
of cdka;1-D/DE hypomorphs. Continuous ASY1 foci are formed along the chromosomes 
(Figure 3), suggesting that high levels of CDKA;1 activity are not required for the forma-
tion of lateral elements and loading of ASY1 on the chromosomes. The observation that 
the pattern of DMC1 foci does not differ from WT meiosis indicates that DSBs are formed 
in a cdka;1 hypomorphic mutant background and that SPO11 is functional at low CDKA;1 
levels. Taken together, these data suggest that the requirement of CDKA;1 in meiosis lies 
downstream of SPO11, ASY1 and DMC1.
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CDKA;1 function cannot be compensated by other kinases
Previous studies have shown that the function of CDKA;1 in mitosis can be partially sub-
stituted by CDKB1;1 (Nowack et al. 2012). To clarify this, we asked to what degree CDKB1;1 
could also rescue cdka;1 null mutants in meiosis. We therefore analyzed homozygous 
cdka;1-/- mutants with a PROCDKA;1:CDKB1;1 expression construct, in which CDKB1;1 is driv-
en from a CDKA;1 promoter. We can then also evaluate whether the D/DE hypomorphic 
transformants display mild or “leaky” phenotypes that are expected in these lines. 

The phenotypes of these PROCDKA;1:CDKB1;1 hypomorphs are highly similar to those 
of the cdka;1 D/DE hypomorphs. The prophase is completely asynaptic, and gives rise 
to rod-shaped univalents at diakinesis with poorly defined “fuzzy” borders, similar to 
cdka;1 hypomorphs (Figure 2, PROCDKA;1:CDKB1;1: b). No fragments were observed. Like in 
cdka;1 D/DE mutants, meiotic progression is highly disturbed beyond diakinesis. Homo-
logues and sister-chromatids segregate at meiosis I giving rise to unbalanced meiosis I 
products. All or most of the sister chromatids segregate in 4 out of 20 anaphase I cells, 
giving rise to two daughter cells consisting of both chromosomes and chromatids. These 
cells then form polyad–like cells, similar to cdka;1 D/DE hypomorphs. Metaphase II cells 
are uncommon and like in cdka;1 D/DE hypomorphs we observed occasional progression 
of cytokinesis after meiosis I (Figure 2).

PROCDKA;1:CDKB1;1 plants exhibit meiotic phenotypes that are highly reminiscent 
of cdka;1 D/DE hypomorphs. Up to diakinesis their phenotypes are is similar showing 
complete achiasmatic meiosis, and rod-shaped univalents at metaphase I. A main dif-
ference is the regular segregation of chromatids at metaphase I (16 out of 20 events) in 
PROCDKA;1:CDKB1;1. Execution of meiosis II was only observed once. In 4 out of 25 events we 
observed that chromosomes segregated without segregating chromatids at metaphase 
I. In 4 out of >70 late meiotic stages we noted presence of chromosome fragments in the 
cytoplasm, which presumably originate from fragmentation at metaphase I. The segre-

Figure 3. Immunolocalization of DMC1 and ASY1 in cdka;1 D/DE. a) DAPI stained chromatin. b)
ASY1 localizes onto chromosome axes in D/DE, similar as in WT (cf. Figure 1); b) DMC1 shows a
punctuate staining in cdka;1, displaying the loading of DMC1 onto chromosome axes; c) Overlay of
the two images using the lighten blending mode in Adobe Photoshop CS6.
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gation of chromatids at metaphase I is more prevalent in PROCDKA;1:CDKB1;1 than in cdka;1 
D/DE hypomorphs, again suggesting a role for CDKA;1 in sister-chromatid cohesion.

Meiotic progression in cdka;1 DBD: a partial loss of function allele of CDKA;1
The inviability of D/DE spores precludes an analysis of CDKA;1 function beyond meiosis. 
Therefore, we scanned through other cdka;1 mutant alleles that were generated in our 
laboratory (unpublished data). Among these mutants we found one allele (DBD) of which 
the phenotype of which the sporophytic growth was hardly distinguishable from WT 
(in contrast to the smaller size of cdka;1 D/DE), with the exception of showing strongly 
reduced fertility (producing 0-5 seeds per fully grown plant). 

Cytological analysis of cdka;1-DBD pollen mother cells revealed that the meiotic pro-
phase is largely unaffected: we observed complete pairing of homologues at pachytene 
(Figure 2, cdka;1-DBD: a). The first aberrations become evident at metaphase I when 1/3 
(15 out of 44) metaphase I cells show the presence of univalent pairs (Figure 4, a-c). In 

addition, chromosomes appear less condensed at metaphase I, concordant with observa-
tions on the cdka;1 D/DE hypomorphs. Following a partial desynaptic prophase, meiotic 
progression is largely regular, with the occasional aberrations related to univalent seg-
regation at metaphase I (i.e., lagging chromosomes, unbalanced segregation and occa-
sional polyads). We found cells at metaphase I in which homologues were held together 
by very thin chromatin threads, or in which homologue pairs segregated precociously 
(15 out of 44 events). This could suggest that some COs locate extremely distal on the 
chromosomes in cdka;1-DBD. Progression through metaphase II is regular, with the ex-
ception that anaphase chromosomes are clearly less condensed as in WT meiosis (Figure 
2: cdka;1-DBD: e). 

Upregulation of kinase activity during meiosis has previously been shown to af-
fect the fidelity of homologue recognition in wheat and leads to homoeologous pairing 
(Knight et al. 2010). Such effects are thus not to be expected in cdka;1 hypomorphs in 
which CDKA;1 activity is thought to be low. Even though non-homologous pairing was 
not suggested by our observations of pachytene and metaphase I stages in DBD (the con-
densation patterns of homologues joined by chiasmata are identical), we verified the for-

Figure 4. Metaphase I in cdka;1-DBD. The images a-c suggest occasional precocious homologue segrega-
tion in cdka;1-DBD; b) FISH using 5S (red) and 45S (blue) rDNA probes demonstrates that only chromo-
somes with identical FISH patterns (homologues ) form crossovers.
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mation of COs between homologues through fluorescent in-situ hybridization, using 5S 
and 45S rDNA probes that allow the identification of homologues at metaphase I, which 
shows that the cdka;1-DBD hypomorphs indeed form COs between homologous chromo-
somes (Figure 4d).

CDKA;1 shapes the recombination landscape 
We made cross-pollinations between cdka;1-DBD and WT plants in order to assess spore 
viability. Infertility was found to result from female meiosis, as only DBD-pollen fre-
quently gave rise to offspring. To further analyze the meiotic behavior of cdka;1-DBD, 
we generated F1 hybrids between the Arabidopsis accessions Columbia (Col) and Lands-
berg erecta (Ler) in a cdka;1-DBD background (see M&M). These F1’s were backcrossed 
as males using WT Col and Ler as female parents. BC1 offspring were genotyped with 36 
SNP markers spanning the entire genome. 754 Recombination events were detected in 
147 WT offspring and 758 recombination events in 216 cdka;1-DBD offspring. In cdka;1-
DBD we note an average number of 3.5 COs per BC1, against 5.1 in WT (Table 2), sug-
gesting a decrease in recombination frequency. We then constructed genetic maps using 
Haldanes mapping function (see supplemental figure 1). We noted that genetic intervals 
at the distal ends of chromosomes are longer in cdka;1-DBD in comparison to WT. Appar-
ently, the recombination landscape changed in DBD.

In Arabidopsis genetic maps one usually corrects for CO-interference to estimate the 
total genetic map length. But for a proper comparison of total genetic map lengths be-
tween WT and DBD it is important to verify whether CO-interference is affected in DBD. 
We thus asked whether observed changes in recombination frequencies could be attrib-
uted to differences in CO-interference. Since our SNP markers are near evenly spaced 
at roughly 4 Mb apart, the incidence of double crossovers (DCOs) (here defined as CO 
events that are present on either side of a specific SNP) can be used as a (rough) ap-
proximation of CO-interference (Table 2). With 0.20 (WT) and 0.19 (cdka;1-DBD) detected 
events per offspring plant, DCO incidence is similar for both populations. However, we 
noted a remarkable difference in the distribution of DCOs over the different chromo-
somes. Arabidopsis chromosomes 2 and 4 are the shortest chromosomes, and have the 

Chromosome WT (n=147) DB_dead (n=216)

COs Mean SD DCOs COs Mean SD DCOs

1
2
3
4
5

184
121
157
112
180

1.25
0.82
1.07
0.76
1.22

0.96
0.65
0.82
0.73
0.87

4
1
9
3

13

152
143
155
132
176

0.79
0.72
0.77
0.69
0.77

0.79
0.72
0.77
0.69
0.77

7
8
9
7
9

total 754 5.12 30 758 3.5 40

Table 2: Detected numbers of crossovers (COs) and double crossovers (DCOs) in WT and cdka;1-DBD
BC1 (male) offspring. See text for details.
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smallest genetic maps in male meiosis (Giraut et al. 2011; Wijnker et al. 2012). In our WT 
population we noted that DCO incidence on the smallest chromosomes is very small (4 
events in 147 offspring) whereas in cdka;1-DBD DCOs are equally likely on all chromo-
somes. This suggests that CO-interference might be affected in cdka;1-DBD.

The fit of a CO distribution to a poisson distribution is a widely used indicator for the 
presence of interference (Higgins et al. 2004; Qi et al. 2009). Consistent with previous 
findings (Drouaud et al. 2006), the distribution of COs in WT was significantly different 
from a random distribution (α = 0.01) (Figure 5). In contrast, the DB-dead population was 
not significantly different from a poisson distribution, indicating that COs in cdka;1-DBD 
are randomly placed onto chromosomes. 

For a proper comparison of the total genetic map lengths of WT and cdka;1-DBD we 
used different approaches for calculating meiotic maps of both popolations. WT male 
total genetic map length was estimated using the Kosambi mapping function which cor-
rects for CO-interference (supplemental figure 3). This WT map measures 532 cM, which 
is very close to previous reports, with largely similar segregation distortions (Supple-
mental Figure 2) (Wijnker et al. 2012). We used the Haldane mapping function to esti-
mate the total genetic map length for cdka;1-DBD, because this does not correct for CO-
interference. Since low levels of interference cannot be excluded, the map length might 
be slightly overestimated. The cdka;1-DBD total genetic map measures 411 cM, which is 
~20% shorter than WT male meiosis (Supplemental Figure 3). We observed some differ-
ences in segregation distortions between cdka;1-DBD and WT (see Supplemental Figure 
2). 

The genetic map of cdka;1-DBD is not only shorter than that of WT meiosis, but also 
shows remarkable differences in the relative sizes of the genetic intervals. Distal inter-
vals become longer, whereas intervals in the middle of chromosomes become smaller as 
compared to WT. Figure 6 illustrates the changes of genetic map length relative to the 
same interval in WT meiosis.

It was previously shown that Arabidopsis male meiosis differs from female meiosis 
by having more COs positioned at the chromosome ends, near telomeres (Drouaud et 
al. 2007; Giraut et al. 2011). Finding that low levels of CO-interference lead to an enrich-
ment of COs at chromosome ends, and a depletion in the chromosome middle, we asked 
whether the CO landscape in female meiosis, in which interference strength is known to 
be stronger, might show a CO landscape opposite to that of cdka;1-DBD. To this end a map-
ping population was analysed for WT female meiosis analogous to the WT male mapping 
population, by fertilizing a WT Col-Ler F1 hybrid with WT pollen (using the same F1 hy-
brids as used for generation of the male meiotic map). Hundred and six offspring were 
generated and genotyped using the same SNP markerset. A genetic map was generated 
(Kosambi mapping function) with a total length of 328 cM which is highly similar to pre-
viously generated maps (Giraut et al. 2011) (supplemental figure 3), and unusual segrega-
tion distortions were not observed (supplemental figure 2). The relative differences in 
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recombination rates in the various intervals are compared for the three populations in 
figure 6. 

The comparison of the relative genetic interval lengths of WT male meiosis with 
cdka;1-DBD male and WT female meiosis shows that decreases in recombination in 
cdka;1-DBD are almost perfectly mirrored by relative increases in recombination in fe-
male meiosis. For cdka;1-DBD that show an increase in recombination relative to WT, 
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Figure 5. Observed numbers of COs fitted to a Poisson distribution in WT (left) and cdka;1-DBD (right). 
Observed numbers of COs per chromosome are given in grey bars. Expected numbers based on random 
distributions are estimated using a Poisson distribution (dark lines).
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female meiosis shows almost invariably the inverse by increased recombination. The 
pattern of relative recombination increase and decrease for cdka;1-DBD is U-shaped for 
chromosomes 3, 4 and 5, but somewhat irregular on chromosome 1. The reasons for this 
are unclear, but might be related to unique chromatin dynamics for this chromosome 
(Supplemental discussion). 

The intervals covering the complete short arms of chromosomes 2 and 4 (and to 
smaller extent) the distal end of the long arm of chromosome 2 do not show opposite 
recombination changes in cdka;1-DBD and WT female meiosis as compared to WT male 
meiosis. The two short arms flank the nuclear organizing regions (NORs) and the satel-
lites harboring the 45S rDNA and show a relative recombination increase in both cdka;1-
DBD and female meiosis. The short arm of chromosome 4 harbors a well known inver-
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Figure 6. Crossover distributions of WT compared with female and cdka;1-DBD meiosis. Note that nearly 
all intervals that are longer in DBD than in WT male, are smaller in WT female, and vice versa. The red 
horizontal line represents the recombination in WT male (i.e., everything is normalized there, setting 
rf’s in male to 1). The thin dotted lines denote the marker positions. The black triangle shows the posi-
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sion between Ler and Col, which disrupts recombination. But since the genetic interval 
covering the chromosome 4 short arm also covers co-linear sequences and both chromo-
some 2 and 4 show the same pattern, we favor another explanation. Giraut et al. (2011) 
showed that there is a sharp rise in recombination frequency in male meiosis very close 
to the NORs in male meiosis. Our SNP markers are not placed at the most distal end, for 
which reason we may have missed COs near telomeres and the NOR. The use of addition-
al markers more close to the NOR might show that WT male recombination in this distal 
interval is in fact higher, which would potentially correct the sharp rise of recombina-
tion frequencies in both female and cdka;1-DBD in figure 6.

Discussion
To investigate the requirement of the major cell cycle kinase CDKA;1 for Arabidopsis mei-
osis, we used an allelic series of hypomorphic mutants that allowed the study of an oth-
erwise barely viable null mutant (Nowack et al. 2012). The cdka;1-D and cdka;1–DE hypo-
morphs have strongly reduced CDKA;1 kinase activity. A nearly similar phenotype was 
seen in plants rescued with a PROCDKA;1:CDKB1;1 expression construct, in which CDKB1;1 is 
driven from a CDKA;1 promoter. A fourth allele is cdka;1-DBD in which kinase activity is 
higher, presumably intermediate between WT and the other hypomorphs. 

Meiosis in an allelic series of CDKA;1 hypomorphs
In cdka;1-DBD, the cdka;1 allele showing the mildest phenotype, one would expect that 
only those processes that require the highest kinase activity are affected. Cytogenetic 
analyses pointed to aberrant chromosome morphology, as witnessed by rod-shaped, 
“fuzzy” univalents; compromised CO-assurance, as shown by a desynaptic prophase I 
following a fully paired pachytene; and we noted the loss of CO-interference as well as 
distinct changes in the recombination landscape as CO-events occur more frequently at 
distal chromosome ends.

At lower CDKA;1 kinase activity in the cdka;1-D/DE hypomorphs, chromosome pair-
ing and CO-formation are completely lost. Chromosomes condense poorly at diakinesis 
as in cdka;1-DBD and display a loss of sister chromatid segregation at meiosis I. After 
meiotic prophase I only part of the meiocytes form clear interkinesis-like stages, but 
most form groups of with groups of more or less partly condensed chromatin masses, 
after which cytokinesis commences. it seems that meiosis stops at this stage as no later 
stages are observed. When CDKA;1 is completely removed, and CDKA;1 is substituted 
for CDKB1;1 (in PROCDKA;1:CDKB1;1), the phenotype is largely similar to cdka;1-D/DE hypo-
morps, although we note in addition to the above that sister-chromatid cohesion appears 
further compromised (as witnessed by the segregation of sister-chromatids in 3/4th of 
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anaphase I cells). Interestingly, we see that the second meiotic division is sometimes 
executed when CDKB1;1 replaces CDKA;1. 

Overseeing the diversity of different phenotypes, CDKA;1 appears to be required for 
the fidelity of different processes. Table 3 lists various Arabidopsis meiotic proteins that 
are discussed here, and indicates the presence of predicted CDK phosphorylation target 
sites based on amino acid sequences that are characterized by a specific sequence of 
amino acids: [S/T]-P-X-[R/X]. It is worth noting that in most groups of proteins there is 
at least one protein highly dependent on phosphorylation, which does not a priory point 
to the disruption of a specific meiotic process in cdka;1 meiosis. The requirements of 
CDKA;1 for meiosis are discussed in the following.

CDKA;1 requirement during early prophase
Immunolocalization of CDKA;1 on WT meiotic cells spreads shows that CDKA;1 co-lo-
calizes with euchromatin during zygotene, and we noted the absence of a fluorescent 
signal on centromeres and rDNA regions. At early pachytene no more signal is observed 
on chromosomes on paired regions. Since the disappearance of a fluorescent signal 
coincides with the loss of ASY1 (which has previously been shown to remain present 
throughout pachytene at paired regions), the disappearance of CDKA;1 could be an ar-
tifact rather than an indication of true absence. These data nevertheless suggest that 

protein function cyclin bind-
ing [R/K]-X-L

predicted CDK 
phospho sites

minimal 
[S/T]=P

maximal [S/T]-
P-X-[R/K]

SPO11-1 DSB formatinon 3 2 2 -

ASY1 Axis protein 10 5 5 1

DMC1 Strand invasion 2 - - -

REC8 Sister chroma-
tid cohesion

3 9 9 3

OSD1 APC/C inhibitior 3 7 7 3

RBR1 CDKA;1 inhibitor 10 16 16 8

TAM 
SDS

Meiotic cyclin
Meiotic cyclin

2
7

5
6

5
6

-
-

ZYP1a 
ZYP1b 
MER3/RCK 
MSH4
MSH5 

Class I COs / ZMM
Class I COs / ZMM
Class I COs / ZMM
Class I COs / ZMM
Class I COs / ZMM

10
11
6
4
6

4
3

12
-
2

4
3

12
-
2

-
-
3
-
-

MUS81
EME1A
EME18
FANCM

Class II COs
Class II COs
Class II COs
Class II COs

4
7
7

14

3
5
8

23

3
5
8

23

-
-
1
3

Table 3. Predicted CDK phosporylation sites of meiotic proteins mentioned in the text
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CDKA;1 physically interacts with chromatin during the early meiotic prophase. Interest-
ingly, the presence of full staining of chromosomes that we observed is different from 
the localization pattern of Cdk2 and Cdk4 in mouse and Cdc28 in budding yeast, for both 
of which a distinct punctuate staining was reported (Ashley et al. 2001; Zhu et al. 2010). 
Apart from localization to chromatin in zygotene, also the loss of chromosome pairing 
in cdka;1-D/DE points to a requirement of CDKA;1 in early meiotic prophase. Our obser-
vations have shown that a variety of early meiotic processes are still properly execut-
ed: pre-meiotic S-phase, DSB formation, ASY1 and DMC1 loading onto chromosomes. All 
these processes are either independent of CDKA;1, require only very low CDKA;1 kinase 
activity or suggest there is functional redundancy with other kinases. Importantly, the 
absence of pachytene pairing we observed in cdka;1-D/DE is not a downstream effect of 
impaired SPO11 action and the loss of DSB formation. This marks a clear difference to 
yeast where the presence of Cdc28 activity is essential for the formation of DSBs (Hen-
derson et al. 2006; Murakami and Keeney 2008).

As of yet we cannot conclude whether the absence of pachytene pairing in cdka;1 
points to the direct involvement of CDKA;1 in SC-formation, or whether it is a down-
stream effect of an earlier defect. The loss of CO-interference (in cdka;1-DBD) and SC 
formation (cdka;1-D/DE) are often associated with mutations in the ZMM pathway that 
forms class I COs. ZMM mutants usually show the loss of a SC (zyp1) (Higgins et al. 2005), 
usually coupled to a strongly (85%) reduced crossing over as in ZIP4 (Chelysheva et al. 
2007), MSH4, MSH5 (Higgins et al. 2004; Higgins et al. 2008b) and AtMER3 (Chen et al. 2005). 
Since in cdka;1-DBD we do not note such a 85% CO-reduction and cdka;1-D/DE shows the 
complete loss of CO-formation, it seems unlikely that cdka;1 phenocopies ZMM mutants. 
Nevertheless, it is possible that CDKA;1 acts onto ZMM proteins though phosphorylation 
and while most classic ZMM proteins like ZYP1 or MSH4/ MSH5 are not highly packed 
with phosphosites, MER3 is a notable exception (see table 3). 

So, the absence of chromosome pairing could well be a downstream effect of CDKA;1 
function. Our observation that in a cdka;1 spo11 double mutant the condensation phe-
notype of cdka;1 disappears, suggests the direct involvement of CDKA;1 in DNA repair. 
Interestingly, such a role has previously been suggested for the meiotic cyclin SDS (De 
Muyt et al. 2009), the mutation of which leads to impaired loading of DMC1 onto chromo-
somes. We note however that asynaptic phenotype of cdka;1 is not a simple phenocpoy of 
the SDS mutation, since DMC1 localization in cdka;1 is not affected. 

CDKA:1 is required in late meiosis
Following the asynaptc prophase in cdka;1-D/DE, meiotic progression after diakinesis/
anaphase I is strongly compromised. The same was observed for the cdka;1/spo11 double 
mutant. Interkinesis is occasionally observed, but chromosome decondensation seems 
impaired, and in many cells chromosomes persist as partially decondensed chromatin 
masses until cytokinesis proceeds. These observations are very similar to observations 
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in Caenorhabditis elegans cdk1 and cdk7 mutants in which a diakinesis arrest takes place 
while chromosomes are present as chromatin masses (Wallenfang and Seydoux; Boxem 
et al, 1999). 

Two proteins with many phosphorylation sites have before been implicated in mei-
otic cell cycle progression before and are known to interact with CDKA;1. These are RET-
INABLASTOMA RELATED (RBR) and OMISSION OF SECOND MEIOTIC DIVISION (OSD1) 
(Chen et al. 2011; d'Erfurth et al. 2009). RBR is a known cell cycle inhibitor, and presum-
ably the low kinase activity is not enough to overcome the inhibitory action of RBR dur-
ing meiosis. OSD has recently been shown to act as inhibitor of the anaphase promoting 
complex (APC/C) (Cromer et al. 2012) and it is well possible that also the compromised 
action of OSD might cause difficulties in execution of metaphase II. 

CDKA;1, the recombination landscape and heterochiasmy
The construction of the cdka;1-DBD hypomorph provides a unique insight into the im-
pact of lowering CDKA;1 kinase activity on recombination landscapes. Our data show 
that CO-interference at least in part got lost and that COs occur more distally than in 
WT meiosis. We also noted a decrease in total genetic map length, but the observation 
that COs localize more distally in cdka;1-DBD suggests that some COs go undetected and 
might underestimate the genetic map length. 

Our data provide the first evidence of the involvement of a major CDK in CO-inter-
ference, but the molecular base for this relation is still unclear. In the case of CDKA;1, 
the loss of CO-interference does not lead to increases in recombination rates, suggesting 
that CO-interference is not the limiting factor in CO-number. A more striking correlation 
is the apparent inverse relation between the cdka;1-DBD and WT-female genetic maps in 
comparison to the WT male meiotic map (Table 4). Our data strongly suggest that the 
phenotypes of WT-female meiosis, WT-male meiosis and cdka;1-DBD male meiosis repre-
sent a continuum in which CO-interference strength decreases from WT female meiosis 
to meiosis in cdka;1-DBD. In intervals in the physical chromosome middle, recombination 
is relatively high in WT female meiosis, whereas it decreases in cdka;1-DBD. 

The strength CO-interference apparently covaries with the distal or proximal locali-
zation of COs. When we consider previous reports of the higher CO-interference strength 
in Arabidopsis female meiosis (Drouaud et al. 2007). Our inability to examine female re-

Cdka;1-DBD WT male WT female

CO-localisation Distal Intermediate Proximal

CO-Interference Low (or absent) Medium High

CO-number Medium (or high?) High Low

Table 4: Summary of observations of CO-localization, CO-interference and CO-number in our three 
mapping populations. The interference strength for female meiosis is inferred from (Drouaud et al. 
2007)
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combination in a cdka;1-DBD background is unfortunate, as it precludes us of assessing 
whether the effect seen in male meiosis is similar in female meiosis. The use of yet new 
alleles that either show an even milder phenotype, or increases of CDKA;1 activity would 
be very helpful to see whether indeed CO-interference strength is directly controlled 
by CDKA;1 kinase activity. From our data we predict that increasing CDKA;1 activity in 
male Arabidopsis meiosis would induce a recombination landscape that is more close to 
female meiosis.

The activity of CDKs is tightly controlled during the cell-cycle and is kept stable 
though multiple regulatory mechanisms. This regulation is likely mediated through cy-
clins, the CDK chaperones that mediate CDK kinase activity. CDK activity could present 
a master switch to regulate the CO-landscape, both between species, but also within 
species. Sex specific recombination rates (heterochiasmy) have been shown to be pretty 
variable between species (Lenormand and Dutheil 2005). In Brassica oleracea for exam-
ple, female meiosis shows the longer map whereas in Arabidopsis the male map is longer 
(Kearsey et al. 1996).

CDKA;1 might act through condensins 
It has become clear in recent years that key regulators of chromosome architecture and 
chromosome dynamics are multi-subunit protein complexes known as condensins (Hi-
rano 2005). Condensins are direct targets of mammalian CDK1 (Sánchez and Dynlacht 
2005), and Xenopus Cdc2 (Kimura et al. 1998), and packed with phosphosites, although 
most of these sites do not follow the standard [S/T]-P-X-[R/X] consensus sites, suggest-
ing that either CDKs show relaxed specificity for these substrates, or that there are other 
kinases that also act upon condensins (Bazile et al. 2010). Even though various kinases 
likely act upon condensin, it is the CDKA;1 homologs (CDK1, Cdc2 and others) that are 
specifically required for the initial activation of supercoiling action of condensing (Hag-
strom et al. 2002; Kimura et al. 2001; Kimura et al. 1998; St-Pierre et al. 2009). 

Condensins have been implicated in meiosis of Arabidopsis (Siddiqui et al. 2003), S. 
cerevisiae (Yu and Koshland 2003) and C. elegans (Mets and Meyer 2009). Mutant pheno-
types include poor chromosome compaction, impaired SC assembly, chromosome mis-
segregation and (DSB-dependent) anaphase bridges in yeast (Yu and Koshland 2003). In 
addition, mutants in specific condensin subunits in C. elegans have recently been shown 
to affect crossover placement and lead to reductions in CO-interference (Mets and Meyer 
2009). Research on Arabidopsis condensins has not revealed such compelling similarities 
(Siddiqui et al. 2003), but this does not necessarily argue against condensin dependent 
action in cdka;1 hypomorphs. The presence of two different, likely redundant condensin 
complexes in Arabidopsis might well obscure a clear vision of condensin requirement in 
plant mitosis and meiosis (Siddiqui et al. 2003). The moment of action of condensins in 
C. elegans lies at the CO/NOC decision (Tsai et al. 2008). This directs attention (again) to 
the very early prophase (i.e. before SC formation), in which we suspected the critical ac-
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tion of cdka;1 D/DE hypomorphs would lie. As of yet, we can however not substantiate a 
CDKA;1 - condensin interactions in Arabidopsis with experimental data.

