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Abstract 

Nutrient intake is an important factor that determines the performance of production animals. In 

free ranging animals, direct measurement of nutrient intake is difficult to conduct, and it is 

frequently estimated indirectly by the aid of markers. The aim of this thesis was to investigate the 

potential of using cuticular n-alkanes and their carbon isotope enrichments (δ13C) as markers to 

study the nutritional ecology of grazing animals under tropical conditions. In addition, this 

improved method was used to determine the seasonal patterns of nutrient intake and diet 

composition of grazing cattle in the Mid Rift Valley grasslands of Ethiopia. The first focus of the 

thesis was to quantify the interspecies variability in the n-alkane profile and δ13C values of alkanes 

among commonly available pasture species in the Mid Rift Valley of Ethiopia. The analysis 

showed that the variability is sufficiently large to allow n-alkane and their δ13C values to be used 

as diet composition markers, with a combined use of the two increasing the discriminatory power. 

Faecal recovery of dosed and natural alkanes in cattle consuming low-quality tropical roughages 

was investigated in an indoor balance study. The recovery of synthetic alkanes dosed in the form 

of molasses boluses was considerably higher than adjacent natural odd-chain alkanes, and 

correction appears necessary when intake is estimated with the double n-alkane method. The next 

focus of the thesis was to generate information on the nutritive value of pasture species and 

nutritional status of grazing cattle in the region. Large variability was observed in the nutritive 

value and methane production potential of pasture species as evaluated in vitro, with scope for 

selection of genotypes with high nutritive value and low methane production potential for a 

sustainable pastureland management. The nutritional status of grazing cattle measured using a 

combination of n-alkanes, their δ13C values and visual observations showed that diet composition 

and nutrient intake of the animals is highly dependent on rainfall patterns, with a cyclic positive 

(wet period) and negative (dry period) energy and nutrient balance observed over the grazing 

seasons. Energy intake was more limiting than crude protein for body weight gain in most of the 

grazing seasons. While mature and non-producing animals appeared to tolerate nutritional 

restriction in the dry period and regain lost body condition in the following wet periods, young 

animals before the age of puberty may need supplementary feeding. Furthermore, concentrate 

supplementation of finishing animals needs to coincide with the onset of the wet season to take 

advantage of compensatory growth. In conclusion, the n-alkanes method coupled with isotope 

enrichment in n-alkanes and visual observations as used in the present study can provide realistic 

nutritional data for free-ranging cattle which correlates well with changes in body conditions.
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Grazing herbivores are the largest contributors of livestock output in tropical regions, and 

natural pasture forms the main source of their feed (Brown and Ash, 1996). The availability 

and quality of tropical pastures experience distinct seasonal fluctuations following the rainfall 

pattern (Schlecht et al., 1999; Schlecht et al., 2006; Cline et al., 2009). During the dry 

periods, the availability and quality of pasture may decrease to a level that may not fulfil the 

animal’s maintenance requirement, resulting in body weight loss and low condition score 

(Hornick et al., 2000; Tolla et al., 2003). During the wet periods, pasture condition improves 

progressively allowing grazing animals to consume energy and nutrients in excess of their 

maintenance requirements. The level of nutritional restrictions (in the dry period) and 

excesses (in the wet period) are also dependent on the grazing pressure and the productivity of 

the available grasslands (Miller and Thompson, 2007).  

To optimize the productivity of grazing animals on tropical pastures, it is essential to 

accurately monitor their energy and nutrient intakes along the different grazing seasons 

(Bailey et al., 1998; Schlecht et al., 1999; Dziba et al., 2003). Such knowledge is vital to 

develop effective strategies for grassland management such as predicting the production 

performance of the grazing animals, identifying limiting nutrients for a target production, 

adjusting stocking rates according to the carrying capacity of pasturelands, and improving the 

productivity of pasturelands through reseeding of selected pasture species.  

Nutrient intake is a resultant of the amount of diet consumed, the nutrient density of 

the diet, and availability of the nutrients after digestion in the gut (Launchbaugh et al., 1990; 

Mayes and Dove, 2000; Coleman and Moore, 2003; Ribeiro Filho et al., 2005). The quality of 

the diet consumed varies according to stage of maturity, the botanical as well as 

morphological compositions of the diet consumed (Machado et al., 2007). As a result, 

measurement of feed intake, diet composition and digestibility are important nutritional 

variables to describe the nutrition of grazing animals (Dove and Mayes, 2006).  

 

Herbage intake measurement of grazing animals  

In animals constrained in barns or stalls, intake can be measured relatively easily by weighing 

the amount of feed offered and refused. In grazing animals, however, measurement of feed 

intake is more complicated as it is nearly impossible to be measured directly. Several indirect 

methods of intake measurement of grazing animals have therefore been developed, which can 
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be broadly classified as plant-based and animal-based techniques. 

 The plant-based intake measurement technique relies on the measurement of sward 

biomass before and after grazing with corrections for sward re-growth during the measurement 

period (Walters and Evan, 1979). This method does not allow intake to be estimated from 

individual animals unless a single animal is kept on a separate plot. Moreover, differences in the 

cutting height before and after grazing and estimation of vegetal accumulation during the 

grazing period may induce large errors, especially if the sward is heterogeneous and the grazing 

duration is long (more than two days) (Frame, 1993).  

The animal-based techniques may include observations of the grazing behaviour of 

animals or the use of markers. Short-term intake rates have been estimated from the 

measurement of biting rate and bite size and the total time spent on grazing (Chacon et al., 

1976; Forbes and Hodgson, 1985; Parker et al., 1993). This technique involves observation of 

biting rate and simulation of bite mass by hand-plucking. The bite mass can alternatively be 

calculated from the daily dry matter intake measured by other techniques (Chilibroste et al., 

1997). Intake is then calculated by bite mass × biting rate × grazing time. Behavioural studies 

using different grazing data recorders have allowed the application of this technique to a wide 

range of animal species (Gordon, 1995). However, this technique is time consuming and 

liable to large biases, especially in simulating a bite mass that represents the entire grazing 

duration for which intake is estimated (Rook, 2000).  

 Measurement of body weight before and after grazing, with corrections for body 

weight changes due to faecal, urinary and insensible weight losses (respiratory and other 

obligatory weight losses) has been applied to estimate short-term intake rates (Penning and 

Hooper, 1985). The insensible weight loss can be measured using animals penned in an 

environmental condition similar to that of the grazing animal but without access to food and 

water (Penning and Hooper, 1985). Concurrent measurement of total bite during the grazing 

time allows the calculation of mean bite size. In order to estimate the dry matter intake, an 

estimate of the dry matter ratio of the forage needs to be obtained. The technique could give 

accurate estimate of short-term intake (usually 1 hour), but it requires capital investment in 

terms of high precision weighing scales (Penning and Hooper, 1985; Murray and Brown, 

1993). The other limitation is that the insensible weight loss measured with penned animals 

may not be representative for grazing animals. 
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 Measurement of rumen fills before and after grazing using rumen cannulated animals, 

and determination of dry matter clearance rate is another technique to estimate the intake rate 

(Chilibroste et al., 1997). However, the measurement is laborious and may not be acceptable 

from an ethical point of view, as the animal’s rumen physiology, micro-flora and normal 

grazing behaviour would be affected by the emptying and refill of the rumen contents 

(Gregorini et al., 2007). 

 Measurement of faecal output and digestibility has been the most widely used method to 

estimate long-term forage intakes of grazing animals (Dove and Mayes, 1991), whereby intake 

is calculated as faecal output/(1-digestibility). As collection of total faecal output in free-ranging 

animals is inconvenient and can disrupt normal grazing behaviour, faecal output is estimated 

through a dilution in faeces of an indigestible external marker. When the concentration of the 

dosed marker stabilizes in faeces through continuous dosing, the daily dose of the marker is 

related with the faecal concentration of the same to yield the daily faecal output estimates. For 

several decades, chromium oxide (Cr2O3) has been the most extensively used marker for feed 

intake studies. A major limitation of this marker, apart from recent concerns over its 

carcinogenic properties, has been the error associated with the diurnal variation in faecal marker 

concentration (Malossini et al., 1996).  

 The digestibility of forage consumed by the grazing animal can be determined either in 

vivo or in vitro, both of which require representative sample of the diet selected by the grazing 

animal to be obtained. Because the in vivo method is time consuming and expensive for a 

routine application, the in vitro digestibility test has been widely used. However, mimicking the 

forage diet selected by the grazing animal has remained a challenge, particularly when animals 

graze on heterogeneous vegetation. Another limitation of this approach is that a single 

digestibility coefficient is used across animals, without giving allowances for between-animal 

variation in diet digestibility due to genotype, parasite burden, physiological status or level of 

feed intake (Mayes and Dove, 2000). If concentrate supplements are provided, this method also 

does not provide reliable estimation of whole diet digestibility, particularly when there are 

digestive interactions between diet components (Dove and Mayes, 1996).  

 Faecal crude protein (CP) concentration has been used as an index of diet organic 

matter digestibility (OMD) (Langlands et al., 1963). This method of digestibility estimation is 

based on the positive relationship between faecal CP concentration and diet OMD resulting 
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from the increasing undigested microbial CP and decreasing faecal OM as OMD increases. 

The main advantage of this approach is that it is non-invasive and does not require sampling 

of forage selected by the grazing animal. However, it requires calibration of the relationship 

with a large dataset generated from conventional (indoor) in vivo digestibility trials, and the 

validity of the estimate usually remains limited to the forage species and geographical location 

for which the equation has been developed (Langlands, 1975). 

The ideal approach to estimate forage digestibility in the free-ranging animals would be 

to use an indigestible marker naturally occurring in the forage. However, many of the internal 

markers considered fell short of the criteria required of an ‘ideal marker’ (Kotb and Luckey, 

1972). Plant components such as lignin, indigestible acid detergent fibre, indigestible neutral 

detergent fibre, acid-insoluble ash and plant silica have been evaluated as internal markers 

although none of them has gained acceptance because of inconsistent faecal recovery rates and 

hence unreliable results. The main reason is that most of them are empirical measurements and 

that what is analyzed as the marker in the diet may be chemically different from that measured 

in the faeces. Although plant silica is a discrete compound, its use has been undermined by the 

high probability of soil contamination with the forage sample analyzed.  

Overall, although errors are introduced from both the separate measurement of faecal 

output and digestibility of herbage when intake is estimated with this approach, a small error 

in the estimate of digestibility can lead to much larger error in the estimate of intake, 

especially when diet digestibility is high and the denominator (indigestibility) is small (Dove 

and Mayes, 1991). 

 

Use of plant cuticular wax components as markers 

Nutritional markers are entities measurable in the diet and faeces of animals, and they serve as 

a tool to estimate nutrient intake and digestibility where direct measurement is impractical or 

laborious. Markers that originate from the diet are referred to as internal markers, and those 

that are absent from the diet but are administered by oral dosing or through rumen cannula are 

referred to as external markers. The properties of an ‘ideal marker’ are complete recovery in 

faeces, accurate quantitative measurement, inertness in terms of having no effect on the 

animal and having physical characteristics that are similar to the contents of the digestive tract 
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(Kotb and Luckey, 1972). However, no single substance has so far been found to fulfil all the 

‘ideal marker’ attributes (Dove and Milne, 2006) 

Plant cuticular wax contains various discrete chemical components including n-

alkanes, long-chain fatty acids, primary alcohols, secondary alcohols and ketones (Dove and 

Mayes, 1991). n-Alkanes are widely distributed in the cuticular wax and their analysis is 

easier than the other wax components. The use of n-alkane markers in nutritional studies has 

gained increasing acceptance since the development of the double n-alkane technique to 

estimate forage intake of grazing animals (Mayes et al., 1986). The carbon-chain length of the 

main alkanes usually range between C25 (pentacosane) to C35 (pentatriacontane). Shorter-chain 

length alkanes could be detected, but in very small quantities which have, therefore, little 

value as internal markers. Generally, in flowering plants, odd-chain n-alkanes are found in 

much higher concentration than even-chain n-alkanes. The characteristics of these cuticular n-

alkanes are that they exhibit distinct profiles between plant species, and that they have a high 

recovery in faeces (Dove et al., 1996). These characteristics have long enabled researchers to 

use alkanes in chemotaxonomic studies (Herbin and Robins, 1968) and, more recently, in 

predicting diet composition of free-ranging herbivores (Fraser et al., 2006; Ferreira et al., 

2007b).  

 

Estimation of forage intake using n-alkanes 

The recovery of cuticular n-alkanes in faeces is recognized to be incomplete, with the 

recovery generally increasing with increasing carbon-chain length and adjacent n-alkanes 

showing similar recovery rates (Mayes and Lamb, 1984). Significant progress in the use of n-

alkanes in nutritional studies was achieved with the development of the double n-alkane 

method (Mayes et al., 1986) to estimate feed intake of herbivores without the need to measure 

faecal output and diet digestibility separately. This approach requires continuous dosing of a 

synthetic n-alkane until the faecal concentration of the dosed alkane stabilizes, and then 

forage intake is estimated using the ratio in faeces of dosed even-chain and an adjacent natural 

odd-chain n-alkane. Besides the discrete nature of the markers, this method enables estimation 

of intake of individual animals by taking into account animal-diet interactions. The 

assumption that adjacent even and odd-chain alkanes have similar faecal recovery rates may 

not always hold true, and in such case considerable discrepancies may occur between actual 
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and estimated intakes. Knowledge of the faecal recovery of dosed and forage n-alkanes is thus 

important to select suitable alkane pairs and, if necessary, to correct for differences in faecal 

recovery of the alkane pairs. Overall, various validation experiments showed that the double 

n-alkane method is more robust compared to all other methods of feed intake estimation in 

free-ranging animals (Hameleers and Mayes, 1998; Mayes and Dove, 2000; Ferreira et al., 

2007a).  

 

Estimation of diet composition using n-alkanes 

In natural grasslands where the vegetation is complex, the diet of grazing animals comprises 

different botanical species. The n-alkane method has been applied to quantitatively determine 

the diet composition of individual grazing animals from the alkane patterns found in faeces. 

This approach is based on the fact that different diet components have different n-alkane 

profiles and that the faecal alkane pattern reflects that of the diet consumed (Dove and Mayes, 

2005). Least square optimization algorithms have been used to find a solution of diet 

composition by minimizing the squared differences between observed alkane pattern in faeces 

(corrected for incomplete recovery) and that indicated by the predicted diet composition 

(Dove and Mayes, 1996). The main advantage of this method is that diet composition can be 

estimated with little or no interference to the normal grazing behaviour of the animals, which 

is particularly important under rangeland conditions and when the nutrition of wild herbivores 

is considered. 

The main constraint with this approach is that the number of potential diet components 

identified is limited to the number of n-alkane markers available. In complex vegetation, the 

diet of the herbivore may contain more botanical species than the available alkane markers. 

Taking this into account, recent research has focused on the use of other cuticular wax 

components, mainly long-chain fatty acids and long-chain alcohols together with alkanes to 

increase the discriminatory power in estimating diet composition (Ferreira et al., 2011). In 

addition, linear programming algorithms that can avoid the constraint that the number of 

potential diet components should be equal or less than the number of available markers have 

been developed (Barcia et al., 2007). Generally, the accuracy with which diet composition is 

estimated is expected to decline as the number of dietary components increases, but there is a 
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scope for the cuticular wax to provide additional markers to increase the discriminatory power 

of n-alkanes (Dove and Mayes, 2006). 

 

Application of the n-alkane method under tropical conditions 

Although there is ample data on the validation and application of the n-alkane method for 

temperate grasslands (Mayes and Dove, 2000), comparable data for tropical grasslands is 

scarce (Hendricksen et al., 2002; Molina et al., 2004). Owing to the importance of accurately 

assessing the nutrient intake and diet composition of free ranging animals on tropical 

grasslands, the use of the n-alkane method appears to be ideal to improve the quality and 

quantity of data generated on the nutrition of grazing animals. The requirements for wider 

application of this technique include determining the marker profile of major botanical 

species, examining the discriminatory potentials of the n-alkanes and other potential markers 

of the cuticular wax to estimate diet compositions, and generating reliable faecal recovery 

data of the markers under different diet scenarios (Dove, 1992; Ferreira et al., 2009). In this 

respect, more work is required to validate and apply the method under tropical conditions. 

 

Grazing livestock in Ethiopia  

Ethiopia has the highest ruminant livestock population in Africa and tenth in the world (FAO, 

2010). Despite the large livestock population, however, the productivity has remained very 

low mainly due to genetic, nutritional and disease constrains coupled with poor service 

delivery systems. About 62% of Ethiopia’s landmass is classified as arid- and semi-arid where 

grazing livestock are the main source of livelihood for pastoral and agro-pastoral 

communities. This arid and semi-arid part of the country produces approximately 90% of the 

meat and live animal supply to local and international markets (Berhe et al., 1999). 

Assessments on the condition of natural grasslands in the arid and semi-arid regions of the 

country have shown that the condition of the grasslands is deteriorating rapidly due to the lack 

of proper management and high grazing pressures (Gemedo et al., 2006; Solomon et al., 

2007). To optimize resource utilizations and, at the same time, protect environmental damages 

(land degradation and greenhouse gas emission), it is important that knowledge-based 

grassland management decisions are implemented in the country (Kamara et al., 2005). As 
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such, accurate estimation of nutrient intakes, diet composition and nutritive values of dietary 

components of the grazing animals will provide the knowledge base to improve both animal 

and grassland productivity in these semi-arid grasslands of Ethiopia. 

 

Aim and outline of this thesis 

The aim of the research described in this thesis is to investigate the use plant cuticular n-

alkanes and their carbon isotope enrichments in measuring the nutrient intake of grazing 

animals in tropical grasslands, and to assess the seasonal pattern of nutrient intake and diet 

composition of grazing cattle in the Mid Rift Valley of Ethiopia. 

Chapter 2 describes the cuticular n-alkane profiles and the carbon isotope enrichments of the 

alkanes for commonly available pasture species in the Mid Rift Valley grasslands of Ethiopia. 

Using multivariate analysis, the chapter explores the potentials to use alkane profiles and their 

carbon isotope enrichment as diet composition markers. Chapter 3 describes a laboratory 

validation experiment evaluating the accuracy with which the botanical composition of a 

pasture mixture can be estimated using either n-alkanes or a combination of n-alkanes and 

their carbon isotope enrichment. Chapter 4 describes a feeding experiment to measure the 

faecal recovery rate of dosed and natural n-alkanes in cattle consuming tropical roughage 

feeds. The experiment evaluates the use of molasses-based alkane boluses to administer 

synthetic n-alkanes, and compares alternative faecal sampling methods to estimate intake and 

digestibility using the n-alkane method. Chapter 5 describes the nutrient composition, in vitro 

gas and methane production potential of grass and browse species harvested during the main 

pasture growth period in the Mid Rift Valley of Ethiopia. The nutritive values of the available 

forages are predicted using the in vitro gas and chemical composition data. Chapter 6 

describes a study where the nutritional status of grazing cattle in the Mid Rift Valley of 

Ethiopia was assessed with the aid of n-alkanes and their carbon isotope enrichment as 

markers in combination with visual observations. This chapter compares the estimated energy 

and nutrient intakes with requirements of the animals and predicts seasonal animal 

performances on pasture. Chapter 7 discusses the major research findings presented in this 

thesis, provides recommendations for further research and lists the main conclusions.
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Abstract 

Plant cuticular n-alkanes have been successfully used as markers to estimate diet composition 

and intake of grazing herbivores. However, additional markers may be required under grazing 

conditions with botanically diverse vegetation. This study was conducted to describe the n-

alkane profiles and the carbon isotope enrichment of n-alkanes of common plant species from 

the Mid Rift Valley rangelands of Ethiopia, and evaluate their potential use as nutritional 

markers. A total of 23 plant species were collected and analyzed for long chain n-alkanes 

ranging from heptacosane to hexatriacontane (C27-C36), as well as their carbon isotopic ratio 

(
13

C/
12

C). The analysis was conducted by gas chromatography/combustion isotope ratio mass 

spectrometry following saponification, extraction, and purification. The isotopic composition 

of the n-alkanes is reported in the delta notation (δ
13

C) relative to the Vienna Pee Dee 

Belemnite standard. The dominant n-alkanes in the species were C31 (mean±sd, 283±246 

mg/kg dry matter) and C33 (149±98 mg/kg dry matter). The carbon isotopic enrichment of the 

n-alkanes ranged from -19.37 to -37.40‰. Principal component analysis was used to examine 

interspecies differences based on n-alkane profiles and the carbon isotopic enrichments of 

individual n-alkanes. Large variability among the pasture species was observed. The first 

three principal components explained most of the interspecies variances. Comparison of the 

principal component scores using orthogonal procrustes rotation indicated that about 0.84 of 

the interspecies variances explained by the two types of data sets were independent of each 

other, suggesting that use of a combination of the two markers can improve diet composition 

estimations. It was concluded that, while the n-alkane profile of the pasture species remains a 

useful marker for use in the study region, the δ
13

C values of n-alkanes can provide additional 

information in discriminating diet components of grazing animals. 
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Introduction 

In extensive agro-pastoral systems rangelands are the main sources of nutrition for domestic 

and wild herbivores. In Ethiopia, about 62% of the total land mass is classified as arid and 

semi-arid and mainly used for livestock production based on grazing (Kassahun et al., 2008). 

Proper management of grazing animals is important to maintain sustainable range resource 

utilization in such areas (Bailey et al., 1998). Naturally, free-ranging herbivores grazing on 

diversified plant communities exert different levels of selection to optimize their nutrient 

intake (Prache et al., 1998). Understanding the type of plant species selected by the animal 

and the contribution of each species to the total intake could give insight into the nutritional 

status of the animal and offer a feasible range management strategy to optimize resource 

utilization (Dumont et al., 2002). However, measurement of feed intake, diet composition and 

nutrient digestibility in free-ranging animal remains a challenge in nutritional studies because 

of the inherent errors associated with the presently used methods (Dove and Mayes, 1991; 

Mayes and Dove, 2000). 

The use of plant wax components, mainly n-alkanes, as markers for estimation of 

intake and diet composition of herbivores evolved in the last two decades (Dove and Mayes, 

2005; Ferreira et al., 2007a,b). n-Alkane profiles of plants show distinct differences between 

species and to some extent between plant parts of the same species. In addition, they have 

high recovery rates in the faeces of herbivores (Ferreira et al., 2009) offering an opportunity 

to reconstitute the diet of the herbivore from the faecal patterns of these compounds (Bugalho 

et al., 2004; Dove and Mayes, 1996). Validation experiments revealed the potential of using 

n-alkanes to estimate intake, diet composition and nutrient digestibility of individual animals 

(Monks et al., 2005; Oliván et al., 2007a).  

Although validation experiments using n-alkanes produced good estimates with less 

complex vegetation, grouping of species or use of other markers in addition to n-alkanes was 

necessary for correct estimation of diet composition of herbivores grazing botanically diverse 

vegetation (Oliván et al., 2007b). Stable carbon isotopic (
13

C) composition of plants has been 

used to estimate the proportion of C3 and C4 plants in the diet of herbivores (Bennett et al., 

1999). Garcia et al. (2000) reported that the use of a combination of the n-alkanes and 
13

C 

composition of the organic matter of feeds could increase the accuracy of estimation of diet 

compositions in cows. However, so far, the 
13

C of n-alkanes has not been evaluated as an 
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additional marker together with the alkane profiles themselves. Currently, the possibility of 

separating organic compounds of interest prior to isotope ratio analysis using gas 

chromatography-combustion isotope ratio mass spectrometry (GC-CIRMS) provides an 

opportunity to consider the 
13

C of n-alkanes rather than the whole organic matter. The latter 

would improve the reliability of isotopic techniques, as plant compounds that are stable both 

in herbage and in faeces can be specifically targeted for isotope analysis.  

There is little information about the plant wax profiles of native pasture species in 

Ethiopia for application in nutritional assessments of grazing animals. The aims of the present 

study were: 1) to describe the n-alkane profiles of pasture species commonly available in the 

Mid Rift Valley rangelands of Ethiopia, 2) to determine the stable carbon isotope enrichment 

of individual n-alkanes for each pasture species, and 3) to evaluate the potential for using the 

two markers to estimate the diet composition of free-ranging herbivores. 

 

Materials and Methods  

Description of study site 

The research area lies in the Mid Rift Valley region of Ethiopia extending from 7°30´N to 

8°00´N and from 38°35´E to 38°45´E. The area is classified as semi-arid with an annual 

rainfall ranging from 500 to 700 mm per annum (MoA, 2000). The rainfall pattern is bimodal 

with short rains from March through May, followed by the main wet season from July to 

October. The mean annual minimum and maximum daily temperature ranges between 11.4 

and 26°C. The grazing lands exhibit typical savannah woodland vegetation with a scattered 

population of acacia trees and broadleaved shrubs. Cattle are the dominant livestock in the 

area followed by goats. Natural pasture is the main source of feed, supplemented by 

agricultural crop residues (CSA, 2007). 

 

Plant sampling and processing 

A total of 23 commonly available pasture species were collected from the study area during 

the months of July and August, 2008. For collection of samples several transect walks 

covering 15 km of length were conducted across both enclosed and communal grazing lands. 

Whole-plant pasture species were sampled from various locations along the transects by 

cutting at a height of 5 cm from the ground. The sampling was done at the time of the 
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flowering stage for all the species. After harvesting, the biomass sample of individual species 

was coded and stored in a pollen bag, while a specimen for each species was placed into a 

plant press for species confirmation in a herbarium. On average, a species was sampled from 

about 20 sites. Biomass samples of the same species collected from different sites were pooled 

to a sample before drying. The samples were dried in a forced air oven at 60
o
C for 48 h. Dried 

samples were ground to pass through a 1mm sieve size (Thomas Wiley Lab mill, model 4, 

Philadelphia, U.S.A.), and afterwards pulverized using a bullet mill (MM 2000; 4 min at 80 

Hz; Retsch Technology GmbH, Haan, Germany) before analysis of n-alkane concentrations 

and 
13

C enrichment of alkanes. 

 

Chemical analysis 

The chemical analysis was conducted at the laboratory of the Animal Nutrition group of 

Wageningen University, the Netherlands. n-Alkane extraction and analysis was carried out as 

described by Mayes et al. (1986), with modifications by Salt et al. (1992) and tetratriacontane 

(C34) used as an internal standard. The extracted samples were analyzed for n-alkanes (C27 to 

C36) using a gas chromatograph (GC:Carlo Erba HRGC Mega 2 series, CE instruments, 

Milan, Italy) fitted to a flame ionizing detector (FID), using helium as the carrier gas. The 

column was a 40 m × 0.32 mm (i.d.) fused silica capillary (SPB-1) with 0.10 µm film 

thickness. A split type injector was used, with a split ratio of 1:10. The temperature for both 

the detector and injector was 340
o
C (temperature program: 1 min at 210

o
C, increase at 

7.2
o
C/min to a temperature of 300

o
C, 6 min at 300

o
C). Chrom Card Data System 2.2 (Thermo 

Finnigan, Waltham, MA) software was used to calculate peak areas. The data were transferred 

to an excel spread sheet to calculate alkane concentrations according to the following formula: 

Alkanei (mg/kg DM) = [10 × area % alkanei×IS wt (mg)] ∕ SDW × SRFi 

where IS wt is the weight of the internal standard, SDW is sample dry weight, and SRFi is the 

standard response factor for alkanei, calculated as area % alkanei in the mixed standard 

divided by weight % alkanei in the mixed standard. 

Using the same alkane extracts, the carbon isotope composition of the alkanes was 

determined by fitting a GC (Finnigan_MAT, TraceGC Ultra, Milan Italy) with a split/ splitless 

injector operated in split mode (split ratio 1:10), to a combustion interface (Finnigan_MAT 

Combustion interface III, Bremen, Germany), which was connected to an elemental analyzer 
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isotope ratio mass spectrometer (Finnigan_MAT CN, Bremen, Germany). Full base line 

separation of all individual alkanes was achieved by fitting the TraceGC with a capillary 

column as described earlier and using helium as carrier gas. The temperature setting of the 

column was identical to that described earlier. The isotope ratio of the alkanes was calculated 

in terms of conventional delta values (δ
13

C) as follows: 

δ
13

C= 1000 (Rsample – Rstandard)/Rstandard 

where, Rsample is the abundance ratio of 
13

C to 
12

C in the plant sample, and Rstandard is the 

abundance ratio of 
13

C to 
12

C in the standard sample (Vienna Pee Dee Belemnite, PDB). 

 

Data analysis  

Principal Component Analysis (PCA) was used to explore the pattern of n-alkane profiles and 

13
C enrichments of alkanes across the species. The correlation matrix was used for the 

calculation, after the data was mean-centred and standardized. The first two principal 

components (PC1 and PC2) were plotted graphically where points on the graph represent 

plant species. The distance between species in the scatter plots is an indication of the 

difference in marker profile between the species. The species which are positioned close 

together in the scatter plots are the ones with a similar marker profile. On the other hand the 

species that are placed far apart are expected to have large differences in their marker profiles.  

The principal components for the two groups of markers were compared by 

Orthogonal Procrustes Rotation (OPR) to assess the similarity between the two data sets in 

describing the species identities. The PCA coordinates based on n-alkanes were used as fixed 

values, and those based on 
13

C were used as fitted values. The OPR procedure rotates the 

fitted PCA axes to match the fixed axes, minimizing the residual sum of squares between the 

two PCA configurations. The magnitude of unexplained residual variance after OPR indicates 

the extent to which the two PCA configurations differ from one another. The two data sets 

were again examined together by employing Redundancy Analysis (RDA), in which the PCA 

based on the alkane profile was constrained by 
13

C enrichments of n-alkanes and then the 

dispersion of species was presented in a two dimensional space. Data were analyzed using 

GenStat for Windows (11
th
 edition). 
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Table 1 n-Alkane concentration for pasture species collected from the Mid Rift Valley rangelands of Ethiopia. 

Species n-alkane concentration (mg/kg DM) 

 C27 C28 C29 C30 C31 C32 C33 C35 Total 

Cynodon dactylon 64 11 67 13 153 13 186 198 705 

Pennisetum straminium 40 7 130 15 596 9 126 64 987 

Cenchrus ciliaris 39 8 88 13 391 14 282 210 1043 

Cymbopogon pospischilii 86 16 132 8 158 2 40 9 451 

Indigofera spicata 23 24 76 7 202 6 20 6 363 

Heteropogon contortus 68 5 46 10 266 11 238 98 742 

Zaleya pentandra 14 33 35 8 1265 6 29 10 1398 

Chloris gayana 116 18 125 11 318 11 258 165 1022 

Eragrostis aspera 37 19 38 5 33 2 17 18 169 

Eragrostis cilianensis 58 6 75 9 185 14 192 75 613 

Cynodon ethiopicus 58 17 103 7 196 6 190 132 709 

Eleusine mutiflora 59 11 75 9 186 12 170 51 574 

Brachiaria lachnantha 30 17 45 6 129 11 171 158 569 

Aristida adscensionis 31 8 81 7 225 5 103 32 493 

Bracheria marlothii 429 31 281 18 174 6 72 23 1034 

Sporobolus pellucisus 262 27 227 24 397 20 300 120 1378 

Dactyloctenium aegyptium 84 7 86 11 313 12 208 33 754 

Digitaria abyssinica 74 12 159 12 278 11 117 32 694 

Pennisetum polystachion 40 6 36 5 73 3 13 7 182 

Hyparrhenia anamesa 48 9 57 10 233 6 62 25 449 

Snowdenia petitiana 28 39 81 10 245 11 160 84 657 

Rhynchelytrum repens 91 30 76 21 356 22 363 91 1049 

Melinis repens 78 24 54 11 127 7 104 53 457 

Mean±sd 

Pooled SEa 

81±91 

1.27 

17±10 

1.07 

95±61 

1.52 

11±5 

0.60 

283±246 

1.84 

9±5 

0.54 

149±99 

0.94 

74±63 

1.65 

 

aPooled standard error of measurement. 

 

Results 

Alkane concentrations 

The n-alkane concentrations (C27 to C35) in the pasture species collected from the grazing 

lands is shown in Table 1. The odd-chain alkanes were found in much higher concentrations 

than the even-chain alkanes. The even-chain alkane C36 was excluded from the results as the 
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values for most of the species were within the range of the analytical error of the GC. In most 

species, C31 was the most abundant odd-chain alkane, ranging from 33 mg/kg dry matter 

(DM) in Eragrostis aspera to 1265 mg/kg DM in Zaleya pentandra with a mean 

concentration of 283±246 mg/kg (mean±sd) DM across the species. This was followed by C33, 

which ranged from 13 mg/kg DM in Pennisetum polystachion to 363 mg/kg DM in 

Rhynchelytrum repens with a mean concentration of 149±98 mg/kg DM for all the species. 

While alkane C35 was abundant in some species (e.g. Cenchrus ciliaris, Cynodon dactylon), it 

was found in very low concentration in Indigofera spicata, Cymbopogon pospischilii and 

Pennisetum polystachion. The sum of C27 to C35 concentrations showed large between species 

variation, ranging from 169 mg/kg DM in E. aspera to 1398 mg/kg DM in Z. pentandra. 

 

Carbon stable isotope composition of n-alkanes 

The stable isotope enrichment of carbon (δ
13

C) for individual n-alkanes (Table 2) showed a 

wide variation, ranging from -19.37‰ (Digitaria abyssinica) to -37.40‰ (I. spicata). The 

lowest level of enrichment was observed in I. spicata, which was the only legume species in 

the collected samples, followed by that of Z. pentandra (a non-legume forb). The other grass 

species showed higher levels of enrichment, but differences could be observed between 

species. Regarding the delta values of individual alkanes, the odd-chain alkanes had a higher 

level of 
13

C enrichment by at least one delta unit than the subsequent even chain alkanes 

(Table 2). The level of enrichment tended to decrease, in both even and odd chain alkanes 

with increasing carbon number. 

 

Principal component and redundancy analyses 

The results of the PCA are shown in Table 3, and Figures 1 and 2. When the PCA was based 

on n-alkane concentrations, about 91% of the variance between species was explained by the 

first three principal components (PC1-PC3). Similarly, when the analysis was based on δ
13

C 

values of n-alkanes, 74% of the variance was explained by the first three principal 

components (Table 3). 
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Table 2 Carbon stable isotope (13C) enrichment of n-alkanes for pasture species collected from the Mid Rift Valley 

rangelands of Ethiopia. 

Species 13C values (‰) of n-alkanes 

 C27 C28 C29 C30 C31 C32 C33 C35 

Cynodon dactylon -22.93 -27.36 -23.90 -25.79 -22.69 -27.84 -23.43 -23.66 

Pennisetum straminium -20.69 -23.09 -20.59 -22.26 -20.10 -24.50 -21.42 -21.71 

Cenchrus ciliaris -20.85 -23.41 -21.13 -23.01 -21.80 -23.65 -21.94 -22.87 

Cymbopogon pospischilii -20.61 -22.08 -20.39 -24.91 -20.81 -26.84 -22.55 -22.30 

Indigofera spicata -32.27 -34.00 -36.61 -36.68 -37.40 -35.67 -33.77 -34.58 

Heteropogon contortus -19.46 -23.47 -20.10 -23.17 -20.45 -22.51 -21.08 -21.94 

Zaleya pentandra -25.67 -27.21 -25.12 -25.47 -21.11 -27.83 -24.11 -25.22 

Chloris gayana -21.37 -22.83 -21.55 -23.07 -21.08 -24.75 -22.26 -22.91 

Eragrostis aspera -21.09 -23.46 -22.13 -25.73 -21.95 -23.15 -24.52 -23.15 

Eragrostis cilianensis -21.86 -24.67 -22.33 -24.61 -23.33 -25.18 -24.32 -25.72 

Cynodon ethiopicus -23.44 -25.20 -23.42 -25.11 -22.17 -25.09 -22.55 -23.71 

Eleusine mutiflora -22.25 -26.01 -23.11 -25.37 -23.65 -26.03 -24.97 -25.57 

Brachiaria lachnantha -20.81 -23.22 -21.88 -23.50 -21.34 -22.90 -22.94 -21.49 

Aristida odscensionis -22.49 -25.00 -22.68 -24.29 -22.69 -23.39 -23.31 -23.30 

Bracheria marlothi -20.72 -22.13 -21.41 -23.84 -22.45 -35.64 -26.36 -22.40 

Sporobolus pellucisus -21.05 -22.93 -21.50 -23.85 -22.50 -23.60 -24.22 -24.40 

Dactyloctenium aegyptium -21.94 -26.58 -23.12 -27.14 -22.48 -26.60 -23.55 -24.79 

Digitaria abyssinica -19.37 -20.87 -19.81 -20.56 -19.67 -22.88 -22.05 -22.46 

Pennisetum polystachion -22.52 -22.57 -23.04 -22.93 -23.80 -23.79 -27.21 -23.70 

Hyparrhenia anamesa -20.12 -25.02 -19.75 -23.93 -19.97 -22.03 -21.68 -22.42 

Snowdenia petitiana -21.97 -25.11 -23.08 -24.66 -23.68 -26.63 -25.18 -24.58 

Rhynchelytrum repens -21.70 -22.80 -22.55 -21.88 -22.97 -21.59 -23.54 -24.55 

Melinis repens -20.92 -22.94 -21.94 -22.37 -21.31 -22.09 -21.78 -23.34 

Mean±sd 

 

Pooled SEa 

-22.00 

±2.62 

0.29 

-24.34 

±2.69 

0.52 

-22.66 

±3.33 

0.27 

-24.53 

±3.04 

0.42 

-22.58 

±3.45 

0.16 

-25.03 

±3.72 

0.78 

-23.77 

±2.67 

0.26 

-23.95 

±2.62 

0.32 

aPooled standard error of measurement. 
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Table 3 The variance (%) in the pattern of n-alkane concentration and δ
13

C values of n-

alkanes explained by the first three principal component axes (PC1, PC2, and 

PC3) for each data set, and the residual variance (%) remaining after comparison 

by Orthogonal Procrustes Rotation (OPR) of the two principal component scores. 

Marker Variance explained (%) Residual variance (%) 

remaining after OPR PC1 PC2 PC3 Total 

n-alkanes 54.6 22.1 14.1 90.8  

84.7 δ
13

C of n-alkanes 35.7 22.3 16.0 74.0 

 

 

 

 

Figure 1 Scatter plot of pasture species on a two dimensional space using the first two 

principal components (PC1 and PC2) derived from PCA based on the n-alkane 

concentrations. 
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Figure 2 Scatter plot of pasture species on a two dimensional space using the first two 

principal components (PC1 and PC2) derived from PCA based on δ
13

C values of n-

alkanes. 

  

The scatter plot based on n-alkanes (Figure 1) shows a good species separation. For 

example, Brachiaria marlothi, I. spicata, Z. pentandra, and E. aspera scattered widely from 

the rest of the species. Brachiaria lachnantha, Heteropogon contortus, P. polystachion, C. 

pospischilii, C. ciliaris and C. dactylon were also separated along the two principal axes. On 

the other hand, clustering between some of the species, like Chloris gayana, and Cynodon 

ethiopicus was observed. The scatter plot based on the δ
13

C values of n-alkanes (Figure 2) 

showed that the species were scattered along the two axes in a different way. On one hand, 

those species which clustered closer when the analysis was based on n-alkanes (Figure 1), 

showed wider separation when the analysis was based on δ
13

C values of n-alkanes (Figure 2). 

On the other hand some of the species (e.g. C. dactylon and Z. pentandra; C. ciliaris and B. 
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lachnantha), which were better separated with the n-alkane data set, showed aggregation with 

the isotope data set. 

Comparison of the species ordinations by OPR revealed that the residual variance 

remaining after fitting the two PCA scores was 84.7% (Table 3). This indicated little 

similarity between the two PCA scores and that the majority of the variance explained by δ
13

C 

values of n-alkanes was additional to that explained by the n-alkane profile of species.  

 

Figure 3 A tri-plot in the space of the first two principal axes derived from RDA of n-alkane 

concentration of species (solid arrows) as constrained by δ
13

C values of n-alkanes 

(dashed arrows). The direction of the arrow points towards the steepest increase of 

the marker it represents. 

 

Figure 3 shows a tri-plot of species points and the direction of the steepest increase for n-

alkanes profile and δ
13

C values of n-alkanes in the space of the first two principal axes derived 

from RDA. As shown in the graph, overlapping or clustering of species points was not 
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observed. Those species that were clustered together in Figure1 (PCA based on n-alkane) and 

Figure 2 (PCA based on 13
C values of n-alkanes) appeared separated in Figure 3. On the 

other hand those species that had distinct coordinate points in either Figure 1 or Figure 2 

remained distinct in Figure 3. 

 

Discussion 

n-Alkane concentrations 

The presence of significant variability in the n-alkane profile between plant species has long 

been documented and this variability is increasingly being used for the indirect estimation of 

the diet composition of free-ranging herbivores (Dove and Mayes, 2005; Ferreira et al., 

2007b). To make effective use of these markers in nutritional studies, however, it is important 

to document location specific information on the n-alkane profiles of available herbage 

species (Ali et al., 2005a). This is because environmental conditions and geographical 

locations could influence the pattern of cuticular wax profile of plant species growing in 

different places (Samuels et al., 2008). 

In the present report, the general trend that odd-chain alkanes exist in higher 

concentration than even-chain alkanes conforms to previous findings (Dove and Mayes, 

1996). The dominance of C31 in the pasture species was also consistent with previous reports 

(Ali et al., 2005a).This makes it easier to quantify odd-chain herbage alkanes more accurately 

than even-chain alkanes, and hence their role as a diet composition marker appears 

indispensable. Although found in small quantities some of the even-chain alkanes like C30 and 

C32 have shown high discriminatory potentials (Pueyo et al., 2005). 

Feed intake estimation using the ratio of a natural odd-chain to dosed even-chain n-

alkane in the faeces is another important advantage of the n-alkane method (Mayes et al., 

1986). One of the requirements to estimate intake accurately using this approach is that the 

faecal recovery rates of the dosed and herbage n-alkanes should be similar (Dove and Mayes, 

1991). Generally, pairs of n-alkanes with consecutive carbon chain lengths are reported to 

have similar recovery rates (Mayes and Dove, 2000). As a result a combination of either 

C31/C32 or C33/C32 has been used for this purpose. The present analysis also confirms herbage 

C31 and C33 alkanes as priority choices for intake estimation together with dosed C32. The 

alkane C35 could also be used in combination with dosed C36, as it was found in considerable 
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amounts in many of the species (Table 1), and is known to have high faecal recovery rates 

(Ferreira et al., 2009). 

 

The δ
13

C values of n-alkanes 

It is known that all photosynthetic plants discriminate against the natural stable isotope 
13

C 

during their CO2 absorption and utilization. This results in the depletion of 
13

C in organic 

tissues, as well as in specific compounds like n-alkanes of plants in comparison with the 

natural abundance (Bendle et al., 2006). Plants that follow the C3 photosynthetic pathway 

exhibit a higher level of carbon isotope fractionation than C4 plants (Marshall and Zhang, 

1994). The resulting difference in carbon isotope composition of the organic matter has been 

exploited to estimate the gross diet composition of herbivores in terms of the two plant groups 

(Coates et al., 1987; Norman et al., 2009). 

Differences in carbon isotope fractionation between species that follow the same 

photosynthetic pathway have also been documented (Ehleringer, 1991). However, these 

differences have not been evaluated as an additional source of plant marker. The main reason 

for that may be the general assumption that the within photosynthetic group variations in 

carbon isotopic ratio are too small to be used as an additional marker (Osmond et al., 1973). 

From previous reports, the δ
13

C values of n-alkanes range between -30 to -40‰ for C3 

plants and -17 to -24‰ for C4 plants (Reddy et al., 2000). The results of the present analyses 

largely agree with these ranges of values. Indigofera spicata was the only legume species 

analyzed in the present study, and the δ
13

C values obtained for this species (-32.27 to-

37.40‰) fall within the range of values observed for C3 plants. This conforms to the 

established knowledge that in tropical grasslands, legumes are represented by C3 plants (Dove 

and Mayes, 2005). The other species analyzed exhibited a range of carbon isotope enrichment 

which is typical of C4 plants (Bendle et al., 2006), although some of the species like Z. 

pentandra showed a lower level of enrichment. In the current study, the general isotope 

enrichment level of even- and odd-chain alkanes agrees with the finding of Reddy et al. 

(2000), who reported that even-chain alkanes were depleted by about –1‰ compared to the 

neighbouring odd-chain alkanes. This may suggest that during the biosynthesis of n-alkanes 

(elongation of carbon skeletons) there is a differential carbon isotopic fractionation. 
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Multivariate analysis  

A variety of multivariate statistical procedures are available to study the patterns of 

interspecies variability in n-alkanes and other plant markers (Dove et al., 1996; Dove et al., 

1999). Principal component analysis was chosen here as the n-alkane and 
13

C analyses were 

based on bulked samples and the data do not provide within species variability in the two 

markers. The PCA carried out showed that most of the variance between species was 

explained by the first three principal components. This indicated the presence of a high 

variability among the plants studied, which can be ascribed to the patterns of the two markers. 

The results obtained regarding the n-alkanes is similar to several other investigations over the 

past decades for pasture and browse species (Ferreira et al., 2007b). However, to our 

knowledge, there is no previous published report regarding the interspecies variability in the 

13
C enrichment of n-alkanes.  

One of the constraints in using n-alkanes is that the concentrations of many of the 

lower-chain n-alkanes and the even-chain n-alkanes are too low for accurate measurement. As 

a result the number of n-alkanes that can be used as markers is limited. This in turn may limit 

the number of diet components that can be effectively estimated. There are, however, 

circumstances that the diet of animals grazing on botanically diverse vegetation could contain 

more diet components than the number of effective n-alkane markers available for diet 

composition estimation. Taking this limitation into account, research in the area has focused 

on evaluating other plant wax components like long chain fatty alcohols and fatty acids for 

use as additional markers (Mayes, 1998). This has been supported by the development of 

exhaustive analytical laboratory protocols (Dove and Mayes, 2006).  

Generally the use of a combination of plant wax component n-alkanes, long-chain 

fatty alcohols, and acids has provided increased accuracy and power in the estimation of diet 

composition (Bugalho et al., 2004; Fraser et al., 2006; Kelman et al., 2003). The present 

analysis also showed that the interspecies variability in δ
13

C values of n-alkanes could be used 

as an additional source of information to estimate diet components of herbivores. The scatter 

plot derived from RDA, by constraining the species dispersion based on the n-alkane profile 

by the isotope composition of n-alkanes, showed that those species that tended to cluster when 

the analysis was based on either n-alkanes or δ
13

C values of n-alkanes appeared to be 
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separated. This graphical presentation supports the OPR result that the isotopic composition of 

the n-alkanes provides additional discriminatory power to the species separation.  

The increased analytical capacity to separate specific compounds prior to isotope 

composition analysis (Muccio and Jackson, 2009) provides enormous potential to study the 

isotopic ratio of not only n-alkanes but also long-chain fatty alcohols and fatty acids. The 

possibility of generating two different types of internal markers from a single set of 

compounds such as n-alkanes would be a desirable feature in terms of increasing the 

discriminatory power of wax components. 

 

Estimation of diet composition 

Estimation of diet composition using plant wax n-alkanes as markers is achieved by relating 

the marker patterns found in faeces (corrected for incomplete recovery) to that calculated from 

the marker patterns of individual diet components (plant species or plant parts). A number of 

mathematical algorithms and approaches including least squares optimization procedures 

(Dove and Mayes, 2005) and linear programming (Barcia et. al., 2007) have been developed 

and used for this purpose. Regarding the application of isotopic enrichment, Bugalho et al. 

(2008) demonstrated that the linear programming model of Barcia et al. (2007) can be 

effectively used to estimate the contribution of different sources to a mixture by relating the 

isotopic composition of carbon (δ
13

C) and sulphur (δ
34

S) in the sources and mixture. In 

relation to the present findings, it should also be possible to adopt a suitable mathematical 

model to use both the n-alkane profiles and their carbon isotopic compositions (δ
13

C) as input 

in the calculation of diet compositions. 

It is now well established that the recovery of n-alkanes in faeces is incomplete with 

the recovery rate generally increasing in a curvilinear fashion with increasing carbon number. 

A suitable faecal recovery correction factor is therefore required to increase the accuracy of 

the calculations (Ferreira et al., 2009). However, little is known about the relative recoveries 

of 
12

C and 
13

C isotopes for a particular n-alkane, which could potentially alter the carbon 

isotope enrichment values of the alkane in feed and faeces and influence diet composition 

estimation. Controlled in vivo experiments may be required to document the relative fates of 

the two carbon isotopes in the gut. Gut microorganisms are unable to synthesize long-chain n-
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alkanes (Keli et al., 2008a) indicating that there would be no bias in the estimation of diet 

composition due to endogenous n-alkane excretion into faeces. 

Due to the difficult nature of the measurement, the presence of differential recoveries 

(if any) of the same n-alkane originating from different plants has not yet been established. In 

view of the present study that the same n-alkane originating from different plants could have 

different isotopic composition and that this could be used as an additional marker, it would be 

interesting to investigate the issue of differential recoveries in relation to the molecular weight 

of the alkanes. 

 

Conclusion 

The n-alkane profile as well as the isotopic enrichment of n-alkanes showed considerable 

variability between the species studied. The majority of the interspecies variances explained 

by the two types of data sets are independent of each other. Therefore, generating information 

on the n-alkane concentration of plant species in combination with their isotopic enrichment 

could be a valuable tool to improve the accuracy of estimating diet composition and quality of 

free-ranging animals. However, further validations needs to be conducted with actual feeding 

experiments. Within species variations in the δ
13

C values of n-alkanes, as well as changes 

with physiological maturity are also topics that need to be addressed. 
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Abstract 

The present study was conducted to assess the accuracy of n-alkanes and their carbon isotope 

enrichment to estimate the diet composition of herbivores in the Mid Rift Valley rangelands 

of Ethiopia. Five common grass species which are abundantly available in the area were 

selected, from which several composite grass mixtures were prepared containing all the five 

species in varying proportions (from 0.05 to 0.35). The n-alkane profile and n-alkane isotopic 

ratio (
13

C/
12

C) of each grass species and composite grass mixtures were determined by gas 

chromatography/combustion isotope ratio mass spectrometry. The botanical composition of 

the composite mixtures was estimated using the n-alkane profile and n-alkane
13

C/
12

C-ratio of 

individual species using least squares optimization and linear programming procedures and 

compared to the actual botanical mixture composition. Three alternative scenarios (inclusion 

of an additional 0, 5, or 10 of species in addition to those that made up the mixes) and two 

options where additional botanical species were included were simulated. There was close 

alignment between estimated and measured botanical compositions with significant 

relationships (P<0.001).The percentage contribution of the species in the simulated pasture 

mixtures were accurately estimated when the five species making up the grass mixes were 

used as the only inputs in the calculation. However, when additional botanical species were 

introduced, the accuracy declined with a significant increase (P=0.003) in the mean square 

error of the prediction. The type of species in the extra inputs did not influence the results. In 

all scenarios, the combined use of n-alkanes and their δ
13

C values improved the linear 

relationship and reduced (P=0.002) the mean square error between estimated and measured 

botanical compositions. The best fit equation (R
2
=0.996, P<0.001) was obtained when n-

alkanes and their δ
13

C values were used together and no extra species was included as input in 

the calculation. The present study shows that a high degree of accuracy can be obtained in 

estimating the botanical composition of grass mixtures using n-alkanes composition and n-

alkanes 
13

C/
12

C-ratio. It is important to increase the number of markers used or limit the 

number of potential diet components to improve the quality of predictions. 
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Introduction 

Free-ranging herbivores are the largest contributors to livestock output in tropical Africa. 

Animals in these areas consume a complex mixture of vegetation, typical of rangeland 

systems. This system is generally characterized by high temporal and spatial variations in 

herbage quality and availability (Corona et al., 1998; Hiernaux and Turner, 1996; Schlecht et 

al., 2006), which in turn results in fluctuation in nutrient and energy supply for livestock 

production along the grazing seasons (Georgiadis and McNaughton, 1990). The level of 

production obtained from animals grazing such vegetation depends on their ability to ingest a 

diet in excess of their maintenance nutrient requirements (Ash and McIvor, 1998, Celaya et 

al., 2007). The productivity and biodiversity of the vegetation is influenced, amongst others 

by the short and long-term grazing management practices put in place (Tefera et al., 2007a,b). 

Such knowledge of the plant-animal interactions is important for a sustainable ecosystem 

management and optimization of both animal and land productivity. 

Plant cuticular n-alkanes are useful markers to estimate diet selection and nutrient 

intake of free-ranging herbivores (Dove and Mayes, 1996, Dove and Mayes, 2005). The 

application of cuticular n-alkanes for this purpose relies on the facts that plant species, and to 

some extent plant parts, show differences in n-alkane profiles. As n-alkanes are mainly 

indigestible and have high faecal recovery rates (Ferreira et al., 2009), they are suitable 

markers to estimate diet selection and nutrient intake. A major advantage of n-alkanes as 

markers is that diet composition of animals can be assessed with little interference to their 

normal foraging behaviour, which is particularly important in the case of semi-wild and wild 

herbivores. However, in botanically diverse vegetation where the number of plant species 

(diet components) is higher than the number of effective n-alkanes, it is necessary to either 

group plant species with similar marker profiles (Ferreira et al., 2007c), or use additional 

markers to increase the discriminatory power. In the latter case, cuticular long chain fatty 

alcohols and fatty acids have been evaluated as important additional markers (Ali et al., 

2005b; Bugalho et al., 2004; Kelman et al., 2003). In addition, the carbon isotopic 

composition of the diet organic matter (Garcia et al., 2000), and more recently n-alkanes 

(Bezabih et al., 2011b) have shown promises to provide additional discriminatory information 

to estimate diet composition of herbivores. 
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Although the n-alkane method is widely applied in other parts of the world, there is 

limited information on its applications in tropical African ecosystems. Recently, pasture 

species commonly available in the Mid Rift Valley rangelands of Ethiopia were assessed for 

their n-alkane profiles and carbon isotopic composition of the alkanes (Bezabih et al., 2011b) 

and the result showed the presence of large between species variations. The present study 

aimed to further validate the suitability of n-alkanes alone or in combination with their δ
13

C 

values to estimate the botanical composition of simulated pasture mixes prepared from 

selected grass species. 

 

Materials and Methods  

Preparation of simulated pasture mixtures and experimental design 

Pasture species commonly available in the rangelands of the Mid Rift Valley areas of Ethiopia 

were collected. Sample collection and processing are described in detail in Bezabih et al. 

(2011b). For the present investigation, the pasture species were ranked according to their 

frequency of occurrence along the sampling transects in the field. The following five pasture 

species, namely Chloris gayana, Cynodon dactylon, Pennisetum straminium, Cenchrus 

ciliaris, and Eragrostis aspera were selected. The sample of each species was dried at 60°C 

for 48 h, ground to pass a 1-mm sieve, and pulverized in a ball grinder (Retsch MM 2000). 

 

Table 1. Proportion of grass species in the composite grass mixtures. 

Grass species  Composite mixtures 

 1 2 3 4 5 

Cynodon dactylon 0.20 0.30 0.15 0.10 0.35 

Pennisetum straminium 0.30 0.20 0.25 0.10 0.25 

Cenchrus ciliaris 0.20 0.15 0.10 0.30 0.05 

Chloris gayana 0.15 0.25 0.30 0.20 0.10 

Eragrostis aspera 0.15 0.10 0.20 0.30 0.25 

 

Five composite grass mixtures were prepared using the five pulverized species 

samples with each mixture containing all the five species but in different proportions (range 

0.05 to 0.35) (Table 1). The n-alkane concentrations as well as the carbon isotopic ratio of the 

n-alkanes for each grass species and that of the five mixtures were analysed from n-alkane 

composition and n-alkane 
13

C/
12

C-ratio in the laboratory. These data were used as input to 
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estimate the botanical composition of the mixtures by relating the marker profile of the 

individual species and the mixtures. 