CDKA;1 mimics Ph1 
Ph1 has previously been shown to be a suppressor of homoeologous pairing in wheat 
and the Ph1 locus allegedly ensures a constitutive low expression of Cdk2 like kinases, 
promoting pairing between homologues instead of homoeologous chromosomes. The 
precise way in which Ph1 acts is currently unknown, but there is a multitude of evidence 
that chromatin remodeling during meiotic prophase is of key importance (Colas et al. 
2008). The presence of Ph1 causes a constitutive low activity of mammalian CDK2 like 
genes (Yousafzai et al. 2010a; Yousafzai et al. 2010b). Increasing copy number would be 
expected to lower the CDK activity in these plants even more. Our cdka;1-DBD nicely phe-
nocopies wheat lines with multiple doses of (Ph1) (Feldman 1966), in which increasing 
dosages of Ph1 led to the occurrence of univalents at metaphase I. 

A model by Bazile et al. (2010) suggested that (mitotic) condensin action is most sensi-
tive to low CDK activity and relatively insensitive to high levels of CDK activity. Such a 
hypothesis would nicely reconcile with Ph1 action. Low CDK activity could mediate the 
differential compaction of homoeologous chromosomes, thereby promoting homologous 
chromosome pairing. Higher levels of CDK activity will push the cells through prophase 
much more quick, leaving less time to differentially remodel their chromatin, and find 
their true homologous partners. Direct evidence for differential chromatin remodeling 
in our data is few, but the observation that chromosome 1 behaves differently under low 
CDKA;1 activity (Supplemental Discussion), at least suggests that such dynamics might 
be at play. 
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Supplementary discussion 

As for most chromosomes in our mapping populations, chromosome 1 shows relative 
increases and decreases in recombination for cdka;1-DBD and WT-female of opposite di-
rection (text figure 6). But the pattern on chromosome 1 is clearly more irregular than 
the recombination in- and decreases as seen in for example chromosome 5 (see main 
text). We therefore wondered whether this could be due to specific attributes of chromo-
some 1. For this we made graph (above) comparing the total genetic map length (in cM, y-
axis) of all five chromosomes in relation to their physical lengths (x-axis, data from TAIR; 
http://www.Arabidopsis.org/). Map lengths for WT male and female populations were 
estimated using the kosambi mapping function, and cdka;1-DBD map was estimated us-
ing the Haldane mapping function. 

Note that the physical- and genetic map lengths correlate very well for all three 
populations, except for the largest chromosome 1, depicted by the three most right data 
points. In WT male and female populations, a larger physical length (in Mbp) strongly 
correlates with higher CO numbers (R2 values of 0.93 and 0.97 respectively), which is 
visible by a linear trend in the accompanying figure. Correlation is much lower in cdka;1-
DBD (R2 value of 0.26). 

 

 

 
 

http://www.Arabidopsis.org/
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The poor correlation of genetic and physical map length in cdka;1-DBD is mainly 
caused by chromosome 1. Chromosome 1 is not well known for having notable physical 
features like 5S or 45S rDNA. There is one specific feature of chromosome 1 that might 
be of interest here, which is that chromosome 1 is a fusion product of two ancient chro-
mosomes, and still harbours an ancient centromere (Hansson et al., 2006). If chromatin 
dynamics underlie chromosome condensation, it might be possible that under certain 
conditions, the chromatin of Arabidopsis chromosome I might still react differently to 
specific kinase levels than chromatin that was not once part of a centromere

Hansson, B., Kawabe, A., Preuss, S., Kuittinen, H. & Charlesworth, D. Comparative gene mapping 
in Arabidopsis lyrata chromosomes 1 and 2 and the corresponding A. thaliana chromosome 1: 
recombination rates, rearrangements and centromere location. Genetics Research 87, 75-85 
(2006).
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Supplementary Figures

Supplementary Figure 1: Joinmap linkage maps of the five Arabidopsis thaliana
chromosomes.           120

Supplementary Figure 2: Segregation distortions in WT and cdka;1-DBD offspring.   121

Supplementary Figure 3: Joinmap linkage maps of the five Arabidopsis thaliana
chromosomes comparing WT male, WT female and cdka;1-DBD.     122
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Suppl. Figure 1. Joinmap linkage maps of the five Arabidopsis thaliana chromosomes. Genetic maps of 
WT male meiosis are shown left, and cdka;1-DBD male meiotic maps right. Recombination frequencies 
were estimated using Haldane mapping function.
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Columbia Landsberg erecta

Suppl. Figure 2. Segregation distortion in WT and cdka;1-DBD offspring. WT male data are shown on 
top. These show a slight difference with previous data, as in our WT cross where we observed an over-
representation of Columbia chromosome 1 in offspring, whereas Wijnker et al. (2012) show an over-
representation of only the long arm of chromosome 1. Segregation distortions for WT female are shown 
in the middle, and the lower graph represents cdka;1-DBD. Note in cdka;1-DBD that there is a strong 
segregation distortion on the top of chromosome 2, possibly due to segregation of the cdka;1-DBD res-
cue construct, which may have been present on the Ler chromosome 2.
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Suppl. Figure 3. Joinmap linkage maps of the five Arabidopsis thaliana chromosomes comparing esti-
mates of WT male (left) and WT female (right), both corrected for interference using the Kosambi map-
ping function. The cdka;1-DBD male map is shown in the middle, and is not corrected for interference (by 
using Haldane mapping function).
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On (our view of) evolution…

Ik droomde, dat ik langzaam leefde .... 
langzamer dan de oudste steen. 
Het was verschrikkelijk: om mij heen 
schoot alles op, schokte of beefde, 
wat stil lijkt. ‘k Zag de drang waarmee 
de bomen zich uit de aarde wrongen 
terwijl ze hees en hortend zongen; 
terwijl de jaargetijden vlogen 
verkleurende als regenbogen ..... 
Ik zag de tremor van de zee, 
zijn zwellen en weer haastig slinken, 
zoals een grote keel kan drinken. 
En dag en nacht van korte duur 
vlammen en doven: flakkrend vuur. 
- De wanhoop en welsprekendheid 
in de gebaren van de dingen, 
die anders star zijn, en hun dringen, 
hun ademloze, wrede strijd .... 
Hoe kón ik dat niet eerder weten, 
niet beter zien in vroeger tijd ? 
Hoe moet ik het weer ooit vergeten ?

M. Vasalis, 

(In: ‘Uit Parken en Woestijnen’, 1940). 
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Summary
•  Chromosomal rearrangements are relatively rare evolutionary events and can be used as markers 
to study karyotype evolution. This research aims to use such rearrangements to study chromosome 
evolution in Solanum.
•   Chromosomal rearrangements between Solanum crops and several related wild species were inves-
tigated using tomato and potato bacterial artificial chromosomes (BACs) in a multicolour fluorescent in 
situ hybridization (FISH). The BACs selected are evenly distributed over seven chromosomal arms con-
taining inversions described in previous studies. The presence ⁄ absence of these inversions among the 
studied Solanum species were determined and the order of the BAC-FISH signals was used to construct 
phylogenetic trees.
•   Compared with earlier studies, data from this study provide support for the current grouping of 
species into different sections within Solanum; however, there are a few notable exceptions, such as 
the tree positions of S. etuberosum (closer to the tomato group than to the potato group) and S. lyco-
persicoides (sister to S. pennellii). These apparent contradictions might be explained by interspecific 
hybridization events and ⁄ or incomplete lineage sorting.
•   This cross-species BAC painting technique provides unique information on genome organization, 
evolution and phylogenetic relationships in a wide variety of species. Such information is very helpful 
for introgressive breeding.

Introduction
Chromosome painting based on fluorescent in situ hybridization (FISH) can detect in-
dividual chromosomes in nuclei and cell complements, and represents one of the most 
common cytogenetic methods for establishing structural and numerical chromosomal 
variants in all eukaryotic model species, including yeast, Arabidopsis and man (Lysak 
et al., 2001; Schubert et al., 2001). The method is also very powerful in demonstrating 
large-scale chromosomal rearrangements that may be responsible for or accompanied 
by unique events leading to evolutionary divergence (e.g. Müller et al., 2003). In plants 
chromosome painting has been a big challenge for a long time because repeats in pooled
DNA probes from isolated chromosomes paint all chromosomes equally and thus do not 
allow such probes to detect individual chromosomes (Schubert et al., 2001). This issue 
was overcome by Lysak et al. (2001) who selected repeat-poor bacterial artificial chromo-
somes (BACs) covering whole chromosome arm euchromatin regions as probes for FISH 
detection of individual Arabidopsis thaliana chromosomes. Later comparative painting 
studies of Arabidopsis BAC probes on chromosome complements of related Brassica spe-
cies under lower stringency allowed comparative chromosome painting among related 
species, revealing the evolution of their karyotypes (Lysak et al., 2003, 2007; Lysak & 
Lexer, 2006). Recently, the production and allocation of various tomato and potato BAC 
libraries has allowed adaptation of the cross-species BAC-FISH mapping technique to 
Solanum crops and wild species, and revealed cytogenetic evidence of known and novel 
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chromosomal rearrangements between tomato, potato and related Solanum species (Io-
vene et al., 2008; Tang et al., 2008; Lou et al., 2010). 

The study of the genetic and cytogenetic relationship between tomato and potato has 
a long history. Gottschalk’s (1954) pioneering work in chromosome morphology revealed 
a surprising similarity in overall chromosome morphology among tomato, potato and 
several other Solanum species. Later studies of the genetics and genomics of Solanum 

Chromo-
some (To-
mato (T))

wilde relative of tomato potato (P) Eggplant 
(E)

Pepper (C) Citation1

5 5S inversion 5L + 12 L 
5S and 5L 
inversion

5S and 5L 
inversion

a, b, c, d

6 Mi-homologues on 6S inverted in 
S. peruvianum PI 128657; 6S Inver-
sion in S. juglandifolium LA2788  

Upper2 6 inversion Co-linear  a, f, e, j  

7 7S Inversion in S. pennellii LA716 Two inverted 
segments

Upper2

7 scattered
a, d, i

9 9S inversion Nine inver-
sions

 Nine in-
versions;
additional 
rearrange-
ments  

a, b, c

10 10S Inversion in S. jug-
landifolium LA2788; 
10L inversion in S. sitiens LA1974 
and S. Lycopersicoides LA2951

10L inversion 5S + 12S + 
10L Lower2

10 inversion

Lower2  
10 inver-
sion

a, b, c, f, h

11 11S inversion
11 inversion 
4S + 11S

11S inver-
sion Lower2

T11S = C12L
11S inver-
sion (indi-
cation)

 a, b  

12 12S proximal inversion in S. chilense 
LA0458 Reciprocal translocation 
with 8S in S. ochranthum LA3650 
and S. Juglandifolium LA2788

12S inversion 
12S + 11L
Lower2

12 inversions 
with T and P  

Upper  
T = E = C

Upper2

T=E=C
Transloca-
tion 12S 
11S

a, b, g, j

Tomato (S. lycopersicum) is used as the reference. Chromosome arms are named with numbers (chromosome num-
ber) followed by either S (short arm) or L (long arm). 
1) a, Doganlar et al. (2002); b, Tanksley et al. (1992); c, Bonierbale et al. (1988); d, Livingstone et al. (1999); e, Seah 
et al. (2004); f, Canady et al. (2006); g, Stamova & Chetelat (2000); h, Pertuzé et al. (2002); i, van der Knaap et al. 
(2004); j, Albrecht & Chetelat (2009).
2) Description of the chromosome part is according to Doganlar et al. (2002)

Table 1. Overview of chromosomal rearrangements in Solanum and Capsicum based on comparative 
genetic mapping 
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crops revealed large-scale synteny (Bonierbale et al., 1988; Tanksley et al., 1992; Grube 
et al., 2000; Doganlar et al., 2002; Fulton et al., 2002; Wu & Tanksley, 2010), but also dem-
onstrated varying numbers of translocations and inversions between tomato (Solanum
lycopersicum), potato (S. tuberosum), eggplant (S. melongena) and pepper (Capsicum spp.) 
(Table 1). Such major chromosomal rearrangements, which are supposedly relatively 
rare and independent events, are one of the dramatic processes that shape the genome 
and the karyotype, and thus can be used as phylogenetic markers for the study of chro-
mosome evolution in the Solanaceae family.

Phylogenetic relationships between Solanum species have been the subject of various 
studies (e.g. Bohs & Olmstead, 1997; Weese & Bohs, 2007). Many studies have focused on 
the economically important species of section Lycopersicon (wild and cultivated toma-
toes, e.g. Peralta & Spooner, 2001; Spooner et al., 2005; Peralta et al., 2008), section Petota 
(wild and cultivated potatoes, e.g. Spooner & Raul Castillo, 1997; Jacobs et al., 2008) and 

Species Accession ⁄introgression 
line ⁄cultivar

Taxonomy1

Solanum peruvianum LA2172 Section
LycopersiconS. peruvianum LA2157

S. habrochaites G1.1290

S. habrochaites G1.1560

S. pimpinellifolium G1.1554

S. habrochaites f. glabratum CGN.1561 

S. lycopersicum Heinz 1706

S. chilense LA1969

S. pennellii LA716

S. lycopersicoides CGN90124  
(PI255549 or PI365378) 

Section
Lycopersicoides

S. ochranthum LA2166 Section Juglandifolia

S. etuberosum PI558054 Section Etuberosum

S. bulbocastanum PI275198 Section Petota

S. tarijense CGN22729

S. megistracrolobum PI458396

S. pinnatisectum GLKS2268

S. tuberosum RH-89-039-16; van der 
Voort et al. (1997) 

S. melongena Half Lange Violette and MM738 Section Melongena
1) The taxonomic classification is according to Peralta et al. (2008) except for S. melongena that belongs to sub-
genus Leptostemonum, section Melongena.

Table 2. Plant materials used for this study.
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the interrelationships between these groups (Spooner et al., 1993; Rodriguez et al., 2009). 
The different types of data used in these studies (morphology, AFLPs, sequences of chlo-
roplast DNA, internal transcribed spacer (ITS), the GBSSI gene and COSII markers) have 
often resulted in conflicting phylogenetic reconstructions. 

In this paper we present the analysis of inversion events as a parameter of chromo-
somal evolution in Solanum species, with an emphasis on species related to tomato and 
potato. We detected chromosomal rearrangements by cross-species BAC-FISH using to-
mato and potato BACs as probes on chromosome complements of various Solanum spe-
cies of the tomato and potato clade. With S. melongena as the outgroup representative, 
we constructed a phylogenetic tree that was then compared with a generalized tree de-
rived from a number of the studies mentioned above. We discuss the power of this chro-
mosome painting technique in relation to other techniques such as comparative genetic 
mapping (Wu & Tanksley, 2010), DNA sequences comparison (Wang et al., 2008; Wu et al., 
2009a,b) and chromosome paring analysis of F1 hybrids (de Jong et al., 1993; Anderson et 
al., 2010).

Materials and Methods

Plant materials
The plants used in this study were from section Lycopersicon (six species), section Ly-
copersicoides (one species), section Juglandifolia (one species), section Etuberosum (one 
species) and section Petota (five species) (Table 2). In addition, two eggplant cultivars 
were included (Table 2). Plants were grown in a glasshouse and young flower buds were 
collected in the morning and immediately fixed in freshly prepared acetic acid ⁄ ethanol 
(1 : 3) at 4 °C. The next day, the flower buds were transferred to 70% ethanol for storage at 
4 °C. In total, 18 tomato and 17 potato BACs (Fig. 1) were selected covering seven chromo-
some arms (chromosomes 5, 6, 7, 9, 10, 11 and 12; five BACs per chromosome arm), where 
previous papers on comparative genetics suggested inversions. All BACs were repeat-
poor, except for H146I19 that hybridized to the heterochromatin of several chromosomes 
of all species of the subsection Lycopersicon. This BAC was used because no repeat-poor 
BAC was available in the middle of the euchromatin on the short arm of chromosome 12.

Slide preparation
Slides were prepared according to the protocol of Szinay et al. (2008) with the following 
minor modifications. The standard enzyme mix containing 1% pectolyase Y23 (Sigma 
P-3026), 1% cellulase RS (Yakult 203033; Yakult Pharmaceutica, Tokyo, Japan) and 1% cy-
tohelicase (Bio Sherpa 24970-014) was diluted 10 times with 10 mM sodium citric buffer 
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(pH 4.5) for most of the species. For species that have pollen mother cells with thick cal-
lose walls the dilution was less: Solanum melongena (three times dilution); S. pennellii, S. 
lycopersicoides and species of section Petota (two times diluted stock). 

BAC labelling 
BACs were isolated as described in Szinay et al. (2008). In some cases we used the High Pure 
Plasmid Isolation Kit (Roche 11754785001) (Szinay et al., 2008). BAC DNA was labelled by 
nick translation following the manufacturer’s protocol (Roche (http://www.roche.com). 
The following direct labelling systems with dXTPs were used: Cy3-dUTP (Amersham, 
http://www.gelifesciences.com/), Cy3.5-dCTP (Amersham) and Diethylaminocoumarin-
5-dUTP (DEAC; Perkin Elmer, http://www.perkinelmer.com), and two indirect labelling 
systems of dUTPs labelled with biotin and digoxigenin, respectively. For painting BACs 
on chromosome 12, we used Cot-100 DNA to block labelled repetitive sequences in BAC 

<=>

5 6 7 9 10 11 12

euchromatin

heterochromatin

centromere

potato BACs

tomato BACs

H261K11
RH052M07

RH113I18

RH081B09

RH167013 H158P14
H054K13
H251G05
H250I21

H304P16

E110K10
H162M15
H033O01
H037D07
H030C22

H179M08
RH074O04

RH135I22
RH081D15
RH061A13

RH083G18

RH097I18

RH204G21

RH162O21

RH074L14

H140M01

RH166B06

RH048F15

RH049J10

RH184D02

H206G16

H146I19
H150C12

H021L02

H013B20

Figure 1. Chromosomal location of tomato (Solanum lycopersicum) and potato (Solanum tuberosum) 
BACs on the seven studied chromosome arms, based on BAC-FISH signals on the tomato chromosomes.

http://www.roche.com
http://www.gelifesciences.com/
http://www.perkinelmer.com
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H146I19 from hybridization (Peterson et al., 1998; Chang et al., 2008). Cot-100 DNA was 
isolated according to Szinay et al. (2008). 

FISH procedure and data analysis 
FISH was performed according to the protocols of Rens et al. (2006) and Szinay et al. 
(2008) with the following modifications. Hybridization was carried out for 2 or 3 d, fol-
lowed by a post-hybridization wash in a series from 82% to 64% formamide at 42°C 
(Schwarzacher & Heslop-Harrison, 2000) for 3 - 5 min. The biotin-labelled probes were 
amplified three times for 45 min with streptavidin conjugated with Cy5 (Invitrogen, 
http://www.invitrogen.com/site/us/en/home.html) and biotinylated.anti-streptavidin 
(Vector laboratories, http://www.vectorlabs.com/). The digoxigenin-labelled probes 
were amplified twice with anti.digoxigenin-FITC (Roche, http://www.roche.com) and 
anti-sheep-FITC (Invitrogen, http://www.invitrogen.com/site/us/en/home.html). Mi-
croscopy and FISH data interpretation were carried out as described by Szinay et al. 
(2008). 

Phylogenetic analysis 
The order of the BAC FISH signals was established on selected chromosome arms (Fig. 1), 
except for chromosome 5 and 12 on S. melongena. Doganlar et al. (2002) pointed out that 
the short arms of chromosome 5 and 12 of tomato translocated to chromosome 10 of S. 
melongena. We thus used missing values for BACs on chromosome 5 and 12 on S. melon-
gena. In addition, BAC H037D07 on chromosome 7 and RH162O21 on chromosome 11 were 
not included in the phylogenetic analysis as a result of their insufficient hybridization on 
S. etuberosum and S. melongena. 

We explored a number of coding strategies and methods of analysis. We used SoRT2 
(Huang et al., 2010) to infer a phylogenetic tree based on pairwise genome rearrange-
ment distances. Treeview was used to visualize the output files of SoRT2 (text files in Ne-
wick format) and to root the tree with S. melongena. In another approach, we coded dif-
ferent BAC-orders as (unordered) character states for each chromosome and performed 
a maximum parsimony (MP) analysis with PAUP v4.0 (Swofford, 1999) (MP, chromosome 
coding). In a third approach, we adopted the method of Müller et al. (2003) to derive dis-
crete characters by coding the presence or absence of adjacent chromosomal segments 
in a binary data matrix. A MP analysis on this data matrix was performed in PAUP v4.0 
(Swofford, 1999) and Jackknife analyses were performed with 10 000 replicates (MP, seg-
ment coding). The most parsimonous evolutionary history of the events on the investi-
gated chromosome arms was reconstructed and illustrated as a phylogenetic tree in Fig. 
4 (left panel). 

The topology of our phylogenetic reconstruction was compared with a generalized 
tree derived from published phylogenies of a similar set of materials (Spooner et al., 

http://www.invitrogen.com/site/us/en/home.html
http://www.vectorlabs.com/
http://www.roche.com
http://www.invitrogen.com/site/us/en/home.html
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1993, 2005; Peralta & Spooner, 2001; Rodriguez et al., 2009). The material investigated 
in those studies included representatives of section Etuberosum (usually S. etuberosum, 
sometimes also S. palustre), section Petota (represented by a varying number of species), 
sec.tion Lycopersicoides (with S. lycopersicoides and S. sitiens), section Juglandifolia (S. 
juglandifolium and S. ochranthum) and section Lycopersicon (S. lycopersicum and related 
species). The trees in the papers by Peralta & Spooner (2001, Fig. 4), Spooner et al. (2005, 
Fig. 7) and Rodriguez et al. (2009, Fig. 4) show an identical topology, while the tree in the 
paper from Spooner et al. (1993) deviates slightly in placing S. sitiens (section Lycopersi-
coides) closest to S. ochranthum (section Juglandifolia),  separated from the other species 
of section Lycopersicoides and S. juglandifolium. Although these branches have bootstrap 
support of only 51% and 52%, we give an informal ‘consensus topology’ in Fig. 4 (right 
panel). 

Results 

Chromosomal rearrangements revealed by FISH 
For establishing chromosomal rearrangements in the Solanum species we selected BACs 
on seven chromosome arms (Figs 1, 2) that were known from comparative genetic stud-
ies of Solanum crops to contain inversions (Table 1). We use here the term ‘syntenic spe-
cies’ to indicate those species with identical BAC-FISH patterns on all studied chromo-
some arms (Figs 2, 3). The first group of syntenic species (syntenic sp. A) includes potato 
(S. tuberosum) and its wild relatives S. bulbocastanum, S. tarijense, S. megistacrolobum 
and S. pinnatisectum; the second one (syntenic sp. B) comprises tomato (S. lycopersicum) 
and its wild relatives S. peruvianum, S. habrochaites and S. pimpinellifolium. These two 
syntenic species groups show different BAC orders on chromosomes 5, 6, 9, 10, 11 and 12 
(see Fig. 3 for schematic representations, namely 5a, 6a, 9c, 10b, 11a and 12a). 

In comparison to syntenic sp. B: two proximal BACs display an inverted order on 
chromosome 12S (S, short arm) of S. chilense (Fig. 2g; 12b in Fig. 3); all BACs on 6S are 
inverted in S. ochranthum (Fig. 2b, 6a in Fig. 3); two distal BACs on 6S (Fig. 2b; 6b in Fig. 
3); and 7S (Fig. 2c; 7b in Fig. 3) is inserted in S. lycopersicoides and S. pennellii. Between 
S. lycopersicoides and S. pennellii, three proximal BACs on 6S are inverted (Fig. 2b; 6c in 

Figure 2. Opposite page.
BAC-FISH images showing an overview of BACs on pachytene of selected chromosomes. The leftmost 
column shows information on the chromo.some arms with their number followed by S (short arm) or 
L (long arm). The other columns show BAC FISH images on chromosomes of Solanum melongena (S.m), 
S. tuberosum (P), S. etuberosum (S.e), S. ochranthum (S.o), S. lycopersicoides (S.ly), S. pennellii (S.p), S. 
lycopersicum (T, represented by Heinz 1706), S. chilense (S.c). BAC names and their hybridization images 
on a specific chromosome arm are labelled with different colours. There are no images for 5S and 12S 
of S. melongena due to hybridization difficulties.
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Syntenic species A: S. tuberosum, S. tarijense, S. megistracrolobum, S. bulbocastanum, S. pinnatisectum
Syntenic species B: S. pinnatisectum N, S. lycopersicum, S. pimpinellifolium, S. habrochaites.

Figure 3. Schematic overview of chromosomal inversions in Solanum. Arrows indicate likely directions 
of inversions. Below the arrows the inversion events are numbered with a small letter in alphabetic 
order distinguishing the different inversions within one chromosome. Lines indicate inversions with 
unknown directions. Question marks are weak or missing FISH signals. Signals of BACs are shown by 
coloured dots.
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Fig. 3). BAC orders in S. etuberosum are very similar to that in syntenic sp. A, except for 
inverted orders of BACs on 7S, 9S and 10L (L, long arm) (Fig. 2c–e; 7c, 9b and 10b in Fig. 
3). On chromosome 10L, the BAC order in S. etuberosum is similar to the order in syntenic 
sp. B. 

We could not obtain interpretable FISH signals for chromosome arms 5S and 12S of S. 
melongena, which is presumably caused by translocations involving these chromosome 
arms (Doganlar et al., 2002; Wu et al., 2009a,b). In comparison to all other species, BACs 
on 7S, 9S and 10L are inverted in S. melongena (Fig. 2c–e; 7a, 9a and 10a in Fig. 3). The 
order of BACs on 7S is similar to both S. lycopersicoides and S. pennellii (Fig. 3). Interest-
ingly, BAC H251G05 showed double signals on 6S of S. melongena (Figs 2b, 3), which can be 
interpreted as breakpoints in the chromosomal target of this BAC. 

Phylogenetic analysis 
The trees we made differ somewhat depending on the methods used (datasets and re-
sulting trees are presented as Supporting Information Figs S1–S3; Tables S1–S4), but a 
general pattern is clear: S. etuberosum and the clade (polytomy) including S. pinnatisec-
tum, S. bulbocastanum, S. megistracrolobum, S. tarijense and S. tuberosum (syntenic sp. 
A) are placed basal in all trees. The remaining species are joined in a clade in all trees, 
in which all identify a clade joining S. pennellii and S. lycopersicoides, a branch with S. 
ochranthrum, and a branch including S. peruvianum, S. habrochaites, S. pimpinellifolium 
and S. lycopersicum (syntenic sp. B).

Distance-based approaches (SoRT2 by Huang et al. (2010) in our study: Fig. S1; Table 
S1) rely on overall similarity instead of (syn-)apomorphic character states, which make 
us favour the trees based on MP. The most conservative (and least resolved) tree of our 
two parsimony approaches results from a simple coding method in which specific BAC-
orders on chromosomes are considered as (unordered) character states (Fig. S2; Table 
S2). In another approach (proposed by Müller et al., 2003), the presence and absence of 
adjacent loci are used as characters, leading to decidedly higher resolution, as well as 
high jackknife values (82–98%) for all clades except for the combination of the S. lyco-
persicoides ⁄S. pennellii clade with the tomato clade, which received only 74% jackknife 
support (Fig. S3; Tables S3, S4). This method, however, considers the adjacent segments 
as independent characters which they formally are not (i.e. one inversion typically leads 
to two new characters). Because of this, we will use the simplest (and most conservative) 
MP method (based on BAC-orders) as base for our phylogenetic reconstruction. Under 
this method a character state can change to any other state with equal chance. 