 

Chemical analysis  

The chemical analysis was conducted at the Laboratory of Animal Nutrition Group of 

Wageningen University, the Netherlands. Extraction and analysis of n-alkanes was carried out 

as described by Mayes et al. (1986) with modifications by Salt et al. (1992) using 

tetratriacontane (C34) as an internal standard. The extracted samples were analysed for n-

alkanes (C27 to C36) using a gas chromatograph (GC:Carlo Erba HRGC Mega 2 series) fitted 

to a flame ionizing detector (FID), using helium as the carrier gas. The column was a 40 m × 

0.32 mm (i.d.) fused silica capillary (SPB-1) with 0.10 µm film thickness. A split type injector 

was used, with a split ratio of 1:10. The temperature for both the detector and injector was 

340
o
C.The starting temperature of the oven was set at 210

o
C for 1 min followed by a 7.2

o
C 

/min increase to 300
o
C that was maintained for 6 min. Chrom Card Data System 2.2 (Thermo 

Finnigan, Waltham, MA) software was used to calculate peak areas. The alkane concentration 

was calculated according to the following formula: 

Alkanei (mg/kg DM) = [10 × area % alkanei× IS wt (mg)] ∕ SDW × SRFi 

where IS wt is the weight of the internal standard, SDW is sample dry weight, and SRFi is the 

standard response factor for alkanei, calculated as area % alkanei in the mixed standard 

divided by weight % alkanei in the mixed standard.  

With the same extract, the carbon isotope composition of the alkanes was determined 

by fitting a GC (Finnigan_MAT, TraceGC Ultra), with a split/ splitless injector operated in 

split mode (split ratio 1:10) to a combustion interface (Finnigan_MAT Combustion interface 

III), which was connected to an elemental analyser isotope ratio mass spectrometer 

(Finnigan_MAT CN). Full base line separation of all individual alkanes was achieved by 

fitting the TraceGC with a capillary column as described earlier and using helium as carrier 

gas. The temperature setting of the column was identical to that described earlier. The isotope 

ratio of the alkanes was calculated in terms of conventional delta notation (δ
13

C). 
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Estimation of botanical composition of composite grass mixtures 

The botanical composition of the composite grass mixtures was estimated by relating the 

marker profile of individual grass species to that of the mixtures using the following 

calculation programs: 1) the ‘EatWhat’ software program (Dove and Moore, 1995), 2) the 

linear programming model of Barcia et al. (2007) (LP_Tracer) and 3) the least-square 

optimization procedure (Hameleers and Mayes, 1998) using the Solver routine in Microsoft 

Excel. In the latter case, the Solver routine was programmed to solve the following function:  

 Minimize∑ [(actual – calculated)
 2
] markeri … n 

where actual = measured concentration of markeri in the mix; calculated = calculated 

concentration of marker i using the following formula  

 calculated = ∑[(XjYij)] plantsj …n 

where Xj is the estimated proportion of plant species j in the mix; Yij is the concentration of 

marker i in plant species j; and ∑Xj = 1. 

In each case, estimation of composite diet mixture composition was done using either 

n-alkane or a combination of n-alkane and their carbon isotope enrichment data as markers, 

under three scenarios: i) grass species that made up the mixture as input, and ii) including five 

additional species to those making up the mixtures, and iii) including ten additional species to 

those making up the mixtures. In scenario ii and iii, two options were used to include the 

additional species, following purposive selection based on their abundance or random 

selection from the available pool of species. This was done to examine the influence of the 

type of extra species included on the botanical composition estimations. Thus, a combination 

of the three calculation methods, two marker types, three scenarios and two options of extra 

species inclusion (3×2×(1+2×2)) resulted in a total of 30 validation tests. 

 

Data analyses 

The interspecies variability in n-alkane profile and carbon isotopic composition of the five 

species was analysed by principal component analysis (PCA) with Canoco for Windows 4.5. 

Estimated species proportions of pasture mixes were regressed against the measured values 

for each of the validation tests to determine estimation accuracy and differences from actual 

proportions using the slope of the regression lines and the intercepts, respectively. Mean 

square errors (MSE) were computed for estimated versus measured species compositions in 
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each of the validation tests and analysis of variance was conducted to examine the presence of 

significant differences. The regression and ANOVA were done in SAS
® 

version 9.1. 

 

Results 

n-Alkane and carbon isotope enrichments (δ
13

C) of grass species and mixtures 

The concentration of individual n-alkanes (C27 – C35) and the δ
13

C values of each hydrocarbon 

for the grass species and composite grass mixtures are shown in Table 2. The predominant 

alkanes in the grass species were C31 and C33, the sum of which accounted for 73 and 64% of 

the total hydrocarbons (C27 – C35) in P. straminium and C. ciliaris, respectively. Eragrostis 

aspera had an exceptionally low concentration of most of the n-alkanes analysed. As 

expected, the n-alkane profile of the composite grass mixtures followed the same trend as 

individual species, C31 and C33 being the dominant alkanes followed by C35. The variation in 

n-alkane profile between mixtures was much smaller than that observed between species. The 

δ
13

C values of the grass species varied between -20.10 and -27.84‰. Figure 1 shows the 

dispersion of the grass species along the first two principal components derived from PCA of 

the n-alkane profiles (panel A) and based on the δ
13

C values of the alkanes (panel B). The first 

two principal components extracted about 95% of the interspecies variability when the 

analysis was based on n-alkanes. The species generally showed distinct positions along the 

two principal component axes with. E. aspera widely separated along the first principal 

component owing to its unique n-alkane profile. The first two principal components explained 

about 86% of the variances when the analysis was based on the δ
13

C values of the alkanes. 

The species E. aspera was widely separated along the first principal component.  

 

 

  



 

 
 

Table 2 Concentration (mg/kg DM) and carbon isotope enrichment (δ
13

C, ‰) of individual n-alkanes (C27 – C35) for the five grass 

species and composite grass mixtures. 

Samples C27 C28 C29 C30 C31 C32 C33 C35 

conc δ
13

C conc δ
13

C conc δ
13

C conc δ
13

C conc δ
13

C conc δ
13

C conc δ
13

C conc δ
13

C 

Cynodon dactylon 64 -22.93 11 -27.36 67 -23.9 13 -25.79 153 -22.69 13 -27.84 186 -23.43 198 -23.66 

Pennisetum straminium 40 -20.69 7 -23.09 130 -20.59 15 -22.26 596 -20.10 9 -24.50 126 -21.42 64 -21.71 

Cenchru sciliaris 39 -20.85 8 -23.41 88 -21.13 13 -23.01 391 -21.80 14 -23.65 282 -21.94 210 -22.87 

Chloris gayana 116 -21.37 18 -22.83 125 -21.55 11 -23.07 318 -21.08 11 -24.75 258 -22.26 165 -22.91 

Eragrostis aspera 37 -21.09 19 -23.46 38 -22.13 5 -25.73 33 -21.95 2 -23.15 17 -24.52 18 -23.15 

Mixture 1
* 

56 -21.33 11 -24.02 94 -22.50 12 -23.76 338 -21.38 10 -24.83 173 -22.52 128 -22.73 

Mixture 2 66 -21.60 12 -24.39 94 -22.06 12 -23.98 307 -21.56 11 -25.30 190 -22.62 147 -22.91 

Mixture 3 66 -21.33 13 -23.76 96 -21.74 11 -23.80 313 -21.32 9 -24.72 167 -22.65 120 -22.77 

Mixture 4 55 -21.22 14 -23.67 83 -21.74 10 -24.04 265 -21.62 9 -24.22 173 -22.88 128 -22.93 

Mixture 5 55 -21.68 13 -24.73 74 -22.36 11 -24.63 221 -21.99 10 -25.14 172 -23.11 144 -23.16 

*
For ingredients of composite grass mixtures see Table 1. 

 



 

 
 

Table 3 Linear regression equations between predicted (Y) and measured (X) botanical composition of five mixtures 

using three calculation methods with n-alkanes or a combination of n-alkanes and their δ
13

C values as markers. 

Method
1 

Scenario
2 

Marker set 

n-alkanes (C27-C35) n-alkanes and their δ
13

C values 

Linear equation R
2 

MSE Linear equation R
2 

MSE 

1  I  1.001x - 0.224 0.966 3.81
a
 1.006x - 0.081 0.997 0.20

b
 

 
 II  0.957x - 0.751 0.708 27.6

c 
0.887x + 1.922 0.866 8.96

d 

 

 
III 

 
- - - 1.045x - 4.829 0.477 67.52

e 

2  I  1.027x - 0.004 0.920 6.38
a
 1.006x - 0.138 0.985 0.97

b
 

 
 II  0.984x - 1.146 0.661 34.87

c 
1.029x - 1.987 0.819 13.40

d 

 
 III  0.893x - 0.754 0.460 61.84

e
 1.023x - 3.615 0.489 78.62

e 

3  I  0.956x + 0.611 0.913 5.42
a
 0.976x + 0.488 0.991 0.56

b
 

 
 II  0.876x + 1.348 0.609 34.72

c 
0.918x + 0.352 0.816 12.95

d 

 
 III  0.640x + 6.235 0.329 64.58

e
 0.702x + 3.014 0.378 68.01

e 

a,b,c
Values with different letters in the superscript are significantly different (P<0.05). 

1
Method: 1, EatWhat software; 2, LP_TRACER; 3, Solver routine in MS Excel. 

2 
Scenario: I, five botanical species; II, I plus five additional species; III, I plus ten additional species. 



 

 
 

 

 
Figure 1 Bi-plot showing species positions on a two dimensional space derived from principal component analysis of n-alkane profile (Panel A) 

and δ
13

C values of n-alkanes (Panel B) of 5 grass species from the Mid Rift Valley grasslands of Ethiopia. 
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Relationship between estimated versus measured botanical compositions  

Table 3 shows the linear regression models explaining the relationship between predicted 

versus measured composite grass mixtures when the n-alkanes and a combination of n-alkanes 

and their δ
13

C values were used as markers. n-Alkanes alone in the third scenario of 

calculation was not possible due to limited number of markers. In all other cases there was a 

linear relationship (P<0.001) between the estimated and measured compositions. The 95% 

confidence interval for the slope and intercept of the regression equations indicated that the 

regression lines of all the models were not statistically different from the line of equality. 

However, the coefficients of determination (R
2
) varied widely ranging from 0.33 to 0.99. Best 

fit equations were obtained when the number of inputs was limited to those species that made 

up the grass mixtures (the first scenario). The third scenario, when 10 additional species were 

included as input, produced the lowest R
2
. The two different options of additional species 

selection produced similar results and only the result with the first option is presented here. 

Using a combination of n-alkanes and their δ
13

C values improved the R
2 

compared to using n-

alkanes alone (Table 3).  

The mean square errors (MSE) calculated for predicted versus measured values 

increased from the first to the third scenario. The lowest MSE values (0.20-0.97) were 

obtained with the first scenario, in which a combination of n-alkanes and their δ
13

C values 

were used as markers, whereas the largest values (68.01-78.62) were obtained with the third 

scenario, in which n-alkanes were used alone as markers. Analysis of variance and mean 

comparisons revealed differences (P<0.001) in the MSE between scenarios. Moreover, in the 

first and second scenarios, the MSE was reduced (P=0.002) when n-alkanes and δ
13

C values 

were used together compared with the n-alkanes used alone. However, there was no 

statistically detectable difference among the calculation methods (Table 3) although the 

EatWhat program appeared to result in better predictions. Figure 2 shows the plots of the 

predicted composite grass mixture compositions derived using the EatWhat software. 

 

Discussion  

Plant cuticular n-alkanes have been used as useful markers to estimate the diet composition of 

free ranging herbivores (Dove and Mayes, 1996, Dove and Mayes, 2005). The first 
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requirement for the use of these hydrocarbons as diet composition markers is that the potential 

diet components (species) should have distinct n-alkane profiles to differentiate one diet 

component from the other (Dove and Mayes, 1991). A recent study regarding the plant 

cuticular n-alkanes and their carbon isotopic composition of pasture species commonly 

available in the Mid Rift Valley region of Ethiopia has shown promise for using these 

hydrocarbons as diet composition markers in this study area (Bezabih et al., 2011b). 

The results of the separate principal component analyses conducted using n-alkanes 

and their δ
13

C values show the presence of sufficient variability to discriminate between the 

species. A closer look at the orientation of the species in Figure 1 shows differences with 

regard to the loadings of the two principal component analyses. With n-alkanes, strong 

correlation was observed between C27 and C28, C33 and C32, and C29 and C30. This appears 

desirable as the discriminatory power carried by the odd-chain alkanes could contain much of 

the needed information in case the even-chain alkanes are excluded due to low concentrations. 

The significant linear relationships observed between predicted and measured 

botanical composition of pasture mixes (Table 3) further showed that the discriminatory 

information carried by the n-alkanes is suitable for use as diet composition markers. In each 

calculation method and scenario, the relationship was improved when n-alkane profiles were 

used in combination with their δ
13

C values (Table 3). This confirmed the previous report that 

the carbon isotope enrichment of the n-alkanes can provide additional discriminatory 

information to estimate diet compositions (Bezabih et al., 2011b). A considerable decline in 

the R
2
 values together with a significant increase in the MSE from the first to the third 

scenario indicates that the accuracy with which the percentage composition of grass species is 

predicted is dependent on the number of diet components used as input in the calculation. On 

the other hand, in the present trial, the prediction (scenario ii and iii) appeared to be 

insensitive to the combination of additional species included as input, indicating similar levels 

of interference of the additional species in the optimization procedures. This is generally in 

agreement with our previous observations (Bezabih et al., 2011b) that showed most of the 

species under consideration were fairly evenly scattered along the first two principal 

component axes with no major clustering observed. 
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Figure 2 Plot of predicted versus measured composite diet mixture compositions derived from 

the EatWhat software; a) n-alkanes used as markers and no additional species used 

as input; b) n-alkanes and their δ
13

C used as markers and no additional species used 
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as input; c) n-alkanes used as markers and five additional species added as input; d) 

n-alkanes and their δ
13

C values used as markers and five additional species used as 

input; e) n-alkanes and their δ
13

C values used as markers and ten additional species 

used as input. The dashed lines in the graphs indicate the line of equality. 

 

Estimation of diet composition of free-ranging herbivores is predominantly concerned 

with generating two types of data. The first is the diet components (species) selected by the 

animal, and the second is the relative proportion of each component in the diet consumed. The 

former is particularly important if animals graze/browse botanically diverse vegetation and 

there is high degree of selection, where some plant species are preferentially consumed to 

others. The present results clearly indicated that in order to obtain a reliable estimation of the 

type of diet components consumed and the percentage contribution of each to the total, it is 

important to either increase the type of marker used or to restrict the inputs to those diet 

components which are most likely to be eaten by the animal. While the δ
13

C values of n-

alkanes demonstrated potential to increase the discriminatory power of n-alkanes in the 

present study, other research results are supportive of inclusion of other plant wax 

components such as long chain fatty acids and fatty alcohols (Ali et al., 2005b; Dove and 

Mayes, 2005; Fraser et al., 2006). The carbon isotopic composition of long chain fatty 

alcohols and fatty acids has not yet been evaluated as additional internal markers. If beside 

inclusion of these other plant wax components also their δ
13

C values are sufficiently 

discriminatory, there will be sufficient fingerprint information for a large number of diet 

components (species) in complex vegetation. 

Animal experiments have confirmed that the recovery of n-alkanes and other wax 

components in the faeces is not complete (Dove and Mayes, 1996; Elwert et al., 2006), with 

the recovery rate generally increasing in a curvilinear fashion with increasing carbon number 

in ruminant animals. Hence, in order to relate the faecal patterns of the markers with that 

found in potential diet components, it is important to apply a suitable faecal recovery 

correction factor prior to diet composition estimation (Ferreira et al., 2009). When it comes to 

carbon isotope enrichments, faecal correction factors will not be required as δ
13

C is a relative 

value. 
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As discussed elsewhere (Bezabih et al., 2011b), however, there is a lack of 

information as to whether there is a preferential degradation of 
12

C and 
13

C isotopes for a 

particular n-alkane in the gut and further investigation into this area will increase the accuracy 

of diet estimation using 
13

C/
12

C isotope ratios in n-alkanes. 

Apart from increasing the type of markers used, the present study also indicates that 

restricting the inputs of diet components to those plant species that are actually eaten by the 

animal increases the accuracy with which the percentage of each component in the diet is 

predicted. Limiting the number of diet components (species) may be achieved by using 

qualitative methods such as visual observations or faecal microhistology (Dove and Mayes, 

2006, Miller and Thompson, 2007). The use of such qualitative methods would enable 

identification of the plant species which are not ingested by the animal and thus help restrict 

the number of diet components included as input in the estimation of diet compositions. The 

microhistology method may also be used to set a maximum and minimum range for a 

particular diet component when diet composition is estimated with least-squares optimization 

(Miller and Thompson, 2007). 

Generally, the three calculation methods used in the present evaluation produced 

similar results. It may, however, be important to consider developing an advanced 

mathematical algorithm, which takes into account the within and between species variability 

in the marker profiles and hence sets statistical confidence interval for the estimates of diet 

composition (Dove and Mayes, 2006). When different types of markers are used in 

combination, it may also be necessary to take into account the variation in measurement units 

and magnitudes of the different markers.  

 

Conclusion 

The n-alkane profile of five of the major botanical species found in the Mid Rift Valley 

rangelands contained sufficient discriminatory information to estimate their proportions in 

composite diet mixtures. The δ
13

C values of n-alkanes provided additional discriminatory 

information and improved the linear relationship between the predicted versus measured 

composite diet mixtures. The accuracy of the estimate was affected by the number of species 

included as input, while the three calculation methods evaluated produced similar results. The 

results indicate that in botanically complex vegetation, combining n-alkanes with their δ
13

C 
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values can improve the accuracy of diet composition estimation. In addition, restricting the 

number of diet components that are used as input to those which are most likely be eaten by 

the animal increases the reliability of the prediction. 
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Abstract 

A feeding experiment was conducted to measure the faecal recovery rates of n-alkanes and to 

evaluate molasses-based alkane boluses for feed intake and digestibility estimations in cattle 

consuming low-quality tropical roughages. The experiment was performed in a cross-over 

design with four experimental diets, four 21-day feeding runs and eight bulls. The animals 

received a measured amount of the experimental diets that resulted in little refusal throughout 

the experiment. After seven days of adaptation, the animals were dosed with molasses-based 

alkane boluses (each containing 200 mg C32 and 150 mg C36) twice daily at 07:00 and 18:00 

h. Concurrent with the alkane dosing, faecal spot samples were taken twice daily until the end 

of each run. In addition, total faecal collections were performed over the last 5 days of each 

run. The mean faecal recovery rate of both natural and dosed n-alkanes ranged between 0.61 

and 0.86, with the recovery showing an upward trend with increasing carbon-chain length. 

The recovery rate of dosed alkanes was considerably higher than that of adjacent odd-chain 

alkanes. While diets did not differ (P≥0.23) in the recovery of even-chain n-alkanes, an effect 

of diet (P≤0.01) was observed in the recovery of odd-chain n-alkanes. The faecal 

concentration of dosed alkanes reached equilibrium 3.30 days into the alkane dosing. On the 

assumption of similar faecal recovery of adjacent n-alkanes, intake was underestimated by 

12% (P<0.001) when C31/C33 and C33/C32 alkane pairs were used and by only 1.5% (P≥0.42) 

when C35/C36 was used. Correction for differences in the faecal recovery of adjacent n-alkanes 

considerably improved the intake prediction when C31/C32 and C33/C32 pairs were used. 

Digestibility of diets was accurately predicted using either C36 as external marker or C35 as 

internal marker corrected for incomplete recovery. The results showed that molasses-based 

boluses administered twice daily are suitable, and that knowledge of the faecal recovery rates 

of adjacent n-alkanes improves the reliability of the predictions. 
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Introduction 

The production performance of farm animals within their genetic limits depends on the level 

of feed intake and the quality of the diet ingested (Coleman and Moore, 2003). Accurate 

measurement of feed intake and digestibility are, in this respect, important to meet nutritional 

requirements of the animal and optimize production (Mayes and Dove, 2000). Feed intake, 

diet composition and dietary nutrient digestibility are however difficult to measure accurately 

in free-ranging animals, and often indirect methods have to be used. Over the past two 

decades, the indirect method of estimation where n-alkanes are used as digesta markers, has 

received increasing acceptance (Keli et al., 2008b). The advantages of the n-alkane method 

over other approaches include low invasiveness, accuracy and the possibility of taking into 

account diet-animal interactions (Dove and Mayes, 1991; Mayes and Dove, 2000; Dove and 

Mayes, 2005). In addition, n-alkanes are chemically discrete components which can be easily 

analysed by gas chromatography. 

Early studies showed that the recovery of n-alkanes in faeces was incomplete (Mayes 

and Lamb, 1984), with adjacent carbon chain alkanes showing similar recovery rates (Dove 

and Mayes, 1991). The concurrent use of adjacent natural odd- and dosed even-chain n-

alkanes to estimate intake was developed (Mayes et al., 1986) based on the premise that 

estimation of intake from the simultaneous computation of digestibility (using natural odd-

chain n-alkane) and faecal output (using dosed even-chain n-alkane) will cancel out the errors 

arising from the incomplete recovery of the alkanes and provides unbiased intake estimation. 

The accuracy of the intake estimation using this method is thus related to the similarity of 

faecal recovery rates of the dosed and herbage odd-chain alkanes (Dove and Mayes, 1991). 

Indoor validation experiments conducted under temperate climatic conditions with sheep and 

cattle have also confirmed that whenever the faecal recovery rates of adjacent alkanes were 

similar, the alkane method predicted intake accurately (Hameleers and Mayes, 1998; 

Estermann et al., 2001). On the other hand, when there was a considerable difference in 

recovery rates between adjacent alkanes, the prediction was less accurate (Berry et al., 2000; 

Ferreira et al., 2007a; Oliván et al., 2007b; Keli et al., 2008b).  

Previous studies showed that the faecal recovery of alkanes is affected by animal 

species (Ferreira et al., 2009), physiological status and diet type (Lin et al., 2007; Elwert et 

al., 2008). Comparison between sheep, goats, and cattle consuming similar types of diet 
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indicated that cattle showed the highest and goats the lowest faecal recovery rates (Ferreira et 

al., 2009). In addition, the faecal recovery rate of alkanes seemed to be more variable in cattle 

than in sheep (Dove and Mayes, 1991).  

The effect of diet on the recovery of n-alkanes appears to be variable among previous 

studies. For instance, Brosh et al. (2003) reported no effect of diet in a digestibility trial with 

three different diets fed to goats, cows and calves, but suggested more research to a wider 

range of diets, animals, environmental conditions and physiological and reproductive state. 

Elwert et al. (2006) reported only numerical differences in sheep fed different roughage diets, 

with high between-animal variability in faecal alkane recovery. On the other hand, the reports 

of Lin et al. (2007) and Ferreira et al. (2010) showed effect (P<0.05) of diet on the alkane 

recovery in sheep. The presence of such contrasting reports may be due to confounding effects 

of both diet compositions (ingredients with different cuticular wax characteristics) and 

physical and chemical properties of the diet. In this regard, Ferreira et al. (2005) reported that 

the diet composition of goats affected (P<0.05) the faecal recovery of alkanes when there 

were considerable differences in in vivo digestibility, with a negative correlation between 

alkane recovery and diet digestibility. Similar negative correlations were also observed by 

Elwert et al. (2008). 

In the light of the importance of a reliable faecal recovery data to accurately estimate 

feed intake, diet composition and digestibility, researchers have recommended that the 

application of the n-alkane method for grazing animals should be preceded by calculation of 

the actual alkane faecal recoveries for different diet types and experimental conditions (Brosh 

et al., 2003; Valiente et al., 2003; Ferreira et al., 2005; Ferreira et al., 2010). Only few reports 

are available on the alkane faecal recovery of tropical forages and the applicability of the n-

alkane method in cattle under tropical conditions (Hendricksen et al., 2002; Molina et al., 

2004). 

The present experiment was conducted with the following two objectives: 1) to 

measure the faecal recovery rate of n-alkanes in indigenous zebu cattle fed different types of 

tropical roughages in Ethiopia and, 2) to evaluate the suitability of molasses-based boluses to 

administer synthetic n-alkanes for intake and digestibility estimations.  
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Materials and Methods 

Experimental animals and housing 

Eight local Borana growing bulls with an average weight of 160±8 kg, which were raised on 

natural pasture in the Borana rangeland, were purchased from the local market and housed at 

Hawassa University (7°04´N and 38°29´E, Hawassa, Ethiopia) research farm. Animal care, 

handling and maintenance throughout the experiment were in accordance with the animal 

welfare regulations of the University. Upon arrival, the bulls were dewormed with 

Albendazole and group-fed for one week on a Rhodes grass and Desmodium hay-based 

uniformity diet provided ad libitum, with free access to water. After one week, the animals 

were transferred to individual concrete pens (2.5 m × 1.5 m) and fitted with faecal collection 

bags until the end of the experiment. Each pen contained a feeding and watering trough 

allowing individual feed intake measurement. The same Rhodes grass and Desmodium hay 

diet was offered twice daily in equal portions with the amount adjusted to ensure minimal to 

no refusals, while water was provided freely. Faecal collection bags were checked every hour 

24 h a day and emptied of their contents when faeces were present. The animals were adapted 

to these conditions for 14 days before the start of the experiment. 

 

Experimental diet 

Four experimental diets (Table 1) were prepared from different roughage ingredients. All 

ingredients were sun-dried and chopped to a size of 3-4 cm. Diet 1 and 2 contained five 

species, whereas diet 3 and 4 contained ten species. The species and composition of the diets 

were chosen to simulate the type of diet cattle would consume during the dry and rainy 

seasons in Ethiopia. Each day, the amount of each dietary ingredient was precisely weighed 

out and uniformly spread over one another on a plastic sheet. Once all the species making up a 

diet were weighed out, the diet was thoroughly mixed by hand and stored in a bag until fed to 

the animal. Samples of individual ingredients were taken daily and stored for chemical 

analysis. 

 

Experimental design and sampling  

Following the 14 day adaptation period, the bulls were randomly assigned to one of the four 

treatment diets in a 4 × 4 double Latin square with each period lasting 21 days. The animals 



Chapter 4 

50 
 

received an accurately measured amount of the experimental diet twice a day (at 8:00 and 

17:00 h) that resulted in minimal to no refusal to avoid selection. After a week of feeding, 

each animal received a molasses-based bolus twice daily (each bolus containing 200 mg C32 

and 150 mg C36) at 07:00 and 18:00 h with the aid of a balling gun. The bolus was made from 

alkanes/sucrose fatty acid ester tablets, each containing 0.20 g C32 and 0.15 g C36 per gram of 

a tablet (Argenta Manufacturing, New Zealand). The tablets were originally made to be used 

with controlled release devices (CRD). However, the company ceased production of alkane 

CRD, and in the present study these tablets were used to produce molasses-based alkane 

boluses. The tablets were crushed into a powder using mortar and pestle, and divided into 1.00 

g portions. Eighteen grams of a carrier mixture (55% molasses, 20% hydrated calcium 

sulphate and 25% solvent-extracted linseed meal) was weighed into a lubricated (olive oil) 

glass beaker and carefully mixed with 1.00 g of the crushed alkane tablet to form a single dose 

bolus. With the addition of calcium sulphate powder, the boluses were shaped to fit into a 

balling gun whereafter they were dried in a forced-air oven at 60°C for 12 h. After restraining 

the animal, the bolus was placed over the tongue at the back of the throat, and a small amount 

of water (150-200 ml) was given to facilitate swallowing. Two days before the start of marker 

dosing until the end of each period (day 6 to 21), faecal spot samples were taken twice daily at 

the time of dosing. During the last five days within each period, every faecal defecation was 

quantitatively collected, pooled per day while placed in a fridge, and after thoroughly mixing, 

10% of the daily fresh faeces was sampled and stored at -20°C.  

 

Sample preparation 

Samples of each feed ingredient collected over the experimental periods were pooled into one 

sample. Background faecal samples collected prior to marker dosing were pooled per diet 

while faecal spot samples collected from the beginning of dosing until the start of the total 

collection period were bulked per animal per day. The faecal spot samples obtained during the 

total collection period were pooled into morning and afternoon spot samples per animal. All 

the samples were dried at 60°C in a forced-air oven for 48 h, ground to pass a 1-mm sieve, 

and stored at 5°C in plastic bottles pending chemical analysis. 
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Chemical analysis 

All chemical analyses were conducted at the Laboratory of the Animal Nutrition Group of 

Wageningen University (Wageningen, the Netherlands). For n-alkane analysis, ground 

samples were pulverised using a bullet mill (MM 2000; 4 min at 80 Hz; Retsch Technology 

GmbH, Haan, Germany) before extraction and analysis of n-alkanes as described by Mayes et 

al. (1986) with modifications by Salt et al. (1992) using tetratriacontane (C34) as an internal 

standard. The extracted samples were analysed for n-alkanes (C27 to C36) using a gas 

chromatograph (GC:Carlo Erba HRGC Mega 2 series) fitted to a flame ionizing detector 

(FID), using helium as the carrier gas. The setting of the gas chromatograph was as described 

by Bezabih et al. (2011b). 

The samples were also analysed for dry matter (DM), ash, crude protein (CP), NDF 

and ADF. The content of DM was determined by oven drying at 103°C (ISO 6496; ISO, 

1999), ash after incineration at 550°C (ISO 5984; ISO, 2002) and CP (6.25 × N) by using the 

Kjeldahl method (ISO 5983; ISO, 2005). Neutral detergent fibre (aNDF) was determined 

according to Van Soest et al. (1991) and acid detergent fibre (ADF) according to Van Soest 

(1973). The content of aNDF was determined with the use of sodium sulphite and alpha 

amylase. Both aNDF and ADF were expressed inclusive of residual ash. 

 

Calculations 

Faecal recovery of individual n-alkanes was calculated as the ratio of the n-alkane excreted in 

the faeces to that consumed from the diet as follows:  

  Ri = (FO × Fi) 

   (DMI × Hi) 

 

where Ri is the faecal recovery rate of alkane i, FO is the daily faecal output (kg DM), Fi is the 

concentration of alkane i in faeces (mg/kg DM), DMI is the daily dry matter intake (kg), and 

Hi is the concentration of alkane i in the diet consumed (mg/kg DM)  

Feed intake was estimated using the double n-alkane method according to Mayes et al. (1986) 

using the following formula: 

Daily diet intake (kg DM) =  ((Fi/Fj) × Dj)  

(Hi-Fi/Fj× Hj) 
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where Fi represents the feacal and Hi the herbage odd-chain alkane i concentrations (mg/kg 

DM), Fj resembles the fecal and Hj the herbage even-chain alkane j concentrations (mg/kg DM), 

and Dj equals the daily dose of even-chain alkane j. Three types of intake estimates were 

generated using C31/C32, C33/C32 or C35/C36 alkane pairs. 

Faecal output was estimated from C36 concentration in the faeces as follows:  

Daily faecal output (kg DM) = DC36/(FC36 – BC36), 

where DC36 is the daily dose of C36, FC36 is the faecal concentration of C36 (mg/kg DM) 

corrected for incomplete recovery, and BC36 is the background faecal concentration of C36 

(mg/kg DM). 

Apparent DM and organic matter (OM) digestibility estimates were calculated as:  

1 – indigestibility, where indigestibility is the ratio of estimated daily faecal output to 

estimated intake.  

Digestibility was also predicted using natural C35 alkane as an internal marker:  

DM digestibility = (FC35 – DC35)/FC35,  

where FC35 is the faecal C35 concentration (corrected for incomplete recover) and DC35 is the 

dietary C35 concentration. 

 

Statistical analysis 

The data on the faecal recovery of dosed and natural n-alkanes were analysed using the 

following general model: 

Yijkm= µ + Di + Pj + Ak + eijkm 

where, Yijkm is the dependent variable, µ is the overall mean; Di is the fixed effect of diet i 

(i=1,...4), Pj the random effect of period j (j=1,...4), Ak the random effect of animal (k=1,…8), 

and eijkm is the error term.  

The PROC MIXED procedure of the SAS statistical package (version 9.1) was used 

for the analysis. Paired t-test comparison between actual and predicted values of intake and 

digestibility was performed to examine the accuracy of the estimations. Analysis of variance 

was employed to investigate differences between faecal sampling methods in the estimation of 

intake and digestibility. Linear regression was conducted to examine the relation between the 

n-alkane profiles of total faecal collection samples and faecal spot samples, as well as the diet 

digestibility values predicted using the alkanes C36 and C35 as markers. In addition, a broken 
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stick regression was employed using the PROC NLIN procedure of SAS to determine the day 

at which a plateau of dosed alkane concentration was achieved in faeces after the first day of 

dosing. 

 

Results  

Chemical composition of diets and faecal alkane concentrations  

The chemical composition of the four experimental diets is shown in Table 1. The CP 

concentration ranged from 57.7 g/kg DM in diet 1 to 74.8 g/kg DM in diet 4, whereas the 

aNDF concentration varied between 653 and 626 g/kg DM. The pattern of dosed C32 and C36-

alkane concentrations in faeces over time is shown in Figure 1. The concentration of dosed n-

alkane increased steadily in the first three days of dosing before reaching equilibrium. The 

nonlinear regression revealed that a plateau faecal concentration of the dosed alkanes was 

achieved 3.30±0.20 (mean±s.e.) days into the marker dosing. Figure 2 shows the linear 

relationship (P<0.001, R
2
=0.99) in the pattern of n-alkane concentration between the total 

faecal collection and morning faecal spot samples. In all the diets, the slope and the intercept 

of the regression lines were not different from 1 and 0, respectively. 

 

Faecal recovery of n-alkanes 

The mean faecal recoveries of individual n-alkanes during the measurement period are shown 

in Table 2. The actual alkane contents of the molasses-based boluses determined in the 

laboratory were used to calculate the faecal recovery of dosed alkanes. The mean recovery 

rates ranged from 0.61 to 0.86 with dosed alkanes showing higher recovery than the natural 

alkanes. The recovery rate increased with increasing carbon number among the natural 

alkanes. An effect of diet (P≤0.01) on the recovery of the odd-chain alkanes was observed, 

with diet 1 having the lowest and diet 4 the highest recovery rates. The even-chain alkanes 

showed similar recovery values among the different diets. The average ratio between the 

faecal recovery of dosed even-chain and adjacent odd-chain alkanes was 0.90 for C35/C36, 

0.84 for C31/C32 and 0.82 for C33/C32 (Table 2). These ratios varied (P≤0.03) between diets, 

following the same pattern as the odd-chain alkanes.  
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Table 1 Ingredients and chemical composition of the four experimental diets. 

Ingredients/chemical composition Diet 1 Diet 2 Diet 3 Diet 4 

Ingredients (proportion)     

  Rhodes grass (Chloris gayana) hay 0.45 0.40 0.25 0.20 

  Lablab (Lablab purpureus) hay 0.05 0.10 0.05 0.07 

  Haricot bean (Phaseolus vulgaris) hay 0.15 0.25 0.13 0.15 

  Maize (Zea mays) stover 0.10 0.05 0.05 0.05 

  Teff (Eragrostis tef) straw 0.25 0.20 0.20 0.15 

  Desmodium (Desmodium intortum) hay - - 0.12 0.12 

  Wheat (Triticum aestivum) straw - - 0.07 0.10 

  Oat (Avena sativa) hay - - 0.08 0.10 

  Napier grass (Pennisetum purpureum) hay - - 0.03 0.05 

  Cow pea (Vigna unguiculata) hay - - 0.02 0.01 

     

Chemical composition (g/kg DM)     

  Dry matter (DM) 936 934 933 908 

  Organic matter (OM) 846 846 843 818 

  Crude protein (CP) 58 64 73 75 

  Neutral detergent fibre (aNDF) 653 632 630 626 

  Acid detergent fibre (ADF) 397 407 402 470 

 

 

Intake and digestibility estimates 

Table 3 presents actual and predicted mean dry matter intakes according to diet, sampling 

method and pair of n-alkanes used in the calculation. The result shows that the assumption of 

similar faecal recovery underestimated (P<0.001) intake by 11.8% with C31/C32 and 12.6% 

with the C33/C32 pairs of n-alkanes. On the other hand, with the C35/C36 pair, the difference 

between actual and predicted intakes was less than 1% (P≥0.42) (Table 3). 
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Figure 1 C32 and C36 alkane concentration in the faeces after dosing bulls 200 mg C32 and 150 

mg C36 twice daily (07:00 and 18:00h). 

 

Table 2 Mean faecal recovery of n-alkanes and the ratio of dosed and adjacent odd-

chain alkanes in cattle fed four different tropical roughage diets. 

Alkane Diet 1 Diet 2 Diet 3 Diet 4 Pooled SEM
 

P-value 

C27 0.56
a 

0.61
ab 

0.62
b 

0.64
b 

1.80 0.005 

C28 0.69 0.67 0.64 0.68 6.71 0.260 

C29 0.68
a
 0.73

ab
 0.73

b 
0.74

b 
2.13 0.010 

C30 0.74 0.72 0.71 0.78 5.67 0.236 

C31 0.67
a 

0.73
ab 

0.74
b 

0.75
b 

1.97 <0.001 

C32 0.85 0.86 0.86 0.86 2.28 0.751 

C33 0.65
a 

0.71
ab 

0.72
b 

0.73
b 

1.99 0.002 

C35 0.67
a 

0.74
b 

0.74
b 

0.76
b 

2.44 0.002 

C36 0.81 0.82 0.81 0.80 2.07 0.481 

C31/C32 0.794
a 

0.850
b 

0.861
b 

0.876
b 

0.017 0.032 

C33/C32 0.769
a 

0.831
b 

0.836
b 

0.846
b 

0.016 <0.001 

C35/C36 0.821
a 

0.894
b 

0.921
b 

0.956
b 

0.031 0.028 

a,b,c
 Means not sharing a common superscript within a row differ by P<0.05. 

For diet ingredients see Table 1. 
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Correcting for faecal recovery considerably improved the prediction with the first two pairs of 

n-alkanes (C31/C32; C33/C32), but not with the third pair (C35/C36). Using such correction 

overestimated intake on average by 4.1% with C31/C32, 4.9% with C33/C32 and 8.4% with 

C35/C36. In this case, predicted intakes using total collection and morning spot samples did not 

differ from the actual values, except with C35/C36 where predictions from both morning and 

afternoon spot sample were different (P≤0.02) from the actual value. 

In all three cases, the predictions using the afternoon spot sample was higher 

(P≤0.002) than the actual value. Generally, comparison among the three faecal sampling 

methods in the predicted intake resulted in similar values, except in diet 4, where there was a 

difference (P<0.05) between the sampling methods when C31/C32 was used (Table 3). Figure 3 

presents plot of the observed error in individual intake estimation versus the difference in 

faecal recovery rates of the alkane pairs across diets. With all three options, a linear 

relationship (R
2
=0.75-0.82; P<0.001) was observed (Figure 3). 

Dry matter and organic matter digestibility (DMD and OMD) values predicted using 

C36 as an external marker are presented in Table 4. Comparison between actual and predicted 

digestibility showed a high level of similarity with no difference in all the three sampling 

procedures. The actual DMD was overestimated by only 0.50% with the total faecal collection 

sample and from 1.13 to 2.40% with morning and afternoon spot samples.  

Use of C35 as an internal marker predicted the mean DMD of the diets as 48.1±7.7%, 

resulting in underestimation by 4.19% (P=0.105). Figure 4 shows a strong linear relationship 

(P<0.001, R
2
=0.99) between dosed C36 and herbage C35-predicted (corrected for incomplete 

recovery) DMD values, with the slope of the regression not different from 1. 

 

Discussion  

Chemical composition of diets and dosing of synthetic alkanes 

Tropical forages are generally characterized by a low CP and high NDF content (Preston, 

1982; Wassmann and Velk, 2003) with season of sampling (dry or rainy) having an important 

effect on the chemical composition (Machado et al., 2007; Miller and Thompson, 2007). In 

the long dry season, the CP content of forages may fall to less than 70 g/kg DM (Tefera et al., 

2009), which is considered to be limiting for an optimum rumen microbial growth and 

fermentation (Van Soest, 1982; Leng, 1993). The chemical compositions and the species 
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richness of forage diets used in the present experiment (Table 1) resemble the type of diet 

animals would consume in the dry and rainy seasons. 

 

Table 3. Actual and predicted dry matter intake (kg/day) using three different odd- to even-

chain n-alkane ratios and three faecal sampling procedures in cattle fed four different 

tropical roughage diets. 

Dry matter 

intake 

Diet 1 Diet 2 Diet 3 Diet 4 Mean P-value
†
 

Actual intake 2.78 2.69 2.80 2.81 2.78 - 

Predicted intake assuming similar faecal recovery of n-alkanes 

C31/C32       

 TC 2.27 2.38 2.53 2.59
a
 2.47 0.001 

 MS 2.31 2.37 2.29 2.35
b 

2.34 0.001 

 AS 2.35 2.54 2.61 2.70
a 

2.55 0.001 

 P-value
‡
 0.885 0.481 0.081 0.006   

C33/C32       

 TC 2.31 2.34 2.46 2.50 2.41 0.001 

 MS 2.25 2.31 2.26 2.24 2.31 0.001 

 AS 2.32 2.54 2.58 2.64 2.57 0.001 

 P-value
‡
 0.922 0.586 0.069 0.059   

C35/C36       

 TC 2.67 2.56 2.74 2.85 2.75 0.423 

 MS 2.59 2.74 2.74 2.76 2.77 0.561 

 AS 2.52 2.77 2.83 2.87 2.80 0.705 

 P-value
‡
 0.879 0.898 0.961 0.920   

Predicted intake corrected for differences in faecal recovery of alkanes 

C31/C32       

 TC 2.86 2.80 2.94 2.95
ab 

2.89 0.101 

 MS 2.74 2.81 2.72 2.79
a 

2.77 0.421 

 AS 2.79 3.00 3.10 3.20
b 

3.02 0.002 

 P-value
‡
 0.763 0.543 0.421 0.032   

C33/C32       

 TC 2.88 2.82 2.95 2.96
ab 

2.90 0.135 

 MS 2.76 2.82 2.75 2.73
a 

2.77 0.451 

 AS 2.85 3.09 3.15 3.22
b 

3.08 0.001 

 P-value
‡
 0.621 0.302 0.081 0.021   

C35/C36       

 TC 2.94 2.86 2.98 2.98 2.94 0.115 

 MS 2.91 3.06 3.03 3.06 3.02 0.021 

 AS 2.84 3.10 3.17 3.23 3.08 0.001 

 P value
‡
 0.672 0.251 0.402 0.153   

a,b,c
 Means not sharing a common letter in the superscript within a column differ by P<0.05. 

TC=total faecal collection samples; MS=morning faecal spot samples; AS=afternoon faecal 

spot samples. 
†
Comparison between actual and predicted dry matter intakes across diets; and 

‡
 

comparison between sampling methods; For diet ingredients see Table 1. 
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Figure 2 Linear relationships between n-alkane (C27-C36) concentrations (mg/kg DM) in total 

faecal collection and morning spot samples in cattle fed different tropical roughage 

diets. 

 

Estimation of feed intake and faecal output using the n-alkane technique requires 

dosing of the animal with one or more synthetic n-alkanes (Mayes et al., 1986). The carrier 

material used, the frequency of dosing, and faecal sampling schedules are factors that may 

have an influence on the pattern of faecal concentration of dosed n-alkanes (Dove et al., 2002; 

Giráldez et al., 2004; Smith et al., 2007). In previous studies involving paper pellets and 

controlled-release devises for alkane dosing, a 5-day equilibrium period has been 

recommended (Berry et al., 2000; Hendricksen et al., 2003; Mayer et al., 2003; Ferreira et al., 

2007a; Oliván et al., 2007a). In the present study, the concentration of dosed n-alkanes 
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reached a plateau between the third and fourth day of dosing. This result indicates that with 

the molasses-based boluses and twice administration regime, faecal sampling for intake and 

digestibility estimation can be conducted from the fourth day onwards. 

The strong relationship observed (Figure 2) between total faecal collection and spot 

samples in the concentration of dosed and natural n-alkane shows a desirable feature in the 

pattern of recovery of the alkanes in faeces. As commercial alkane CRD are currently not 

available on the market, the molasses-based alkane boluses tested in the present study appear 

to be a suitable alternative for alkane dosing. Although the sources of the alkanes in the 

present experiment were tablets (originally made for the manufacture of CRD), whose 

production also ceased, the molasses-based boluses can be produced from other sources such 

as pure alkanes pre-absorbed in cellulose fibre. 

Hendricksen et al. (2003) compared molasses as a carrier for C32 and C36 with a 

commercially manufactured CRD and concluded that molasses containing C32 and C36 

markers given three or more times daily to steers was as accurate as the commercial CRD. 

The two times daily dosing of the molasses boluses in the present study appears to have been 

an equally adequate frequency of dosing, as faecal spot and total collection samples produced 

similar alkane profiles (Figure 2) and intake and digestibility estimations (Table 3 and 4). This 

would be convenient in grazing experiments, as animals are usually corralled in sheds 

overnight and dosing can be done before animals are turned into pasture in the morning and 

after their return from pasture in the afternoon, eliminating interference while they are 

grazing. 

 

Recovery of n-alkanes 

The incomplete recovery of n-alkanes in faeces in the present study is in line with earlier 

studies when these hydrocarbons were first considered as nutritional markers (Mayes and 

Lamb, 1984). Further studies have shown effects of animal species (Ferreira et al., 2009) and 

diets on the recovery of n-alkanes. Although the effects of diet are variable, differences in n-

alkane recoveries between diet types have been observed (Hendricksen et al., 2002; Monks et 

al., 2005; Elwert et al., 2006). 

In the present experiment, the recovery values of both natural and synthetic n-alkanes 

were lower than that reported for temperate regions (Ferreira et al., 2009), but the increase in 
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recovery rate with increasing carbon chain length (Table 2) is in general agreement with 

previous reports (Dove and Mayes, 2005). Previous experiments on tropical forages also 

showed lower levels of n-alkane recovery compared with temperate conditions (Hendricksen 

et al., 2002). This difference in faecal recovery rate between temperate and tropical forages 

strengthens the recommendation that the alkane method needs diet and species-specific trials 

to increase the accuracy of its predictions. 

The four experimental diets used in the present trial differed both in species richness 

and gross chemical composition to examine different diet scenarios on the faecal n-alkane 

recoveries and hence on the estimates of intake and digestibility in grazing cattle. The results 

showed that as the diets differed in composition, differences (P<0.05) in the faecal recovery 

rates of odd-chain n-alkanes were observed. This is evident when compositional and recovery 

values of diet 1 and diet 4 are compared (Table 1 and 2). While the two diets had the largest 

difference in their chemical composition, they showed differences (P≤0.05) in the faecal 

recovery of the odd-chain n-alkanes. In contrast to the odd-chains, the recovery of even-chain 

n-alkanes did not differ due to the change in the diet composition. For the natural even-chain 

alkanes this lack of difference may be attributed to their low concentration in combination 

with a considerable between animal variability (Elwert et al., 2006). The observation that the 

dosed n-alkanes were superior in faecal recovery than the natural alkanes (Table 2) is 

consistent with previous studies (Berry et al., 2000; Hendricksen et al., 2002). Herbage n-

alkanes are associated with the solid phase of the digesta, while the dosed n-alkanes are 

associated with the liquid phase (Dove and Mayes, 1991; Bulang et al., 2008). This may 

contribute to a higher passage rate in the gut of dosed n-alkanes and therefore a higher 

recovery.  

Freeze-drying is generally the preferred method of sample preparation for alkane 

analysis. In the present study, oven-drying of feed and faecal samples at 60°C for 48 h was 

used. Although oven-drying at 100°C considerably affected n-alkane concentration in 

comparison to freeze-drying (Dove and Mayes, 1991; Elwert et al., 2006), drying at 60°C for 

48 h produced similar results to freeze-drying (Elwert et al., 2006). It was therefore assumed 

that the drying procedure used in the present study had little effect on the alkane content of the 

samples analysed and on the faecal recovery rates calculated.  
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Table 4 Actual and predicted digestibility of dry matter and organic matter in 

cattle fed four different tropical roughage diets. 

Digestibility Diet 1 Diet 2 Diet 3 Diet 4 Mean P value
†
 

Dry matter digestibility 

Actual 0.50 0.50 0.49 0.52 0.52 

Predicted      

TC 0.48 0.49 0.51 0.53 0.53 0.479 

MS 0.51 0.51 0.50 0.55 0.55 0.253 

AS 0.52 0.51 0.49 0.52 0.52 0.547 

P-value
‡
 0.454 0.716 0.653 0.608   

Organic matter digestibility 

Actual 0.55 0.55 0.55 0.57 0.57 

Predicted       

TC 0.51 0.52 0.54 0.56 0.56 0.084 

MS 0.54 0.54 0.58 0.58 0.58 0.795 

AS 0.54 0.54 0.57 0.55 0.55 0.575 

P-value
‡
 0.512 0.753 0.409 0.820   

TC=total faecal collection samples; MS=morning faecal spot samples; 

AS=afternoon faecal spot samples. 

†
P-value for comparison between actual and predicted digestibility across diets; 

and 
‡
for comparison between sampling methods; for diet ingredients composition 

see Table 1. 

 

Intake and digestibility estimations  

Estimation of intake with the double n-alkane method (Mayes et al., 1986) assumes that the 

faecal recovery rate of adjacent odd- and even-chain n-alkanes is similar. There are, however, 

observations in which adjacent natural and dosed n-alkanes showed considerable differences 

in their faecal recovery rates that could lead to biased intake estimations (Berry et al., 2000).  
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Figure 3 Plot of observed error in the individual intake estimation (measured - estimated 

intake, kg) versus differences in faecal recovery rates of alkane pairs across diets: 

Panel A, using C31/C32; Panel B, using C33/C32; and Panel C, using C35/C36. The 

faecal recovery rate of the alkanes is calculated as the proportion of the alkane 

consumed that is excreted in faeces. 
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In the present study (Table 2), the ratios of the faecal recovery rate of the three 

alternative combinations of odd- to even-chain alkanes were less than unity on average by 10 

to 18%, which indicates that if similar faecal recovery is assumed, an underestimation of the 

actual intake by the same magnitude would be expected. This is evidenced by the strong linear 

relationship observed (Figure 3) between the error in intake prediction and the difference in 

faecal recovery rates of the alkane pairs used. 

The presence of effect of diet on the ratio of recovery of adjacent n-alkanes (Table 2) 

implies that, if corrections are made for differences in the faecal recovery, diet-specific 

correction factors may provide better results than average values. As shown in Table 3, the 

comparison between actual and predicted intakes largely agrees with the above explanation. 

Without correction for differences in recovery of n-alkane pairs, an underestimation of the 

actual intake by about 12% was observed with C31/C32 and C33/C32 pairs. On the other hand, 

the predictions using C35/C36 were close to the actual values, mainly because the ratio of the 

faecal recovery of this pair of n-alkanes approaches unity better than the other two pairs of n-

alkanes. The fact that correction for differences in recovery improved prediction with C31/C32 

and C33/C32 alkane pairs and not with C35/C36 indicates the importance of acquiring measured 

faecal recovery values to increase the accuracy of intake estimation. 

Generally, the use of a correction factor and its magnitude should depend on the n-

alkane pair and the type of diet consumed by the animal. In free-ranging animals, however, it 

is difficult to generate specific faecal n-alkane recovery data and the correction factor should 

depend on those values obtained from controlled experiments (Dove and Mayes 1991). In this 

respect, a wide range of balance studies involving different diet scenarios that simulate the 

diet of the grazing animal appears indispensable.  

DMD and OMD were estimated with a high accuracy with the use of C36 as external 

marker to estimate faecal output (Table 4). Moreover, the digestibility estimated with C35 as 

an internal marker was not different from the actual values and that of C36 estimations (Figure 

4).  Thus, it appears that the natural C35 alkane may be used as an internal marker to conduct a 

quick diagnosis of digestibility in grazing animals without having to dose a synthetic n-

alkane. However, for both digestibility and intake estimations, obtaining a representative 

sample of the diet consumed by the animal is essential.  
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There was a good agreement among total collection, morning spot and afternoon spot 

samples with regard to the prediction of intake and digestibility. For each of the sample types,  

faeces collected over five consecutive days were pooled into a sample, which may have 

contributed to the similarity among them. Samples pooled over several days are known to give 

more accurate results than single-picked samples (Berry et al., 2000; Smith et al., 2007). 

Generally, the observed similarity between total faecal collection and spot samples in the 

prediction of intake and digestibility has an important practical significance as the ultimate 

goal is to estimate diet intake and digestibility in free-ranging animals where total faecal 

collection is impractical.  

 

 

Figure 4 Linear relationship between C36 predicted and C35 predicted (corrected for 

incomplete recovery) dry matter digestibility values in cattle fed low-quality 

tropical roughage diets. The dotted line shows the line of equality (1:1). 

 

Conclusion 

Molasses-based boluses containing C32 and C36 alkanes administered twice daily are suitable 

to conduct intake and digestibility measurements in growing bulls. The type of diet consumed 

affected the faecal recovery rate of odd-chain n-alkanes with a positive relationship between 

diet digestibility and faecal recovery rate. The assumption of similar recovery of dosed even-
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chain and adjacent odd-chain alkanes underestimated intake using C31/C32 and C33/C32 n-

alkane pairs, while it enabled accurate intake prediction when the C35/C36 pair was used. 

Digestibility of diets was accurately predicted using either C36 as an external marker or C35 as 

an internal marker corrected for incomplete recovery. Accurate measurement of the faecal 

recovery rates of dosed and natural alkanes appears to be essential to produce reliable 

estimates of intake and digestibility. 
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Abstract 

The aim of this study was to assess the nutrient composition, feeding value and methane 

production potential of pasture and browse species from the Mid Rift Valley grasslands of 

Ethiopia. Samples of pasture and browse were collected during the main rainy season (July-

August, 2009) from various locations in the region and sorted by species. Oven-dried and 

ground samples of these species were analyzed for nutrient composition, and in vitro total gas 

and methane production potentials. Organic matter digestibility (OMD) and metabolizable 

energy (ME) contents were predicted from the in vitro total gas and nutrient composition data. 

Large variability was observed among the forage species in all variables considered. The 

neutral detergent fibre (NDF) varied from 184 to 684 g/kg dry matter (DM), the acid detergent 

fibre from 85 to 385 g/kg DM, and crude protein (CP) from 54 to 438 g/kg DM. The mineral 

contents (g/kg DM) varied in the following ranges: Ca, 2.2-26.6; P, 1.4-3.8; K, 8-75; Na, 

0.03-0.75; Mg, 2.1-16.5; Mn, 0.051-0.225; and Cu, 0.019-0.093. Among the minerals, Na was 

deficient in most (83%) of the species, whereas Ca was limiting in about 7% of the species. 

The other minerals were present in adequate amounts for ruminant production. The in vitro 

gas volume after 72 h of incubation ranged from 133 to 283 ml/g OM, while the methane 

volume ranged from 33 to 64 ml/g OM. The mean ratio of CH4 to total gas increased linearly 

from 0.17±0.03 at 12 h to 0.24±0.04 at 72 h. The relative ranking of the species in terms of 

total gas volume and CH4 to total gas ratio changed with incubation time. The estimated OMD 

ranged between 42 and 73%, and the ME content varied between 5.8 and 10.2 MJ/kg DM. 

While the NDF content of the samples was positively correlated with total gas (r=0.41; 

P<0.05) and CH4 (r=0.40; P<0.05) production, the CP content was negatively correlated (r=-

0.39; P<0.05) with total gas production. Generally, the pasture stand during the main growing 

season was evaluated as of moderate nutritional quality and that any decrease in animal 

productivity during this time is likely to primarily originate from biomass availability (DM 

intake) rather than feed quality. 
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Introduction 

Natural pasture is the major feed resource for grazing ruminants in many developing countries 

such as Ethiopia. The performance of animals grazing tropical pastures is mainly influenced 

by availability and nutritional quality of the biomass on offer (Vazquez and Smith, 2000). 

While availability of biomass in the tropical grasslands depends on the rainfall pattern (Clary, 

2008; Lenz and Facelli, 2006), the quality is mainly affected by the stage of maturity, the type 

forage species and the levels of soil fertilization (Aumont et al., 1995; Perez Corona et al., 

1998). Tropical grasses generally grow and mature faster, and reach the age of senescence 

much quicker than temperate grasses, thereby become more fibrous and less digestible in a 

short duration (Hennessy et al., 2000; Leng, 1990). This creates a challenge to provide the 

ruminant with good quality forages over extended periods, and often animals have to cope 

with poor quality feeds (Miller and Thompson, 2007; Sampaio et al., 2010).  