Phylogenetic reconstruction 
After deriving a phylogenetic tree using the conservative MP method based on BAC-
patterns (Fig. S2), we used this tree as a starting point to resolve the remaining polyto-
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mies by the analyses described below. The most likely way in which the karyotypes of 
the studied Solanum species evolved are presented in Fig. 3. By inferring ancestral and 
derived states with S. melongena as outgroup, we could place inversion events on the 
branches of our phylogenetic reconstruction (Fig. 4, left panel). This reconstruction is 
identical to the tree produced by MP tree based on segment coding (after Müller et al., 
2003). 

The ancestral state for chromosome 5 could not be established because the order of 
BACs in the outgroup could not be deter.mined. Syntenic sp. A and S. etuberosum show 
a similar order of BACs, which differs from all other species that have the four distal 
BACs inverted. Recent literature (e.g. Peralta et al., 2008) considers the potatoes (section 
Petota) as sisters to the tomatoes s.l. (sections Lycopersicoides, Juglandifolia and Lycoper-
sicon) and section Etuberosum as sisters to the combined group of potatoes and tomatoes 

Previously published tree Evolutionary reconstruction 
S. chilense

S. peruvianum N

S. lycopersicum

S. pimpinellifolium

S. habrochaites

S. pennellii

S. lycopersicoides

S. ochranthum

S. etuberosum

S. tuberosum

S. tarijense

S. megistracrolobum

S. bulbocastanum

S. pinnatisectum

S. melongena

S. chilense

S. peruvianum N

S. lycopersicum

S. pimpinellifolium

S. habrochaites
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S. ochrantum
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S. bulbocastanum

S. pinnatisectum
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Figure 4. The topology of our phylogenetic reconstruction (left panel) in comparison with a generalized 
tree (right panel) derived from published phylogenies of a comparable set of material (see the Materi-
als and Methods section; Spooner et al.,1993; Peralta & Spooner, 2001; Spooner et al., 2005; Rodriguez 
et al., 2009). The polytomy within the potato group in the generalized tree only indicates the lack of 
information about the relationships among these species in the used references. Red lines indicate the 
different positions of Solanum lycopersicoides, S. ochranthum and S. etuberosum. Inversion events that 
were numbered in Figure 3 are indicated on the tree (left panel).
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s.l. Both S. etuberosum and section Petota can thus be considered basal compared to the 
tomatoes s. str. (section Lycopersicon). This leads us to consider the distal inversion (5a in 
Fig. 3) as a synapomorphy for the clade including the remaining species from S. ochran-
thum onward.

The ancestral BAC order for chromosome 6 is similar to our outgroup, as potatoes 
(syntenic sp. A) and S. melongena share the same order. However, there is a difference 
between the groups because the middle BAC shows two foci in S. melongena. This may 
point to a duplication ⁄deletion event (a duplication in S. melongena or deletion in our in-
group) or a small interstitial inversion in which the chromosome breakpoint lies within 
the used BAC. Because S. ochranthum shows a similar BAC order to that of the potato 
clade and S. etuberosum, we consider S. ochranthum as the most basal of the wild toma-
toes (and as such, we place S. ochranthum as a sister to the clade including S. pennellii, S. 
lycopersicoides and S. lycopersicum, Fig. 4). Looking at the remainder of species, the most 
parsimonious solution is to assume a whole arm euchromatin inversion giving rise to 
the order found in syntenic sp. B and S. chilense. A distal inversion then joins S. pennel-
lii and S. lycopersicoides in a clade, and a proximal inversion separates S. lycopersicoides 
from S. pennellii. This hypothesis (placing S. pennellii and S. lycopersicoides as sister taxa) 
contrasts with all existing phylogenetic reconstructions as proposed by Spooner and 
collaborators (Spooner et al., 1993, 2005; Peralta & Spooner, 2001; Rodriguez et al., 2009) 
in which S. lycopersicoides is usually considered (together with S. sitiens) to be sister to a 
clade consisting of the species of section Juglandifolia and section Lycopersicon (includ-
ing S. pennellii). If we follow previously proposed phylogenies, we must assume a com-
plex rearrangement (in which the S. lycopersicoides BAC order is generated directly from 
the ancestral S. melongena⁄potato type), followed by two consecutive inversions giving 
rise to S. pennellii and later to syntenic sp. B. We here favour the simple inversion sce-
nario for two reasons: first, inversions are more common than complex rearrangements 
that involve multiple breaks, as all inversions we found can be interpreted as simple 
inversions; and second, the top inversion on 7S supports the sister group relationship 
between S. pennellii and S. lycopersicoides. 

The ancestral karyotype for chromosome 7 is easily established by the fact that S. 
melongena and Capsicum annuum (data not shown) share the same order of the BACs 
involved. Supporting evidence for this comes from comparative genomics based on COS-
markers which also indicates that S. melongena is collinear with C. annuum (Doganlar 
et al., 2002). A top inversion of the most distal BACs led to the BAC order found in most 
species. Three species show another order of BACs: S. etuberosum has the whole arm 
inverted, and S. pennellii and S. lycopersicoides have the ancestral BAC order. The most 
parsimonious explanation is based on the assumption that a reversal took place in these 
two species, joining these two species together in a clade separate from all other spe-
cies. As mentioned in the Results section on chromosome 6, this concurs well with the 
most parsimonious solution for events that happened for 6S. If we assume that S. lyco-
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persicoides and S. pennellii have the ancestral karyotype, we would introduce various 
inconsistencies to our tree: either various incidences of parallel (convergent) evolution 
in three independent lines, or the placement of S. pennellii and S. lycopersicoides in a po-
sition basal to the potato clade, which is very unlikely given all other information (and 
introducing many conflicts to the tree). 

The evolutionary scenario on chromosome 9 is straightforward. As Capsicum annuum 
and eggplant are collinear (Wu et al., 2009a,b; Wu & Tanksley, 2010), we may assume that 
S. melongena represents the ancestral type. A top inversion gave rise to the BAC order 
found in most species (9a in Fig. 3). A subsequent interstitial inversion of three BACs gave 
rise to the S. etuberosum type, whereas a proximal inversion is unique to S. chilense. 

Chromosome 10L provides a unique insight into the position of S. etuberosum with 
respect to the potato clade. Solanum etuberosum is usually placed basal to a combined 
potato–tomato clade (Fig. 4, right panel). All investigated species (except for our out-
group S. melongena) have the same (green) BAC placed proximally, suggesting that this is 
ancestral for the whole group. The question then is to determine what type (potato type 
or the type of the other species is ancestral). The use of S. melongena as out-group for 
chromosome 10 must be done with caution, as previous research showed that S. melon-
gena experienced extensive rearrangements on chromosome 10. Eggplant 10L is a mosaic 
of tomato chromosomes 5, 10 and 12 (Wu et al., 2009a). The S. melongena type is neverthe-
less very close to the potato type, because it can be obtained by a single whole arm inver-
sion from the potato type, as was also shown by the analysis by Wu et al. (2009a). From 
Wu et al. (2009b) and Wu & Tanksley (2010) it can be inferred that Capsicum annuum 
chromosome 10 has a similar order to the potato. This substantiates the hypothesis of 
the potato ⁄Capsicum-type representing the ancestral state, and the tomato ⁄S. etubero-
sum type being derived. We therefore place syntenic sp. A basal to S. etuberosum, which 
in turn becomes the sister of a group including all other species, including tomato. 

The ancestral state on chromosome 11 is represented by S. melongena, because it 
shares its BAC order with syntenic sp. A and S. etuberosum. The inversion of the four 
most distal BACs joins S. ochranthum with the tomato and other species. Rearrange-
ments on chromosome 12S are straightforwardly placed on the tree. Although due to 
translocations we have no data on eggplant, the proximal position of the green BAC is 
ancestral (i.e. present in all species, except S. chilense). If we are right in assuming that 
syntenic sp. A and S. etuberosum should be placed basally to the other investigated spe-
cies, inversion 12a (Fig. 3) is a shared derived character for S. ochranthum and its sister 
clade (including S. chilense). 

Discussion 
The aim of our study is to use chromosomal rearrangements as phylogenetic markers for 
the study of chromosome evolution in the Solanaceae family. We show that the hybridiza-
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tion of BACs on the chromosomes of crops and their related species enables us to confirm 
directly the genomic collinearity, to show inversions between their homeologues, and to 
reconstruct the most likely way in which the karyotypes of the studied species evolved. 

Comparison to published phylogenies 
The reconstruction of Solanum phylogeny has a long history, in which the proposed in-
terrelationships between potato, tomato and their close relatives have changed many 
times when new data became available. To compare the topology of our reconstructed 
tree (Fig. 4, left panel) with existing data, we constructed a generalized tree derived 
from published phylogenies of a comparable set of material (Spooner et al., 1993, 2005; 
Peralta & Spooner, 2001; Rodriguez et al., 2009). In this generalized tree (Fig. 4, right 
panel), the following sistergroup relationships are present: after the outgroup consecu-
tive branches lead to the representatives of sections Etuberosum, Petota, Lycopersicoides, 
Juglandifolia and Lycopersicon. We note three remarkable differences between our tree 
and the generalized tree: (1) the position of S. etuberosum, (2) the position of S. ochran-
thum, and (3) the presence of a clade containing S. pennellii and S. lycopersicoides. Based 
on the inversion in 10L that S. etuberosum shares with all species higher up in the tree, 
the clade containing potato and its wild relatives (section Petota) is placed basally to 
S. etuberosum in our tree, whereas the reverse is suggested by all earlier studies. The 
basal placement of S. ochranthum with respect to S. lycopersicoides is a consequence of 
the order of BACs on chromosome 6. The grouping of S. pennellii in a clade with S. lycoper-
sicoides is supported by S. pennellii and S. lycopersicoides sharing an inversion on chro-
mosome 7 and a presumed additional inversion on chromosome 6. This poses a strong 
contrast with almost all previously published trees where S. pennellii is firmly nested in 
a ‘tomato group’ (Peralta & Spooner, 2001; Spooner et al., 2005; Rodriguez et al., 2009), 
with one exception where S. pennellii was suggested to be closest to S. lycopersicoides 
(Zuriaga et al., 2009). 

Our evolutionary hypothesis is exactly similar to the MP-segments tree that we gen-
erated following the method of Müller et al. (2003), and shows significant differences 
with the phylogenetic trees as previously published. Notably, our data are not the first 
chromosome data that challenge evolutionary relation.ships proposed earlier: a recent 
study on pairing configurations in spreads of synaptonemal complexes of tomato - wild 
species hybrids (Anderson et al., 2010) casts doubt on the proposed phylogeny based on 
chromosome synteny. In that study S. pennellii and S. habrochaites (two species that are 
sister according to Rodriguez et al. (2009)) showed remarkably high levels of pairing ir-
regularities, suggesting that both were equally far apart from one another as they are 
from tomato, which was thought to be more distantly related. 

We also note that the data we obtained for chromosome 10 are not entirely in con-
cordance with previously published data. Compared with the results reported by 
Doganlar et al. (2002) and Wu et al. (2009a), our data showed a reversed orientation of 



140

Chapter 4

BACs on S. melongena for the whole arm. We identified a large inversion comprising most 
of the euchromatic part between S. lycopersicoides and S. tuberosum; while Pertuzé et al. 
(2002) described marker synteny between these two species. In addition, we found that 
S. lycopersicum and S. lycopersicoides are collinear, while Chetelat et al. (2000) suggested 
chromosomal rearrangements between these two species. A possible explanation for all 
of these observed differences is that different accessions were used in the different stud-
ies and that chromosomal rearrangements exist among accessions within one species. 
Another possibility is that the genetic studies misinterpreted the inversions due to low 
marker density or suppression of recombination. 

Previous trees were based on extensive datasets using a multitude of markers, se-
quences and morphological traits. How can we best explain these apparent inconsist-
encies? Chromosomal rearrangements behave no differently from other markers, and 
their correct interpretation might be obscured by similar ‘noise’ to which all characters 
are subjected such as homoplasy (parallel evolution or reversals) or complex modes of 
speciation. The possibility of interspecific hybridization or incomplete lineage sorting 
should surely be considered when studying the evolutionary history of Solanum, espe-
cially in the light of the documented crossability between various investigated species. 
Interspecific hybridization followed by backcrosses to either one of the parents could 
lead to introgression of new alleles into a recipient species. In case of inversions, there 
is the possibility of introgression of whole inversions into a new background, becuase 
recombination will unlikely happen in small inverted segments during meiosis (Verlaan 
et al., 2011). The possibility of hybridization followed by introgression of inverted seg-
ments could account for, for example, the small distal inversions on 6S and 7S that join S. 
lycopersicoides and S. pennellii in a clade separate from other species. 

Notes on rearrangements 
It is remarkable that 75% (12 out of 15) of the inversions we studied involved the most 
distally placed BAC on chromosome arms. It is unknown whether these inversions are 
the result of complete arm inversions (i.e. including the telomere) or whether there was 
a breakpoint in the sub-telomere heterochromatin. 

One inversion on chromosome 7S is remarkable, as it represents the only character 
reversal. Given our observation that 75% of inversions involve the distal-most BAC, the 
occurrence of a distal reversal might not be entirely unpredicted: any breakpoint in a 
similar interval as the inversion preceding it, will in the far majority of inversions result 
in a reversal. We also note that the reuse of chromosomal breakpoints has frequently 
been documented in other species (Wu & Tanksley, 2010). 

When the placement of rearrangements on the phylogenetic tree is considered, inver-
sion events appear to cluster on the branch leading to S. ochranthum and its sister group. 
Such a clustering could point to an evolutionary ‘bottleneck’ in which a small population 
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fixed a number of inversions, radiating into many species at a later point. Alternatively, 
the presence of many rearrangements could be taken to indicate the passage of a long 
time period (assuming something like a constant ‘inversion rate’). The absence of rear-
rangements within the potato clade among the studied wild and cultivated potato spe-
cies suggests that these represent relatively recent splits. This is not surprising in the 
light of recent publications (Jacobs et al., 2008, 2011). The split between the close rela-
tives of tomato (i.e. commonly referred to as the section Lycopersicon) shows consider-
ably more variation, suggesting that these species might have started diverging earlier 
than the potatoes. 

Conclusions 
Our study features advances in molecular cytogenetic tools that support plant genetics, 
genomics and breeding programmes. In general, our data support the current group-
ing of Solanum species into different sections: most previously defined sections are 
identified herein as having an unique order of chromosomal segments. There are nev-
ertheless a few remarkable differences in our phylogenetic reconstruction compared to 
earlier studies. The apparent conflict between our hypothesis and previously proposed 
hypotheses points to the possibility that the evolutionary history of Solanum may have 
seen its share of reticulation: interspecific hybridization followed by introgression of 
inverted segments. Alternatively, incomplete lineage sorting may have played a role in 
the apparent complexity of Solanum phylogeny. 

The progress of more and better sequencing practices will reveal novel and detailed 
information on chromosome rearrangements among species. The occurrence of chro-
mosomal rearrangements stresses the important of a correct physical map in ordering 
scaffolds of related species that are being re-sequenced. The cross-species BAC-FISH 
method as presented here will remain an indispensible tool in comparative genomics as 
it reveals chromosomal rearrangements without a priori de novo sequencing of the spe-
cies involved. In addition, cross-species BAC-FISH can detect chromosomal rearrange-
ments involving heterochromatin areas and vice versa, and so may shed light on possible 
epigenetic changes in the chromosome regions under study. Finally, cross-species BAC-
FISH is a powerful instrument for the detection of pairing failure between introgressed 
homeologous regions thus explaining the absence of crossovers, a phenomenon known 
as linkage drag (e.g. Verlaan et al., 2011). 
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S. melongena (eggplant)

S. etuberosum

S. tarijense

S. megistracrolobum

S. pinnatisectum

S. tuberosum

S. bulbocastanum

S. ochranthum

S. lycopersicoides

S. pennellii

S. chilense

(potato)

S. lycopersicum (tomato)

S. peruvianum

S. habrochaites 

S. pimpinellifolium

Supplemenary figure S1: Phylogenetic tree made using SoRT2 (Huang et al., 2010) based on pairwise 
genome rearrangement distances. The tree was rooted using S. melongena. See supporting Table S1 for 
the corresponding data matrix.
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Supplemenary f igure S2: Maximum Parsimony (MP) tree where BAC - orders were coded as (unordered) 
character states for each chromosome . An MP analysis was executed with PAUP 4.0 (Swofford, 1999) . 
For the corresponding Nexus file, see Supporting Table S2.
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Supplementary figure S3: Maximum Parsimony (MP) analysis based on a method by Müller et al. (2003) 
in which a binary data matrix was generated using the absence or presence of adjacent chromosome 
segments (i.e. BACs). The analysis was performed in PAUP 4.0 (Swofford, 1999) and Jackknife analysis 
was performed with 10,000 replicates (values given on the tree). For the corresponding Nexus file see 
Supporting Table S3; for details on characters and coding see Supporting Table S4.

98

98

82

74
96

90

melongena

pinnatisectum

bulbocastanum

megistracrolobum

tarijense

tuberosum

etuberosum

ochranthum

lycopersicoides

pennelli

habrochaites

pimpenellifolium

lycopersicum

peruvianum

chilense



150

Chapter 4

# This is the sort file for chromosomes 6S, 7S ,9S, 10L and 11S.    
# Data of chromosome 5 and 12 are missing due to translocations 
# For clarity: the 1 2 3 4 5 $ represent the five BACs on chromosome 6S 
# blue was left from analysis on chromosomes 7,9 and red from 11  
# The content of this file can be pasted to: http://bioalgorithm.life.nctu.edu.tw/SORT2/  

> S. melongena.
1 2 3 4 5 $ 6 7 8 9 $ 10 11 12 13 $ 14 15 16 17 18 $ 19 20 21 22 $
> S. tuberosum.
1 2 3 4 5 $ 7 6 8 9 $ 12 11 10 13 $ 18 17 16 15 14 $ 19 20 21 22 $
> S. bulbocastanum.
1 2 3 4 5 $ 7 6 8 9 $ 12 11 10 13 $ 18 17 16 15 14 $ 19 20 21 22 $
> S. pinnatisectum.
1 2 3 4 5 $ 7 6 8 9 $ 12 11 10 13 $ 18 17 16 15 14 $ 19 20 21 22 $
> S. megistacrolobum.
1 2 3 4 5 $ 7 6 8 9 $ 12 11 10 13 $ 18 17 16 15 14 $ 19 20 21 22 $
> S. tarijense.
1 2 3 4 5 $ 7 6 8 9 $ 12 11 10 13 $ 18 17 16 15 14 $ 19 20 21 22 $
> S. etuberosum.
1 2 3 4 5 $ 9 8 6 7 $ 10 12 11 13 $ 18 14 15 16 17 $ 19 20 21 22 $
> S. ochranthrum.
1 2 3 4 5 $ 7 6 8 9 $ 10 11 12 13 $ 18 14 15 16 17 $ 22 21 20 19 $
> S. lycopersicoides.
4 5 1 2 3 $ 6 7 8 9 $ 10 11 12 13 $ 18 14 15 16 17 $ 22 21 20 19 $
> S. pennellii.
4 5 3 2 1 $ 6 7 8 9 $ 10 11 12 13 $ 18 14 15 16 17 $ 22 21 20 19 $
> S. chilense.
5 4 3 2 1 $ 7 6 8 9 $ 10 11 12 13 $ 18 14 15 16 17 $ 22 21 20 19 $
> S. lycper.
5 4 3 2 1 $ 7 6 8 9 $ 10 11 12 13 $ 18 14 15 16 17 $ 22 21 20 19 $
> S. peruvianum.
5 4 3 2 1 $ 7 6 8 9 $ 10 11 12 13 $ 18 14 15 16 17 $ 22 21 20 19 $
> S. habrochaites.
5 4 3 2 1 $ 7 6 8 9 $ 10 11 12 13 $ 18 14 15 16 17 $ 22 21 20 19 $
> S. pimpinellifolium.
5 4 3 2 1 $ 7 6 8 9 $ 10 11 12 13 $ 18 14 15 16 17 $ 22 21 20 19 $

Table S1: Data file used to generate the SoRT2 tree (after Huang et al., 2010). For the corresponding tree 
see Supporting Fig. 1S.

http://bioalgorithm.life.nctu.edu.tw/SORT2/%20http://
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#NEXUS

begin data;
 dimensions ntax=15 nchar=7;
 format missing=? datatype=standard symbols="A B C D";

matrix

melongena
C  A  A  A A  A  D
etuberosum
A  A  B  B  B  A  A
pinnatisectum
A  A  C  C  C  A  A
bulbocastanum
A  A  C  C  C  A  A
megistacrolobum
A  A  C  C  C  A  A
tarijense
A  A  C  C  C  A  A
tuberosum
A  A  C  C  C  A  A
ochranthum
B  A  C  D  B  B  B
lycopersicoides
B  B  A  D  B  B  B
pennellii
B  C  A  D  B  B  B
habrochaites
B  D  C  D  B  B  B
pimpinellifolium
B  D  C  D  B  B  B
lycopersicum
B  D  C  D  B  B  B
peruvianum
B  D  C  D  B  B  B
chilense
B  D  C  D  B  B  C;
end;
 

Table S2: Nexus file used to generate the MP tree given in Supporting Fig. S2.
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#NEXUS

begin data;
dimensions ntax=15 nchar=49;
format missing=? datatype=standard;
matrix
melongena
? ? ? ? 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 0 ? ? ? ? ? ? ? ?
etuberosum
1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0
pinnatisectum
1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0
bulbocastanum
1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0
megistracrolobum
1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0
tarijense
1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0
tuberosum
1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0
ochranthum
0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 1 0 1 1 0 0
lycopersicoides
0 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 1 0 1 1 0 0
pennellii
0 0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 1 0 1 1 0 0
habrochaites
0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 1 0 1 1 0 0
pimpinellifolium
0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 1 0 1 1 0 0
lycopersicum
0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 1 0 1 1 0 0
peruvianum
0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 1 0 1 1 0 0
chilense
0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 1 1 1 1;
end;

Table S3: Nexus file used to generate the MP tree given in Supporting Fig. S3. Coding was executed by 
identifying all adjacent chromosome segments. See Supporting Table S4 for details on characters and 
coding.
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On writing a first review paper…

[…] 

‘Nee, voor mij alleen is het al niet genoeg. Hu!’ ‘Ach, jij’, 
zegt de prins, ‘krent die je daar bent!’ En bij die woorden 
gaat pats boem zijn vrouw tegen de vlakte! Vrouwlief 
heeft haar hele tronie bezeerd, ze ligt op de vloer en huilt. 
En de prins hulde zich in een wijde mantel en keerde terug 
naar zijn toren, daar had hij kooien staan. U moet weten 
dat hij daar kippen fokte. De prins komt dus aan in de 
toren, en de kippen gaan vreselijk tekeer, ze willen eten. 
Een van de kippen is zelfs aan het hinniken geslagen. ‘Hé 
jij daar’, zegt de prins tegen haar, ‘Chanteclair! Stil jij, 
anders krijg je op je bliksem!’ De kip begrijpt niet wat hij 
zegt en hinnikt verder. Het slot van het liedje was dus dat 
er op de toren een kip zat te hinniken, dat de prins liep 
te vloeken als een ketter en dat zijn vrouw beneden op 
de vloer lag – kortom een waar Sodom. 

Dat was dan het verhaal dat Andrej Andrejevitsj 
verzonnen had. Uit dit verhaal valt wel op te maken dat 
Andrej Andrejevitsj een enorm talent is. Andrej 
Andrejevitsj is een heel intelligent man. Heel intelligent 
en heel goed!

Daniil Charms

(In: ‘Een nieuwe  talentvolle schrijver’, 1938; 
Published in: Ik zat op het dak, Uitgeverij Atlas, Amsterdam/Antwerpen, 1999)
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Abstract
Crossover recombination is a crucial process in plant breeding because it allows plant breeders to cre-
ate novel allele combnations on chromosomes that can be used for breeding superior F1 hybrids. Gain-
ing control over this process, in terms of increasing crossover incidence, altering crossover positions on 
chromosomes or silencing crossover formation, is essential for plant breeders to effectively engineer 
the allelic composition of chromosomes. We review the various means of crossover control that have 
been described or proposed. By doing so, we sketch a field of science that uses both knowledge from 
classic literature and the newest discoveries to manage the occurrence of crossovers for a variety of 
breeding purposes.

The plant breeders’ desire to control crossovers 
Plant breeding attempts to combine valuable traits from different parents in new elite 
varieties. These traits are encoded for by genes on chromosomes. The success of a breed-
ing program depends on the ability of plant breeders to bring the desired alleles together 
in one hybrid, both by constructing desired combinations of alleles on chromosomes and 
by designing the right combination of chromosomes. Meiotic recombination has a pivotal 
role in successful plant breeding because the reshuffling of homologues and chromo-
some segments takes place only during meiosis. The maximum obtainable amount of 
meiotic recombination is determined by two factors: the number of chromosomes of a 
plant (random chromosome assortment) and the number and positions of crossovers on 
the pairs of homologous chromosomes (crossover recombination). Plant breeders have 
no direct control over the number of chromosomes, except perhaps by adding artificial 
chromosomes [1], and therefore look for means of imposing control over that other part 
of meiotic recombination: cross-over formation.

Glossary
Crossover recombination: meiotic recombination resulting from crossovers between chromatid 
segments in a chromosome pair.
Doubled haploids (DHs): diploid plants grown from (haploid) spores in which genome duplication 
resulted in diploidy. Chromosomes are identical. DHs are commonly used to directly fix the genotype 
of meiotic spores.
Homoeologous chromosomes: chromosomes from different species that show a higher degree of 
sequence divergence than homologous chromosomes do and display less or no pairing at meiotic 
prophase I. Differences might be of a higher order of magnitude, showing minor structural rear-
rangements such as inversions, translocations or differences in repetitive sequences. Sequence di-
vergence can be so large that crossover formation during meiosis is impaired.
Homologous chromosomes: chromosomes that are sufficiently similar for regular meiotic pairing 
but show a limited (allelic) degree of sequence divergence.
Random chromosome assortment: meiotic recombination resulting from an independent assort-
ment of chromosomes.
Univalent: a single chromosome that is not bound to another by a chiasma at anaphase I.
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In the past, the lack of practical tools for establishing crossover frequencies hampered 
systematic studies on crossover management in crops. Determining specific crossover 
frequencies was costly and laborious and was mostly confined to model species. Nowa-
days, modern methods for high-throughput genotyping and the development of dense 
sets of markers provide the tools for efficiently determining crossover frequencies and 
crossover positions [2]. Research will surely benefit as well from new technologies, such 
as tetrad analysis in a quartet background (Box 1). 

Because they are no longer constrained by technical issues, the interest of plant 
breeders in control over crossover formation is larger than ever before. We explore the 
possibilities for controlling crossover formation and describe how several methods have 
considerable potential. We show how plant breeders can exert influence over crossover 
frequencies, crossover position and crossover allocation to homoeologous regions. It is 
even possible to suppress crossover formation completely and reduce the complexity 
of meiotic recombination to only the random assortment of whole chromosomes. This 
opens up opportunities to extract and fix whole chromosomes from heterozygous com-
plements (i.e. F1 hybrids). In this paper we will focus on mechanistic aspects of crossover 
control and point out methods that can be utilized even without a precise understanding 
of the processes underlying crossover formation (Box 2).

Controlling crossover incidence 
The number and distribution of crossovers during meiosis is tightly constrained. There 
is typically at least one crossover per chromosome pair to ensure proper segregation at 
metaphase I, known as ‘crossover assurance’ [3]. The total number and relative position 
of crossovers on each chromosome is limited to generally one, or perhaps two, per chro-

Box 1. Tetrad analysis in plants
The possibility for tetrad analysis in plants emerged with the discovery in Arabidopsis thaliana of 
the quartet mutant, in which the four meiotic spores remain together [56,57]. In combination with 
fluorescent markers expressed by a pollen-specific promotor, this mutant directly displays the con-
sequences of crossover recombination in pollen grains [58].
Species producing pollen tetrads are widespread among plants [59] and, with the details of the 
quartet mutation known, such phenotypes are possibly inducible in crops [60] or can be identi-
fied directly by mutant screens. Insert lines with fluorescent markers are currently being used for 
Arabidopsis, but the construction of such lines for other species would require a considerable invest-
ment. However, these insert lines could potentially result in methods for evaluating the effects of 
treatments for altering recombination frequencies in crops, which would be of enormous benefit, 
especially since different crops can react differently to certain treatments (as discussed in the main 
text). A rather similar technique was developed for the direct observation of crossovers in seeds 
[61] using insertion lines of fluorescent proteins expressed by seed-specific promotors. Although 
this technique does not require a specific phenotype (e.g. quartet), its application in crops might 
be somewhat more limited because the production of seeds in crops is generally much lower than 
production of pollen.
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mosome arm by interference, a phenomenon distributing crossovers in a non-random, 
semi-uniform pattern [4]. On a smaller scale, crossovers preferentially occur in certain 
areas called ‘recombination hotspots’ [5,6], and the areas with almost no crossovers 
are called ‘recombination cold spots’. In the following section we explore variability in 
crossover incidence and discuss how this can be influenced.

Internal factors, such as genetic background and morphological and developmental 
differences, can have a considerable impact on crossover incidence. Related genotypes 
can have significantly different crossover frequencies, and up to a 30% difference was 
reported among barley (Hordeum vulgare) cultivars [7]. Similarly, differences of 17% 
were found among Arabidopsis accessions [8]. More strikingly, recurrent selection for 
high and low recombining individuals starting from a single heterozygous plant in an F2 
population of lima bean (Phaseolus lunatus) led to a threefold difference in recombina-
tion frequencies in the F6 generation [9].

There is ample evidence for differences between the sexes in crossover frequencies, 
both in plants and animals [10], and this phenomenon is likely to be caused by differ-
ing compaction states of chromatin during meiotic prophase in male and female meiosis 
[11,12]. In addition, crossovers typically locate more distally at male meiosis in Arabi-
dopsis [11]. The physical position of a flower can influence crossover incidence: in Arabi-
dopsis, anthers on secondary or tertiary branches have up to 16% more crossovers than 
those on primary branches [13]. Such effects are species specific: barley and rye (Secale 
cereale), for example, show no variation in crossover incidence in relation to flower posi-
tion [14].

Some reports have shown how external factors, such as environmental influences 
and chemical treatments, can alter crossover frequencies. Random environmental vari-
ation was shown to result in a twofold difference in recombination frequency between 
two linked loci in lima bean [9]. In more controlled experiments in which only tempera-
ture was varied, recombination rates increased with higher temperature in Arabidopsis 
(up to 18%), as had previously been described for species like Hordeum vulgare and Vicia 

Box 2. Controlling crossovers: managing the unknown
Crossover formation is a complex process that is regulated at multiple levels, and factors governing 
crossover formation are still not well understood [62]. It partly depends on the homology search 
that follows double-strand break (DSB) formation in plants [18]. Mismatch repair proteins, which are 
involved in homology search, prohibit recombination between non-homologous segments [63,64]. 
The coordinated remodelling of chromatin affects pairing and recombination affinities between 
chromosomes [34,65], and the placement of crossovers in a pair of homologues is tightly regulated 
(as discussed in the main text). Such processes complicate plant breeders’ efforts to engineer chro-
mosome structure. Although high-throughput screening of large populations is sometimes an option 
for obtaining rare crossovers, recombinants will not always be found. More efficient recombination 
might be required when, for example, alleles in trans of closely linked loci need to be combined. This 
is especially difficult in regions where recombination is suppressed or absent. In yet other cases, 
recombination might be required between chromosomes that do not even pair in meiosis.
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faba, whereas high temperatures decreased recombination frequencies in Allium ursi-
num [13]. Crossover frequency in barley, as in rye, is less susceptible to environmental 
influence [14].

Recombination frequencies can be increased artificially by the use of various chemi-
cal agents or physical stress, such as temperature shock or UV exposure [15]. The feasi-
bility of this approach was originally shown by a study in Hordeum, where actinomycin 
D, as well as diepoxubytane, was shown to lead to a threefold increase in recombination 
frequency between linked markers [16]. A survey study using various chemical agents 
also showed large (roughly two- to sevenfold) increases in recombination frequencies 
by the use of various chemical agents, a fourfold increase by heat shock and threefold in-
crease by UV radiation in Arabidopsis [15]. These data, however, were based on a relative-
ly small number of plants and might be limited to the specific (pericentromere) genomic 
regions that were assessed [17].

In recent years, many proteins involved in crossover formation have been identified 
[18,19]. The possible impact of genetic regulation on crossover formation is illustrated by 
the uncharacterized X-ray sensitive4 (xrs4) mutant of Arabidopsis, in which recombina-
tion frequency in certain regions increased over twofold [20]. Such mutants fuelled the 
idea that either overexpression or silencing of such proteins could modulate recombina-
tion frequencies [21]. However, only a few studies on this topic were published, and the 
extent of their analysis was limited. In tomato (Solanum lycopersicum), overexpression 
of MutL homolog1 (MLH1, which encodes a mismatch repair protein) led to a 10% increase 
in chiasma frequency [22], whereas a genetic interval in Arabidopsis showed a twofold 
increase of recombination frequency upon overexpression of RADIATIONSENSITIVE51 
(RAD51, a gene involved in DNA repair) [23].

Crossovers follow changes in chromosome structure 
The location of crossovers along the chromosome field (i.e. proximal versus distal 
events) is tightly regulated. Whereas in a species like Welsh onion (Allium fistulosum) 
crossovers localize proximally, those in a close relative, Allium cepa, localize distally [24], 
and such distal localization is also found in species such as barley (Hordeum vulgare), 
maize (Zea mays) and wheat (Triticum aestivum) [25]. The occurrence of crossovers is in 
part determined by higher order chromosome structure, and they are less frequent in 
pericentromere areas [26] (Figure 1a). The presence of tandem repeats in distal hetero-
chromatin blocks in A. fistulosum was suggested to move chiasmata away from the ends 
(L. Khrustaleva, personal communication) (Figure 1b). This strong regulation of crosso-
ver placement poses strong constraints on the extent to which the allelic content of a 
chromosome can be changed by crossover recombination. Because some regions are not 
subjected to crossover recombination, loci remain tightly or completely linked, which 
limits breeding potential. In the following section we explore possibilities for altering 
the positioning of crossover events along the chromosome axis. 
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It is known that even a short terminal deletion in one of the pairing chromosomes can 
severely reduce crossover formation in the affected arm [27]. This is likely to be due to 
a disturbed pairing initiation that generally (but not exclusively) starts at distal chro-
mosome ends [28,29]. In one experiment, radiation induced the deletion of the terminal 
end of the short arm of chromosome VI in Petunia hybrida [30]. Crossover formation in 
the truncated arm was severely reduced but, interestingly, there was an up to sevenfold 
increase of crossovers in intervals on the long arm of that same chromosome (Figure 1c). 

A

B

C

D

homoeologous 
segment

deletion

heterochromatin

Figure 1. Examples of how structural changes can lead to crossover shifts. Drawings on the left repre-
sent a chromosome pair at mid-prophase of meiosis I. Solid lines represent chromosome axes; dotted 
lines represent the proteinaceous structure keeping paired homologues together during meiotic pro-
phase (the synaptonemal complex); and small black spheres mark the crossover sites that will later form 
the chiasmata. Green spheres represent the centromere regions. The drawings on the right represent 
the corresponding recombinant chromosomes at anaphase I. (a) Chromosome pairing and crossover 
recombination of a normal chromosome pair. The region around the centromere is the pericentromere, 
which is known to synapse later and is poor in crossover events. In these examples we assume that 
there are two crossovers per chromosome pair and that crossovers occur between only two chromatids 
(in actuality the number of crossovers and the number of recombining chromatids can vary). (b) Pairing 
and recombination in a chromosome pair containing a recently formed large distal heterochromatic 
block (represented in red) in one of the chromosome arms. (c) Pairing and recombination in a pair in 
which one partner has the distal end of one arm deleted. (d) Pairing and recombination for a chromo-
some pair in which one partner has a homoeologous chromosome segment (represented in blue).
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To obtain such deletions, one can use pollen irradiation and then select for the loss of 
dominant distal markers.

Other types of structural variants that change crossover positions are transloca-
tions. Effects of translocations, which also comprise the skewed transmission of alleles 
due to chromosome deficiencies in gametes, can be well observed in chiasma configura-
tions during meiotic prophase. When a chromosome carries a distal translocation, the 
translocation introduces strong heterology at the chromosome end in the chromosome 
pair. This results in a shift of crossovers to interstitial chromosome segments (the area 
between the centromere and the translocation site) [31]. Although such translocations 
might be undesired in breeding programs, they illustrate the mechanism by which 
changes in chromosome structure reallocate crossovers to the homologous sites be-
tween the pairing partners.

A related case of chromosome structure alterations has been described for toma-
to lines carrying introgressed homoeologous segments of related wild species. It was 
shown that the presence of such segments in otherwise homologous chromosome pairs 
affected crossover localization: crossover frequencies increased strongly in adjacent 
homologous sequences [32] (Figure 1d). Comparable observations were made in Lolium-
Festuca hybrids [27,28,33,34] using allotriploid offspring comprising two homologues of 
one species in addition to one homologue of the other. Crossovers in the Lolium and Fes-
tuca parents preferentially form in the distal chromosome regions. In the allotriploids, 
homologous chromosomes behaved similarly, preferentially forming distal crossovers. 
However, when their homoeologous partner joined in trivalents, it formed crossovers 
mostly in proximal regions [33,35] because homoeology disturbs crossover formation at 
the distal chromosome ends. In wheat and Triticeae species, patterns of homoeologous 
recombination were shown to vary between different species and homoeologous recom-
bination can, like the Lolium-Festuca hybrids, be highly localized (reviewed in [36]). 

Approaches for altering crossover localization using transgenic approaches are very 
scarce. Nicolas et al. [36] designed a method for recruitment of SPORULATION-DEFI-
CIENT11 (SPO11) a key protein for crossover initiation, to selected sequences of DNA by 
designing an artificial fusion protein comprised of SPO11 and a DNA-binding domain. The 
DNA-binding domain recruits the fusion protein to binding sites on the DNA and induces 
crossover formation at these sites. This technique has been shown to work well in yeast 
[37], although the induction of double-strand breaks occurs mostly in binding sites in 
open chromatin regions and not, or less, in natural cold spots, such as centromere areas 
[38]. This method, which has been proposed for use in plants, would provide a powerful 
tool for induction of site-specific crossovers. SPO11 could be fused to a variety of dif-
ferent DNA binding domains, thus resulting in a suite of fusion proteins that could, in 
theory, recruit SPO11 to various sites on the DNA. 
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Crossovers in homoeologous regions 
The mechanisms that control crossovers between homologues can be frustrating to 
plant breeders in their attempts to integrate valuable traits through introgressive hy-
bridization. Examples of such traits are genes for resistance or drought tolerance that 
might be found in related species. Typically, a cross is made between a recipient crop and 
a related taxon carrying a trait of interest. This is followed by recurrent backcrosses to 
the crop in which the introgressed homoeologous region is narrowed down, keeping the 
gene of interest and removing ‘wild’ undesired genes (linkage drag). Because crossovers 
are generally suppressed or absent between the introgressed segment and its homoe-
ologous counterpart, it is imperative to find the mechanisms and genes that control the 
pairing between homoeologous segments. 

To induce crossovers in introgressed segments, one can reallocate crossovers to the 
homoeologous region by making the other regions in the chromosome pair even more 
homoeologous [32]. If, for example, crossovers are to be induced in one chromosome arm 
carrying an introgressed segment, one could provide a pairing partner that carries an 
introgressed segment of a more distantly related taxon on the opposite chromosome 
arm. Crossovers then reallocate to the least homoeologous sites. One can predict that 
any rearrangement could be used to direct crossovers to homoeologous regions of inter-
est. In the same study, it was shown that in tomato hybrids, larger homoeologous seg-
ments have a higher incidence of crossovers than shorter segments. This led to the sug-
gestion that in introgression breeding, plant breeders should initially search for those 
plants with the largest alien insert and then select for single crossovers close to the locus 
of interest. Crossing two recombinant lines with crossovers on different sides of the lo-
cus would then reduce linkage drag to a minimum [39]. 

Different genes have been identified that influence homoeologous recombination. 
The best known is Pairing homoeologous1 (Ph1) [40,41], which inhibits homoeologous 
pairing between wheat chromosomes. In the absence of Ph1, pairing and recombination 
between homoeologous chromosomes is frequent, which greatly facilitates introgres-
sive hybridization [42]. However, the constitutive deletion of Ph1 can over time lead to 
rearranged chromosomes in the genome, which can later interfere with further breed-
ing efforts. The use of Ph1 in plant breeding would greatly benefit from means of tem-
porarily switching off the locus [43]. A gene, Pairing regulator in Brassica napus (PrBn), 
with a comparable function was also identified in Brassica [44], but it has not been char-
acterized at the molecular level. It was further hypothesized that during meiosis, the 
knockdown of genes, such as MutS homolog2 (MSH2) or MSH3, that encode mismatch re-
pair proteins might promote homoeologous recombination [45,46]. Knockdown of these 
genes could be achieved, for example, by RNA interference (RNAi) or dominant negative 
suppression, in which a truncated gene disrupts the functioning of protein complexes 
[47]. 
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Preserving elite genotypes 
Most of the cultivars produced by breeders are heterozygous F1 hybrids, which are bred 
for their unique combination of alleles and outperform their parents by hybrid vigour. 
Controlled creation of elite heterozygosity is achieved by simply crossing two carefully 
selected homozygous parents. Doing the reverse (creating homozygous parents for any 
heterozygous F1) is, on the contrary, an almost unfeasible task. The allele combinations 
that give the F1 its unique character are broken apart by recombination when the F1 is 
used in crosses (Figure 2). The answer to preserving these combinations during meiosis 
lies in technologies and strategies that reduce the complexity of meiotic recombination; 
one such strategy is reverse breeding (schematically summarized in Figure 2) [48]. 

unbalanced

X

Regular meiosis Reverse breeding (based on achiasmatic meiosis)

P1 P2

t-DNA transformation

spore 
formation

DH- 
production

Figure 2. Schematic representation of (a) regular meiosis (the selfing of a heterozygote) and (b) the 
reverse breeding technique. We consider a fictive F1 with three chromosome pairs (2n = 2x = 6). Dur-
ing regular meiosis, chromosomes and chromosome segments recombine, giving rise to an infinite 
number of genotypically different offspring (a). In an alternative approach (b), crossover recombina-
tion is prevented by transgenic suppression (RNAi, etc.) of one of the genes essential for crossing over. 
The red dots represent the transgene. Achiasmatic meiosis gives rise to spores. Note that spores carry 
non-recombinant chromosomes. Most spores are unbalanced (one possibility drawn), but some spores 
are balanced (several possibilities drawn). Doubled haploids (DHs) are produced from balanced spores, 
giving rise to homozygous diploids. Among the DHs produced, reciprocal genotypes (P1, P2) can be 
recruited that, upon crossing, exactly reconstitute the original F1. These are the homozygous parental 
lines for the F1 hybrid. Note that P2 is derived from a second transformant carrying the transgene on a 
different chromosome.



164

Chapter 5

Reverse breeding is based on suppression of crossover formation by RNAi or com-
parable gene silencing techniques. Studies have shown that RNAi silencing of essential 
early meiotic genes, such as DISRUPTED MEIOTIC CDNA1 (DMC1), can lead to (almost) 
complete suppression of crossover formation [49,50]. Consequently, homologues are not 
joined by chiasmata (the physical manifestation of crossing over) during meiotic pro-
phase I and remain as univalents at anaphase I. These univalents (non-recombinant pa-
rental chromosomes) then segregate randomly to daughter cells during the first meiotic 
division [51]. Most resulting spores will be unbalanced, containing either none, one or 
two copies of a given chromosome. However, balanced spores, containing one copy of 
each chromosome, will be formed at a probability of (1/2)x, where x equals the basic 
chromosome number. Consequently, the chance of obtaining balanced spores decreases 
exponentially with the chromosome number and seems feasible for species in which the 
chromosome number equals 12 or less [48]. 

In reverse breeding, any given elite heterozygote is transformed using an RNAi con-
struct targeting a gene that encodes a protein that mediates the formation of crosso-
vers. The resulting plant is expected to produce low numbers of viable balanced haploid 
spores that are then regenerated into doubled haploid, perfectly homozygous plants. 
Other spores with an unbalanced chromosome number will, if they are still viable, pro-
duce aneuploid individuals with poor regeneration rate and vigour. Among the doubled 
haploids, parents with complementary genotypes can be recruited that, upon crossing, 
will reconstitute the exact genotype of the elite hybrid again (Figure 2). 

In Arabidopsis, various mutants that lack crossovers (almost) exclusively produce 
univalents [18,19], although their chromosome behaviour during meiotic prophase can 
be different. It was recently shown that in univalent-producing mutants (desynaptic1 
[dsy1], meiotic prophase amonipeptidase1 [mpa1]) in which chromsomes pair normally 
during prophase, univalents segregate preferentially to opposite poles during meta-
phase I [52]. This suggests that pairing, even without chiasma formation, to some extent 
orients homologues to opposite poles. Targeting such genes for reverse breeding might 
be fruitful because the chance of recovering balanced gametes increases substantially. 
As such, genes such as PARTING DANCERS (PTD), for which the mutant shows complete 
pairing and few residual crossovers next to high levels of univalents [53], might also be of 
interest to reverse breeding. The benefit of its regular segregation might well outweigh 
the downside of few remaining crossovers. 

Reverse breeding provides plant breeders with new possibilities for further breed-
ing. When one transforms a hybrid for which the parents are known, one can direct-
ly select chromosome substitution lines from among the produced doubled haploids. 
These chromosome substitutions have various potential applications, as for example in 
the generation of near isogenic lines by recurrent backcrosses. Such lines are extremely 
valuable for mapping quantitative trait loci (QTL) and for advanced forms of markeras-
sisted breeding [54,55]. 
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Conclusions 
The improvement of crop species relies on the possibility to select and carefully produce 
new allele combinations. Over the last decade, plant breeding practice has been revolu-
tionized by the advent of high-density marker collections that enable high-throughput 
screening in breeding selection schemes. The ease of genotyping shifted the focus of 
breeding to marker-assisted breeding, which greatly increased the predictability of 
breeding efforts, in which crossovers are and will remain crucial. 

In spite of the plethora of genes known to be involved in crossover control, few stud-
ies have been published on the practical applications of suchgenes. This is incontrast 
to the various patents for crossover control that have been filed, indicating that meth-
ods for crossover control have the attention of many researchers and that the economic 
value of such methods is acknowledged. As we see it, research is progressing along sev-
eral lines. On the one hand, we expect a revival of classic meiotic research: variability 
within crops, within the plants or induced by internal and external factors might be 
evaluated using high-throughput marker technology. On the other hand, we foresee that 
an increasing knowledge on the molecular control of meiosis might create new applica-
tions for plant breeding. 
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On germplasm ownership… 

September
en ik plukte een roos
en iemand riep:
‘Dat mag niet! Die zijn niet van jou…’
[…]

T. Tellegen

(In: ‘September’. Een dansschool, 1992).
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Summary
Reverse breeding (RB) is a novel plant breeding technique designed to directly produce parental lines 
for any heterozygous plant, one of the most sought after goals in plant breeding. RB generates perfectly 
complementing homozygous parental lines through engineered meiosis. The method is based on reduc-
ing genetic recombination in the selected heterozygote by eliminating meiotic crossing over. Male or 
female spores obtained from such plants contain combinations of non-recombinant parental chromo-
somes which can be cultured in vitro to generate homozygous doubled haploid plants (DHs). From these 
DHs, complementary parents can be selected and used to reconstitute the heterozygote in perpetuity. 
Since the fixation of unknown heterozygous genotypes is impossible in traditional plant breeding, RB 
could fundamentally change future plant breeding. In this review, we discuss various other applications 
of RB, including breeding per chromosome. 

Introduction 
One of the most important insights in plant breeding was the observation that hybrid 
(F1) progeny typically are superior in size, growth characteristics and yield in compari-
son to their homozygous parents, a phenomenon known as heterosis. Its underlying 
driving mechanisms may be multiple and are unfortunately poorly understood (Spring-
er and Stupar, 2007; Stupar et al., 2008; Fernandez-Silva et al., 2009; Wei et al., 2009). 
The unpredictable nature of heterosis confronts breeders with considerable difficulties: 
how does one optimize the performance of crop varieties when the constituents for suc-
cess are unknown? Breeders can evaluate heterosis by controlled crosses of inbred lines 
(i.e. by apriori selection and combination of unknown alleles). The hit-or-miss nature of 
this approach makes it difficult to optimize the effects of heterosis. Here, we propose an 
alternative strategy based on the reversal of crop selection: the generation of defined 
populations with high levels of heterozygosity and random variation. These populations 
are then assessed in a variety of environmental conditions (latitude, salinity, humidity, 
etc.) and the best performing heterozygous germplasm is selected for further breeding. 

A barrier to achieving high levels of variation in current plant breeding programs 
is that uncharacterised heterozygotes are difficult—if not impossible—to reproduce by 
seeds. Favourable allele combinations of the elite heterozygote are lost in the next gen-
eration due to segregation of traits. Because of this difficulty, the development of meth-
ods for easy preservation of heterozygous genotypes is one of the greatest challenges in 
plant breeding. Apomixis has repeatedly been proposed as a way to preserve heterozy-
gous phenotypes, but has not yet led to breeding applications (Perotti et al., 2004). 

In this paper, we show how a new technique, reverse breeding, meets the challenge of 
fixation of complex heterozygous genomes by constructing complementing homozygous 
lines (Dirks et al., 2003). This is accomplished by the knockdown of meiotic crossovers 
and the subsequent fixation of non-recombinant chromosomes in homozygous doubled 
haploid lines (DHs). The approach not only allows fixation of uncharacterized germplasm 
but provides breeders with a breeding tool that, when applied to plants of known back-
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grounds, allows the rapid generation of chromosome substitutions that will facilitate 
breeding on an individual chromosome level. After a brief introduction to the RB breed-
ing scheme, we first elaborate on the basis of RB: the unique character of achiasmatic 
meiosis. Thereafter, we show how the technique may be implemented in crops followed 
by a discussion of its main applications. 

Reverse breeding 
Reverse breeding comprises two essential steps: the suppression of crossover recom-
bination in a selected plant followed by the regeneration of DHs from spores containing 
non-recombinant chromosomes. Figure 1 shows an idealized crossing scheme that em-
ploys RB. It depicts the generation of a segregating population (in this case a segregating 
F2), from which a genotypically uncharacterized plant with a favourable combination of 
traits is selected. Crossing over is suppressed in this plant and achiasmatic gametes are 
collected, cultured, and used to generate DHs. The DH lines can then be used to recapitu-
late the elite heterozygote on a commercial scale. 

In another application, RB can be applied to plants of known background (Figure 2). If 
crossing over is eliminated in the F1 hybrid rather than the F2 generation, RB can be used 
to generate chromosome substitution lines. These lines contain one or more chromo-
somes from one parent in the background of the other parent. By backcrossing the chro-
mosome substitution lines to the original parental lines, one can obtain populations that 
segregate only for the heterozygous chromosome(s). Reverse breeding, in theory, allows 
the re-shuffling of chromosomes between two homozygous plants in all possible ways. 

Reverse breeding relies on achiasmatic meiosis 
On the function of crossovers 
In flowering plants, the formation of crossovers during meiotic prophase I relies on syn-
apsis, the extensive and stable interaction between homologous chromosomes, medi-
ated by a complex proteinacious structure called the synaptonemal complex (Moses, 
1956). During crossing over, two homologues become physically joined when the distal 
end of one chromatid is attached to the proximal end of a non-sister chromatid and vice 
versa (Figure 3). The resulting intermediate of joined homologues is called a bivalent. 
Cross-over sites are visible as cross-like structures after synaptonemal complex dis-
assembly, the chiasmata. They are usually maintained until metaphase I ⁄ anaphase I, 
when homologues segregate to opposite poles. In most plants, a chromosome pair typi-
cally has one or two crossovers. Many mutants have been described that reduce or elimi-
nate crossovers (reviews in Hamant et al., 2006; Noyes et al., 2006; Roeder, 1990; Zickler 
and Kleckner, 1999). 

Achiasmatic chromosomes (chromosomes that did not form crossovers) remain as 
univalents (Figure 3). Chiasmata, that in bivalents promote segregation of homologues 
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to opposite poles (regular disjunction), are absent in univalents and the homologues may 
segregate to the same pole instead (non-disjunction). This leads to unbalanced chromo-
some numbers (aneuploidy) in the spores. Consequently, achiasmatic plants are highly 
sterile (Couteau et al., 1999; Hartung et al., 2007). The more univalents are present, the 
more aneuploid pollen are formed. Assuming that each univalent has an equal chance 
of moving to either pole, the probability of a spore with a normal chromosome comple-
ment is ½x, with x equalling the haploid chromosome number of the species. Hence, for 

Figure 1. Reverse breeding can be used to fix unknown heterozygotes. Crossing two homozygous par-
ents (red and blue bars) creates a heterozygous F1. When selfed, the F1 produces a segregating F2 
population. A starting hybrid of unknown genetic constitution is selected for its desireable characteris-
tics, and subjected to the two steps of reverse breeding (grey box). By knocking down meiotic crossing 
over, whole parental chromosomes are transmitted through spores, without rearrangement. Note, in 
this example the four chromosomes in the hybrid can generate 16 different combinations in the gam-
etes—only five are shown for convenience. The achiasmatic gametes are then used produce doubled 
haploid (DH) lines using in vitro culture techniques. From this population, complementary parents can 
be chosen that when crossed perfectly reconstitute the starting hybrid. The DH lines then serve as a 
permanent library that can be used to predictably generate a wide variety of defined hybrids.
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Arabidopsis (2n = 2x = 10), the frequency of balanced spores is one in 32 (3%). For plants 
with a basic chromosome number exceeding 12, the chances of finding balanced gametes 
get very (perhaps too) small (with only one out of over 4000 spores being balanced). 
This has to be evaluated for individual crops. In the case of Petunia with an estimated 
number of 30,000 microspores per anther (Kapoor et al., 2002) and seven chromosome 
pairs, we expect that the number of euploid spores per anther will be 235. Arabidopsis 
by comparison only produces 2800 spores per flower on average (Noyes et al., 2006) and 
will generate 88 euploid spores assuming no bivalent formation and random chromo-
some distribution. 