To optimize the use of pasture resources in a sustainable manner, it is important to 

quantify the nutrient composition of the available forage species (Peacock et al., 2005). Such 

information is vital to adequately assess the feeding values of available forages and identify 

possible limiting nutrients, based on which a suitable grazing management (Sternberg et al., 

2000) and a feasible supplementation strategy (Huston et al., 1999) can be implemented. 

Nutritive evaluation of forages is also important for the selection and breeding of appropriate 

indigenous forage species to improve the carrying capacity and quality of the natural 

grasslands. 

Because of the growing concern of global warming, CH4 emission from ruminant 

livestock production has currently received the attention of nutritionists. CH4 is a greenhouse 

gas, which is about 20 times more potent than CO2. It is produced in the rumen as a by-

product of microbial fermentation of forages, and is eructated as gas into the atmosphere, 

through which ruminants lose up to 11% of the gross energy they consume (Waghorn et al., 

2002). CH4 production in the rumen is thus both wastage of energy and a cause of damage to 

the environment. The current nutritive evaluation of forages, therefore, needs to take into 

account methanogenesis and antimethanogenic activities of various feeds. In this respect, 

analysis of chemical composition and in vitro assays are valuable proxies for nutritive 

evaluation of feedstuffs. The in vitro total gas production technique together with chemical 

composition data (Menke and Steinggass, 1988) is a widely accepted method to estimate the 
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degradability kinetics and energy values, and CH4 outputs of a range of feed ingredients and 

feed additives (Getachew et al., 2005; Kumara Mahipala et al., 2009; Mc Geough et al., 

2011). The total gas production technique has the advantage that it is cost effective as 

compared to in vivo assays (Blümmel and Becker, 1997) and that large number of plant 

species can be screened rapidly for further study in forage breeding programs (Blümmel et al., 

2005; Bodas et al., 2008; Soliva et al., 2008). The accuracy of the method is evident from the 

high correlation between in vitro total gas production and apparent in vivo digestibility (Bhatta 

et al., 2006), as well as the similarity between in vitro CH4 and in vivo respiration chamber 

CH4 measurements (Blümmel et al., 2005). 

Ethiopia has the highest ruminant livestock population in Africa (FAO, 2010), and the 

Mid Rift Valley region of the country supports the bulk of this livestock population (CSA, 

2008). Improving the nutrition of the grazing ruminant in the region has thus wider 

implications in terms of supporting the national economy and mitigating methane emissions 

into the atmosphere. Therefore, this study was conducted to document the chemical 

composition, in vitro total gas and CH4 production of grass and browse species collected from 

the Mid Rift Valley grasslands during the main pasture growth period. 

 

Materials and Methods 

Research site and forage sampling 

The research site was in the Mid Rift Valley of Ethiopia (7°34´N to 7°35´N and 38°33´to 

38°34´E, with an elevation of 1650 meters above sea level). The site has a semi-arid agro-

ecology, and scarcity of water is the major constraint for crop and livestock productivity. 

Maize cultivation and cattle rearing on natural pasture are the main source of livelihood for 

the farming communities in the area. For the present study, feed samples consumed by cattle 

in the area including pasture species, maize stover and acacia fruit were collected from the 

grazing lands (enclosed ranch and open grasslands). The procedure of sample collection is 

described elsewhere (Bezabih et al., 2011b). Briefly, several transect walks were conducted 

across the grazing sites, and forage samples were randomly collected from areas of 1 m
2
 at 

various locations along transects. The forages were cut at a height of 5 cm from the ground, 

after which the samples were sorted and bulked by species. Freshly fallen Acacia tortilis fruit 

were collected from the area under several trees along the sampling lines. 
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Chemical analysis  

Sample of each pasture species was dried in an air-draft oven at 60°C for 48 h, and ground to 

pass a 1mm sieve.The samples were then analysed for the contents of dry matter (DM), ash, 

crude protein (CP), neutral detergent fibre (NDF), acid detergent fibre (ADF) and minerals. 

Dry matter was determined by oven drying at 103°C (ISO 6496; ISO, 1999) and ash after 

incineration at 550°C (ISO 5984; ISO, 2002). The contents of CP (6.25 × N) was determined 

by using the Kjeldahl method (ISO 5983; ISO, 2005), NDF according to Van Soest (1991) 

and ADF according to Van Soest (1973). The contents of Ca, P, K, Na, Mg, Mn, and Cu were 

determined by atomic absorption spectrophotometer (Buck Scientific 240VGP, Milan Italy) 

after digestion with tri-acid mixture of nitric, perchloric and sulphuric acids. CH4 was 

determined using a gas chromatograph (GC8000 Top, CE Instruments, Milan, Italy) fitted to a 

flame ionization detector, using a packed column (Porapak, 6 m × 1/8 in., 50–80 mesh, 

Grace/Alltech, Lexington, Kentucky, USA) with nitrogen as carrier gas (100 kPa) and an oven 

temperature maintained at 60°C. 

 

In vitro gas and methane production measurement 

A fully automated in vitro gas production apparatus (Cone et al., 1996), with modifications on 

the incubation bottles as described by Pellikaan et al. (2011), was used to measure cumulative 

gas, CH4 and fermentation end-products at the laboratory of Animal Nutrition Group of 

Wageningen University, The Netherlands. Forage samples were incubated according to the 

procedure described by Cone et al. (1996). Rumen fluid was collected from two ruminally 

canulated Holstein Friesian dry cows (about 2 h after the morning feeding), pooled together, 

and stored in a pre-warmed insulated thermos prefilled with CO2. The cows received standard 

dry cow ration containing silage (grass and maize) and concentrates. The rumen fluid was 

filtered through cheesecloth and mixed (1:2, v/v) with an anaerobic buffer/mineral solution, 

after which 500 mg of ground samples were incubated in duplicate with 60 ml of the buffered 

rumen fluid at 39°C. Cumulative gas production was recorded automatically during 72 h of 

incubation.  

To determine CH4 concentration in the cumulative gas produced, small aliquots of gas 

(10 µl) were sampled (at 0, 2, 4, 6, 8, 10, 12, 24, 30, 48, 56, and 72 h) from the headspace 
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using a gas tight syringe (Hamilton 1701N, point style 5 needles, 51 mm; Hamilton, Bonaduz, 

Switzerland) and were immediately analyzed by gas chromatography. The CH4 concentrations 

of individual bottles were expressed relative to the maximum concentration to normalize the 

data, and were plotted against time. Finally, the data were fitted to a nonlinear monophasic 

equation (Eq.1: Groot et al. 1996), and the curve fit parameters were used to compute CH4 

concentrations at each individual valve opening. Cumulative CH4 production was calculated 

as the sum of the increase in headspace CH4 between successive valve openings and the 

amount of CH4 vented. All measurements were corrected for blank (gas produced in buffered 

rumen fluid without sample). 

 

Curve fitting and calculations 

The cumulative gas and CH4 production over time were fitted iteratively with a monophasic 

equation (Groot et al., 1996) of the following form using the NLIN procedure of Statistical 

Analysis System (SAS
®

; Version 9.2):  

G= A/(1+(C/t)
B
         (1) 

where, G is total gas or CH4 produced, A equals the asymptotic total gas or CH4 production 

(ml/g organic matter (OM)), B is the switching characteristic of the curve, C is the time at 

which half of the asymptotic total gas or CH4 production had been reached (half-time; T1/2h), 

and t is the time (h). 

Maximum gas production rate (Rmax, ml/h) was calculated according to Bauer et al. (2001) as 

follows: 

Rmax = [A×C
B
×B×(TR max

 (-B-1)
)]/[1+(C

B
×TRmax

 (-B)
)

2
]    (2) 

where TRmax is the time at which Rmax occurs; and TRmax=C×[[(B-1)/(B+1)]
(1/B)

] 

 

The in vitro organic matter digestibility and metabolizable energy contents of the samples 

were estimated from the net 48 h gas volume, CP and ash contents (Menke and Steinggass, 

1988) according to the following equations: 

OMD = 14.88 + 0.889GV + 0.45CP + 0.0651XA     (3) 

ME = 2.20 + 0.136GV + 0.057CP       (4) 
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where, OMD is organic matter digestibility (g/100 g); ME is metabolizable energy content 

(MJ/kg DM); GV is net gas volume at 48 h fermentation (ml/g DM); CP is CP content (g/100 

g DM); XA is ash content (g/100 g DM). 

 

Results  

Chemical composition and mineral profiles 

Table 1 show the chemical and mineral composition of pasture and browse species, while 

Figure 1 visualizes the range and distribution of the major chemical fractions. The result 

showed a large variation in the chemical composition among the botanical species analyzed. 

The NDF content, which represents the cell wall components, was the highest in Hyparrhenia 

anamesa (684 g/kg DM) and the lowest in the pods of Acacia tortilis (184 g/kg DM). In the 

same pattern, the ADF content ranged from 85-385 g/kg DM. The highest CP content was 

observed in the seeds (438 g/kg DM) and fruits (210 g/kg DM) of A. tortilis. Among the 

pasture species, Indigofera spicata had the highest CP content (228 g/kg DM), whereas 

Sporobolus pellucisus contained the lowest CP content (54 g/kg DM).  

The mineral contents (g/kg DM) varied among the species with the following ranges: 

Ca, 2.2-26.6; P, 1.4-3.8; K, 8-75; Na, 0.03-0.75; Mg, 2.1-16.5; Mn, 0.051-0.225, and Cu, 

0.019-0.093. Table 2 shows the percentage of grass species with mineral contents below, 

above or within the normal range of mineral requirements in reference to the National 

Research Council (1996) recommendations. Except Ca and Na, the analyzed minerals were 

available in adequate amounts for ruminant production. Na was deficient in most of the 

samples (83%) analysed, whereas Ca appeared to be limiting in about 7% of the species. 
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Table 1 Chemical composition and mineral profile of grass and browse species from the Mid Rift Valley grasslands of 

Ethiopia. 

Species  DM NDF ADF CP Ash Ca P K Na Mg Mn Cu 

 g/kg DM mg/kg DM 

Cynodon dactylon 180 525 242 171 119 12.6 2.95 68 0.67 9.1 68 37 

Pennisetum straminium 250 536 258 167 96 6.0 2.60 58 0.45 5.9 110 30 

Cenchrus ciliaris 260 563 302 96 111 12.8 3.40 50 0.42 12.0 145 83 

Cymbopogon pospischilii 310 608 354 68 75 2.2 1.40 13 0.72 8.2 113 26 

Indigofera spicata 210 363 226 228 92 6.5 2.30 48 0.40 15.5 63 43 

Heteropogon contortus 321 615 338 56 82 4.4 3.00 56 0.41 16.5 187 59 

Zaleya pentandra 165 523 309 83 95 4.0 2.15 73 0.38 3.4 101 22 

Chloris gayana 212 627 335 98 83 4.2 2.75 62 0.45 5.7 110 28 

Eragrostis aspera 174 566 292 137 113 2.4 2.35 37 0.36 5.5 108 28 

Eragrostis cilianensis 205 578 315 93 92 4.0 2.65 57 0.29 6.5 85 32 

Cynodon ethiopicus 155 535 252 134 97 12.6 2.90 41 0.61 8.9 60 32 

Eleusine mutiflora 225 631 333 74 125 11.6 2.95 65 0.57 9.1 70 37 

Brachiaria lachnantha 270 643 355 106 101 9.6 3.30 46 0.59 16.4 102 43 

Aristida adscensionis 240 653 339 83 94 4.0 2.15 73 0.38 3.4 95 22 

Bracheria marlothii 195 554 360 91 85 4.5 2.05 65 0.37 7.2 120 31 

Sporobolus pellucisus 325 657 336 54 92 4.3 3.05 46 0.39 13.1 100 30 

Dactyloctenium aegyptium 168 621 317 83 87 26.6 3.30 55 0.59 16.4 165 43 

Digitaria abyssinica 210 570 355 77 86 6.7 3.12 34 0.43 7.2 51 42 

Pennisetum polystachion 305 624 363 59 98 4.6 2.01 40 0.52 11.8 65 48 

Hyparrhenia anamesa 324 684 385 84 115 12.4 3.45 54 0.39 11.0 120 54 

Snowdenia petitiana 350 621 351 54 105 5.7 3.63 75 0.75 8.2 96 35 

Rhynchelytrum repens 215 542 325 77 83 4.9 2.6 42 0.64 6.3 130 53 

Melinis repens 260 564 345 83 90 5.2 2.01 53 0.32 10.3 117 28 

Harpachne schimperi 340 674 358 55 55 11.8 2.40 47 0.285 7.4 68 37 

Themeda triandra 245 649 333 92 80 15.7 2.05 35 0.525 14.6 165 93 

Zea mays (stover) 852 663 336 39 75 4.3 3.05 37 0.385 13.1 99 30 

Acacia tortilis (fruit) 540 230 129 210 66 6.5 2.85 9 0.06 2.24 206 32 

Acacia tortilis (seed) 650 326 221 438 52 6.3 3.80 8 0.11 2.1 165 19 

Acacia tortilis (pod hull) 475 184 85 103 69 6.6 2.40 9 0.03 2.3 225 38 
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Figure 1 Chemical composition (NDF, ADF, CP, and ash) of grass and browse species from 

the Mid Rift Valley grassland of Ethiopia (a box-plot presentation showing the 

median, the middle 50% of the data (box), outliers (♦) and data ranges): NDF = 

Neutral Detergent fibre; ADF = acid detergent fibre, CP = crude protein, and Ash = 

crude ash. 

 

 

Table 2 Percentage of grass species from the Mid Rift Valley grasslands 

of Ethiopia with mineral concentrations below, above or within the 

normal range of mineral requirements for ruminants. 

Mineral Normal requirements Below Above Within 

 (g/kg DM)*    

Ca 3.4–7.0 7 31 62 

P 1.2–2.1 - 93 7 

K 6.0–7.0 - 100 - 

Na 0.6 – 1.0 83 - 17 

Mg 1.0–2.0 - 100 - 

Mn 0.02 – 0.04 - 100 - 

Cu 0.007–0.011 - 100 - 

*Recommended requirements according to NRC (1996). 

 

 

In vitro total gas and methane production  

The in vitro total gas production (ml/g OM) after 12, 24, 48, and 72 h of incubation are shown 

in Table 3, while Figure 2 shows the box-plot presentation of the range and distribution of gas 

volumes produced at the selected incubation hours. The forage samples had large variation in 
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the total volume of gas produced. At 12 h of incubation the lowest gas volume (57 ml/g OM) 

was recorded in Harpachne schimperi, whereas the highest gas volume (180 ml/g OM) was 

observed in Heteropogon contortus. At 24 h the gas volume ranged from 94 ml/g OM (H. 

schimperi) to 232 ml/g OM (Dactyloctenium aegyptium), while it varied between 133 to 283 

ml/g OM at the end of the incubation (72 h). In reference to the total volume of gas produced 

at the end of the incubation, 55±9% of the total gas was produced in the first 12 h, 82±6% 

after 24 h, and 97±1% after 48 h of incubation.  

The parameters of total gas production also showed large variation between species 

(Table 3), with T1/2 (time at which half of the asymptotic total gas is produced) ranging from 

6.5 to 21.3 h, Rmax (maximum rate of gas production) from 6.7 to 28.8 ml/h, and TRmax (time 

at which Rmax occurs) from 1.1 to 7.9 h. Species such as H. contortus, Zaleya pentandra, and 

Brachiaria lachnantha had fast degradation with relatively short T1/2 and TRmax and high 

Rmax, whereas species such as Sporobolus pellucisus, H. schimperi and maize stover showed 

slow rates of degradation. The slow rate of degradation in the latter groups of species was also 

associated with low level of total gas production at the end of the incubation.  

The in vitro CH4 production, CH4 to total gas ratio at the end of the incubation, and estimated 

nutritive values of the feed samples are presented in Table 4. The range of CH4 production 

(ml/g OM) was 14-27; 24-43; 31-57 and 33-64 after 12, 24, 48 and 72 h of incubation, 

respectively, showing a linear increase in the volume of CH4 produced over the incubation 

time. Distinct variability between species was observed in CH4 production. In general, grasses 

such as S. petitiana, M. repens, Z. pentandra, E. mutiflora, and A. tortilis (fruit, seed and pod) 

produced the lowest CH4 volumes (33-43 ml/g OM) after 72 h. On the other hand, species 

such as B. lachnantha, C. ciliaris, P. straminium and D. aegyptium produced the highest CH4 

volumes (61-64 ml/g OM). Compared to the percentage of total gas production much lower 

percentage of the total CH4 gas were produced after 12 (55 vs. 40%) and 24 h (82 vs. 64%). 

As a result the ratio of methane to total gas increased steadily from 0.17±0.03 at 12 h to 0.24± 

0.04 at 72 h (Figure 2).  
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Table 3 In vitro total gas (ml/g OM) production of grass and browse species from the Mid Rift 

Valley grasslands of Ethiopia, after incubation with rumen fluid for 72 h.  

Species  

Volume of gas after incubation 

time t (h) 

 
Total gas kinetics

*
 

12 24 48 72  T1/2 (h) RM (ml/h) TRM (h) 

Cynodon dactylon 107 163 192 197  13.1 13.6 1.5 

Pennisetum straminium 139 208 236 239  11.1 18.4 2.7 

Cenchrus ciliaris 130 202 235 241  12.3 16.8 3.1 

Cymbopogon pospischilii 114 177 209 220  13.3 14.1 3.0 

Indigofera spicata 122 179 201 206  10.7 16.6 3.2 

Heteropogon contortus 180 224 237 240  6.7 28.8 1.5 

Zaleya pentandra 140 174 180 183  6.5 26.1 1.8 

Chloris gayana 118 189 228 236  13.4 15.4 4.1 

Eragrostis aspera 132 200 231 236  11.5 18.4 3.9 

Eragrostis cilianensis 154 218 242 246  9.8 20.7 2.4 

Cynodon ethiopicus 134 201 230 235  11.4 17.3 2.2 

Eleusine mutiflora 151 216 255 269  11.7 18.9 2.6 

Brachiaria lachnantha 170 230 249 254  8.7 23.9 2.1 

Aristida odscensionis 135 197 230 239  11.8 17.2 2.9 

Bracheria marlothi 135 210 246 252  12.8 16.8 2.3 

Sporobolus pellucisus 108 170 218 232  19.2 12.5 1.1 

Dactyloctenium aegyptium 150 232 276 283  12.6 19.1 3.2 

Digitaria abyssinica 161 219 249 255  9.8 21.3 2.6 

Pennisetum polystachion 92 168 204 208  14.9 13.4 5.7 

Hyparrhenia anamesa 124 197 233 241  12.7 17.8 5.3 

Snowdenia petitiana 108 162 181 187  11.1 14.8 3.6 

Rhynchelytrum repens 100 161 204 212  15.4 12.3 3.2 

Melinis repens 94 156 199 212  15.5 11.9 4.9 

Harpachne schimperi 57 94 127 133  17.7 6.7 4.4 

Themeda triandra 91 154 201 209  14.0 18.4 3.8 

Zea mays (stover) 79 136 187 198  21.3 9.1 3.3 

Acacia tortilis (fruit) 96 146 172 177  12.2 13.5 4.7 

Acacia tortilis (seed) 75 115 132 134  12.0 12.1 7.9 

Acacia tortilis (pod hull) 106 160 191 198  12.3 14.2 3.3 

*T1∕2 = time at which half of the asymptotic gas production has been reached; RM = maximum 

rate of gas production; TRM = time at which the maximum rate of gas production occurs. 
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Table 4 In vitro methane (ml/g OM) production, methane to total gas ratio (v/v), estimated in vitro organic 

matter digestibility (OMD) and metabolizable energy (ME) content of grass and browse species 

from the Mid Rift Valley grasslands of Ethiopia. 

Species ml CH4 after incubation time t (h) CH4:Total 

gas  

OMD 

(%) 

ME 

(MJ/kg DM) 12 24 48 72 

Cynodon dactylon 19 31 43 49 0.25 64 8.4 

Pennisetum straminium 26 43 57 63 0.26 71 9.6 

Cenchrus ciliaris 23 40 55 62 0.26 68 9.1 

Cymbopogon pospischilii 21 34 48 55 0.25 60 8.3 

Indigofera spicata 21 35 48 55 0.26 67 9.0 

Heteropogon contortus 27 38 47 50 0.21 64 8.9 

Zaleya pentandra 21 30 35 37 0.20 57 7.6 

Chloris gayana 21 33 48 56 0.24 65 9.0 

Eragrostis aspera 21 36 51 59 0.25 69 9.3 

Eragrostis cilianensis 25 38 51 57 0.23 68 9.3 

Cynodon ethiopicus 20 35 50 58 0.25 68 9.2 

Eleusine mutiflora 20 27 31 33 0.12 72 9.6 

Brachiaria lachnantha 25 39 53 61 0.24 70 9.6 

Aristida odscensionis 22 34 48 55 0.23 66 8.9 

Bracheria marlothi 24 38 52 59 0.23 68 9.4 

Sporobolus pellucisus 19 31 47 56 0.24 62 8.4 

Dactyloctenium aegyptium 25 41 56 64 0.22 73 10.2 

Digitaria abyssinica 21 34 48 56 0.22 68 9.4 

Pennisetum polystachion 18 31 46 54 0.26 60 8.1 

Hyparrhenia anamesa 20 35 50 58 0.24 68 9.0 

Snowdenia petitiana 14 29 39 43 0.23 56 7.4 

Rhynchelytrum repens 17 27 40 47 0.22 60 8.2 

Melinis repens 15 25 36 41 0.20 60 8.1 

Harpachne schimperi 16 26 40 49 0.37 42 5.8 

Themeda triandra 20 31 42 47 0.22 60 8.2 

Zea mays (stover) 16 26 39 48 0.24 55 7.5 

Acacia tortilis (fruit) 17 25 34 39 0.25 65 9.0 

Acacia tortilis (seed) 17 24 31 35 0.26 52 7.0 

Acacia tortilis (pod hull) 17 26 36 41 0.25 72 9.9 

 

The relative ranking of species according to this ratio varied with the time of incubation. The 

species E. mutiflora had the lowest CH4 to total gas ration (0.12) at the end of the incubation, 
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whereas H. schimperi had the highest ratio (0.37). The other species clustered with a CH4 to 

total gas ratio of 0.19-0.26. 

 

Organic matter digestibility and metabolizable energy contents  

The estimated organic matter digestibility (OMD) varied between 42 and 73% (Table 4). The 

lowest digestibility was observed in the species such as H. schimperi (42%), A. tortilis seed 

(52%), maize stover (55%) and Snowdenia petitiana (56%), whereas the highest OMD was 

observed in D. aegyptium (73%), A. tortilis pod (72%), E. mutiflora (72%), P. straminium 

(71%) and B. lachnantha (71%). The estimated ME content varied from 5.8 to 10.2 MJ/kg 

DM, following the same trend as the OMD. The large variability in OMD and ME content 

appeared to reflect the considerable difference in the nutritive values of the feed samples. The 

correlation matrix of the chemical composition, in vitro gas production and estimated nutritive 

value of the feed samples is presented in Table 6. The NDF content was positively correlated 

with total gas (R=0.41; P<0.05) and CH4 (R=0.40; P<0.05) production, while strongly 

negatively correlated with CP content (R=-0.65; P<0.001). The CP content was also 

negatively correlated (R=-0.39; P<0.05) with total gas production. The ash content was 

negatively correlated with total gas, OMD and ME contents. As expected strong positive 

correlations (P<0.001) were observed among in vitro total gas, CH4, OMD and ME contents.  

 

Discussion  

Nutrient composition of pasture species 

Nutrient composition data serve as a first-hand tool to evaluate the feeding value of forages. 

Several factors including forage genotype, stage of maturity, season of harvest, and 

management influence the nutrient composition of forages (Aumont et al., 1995). In the 

present analysis, forage samples were collected at their flowering stage, and samples of the 

same species collected from different quadrates were pooled together to account for spatial 

variability. Although this sampling method did not allow observation of intraspecies 

differences in nutrient concentration and feeding values, the bulked samples adequately 

represent individual species, and used for examining the interspecies variability. 

The minimum CP level in the diet of ruminants required for adequate rumen function 

is about 70 g/kg DM (Van Soest, 1994) and the same nutrient required for optimum growth 
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and lactation in cattle is about 150 g/kg DM (Poppi and McLennan, 1995; Tessema and Baars, 

2004). Among the pasture species, about 74% had CP content higher than the minimum 

requirements for normal rumen functioning and 24% had CP content higher than the 

requirements for optimum growth and lactation. The higher CP contents of A. tortilis fruit and 

pod is typical for tropical multipurpose trees (Soliva et al., 2008), and their potential as a 

protein supplement, particularly during the dry period has been documented (Anele et al., 

2009; Berhane et al., 2006; Coppock and Reed, 1992). The level of cell wall fraction (NDF) 

in tropical grasses beyond which the dry matter intake of cattle would be negatively affected 

is considered around 600-650 g/kg DM (Van Soest et al., 1991), and about 81% of the forage 

samples analyzed contained NDF levels lower than this threshold. Considering the two 

important chemical fractions (CP and NDF) influencing ruminal degradability and hence the 

nutritive value feeds, the standing grass biomass in the natural grassland during the main 

growing season (sampling period) can be considered as of moderate quality. 

Previous reports on the mineral status of forages and crop residues indicated marginal 

to deficient levels of Na, Cu, and P, and adequate supplies of K, Ca, Mg, Mn and Zn for 

ruminant animal production in the Rift Valley of Ethiopia (Kabaija and Little, 1988; Kabaija 

and Little, 1991). In the present result, except that of Na, the concentration of other minerals 

appeared to be adequate for ruminant production. This observation contrasts with previous 

findings that Cu deficiency is an important constraint (Faye et al., 1991; Faye et al., 1983) for 

grazing animals in the Rift Valley of Ethiopia. However, forage Cu concentration alone is of 

limited value in assessing Cu adequacy unless forage concentrations of Cu antagonists such as 

Mo, S, and Fe are also considered (NRC, 1996). Faye et al. (1991) reported that the soil 

formation in the Rift Valley is characterized by a high Mo, S, Fe, and a low Cu, Zn content, 

which leads to Mo-induced Cu deficiency in the grazing animal. These authors reviewed 

cases of Enzootic ataxia in new-born small ruminants as an evidence for the widespread Cu 

deficiency in the region. As Mo, S, and Fe contents of forages were not determined in the 

present study, the possible interference in Cu absorption of these minerals could not be 

inferred. Clinical signs of Cu deficiency were, however, not observed in cattle during the 

study period. In line with this, Kabaija and Little (1991) reported that supplementary P (in the 

form of bone meal) and injectable Cu had no remarkable effects on the serum mineral 

concentrations and body condition of 2-3 years old male cattle, suggesting that dietary 
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contents of these minerals may not be limiting for cattle production with the existing 

nutritional regime in the area. The current observation that Na was deficient in most of the 

samples analyzed (Table 2) is in line with previous observations. A routine supplementation 

of this mineral as common salt to the grazing animal is thus essential.  

 

In vitro total gas and methane production 

The in vitro gas production method (Menke et al., 1979) has become a widely used technique 

to study the fermentation kinetics of feeds in rumen fluid (Blümmel and Becker, 1997; 

Blümmel and Ørskov, 1993; Sandoval-Castro et al., 2005). This method has been fully 

automated (Cone et al., 1996) to generate large time-series data points, allowing more 

accurate prediction of fermentation characteristics. Results of the total gas volume in the 

present experiment largely agree with those reported by others (Anele et al., 2009; Berhane et 

al., 2006; Soliva et al., 2008). The nature and amount of the cell wall fraction as well as the 

CP content of forages are known to influence the degradability and hence nutritive values 

(Van Soest et al., 1991). In the present experiment the species with optimum level of NDF 

and CP (e.g. D. aegyptium) produced the highest gas volume, whereas those with the highest 

NDF and lowest CP content (e.g. H. schimperi) produced the lowest gas volume. The browse 

A. tortilis fruit and seed produced low gas volumes despite the low NDF (230-326 g/kg DM) 

and high CP (210-438 g/kg DM) content in the samples, while the pod of the same species 

(NDF: 184 g/kg DM and CP: 103 g/kg DM) showed optimum level of degradability. The low 

gas volume in the fruit and seed may be due to the high content of phenolic compounds in the 

seeds (Kumara Mahipala et al., 2009), which could inactivate microbial enzymes and reduce 

protein degradation in the rumen (Kumar and Singh, 1984). The large differences observed in 

the gas production kinetics (Table 3) provides further evidence about the variation among the 

forage species in their potential feeding values. Low total gas production coupled with slow 

rate of fermentation indicates poor digestibility and feeding value, with species such as S. 

pellucisus, and H. schimperi included under this category. On the other hand, high total gas 

production associated with moderate to rapid rate of fermentation indicates better digestibility 

and utilization by ruminants, with species such as C. ciliaris, D. aegyptium, B. marlothi and 

P. straminium falling under this category. In addition to their value for screening forages, the 

gas production parameters provide valuable information in choosing mixtures of forage 
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species that optimizes microbial fermentation in the rumen when artificial pastures are 

established or a cut and carry system is used in feeding ruminants (Williams, 2000).  

Microbial degradation of feeds in the rumen results in the production of short-chain 

fatty acids, gases (mainly CO2 and CH4), and synthesis of microbial biomass. The CH4 gas 

produced is a potent greenhouse gas, through which a potentially productive feed energy is 

also lost (Getachew et al., 2005; Moss et al., 2000). In recent times, the concurrent 

measurement of CH4 production during the in vitro incubation enabled to simultaneously 

screen animal diets both for their degradability and low CH4 production potentials (Bodas et 

al., 2008; Getachew et al., 2005; Pellikaan et al., 2011). In the present experiment, the 

observed variability in CH4 production among species reflects the large scope for selecting 

forage species with lower CH4 production potentials. 

The range of CH4 proportion (0.12-0.37) in the total gas in the present study was 

similar to that reported for tropical browses by Soliva et al. (2008), although appears to be 

higher than that reported for other tropical tannin containing plants (Hariadi and Santoso, 

2010) and for cereal crop residues (Blümmel et al., 2005), measured using the Menke and 

Steingass (1988) batch incubation system. The CH4 to total gas ratio reported by Meale et al. 

(2012) for forage grasses and legumes is less than 0.08, which is much lower than that 

reported for tropical tanniniferous plants with a high anti-methanogenic activity (Bodas et al., 

2008).  

The relative ranking of species according to CH4 to total gas ratio changed with the 

incubation time, indicating that the time-series measurement method provides valuable 

insights into the kinetics of CH4 production of substrates than the batch system. From the 

present observation species including E. mutiflora, M. repens and Z. pentandra showed 

consistently lower CH4 to total gas ratio, which may be worth considering for further studies 

in an effort to find low CH4 emission forage diets. It is important to note that the pod of A. 

tortilis is rich in protein, and is highly degradable (Table 1 and 3) with moderate CH4 to total 

gas ratio, which make it an ideal feed supplement for ruminants. 

As indicated in Figure 2, the volume of CH4 produced increased linearly with the 

incubation time. This is in line with the observation that forage diets with a high in vivo 

passage rate (thus less resident time in the rumen) are likely to produce less CH4 than those 

with a low passage rate (Waghorn et al., 2002).  Fibre quality and particle size of forage diets 
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are among the main factors that affect in vivo passage rate of digesta, and thus should be 

targeted in the manipulation of the nutrition of ruminants.  

 

 
Figure 2 In vitro total gas (a), CH4 (b), and CH4 to total gas ratio (b: line-graph) for grass and 

browse species from the Mid Rift Valley grassland of Ethiopia after incubation with 

rumen fluid for 72 h (a box-plot presentation showing the median, the middle 50% 

of the data (box), and gas volume ranges). 
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Organic matter digestibility and energy contents 

Organic matter digestibility is a valuable predictor of the nutritive value of feeds (Lukas et al., 

2005). The predicted OMD of the forage samples (Table 4) reflects a large variation in the 

nutritive value of the feeds. Forages containing 700 g OMD/kg DM are considered to be of 

high quality (Meissner et al., 2000), and about 17% of the feed samples studied were 

predicted to have OMD above this threshold. The majority of the remaining species (62%) 

contained 610-690 g OMD/kg DM, which can be considered as of moderate quality under 

tropical conditions (Kumara Mahipala et al., 2009; Leng, 1990). The ME content of 52% of 

the species was above 9 MJ/kg DM, a level comparable to good quality forages; 31% of the 

species contained 8-9 MJ/kg DM, a level comparable to a low quality hay; and the other 14% 

contained 6.5-8.0 MJ/kg DM, a level comparable to ammoniated straws (Leng, 1990). The 

species H. schimperi contained the lowest ME content (5.8 MJ/kg DM), which is comparable 

to a straw diet. This species also showed the lowest OM content and the highest methane 

production, indicating that it has a low feeding value in all parameters considered.  

 

Table 5 Pearson correlation coefficient (R) matrix of chemical composition, in vitro gas 

production and estimated nutritive value of grass and browse species from the Mid 

Rift Valley grasslands of Ethiopia. 

 ADF CP Ash Total 

gas 

CH4 OMD ME 

NDF 0.92
***

 -0.65
***

   0.38
*
   0.40

*
  0.40

*
  0.04 -0.15 

ADF  -0.58
***

   0.27   0.33  0.31 -0.05 -0.23 

CP    -0.24  -0.39
*
 -0.23 -0.09 -0.03 

Ash     -0.57
*
 -0.26 -0.59

**
 -0.41

*
 

Total gas       0.60
***

   0.86
***

   0.83
***

 

CH4        0.50
**

   0.45
*
 

OMD         0.91
***

 

*P<0.05; **P<0.01; ***P<0.001. 

 

The observed positive correlation between NDF and in vitro gas production (Table 5) 

agrees with that reported for browse species by Kumara Mahipala et al. (2009). The observed 

significant negative correlation between NDF and CP is in line with the established 

knowledge that with advancing maturity the NDF content of forages increases while the CP 
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content declines (Machado et al., 2007). The significant negative effect of CP on total gas 

volume is in contrast with the expected positive association between CP and in vitro OM 

degradability in grasses and browses (Cilliers and van der Merwe, 1993; Datt et al., 2008; 

Kaitho et al., 1998). Similar negative correlation between CP and in vitro total gas volume in 

browse was also reported by Mahipala et al. (2009), who discussed that the negative effect 

could be due to high soluble nitrogen content, which has been observed to reduce cumulative 

gas production at the early stages of incubation in rumen fluid (Cone and Van Gelder, 1999). 

Generally, the predicted feeding values reflected the characteristics of the feeds. In the 

prediction of ME, however, it may be beneficial to include CH4 to total gas ratio as a predictor 

variable in addition to total gas volume, because different substrates with similar levels of gas 

volume were observed to have different level of CH4 to total gas ratio. 

 

Conclusions 

The nutrient composition and predicted feeding values of the forages studied showed large 

variability. Such information on the nutrient composition, feeding values and CH4 production 

kinetics of the pasture species provides an opportunity for selection of desirable pasture 

species. Overall, the pasture stand in the Mid Rift Valley of Ethiopia has moderate quality to 

support ruminant production in the wet season, and that any possible limitation during this 

time is likely to originate from biomass availability (DM intake) rather than feed quality. The 

role of A. tortilis pods as a protein and energy supplement appears indispensable, and proper 

storage and utilization of this feed would help improve animal performance. Routine 

supplementation of Na to the grazing animals is essential as most species were deficient in 

this mineral in the study area. 
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Abstract 

The seasonal diet composition, digestibility and nutrient intake of cattle grazing on natural 

pasture in the Mid Rift valley region of Ethiopia was determined using an improved n-alkanes 

method. Sixteen local Borana and Arsi cattle (8 bulls and 8 heifers, 175±10 kg weight) were 

randomly selected from herds at two sites; a moderately grazed ranch and a heavily grazed, 

communal grassland area. Grazing behaviour was observed and herbage species consumed 

sampled during five periods (early-dry, dry, short-rainy, main-rainy and end-of-rainy seasons) 

throughout the year at the two grazing sites. During each period, animals were dosed twice 

daily with 152±4 mg of C32 and 150±3 mg C36 alkanes for 10 consecutive days, with faeces 

sample collected in the morning during the last five days to determine dry matter intake 

(DMI).The proportion of consumed herbage species in the diet was determined using n-

alkanes and their carbon isotope enrichments as markers, while the energy and nutrient 

intakes were derived from the DMI, digestibility, and diet composition of the DM consumed. 

Marked seasonal variations (P<0.05) were observed in the species diversity of diets consumed 

as well as intake of DM (65-98 g/kg
0.75

/d), crude protein (222-448 g/d), metabolizable energy 

(20-37 MJ/d) and minerals. Energy intake was more limiting than crude protein for weight 

gain during most of the seasons. During the dry period, animals were in negative energy and 

nutrient balance with a predicted body weight loss of approximately 110 g/d, whereas in the 

main rainy season the intakes supported 500-800 g daily weight gains. Predicted weight gains 

agreed well with the body condition recorded for the same period. The n-alkanes method 

coupled with isotope enrichment in n-alkanes and visual observations as used in the present 

study provided realistic nutritional data for free-ranging cattle which correlated well with 

changes in body conditions. 
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Introduction 

Natural pastures are the major feed resource for livestock in the arid and semi-arid regions of 

the tropics and generally show high temporal and spatial variation in herbage quality and 

availability (Corona et al., 1998; Schlecht et al., 1999; Hiernaux and Turner, 1996). The 

primary factor affecting pasture availability and quality in these regions is the rainfall pattern. 

During the long dry season, pasture availability and quality generally declines, whereas 

pasture abundance increases with a concurrent improvement in quality in the rainy season 

(Bastin et al., 2003; McIvor, 2007). As a result, herbivores grazing such grasslands experience 

marked seasonal fluctuation in nutrient intake and production performance (Ash and McIvor, 

1998).  

 Other factors that influence pasture availability and quality include longer-term 

grazing management practices by animal herders (Verlinden and Kruger, 2007). Over the past 

few decades, evidence has shown that high grazing pressure has resulted in replacement of 

highly palatable and productive perennial species with unpalatable annual species in several 

tropical pasture lands, with a concomitant loss of soil fertility (Asefa et al., 2003; Semmartin 

et al., 2010; Tefera et al., 2007b). Unsustainable grazing management practices, which 

focused only on increasing immediate farm production with little consideration for ecological 

stability, have been the major cause for the loss of palatable species and soil fertility (Scott et 

al., 2000). However, the issue of sustainable use of pasture resources has received increasing 

attention, with emphasis given to improved management of existing grassland resources rather 

than focusing on immediate farm returns (Dumont et al., 2007; Kemp et al., 2000). 

 Development of effective and sustainable grazing systems requires knowledge of the 

seasonal intake, composition and nutrient digestibility of forages by grazing animals (Ngugi et 

al., 2004; Prache et al., 1998). Such knowledge forms the basis for improving the nutrition of 

the animal through optimal allocation of forage resources, increasing the carrying capacity of 

grasslands through reseeding with desirable species, and identifying supplementation 

strategies for a target production. However, unlike barn feeding where feed intake, diet 

composition and nutrient digestibility of animals can be directly and accurately measured, 

direct measurement of these variables in free ranging animals is difficult or impractical, and 

often indirect methods have to be used (Mayes and Dove, 2000). Inaccuracies inherent in 
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these indirect methods have remained major limitations in the study of the nutrition of free 

grazing animals.  

Over the last two decades, the use of plant cuticular hydrocarbon (n-alkanes) markers 

to estimate feed intake, diet composition and digestibility has gained increasing acceptance 

(Dove and Mayes, 2006) due to its low invasiveness, accuracy and the possibility of taking 

into account diet-animal interactions (Dove and Mayes, 1991, 2005). Although the majority of 

the validation studies and application of the n-alkane method has been conducted under 

temperate conditions, the few validation studies conducted under tropical conditions showed 

the suitability of this method to estimate intake, diet composition and digestibility of grazing 

animals (Bezabih et al., 2011a; Bezabih et al., 2011b; Hendricksen et al., 2002; Laredo et al., 

1991). Recently, the accuracy of diet composition estimation by the n-alkane method was 

significantly improved (Bezabih et al., 2011a) by the inclusion of additional information of 

the carbon isotope enrichment in individual alkanes. 

The Mid Rift Valley region supports large grazing livestock populations in Ethiopia 

(CSA, 2006). Currently, improving the management of the available natural grasslands in the 

region has a high priority, owing to its potential for commercial livestock production and the 

increasing human population pressure in the area. However, information is lacking on the 

nutritional status of the grazing animal, based on which various grassland management 

strategies and decisions can be made. The few studies available report information on feed 

and blood samples opportunistically collected (Kabaija and Little, 1991; Khalili et al., 1993a, 

b). 

The present study was designed to estimate the seasonal pattern of diet composition, 

feed intake and digestibility of grazing cattle in selected sites in the Mid Rift Valley of 

Ethiopia. For the study, a combination of the n-alkane method, isotope enrichment in n-

alkanes and visual observations was used. 

 

Material and methods 

Study area 

The research was conducted in the Mid Rift Valley region of Ethiopia called Abernosa 

(Figure 1), which is located approximately 176 km south of Addis Ababa (at 7°34´N to 

7°35´N and 38°33´E to 38°34´E and with an elevation of 1650 meters above sea level). The 



Nutritional status of grazing cattle in the Mid Rift Valley 

 

91 

 

Abernosa ranch was established more than 50 years ago by the government with the aim of 

improving the genetic potential of Boran cattle and serving as a multiplication centre for 

crossbred heifers. With a total area of 23,000 hectares, the ranch has been privatized since 

2008, and during the research period (Nov 2009 to Sep 2010), the herd size at the ranch was 

around 1500 heads of cattle. The pasture production on the ranch and adjacent communal 

grasslands is mainly organic without application of artificial fertilization. While cattle were 

the only livestock species grazed within the ranch, goats and cattle were reared together by 

local farmers on the adjacent communal grasslands. 

The agro-ecology in the area is generally classified as semi-arid with an annual rainfall 

varying between 500 and 700 mm/annum, and mean maximum and minimum temperature of 

14° and 28°C, respectively. The rainfall pattern is bimodal with short rains from April to May, 

followed by the main wet season from July to October (Figure 2). 

 

Figure 1 Location map of the study area in the Mid Rift Valley of Ethiopia. 

 

The landscape exhibits typical savannah woodland with a scattered population of trees 

such as Acacia tortilis, A. seyal, A. senegal and Balanites aegyptiaca and some broadleaved 

shrubs. The undergrowth is dominated by grasses such as Themeda triandra, Chloris gayana, 
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Cenchrus ciliaris, Sporobolus pyramidalis and Sporobolus pellucisus. Farming communities 

in the study area practice settled mixed farming, mainly based on cattle rearing and maize 

cultivation. Due to an increasing population pressure, the woodlands are continuously 

converted into cropland, resulting in shrinkage of and high pressure on the communal 

grasslands. 

 

Figure 2 Monthly rainfall during the experimental year (Nov 2009 to Oct 2010), 20 year 

average (1990-2009) rainfall, and mean monthly reference evapotranspiration (ETo) 

at the research site. 

 

Experimental design, animals and measurements 

The experiment was designed to determine feed intake and diet quality of grazing cattle at two 

research sites. The first site was contained within the boundaries of the enclosed ranch (ER), 

Abernosa, which represented a moderately grazed pasture, and the second site was the 

adjacent communal grassland (CG), which represented a heavily grazed pasture due to high 

grazing pressure (Tessema et al., 2011). Four bulls and 4 heifers of the local Borana and Arsi 

breed with a mean live weight of 175±10 kg were randomly selected from the herd grazing on 

each site. Feed intake and diet quality was measured during five periods (early-dry: November 

to December; dry: January to March; short-rainy: April to May; main-rainy: June to August; 

and end-of-rainy season: September to October) from November 2009 to October 2010. Data 

collection was conducted in the middle of each period for 15 days, during which time the 
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animals were housed in individual pens at night and allowed to graze within the herd during 

the day. All animals had access to water during the day with feed and water not provided 

overnight, which is a common cattle husbandry practice in the region. 

At the start of each data collection period, a background faecal spot sample was 

collected from each animal once per day in the morning (while housed in individual pens) for 

two days. The spot samples were oven-dried (60°C for 48 h) and bulked per animal per 

period. The animals were provided a mixture of 2.0 g of alkane-labelled sawdust (containing 

152±4 mg C32 and 150±3 mg C36 alkanes) mixed with 40 g wheat bran and 40 ml molasses in 

plastic feeders twice daily for 10 consecutive days. The daily alkane dose was given in the 

morning before the animals were released onto the pasture (6:00 h) and in the afternoon 

(19:00 h) when the animals returned from grazing. During the last five days of alkane dosing, 

daily faecal spot samples were collected from each animal in the morning, oven dried (60°C 

for 48 h) and bulked to one sample per animal per period. Concurrent with the faecal spot 

sampling, the grazing behaviour of the animals was observed from a close distance (5-6 m) by 

four trained staff, and samples of herbage species grazed by the animals collected taking into 

account grazing height. During this herbage sampling period, each animal was continuously 

observed for 30 min per day (2.5 h over 5 sampling days), during which, the time spent on a 

herbage patch before moving to the next was recorded using a time counter. The herbage 

samples collected were manually sorted by species and pooled per plant species per period. 

Herbage species were identified as described by Bezabih et al. (2011b). The faecal and forage 

samples were dried in a forced-air oven at 60°C for 48 h, ground to pass through a 1-mm sieve 

and stored in plastic bags pending chemical analysis. 

In addition to the collection of herbage samples, the above-ground biomass cover was 

measured by total destruction of herbage from 50 quadrats (1×1 m
2
) at each site. The 

contribution of major botanical species to the above-ground biomass cover was estimated by 

sorting the collected samples according to species and measuring the contribution of each to 

the total fresh and DM weight. Tree density was measured by counting all trees and shrubs 

(taller than 1.5 m) in 50×50 m
2 

quadrats along diagonal transect lines. Body condition score of 

animals was determined using a five point scale (where 5 is over conditioned, and 1 is 

extremely emaciated) once during each period by four staff members (Ferguson et al., 1994). 
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Alkane dose preparation  

Equal amounts of synthetic crystals of C32 and C36-alkanes (Argenta, New Zealand) were 

dissolved together in n-hexane, and the resulting alkane solution was absorbed in sawdust. 

The sawdust was washed with boiling water and liquid detergent (Tide-Febreze®) for 40 min 

after which it was oven dried (103°C for 12 h) and ground to a particle size of 4 mm. Next, 

30.4 g of each alkane (60.8 g total) was weighed into a 5 L Erlenmeyer flask and dissolved in 

4 L n-hexane, with the solution heated to 55°C in a water bath. Ground sawdust (300.0 g) was 

uniformly spread on a tray and dried in an oven at 70°C for 30 min. While warm, the alkane 

solution was added by continuous mixing ensuring the solution was uniformly distributed in 

the sawdust. The tray was left in the sun for several hours until the hexane completely 

evaporated, and was heated at 80°C for 30 min to facilitate the absorption of the alkanes into 

the sawdust. Finally, after thorough mixing, portions of 2.00 g alkane labelled sawdust were 

made and stored at room temperature until use. The above procedure was repeated to produce 

sufficient amounts of alkane labelled sawdust for the entire experiment. From each batch, five 

samples were randomly taken and analysed for C32 and C36 concentrations. 

 

Diet botanical composition  

The diet composition of the animals was estimated using a combination of the herbage n-

alkanes and their carbon isotope enrichments appearing in faeces as markers and visual 

observations of plant species consumed. Faecal n-alkane concentrations were corrected for 

incomplete recovery (Bezabih et al., 2012) before the diet composition calculations were 

made according to the least square optimization procedure using the Solver routine in 

Microsoft excel: 

 Minimize∑ [(actual – calculated)
 2
] markeri … n 

where actual = measured concentration of marker i in the diet; calculated = calculated 

concentration of marker i using the following formula: 

 calculated = ∑[(Xj × Yij)] plantj…n 

where Xj is the estimated proportion of plant species j in the diet; Yij is the concentration of 

marker i in plant species j; and ∑Xj = 1. The solver routine was constrained to yield none zero 

values, as the input herbage species were those observed to be consumed by the animals. 
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Feed intake and digestibility estimations 

The concentration of individual n-alkanes in the diet was calculated by summation of the 

proportion of individual plant species in the diet multiplied by the respective concentration of 

the particular n-alkane. Feed intake was calculated according to Mayes et al. (1986), with 

corrections for differences in the recovery of dosed and herbage n-alkanes (Bezabih et al., 

2012).  

Faecal output was estimated from C36 concentration in the faeces as follows:  

Daily faecal output (DM kg) = Dj/(Fj – Bj), 

where Dj is the daily dose of C36, Fj is the faecal concentration of C36 (mg/kg DM) corrected 

for incomplete recovery, and Bj is the background faecal concentration of C36 (mg/kg DM). 

Apparent digestibility of DM was calculated as: 1 – indigestibility, where indigestibility is the 

ratio of estimated daily faecal DM output to estimated DMI. 

The chemical composition of the diets was calculated by summation of the proportion 

of individual plant species in the diet multiplied by the respective species chemical 

composition. Intakes of protein and minerals were then calculated from the estimated intake 

of DM and chemical composition of the diets. Metabolizable energy intake was derived from 

the estimated apparent DM digestibility and forage intake (Freer et al., 1997). 

 

Faecal recovery of A. tortilis seeds and estimation of the fruit intake  

During two of the five measurement periods (early-dry and dry), fallen A. tortilis fruit was 

consumed in considerable amounts. During these two periods, faecal subsamples were taken 

from the bulked morning spot samples to determine the concentration of intact acacia seeds 

appearing in faeces. The DM contents of the subsamples were first determined, and then the 

samples were immersed in water for about 2 h, after which the seeds were collected using a 3 

mm sieve and counted.  

The faecal recovery rate of A. tortilis seeds was determined in a separate indoor trial. 

Four bulls (135±4 kg live-weight) fitted with faecal collection bags were housed in individual 

pens and provided with hay and freshly cut grass twice daily. After three days of adaptation, 

each animal received 250 g of dried A. tortilis fruit per day for five consecutive days. Total 

faecal collection was performed starting from the day of acacia fruit consumption until no 

acacia seed was observed in the faeces. The daily faecal collections were washed with water 
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on a 3 mm sieve and the seeds were recovered. The faecal seed recovery was calculated as: 

total seed count in faeces/total seed consumed with the pod. Samples of acacia pod were 

opened to determine the number of seeds per pod, seeds per gram of dried fruit and seed to 

pod ratio (w:w). 

The acacia fruit consumption of the grazing animals was calculated from the faecal 

seed count as follows: 

Daily acacia fruit consumed (g DM/d) = [(Sfaeces/Rs)/Sfruit]×DMfaeces 

where Sfaeces is acacia seed count per gram of faeces DM, Rs is the faecal recovery rate of 

acacia seeds (determined indoors), Sfruit is mean acacia seed count per gram of dried acacia 

fruit, and DMfaeces is the daily total faecal DM output (g). 

 

Chemical analysis 

The herbage species samples were analysed for DM, ash, crude protein (CP), neutral detergent 

fibre (NDF), acid detergent fibre (ADF) and minerals, whereas the faecal samples were 

analysed for DM, ash and CP. Dry matter was determined by oven drying at 103°C (ISO 

6496; ISO, 1999) and ash after incineration at 550°C (ISO 5984; ISO, 2002). Crude protein 

(6.25 × N) was determined using the Kjeldahl method (ISO 5983; ISO, 2005) with NDF 

determined according to Van Soest et al. (1991) and ADF according to Van Soest (1973). The 

contents of Ca, K, Na, Mg, Mn, and Cu in forage samples were determined by atomic 

absorption spectrophotometer (Buck Scientific 240VGP) after digestion with tri-acid mixture 

of nitric, per-chloric and sulphuric acids (Chitra et al., 1996).  

For n-alkane analysis, ground samples were pulverised using a bullet mill (MM 2000; 

4 min at 80 Hz; Retsch Technology GmbH, Haan, Germany) prior to extraction and analysis 

of n-alkanes as described by Mayes et al. (1986) with modifications by Salt et al. (1992) using 

tetratriacontane (C34) as an internal standard. The extracted samples were analysed for n-

alkanes (C27 to C36) using a gas chromatograph (CarloErba HRGC Mega 2 series) fitted to a 

flame ionizing detector (FID), using helium as the carrier gas.  

The carbon isotope ratio of the alkanes was determined by fitting a GC 

(Finnigan_MAT, TraceGC Ultra) with a split/splitless injector operated in split mode (split 

ratio 1:10) to a combustion interface (Finnigan_MAT Combustion interface III), which was 
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connected to an elemental analyser isotope ratio mass spectrometer (FinniganMAT CN). The 

temperature settings of the GC/CIRMS were as described by Bezabih et al. (2011b). 

 

Figure 3 Grass biomass cover (bar-graph) of grassland at the enclosed ranch (ER) and 

communal grassland (CG) and the body condition score (BCS; in a five point scale) 

of the cattle grazing on the two sites measured during five seasons/periods in the 

Mid Rift Valley of Ethiopia. 

 

Data analysis 

Individual animals were considered as the experimental unit. The data on diet chemical 

composition, intake, DM digestibility, and OM digestibility were analyzed with the GLM of 

SAS (9.1) using the model: 

Yijm= µ + Si + Pj + eijm, 

Where Y is the dependent variable, µ is the overall mean; Si is the effect of site, Pj is the effect 

of period, and eijm is the error term. The interaction effect was omitted from the model after 

observing that it was not significant. There was also no difference between the sexes (bull or 

heifer) on the diet composition and nutrient intakes and therefore the data from both sexes 

were pooled. Diversity indices of diets selected and similarity indices between non-
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consecutive periods (Feinsinger et al., 1981; Hill, 1973) were calculated to evaluate seasonal 

effects on diet composition of the grazing animals. 

 

Results 

Above-ground biomass cover and diet botanical composition  

The estimated biomass yield ranged from 1.2 to 2.6 ton/ha in the CG and from 1.5 to 3.2 

ton/ha in the ER (Figure 3). As expected, the abundance of the biomass cover was strongly 

related with the rainfall, with the lowest biomass recorded in the dry period and the highest 

biomass obtained towards the end-of-the rainy period. The body condition of the animals 

followed the same trend as the abundance of above-ground biomass (Figure 3). In the dry 

periods, the body condition of the animals in the CG was higher than those in the ER, 

although the biomass was higher in the latter. 

Table 1 shows the diet composition of the grazing animals estimated using n-alkanes 

and their carbon isotope enrichments as markers in combination with visual observations. The 

diets of bulls and heifers did not differ significantly and the results were pooled. In total, 31 

diet components/herbage species were identified to have been consumed in considerable 

quantities (≥3%) over the collection periods. In the CG, species such as C. dactylon, D. 

aegyptium, S. spyramidalis, P. polystachion, maize stover and haricot bean straw were each 

consumed in quantities more than 10% of the total DM consumed during one or more of the 

measurement periods. In the ER, the diets contained large proportions of C. gayana, C. 

ciliaris, T. triandra, Pennisetum straminium, C. pychnotrix, and A. tortilis fruit. Among the 

grass species C. gayana dominated the diet of animals in the ER ranging from 8-22%, 

whereas A. tortilis fruit constituted up to 32% of the diet in the early dry period. Maize stover 

constituted 23-31% of the diet of the animals in the CG during the early dry and dry periods. 

Some of the species such as B. marlotii, Desmodium sericeum, Z. pentandra, and M. repens 

were short lived and appeared in the diet of the animals only in one or two seasons.  

As for the above-ground biomass, the species richness of the diets varied between the 

grazing locations and the measurement periods. The diets selected in the ER contained more 

species than those in the CG. Moreover, the species richness of the diets reached a maximum 

during the rainy season and a minimum during the dry season. The early-dry and dry period 

diets were less diverse (P<0.05) than the wet period diets in both grazing locations (Table 2). 
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Moreover, in the end-of-rainy period, diets were more diverse (P<0.05) than the short-rainy 

and main-rainy periods. The similarity indices of diets between non-consecutive measurement 

periods (values ranging from zero to one, with one being most similar and zero most 

dissimilar) were less than 0.50 (Table 2), except for the short-rainy vs. end-of- rainy period 

diets (0.56) in the ER. The lowest similarity index (0.18) was that of the diets of the dry 

period vs. the main rainy period in the CG. 