Figure 2 Reverse breeding can be used as advanced breeding tool. As starting hybrid for a reverse 
breeding experiment, a fully heterozygous F1 is chosen, resulting from a cross between two homozy-
gous parents. Application of reverse breeding (grey box) leads to a population of doubled haploids. 
Note that among those DHs, there are chromosome substitution lines of one of the starting parents 
into the backgroud of the other. Lower left: a chromosome substitution line for a red chromosome in 
the blue parent can be backcrossed with the fully blue parent to create a hybrid that is heterozygous 
for just one chromosome. Such hybrids serve as starting point for breeding per chromosome (explained 
in text). Lower right: a chromosome substitution line for a blue chromosome in the red parent can be 
backcrossed with the fully black parent to create a hybrid that is homozygous for just one chromosome. 
Such hybrids are starting points for studying background interactions (explained in text).
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Chances of finding complementing parents 
The maximum number of different DHs obtained from a heterozygous diploid in a RB 
experiment equals 2x, with x being the basic chromosome number. The probability that 
two DHs form a pair of ‘complementary’ parents (as shown in Figure 2) equals 
2x ⁄ (2x)2 = (½)x, and the probability that they, upon crossing, do not reconstruct the 
original genotype is 1-(½)x = (2x-1) ⁄ 2x. The number of combinations between different 
DHs, presuming that reciprocal crosses result in the same phenotype, is n(n-1) ⁄ 2. 
In the case of n DHs, the probability of not finding a complementary pair of lines is there-
fore [(2x-1) ⁄ 2x]n(n-1) ⁄ 2 and the probability of at least one complementary combination of 
two DHs is given by the formula [(2x-1) ⁄ 2x]n(n-1) ⁄ 2 = 0.01 (P = 99%). This equation can be 

Metaphase I

Telophase I

Metaphase II

Telophase II

Figure 3 The presence of a single crosso-
ver in a chromosome pair does not affect 
the utility of reverse breeding. The figure 
depicts four cells at different stages of 
meiosis. At metaphase I, a single cross-
over is present in one chromosome pair (a 
bivalent pair) whereas other homologues 
remain as univalents. The homologues 
joined by a chiasma segregate to oppo-
site poles and—in this example—the uni-
valents segregate randomly to opposite 
poles, giving rise, in this case, to a bal-
anced dyad (at telophase I). Meiosis then 
proceeds through metaphase II, separat-
ing sister chromatids, and at telophase II 
four gametes are formed. Half of these 
gametes contain a recombinant chromo-
some (upper two), whereas the other half 
contain non-recombinant chromosomes 
(lower two) and are useful for reverse 
breeding.
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solved for different values of x. The number (n) of DHs that must be generated for finding 
a complementary match is highly dependent on the haploid chromosome number (x) and 
is given in Table 1. 

The technical realization of reverse breeding 
Effective suppression of recombination 
Reverse breeding relies on the effective suppression of meiotic crossovers. Therefore, 
genes that are essential in crossover formation but leave the chromosome structure in-
tact are particularly useful. Examples are the Arabidopsis ASY1 and the rice ASY1 homo-
logue PAIR2, the mutants of which display univalents at metaphase I (Ross et al., 1997; 
Caryl et al., 2000; Nonomura et al., 2004). Other mutants with similar phenotypes are 
dmc1, sds, ptd and spo11 (Couteau et al., 1999; Azumi et al., 2002; Stacey et al., 2006; Wijer-
atne et al., 2006). 

The knockdown of gene expression, essential for RB, can be achieved by target-
ing genes using RNA interference (RNAi) (as shown by Siaud et al., 2004; Higgins et al., 
2004) or siRNAs, which will result in predominantly post-transcriptional gene silenc-
ing (PTGS). Alternatively, dominant-negative mutations of the target gene can be used. 
The human meiotic recombination protein DMC1 forms octomeric rings (Kinebuchi et 
al., 2004), but is fully defective in both ssDNA and dsDNA binding activities, when an 
amino terminal deletion lacking 81 amino acids is made (Kinebuchi et al., 2005). Similar 
dominant-negative alleles of DMC1 resulted in loss of male meiotic recombination in mice 
(Bannister et al., 2007). 

In crops in which stable transformation is difficult or impossible to achieve, other 
techniques could be applied. Virus-induced gene silencing (VIGS) was shown to be an 

Table 1. Number of non-recombinant DHs required for reconstructing the original starting plant at dif-
ferent probability levels in various species.

haploid 
chromo-
some 
number

Probably Model species / crop

0.90 0.95 0.99 1.00

5 13 14 18 47 Arabidopsis

6 18 20 25 67 Spinach, corn salad

7 25 28 35 94 Cucumber, barley, rye

8 35 40 49 133 Onion

9 49 56 69 188 Carrot, sugarbeet, most vegetable Brassicas, lettuce

10 69 79 98 266 Maize, Sorghum, Asparagus, cacao

11 98 111 138 377 Banana, watermelon, celery, fennel, common bean

12 138 157 195 532 Tomato, pepper, melon, rice, egg plant



178

Chapter 6

effective technique for induction of PTGS. A plant then is infected with a virus that was 
modified to include a target gene RNA sequence. In a defence reaction, the plant will 
break down the viral RNA using siRNA, targeting simultaneously the plants’ endogenous 
mRNA (Ruiz et al., 1998; Baulcombe, 2004). Alternatively, target genes may be silenced by 
silencing molecules delivered by graft transmission (Shaharuddin et al., 2006). Shoots of 
the plant in which genes are to be silenced would be grafted on transgenic rootstocks. 
In this case, only few transgenic rootstocks would be required to routinely apply RB 
in many crops. Another more recent approach is based on a forward chemical genetic 
screen that identified ‘mirin’ as an inhibitor for the Mre11-Rad50-Nbs1 complex (Dupré 
et al., 2008). Exogenous application of compounds that cause inhibition or omission of 
recombination during meiosis would speed up the application of RB enormously. 

A major advantage for using chemicals that repress crossovers or graft transmission 
of silencing molecules is that the resultant RB products (DHs) are free of transgenes. 
This is important, because the RB products are destined to be used in further breed-
ing schemes, and should not have a achiasmatic phenotype. Perhaps contrary to intui-
tion, DHs produced by transgene-mediated methods can be transgene free. If a dominant 
knock-down construct is present in hemizygous state, half of the spores that are formed 
will not carry the transgene and, hence, are non-transgenic. Multiple transgenic lines 
with knockdown constructs on different chromosomes can be used to generate a full 
array of complementary DHs that do not carry transgenes (Wijnker and de Jong, 2008). 
Crossover suppression need not be complete to be useful for RB. It can be explained that 
a single residual crossover may still occur in any chromosome pair(s). A single crossover 
causes regular segregation of the homologues involved (thereby increasing the chance 
of obtaining a balanced gamete twofold). A crossover also generates two recombinant 
chromatids, which are not useful for RB. But since a crossover affects only half of the 
chromatids of the bivalent pair, the other two chromatids are non-recombinant, and use-
ful. Consequently, half of the resulting spores are potentially useful for RB (Figure 3). 
In short, residual crossovers (provided there is only one per bivalent) increase the inci-
dence of DHs carrying recombinant chromosomes, but still produce 50% of spores carry-
ing non-recombinant chromosomes. These non-recombinant spores can be selected for 
by using molecular markers. 

Doubled haploids 
Doubled haploid plants resulting from achiasmatic meiosis can be obtained from un-
fertilized ovules (gynogenesis) or from microspore and anther cultures (androgenesis), 
according to well-established protocols that have been developed for a variety of plant 
species including crops (Jain et al., 1996). The efficiency of DH formation from haploid 
spores is species dependent (Forster et al., 2007). The unique characteristic of DHs made 
from spores produced through achiasmatic meiosis is explained in Figure 1: they contain 
non-recombinant parental chromosomes. Note however that aneuploid unfertile spores, 
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which are in fact most prevalent, were not depicted. Selection of the required euploid 
spores is in part automatically achieved since only spores containing at least one copy of 
all chromosomes can pass through all developmental stages, from cell division and em-
bryogenesis to plant regeneration. Hyperploid offspring could be selected against using 
co-dominant markers or flow cytometry. 

Development of RB is limited to those crops where DH technology is common prac-
tice. For the great majority of crop species this technology is well established and pro-
fessional breeding companies routinely use such techniques in their breeding programs 
(Maluszynski et al., 2003; Forster et al., 2007). There are, however, some notorious excep-
tions such as soybean, cotton, lettuce and tomato where doubled haploid plants are rare-
ly formed or not available at all (Croser et al., 2006; Segui-Simarro and Nuez, 2007; Zhang 
et al., 2008). Genotyping of DHs by molecular markers is routine practice in contempo-
rary plant breeding (De Vienne, 2003) and is also indispensable for RB. In the complete 
absence of meiotic recombination one polymorphic molecular marker per chromosome 
would suffice to genotype every DH since the entire chromosome would behave as a 
single linkage block. In the presence of any residual crossovers, two markers (as distally 
located as possible) are required per chromosome. 

Reverse breeding applications 
Reconstruction of heterozygous germplasm 
For crops where an extensive collection of breeding lines is still lacking, RB can acceler-
ate the development of varieties. In these crops, superior heterozygous plants can be 
propagated without prior knowledge of their genetic constitution (also see Figure 1). Ta-
ble 1 shows the number of doubled haploid plants that are necessary to reconstruct the 
starting plant at different levels of probability. The number of DHs that is required is 
surprisingly low. For instance in maize (x = 10) just 98 DHs are expected to contain a set 
of two reciprocal genotypes (P = 99%). 

Breeding on the single chromosome level 
Many interesting characteristics in crops are based on polygenic gene interactions, very 
often located on different chromosomes. These quantitative traits are therefore not easy 
to breed on. Figure 2 explains how chromosome substitution lines can be obtained when 
RB is applied to an F1 hybrid of known parents. These homozygous chromosome substi-
tution lines provide novel tools for the study of gene interactions. When crossed with 
one of the original parents, hybrids can be formed in which one of the chromosomes is 
homozygous (Figure 2, lower right), whereas it is also possible to produce hybrids in 
which just one chromosome is heterozygous (Figure 2, lower left). The former allows 
the study of epistatic interactions between the background and genes contributed by 
the substitution chromosome. Offspring of plants in which just one chromosome is het-
erozygous, will segregate for traits present on that chromosome only. Selfing plants that 
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carry a substituted chromosome (or using recurrent backcrosses) will allow breeders 
to fine-tune interesting characteristics on a single chromosome scale. This could bring 
forth improved breeding lines carrying introgressed traits. The few examples were 
shown here demonstrate that RB presents breeders with full control over homo- or het-
erozygosity at the single chromosome level. 

Note that finding specific substitution lines may be difficult, since they are rare oc-
currences. Depending on the efficiency of the DH system, especially crops with high 
chromosome numbers may pose problems. In these cases backcrossing a DH line carry-
ing the desired substitution in addition to another (undesired substitution) with one of 
the original parents may be helpful. Using marker assisted breeding the desired chromo-
some substitution can be obtained with relative ease. 

Reverse breeding and marker assisted breeding 
Especially in combination with (high throughput-) genotyping, reverse breeding be-
comes a versatile tool. Evidently, high throughput genotyping speeds up the process 
of identification of complementing parents in populations of DHs in early stages. But 
perhaps more powerful is its use in the study of gene interactions of the various het-
erozygous inbred families (HIFs) that can be produced by crossing and backcrossing the 
products of RB (as was explained above). The screening of populations that segregate for 
traits on a single chromosome allow the quick identification of QTLs, when genotyping is 
combined with –for example- transcriptome or metabolome profiling. Such HIFs further 
aid the generation of chromosome specific linkage maps and the fine mapping of genes 
and alleles. RB can as such provide highly valuable insights into the nature of heterotic 
effects. 

Backcrossing in CMS back ground 
In several vegetable crops such as cabbages and carrots, breeders make use of cytoplas-
mic male sterility (CMS) (Chase, 2007). In these systems, the presence of male sterility 
presents a special challenge to RB. In these cases, gynogenesis rather than androgenesis 
can be used to obtain DH plants. This is perfectly compatible with RB in the sense that 
the chromosomes from the maintainer line can be recovered directly in the cytoplasm 
of the sterile line in one step. Gynogenesis has been described in several crops such as 
Brassica, maize, sugar beet, cucumber, melon, rice, onion, sunflower, and barley (Keller 
and Korzun, 1996). However, the development or improvement of the protocol for many 
species was often abandoned when anther and microspore culture techniques were de-
veloped. In cases where the efficiency of gynogenesis is too low, it is possible to cross 
the male sterile (A) lines with maintainer lines (B) that carry one copy of a restorer 
gene. The AB combination will be fertile and RB can be performed. In rice, restorer genes 
have been successfully transformed (Wang et al., 2006). It should therefore be possible 
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to use a restorer gene and a gene for crossover suppression in the same vector (both 
transgenes) and perform RB in a ‘double suppressed’ (CMS and crossover) background. 

Conclusions 
The combination of crossover suppression, followed by the regeneration of haploid 
spores into DHs results in novel and powerful breeding applications. One important 
application is the production of complementary homozygous lines that can be used to 
generate specific F1 hybrids. Additionally, when RB is applied to F1 heterozygotes, it is 
possible to generate chromosome substitution lines that allow targeted breeding on the 
single chromosome scale. RB is fully compatible with commercial CMS lines that are fre-
quently used in modern agriculture. 

The technique however is limited to crops with a haploid chromosome number of 12 
or less and in which spores can be regenerated into DHs. In polyploids or species with 
high chromosome numbers, another reconstruction method has been proposed that is 
based on the omission of the second meiotic division, leading to unreduced second divi-
sion restitution (SDR) spores. The use of these SDR spores enables the near reconstruc-
tion of desired phenotypes, and also provides the possibility of obtaining chromosome 
substitution lines (Van Dun and Dirks, 2006). 

There is growing interest in the development of plant breeding techniques that are 
based in modifications of meiosis (Wijnker and de Jong, 2008). However, most techniques 
are merely extensions of the ‘classic’ plant breeding practice aimed at more efficient in-
trogression of traits from alien backgrounds into crops. Pivotal for understanding the 
expected impact of germplasm fixation on plant breeding should be the realization that 
plant breeding relies heavily on the human eye for the selection of breeding lines. It is not 
difficult to imagine that selection for (overdominant) complex traits or QTLs is a daunt-
ing task. Visual selection is therefore always accompanied by extensive testcrosses 
aimed at control avoiding the loss of valuable traits during selection. Methods that allow 
the fixation of elite germplasm (apomixis and reverse breeding) provide alternatives to 
this selection process. Though reverse breeding may appear more complex than apo-
mixis at a first glance, it does not suffer from the drawback of the current knowledge of 
apomixis where the three mechanisms essential for apomixis (apomeiosis, parthenogen-
esis and endosperm formation) have to be operational and synchronized (Koltunow and 
Grossniklaus, 2003). As a plant breeding tool, reverse breeding may be regarded more 
versatile as its controlled deconstruction of complex genotypes into homozygous pa-
rental lines allows the further improvement of these lines by classic breeding methods. 
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For Simon Chan (1974-2012)

We turn away to face the cold, enduring chill
As the day begs the night for mercy love
The sun so bright it leaves no shadows
Only scars
Carved into stone
On the face of earth
The moon is up and over One Tree Hill
We see the sun go down in your eyes

You run like a river, on like a sea
You run like a river runs to the sea

[…]

U2

(In: ‘One Tree Hill’. The Joshua Tree, 1987)
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Summary
Traditionally, hybrid seeds are produced by crossing selected inbred lines. Here we provide a proof of 
concept for reverse breeding, a new approach that simplifies meiosis such that homozygous parental 
lines can be generated from a vigorous hybrid individual. We silenced DMC1, which encodes the meiotic 
recombination protein DISRUPTED MEIOTIC cDNA1, in hybrids of A. thaliana, so that non-recombined 
parental chromosomes segregate during meiosis. We then converted the resulting gametes into adult 
haploid plants, and subsequently into homozygous diploids, so that each contained half the genome of 
the original hybrid. From 36 homozygous lines, we selected 3 (out of 6) complementing parental pairs 
that allowed us to recreate the original hybrid by intercrossing. In addition, this approach resulted in 
a complete set of chromosome-substitution lines. Our method allows the selection of a single choice 
offspring from a segregating population and preservation of its heterozygous genotype by generating 
homozygous founder lines.

Introduction
Hybrid vigor is essential to produce high-yielding varieties in many crops1. However, a 
favorable heterozygous genotype cannot be stably propagated through seeds because 
parental chromosomes will recombine before being passed on to progeny. Recombina-
tion of alleles is influenced by two interrelated events during meiosis I: crossover re-
combination and the orientation of homologous chromosomes on the metaphase plate. 
Crossover recombination leads to new allele combinations by reciprocal exchange of 
chromosome segments, whereas random orientation during metaphase I generates nov-
el combinations of parental chromosomes. If there were no crossover recombination, 
the only factor diversifying genetic information would be chromosome orientation, and, 
consequently, intact parental chromosomes would segregate to the gametes.

Because hybrids cannot be stably maintained, breeders recreate elite hybrids afresh 
through crossing homozygous parental lines. Such lines simultaneously provide the 
means to improve hybrid performance by improving its parents. The inability of breed-
ers to easily establish breeding lines for uncharacterized heterozygotes is a major obsta-
cle to adopting elite heterozygotes from outbreeding (or other segregating) populations 
into their hybrid breeding programs. Clonal propagation (or apomixis2) allows for the 
preservation of the parental genotype, but prevents its further improvement through 
adapting parental lines.

We previously introduced an approach termed reverse breeding3 in which meiotic 
recombination is suppressed and gametes are directly converted into adult plants. Here 
we show that reverse breeding can construct homozygous parental lines that, when 
mated, perfectly reconstitute the selected heterozygous genotype. These homozygous 
parents can be propagated indefinitely and crossed at will, in contrast to a heterozygote, 
which will lose its desirable genotype if propagated sexually.
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RESULTS

Silencing of DMC1 suppresses crossover recombination
The first step in reverse breeding is to produce gametes from the desired heterozygote 
without crossover recombination. This is best achieved by dominantly suppressing one 
of several genes required for meiotic recombination4; complete knockout of a gene by a 
recessive mutation is not suitable for this purpose as it would reintroduce the same mu-
tation into the reverse-breeding offspring. We therefore used RNA interference (RNAi) 
to knock down the function of the RecA homolog DMC1, a meiosis-specific recombinase 
essential for the formation of crossovers. As RNAi is genetically dominant, it is easy to 
obtain progeny devoid of the RNAi cassette that would otherwise cause sterility pheno-
types among reverse-breeding offspring. RNAi silencing is easy to implement in many 
crops, and a single cassette targeting a well-conserved meiotic gene can be used across 
multiple crop species. We used the Brassica carinata DMC1 gene (91.1% identity to A. thali-
ana DMC1) to silence A. thaliana DMC1 (Supplementary Fig. 1).

Among 50 RNAi-transformed plants, we observed a range of fertility phenotypes. 
These ranged from plants with siliques of the normal wild-type length to almost sterile 
plants (ten plants, 20% of the total) that harbored few or no seeds in their siliques (Sup-
plementary Fig. 2) and produced irregularly sized pollen (Supplementary Fig. 3). Se-
verely RNAi-transformed plants thus phenocopied the semi-sterile phenotype of A. thal-
iana dmc1 mutants5. Transcriptional analyses of the RNAi cassette and the endogenous 
DMC1 gene further confirmed the effective knockdown of the meiotic recombination 
pathway (Supplementary Fig. 4). For our experiments we selected those transformants 
that showed the most sterile phenotypes (that is, those carrying the shortest siliques).

Balanced gametes can be produced in the absence of chiasmata
By physically linking homologous chromosomes, chiasmata ensure their proper segre-
gation during meiosis I. In the absence of crossovers (achiasmatic meiosis), non-recombi-
nant chromosomes segregate randomly. This segregation is generally unbalanced, lead-
ing to aneuploidy in gametes and hence explaining the sterile phenotype of achiasmatic 
plants6. However, by chance balanced gametes are also produced at frequencies that 
depend on the plant’s chromosome number3. A. thaliana (n = 5) theoretically produces 
3.25% balanced gametes (2−5 = 1/32). Such numbers predict the ample production of vi-
able pollen in the absence of crossovers, even for species with higher chromosome num-
bers.

We examined meiotic cell spreads in more than 100 diakinesis cells to confirm the ab-
sence of pachytene pairing and the presence of only univalents, which explained the ab-
sence of crossovers in our transformants (Fig. 1). Later meiotic stages also showed con-
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figurations that support the random segregation of chromosomes at meiosis I and meio-
sis II. We observed unbalanced tetrads and polyads predominantly at the end of meiosis. 
Analysis of 85 dyad-stage meiocytes using FISH showed occasional meiotic irregularities 
such as lagging chromosomes or chromatid segregation at meiosis I (Supplementary 
Fig. 5), and only two instances in which there was at least one balanced meiosis I prod-
uct. This result seems close to the expected 3.25%. In addition, the low numbers of viable 
seeds suggest low-frequency production of balanced gametes, although exact numbers 
vary between independent T1 plants, possibly because of variation in the expression of 
the RNAi transgene (Supplementary Table 1). 

Conversion of balanced gametes into adult plants
To examine the effect of crossover silencing in gametes for reverse-breeding purposes, 
we constructed two near-isogenic A. thaliana hybrids, differing only in the presence of 
the RNAi:DMC1 transgene. We crossed accessions Columbia (Col-0) and Landsberg erecta
(Ler-0) to create a wild-type F1 (WT F1). We also crossed Col-0 carrying an RNAi:DMC1 
transgene with Ler, creating a reverse-breeding F1 (RB F1).

The second step in reverse breeding is to convert haploid gametes, carrying non-re-
combined chromosomes, into homozygous diploid adults. This can be achieved through 
different methods depending on the plant species7. In A. thaliana, haploid plants can be 
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Figure 1. Meiosis in wild-type (WT; above) and RNAi:DMC1 transformants (below). In wild-type meiosis, 
chromosomes pair at pachytene stage after which five bivalents are formed in metaphase 1. This results 
in tetrads showing four regular nuclei. In RNAi:DMC1 transformants, tetrads are generally unbalanced, 
showing polyads, owing to unbalanced univalent segregation at metaphase 1. Suppression of DMC1 
also disrupts pairing of chromosomes at pachytene. Scale bars, 10 μm.
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produced by centromere-mediated genome elimination8. We crossed both WT F1 and 
RB F1 pollen to the predominantly male sterile haploid inducer, creating wild-type and 

Landsberg Columbia

heterozygote “RB” doubled haploids
(without crossovers)

“WT”doubled haploids
(with crossovers)

x

x

a

b c

d

chromosome
        1             2           3           4            5 

chromosome
        1             2           3           4            5 

x

Reconstructed heterozygote

x

Figure 2. Reverse-breeding strategy and genotypes of wild-type (WT) and reverse-breeding (RB) dou-
bled-haploid offspring. (a) Reverse breeding starts with a heterozygote in which meiotic recombination 
can be suppressed. (b) Genotype of 29 randomly selected wild-type doubled haploids. Three individuals 
are shown with ‘classic’ vertical chromosomes, but others as horizontal lines only. Each line represents 
chromosomes 1–5 for an individual plant. Note the presence of non-recombinant chromosomes. (c) We 
recovered 21 different genotypes in which no crossovers occurred from among 36 reverse-breeding 
doubled haploids. The first row represents the genotype of one of the recovered original parents; the 
next seven genotypes represent chromosome-substitution lines and the remainder are mosaics of Col 
and Ler chromosomes. The last four represent genotypes of haploid offspring that showed crossovers 
(Supplementary Note). (d) Three pairs of reverse-breeding doubled haploids were crossed to recreate 
the initial hybrid; they have the RNAi transgene.
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reverse-breeding haploids. We converted these haploids into fertile diploids (doubled 
haploids) by collecting the rare seeds following self-pollination of the haploids (see On-
line Methods).

We genotyped wild-type and reverse-breeding haploids and corresponding doubled 
haploids using evenly spaced SNP markers at approximately 4-Mb intervals (Supple-
mentary Fig. 6 and Supplementary Table 2) to identify recombination events in paren-
tal meiosis (Fig. 2). For our calculations of recombination frequencies, we used the larger 
data set of recovered haploids. The vast majority of chromosomes in wild-type haploids 
were recombinant, with an average of 1.1 crossovers detected per chromosome in any 
given doubled haploid (Supplementary Table 3). A haploid typically shows half the 
number of the crossovers that occurred during meiosis, and it will occasionally receive 
non-recombined chromatids from a bivalent. These non-recombinant chromosomes 
were usually restricted to a single chromosome, and no single plant was non-recombi-
nant for all five chromosomes. As such, crossover recombination in our doubled-haploid 
population was comparable to that in previously published data9–12 in terms of genetic 
map length (crossover frequencies) as well as slight segregation distortions (see Online 
Methods).

Genetic analysis of 65 reverse-breeding haploids and their derived doubled haploids 
(that is, those plants resulting from achiasmatic meiosis) showed the complete absence 
of recombination, consistent with our cytological analyses (Fig. 1). Intact parental chro-
mosomes segregated independently, leaving random assortment as the only process cre-
ating genetic variation among doubled haploids (Fig. 2c). Four additional reverse-breed-
ing haploids did show crossovers (Fig. 2c), which might have resulted from accidental 
cross pollination or from incomplete silencing of DMC1 by the RNAi construct (Supple-
mentary Note).

The main objective of reverse breeding is to generate homozygous parental lines that 
can be mated to recreate a desired heterozygous genotype. In our set of non-recombi-
nant reverse-breeding doubled haploids we identified 21 of the 32 (25) possible geno-
types, including the original Col-0 parent (Fig. 2c). Notably, we could identify six sets of 
complementing parents—that is, genotypes that would reconstitute the initial hybrid 
when crossed. These complementing pairs are genetically distinct, and also differ from 
the original Col-0 and Ler parents. To complete reverse breeding, we made crosses be-
tween three pairs of selected reverse-breeding doubled haploid progeny to reconstitute 
the starting heterozygous parent (Fig. 2d). These crosses gave rise to perfectly hete-
rozygous plants that were genetically identical to the achiasmatic Col/Ler hybrid parent 
(Supplementary Table 2).

Reverse breeding creates chromosome-substitution lines
Segregation of intact parental chromosomes also creates chromosome-substitution 
lines, in which a single chromosome is substituted by the corresponding homolog from a 
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different line. Chromosome-substitution lines are valuable tools in many breeding appli-
cations, such as trait mapping, the study of epistatic interactions and targeted inbreed-
ing13. Chromosome-substitution lines in A. thaliana have been generated through tradi-
tional crossing14; however, that method requires more generations of crossing and ex-
tensive genotyping to identify a particular chromosome-substitution line. With reverse 
breeding, one can obtain all possible chromosome-substitution lines in a short period of 
time. In two generations, we obtained a complete set of Ler chromosome substitutions 
in the Col-0 background, as well as two substitutions of a Col-0 chromosome into a Ler 
background from our population of only 36 doubled-haploid plants (Fig. 2c).

DISCUSSION
Reverse breeding allows any desired heterozygote to be selected from a large popula-
tion and be propagated indefinitely as F1. This is crucial, because it alleviates one of the 
limitations of traditional breeding in which hybrids are generated by controlled crossing 
using few founder lines. The genomes of uncharacterized heterozygous plants can now 
be fixed in complementing immortal lines without knowledge of their provenance. This 
ability to fix heterozygous genomes resembles apomixis, in which heterozygotes repro-
duce clonally through seeds2, but is fundamentally different. If apomixis were to be en-
gineered for crops15, the clonally propagated line would represent a dead end, as it could 
not be improved further by conventional hybrid breeding techniques. Because reverse 
breeding generates homozygous parental lines for the selected heterozygote, it allows 
the improvement of the heterozygote through improvement of the individual parental 
lines by traditional breeding methods such as backcrossing, mutagenesis and so on.

The technical feasibility of reverse breeding in A. thaliana suggests that it might be 
possible to apply this technology in crop improvement. Crucially, genes governing mei-
otic recombination are widely conserved16, and haploid generation methods are availa-
ble for many crops7. Although the probability of recovering balanced gametes decreases 
with increasing chromosome numbers, many agronomically important crops have 12 
chromosomes or fewer, and are within the reach of successful reverse breeding3. Nota-
ble examples include cucumber, onion, broccoli, cauliflower, sugar beet, maize, pea, sor-
ghum, (water-) melon, tomato, pepper, rice, eggplant and so on. Reverse breeding might 
be difficult to adopt in crops with higher chromosome numbers (for example, soybean) 
as well as in polyploids such as canola, cotton, wheat and potato.

The use of a dominant RNAi transgene means that 50% of reverse-breeding offspring 
carry the transgene, rendering them semi-sterile. The use of inducible RNAi constructs 
could circumvent this caveat. Alternatively, one could select two independent transfor-
mants of the same heterozygote, such that the RNAi constructs are inserted on differ-
ent chromosomes. Pairs of transgene-free parents can then be obtained. In our case, re-
verse-breeding doubled-haploid lines 17 and 61 do not contain the RNAi:DMC1 transgene 
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and would generate a transgene-free reconstructed heterozygote when crossed (Sup-
plementary Table 2).

The expected low production of balanced gametes in crops with higher chromo-
some numbers is a possible bottleneck in reverse breeding. However, successful reverse 
breeding does not require the complete knockdown of crossovers, and the occurrence 
of a few crossovers might be beneficial, as non-recombinant chromatids are still present 
in bivalent pairs with a single crossover3. In rice (n = 12), for example, allowing three 
crossovers would already increase the chance of finding a balanced gamete from 2−12 = 
1/4,096 to 2−9 = 1/520, at the expense of a lower recovery rate for true non-recombinant 
reverse-breeding offspring (1 out of 8 (2−3)). Our observation that different transformants 
showed varying degrees of sterility suggests that incomplete knockdown by RNAi could 
yield a desired level of crossover suppression. Segregation distortion in our population 
of haploid offspring (see Online Methods) was not extreme and was similar to that in 
previously described RIL populations11. All chromosomes were still frequently transmit-
ted to offspring.

Our ability to exert control over the complex outcomes of meiosis, together with the 
ever increasing need for new methods for crop improvement17, advocates for the rapid 
development of reverse breeding in crops. We therefore envision that new possibilities 
for the selection and improvement of favorable genotypes by reverse breeding may con-
tribute to increasing future crop production.

URLs. Arabidopsis information resource, http://www. a ra bi dopsis. org/; 
Joinmap, http://www.kyazma.nl/; KASPar SNP genotyping system, 
http:// www. kbioscience. co.uk/reagents/KASP.html;   MSQT, http://msqt.weigelworld.org/; 
pKANNIBAL vector, http://www.pi.csiro.au/RNAi/vectors.htm

Methods
Methods and any associated references are available in the online version of the paper at 
http://www.nature.com/naturegenetics/.
Note: Supplementary information (Suppl table 2) is available on the Nature Genetics website.
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ONLINE METHODS
Plant material. A. thaliana plants were grown under standard conditions in a green-
house. WT F1 was obtained by Ler-0 (CS20) (female) × Col-0 (ABRC stock CS60000) (male). 
RB F1 plants were made by crossing male Ler-0 to two semi-sterile RNAi:DMC1 transfor-
mants: T39 and T62 (in Col-0). For a third RB F1 we used a male sterile (ms1 −/−) Ler (CS261) 
(for convenient crossing) pollinated with T62. WT F1 and RB F1 plants were crossed as 
the male to cenh3-1 GFP-tailswap females to generate haploids8. By using GFP-tailswap as 
a female, we aimed for the recovery of reverse-breeding gametes through microspores, 
as these greatly outnumber egg cells (and therefore increases the probability of recover-
ing balanced gametes).

Our crosses of both WT F1 and RB F1 to GFP-tailswap females yielded populations of 
diploid, haploid and aneuploid offspring, the last group resulting from incomplete ge-
nome elimination. Haploids were identified by their homozygous genotype and vegeta-
tive phenotype (semi-sterile flowers, smaller rosette size and narrow leaves compared 
to diploids)8. In the offspring of the RB F1 plants we also recovered semi-sterile diploids 
as a result of the RNAi construct. Aneuploids were discarded based on their aberrant 
growth phenotypes. The WT F1 to GFP-tailswap crosses yielded 73% of haploids, whereas 
the RB F1 to GFP-tailswap cross resulted in 42% of haploids. Recovery rates for aneu-
ploids were low (~3%) in both populations.

We obtained no seeds for 56% and 55% of doubled haploids from the wild-type and 
reverse-breeding haploid populations, respectively. This was presumably in part due to 
growth conditions (on soil). We have found later that, when haploids are grown to larger 
sizes (on rock wool), haploid plants produce more seeds (data not shown).

Plant transformation. A 293-bp sequence of the B. carinata cDNA (Supplementary Fig. 
1) was PCR amplified to clone the DMC1 coding sequence, of which both sense and anti-
sense orientation were cloned into a pKANNIBAL hairpin RNAi vector (CSIRO). The vec-
tor was subsequently cloned in an pART27 binary vector18 and transformed into Col-0 
using floral dip19.
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Quantitative RT-PCR. The nucleic acid was extracted from 10 mg of unopened flower 
buds pooled from several inflorescences. Total RNA was isolated using the RNeasy Mini 
Kit (Qiagen), and cDNA was synthesized using the iScript cDNA Synthesis Kit (Bio-Rad). 
Real-Time PCR was done using iQ SYBR Green Supermix (Bio-Rad) on the CFX96 Real-
Time PCR Detection System (Bio-Rad). The ΔCt was calculated using SAND and UBC 
as endogenous controls20. We calculated relative quantification values (RQ) by the 2−ΔCt 
method (RQ = 2−ΔCt); results represent the average of five biological replicates. Oligonu-
cleotides used for real-time PCR are given in Supplementary Table 4). For more details 
about the RNAi construct and the coordinates of AtDMC1 oligos used for real-time PCR, 
please refer Supplementary Figure 1.

Microscopy and fluorescence in situ hybridization. Pollen preparations were stained 
with lactophenol acid fuchsin. Meiotic preparations and FISH followed standard proto-
cols21–23. The probes used and their position on A. thaliana chromosomes are shown in 
Supplementary Figure 5. Slides were examined under a Zeiss Axioplan 2 imaging photo-
microscope equipped with epifluorescence illumination and filters.

Genetic analysis. SNPs were selected using MSQT24 and matched to the Columbia refer-
ence genome using the Arabidopsis information resource. Genotyping was done using the 
KASPar SNP genotyping system. Joinmap version 4.1 (ref. 25) was used for calculation of 
recombination frequencies, and χ2 tests were used for segregation distortions. Recom-
bination frequencies were estimated using the regression mapping algorithm with ‘in-
dependence LOD’ as grouping parameter and the Kosambi mapping function to convert 
recombination frequencies to map distances.

Marker segregation in wild-type and reverse-breeding haploids. During marker 
analysis, we noticed clear segregation distortions in both wild-type and reverse-breed-
ing haploids. Among wild-type haploids, Col alleles are overrepresented at the lower end 
of chromosome 1, the top and bottom of chromosome 2, the middle of chromosome 4 and 
at the top of chromosome 5 (Supplementary Fig. 7). Segregation distortions have previ-
ously been studied in a Col/Ler recombinant inbred line (RIL) population26,27. The over-
representation of Col alleles at the lower end of chromosome 1 in that population is con-
current with our observations, possibly having similar causes. Notably, the Col alleles on 
chromosomes 2 and 5 were overrepresented in our haploid population, in contrast to the 
overrepresentation of the Ler alleles in the RIL population. A previous report described 
a genetic incompatibility leading to segregation distortions at the lower end of chromo-
some 1 and the top of chromosome 5 in A. thaliana28. Nonetheless, this is not expected to 
be causing the segregation distortions found in these populations, as Col and Ler share 
the same alleles for these loci.
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Because, in reverse breeding, linkage is absolute for all loci on a chromosome, any 
distorting locus would affect transmittance of the whole chromosome. The overrepre-
sentation of Col chromosomes 1, 4 and 5 in the reverse-breeding haploids could be the 
direct effect of such distorting loci. For these chromosomes it seems plausible that this 
is caused by the same loci causing the preferential transmittance of Col alleles to the 
wild-type haploids. Notably, the overrepresentation of Col alleles at the top of chromo-
some 2 is not matched by an overrepresentation of that chromosome in reverse-breeding 
haploids. This might be caused by a ‘balancing’ mechanism, as at the lower end of chro-
mosome 2 there seems to be a locus of which the Col allele is transmitted less frequently 
than its Ler counterpart.

We hypothesize that the increased genetic linkage imposed upon the alleles on one 
chromosome in reverse breeding may strongly affect the transmittance of alleles. When 
linkage becomes absolute, distorting alleles may act either directionally or in a balanc-
ing manner, depending on the sign of their effect.

The differences in segregation distortions between the Col/Ler RILs and the haploids 
may also lie in the methods used for the construction of these populations. Our haploids 
were produced using only male meiosis, whereas, in the RILs, gametes produced by fe-
male meiosis also contribute to observed effects. Second, the haploids underwent a pro-
cess of genome elimination, and it is possible that there are alleles that favor either their 
genesis or the survival of haploid embryo.
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Supplementary Figure 1: Sequence alignment of BcDMC1 and AtDMC1. Alignment of Brassica cari-
nata DMC1 (BcDMC1) with DMC1 of Arabidopsis thaliana (AtDMC1). The alignment was made against 
the coding sequence (above), as well as to the genomic sequence (below). Matching positions are in 
green colour. Positions of primer pairs used for real-time PCR are indicated in red (DMC1-1) and yellow 
(DMC1-2).

AtDMC1 cds            1 atgatggcttctcttaaagctgaagaaacgagccagatgcagctcgttgagcgtgaagaaaatgatgaagacgaagatctatttgagatgattgacaaattgatcgcacaaggtataaacgcaggagatg 
BcDMC1                  ---------------------------------------------------------------------------------------------------------------------------------- 
 
AtDMC1 cds          131 tgaaaaagctacaagaagctgggatccatacctgcaatggtctcatgatgcataccaagaagaaccttactggaatcaaaggtttatctgaggccaaagttgacaaaatctgtgaagctgctgagaaaat 
BcDMC1                  ---------------------------------------------------------------------------------------------------------------------------------- 
 
AtDMC1 cds          261 tgtgaactttggatatatgactggaagtgatgctcttataaagaggaaatcagttgtaaaaatcactacagggtgtcaagctctcgatgatctcttaggaggtggaattgaaacctcagccatcacagag 
BcDMC1             2319 ---------------------------------------------------------------------------------------------------------------------------gacagag 
 
AtDMC1 cds          391 gctttt ggggaatt t aggtctgggaaaac cca attagcacataccctttgtgtcac t acgcagct acctacaa acatgaaagg agggaatgg aaaagtggc atacat tgacac agagggaaccttcc gt c 
BcDMC1             2326 gcttttagggaattcaggtctgggaaaactcagttagcacataccctttgtgtcaccacgcagctgcctacaagcatgaaaggtgggaatgggaaagtggcttacattgacactggaggaaccttccgcc 
 
AtDMC1 cds          521 ctgataggattgtcccaattgctgaaagatttggaatggatccaggagctgtgcttgacaatatcatttatgctcgtgcttatacctatgagcatcagtacaacttgcttcttggccttgctgcaaaaat 
BcDMC1             2456 ctgatcgaatcgtccccattgctgaaagatttggaatggatccaggagctgtgcttgacaatatcatctatgctcgtgcttacacctatgagcatcagtacaacttgcttcttggccttgctgcaaaaat 
 
AtDMC1 cds          651 gtctgaggaaccatttaggattctgattgttgactcgatcattgctttattccgagtggatttcactggaagaggagaactcgcagaccgccagcaaaaactagctcagatgctttccaggctaatcaaa 
BcDMC1             2586 gtctgaggaaccatttaagattctgattattgactcgatcattgctttattccgagttgatttcactggaagaggggaactcgcagaccgccagcaaaaactagctcagatgcttg-------------- 
 
AtDMC1 cds          781 attgcagaggagttcaacgttgctgtctacatgactaaccaagtcatagctgacccaggtggtggaatgttcatatcagacccaaaaaagccagcaggtggtcatgtactagctcacgcagccaccatca 
BcDMC1                  ---------------------------------------------------------------------------------------------------------------------------------- 
 
AtDMC1 cds          911 ggctcttgttcaggaaaggcaaaggcgatacacgtgtctgcaaagtctacgatgctccgaatctcgctgaagctgaagccagtttccaga ttactcaaggaggcattgctgacgcgaaggattag 
BcDMC1                  ----------------------------------------------------------------------------------------------------------------------------- 
 
 
 
 
 
 
AtDMC1             1171 tcccactaacagaactattaaattttgatatcctattcaacatatcatattagatattgaaacttacaagttgttttttaattgtttacagaggaaatcagttgtaaaaatcactacagggtgtcaagct 
BcDMC1                  ---------------------------------------------------------------------------------------------------------------------------------- 
 
AtDMC1             1301 ctcgatgatctcttaggaggtatgctaagttttgctttagatttttgcatcttgatcacactacttaagttctggtttaattatttcacatttcttgctaggtggaat tgaaacctcagccatc acag ag 
BcDMC1             2319 ---------------------------------------------------------------------------------------------------------------------------gacagag 
 
AtDMC1             1431 gcttttggggaatttaggtgagaaacagctgagccaagctctataagtttcctgttaatagcttgtattcttatagagtttaatttcacttcaggtctgggaaaacccaattagcacataccctttgtgt 
BcDMC1             2326 gcttttagggaa-----------------------------------------------------------------------------ttcaggtctgggaaaactcagttagcacataccctttgtgt 
 
AtDMC1             1561 cactacgcaggttggtttctttcctacagtctcaatatgaaatatatgttgtcttgtttacatttcagaggcatgagatgagattttactttctttcagcatataaaccattgaggtactctgtctctca 
BcDMC1             2379 caccacg--------------------------------------------------------------------------------------------------------------------------- 
 
AtDMC1             1691 atgtcattggtattcattttctgtattgatgtattacagctacctacaaacatgaaaggagggaatggaaaagtggcatacattgacac agagggaacctt gtatccttaatatcttataacaaatcttc 
BcDMC1             2386 ------------------------------------cagctgcctacaagcatgaaaggtgggaatgggaaagtggcttacattgacactggaggaacctt----------------------------- 
 
AtDMC1             1821 tgaccagatcttgtgtcttcattagattgtttctatattccatgatttttccttaacccctaaattttgtagcc gtcctgataggattgtcccaattgctgaaagatttggaatggatccaggagctgtg 
BcDMC1             2451 ------------------------------------------------------------------------ccgccctgatcgaatcgtccccattgctgaaagatttggaatggatccaggagctgtg 
 
AtDMC1             1951 cttgacaatgtaagcattattaacctcacatctttacttactctcaggactgtgactgacattcaaaaatcttattcatcttgatataacagatcatttatgctcgtgcttatacctatgagcatcagta 
BcDMC1             2509 cttgacaat-----------------------------------------------------------------------------------atcatctatgctcgtgcttacacctatgagcatcagta 
 
AtDMC1             2081 caacttgcttcttggccttgctgcaaaaatgtctgaggaaccatttaggattctggtaagtaaaacatgtctgatattttagtttagttatccattcaaatatgagttaaattagctgagttttctgacc 
BcDMC1             2556 caacttgcttcttggccttgctgcaaaaatgtctgaggaaccatttaagattct---------------------------------------------------------------------------- 
 
AtDMC1             2211 ttgtttccagattgttgactcgatcattgctttattccgagtggatttcactggaagaggagaactcgcagaccgccaggttaaacttgcctcccacaacattacttacattatcattggcacaatctgg 
BcDMC1             2610 ---------gattattgactcgatcattgctttattccgagttgatttcactggaagaggggaactcgcagaccgc------------------------------------------------------ 
 
AtDMC1             2341 ctttgctcaatagtcccagtttctgtgttgcagcaaaaactagctcagatgctttccaggctaatcaaaattgcagaggagttcaacgttgctgtctacatgactaaccaaggtttactttacactagtt 
BcDMC1             2677 ------------------------------cagcaaaaactagctcagatgcttg--------------------------------------------------------------------------- 
 
AtDMC1             2471 tgatataatgagataaagcatcaattctttttttgtttcttggttgcactaacttagcaagtatcatctgtttcatttggtggtttgcagtcatagctgacccaggtggtggaatgttcatatcagaccc 
BcDMC1                  ---------------------------------------------------------------------------------------------------------------------------------- 
 
AtDMC1             2601 aaaaaagccagcaggtggtcatgtactagctcacgcagccaccatcaggctcttgttcaggaaaggcaaaggcgatacacgtgtctgcaaagtctacgatgctccgaatctcgctgaagctgaagcca ta 
BcDMC1                  ---------------------------------------------------------------------------------------------------------------------------------- 
 
AtDMC1             2731 tccttttaaccaaatccacacacacacacttgctttgtttttgattatttcatataatgcaatgacttatttttttccttaactgaagaaatcacagtttccaga ttactcaaggaggcattgctgacgc 
BcDMC1                  ---------------------------------------------------------------------------------------------------------------------------------- 
 
AtDMC1             2861 gaaggattagaggagcgaactcttttatatgtcataatcacgagttatgtctgttcttaacttgctgcttgtttctgcatc gaatcagacgttttaattaagtctttttattcttagtttcttgtttacc 
BcDMC1                  ---------------------------------------------------------------------------------------------------------------------------------- 
 
AtDMC1             2991 aaataagacgatcattacttgattaggcttacaaaaccaatctatgtatctgataaagctgcaaacaaaacaactctggttcgtttgtaaaaagacaataatggctttataacaagtaacaagtaaaagt 
BcDMC1                  ---------------------------------------------------------------------------------------------------------------------------------- 
 
AtDMC1             3121 tcattatgatc 
BcDMC1                  ----------- 
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Supplementary Figure 2: Phenotype of wild-type (WT) and BcDMC1 RNAi transformed Arabidopsis 
thaliana. (a) Wild-type (Col-0 ) inflorescence with, well elongated (normal) siliques. RNAi:DMC1 trans-
formant T27 (b) shows reduced fertility, as inferred from its reduced silique length. Two examples of the 
highly sterile BcDMC1 RNAi transformants T39 (c) and T62 (d). Note the very short siliques that harbor 
few or no seeds. T39 and T62 were used in our experiments. DMC1 expression for these four lines are 
shown in Supplementary Fig. 4.
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Supplementary Figure 3: Pollen morphology of WT F1 (Col x Ler) and RB F1 (Col x Ler BcDMC1 RNAi). 
The WT F1 (a) shows uniformly sized pollen. Silencing of crossovers leads to mostly small sized and 
irregular shaped pollen in RB F1 (b). The inset in b shows more examples of randomly photographed 
pollen grains. Scale bar = 100 μm.
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Supplementary Figure 4: AtDMC1 is down-regulated in BcDMC1 RNAi plants. Bar charts depicting the 
relative expression of A. thaliana DMC1 normalized to expression of housekeeping genes UBC and SAND. 
This is shown for two different primer pairs DMC1-1 (a, b) and DMC1-2 (c, d). AtDMC1 mRNA is down-
regulated in the BcDMC1 RNAi lines in comparison to wildtype Col. T1 plants T39 and T62 were used for 
generating RB haploids. T27 is one of the primary transformants (T1) that shows intermediate fertility in 
comparison to WT and highly sterile transformants T39 and T62 (Supplementary Fig. 2). Charts (e) and 
(f) show transcription of the RNAi construct, where a relative gene expression of 1 refers to the average 
for the tree transformants. Error bars show the standard error for five biological replicates.
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Supplementary Figure 5: Fluorescent in situ hybridization shows unbalanced (random) segregation of 
chromosomes in BcDMC1 RNAi transformants. 
I) Fluorescent in situ hybridization of meiotic cells in WT Col (a) and RNAi transformed (b, c, d) plants. 
Each homolog is labelled with its respective chromosome number as identified by mulitcolor FISH, out-
lined in part II of this figure. Scale bar = 10 μm. Wildtype meiotic cell (a, interkinesis) showing balanced 
segregation of homologous chromosomes. Achiasmatic meiosis in BcDMC1 RNAi plants (b, c, d) showing 
unbalanced segregation of chromosomes during meiosis. (b) Metaphase II cell showing non disjunction 
of chromsome 5. The cell on the lower left lacks chromosome 5. (c) Metaphase II cell showing a lagging 
chromosome 5 in the organelle band. Note that the upper cell - although containing five chromosomes- 
is unbalanced, for it has two copies of chromosome 1 and lacks chromosome 4. (d) A telophase I cell 
showing that achiasmatic meiosis can lead to the formation of balanced gametes (the daughter cell in 
the middle, below). Also here, a single chromosome 5 shows missegregation, and might form a micro-
nucleus (left).

a b

c d
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Supplementary Figure 5 (continued): Fluorescent in situ hybridization shows unbalanced (random) seg-
regation of chromosomes in BcDMC1 RNAi transformants. 
II) Chromosome painting scheme and approximate location of the probes used for FISH.
Chromosome 1 painted with BAC F13N6,
Chromosome 2 painted with plasmid pTa71 (45S rDNA), 
Chromosome 3 painted with BAC MWL2 and plasmid pCT4.2 (5S rDNA),
Chromosome 4 painted with plasmid pTa71 and pCT4.2, 
Chromosome 5 painted with pCT4.2.

1                         2                           3                       4                           5
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Supplementary Figure 6: Map positions of SNP markers used for genotyping haploids/doubled haploids. 

Genetic maps of all five chromosomes are presented in green (on the left) with genetic distances in 
centiMorgan (cM) besides it (on the left). Physical map (red) on the right, with locus names consisting 
of two letters (indicating nucleotide type in Col and Ler respectively) followed by the co-ordinates of 
the respective SNP location on the Col-0 reference physical map (TAIR; http://www.arabidopsis.org/).

http://www.arabidopsis.org/
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Supplementary Figure 7: Allele frequencies in WT and RB doubled haploids.

Allele frequencies for all SNP markers are shown for WT haploids (above) and RB haploids (below). 
Markers are ordered from top chromosome 1 (left) to end of chromosome 5 (right). There are loci that 
are preferentially transmitted to offspring. This is also reflected in the segregation pattern of the RB off-
spring where Col chromosomes 1 and 5 are significantly (p ≤ 0.05) overrepresented among the haploid 
offspring (Bonferroni corrected χ2).
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Supplementary Table 1: Variation in fertility among sibs from a BcDMC1 RNAi T1 plant T39.

To examine the stability of the phenotype of our transformants, five offspring plants were grown from 
a primary transformant T39. From each plant 50 random siliques were examined under a dissecting 
microscope. The above data indicate that sibs show variation in seedset, which we assume is a result of 
differences in expression of the BcDMC1 RNAi transgene.

1 2 3 4 5
empty siliques 39 35 32 26 18
siliques with 1 seed 9 13 13 11 13
siliques with 2 seeds 2 2 4 6 11
siliques with 3 seeds 0 0 0 4 8
siliques with 4 seeds 0 0 1 3 0
total 50 50 50 50 50

number of aborted seeds 9 12 18 31 46
number of WT seeds 4 5 7 16 13
Percentage of WT seeds 31 29 28 34 22
seeds/silique 0,26 0,34 0,5 0,94 1,18

plant number
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chr1 chr2 chr3 chr4 chr5

WT haploids 
(n=93)

Detected crossovers per chromosome (SE) 1.31
(0.09)

0.88
(0.08)

1.04
(0.09)

0.81 
(0.08)

1.24 
(0.10)

Fraction recombinant chromosomes 0.85 0.63 0.69 0.58 0.73

Fraction non-recombinant chromosomes 0.15 0.37 0.31 0.42 0.27

Genetic map length (cM) 139.4 90.7 110.7 83.0 123.5

Supplementary Table 3: Recombination data in WT meiosis. 
The table shows recombination data as observed in WT haploids. “Detected crossovers per chromo-
some” refers to genotype changes between two adjacent markers that were detected on chromosomes 
in the WT haploids. The standard error is given in parentheses. The fraction of recombinant and non-
recombinant chromosomes are also based on observed genotype changes in WT haploids. Genetic map 
lengths were calculated using Joinmap® 4.

Forward primer 5’ -  3’ Reverse primer 5’ - 3’ 

UBC CTGCGACTCAGGGAATCTTCTAA TTGTGCCATTGAATTGAACCC

SAND AACTCTATGCAGCATTTGATCCACT TGATTGCATATCTTTATCGCCATC

DMC1-1 TGAAACCTCAGCCATCACAG GGAAGGTTCCCTCTGTGTCA

DMC1-2 AGCTGAAGCCAGTTTCCAGA TTCGATGCAGAAACAAGCAG

hairpin CGCCTATGATCGCATGATATT GGCGGTAAGGATCTGAGCTA

Supplementary Table 4: Primer combinations used in Real-time PCR.
Table showing forward and reverse primers for oligos used for Real-time PCR.
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Supplementary Note: The genotypes of four recombinant RB haploids.
B = Landsberg erecta allele, A = Columbia allele
“+” = RNAi construct present, “-” = RNAi construct absent
“x” = missing data
Four haploids were recovered from RB F1 pollen that reflect the presence of recombinant gametes, as 
shown in the table above. Because WT F1, RB F1 and the haploid inducer plants were grown together, 
we cannot completely exclude the possibility of accidental cross-pollination. For instance, although 
the insertion of the RNAi transgene (T62) in RB F1 was mapped to chromosome four, a PCR test for the 
presence of the construct was negative for plant number 1, carrying a Col genotype at chromosome 
four, indicating that this plant is indeed the result of WT F1 pollination. In addition, the low number of 
crossovers in plant number two and three suggests that crossover silencing can be incomplete even in 
the presence of the construct.
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1 RNAi:DMC1 Col-0 T62 x Ler A A A A A A A A A A A A A A A A A A B B B x A A A A A A A A A A A B B B -
2 ms1 -/- Ler  x RNAi:DMC1  Col-0 T62 A A A A A A A A A A B B A A A A B B B B B B B B B B B B B A A A A A A A -
3 RNAi:DMC1 Col-0 T39 x Ler A A A A A A A A A A B B B B A A B B B B B A A B B B B B B A B B B B B B -
4 RNAi:DMC1 Col-0 T39 x Ler B B B B B B B A A A B B B A A A B A A B B B B B B B A A A A A B B B B A -

chromosome5chromosome 1 chromosome 2 chromosome 3 chromosome 4
Genotype haploid offspring
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On a finished thesis…

Ik lig hier het bevlogene van zwaluwen te bestuderen.
Soms wordt er een hele zwerm overgesmeten, ik probeer te begrijpen
wie dit doet, de wind niet, maar ook zij niet, ze hebben geen wij,
alleen gewirwar. Ze proberen uit hun staart weg te vliegen, 

knip-knip door het heelal, hier waren we  al,
hier waren we al. Ik lig te snorkelen 
aan mijn luchtpijp. Ik zie dat het goed is. 
Ik wil er mijn handtekening wel onder zetten.

H. de Coninck

(In: ’Nu, dus’, 1995) 
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Meiosis and the choice of Arabidopsis for breeding research
Research of meiotic recombination in higher plants is a diverse, highly dynamic and rap-
idly developing field, supported by unsurpassed technological and conceptual advances. 
It is especially the concerted efforts of cutting-edge science in plant breeding, (cyto-) 
genetics, bioinformatics and molecular biology that together generate powerful strate-
gies to address hitherto unanswered questions. The implementation of such multidis-
ciplinary strategies not only depends on novel research tools, but also greatly benefits 
from the integration of knowledge through comparative genomics. In my thesis I de-
scribe a wide variety of techniques and approaches related to meiotic recombination and 
chromosome biology. These include highdepth sequencing of Arabidopsis doubled hap-
loids and meiotic tetrads, the construction of doubled haploids in Arabidopsis thaliana, 
advanced cross-species BAC FISH and the construction of a series of hypomorphic alleles 
that allowed otherwise lethal mutations to be studied. 