 

Diet chemical compositions 

The NDF content of the diets ranged from 585 g/kg DM (main-rainy season) to 657 g/kg DM 

(dry season) in the ER, whereas it ranged from 595 to 665 g/kg DM in the CG (Table 3). The 

CP content varied between 85-118 g/kg DM in the ER, and 71-112 g/kg DM in the CG. The 

major mineral profiles were in the following ranges (g/kg DM): Ca, 6.1-14.2; P, 1.5-3.0; K, 

30-58; Na, 0.38-0.58; and Mg, 8.5-11.4 (Table 3). The concentration of Cu was in the range of 

9-49 mg/kg DM, and that of Mn was 63-95 mg/kg DM. The effect of period (season) was 

significant (P<0.05) for all nutrients analysed, whereas the effect of site of grazing was 

significant (P<0.05) only for CP, Ca, K, Mn, and Cu. Generally the CP and mineral contents 

reached a maximum level in the rainy season and declined afterwards into the dry season. 

 

Estimated intakes of dry matter, metabolizable energy and nutrients  

The DMI of the cattle varied between 65 and 98 g/kg
0.75

, with the lowest and highest intakes 

observed in the dry and main rainy periods, respectively (Table 4). The ME intake varied 

between 20 and 37 MJ/d, while the intake of other nutrients varied in the following ranges 

(g/d): CP, 222-556; Ca, 19-65; P, 5-14; K, 97-273; Na, 1.3-2.1; Mg, 30-54; Mn (mg/d), 246-

406; and Cu (mg/d), 28-231. The effect of period on the intake of energy and nutrients was 

significant (P<0.05). In most measurement periods, the intakes were higher on the ER than the 

CG, with differences being significant (P<0.05) for CP, Mg, Mn, and Cu and trends observed 

for Ca. There was a trend (P=0.065) for the digestibility of the DM consumed (0.49-0.58) to 

be different between periods with estimates for the two sites being not different (Table 4).  

 

 



 

 
 

Table 1 Dry matter fraction of plant species consumed by cattle grazed on grassland of an enclosed ranch (ER) or communal grassland (CG) in the Mid Rift Valley of 

Ethiopia during five seasons/periods estimated using a combination of plant n-alkanes and their carbon isotope enrichments and visual observations. 

Diet components/species Early-dry  Dry   Short-rainy  Main-rainy  End-of-rainy 

 ER CG  ER CG  ER CG  ER CG  ER CG 

Cynodon dactylon 0.06 (0.01)† 0.12 (0.03)  0.08 (0.02) 0.15 (0.04)  0.09 (0.03) 0.19 (0.08)  0.07 (0.02) 0.15 (0.06)  0.05 (0.01) 0.14 (0.06) 

Chloris gayana 0.15 (0.05) 0.08 (0.02)  0.22 (0.06) 0.10 (0.03)  0.18 (0.07) 0  0.20 (0.08) 0.04 (0.01)  0.08 (0.02) 0.05 (0.01) 

Brachiaria lachnantha 0 0  0 0  0 0.03 (0.01)  0.05 (0.01) 0.09 (0.03)  0 0.06 (0.02) 

Chloris pychnotrix 0 0  0 0  0.04 (0.01) 0  0.08 (0.04) 0  0.11 (0.03) 0 

Melinis repens 0 0  0 0  0.05 (0.02) 0  0.06 (0.02) 0  0 0 

Desmodium sericeum 0 0  0 0  0 0  0.05 (0.01) 0  0.07 (0.02) 0 

Acacia tortilis (fruit) 0.32 (0.16) 0.05 (0.03)  0.11 (0.01) 0.03 (0.01)  0 0  0 0  0 0 

Cenchrus ciliaris 0.10 (0.03) 0  0.05 (0.01) 0  0.08 (0.03) 0  0.10 (0.04) 0  0.08 (0.03) 0 

Dactylactium aegyptium 0.05 (0.01) 0  0 0  0.09 (0.02) 0.04 (0.01  0.10 (0.03) 0.08 (0.03)  0.07 (0.03) 0.06 (0.02) 

Eragrostis aspera 0 0  0.03 (0.01) 0  0.07 (0.03) 0.04 (0.01)  0 0  0 0 

Aristida adscensionis 0 0  0 0  0.02 (0.01) 0  0.03 (0.02) 0  0.05 (0.01) 0.04 (0.01) 

Cymbopogon pospischilii 0 0.05 (0.02)  0.03 (0.01) 0  0 0  0 0  0.03 (0.01) 0 

Cynodon ethiopicus 0 0  0 0  0 0.09 (0.03)  0 0.04 (0.02)  0.03 (0.01) 0 

Eleusine mutiflora 0 0  0 0  0 0  0.03 (0.01 0  0 0.04 (0.01) 

Maize stover 0 0.22 (0.05)  0 0.31 (0.08)  0 0.07 (0.01)  0 0  0 0 

Panicum coloratum 0.06 (0.02) 0  0.05 (0.02) 0  0 0  0.07 (0.02) 0.05 (0.01)  0.06 (0.02) 0.09 (0.03) 

Pennisetum straminium 0.08 (0.03) 0  0 0  0.10 (0.02)  0  0.05 (0.03) 0  0.07 (0.02 0 

Phaseolus vulgaris (straw) 0 0.13 (0.04)  0 0.14 (0.02)  0 0  0 0  0 0 

Digitaria abyssinica 0 0  0 0  0.07 (0.02) 0.06 (0.01)  0.04 (0.01) 0.03 (0.01)  0.07 (0.02) 0 



 

 
 

Table 1 Continued.               

Diet composition Early-dry  Dry  Short-rainy  Main-rainy  End-of-rainy 

 ER CG  ER CG  ER CG  ER CG  ER CG 

Bracheria marlothii 0 0  0 0  0 0  0.04 (0.02) 0  0.07 (0.03) 0 

Cynodon plectostachyus 0.04 (0.01) 0.03 (0.01)  0.05 (0.02) 0.03 (0.01)  0 0  0 0  0 0.07 (0.02) 

Eragrostis cilianensis 0 0  0 0  0 0  0 0.08 (0.03)  0.03 (0.01) 0.07 (0.02) 

Themeda triandra 0.07 (0.04) 0.07 (0.03)  0.20 (0.07) 0.09 (0.02)  0 0  0 0  0.05 (0.01) 0.10 (0.03) 

Pennisetum polystachion 0 0  0 0  0 0.13 (0.05)  0 0.06 (0.02)  0 0.05 (0.01) 

Zaleya pentandra 0 0  0 0  0 0  0.03 (0.01) 0.04 (0.01)  0 0.03 (0.01) 

Harpachne schimperi 0 0  0 0.04 (0.01)  0 0.11 (0.04)  0 0.05 (0.02)  0 0 

Heteropogon contortus 0.03 (0.01) 0  0.10 (0.03) 0  0.07 (0.02) 0  0 0.06 (0.02)  0.03 (0.01) 0.04 (0.02) 

Hyparrhenia anamesa 0 0  0.03 (0.01) 0  0 0.12 (0.03)  0 0.08 (0.03)  0 0 

Sporobolus pellucisus 0 0.09 (0.04)  0 0.11 (0.03)  0 0.12 (0.02)  0 0  0 0.07 (0.02) 

Sporobulus pyramidalis 0 0.12 (0.03)  0.05 (0.02) 0  0.08 (0.03) 0  0 0.11 (0.03)  0 0.06 (0.01) 

Indigofera spicata 0.04 (0.01) 0.04 (0.01)  0 0  0.06 (0.01) 0  0 0.04 (0.01)  0.05 (0.02) 0.03 (0.01) 

†Values in parenthesis are standard deviations of the estimate. 
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Table 2 Diversity and similarity indices of the diet of cattle grazed on 

grassland of an enclosed ranch (ER) or communal grassland 

(CG) during five seasons/periods in the Mid Rift Valley of 

Ethiopia. 

Season/Period  Index 

ER CG 

Diversity of diets within period 

 Early-dry 

  

7.53
a 

7.95
a 

 Dry 7.45
a 

6.02
b 

 Short-rainy 10.69
b 

8.54
a 

 Main-rainy 11.23
b 

12.11
c 

 End-of-rainy 15.01
c 

13.37
d 

 SEM 0.36 0.33 

Similarity of diets between periods   

 Early-dry vs. Short-rainy 0.48 0.34 

 Early-dry vs. End-of-rainy 0.49 0.39 

 Dry vs. Main-rainy 0.38 0.18 

 Dry vs. End-of-rainy 0.37 0.34 

 Short-rainy vs. End-of-rainy 0.56 0.37 

a,b,c
Diversity indices within a column with different superscripts are 

significantly different (P<0.05). 



 

 
 

Table 3 Dietary compositions of cattle grazed on grassland of an enclosed ranch (ER) or communal grassland (CG) in the Mid 

Rift Valley of Ethiopia during five seasons/periods.  

Season/Period Site DM CP NDF ADF  Ca P K Na Mg  Mn Cu 

  g/kg g/kg DM  g/kg DM  mg/kg DM 

Early-dry ER 326 101 633 318  7.3 2.3 35 0.38 11.3  85 21 

 CG 333 83 620 341  6.4 2.1 37 0.41 10.6  91 24 

Dry ER 373 85 657 322  8.5 1.7 30 0.42 9.2  95 11 

 CG 362 71 665 338  6.1 1.5 31 0.41 10.1  94 9 

Short-rainy ER 232 107 596 316  7.8 2.2 45 0.50 9.1  63 23 

 CG 245 89 610 320  9.3 1.9 42 0.45 8.5  78 24 

Main-rainy ER 174 118 585 314  13.7 3.0 58 0.58 11.4  85 49 

 CG 195 112 595 317  14.2 2.7 53 0.49 10.4  83 45 

End-of-rainy ER 237 98 605 315  10.1 2.5 45 0.51 10.1  80 30 

 CG 235 96 615 325  10.5 2.2 44 0.47 10.3  87 32 

Pooled SEM  9.5 3.3 21.6 11.3  0.33 0.08 1.5 0.02 0.36  2.9 1.3 

Statistical significance              

Period  0.041 0.002 0.003 0.007  0.001 0.001 0.047 0.006 0.005  0.004 0.002 

Site  0.621 0.037 0.203 0.321  0.004 0.172 0.021 0.304 0.291  0.032 0.042 

DM=dry matter, CP= Crude protein, NDF=Neutral detergent fibre, ADF=Acid detergent fibre. 



 

 
 

Table 4 Estimated intake of dry matter (DM), metabolizable energy (ME), crude protein (CP), minerals and digestibility of DM and  

organic matter (OM) for cattle grazed on grassland of an enclosed ranch (ER) or communal grassland (CG) in the Mid Rift 

Valley region of Ethiopia over five seasons/periods. 

Estimated variable Season/Period  Significance 

 Early-dry Dry Short-rainy Main-rainy End-of-rainy Pooled 

SEM.  ER CG ER CG ER CG ER CG ER CG Site Period 

Intake of              

 DM (g/kg
0.75 

d
-1

) 76 75 68 65 81 78 98 94 90 97 3.0 0.851 0.001 

 ME (MJ/d) 26 24 21 20 28 27 37 32 32 32 1.3 0.870 0.031 

 CP (g/d) 369 300 278 222 417 334 556 507 424 448 7.9 0.042 0.001 

 Ca (g/d) 27 23 28 19 30 35 65 64 44 49 0.8 0.056 0.001 

 P (g/d) 8 8 6 5 9 7 14 12 11 10 0.2 0.231 0.051 

 K (g/d) 128 134 98 97 175 158 273 240 195 205 3.6 0.750 0.001 

 Na (g/d) 1.4 1.5 1.4 1.3 2.0 1.7 2.7 2.2 2.2 2.2 0.08 0.158 0.042 

 Mg (g/d) 41 38 30 32 35 32 54 47 44 48 0.9 0.033 0.055 

 Mn (mg/d) 311 328 311 294 246 293 401 375 346 406 6.9 0.020 0.001 

 Cu (mg/d) 77 87 36 28 90 90 231 204 130 149 3.1 0.048 0.001 

Apparent total tract digestibility          

 DM  0.53 0.51 0.50 0.49 0.54 0.54 0.58 0.53 0.55 0.52 0.025 0.75 0.065 

 OM  0.59 0.56 0.56 0.54 0.60 0.59 0.64 0.59 0.60 0.58 0.032 0.65 0.210 
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Table 5 Acacia tortilis seed count, seed to pod ratio and the faecal recovery of seeds 

in cattle (n=50). 

Observation Minimum Maximum Mean SEM 

Seed count per g dried fruit 6 9 7 0.16 

Seed to pod ratio (w:w, DM basis) 0.47 0.51 0.48 0.004 

Seed faecal recovery (%) 51.7 59.6 55.6 0.31 

Tree density per hectare     

    Enclosed ranch 66 80 72 0.71 

    Communal grassland 15 31 21 0.71 

 

Estimated intake of Acacia tortilis fruit by the grazing cattle 

The mean faecal seed recovery of A. tortilis seeds was 55.6±2.2%, seed count per gram dried 

fruit 7±1.1, and seed to pod ratio 0.48±0.03 (Table 5). The density of A. tortilis tree per 

hectare varied from 66 to 80 in the ER and from 15 to 31 in the CG. The trees commenced 

fruit production towards the end of the rainy season and continued into the middle of the dry 

period. The grazing cattle were observed to consume fallen A. tortilis fruits in the early-dry 

and dry periods. During the early-dry period, the estimated fruit consumption in the ER and 

CG was 324±68 and 53±14 g/kg DM intake, respectively. In the dry period, the estimated 

acacia fruit intake was 105±10 g/kg DM intake in the ER and 32±6 g/kg DMI in the CG. 

 

Discussion 

Biomass abundance and diet botanical diversity 

Studies on the ecology of pasturelands have shown that pasture species diversity is highly 

dependent on the level of grazing pressure (Asefa et al., 2003; Mwendera et al., 1997; Tefera 

et al., 2007). At high grazing pressure, pasture biomass cover and species diversity decline 

(Golodets et al., 2010). In the present study, the difference observed in biomass abundance 

and diet species diversity consumed by the animals on the two grazing sites during the five 

periods show the spatial and temporal variations in the level of stress on the pasturelands. For 

example, the lowest biomass cover and diet species diversity was observed for the CG during 

the dry period, whereas the highest species diversity and biomass cover was recorded for the 

ER during the main rainy period.  
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In addition to a decline in species diversity and biomass cover, several studies have 

shown that high grazing pressure results in a shift from a perennial grass to an annual and less 

palatable grass dominated pasture (Loeser et al., 2007; Oba et al., 2000). In line with this, the 

proportion of unpalatable grasses in the present experiment such as Sporobulus species was 

higher on the CG than the ER. Moreover, some of the highly palatable perennial species such 

as C. ciliaris and P. straminium were completely absent in the diet of animals grazing on the 

CG. On the other hand, other studies have shown that at a low level of grazing pressure (high 

biomass cover), the pasture composition of grasslands is gradually dominated by few 

competitive species that vigorously use the favourable environment and suppress the growth 

of others (McIvor, 1998). This phenomenon has led to the hypothesis that maximum species 

diversity is obtained at an intermediate level of pasture stress or grazing pressure (Loeser et 

al., 2007). In the present study, the increased species diversity in the ER indicates that the 

pastures responded positively to a decreasing grazing pressure. However, because only two 

grazing pressures were studied, it is not possible to infer if the grazing pressure in the ER can 

be considered as optimal. 

 

Estimated chemical composition of diets 

Grazing animals often exploit the heterogeneity of forage resources through selective grazing, 

choosing a diet which is of better quality than the average vegetation on offer (Prache et al., 

1998). As a result, measuring or estimating the chemical composition and other functional 

properties (digestibility and intake) of the diets of grazing animals on heterogeneous 

vegetation is always difficult (Boval et al., 2004). The major advantage of the method used in 

the current study was that the estimation was done with little interference to the normal 

grazing behaviour of the animals, thus simulating the natural condition.  

Except in the dry season, the fibre content of the diets was in the range that does not 

limit the dry matter intake of the animals (Van Soest et al., 1991). Nitrogen is considered as a 

limiting nutrient for animals grazing tropical grasses during the dry periods (Boval et al., 

2002; Coppock et al., 1986). The CP content of the diets in the present study was lowest in the 

dry period, but remained above the minimum CP concentration (70 g/kg DM) required for 

normal rumen microbial fermentation (Van Soest, 1994). In the dry periods, A. tortilis fruit 

appears to have had an important role in increasing the CP content of the diets, as it was 
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consumed in large quantities (especially in the ER) and this fruit is known to contain a high 

CP content (129 g/kg DM) (Bezabih et al. 2012). Earlier studies have also shown the role of 

this tree fruit as an alternative low cost protein source to optimize animal performance during 

dry periods (Coppock and Reed, 1992). Acacia trees in these grasslands also provide shade for 

the grazing animals and minimize evapo-transpiration, with palatable grass species growing 

underneath the tree canopy.  

The significant difference observed in fibre, CP and mineral content of diets between 

measurement periods and grazing sites indicate that the energy and nutrient supply of the 

grazing animals fluctuated. While the differences observed between the periods can be 

explained by the amount of rainfall available for plant growth, the difference observed 

between the two sites mainly originates from the grazing pressure/land use management of the 

grasslands. Stage of growth is the main factor affecting the nutritive value of individual 

pasture species (Aumont et al., 1995), and as the growth of pastures is dependent on the 

rainfall pattern, there is a distinct seasonality in the nutritive quality of the diet consumed by 

the grazing animals. The mineral content of diets was significantly higher in the rainy season 

compared with the dry seasons, mainly due to the higher leaf to stem ratio of pasture stands in 

the rainy season than the dry seasons. As the cell content of pastures decline with advancing 

maturity, so does the soluble mineral content of the pasture. 

 

Estimated intake of dry matter, nutrients, and animal response  

The nutrient intakes beyond maintenance requirements are important nutritional variables to 

predict production performance of animals. In the present study, the fluctuation in the 

estimated DMI corresponded to the seasonal changes in biomass abundance and quality in the 

grazing lands. However, despite the variation in biomass abundance and pasture quality 

between the ER and the CG, the estimated DM intakes between the two grazing sites were not 

different. It appears that the low biomass cover in the CG was compensated by extended 

grazing duration and timing of grazing that the farmers practiced in the CG. Several reports 

have shown that extended duration of grazing and timing of grazing significantly increases the 

DM intake and animal performance, especially during the dry season when herbage 

abundance declines (Ayantunde et al., 2000, 2001). In the CG, cattle had access to pasture on 

average for 13 h (6:00-19:00) per day, whereas in the ER the average grazing time was 8 h 
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(9:00-17:00) per day. As foraging activity in grazing animals is known to peak during the 

hours just after sunrise and during the hours before sunset (Hodgson, 1990), it appears that the 

animals in the ER have missed the opportunity to graze during these periods and were forced 

to graze during periods of the day when they would normally seek shade for thermoregulation. 

This difference in the grazing management mainly originates from the fact that in the ER 

animals are herded by formal employees who go to work during standard working hours 

whereas the CG cattle are herded by family members who spend most of their time with their 

animals.  

Moreover, while animals at both sites grazed in groups, the size of the groups differed 

considerably, being about 250 animals per group in the ER and about 40 animals per group in 

the CG. Social facilitation is known to affect grazing behaviour and herbage intakes, with 

animals consuming more when they are in a group than when isolated (Forbes, 1995). 

However, the large group size in the ER seemed to have induced more grazing competition 

and mobility than that in the CG. This might have negatively affected the DM intake of the 

animals in the ER especially in the dry periods. Previous reports have also documented the 

negative effects of social facilitation particularly in low forage resource conditions 

(Vallentine, 1990). In this respect, introducing improved management practices such grazing 

paddocks, rotational grazing, grouping of animals into a manageable size according to 

age/physiological state and timing of grazing are important intervention measures to optimize 

productivity in the ER. Although the farmers optimized the DM intake of their animals in the 

CG, the high grazing pressure appears to be unsustainable in the long-term as evidenced by 

the dominance of less palatable annual grasses and disappearance of desirable perennial 

species from the CG (Table 1). Collective measures are therefore required to reduce the 

grazing pressure on CG by means of improving availability of alternative feed resources, 

allowing regeneration of grasslands through enclosures and improving the utilization of crop 

residues. 

The estimated ME and nutrient intakes were highest during the main rainy season, 

following the increased biomass abundance and improved forage quality. This increase in the 

ME and nutrient intake coincided with an improvement in the body condition score, indicating 

that the animals were consuming energy and nutrients above their maintenance requirements. 

The ME required for maintenance functions represents approximately 70% of the total ME 



Nutritional status of grazing cattle in the Mid Rift Valley 

 

109 
 

required by mature cows and more than 90% of the energy required by breeding bulls (NRC, 

1996). The maintenance energy requirement is higher in free-ranging animals than in penned 

animals due to the additional energy required for walking. The extra cost of grazing depends 

on the herbage quality and type of terrain, being about 10–20% of the basic maintenance 

requirement for cattle grazing on plain grounds, and about 50% for cattle on extensive and 

hilly pasture where animals walk considerable distances (NRC, 1996). Considering similar 

basal ME requirement for maintenance (450 kJ/kg
0.75

/d) and an extra allowance (15%) for 

grazing (NRC, 1996), the energy intake of the animals in the present study appeared to 

marginally cover maintenance requirements during the early-dry period. The energy balance 

was negative in the dry period, followed by a return to a positive energy balance in the 

subsequent wet periods. In the main-rainy season, the estimated ME intake exceeded the 

maintenance requirements by up to 43%.  

Assuming that the excess ME is used for weight gain and that the ME requirement for 

weight gain is about 27 MJ/kg (NRC, 1996), the performance of the animals in terms of 

weight gain was predicted to reach 160 g/d during the short-rainy, 500 g/d in the main-rainy 

season, and 300 g/d towards the end of the rainy period. The energy content per unit of live 

weight gain or loss in cattle is considered similar (NRC, 1996), and based on this assumption 

the body weight loss in the dry period was on average predicted to be around 110 g/d.  

A shift from a period of energy restriction to a period of energy supply well beyond 

maintenance requirements may result in compensatory growth (Tolla et al., 2003; Warren et 

al., 1998). The extent to which animals compensate the period of energy restriction depends 

on the severity and duration of the restriction and the nutritional regime during the re-aliment 

period (Hornick et al., 2000; Sainz et al., 1995). The predicted energy restriction in this study 

appeared to be less severe and the body condition of the animals at both grazing sites rarely 

fell below 2.0 in the dry period, with a return to the initial body condition observed in the 

rainy season. However, it should be noted that during the study year, the research area 

received above average rainfall (Figure 2), which might have reduced the degree of energy 

restriction in the dry period. 

The calculated CP requirement for maintenance for the animals in the present study 

ranged from 228-285 g/d (NRC, 1996). In the dry period, the estimated mean CP intake 

(Table 4) appeared to marginally fulfil maintenance requirements in the ER, while it was 
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below maintenance in the CG. In the remaining measurement periods, the CP intakes were 

above maintenance requirements. In the main-rainy season, the CP intake reached about twice 

the maintenance requirements. Assuming a CP requirement for growth of 340 g/kg weight 

gain (NRC, 1996), the excess CP supply appeared to support a weight gain of up to 350 g/d in 

the short-rainy period, 800 g/d in the main-rainy season, and 520 g/d at the end-of-rainy 

period. The above performance predictions seem to indicate that energy intake is more 

limiting than protein intake for the productive performance of cattle grazing in the study area. 

While energy and protein intakes are interrelated, the amount of ME intake is directly 

influenced by the level of DM intake and its digestibility (Estermann et al., 2001; Freer et al., 

1997).  

Macro- and micro-minerals play essential roles in the metabolism of animals and, 

while marginal deficiencies in the diet may impair animal performance, severe restrictions 

will result in clinical signs of disorders. When the estimated daily intake of macro- and micro 

minerals in the five measurement periods were compared with requirements for maintenance 

and growth (NRC, 1996), Ca, Mg, K, and Mn appeared to be consumed in sufficient amounts. 

The intake of P was above maintenance in all measurement periods. However, in the dry 

period, the amount of P consumed was marginal in excess of maintenance requirements and 

might not support a daily weight gain of more than 76 g, provided that energy and all other 

nutrients are not limiting. The grazing cattle were in a negative energy balance during the dry 

period and thus the marginal P supply may not be of concern. However, if the animals are 

supplemented with energy and protein rich concentrates to maintain uninterrupted 

growth/weight gain during this period, the P nutrition should be given due attention. In the 

short-rainy period, the P intake could support up to 425 g/d weight gain, while the same 

prediction for the main-rainy season and end-of-rainy periods were, respectively, 800 and 600 

g/d. The intake of Na was below maintenance in all measurement periods, and the balance 

shows that there is a need to supplement the grazing cattle with about 80 g of Na daily in the 

form of common salt. The intake of Cu appeared to be marginally below maintenance during 

the dry period, but in the remaining periods the intakes were according to the 

recommendation. It should, however, be noted that the requirements for Cu can vary widely 

depending on the concentration of dietary Mo, S and Fe (NRC, 1996). Because these Cu 

antagonists were not determined in the present study, the result should be considered 
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cautiously, particularly in light of previous reports that the soil formation in the Rift Valley of 

Ethiopia contained high Mo-S complex resulting in Mo-induced Cu deficiency in small 

ruminants (Faye et al., 1991; Kabaija and Little, 1991).  

Although allowances should be made for underestimation of energy and nutrient 

intakes due to the inherent errors of the method used in this study (particularly in relation to 

the use of hand-plucked samples to mimic herbage selected by the grazing animal), the 

estimated energy and nutrient intakes were confirmed by the pattern of body condition score 

of the animals over the measurement periods. With the present method, the visual observation 

of the grazing behaviour helped to restrict the herbage species used as input for the estimation 

of diet composition, while the combined use of the n-alkanes and their δ
13

C values increased 

the number of markers available for the estimation, both of which having an important role in 

improving the accuracy of diet composition estimation (Bezabih et al., 2011a) and hence 

energy and nutrient intake predictions. 

In the present study, the use of A. tortilis seed count in faeces to estimate the intake of 

the fruit seemed to be a suitable approach. Previous reports have shown that the recovery of 

acacia seeds varies according to the animal species, with cattle showing higher faecal 

recovery of acacia seeds than sheep and goats (Razanamandranto et al., 2004; Shayo and 

Udén, 1998). The observed recovery rate of A. tortilis seed (Table 5) agrees well with that of 

Shayo and Udén (1998), who reported a mean seed recovery rate of 58% for heifers, 10% for 

mature sheep and 24% for mature goats. The estimated intake of A. tortilis fruit calculated 

from the faecal seed count was considerably higher in the ER than in the CG animals owing to 

the large difference in the tree density and hence availability of the fruit (Table 5). The 

grazing animals showed a high preference for the acacia fruit, as evidenced by the frequent 

movement of the animals to grazing underneath the trees. Incidences of bloat have been 

reported by farmers particularly when animals had access to large amounts of acacia fruit 

before they consume roughage diets in the morning (personal communication). Overall, the A. 

tortilis trees play an important role in maintaining the ecology of the area. Despite its 

ecological importance, however, the tree has been excessively cut for illegal charcoal making, 

decreasing the tree density at alarming rates in recent years. For a sustainable farming system 

in the Mid Rift Valley of Ethiopia, it is essential to protect the existing acacia trees and 

emerging new seedlings. 
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Conclusion 

The diet composition of cattle grazing on the CG were less diverse (dominated by unpalatable 

annual grasses) compared with that of the ER. Although the DM intake of the animals grazing 

on the two sites was not different, the grazing pressure on the CG appeared to be 

unsustainable in the long-term. There was marked seasonal variation in the estimated diet 

composition and nutrient intakes. The estimated intakes showed that in the dry period the 

animals were in negative energy and nutrient balance, while in the main rainy season the 

intakes were sufficient for optimum daily weight gains. The method used in the present study 

appeared to provide accurate data on the nutrient intake of the grazing cattle when compared 

to the changes in the body condition score of the animals. The seasonal diet composition and 

nutrient balance data generated from this study can be used as valuable inputs to design a 

sustainable cattle production system in the regions. 
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Introduction 

The aim of the research described in this thesis was to: 1. determine the potential of plant 

cuticular n-alkanes and their carbon isotope enrichments (δ
13

C) as markers to study the 

nutritional ecology of grazing animals under tropical conditions and, 2. use this method to 

estimate the seasonal pattern of nutrient intake and diet composition of grazing cattle in the 

Mid Rift Valley grasslands of Ethiopia.  