A proper foundation for the understanding of molecular processes in plant meiosis 
was laid down by the many reports on meiotic mutants from the last 15 years (reviewed 
in Mercier and Grelon (2008), most of them using the power and versatility of Arabidop-
sis. The available resources and databases for this model plant are unique in their size 
and completeness with its small genome, its short generation time and full genetic and 
physical maps has shown its enormous potential for the development of new breeding 
applications (d’Erfurth et al. 2009; Marimuthu et al. 2011; Olmedo-Monfil et al. 2010; Ravi 
and Chan 2010; Ravi et al. 2008; Wijnker et al. 2012). A review on the possible applica-
tions of meiosis research (Chapter 4 of this thesis) was published in 2008 and was one of 
the first reviews specifically addressing the question of how breeders can manage and 
exploit meiotic variation for breeding (Wijnker and de Jong 2008). Four years later, this 
review serves as an excellent starting point for this discussion. 

This thesis describes a multitude of leads for further research, both in fundamental 
as well as applied (breeding related-) research. As the relations between the topics are 
not always that obvious, I will try to clarify these in the text below with special attention 
for breeding related research. In the first part, focus lies on recombination landscapes 
and how these can be studied. Thereafter the meiotic cell cycle and chromatin dynam-
ics are addressed that appear linked through CDKA;1 action. The potential applications 
of reverse breeding for constructing new mapping populations and novel designs for 
breeding programs will be dealt with in the last section.

How to navigate recombination landscapes
Crossover recombination events are non-randomly distributed over the genome, which 
together give rise to a specific recombination landscape. To answer the intriguing ques-
tion of how such a landscape is formed, these landscapes need to be assessed in the high-
est detail. The experimental and conceptual approaches range widely, but an (almost) 
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fully sequenced genome is near indispensable to anchor genetic markers to a physical 
map and to allow the construction of accurate recombination maps. 

Tools for assessing recombination frequencies based on the segregation of fluores-
cent markers in seeds (Melamed-Bessudo et al. 2005) and that of pollen tetrads (Fran-
cis et al. 2007) were gradually adopted in the scientific community (Berchowitz et al. 
2007; Crismani et al. 2012; Melamed-Bessudo and Levy 2012; Yelina et al. 2012). These 
suffer however from requiring specific mutants or transgenic backgrounds, like a quar-
tet background to study marker segregation in pollen tetrads or fluorescent markers 
to assess marker segregation in seeds. An additional drawback is that these methods 
provide only information of specific chromosome intervals. Though being great tools 
for establishing recombination frequencies, these approaches do not provide a genome-
wide view on recombination. 

Biotechnological innovations in recent years have lead to the development of power-
ful and efficient strategies to collect recombination data in plants. SNP marker assays 
can now be designed in which tens- to hundreds of markers can be placed at specific ge-
nome positions (Giraut et al. 2011; Salome et al. 2012; Wijnker et al. 2012; Yelina et al. 2012). 
For the comparison of studies over time, the adoption of a shared marker set between 
different labs would be the best choice for this kind of studies. The SNP marker set that 
was developed and used throughout these and one other study (Yelina et al. 2012) could 
provide the basis for such a set. 

The smart use of sequencing provides new ways to genotype populations in high 
throughput and at low coverage (Huang et al. 2009). Key to the efficient use of high-
throughput sequencing lies in finding ways of pooling multiple samples (usually through 
barcoding) and enriching for specific sequences to be sequenced. This can be done by 
using specific restriction enzymes as done in RAD-mapping (Baird et al. 2008), possi-
bly followed by further enrichment steps like selection for specific restriction fragment 
sizes in reduced representation shotgun sequencing (Altshuler et al. 2000; Seymour et 
al. 2012). Such methods currently allow the genotyping of 96 samples per Illumina lane, 
but technical improvement would preferably push this to hundreds of samples per lane. 

The whole-genome-sequencing (WGS) approach in Chapter 2 was chosen for obtain-
ing high resolution of few meiotic offspring rather than looking at recombination at a 
populationwide level. The sequencing of offspring from (preferably homozygous) in-
dividuals brings unsurpassed information of the extent of recombination between pa-
rental genomes through crossovers and non-crossovers (COs and NCOs) and provides 
insights into the topography of CO placement (Chapter 2 and Henson et al. (2012); Lu et al. 
(2012) and Qi et al. (2009)). The potential of using WGS in combination with a population-
oriented approach was recently presented by Wang et al. (2012) in which DNA derived 
from single sperm cells was amplified and genotyped using microarrays or sequenced 
to construct a personal recombination map. Such a method could also be developed for 
plants in which trinuleate pollen grains conveniently contain three instead of one hap-
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loid nucleus (and thus have more DNA). Such a method would allow assessing genome-
wide recombination landscapes in specific parts of the plants such as single flowers, or 
can precisely establish the effects of environmental stress. 

When a recombination landscape is experimentally cestablished, this does not bring 
full understanding of how this landscape was actually shaped. This is because some re-
combination events (NCOs) that result from meiotic double strand breaks (DSBs) do not 
always leave detectable footprints on the DNA (Chapter 2), hence the relation between 
DSB-formation and (N)CO formation is thus difficult to study. It was recently shown that 
DSB formation can also be studied through high-throughput sequencing and that DSB-
maps can be generated (Pan et al. 2011). This approach was based on the fact that the mei-
otic DSB inducing protein SPO11 remains covalently bound to DNA after DSB formation. 
Immuno-precipitated SPO11- oligonucleotide complexes were isolated and the sequenced 
reads mapped onto a reference genome for obtaining a genome-wide topography of re-
combination initiation. The method demonstrated that a recombination landscape is the 
result of a hierarchy of interacting factors, regulated by the accessibility of chromatin 
up to higher order chromosome structure (Pan et al. 2011). Even more insightful would 
be to know how DSB landscapes change concomitantly with recombination landscapes 
in mutant backgrounds, like for example in cdka;1 (Chapter 3). In the following we will 
explore some leads for future work on this cyclin-dependent kinase.

Chromatin defines homo(eo)logy
To study the requirement of CDKA;1 in meiosis, we designed a unique allelic series of 
engineered CDKA;1 mutants with different kinase activities, identifying this protein as 
a key regulator of the Arabidopsis meiotic cell cycle, involved in chromosome condensa-
tion and crossover interference, thereby acting as a major determinant of shaping the 
recombination landscape (Chapter 3). Chromatin condensation, meiotic homo(eo)logous 
recombination and CO-interference are all meiotic processes that result from complex 
interactions at different hierarchical levels, and the recovery of CDKA;1 as a mediator 
of these processes makes it promising for fundamental research as well as breeding ap-
plications. Especially as it might help to improve the transfer of loci from one species 
into the other through meiotic recombination. Most crops, including tomato, peas and 
cucumber, have a narrow genetic base (Esquinas-Alcazar 2005; The_Tomato_Genome_
Consortium 2012), and traits missing in breeding lines, like disease resistances, need to 
be transferred by introgression from wild relatives (Canady et al. 2006; Gill et al. 2011). 
Methods that facilitate such introgression are of the highest interest and importance. 
The major bottleneck in such strategies is the incorporation of alien DNA by CO recombi-
nation. The best known gene that can control homoeologous crossovers is Ph1 in wheat 
that allows introgressive hybridization between the three parental genomes (A, B and 
D) of this hexaploid crop, but also allows transfer of chromosome parts of rye and other 
cereals to wheat (Moore 1998; Moore and Shaw 2009). 
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Recent studies have suggested the molecular machinery of Ph1 to act through CDKs. 
When Ph1 is present, wheat has a constitutive low activity of Cdk2, the wheat CDKA;1 
orthologue. Under this condition the homoeologous chromosomes of wheat condense 
differentially, leading to crossover formation exclusively between homologues. In the 
absence of Ph1, the increased CDK activity equalizes the otherwise differential chroma-
tin condensation of homoeologues, and hence allowing them to form crossovers (Colas 
et al. 2008; Greer et al. 2012). Even though in Arabidopsis there are no homoeologues, 
we were able to demonstrate in Chapter 3 that weak cdka;1 alleles display a phenotype 
similar to wheat plants with multiple dosages of Ph1 (with presumed low Cdk2 activity) 
(Feldman 1966). 

The Ph1 locus is not the only locus know to be involved in homoeologous pairing; a 
locus named PrBn was identified in Brassica napus that mediates crossover formation 
between homoeologous chromosomes in (di)haploids of this allopolyploid species (Jenc-
zewski et al. 2003). The molecular base of this mutation is unknown, but the approach 
taken to test whether certain alleles induce homoeologous pairing (by examining (di)
haploids of an allopolyploid species) surely provides a very promising approach for fur-
ther studies into the roles of CDKs. 

A next step in engineering homoeologous recombination should be the increase 
CDK activity in interspecific hybrids (or the above mentioned dihaploids). This can be 
achieved in different ways. Treatment with the protein serine/threonine phosphatase 
inhibitor okadaic acid (Yamashita et al. 1990) has been shown to achieve such an effect in 
wheat (Knight et al. 2010), which holds promises for other species as well. Alternatively, 
homoeologous recombination may also be possible if the kinase activity of major cyclin 
dependent kinases is increased. Important to realize is that CDK activity is continuously 
kept under control by a multitude of regulators like cyclins and various inhibitors (Inzé 
and De Veylder 2006; Nowack et al. 2012). As such, simple CDKA;1 overexpression might 
not initially work. The best approach might lie in the upregulation of CDKA;1 while si-
multaneously downregulating CDK inhibitors. In order to develop such an approach and 
to identify crucial inhibitors, it would be extremely useful to use the proper cytogenetic 
tools for monitoring meiotic progression. 

The introgression of traits may be impaired by a variety of factors. Chapter 3 serves 
as a nice illustration of the existence of chromosome inversions between related Sola-
num species, which by far pose the biggest barrier to introgressive hybridization. Unless 
inversions are large enough to allow the formation of pairing loops in inversion hete-
rozygotes (and allow for rare 2-strand double crossovers to be formed), it is impossible 
to introgress traits from wild relatives into a desired background without the consider-
able linkage drag of the whole inversion. The observation that NCO tracts are very short 
(Chapter 2) suggests that NCOs are no viable alternative for double crossovers. For the 
moment, inversions pose big difficulties to introgression, for which transgenic or cisgen-
ic approaches may be the only solution for transfer of traits from alien donors to crops. 
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But also in the absence of inversions, the introgression of traits from related spe-
cies is far from easy. This has convincingly been demonstrated in a study of Canady and 
colleagues on recombination rates in tomatoes that were heterozygous for an alien in-
trogression. The recombination rates in homoeologous segments decreases when phylo-
genetic distances between parental lines increase (Canady et al. 2006). Although a clear 
explanation for this phenomenon is lacking, considerable evidence exists that sequence 
divergence is not the only restriction. For example, our observations in Chapter 2 indi-
cate that crossovers can very well form near highly diverged sequences and the observa-
tions in Ph1 and PrBn mutants clearly show that sequence divergence does not prohibit 
crossover formation. Rather, it seems more likely that higher order organization of DNA 
in chromatin domains is crucial in the pairing process. Highly instructive images of SC-
spreads of interspecific crosses of tomato with wild relatives were published showing 
that homologous sequences do not necessarily pair in SCs (Anderson et al. 2010). In addi-
tion, excessive pairing and chiasma formation between Lolium x Festuca hybrids with a 
markedly differentiated repeat content of both parental genomes as shown by genome 
painting provide clear evidence that sequences are conserved enough to facilitate regu-
lar pairing partner recognition and crossing over (Kopecký et al. 2008). 

At the moment, we still lack the means to modify the pairing behavior in crops. The 
current best approach for increasing the efficiency of introgressive hybridization (i.e. 
through reducing linkage drag) might therefore lie in simply increasing the recombina-
tion frequency. The recent discovery of FANCM as a suppressor of the class II CO path-
way holds great promises (Crismani et al. 2012), as plants in a fancm background display 
increased levels of CO recombination. It will nevertheless be important that homologous 
sequences find one another. A combined approach of increasing the recombination fre-
quency through dominant down regulation of FANCM, with an increase of CDK activity 
may increase desired recombination in homoeologous regions. 

In our study on DSB repair in Arabidopsis (Chapter 2) it was suggested that plants use 
interhomologous recombination as the main repair pathway during meiotic prophase I, 
which suggests that there are apparent switches that control the propensity of DSBs to 
be repaired through inter-homologue repair. Elucidating such factors could help in un-
derstanding why genetargeting in plants is so much more difficult in plants than it is in 
other organisms (Puchta 2002; Puchta 2005). Even though we currently have no clue as 
to what this switch might be, the constitutive high CDK levels of CDKA;1 activity might 
be of high interest here. 

Reverse breeding approaches 
Chapters 6 and 7 explain and describe the feasibility of reverse breeding, an anticipated 
breeding technique based on the generation of gametes with non-recombinant chromo-
somes by suppressing crossovers in the preceding meiosis. Spores with non-recombi-
nant chromosomes are then formed, which can be regenerated as homozygous doubled 
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haploids from among which homozygous parents for a starting heterozygote can be se-
lected. The additional power of the technology is that it can also used for the construc-
tion of chromosome substitution lines. The possibility of applying reverse breeding in 
Arabidopsis paves the way for its application in crops, provided that a suitable protocol 
for the regeneration of spores is present. The applicability of reverse breeding in other 
species will however also depend on the basic chromosome number, the number of avail-
able spores and the efficiency of making doubled haploids in that species. Low chromo-
some number crops like cucumber (7 pairs) and barley (7 pairs) provide outstanding 
possibilities for making doubled haploids, and make it most likely that reverse breed-
ing can be applied immediately. In maize, harboring 10 chromosome pairs, the chance of 
finding a balanced spore with a complete set of non-recombinant chromosomes will be 
decidedly lower (½10=~0.1%). “Inducer stocks”, that are known to produce DHs through 
a genome elimination mechanism, similar to that in Arabidopsis, can be used to make 
as many as 500,000 DHs per year, some breeding companies claim. If the efficiency of 
making a doubled haploid is 10%, then at least 10,240 spores must be induced to obtain 
a reverse breeding DH population. In this case, the scale of making DHs is in maize is so 
vast, that it is well possible that the available scale for DH induction compensates for the 
low recovery of balanced gametes. However, this still has to be demonstrated in practice. 

In other crops the DH techniques will be less efficient and plants may produce less 
spores while chromosome numbers may be higher. For a crop like eggplant, the chance 
of obtaining a balanced gamete from an achiasmatic meiosis is as low as 0.02%, which 
is, considering the low DH-production efficiency, a poor starting point for successful re-

chromosome number CO=0 CO=1 CO=2 CO=3 CO-4

5 3.13 6.25 12.50 25.00 50.00

6 1.56 3.13 6.25 12.50 25.00

7 0.78 1.56 3.13 6.25 12.50

8 0.39 0.78 1.56 3.13 6.25

9 0.20 0.39 0.78 1.56 3.13

10 0.10 0.20 0.39 0.78 1.56

11 0.05 0.10 0.20 0.39 0.78

12 0.02 0.05 0.10 0.20 0.39

% of RB offspring (efficiency) 100 50 25 12.5 6.25

Table 1: Reverse breeding with residual crossovers. The expected number of balanced gametes (%) is 
given as a function of chromosome number and residual crossovers. The column CO=0 describes the 
situation under complete crossover suppression, whereas CO=4 describes the situation when 4 crosso-
vers are present. We here assume a simple model in which only one CO is formed per chromosome 
pair. The efficiency (last row) describes the number of offspring that will be non-recombinant (i.e. true 
reverse breeding offspring). Note that in column CO=4, there is a 16 fold increase of balanced gametes, 
but only 6,25% of reverse breeding offspring will be useful for breeding.



220

Chapter 8
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Figure 1: proposed modifications to reverse breeding to increase its efficiency.  a) A reverse breeding 
approach in shown with residual crossovers. Reverse breeding leads to four gametes (lower left) in 
which some still contain non-recombinant chromosomes. These can be regenerated as DHs and lead to 
chromosome substitution lines. In an alternative approach, partial crossover suppression is combined 
with the production of SDR gametes (in which the second meiotic division is omitted. Note that the 
SDR gametes,  consist of largely homozygous chromosome pairs, heterozygous for only those segments 
distal from crossover positions. Such gametes can be regenerated as diploid plants and in a subsequent 
DH-step, chromosome substitution lines can be obtained. b) A second reverse breeding approach relies 
on the distal localization of residual crossovers. The resulting gametes that can be regenerated as DHs 
show segregation of traits at distal chromosome ends only.
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verse breeding. For such a crop the development of reverse breeding will benefit from 
tailored approaches, as will be discussed hereafter. 

Reverse breeding for high chromosome number crops 
At higher chromosome numbers the chances of obtaining balanced gametes decrease 
exponentially, because each additional chromosome pair will diminish the population 
of balanced spores with another 50% (Table 1) (Dirks et al. 2009; Wijnker et al. 2012). To 
increase the number of balanced gametes, an approach could be engineered in which not 
all, but only part of the COs are suppressed, which is likely feasible by knocking down 
the expression of genes like MSH4 or MSH5 (Higgins et al. 2008) using RNAi technology. 
All chromosome pairs with a crossover will segregate in a balanced manner and random 
segregation is limited to only the chromosome pairs without crossovers (see Figure 1 or 
Chapter 6). The number of balanced spores will be considerably higher, although this ap-
proach comes at a cost: crossovers introduce recombinant chromosomes into the gamete 
population (and resulting DHs), rendering potentially large portions of the DH popula-
tion not useful for reverse breeding (Table 1). 

It is possible to circumvent this drawback. In recent years, several mutations were 
described that lead to so-called second division restitution or SDR gametes: diploid (2n) 
spores that have omitted the second meiotic division (d’Erfurth et al. 2010; d’Erfurth et 
al. 2009). A similar effect can be through treatments with spindle inhibitors like nitrous 
oxide or cold shock (Barba-Gonzalez et al. 2006; Okazaki et al. 2005; Dewitte et al. 2011; 
De Storme et al. 2012). If one partially knocks-down COs as proposed above, while si-
multaneously inducing SDR meiosis, a (2n, diploid) restitution gamete is obtained which 
to a greater extent is homozygous (Figure 1a). These 2n gametes can be regenerated as 
diploid plants using existing techniques for haploid production (Marimuthu et al. 2011). 
The diploid offspring will be largely homozygous, except for those chromosome pairs 
that experienced a CO event and thus display some “residual” heterozygosity. In a second 
step, these largely homozygous plants would be used as parental lines for the genera-
tion of the required reverse breeding offspring (through DH production or selfing). The 
required chromosome substitution lines can then be selected from among the offspring 
using markers. During this step there will no longer be the need to suppress CO forma-
tion, since only few segments will segregate. The use of SDR gametes, albeit at WT levels 
of recombination, has previously been described as “near reverse breeding” (Van Dun 
and Dirks 2006). 

The anticipated low levels of balanced spore formation during achiasmatic meiosis 
in higher chromosome number crops can thus be overcome by partial suppression of 
COs. And the drawback of recovering recombinant DH offspring resulting from residual 
COs can in turn be dealt with by the induction of SDR gametes. The greatest benefit of 
“SDR-reverse-breeding-withincomplete-CO-suppression” is the generation of offspring 
that can potentially all be used in further breeding. The residual heterozygosity in these 
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plants imposes the need of an extra generation for production of the desired reverse 
breeding lines. However, the required extra time will likely be made up for by the in-
creased efficiency of obtaining reverse breeding lines in a much more targeted manner. 

For many crops the genetic base is so small, that only part of the genome is in fact 
truly heterozygous. Residual crossovers in homozygous chromosome arms do not in-
troduce new variation, which makes way for other reverse breeding approaches. If few 
crossovers were to be allowed in such plants, the frequency of recombinant chromo-
somes will increase less quick than shown in Table 1. 

The detrimental effect of residual COs can also be lowered in yet another approach 
in which residual COs are directed to the distal ends of chromosomes (Figure 1b). In this 
case, the resulting gametes will be subjected to COs recombination, but the extent to 
which the genomes have been reshuffled is only a fraction as would have been the case 
of random CO placement and full heterozygosity. Only when distal chromosome ends 
harbor alleles that are important to the plants’ phenotype, the resulting offspring will 
be useless. If COs could be directed to even the most extreme chromosome ends (close to 
the genetically empty chromosome regions containing only telomere and subtelomere 
repeats), reverse breeding would even be feasible in the presence of COs. To date, no mu-
tants have been reported that place COs at distal chromosome ends, but the cdka;1DBD 
we described in Chapter three suggests that constructs targeting CDKA;1 expression 
could potentially induce such phenotypes. 

In an ideal scenario, genes would be identified that induce distributive pairing in 
heterozygotes of interest. This is a mechanism well known from insects in which male 
fruitflies and female silkworm do not form crossovers, but nevertheless possess a mech-
anism to ensure balanced chromosome segregation (McKee 2009; Wolf 1993). Interest-
ingly, such a mechanism has also been described for higher plants in Fritillaria japonica 
(Liliaceae) (Ito et al. 1998; Noda 1975). If true, this at least suggests that such phenotypes 
could be induced in plants. Even though we are still at the start of the implementation 
of reverse breeding in crops, there is a multitude of possibilities to further develop the 
efficiency of reverse breeding, in which there is space to tailor reverse breeding to the 
specific requirements of different crops. 

Reverse breeding for mapping and breeding 
In its essence, reverse breeding reduces a genome into its elementary physical parts: its 
chromosomes. These segregate as single units in reverse breeding offspring that typi-
cally are mosaics of complete (non-recombinant) parental chromosomes. Chromosome 
substitution lines, in which a chromosome is substituted for another chromosome of 
different background, have been constructed already for different species (e.g. wheat, 
Arabidopsis and mouse) and were recognized as potentially powerful mapping popula-
tions (Koumproglou et al. 2002; Singer et al. 2004; Snape et al. 1977). The construction 
of a complete set of all possible chromosome combinations, a chromosome substitution 
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a
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x x

Figure 2: Chromosome substitution libraries. a) An Arabidopsis CLS shown above. On the left and right 
to parental lines are shown. The columns in the middle show all 30 possible chromosome combinations
that can be made using the parental lines. One homologue is shown per homologue pair. b) Two pa-
rental lines of a tomato CSL are shown on the left (red and blue). The other lines represent randomly 
chosen lines from a population in which chromosomes segregate two by two. A CSL size can be down-
scalesd from 4096 to 64 lines. One homologue is shown per chromosome pair. c) A partial Arabidopsis 
hybrid can be constructed by intercrossing chromosome substitution lines. Chromosome pairs are rep-
resented by two homologues. Comparison of a partial hybrid (left) with a full hybrid (right) quantifies 
the contribution of chromosomes 1 and 2 to hybrid performance.
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library (CSL) has however not been attempted for plants. In Arabidopsis, a CSL comprises 
a population of 32 different lines only, in which all the genetic variation of the original 
F1 is distributed (Figure 2a). The relative ease of designing such populations in plants 
through reverse breeding, prompts for an evaluation of their possible uses in breeding. 

The construction of CSLs 
The generation of chromosome substitution lines as was done in Chapter 7 (Wijnker et 
al. 2012) relied solely on the random segregation of (non-recombinant) homologues at 
metaphase I, in which each chromosome combination has a chance of 1/32 to occur. It is 
nevertheless possible to design a more targeted approach for generation of chromosome 
substitution lines. After a first round of reverse breeding, specific chromosome substitu-
tion lines can be selected in which half of the chromosomes is derived from one parent 
and the other half from another parent. If such a line is backcrossed to one of the original 
parents, one obtains a partial heterozygote in which only half of the chromosomes are 
heterozygous. Subjecting that partial heterozygote to a second round of reverse breed-
ing greatly increases the chances of obtaining more desired chromosome combinations. 
Note that in this case partial crossover suppression, as discussed in the previous section, 
would enhance the reverse breeding success manifold, as half of the residual crossovers 
would occur between identical homologues. This approach of stepwise reverse breed-
ing would especially be useful for higher chromosome number crops like pepper, egg-
plant (n=12) and rice (n=10). A second round of reverse breeding in eggplant increases 
the chance of finding a specific chromosome combination from 1/4096 to 1/64. Recent 
experiments in Arabidopsis show that also for this species this is the fastest route to ob-
taining a complete CSL (data not shown). 

CSLs as mapping populations 
Trait discovery usually starts with the identification of lines that differ in specific traits, 
from which then mapping populations are constructed for discovery of loci of interest. 
Different experimental mapping populations can be constructed, ranging from recom-
binant inbred lines (RILs), near isogenic lines (NILs), F2’s, doubled haploid populations, 
backcross populations and heterogeneous inbred families (HIFs). The choice for any of 
these then depends on trait characteristics like number of segregating loci, effect size, 
dominance, greenhouse space, epistatic interactions, etc. (Schneider 2005). In practice it 
is very difficult to a priory select the best mapping population and often the best experi-
mental design becomes evident after initial trials when the complexity of a trait becomes 
evident (J.J.B. Keurentjes, pers. comm.). 

If one were to design CSL populations for a crop of interest, like pepper or eggplant 
(n=12), parental lines can be chosen such that these cover a large proportion of genetic 
variation in the crop. To answer the initial key questions as mentioned above (i.e. wheth-
er genetic variation exists, number of QTLs, epistasis, etc.), one could initially screen a 
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CSL in which traits of interest are expected to segregate. Note that for such a first inven-
tory, there is no need to screen all the lines in a 12 chromosome CSL which consists of 
(212=) 4096 lines. Initially, one could screen only single chromosome substitution lines 
(24 lines), or a subset of 64 lines in which chromosomes are substituted 2 by 2 (see Figure 
2b). 

In subsequent steps the trait can be further explored. Main effect QTLs can be easily 
fine mapped by constructing mapping populations that segregate for a single chromo-
some of interest. Figure 3 shows four DH lines that were generated in our reverse breed-
ing experiment of Chapter 7 (Wijnker et al. 2012). QTLs for early flowering and epistatic 
interactions can be easily assigned to specific chromosomes using these lines (see Figure 
3 legend). Anyone interested in fine mapping the early flowering locus on chromosome 
5, would cross the two plants on the left (a and b), and fine map the locus in subsequent 
generations. Note that in this case the population will segregate for traits of only one 
chromosome, allowing fine mapping in a highly uniform background. 

Mapping populations should be developed to most efficiently meet desired purpos-
es. While in certain mapping experiments the detection of main effect loci is sufficient, 
mapping efforts in crops would benefit most from approaches in which all variation can 
be systematically detected, also because major effect loci have probably already been 

a b c d

Figure 3: Epistatic interactions in reverse breeding lines. On the left an Arabidopsis Columbia plant 
is shown 27 days after sowing. An RB line (a) has its chromosome 5 substituted by a Landsberg erecta 
chromosome 5. A locus inducing early flowering is present on this chromosome. When also Col chromo-
some 4 is substituted (c), the early flowering is suppressed (an epistatic interaction). When also chro-
mosomes 2 and 3 are substituted (d), then the early flowering phenotype re-appears (a second epistatic 
interaction). These interactions can be finemapped by making intercrosses. Crossing lines b with c, 
generates a plant heterozygous for chromosome 4, that will segregate for loci on chromosome 4 only.
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fixed in breeding lines. In such cases, traditional mapping populations like RILs, F2s or 
DH populations have specific drawbacks. Consider a complex trait regulated by unlinked 
12 loci in a RIL or DH population. To reliably detect their interactions, this would require 
a population of at least 212 (= 4096) plants, while if one required considerable certainty 
of detecting all loci, one requires a population about three times as large. Such large 
populations are near impossible to construct in breeding programs for vegetable crops, 
in which F2 populations of 100 or less plants are rule rather than exception (R. Dirks, 
pers. comm.). 

If one is interested in assessing all variation in available germplasm, one must devise 
a way of exploring variation systematically, which CSLs can provide. In an initial screen 
traits can be assigned to specific chromosomes, where after in backcrosses populations 
can be made that segregate for any chromosome of interest. A CSL has a clear initial 
drawback in providing poor resolution, since it segregates for whole chromosomes only. 
If indeed 12 loci segregate, these are unlikely to be detected all at once. The CSL will 
however allow the subsequent systematic dissection of all loci in subsequent controlled 
crosses in which only specific chromosomes will segregate. The systematic screening 
that is achieved by such a stepwise approach will however ensure that no loci are ex-
cluded that were not recovered in the initial screen. RILs, F2 or DH populations have 
the additional drawback of segregating for many loci during backcrosses to one of the 
parent and show a continuously changing background during introgression. This makes 
it more likely that specific loci are missed in the mapping approach, or go lost in pheno-
typic noise. The possibility of constructing targeted mapping populations that segregate 
for one or more specific chromosomes, can subsequently be used to fine map traits in a 
highly uniform background, which is a unique property of a CSL. If breeding lines are 
part of a CSL, it would allow targeted introgression of the detected locus into the desired 
background in just few steps. Other than when using an F2, DH or RIL population, as CSL 
will not be the endpoint for experimental mapping, but could itself become the starting 
point for breeding programs: the building blocks of new varieties. Such benefits will out-
weigh the considerable investment of the CSL construction itself. 

Conceptually CSLs can thus be positioned in between the F1 and any further genera-
tion. In the F1, no mapping can be done as no segregation occurs, while in subsequent 
generations an immediate scattering of the different alleles of all chromosomes occurs 
because of recombination and independent chromosome assortment. No matter how big 
a mapping population is set up, the original variation between the parental lines of the 
starting F1 will never be captured (in terms of practical numbers). A CSL introduces an 
intermediate step in which uncontrolled scrambling is prevented while ensuring that no 
variation is lost. Mapping can then be done in subpopulations in which only part of the 
genome segregates. A CSL can at any point be used to generate introgression line popu-
lations, in which chromosome segments are introgressed into a known background, as 
has been done for example Arabidopsis, tomato and rice (Eshed and Zamir 1995; Koum-



227

General Discussion

proglou et al. 2002; Xu et al. 2010) An interesting question will be whether reverse breed-
ing will work with exotic germplasm. Interspecific crosses are known to lead to high 
levels of infertility in offspring, which makes the construction of RIL populations near 
impossible(Eshed and Zamir 1995). In such cases, reverse breeding could provide a way 
out, since it allows the construction of single chromosome substitution lines in one step, 
possibly overcoming sterility commonly encountered in spores of interspecific hybrids. 

CSLs for the study of heterosis 
Heterosis, in which a hybrid outperforms the underlying parental lines is well known by 
plant breeders (Shull 1952). The genetic basis of this phenomenon is far from resolved: 
the most common theories mention ‘overdominance’, in which heterozygotes are supe-
rior over the homozygotes and ‘dominance’, in which recessive alleles are complemented 
in the hybrid by dominant loci, leading to better performance (Birchler et al. 2010). A va-
riety of further factors have over the years been shown to influence hybrid performance: 
maternal effects (Roach and Wulff 1987), paternal effects (House et al. 2010), cytoplasm 
(Fujimoto et al. 2012), micro RNAs (Groszmann et al. 2011) and epigenetic effects (Shen 
et al. 2012). To study these various effects, F1 hybrids are usually generated through re-
ciprocal crosses of two parents, in which male and female derived offspring show spe-
cific differences. It is important to realize that in such crosses, all these factors change 
simultaneously and are near impossible to study apart: reciprocal F1s will differ in the 
(maternally) inherited cytoplasm, while maternal effects (e.g. endosperm composition) 
as well as genetically encoded effects like paternal all change simultaneously. 

Using an Arabidopsis CSL, no less than 16 different crosses can be made to generate 
the genetically exact same F1 hybrid (and 32 combinations if reciprocal crosses are in-
cluded). Every parental pair is unique and if genetics are the sole determining factor 
contributing to the hybrid phenotype, then all hybrids will be phenotypically identical. 
If the phenotypes are not identical, it matters how the alleles where exposed in their 
parental genetic backgrounds. The comparison between the (iso-genic) hybrids that are 
similar and dissimilar in phenotype even allows the identification of the chromosome(s) 
that causes the difference. Such studies will help in understanding the extent to which 
hybrids can vary as a result of epigenetic effects. 

CSLs might well become prime resources for studying heterosis. By intercrossing dif-
ferent chromosome substitution lines, one can systematically generate “partial hybrids” 
or “sub-hybrid” families, such that only specific chromosome pairs become heterozy-
gous (Figure 2c). The contribution of heterozygosity of a specific chromosome pair to a 
hybrid phenotype can as such be mapped on a chromosome-by-chromosome basis. Such 
studies are within reach for Arabidopsis in the very near future, but once reverse breed-
ing is available for crops- the systematic study of heterosis will be applicable to those. 

In crops like maize, breeders make use of so called heterotic pools, groups of germ-
plasm that are genetically distant (Reif et al. 2005). Parental lines in maize are selected 
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from different pools and crossed to evaluate hybrid performance. CSLs and sub-hybrid 
families would allow the mapping of hybrid effects on a chromosome by chromosome 
basis, and could help in the identification of chromosome pairs that contribute most to 
hybrid vigour between specific heterotic groups. If chromosome combinations between 
different pools are found to contribute differentially to heterosis, new chromosome 
substitution lines could be constructed that combine the best performing chromosome 
combinations from different parental pairs into one new pair. Reverse breeding could as 
such help in the controlled construction of multi-parentderived hybrids a concept called 
‘Line Design’ (Dirks 2012, filed patent application). 

Conclusions 
The development of new breeding techniques based on modifications of meiosis is still 
in its infancy. Various approaches have been discussed in the above that could improve 
reverse breeding through modifications. The rising increased interest in recombination 
landscapes holds promise that in future years we will start to understand how chro-
matin dynamics, sequence divergence and crossover interference together control the 
localization of crossovers. Also the regulation of the meiotic cell cycle by CDKA;1 pre-
sents various leads that could help in understanding and controlling homo(eo)logous 
recombination. As discussed, the development of advanced screening methods (possibly 
at single cell level), or the use of haploids in studying the induction of homoeologous re-
combination are promising leads. But perhaps most surprising are the promises held by 
complexity reduction through crossover suppression. The feasibility of reverse breed-
ing in Arabidopsis strongly suggests that such techniques can indeed be developed for 
crops and in the above various strategies for improving reverse breeding efficiency have 
been suggested. Apart from the possibility of fixing uncharacterized heterozygous into 
breeding lines, reverse breeding offers the possibility of generating CSLs: unique map-
ping populations that can serve both for the identification of traits, but also as points 
of departure for the development of new breeding lines. The unique properties of CSLs, 
that allow the full and stepwise dissection of complex traits in homozygotes as well as 
heterozygotes and could prove to be unparalleled tools for the dissection of heterosis in 
years to come.
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Summary
Meiosis is a specialized cell division leading to the production of gametes and the trans-
mission of genetic information in the form of chromosomes. Before being transmitted via 
gametes, chromosomes recombine with their homologous partners to give rise to new 
allele combinations. These new combinations can in turn give rise to new phenotypes. 
This makes a thorough understanding of meiosis pivotal for plant breeders, that rely on 
meiosis to generate new allele combinations for the development of new crop varieties. 
This thesis aims at unravelling, understanding and managing the processes that lead to 
meiotic recombination and asks how this knowledge can be utilized to design new and 
more efficient plant breeding strategies. 

In chapter 1 various important meiotic processes and their regulation are described 
and it is shown in what way these processes have links to plant breeding practice. Impor-
tant strategies for the study of meiotic recombination are also introduced and discussed. 

Chapter 2 presents a detailed investigation into the question of to what extent in-
formation is exchanged between homologous chromosomes during meiosis in Arabidop-
sis thaliana, a popular model plant in plant genetic research. This is done by the most 
detailed comparison yet of the genome sequence of offspring with their parents. It is 
described in detail how homologous chromosomes reciprocally exchange segments 
through crossover recombination and how at specific places sequences of one homo-
logues are changed into those of another (gene-conversions). We show that gene-con-
versions in Arabidopsis are rare events that mainly occur at crossover breakpoints. We 
also show that the recombination proteins that during meiosis initiate recombination 
primarily target easily accessible DNA and finally that there are specific DNA sequences 
that are associated with crossover sites. One of these sequences shows high similarity to 
a known transcription factor binding site, that may promote the formation of crossovers. 

In chapter 3 focus shifts to the regulation and coordination of the different meiotic 
processes during the Arabidopsis cell cycle. Arabidopsis has one crucial cell-cycle regu-
lator: the protein CDKA;1. The activity of this protein determines what processes take 
place during precise stages of the cell cycle. By artificially replacing this gene by less 
functional versions, it can be studied how this affects meiosis and thus reveals the re-
quirement of the cyclin dependent kinase CDKA;1 for meiotic progression. CDKA;1 is re-
quired for chromosome condensation, crossover recombination and the second meiotic 
division. These diverse requirements suggest that CDKA;1 functions as master regulator 
during meiosis, just as it does in mitosis. A surprise was the observation in a specific 
mutant that even a slightly lower activity leads to significant changes in the positioning 
of crossovers onto chromosomes, that localize more distally in the mutant. This could 
point to a hitherto unknown regulatory mechanism that could explain the differences 
in crossover positioning between male and female meiosis through differential CDKA;1 
activity. Apart from that we find important clues that the functioning of CDKA;1 might 
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be of high interest for the induction of crossover formation in interspecific hybrids, and 
hence for plant breeding practice. 

Wild relatives of crops can possess traits, like disease resistances, that breeders 
want to introgress into cultivated crop varieties. Whether that is possible depends to 
a large extent on structural differences between chromosomes of crops and their wild 
relatives. Chapter 4 focuses on these structural differences between the related species 
tomato, potato and their closes relatives in the genus Solanum. Through comparison of 
the order of sequences on chromosomes, with the use of fluorescent markers, we show 
the presence of chromosome inversions that occurred during the evolution and diver-
gence of these species. Studying these inversions on the one hand helps understanding 
the phylogenetic relationships between these species and on the other hand brings valu-
able knowledge on the presence of inversions that is of the highest importance to plant 
breeding. The presence of inversions may severely complicate the introgression of traits 
when these are located in an inverted region, by causing linkage drag. 

Chapter 5 is a literature review in which an overview is presented of all the methods 
that have been described so far that can influence meiotic recombination in plants. This 
overview can help in the development of strategies to modify recombination in a tar-
geted way to help breeding. Strategies can be subdivided into methods that increase or 
decrease the total level of recombination or that affect the placement of crossover events 
on chromosomes. Important techniques for managing recombination include the appli-
cation of physical stress like heat- or cold shock, chemicals, UV-radiation or the targeted 
disruption of gene function through transgenes. 

Chapter 6 and 7 are both devoted to reverse breeding, an anticipated new breeding 
technique that was developed to provide breeders with new tools to better breed with 
complex genomes. In their breeding programs, breeders may encounter superior, unique 
heterozygous plants. When offspring are produced from such a heterozygote, meiotic 
recombination will ensure that the favorable allele combinations of the heterozygote go 
lost in subsequent generations. Reverse breeding is based on the thought that by elimi-
nating crossover recombination, the inheritance pattern of alleles is greatly simplified. 
Chromosomes will not recombine, but are transmitted as non- recombinant chromo-
somes to gametes. By regenerating these gametes as homozygous plants (as so called 
doubled haploids), one can produce parental lines for the chosen heterozygote. When 
these new parental lines are crossed, the elite heterozygote can be reconstructed. In 
chapter 6 the theory behind this technique is explained, whereas chapter 7 explains how 
this technique can be applied in Arabidopsis. 

In chapter 8 the knowledge gained through research described in this thesis is eval-
uated from a plant breeding perspective. It is discussed how new sequencing techniques 
can be used for studying recombination landscapes: the pattern of crossover place-
ment on chromosomes. The possibilities of changing these recombination landscapes 
are discussed, in part based on our observations in CDKA;1. Attention is given to the 
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possibilities of inducing recombination in interspecific hybrids by modifying CDKA;1 ex-
pression. Finally the possible applications of reverse breeding for plant improvement 
are addressed. Reverse breeding not only allows breeders to fix complex heterozygous 
genotypes in homozygous parents, but also allows the construction of novel mapping 
populations in plants: chromosome substitution lines. These plants have a remarkable 
genome constitution since they consist of non-recombinant chromosomes. It is expected 
that such lines are extremely useful for mapping traits and the study of gene interactions 
that give rise to heterosis: the observation that hybrids outperform their homozygous 
parents in terms of yield.   



237

Summary  - Samenvatting

Samenvatting 
Meiosis is een gespecialiseerde celdeling speciaal gericht op het produceren van ge-
slachtscellen en het doorgeven van genetische informatie in de vorm van chromosomen. 
Voordat chromosomen via gameten worden doorgegeven, recombineren homologe chro-
mosomen met elkaar waarbij nieuwe allelcombinaties ontstaan. Deze nieuwe allelcom-
binaties kunnen in de nakomelingen leiden tot nieuwe phenotypes. Een goed begrip van 
de meiose is daarmee van cruciaal belang voor plantenveredelaars, omdat daar de vari-
atie ontstaat waarmee zij nieuwe rassen kunnen ontwikkelen. Deze thesis richt zich op 
het ontrafelen, begrijpen en sturen van processen die leiden tot meiotische recombinatie 
en hoe met deze kennis nieuwe, meer efficiënte strategieën ontwikkeld kunnen worden 
voor de veredeling van planten. 

In hoofdstuk 1 wordt een kort overzicht geschetst van meiotische processen, hun 
regulatie en waar deze mechanismen raken aan plantenveredeling. Tevens worden bel-
angrijke nieuwe strategieën besproken die kunnen helpen bij de bestudering van meiot-
ische recombinatie. 

Hoofdstuk 2 beschrijft het tot nog toe meest gedetailleerde onderzoek ooit naar de 
vraag in welke mate tijdens de meiose informatie wordt uitgewisseld tussen homologen 
in Arabidopsis thaliana, een veel gebruikte modelplant voor genetisch plantenonderzoek. 
Daarvoor vergelijken we de precieze genoom sequentie van nakomelingen met die van 
hun ouders. Er wordt in detail beschreven hoe homologen chromosoom stukken uitwis-
selen door middel van crossovers en hoe op bepaalde plaatsen sequenties van de ene 
homoloog veranderen in de sequentie van de andere (genconversies). We laten zien dat 
genconversies in Arabidopsis uiterst zeldzame gebeurtenissen zijn, die vooral optreden 
bij crossover breekpunten. We laten daarnaast zien dat recombinatie vooral plaatsvindt 
op die plaatsen in het genoom waar het DNA eenvoudig toegankelijk is voor recombi-
natie eiwitten. Ten slotte laten we zien dat bepaalde DNA sequenties meer dan gemi-
ddeld voorkomen vlakbij recombinatie plaatsen. Een van de gevonden sequenties lijkt 
verrassend veel op een bekende bindingsplaats voor een transcriptiefactor, die mogelijk 
crossovers bevordert. 

In hoofdstuk 3 wordt dieper ingegaan op de regulatie en coördinatie van de ver-
schillende meiotische processen gedurende de meiotische celcyclus. Arabidopsis heeft 
één cruciale regulator van die celcyclus: de van-cycline-afhankelijke kinase CKDA;1. De 
activiteit van dat eiwit bepaalt welke processen op welk moment plaatsvinden. Door 
dit gen kunstmatig te vervangen door minder goed functionerende varianten, konden 
we afleiden dat CDKA;1 voor een groot aantal verschillende processen belangrijk is ti-
jdens de meiose: voor chromosoom condensatie, voor crossover recombinatie en voor 
de tweede meiotische celdeling. Dat wijst erop dat CDKA;1 als lijkt te functioneren als 
een zogenaamde “master” regulator. Een verrassing was de vaststelling in een bepaalde 
mutant dat al bij een lichte afname in de activiteit van dit eiwit er grote veranderingen 
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optreden met betrekking tot de plaatsing van crossovers op de chromosomen, die daarin 
naar de chromosoom uiteindes verschuiven. Dit wijst mogelijk op een tot op heden on-
bekend regulatie mechanisme waardoor verschillen in crossover plaatsing tussen man-
nelijke en vrouwelijke meiose verklaard kunnen worden door verschillen in CDKA;1 ac-
tiviteit. Daarnaast vinden we aanwijzingen die suggereren dat de activiteit van CDKA;1 
van groot belang zou kunnen zijn voor het induceren van crossovers in soortskruisingen. 
Op termijn zou dat belangrijk kunnen zijn voor de veredelingspraktijk. 

In wilde verwanten van gewassen kunnen eigenschappen voorkomen, zoals resist-
enties, die veredelaars willen inkruisen in bijvoorbeeld bestaande tomatenrassen. De 
mate waarin dat lukt hangt goeddeels af van bestaande structurele verschillen tussen 
chromosomen. In hoofdstuk 4 ligt de focus op deze structurele verschillen tussen chro-
mosomen van aardappel, tomaat en hun meest nauwe verwanten uit het genus Solanum. 
Door het vergelijken van de volgorde van sequenties op chromosomen door middel van 
fluorescente markers, laten we zien dat chromosomen tussen verschillende soorten aan-
zienlijk kunnen verschillen in ordening van genen, doordat in de evolutie chromosoom 
inversies zijn opgetreden. Door het vergelijken van deze inversies kunnen enerzijds ver-
wantschappen tussen soorten worden vastgesteld maar anderzijds is kennis van deze 
inversies ontzettend belangrijk voor de veredelingspraktijk. Wanneer een veredelaar 
eigenschappen van een verwante soort in een tomaat wil inkruisen, is dat door inversies 
soms eenvoudigweg onmogelijk zonder tegelijkertijd alle andere genen en allelen in de 
inversie in te kruisen. 

Hoofdstuk 5 beschrijft de een literatuuronderzoek waarin een overzicht geschetst 
wordt van de manieren waarop in het verleden is aangetoond hoe meiotische recom-
binatie beïnvloed kan worden in planten. Daarmee kunnen verschillende strategieën 
ontwikkeld worden voor het doegericht beïnvloeden van recombinatie in de veredeling 
van planten. Daarbij kan onderscheid gemaakt worden in strategieën die de hoeveelheid 
recombinatie beïnvloeden, of juist de plaatsing van recombinatie gebeurtenissen op de 
chromosomen. Belangrijke technieken zijn de toepassing van physiologische stress als 
hitte of koude shock, chemicaliën, UV-straling of het doelgericht uitschakelen van be-
paalde genen met behulp van transgenen. 

Hoofdstukken 6 en 7 zijn beide gewijd aan reverse breeding, een nieuwe verede-
lingstechniek die werd ontwikkeld om veredelaars een nieuw gereedschap in handen 
te geven om met complexe genomen te kunnen veredelen. Veredelaars komen in hun 
veredelingsprogrammas soms planten tegen die heterozygoot zijn: planten waarvan 
de beide homologe chromosomen verschillend zijn. Wanneer zulke planten bijzondere, 
unieke eigenschappen hebben, is het in de praktijk uiterst moeilijk om zulke planten te 
recreëren: Wanneer uit deze planten nakomelingen worden gekweekt, gaan door meiot-
ische recombinatie de unieke allelcombinaties van de heterozygoot onherroepelijk ver-
loren. Reverse breeding is een nieuwe veredelingstchniek waarin de meiotische recom-
binatie grotendeels wordt uitgeschakeld. De consequentie daarvan is dat in de gameten 
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veel minder variatie wordt aangetroffen dan in traditioneel gerecombineerde gameten. 
Chromosomen wisselen in reverse breeding geen stukken meer uit door crossover re-
combinatie, en chromosomen erven als niet-gerecombineerde chromosomen over naar 
nakomelingen. Door deze gameten niet te kruisen, maar door speciale technieken direct 
op te laten groeien als planten (zogenaamde dubbele haploiden), kunnen ouderlijnen 
voor de heterozygote plant gemaakt worden. Wanneer deze planten vervolgens gekruisd 
worden, kan de veredelaar de unieke plant weer recreëren. In hoofdstuk 6 wordt de 
theorie en mogelijke toepassingen van deze techniek besproken, terwijl in hoofdstuk 7 
wordt beschreven hoe deze techniek in Arabidopsis kan worden toegepast. 

In hoofdstuk 8 worden de resultaten van de verschillende beschreven onderzoeken 
besproken vanuit het perspectief van de planten veredeling. Er wordt ingegaan op de 
mogelijkheden van het gebruik van nieuwe (sequencing-) technieken voor het onder-
zoeken van recombinatielandschappen: van het patroon waarin recombinatie plaatsvin-
dt op chromosomen. Mogelijkheden voor het veranderen van dit recombinetielandschap, 
en mogelijke andere toepassingen van het gebruik van onze nieuwe kennis van CDKA;1 
worden ook besproken. Daarbij veel aandacht voor de mogelijkheden die er zouden kun-
nen liggen voor het induceren van recombinatie van chromosomen die afkomstig zijn 
van verschillende soorten. Ten slotte worden nieuwe toepassingen van reverse breeding 
besproken. Reverse breeding stelt veredelaars niet alleen in staat om ouderplanten te 
creëren voor heterozygote planten, maar biedt ook mogelijkheden voor het maken van 
een nieuw soort plantenpopulaties: chromosoom substitutielijnen. Deze planten hebben 
een bijzondere genoomopbouw: ze bestaan immers uit niet-gerecombineerde chromo-
somen. Naar verwachting bieden deze bijzondere mogelijkheden voor het vinden van 
genen die coderen voor bepaalde eigenschappen en de studie van interacties in hete-
rozygote genomen. Dat laatste is van het grootste belang, omdat de meeste commerciële 
rassen bestaan uit heterozygote planten, die een veel hogere opbrengst geven dan ho-
mozygote planten (een effect dat bekend staat als heterosis). 
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were around: Ana Carolina, Mihal, Paola, Zeshan, Pingping, Marieke, Johanna, Myriam, 
Vicenzio, Roxanne, Martijn, Mina, Claudio, Yanli, Jelle, Jimeng, Wessel, Ya-Fen and Diana: 
thank you all very much. My last special thanks in this group go out to Wytske. Your 
office is sort of a sunny resort, or perhaps safe haven where one can get that friendly, 
comforting chat that helps one overcome the tiny hiccups in the system of science. 

I wanted to thank a few more colleagues at other groups as well. It was great to share 
our lab with the nice colleagues of molecular Biology. Thanks Marijke for all your help 
in and outside the lab, as well as Ton, Olga and Ludmila. Kerstin, Anneke and Kim at PRI 
Biosciences have been a great help various experiments over these years. Sander Peters 
and Paul Fransz, I enjoyed those discussions whenever you visited our lab, as well as 
those with Fred van Eeuwijk and Martin Boer with whom I hope we will keep fun re-
search going. 

To my pleasure, I was able to visit a variety of labs throughout the world that to me 
was both very inspiring and presented the opportunity to and set up some lasting col-
laborations. I wanted to thank Greg Copenhaver for hosting me in his lab and for help 
thereafter. My various visits to the lab of Arp Schnitger have nearly re-defined hospital-
ity. Arp and Maren, my stays made me near literally feel like one of the family and the 
collaborations with Hiro, Anni, Nico and the others in the lab there were as inspiring as 
they were pleasant. We have so many fun data lying around, that I can hardy wait to see 
what it boils down to in a year from now. The collaboration with Korbinian Schneeberger 
at Cologne has been a true journey of its own: the work de did with Joost, Maarten, Geo 
and others has occasionally been like pressure cooker in which great fun, challenges and 
puzzling results made way for some great and special science. To conclude my virtual 
trip around the globe, my staying and later working closely together and discussing sci-
ence during nightly skype meetings with Maruthachalam Ravi at UCDavis was a true joy. 
Also with you I hope we have not seen that last of projects together.

During my PhD, I have had the privilege to work together with some of the most in-
spiring scientists in my field. With pain I saw two of them pass away during my studies: 
Piet Stam (Wageningen) and Simon Chan (UCDavis). Piet was one of the most endearing 
and charming persons to work with. His calm appearance and sharp mind made for good 
moments when, with great humor, he analyzed the humor in the revolving nature of sci-
ence. His passion for science was equaled by that of Simon, who in the short time he had, 
lived close to his dream of devoting his life to his passion: science. The fun of thinking of 
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new challenging ideas could radiate off of him like light from fire, and I will dearly miss 
his presence at the many conferences to come. To both I keep dear memories.

I find myself here looking back on the time that past from university to today. The 
route leading up to this moment where I now write these finishing words has been very, 
very rewarding. Not all too straightforward, though. While distant in time, the moment 
at which a scientific career seemed near impossible to pursue sometimes seems remark-
ably close. Dear parents, Theo and Mieke, I have come to know you as my warmest sup-
porters throughout my life. From the earliest days of picking apart owl pellets, from the 
days of overloading our family car during holidays with the thousands of fossils we all 
collected, from the days of stuffing your freezer with precious roadkills, from those days 
to now. To this rather strange moment where it dawns upon me, that it curiously feels 
like I’ve actually done it, that I’ve become an actual scientist. Isn’t that weird? The op-
portunities you showed me and created for me now create themselves though all those 
I introduced to you above. Isn’t that amazing? Thanks so much for showing me that path 
as a little kid and even more all the precious moments when you patiently and lovingly 
manned the mental “ravitaillering” along the route. 

Many thanks as well to my brother and sister Andries and Winnifred. The various 
times we met together in Utrecht, together with Saraya and Leendert, or just together, 
were precious moments in which you pulled me from the small town that Wageningen 
is into the big city life where it is great to reflect over a nice dinner. Amies, your stories 
I can nearly dream after all the numerous moments that I read them during my studies. 
They still serve as the most powerful remedy to “reset” my mind at times when I am out 
of inspiration. Winnifred, the cover of this thesis really looks very neat! Thanks a lot for 
that finishing touch. 

A few words here also to all my friends in Utrecht and around, since the countless 
evenings when you provided me with the necessary diversions from my everyday life of 
science that appears so omnipresent at times, was so valuable to be. Aniek, your number 
was always among the most frequently chosen whenever Wageningen got too small or 
close. The many cups of tea and glasses of beer we had, as well as our canoeing or walks 
in Rhijnauwen were the good escapes that I value greatly. Pondering life (and limbs) in 
the Utrecht bars with Louk, in DBs with Louk and Wim or the dark German forests while 
enjoying cool beer and blackened bratwurst with Louk and Wim and Martijn and Barend: 
more literally could the escape from daily life hardly be! The inspiring evenings in which 
poetry was served along with great dishes meant yet again other welcome diversions 
with Rienk, Angelique, Geertien, Ingmar (sport, sport, sport!), Louk (who else?), Eva and 
others. “Uitwaaien” was taken most literally when Jaap organized the invaluable weeks 
on the MD3 to set our minds straight and back on track while sailing the Waddenzee. 

Then some last words of thanks to all those others that played crucial roles in help-
ing me otherwise occupied. Harold and Danielle, thanks for looking after my cat Poes 
during my stays abroad. Pepijn, it has taken me some time to come to terms with you 
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re-infecting me with the fossil virus (and making me question whether Genetics or Pal-
aeontology is more fun to study). The question has luckily been resolved now and you 
more than made up for it since (with for example all the great fish we cooked or tasted). 
Eddy en Vilmar, John de Vos, Frank Wesseling, Storrs Olson, Adiel Klompmaker, Pieter 
de Schutter, Freek Bakker, Ronald van den Berg, you did very well in keeping fossils and 
systematics close enough for me not to forget about them.

Dear all, it’s been great. Hope to see you soon again.

Erik
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