For the first aim, the variability in the n-alkane profile and δ
13

C of the n-alkanes 

among commonly available pasture species in the Mid Rift Valley of Ethiopia was researched. 

The multivariate analysis in Chapter 2 indicated that the pasture species show large 

variability, and that the interspecies variability explained by the n-alkanes differs from that 

explained by the δ
13

C values of the alkanes. In a further validation study, the botanical 

composition of composite pasture mixes were accurately predicted using n-alkanes and their 

δ
13

C values as markers (Chapter 3). In freely ranging animals, diet composition is estimated 

by relating the marker profile found in faeces with that of potential dietary components. 

Correction for incomplete recovery of faecal n-alkane concentrations is necessary before diet 

composition is estimated using this approach. In Chapter 4, the faecal recovery rate of natural 

and dosed n-alkanes in cattle fed tropical roughage diets were measured. In estimating forage 

intake using the alkane method, the alkane pairs used (natural and dosed alkanes) should have 

similar faecal recovery or the difference in faecal recovery should be established to apply a 

suitable faecal correction factor. The faecal recovery of dosed alkanes administered in the 

form of molasses-based bolus in the present study showed a higher faecal recovery than 

adjacent odd-chain alkanes, and use of a correction factor appears necessary to improve the 

accuracy of intake predictions (Chapter 4). For a sustainable management of natural 

grasslands it is important to acquire information on the nutritive value of available pasture 

species as well as the possible environmental impacts of their utilizations. With this objective 

in mind, the nutritive value and greenhouse gas production potential of various pasture species 

collected from the Mid Rift Valley region during the main pasture growth season were 

explored by carrying out chemical analysis, in vitro gas and methane production 

measurements (Chapter 5). The results showed large variability in nutritive value among the 

pasture species, with scope for selection of species with high nutritive value and low methane 

production to improve grassland productivity and mitigate methane emission from ruminants.  
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For the second aim, the nutritional status of grazing cattle in the Mid Rift Valley 

region in terms of diet composition and nutrient intake was estimated during five 

measurement periods/seasons over one year using the n-alkanes and their δ
13

C values as 

markers (Chapter 6). Comparisons between estimated nutrient intakes and requirements 

revealed nutritional limitation in different grazing seasons. Management options to optimize 

both animal and pastureland productivity have been discussed based on the results generated. 

 

Variation in alkane profile and carbon isotope enrichment of alkanes between species  

The important attributes of markers in nutritional studies include high faecal recovery and 

accurate quantitative measurement both in faeces and in the plant (Kotb and Luckey, 1972). 

Apart from this, sufficient variability between dietary components/species in the marker 

profile is an essential requirement for the use of one or more plant chemical compounds as 

diet composition markers (Dove and Mayes, 1996). Numerous research reports conducted 

mainly on temperate pasture species confirmed the presence of distinct variability in the n-

alkane profiles between species and, to some extent, between plant parts, providing fingerprint 

information to estimate diet composition of grazing herbivores (Mayes and Dove, 2000). 

With this background, a research interest arose to establish whether the cuticular n-

alkane profile of pasture species commonly available in the rangelands of Ethiopia will show 

a sufficiently wide variability in their n-alkane profile to be used as nutritional markers. 

Individual pasture species were collected from the Mid Rift Valley grasslands of Ethiopia 

during the main pasture growth period, and the n-alkane concentrations were determined 

(Chapter 2). The n-alkanes with carbon chain lengths ranging from C27 to C35 were found in 

adequate concentrations, with C31 and C33 being the dominant alkanes measured. In addition, 

the δ
13 

C values of individual n-alkanes were determined for each species. The multivariate 

analysis employed to examine the interspecies variability revealed that most of the pasture 

species vary widely in their n-alkane profiles and, in addition, carbon isotope enrichments, 

and that this variability can be exploited to predict the diet composition of grazing animals 

(Chapter 2).The results show that the interspecies variability explained by the δ
13

C values of 

the alkanes provides additional information, and that use of a combination of the two data sets 

considerably increases the discriminatory potential of the alkanes (Chapter 2 and 3).  
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The δ
13

C values of forages have long been used to estimate the proportion of C3 and 

C4 plants in the diet of herbivores (Coates et al., 1987). García et al. (2000) reported an 

increase in the accuracy of diet composition estimation of cows when a combination of the n-

alkanes and δ
13

C values of the organic matter consumed was used. To the author’s knowledge, 

the work presented here is first to use compound specific (alkane) carbon isotopic enrichments 

to discriminate plants at a species level. The use of n-alkanes, rather than the whole organic 

matter for carbon isotope analysis, is more advantageous, because the former is relat ively 

stable both in feed and faeces, whereas much of the latter is digested and absorbed in the gut, 

with highly digestible dietary components represented less in the faeces organic matter 

compared to poorly digestible components. Moreover, research reports have shown that 

rumen microbes are unable to synthesize or degrade n-alkanes (Mayes et al., 1988; Keli et al., 

2008a). Although trace levels of alkanes have been detected in ruminant tissues (Di Muccio et 

al., 1984), the possible secretion of alkanes into the gut is also negligible in comparison to the 

high concentration of alkanes present in the digesta (Dove and Mayes, 1991). Evidence 

therefore provides a strong argument that the carbon isotope enrichment of alkanes would 

remain undiluted in the faeces. Unlike n-alkanes, for which correction is required for 

incomplete faecal recovery during diet composition estimation, δ
13

C values of n-alkanes do 

not require corrections as they are relative values (ratio of 
13

C and 
12

C isotopes in relation to 

the natural abundance), allowing their use in diet composition estimation without the need to 

conduct a specific in vivo balance study. This approach, however, assumes that there are no 

differential recoveries of individual n-alkanes due to differences in their molecular weight or 

source of plant.  

 

n-Alkane profile and carbon isotope enrichment of alkanes over the plant growth period  

The cuticular wax, in addition to its role as a protective cover, plays an essential function in 

limiting non-stomatal water loss from plants, and as a result it is one of the key adaptations in 

the evolution of terrestrial plants (Samuels et al., 2008). When stressed with moisture scarcity, 

plants tend to respond by accumulating more wax on the outer surface of their leaves, with the 

level of response varying according to the genotype of the plant (García et al., 2002). Because 

n-alkanes are an important component of the cuticular wax, such environmental factors may 

also influence the alkane profile of the plants. This signifies the importance of documenting 



General discussion 

 

117 
 

location specific information on the alkane profile of available herbage species for use as 

nutritional markers (Ali et al., 2005a).  

An effect of age or stage of plant maturity on the alkane profile of herbage species has 

been documented (Dove et al., 1996). The effect of stage of growth/age can be looked from 

two angles. On one hand, young herbage seedlings have less wax sealing on their leaves and 

stems, but as the leaves develop the epidermal cells increasingly synthesize wax and seal the 

cuticular surface (Van Maarseveen et al., 2009). On the other hand, the different 

morphological fractions (stem, leaf sheath, and leaf blade) of a plant differ in their n-alkane 

profile, with stems generally containing low and leaf blades high concentrations of alkanes 

(Dove et al., 1996). As the plant mature, the proportion of these morphological fractions 

changes, which in turn affects the n-alkane profile of the plant species.  

In this thesis the herbage species sampled during five measurement periods (Chapter 

6) were not separated into stem and leaves and the change in the alkane profile within the 

morphological fractions over the different seasons could not be examined. Figure 1 shows the 

concentration of the major odd chain alkanes for selected perennial grass species (hand-

plucked by simulating the grazing height of cattle) over the five measurement periods. The 

concentration of the alkanes in each species changed over time, with the pattern tending to be 

different from species to species and from alkane to alkane. The δ
13

C values of individual 

alkanes of the grass species were also not constant during the five measurement seasons, with 

a tendency for the enrichment to be higher (0.5 to 1.5 delta units) during the rainy season than 

the dry period in some of the species. Over the measurement periods, however, there was 

consistently large variability between the species, which appears important from the point of 

view of using these markers to discriminate the diet of grazing animals. This result indicates 

that concurrent sampling of faeces and herbage consumed by the grazing animal is essential, 

and that the presence of a time gap between faeces and herbage sampling could introduce a 

considerable error in the estimation of diet composition and intake of the grazing animal. This 

feature appears as a weakness of the n-alkane method because herbage samples analysed at 

one time may not be suitable for estimating the diet composition of the grazing animal at the 

other time. 
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Figure 1 The concentration of C31 (panel A), C33 (panel B) and C35 (panel C) in grass species 

  (   C. gayana;    C. dactylon;    C. ciliaris;    S. pyramidialis) sampled by mimicking 

grazing height of cattle during five measurement periods over one year. 

0

100

200

300

400

500

600

700

C
o
n

c.
 o

f 
C

3
1

(m
g

/k
g

 D
M

)

0

100

200

300

400

500

600

C
o
n

c.
 o

f 
C

3
3

(m
g
/k

g
 D

M
) 

0

50

100

150

200

250

300

350

C
o
n

c.
 o

f 
C

3
5

(m
g

/k
g

 D
M

)

Period

C)

B) 

A) 



General discussion 

 

119 
 

 

Figure 2 Mean faecal recovery rate of dosed synthetic even-chain (C32 and C36) and adjacent 

odd-chain alkanes in zebu cattle fed low quality tropical roughage diets. 

 

Importance of faecal recovery of alkanes 

The recovery of n-alkanes in faeces is incomplete (Mayes and Lamb, 1984), with the recovery 

rate showing an upward trend with increasing carbon-chain length (Ferreira et al., 2009). A 

reliable faecal recovery data is required for two important purposes. The first is to correct 

faecal n-alkane concentrations for the incomplete recovery before estimating diet composition 

using either least squares optimization procedures or linear programming (Dove and Moore, 

1995; Barcia et al., 2007). The second is to select alkane pairs (dosed even-chain and natural 

odd-chain) with similar faecal recovery rates for forage intake estimation using the double n-

alkane method (Mayes et al., 1986). In the latter case, it is necessary to ensure that the 

assumption of similar faecal recovery of alkane pairs holds true, or that the difference in the 

faecal recovery is quantified to apply an appropriate correction during forage intake 

estimations.  

Differences exist among animal species in the faecal recovery of alkanes (Mayes et al., 

1986). Studies have shown that the effect of diet on the faecal recovery of alkanes is variable 

(Brosh et al., 2003; Elwert et al., 2008), with data for tropical forages being scarce. A balance 

study was thus conducted to determine the faecal recovery of natural and dosed alkanes in 

zebu cattle consuming tropical roughage diets (Chapter 4). The results show that the faecal 
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recovery of n-alkanes was lower than that reported for temperate forages (Ferreira et al., 

2009). The low faecal recovery may be a characteristic of tropical forages, as the few 

previously published reports generally agree with the results presented in this thesis (Table 1). 

The synthetic alkanes (C32 and C36) dosed in the form of molasses-based boluses (Chapter 4) 

showed a higher faecal recovery than adjacent odd-chain alkanes (Figure 2).The tendency for 

the dosed alkanes to have higher faecal recovery rates than that expected from the carbon-

chain length has been known from earlier studies when the alkane method was evaluated for 

intake measurement (Dove and Mayes, 1991). In the present work (Figure 1), the faecal 

recovery of dosed synthetic alkanes and natural odd-chain alkanes were considerably different 

making the assumption of similar recovery not hold true. 

 

Nutrient intake estimation in grazing cattle  

Nutrient intake is an important factor determining the production performance of domestic 

animals. Quantifying nutrient intake in grazing animals is complex, as it is dependent on the 

amount and the nutrient content of the plant species (plant parts) consumed, and direct 

measurement of these variables is difficult (Mayes and Dove, 2000). In complex vegetation, 

free ranging animals exert a selection pressure by consuming the available plant species. As 

the different species or plant parts may vary considerably in their nutrient concentrations, 

estimation of daily nutrient intake of animals requires measuring both the daily forage intake 

and the diet composition of the forage consumed. 

Although several indirect approaches are available to measure nutrient intakes of 

grazing animals, most of them suffer from low accuracy, invasiveness or an inability to 

measure intakes on individual animals (Dove and Mayes, 1991). The use of the n-alkane 

method has emerged as an approach to estimate nutrient intake with increased accuracy and 

little interference to the normal grazing behaviour. With the double n-alkane method, herbage 

intake is estimated using the ratio in faeces of dosed even-chain and adjacent natural odd-

chain alkanes (Mayes et al. 1986), on the assumption that the subsequent odd- and even-chain 

alkanes have similar faecal recovery. In most of the pasture species studied (Chapter 2), the 

odd-chain n-alkanes, mainly C31, C33, and C35, were found in sufficient concentrations to be 

used for intake estimations. Following this, the accuracy of intake estimation with the alkane 

method was evaluated by conducting a feeding experiment with growing local Borana bulls in 
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Ethiopia (Chapter 4). The animals were dosed daily with C32 and C36 synthetic alkanes in the 

form of molasses-based boluses, and thereafter the pattern of faecal concentrations of dosed 

alkanes with time was studied. The analysis showed that a steady-state of dosed alkane 

concentration in faeces was achieved at 3.3 days into the marker dosing. Thus with molasses-

based alkane boluses, faecal collection to estimate nutrient intake and digestibility can be 

made from the fourth day onwards. Comparison between actual and predicted intakes showed 

that with the C35/C36 alkane ratio, intake was accurately estimated (with less than 1.5% 

difference between actual and predicted intakes), whereas with the C31/C32 and C33/C32 alkane 

ratios, the assumption of similar faecal recovery of adjacent n-alkanes underestimated the 

intake by about 12% (Chapter 4). The result further revealed that correction for the difference 

in the faecal recovery of the dosed C32 and natural C31 and C33 alkanes considerably improved 

the intake estimation.  

 

Table 1 Faecal recovery rate of n-alkanes summarized from different published references. 

Source  Faecal recovery of alkanes (%) 

C27 C28 C29 C30 C31 C32 C33 C35 C36 

Tropical forages          

This thesis 61 67 72 74 72 86 70 72 81 

Hendrichsen et al. (2002) - - - 56 76 87 80 74 86 

Molina et al. (2004) - - - - 79 99 87 - - 

Morais et al. (2011) 42 94 56 82 71 96 75 77 86 

Mediterranean/temperate forages        

Dillon (1993) 68 - 77 - 81 86 85 90 87 

Ferreira et al. (2009) 71 55 86 86 88 103 103 - - 

Herd et al. (2003) 55 - 53 - 78 87 68 - 63 

Dove and Mayes (1991)* 50-58 58-67 63-70 57-68 60-86 70-90 71-90 78-100 78-94 

*A review.         

 

As presented in Chapter 4, three faecal sampling methods, i.e., total faecal collection, 

morning faecal spot, and afternoon faecal spot sampling were compared to evaluate whether 

faecal spot samples can yield the same result as total faecal collection. This similarity has 

practical significance, as total faecal collection of grazing animals is difficult to achieve under 

field conditions. The alkane profile of the three fractions (Figure 3), and the subsequent feed 

intake estimations using these samples were not statistically different (Chapter 4), showing 

that the use of faecal spot samples can yield the same result as that of total faecal collection.  
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Figure 3 Faecal n-alkane concentrations (mg/kg DM faeces) determined from total collection, 

morning spot and afternoon spot samples for cattle fed low-quality tropical feeds. 

 

 

Table 2 Range of chemical composition and predicted nutritive value of feed resources 

analyzed during the main pasture growth period. 

Parameter NDF ADF CP OMD 

% 

ME 

MJ/kg DM 

In vitro CH4:total 

gas ratio (v/v) g/kg DM 

Minimum 184 85 39 42 5.8 0.12 

Maximum 684 385 439 73 10.2 0.37 

Mean 556 305 110 63 8.7 0.24 

SD 126 70 78 7 0.96 0.04 

NDF=neutral detergent fibre, ADF=acid detergent fibre, CP=crude protein, OMD=organic 

matter digestibility, ME=metabolizable energy. 

 

Variation in the nutritive value of forages in the Mid Rift Valley of Ethiopia  

The nutritive value of forages varies according to species, stage of maturity, soil fertilization 

and other climatic factors (Aumont et al., 1995; Mislevy et al., 2003; Machado et al., 2007). 

Knowledge of the nutritive value of available forage species is important to predict the 
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nutritional status of animals and to screen desirable forage species for pasture improvement 

(Coleman and Moore, 2003; Meale et al., 2012). The experiment described in Chapter 5 

provides information on the nutritive value of available forages in the Mid Rift Valley of 

Ethiopia in terms of their chemical composition, mineral profile, feeding value as assessed by 

in vitro gas production and environmental impact in terms of methane production during the 

main pasture growth period. A large variability between pasture species was observed, 

providing scope for selection of species with a high nutritive value and low methane emission 

potential (Table 2). With predicted organic matter digestibility ranging from 42 to 73% and 

metabolizable energy content from 5.8 to 10.2 MJ/kg DM, the pasture stand during the main 

rainy season has been evaluated as moderate in quality. The pasture species reached their full 

vegetative stage in the middle of the rainy season, which corresponded with the pasture 

sampling for the experiment presented in Chapter 5. It can thus be hypothesized that any 

nutritional limitations during the main pasture growth period in the Mid Rift Valley of 

Ethiopia primarily originates from biomass availability rather than feed quality (Chapter 5).  

 

Nutritional status of grazing cattle in the Mid Rift Valley of Ethiopia 

Grazing cattle are the dominant farm animals reared in the Rift Valley regions of Ethiopia, 

and they serve as an important source of livelihood for the farming community (CSA, 2008). 

Improved nutritional management of the grazing cattle is, therefore, one of the mechanisms by 

which the livelihood of the farming community can be improved in a sustainable manner. 

Towards this goal, the seasonal patterns of the nutrient intake and diet composition of the 

grazing cattle were measured using n-alkanes and their δ
13

C values as markers in combination 

with visual observations (Chapter 6). The approach used in this study minimized interference 

to the normal grazing behaviour, although there remains an observer bias in mimicking the 

grazing height and sampling of forage species for n-alkane and nutrient composition analysis. 

In view of the grazing animal’s ability to select highly palatable part of the forage on offer 

(Dumont et al., 2007a,b), the hand-plucked samples may lead to an underestimation of energy 

and nutrient intakes of the animals. Moreover, the n-alkane profile of such samples may not 

exactly represent that of the diet selected because of the presence of variation between plant 

parts of the same species (Dove et al., 1996), which may in turn introduce an error in the 

estimation of intake and diet composition. 
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Figure 4 Predicted body weight change (BWC) of cattle based on intake of metabolizable 

energy (MEI; panel A), or crude protein (CPI; panel B) in reference to maintenance 

requirement for energy (MEm) or crude protein (CPm). 

 

The quality of diet selected and the level of energy and nutrient intake determined with 

this method depended greatly on the rainfall pattern, reaching a maximum during the main 

rainy season and minimum during the dry period (Chapter 5 and 6). As presented in Figure 4, 
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positive energy and nutrient balances in the wet periods and negative balances in the dry 

period are evident, implying that acquiring periodic nutrient balance data is important for 

routine grassland management decisions.  

A synchronized supply of energy and nutrients is necessary for efficient utilization of 

the available nutrients that animals consume. In this respect, an important observation in this 

thesis is that the pasture quality and availability reached a maximum level at the same time, 

allowing the increased intake of energy to coincide with increased intake of other nutrients 

(Chapter 5 and 6). It can be hypothesized that this phenomenon helps the grazing animal to 

use the energy and nutrient intakes consumed in excess of maintenance optimally. However, 

the extent to which the excess intakes support animal production varies according to nutrients. 

For example, energy is more limiting than crude protein for body weight gain during most of 

the grazing seasons (Chapter 6, Figure 3). In the rainy season, this limitation in energy intake 

most likely originates from suboptimal organic matter intake (Chapter 5), whereas during 

subsequent grazing seasons, a combination of reduced intake of organic matter and low 

quality of pasture contributes for the low energy intake (Chapter 6).  

Supplementation of the grazing animal is one of the feeding management options to 

correct energy and nutrient deficiencies. Because of the cyclic positive (wet periods) and 

negative (dry period) energy and nutrient balances experienced by grazing animals, the 

amount, composition and timing of the supplementation should be planned to maximize 

returns in terms of animal performance. The nutrient balance data presented in Chapter 6 

allows for a strategy to be developed where the grazing cattle can be divided into three groups 

for strategic supplementation; matured non-producing animals, recently weaned/young 

animals before the age of puberty, and producing animals (lactating cows and draft oxen). 

Under normal rainfall distribution, the first group of animals (mature non-producing animals) 

are able to tolerate the nutritional stresses during the dry period and can regain their lost 

weight during the following wet periods (Chapter 6). If finishing is planned for this group of 

animals by the use of supplementary feeding, it is advantageous to supply this with the onset 

of the wet period to maximize the efficiency of feed utilization from compensatory growth. 

For the second group of animals (recently weaned/young animals), the weight loss sustained 

during the dry periods may result in stunted growth, and such growth checks before the age of 

puberty are known to impair the production performance of animals in later life (Everitta and 
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Jurya, 1977; Coppock and Sovani, 1999; Jelantik et al., 2008). Thus, for this group of 

animals, supplementation during the dry period appears necessary to avoid severe growth 

checks, while in the rainy season they can perform satisfactorily on pasture alone. Lactating 

cows and draft oxen need supplementary feeding during the dry period to maintain expected 

performances, but supplementary feeding during the rainy season should depend on the level 

of performance.  

The pattern of energy and nutrient intake predicted in Chapter 6 also shows that 

energy concentrates should form the main components of supplementary feeding during the 

rainy season, whereas both energy and protein concentrates together with mineral 

supplements (P, Cu and Na) are necessary in the dry periods. Sodium intake is insufficient in 

all seasons and routine supplementation at a rate of about 80 g/day/head is required 

throughout the year. Molasses is a potential energy supplement in the area, while wheat bran 

and oil seed cakes can be used as sources of energy and protein. The pod of Acacia tortilis has 

a very good potential as a protein and energy supplement (Chapter 5), and proper use of this 

pod will minimize the cost of supplementary feeding. Moreover, plantation of adapted fodder 

trees along roadsides and within grazing lands will increase both feed biomass availability and 

dry season supplementary feeding (Sisay and Baars, 2002; Desta and Oba, 2004) .  

Regulating the grazing pressure of the grasslands is another important management 

intervention to optimize the utilization of the available pasture resource in a sustainable 

manner (Kemp et al., 2000). High grazing pressure leads to the disappearance of 

palatable/productive perennial species and low herbaceous basal cover, with a gradual loss of 

soil fertility and land degradation (Asefa et al., 2003). In the result described in Chapter 6, 

although nutrient intakes of cattle grazing on the protected ranch and open grasslands were 

comparable, the absence of desirable species on the open grasslands coupled with very low 

basal coverage (mainly during the dry period) are indicators of an unsustainable grazing 

pressure in the communal grasslands. Community-based grassland management practices are, 

therefore, important to avoid further degradation and promote regeneration of bare lands. 

Over-sowing with improved forage seeds, planting adapted fodder trees, area enclosures and 

soil protection terraces are among the feasible intervention measures that can be implemented 

at a community level. On the other hand, the performance of animals on the protected ranch 

seems to have been limited by the grazing management practiced, particularly with regard to 
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the grazing time, grouping of animals, and grazing paddocks. In this respect it may be 

important to reschedule the grazing time (to include early morning and late afternoon 

grazing), divide the pasture into smaller paddocks and group animals into manageable sizes, 

whereby the animals can be allocated to new paddocks in a rotation schedule to efficiently 

utilize the available pasture resources. These measures will help to increase the performance 

of the animals reared on commercial ranches in the region in a sustainable manner.  

As the use of hand-plucked samples to mimic the herbage selected by the grazing 

animal remains one of the weak sides of the method used in this study, the sampling method 

for herbage consumed should be a subject for further improvement. Moreover, with our 

current level of knowledge, a given n-alkane originating from different plant species, plant 

parts or different stages of growth/maturity is assumed to have a similar faecal recovery. 

However, further research is needed to establish if the physical and chemical properties or 

type of species of herbage consumed have an influence on the faecal recovery of n-alkanes. 

Such work would enable to examine if dietary indices are available that can be used to predict 

the faecal recovery of cuticular n-alkanes for a given forage. Another topic worth considering 

in this respect would be to study if the same n-alkane (carbon chain length) having different 

molecular weights (due to different level of isotope enrichment) shows similar recovery in the 

gut. 

 

Conclusions 

The use of plant cuticular n-alkanes as markers in nutritional studies has received increasing 

acceptance over the last two decades due to their wide distribution in the cuticular wax, large 

interspecies variability, high faecal recovery and ease of laboratory analysis. The evaluation 

conducted with pasture species in the Mid Rift Valley region in Ethiopia showed that the 

pasture species have large interspecies variability in their n-alkane profile, which can be used 

to estimate the diet composition of grazing animals. The variability in the carbon isotope 

enrichment of the hydrocarbons also provides additional information to increase the accuracy 

of diet composition estimation using the n-alkane method.  

The faecal recovery of synthetic dosed even-chain alkanes (C32 and C36) were found to 

be considerably higher than adjacent natural odd-chain alkanes, implying that correction for 
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the difference in the faecal alkane recovery rate of dosed and natural alkanes may be required 

to improve the accuracy of intake estimation using the double n-alkane method. 

The available pasture species in the Mid Rift Valley of Ethiopia showed a large 

variability in their nutritive value, with scope for selection of desirable species for grassland 

improvement and environmental protection. The quality of the pasture stand in the main 

pasture growth period was generally of moderate quality, implying that constraints of nutrient 

intake of grazing cattle during the main rainy season are not likely to occur due to forage 

quality. A. tortilis trees play important ecological functions in the grasslands, and their proper 

management and utilization will help to optimize cattle production in the region. 

The nutritional status of the grazing cattle in the Rift Valley Grasslands as measured 

using the n-alkane technique and visual observation has a cyclic negative (dry period) and 

positive (wet period) energy and nutrient balance. Energy intake appears to be more limiting 

than crude protein for weight gain. While mature animals can cope with the negative energy 

and nutrient balance during the dry period, young animals before the age of puberty may 

require supplementary feeding to avoid stunted growth. Supplementary feeding of finishing 

animals should coincide with the beginning of the rainy period to exploit the advantages of 

compensatory growth, and energy concentrates should form the major component of such 

supplementary feeding. Improvement in the management of grasslands and control of illegal 

cutting of acacia trees is required to optimize the productivity of grazing cattle in a sustainable 

manner. 
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Summary 

Grazing ruminants are the largest contributors to livestock output in tropical regions. The 

production performance of grazing ruminants, within their genetic boundaries, depends on the 

level of nutrient intake. Acquiring reliable nutrient intake data is, therefore, an important pre-

requisite to predict production performance of grazing animals on pasture, and design 

appropriate feeding and management strategy to achieve target productions. Direct 

measurement of nutrient intake in grazing animals is difficult and often a variety of indirect 

methods, including observation of grazing behaviour and application of markers, are used. 

Over the past two decades, the use of n-alkanes as markers for the measurement of nutrient 

intake in grazing animals has gained increasing acceptance. Information is however scarce on 

the suitability of this method to measure intake and diet composition of grazing animals under 

tropical conditions. Ethiopia has the largest livestock population in Africa and the Mid Rift 

Valley region in the country supports large grazing livestock populations. Improving the 

nutrition of the grazing cattle in the region has wider implications in terms of improving the 

livelihood of the farming communities and supporting the national economy. The first aim of 

this thesis was to determine the potential of using cuticular n-alkanes and their carbon isotope 

enrichment (δ
13

C) as markers to study the nutritional ecology of grazing animals under 

tropical conditions. In addition, seasonal patterns of nutrient intake and diet composition of 

grazing cattle in the Mid Rift Valley grasslands of Ethiopia were assessed using this indirect 

method.  

In Chapter 2, commonly available pasture species in the Mid Rift Valley grasslands of 

Ethiopia were collected during the main pasture growth season and analyzed for n-alkane 

concentrations and their δ
13

C values. The n-alkanes C27 to C35 were found in adequate 

concentrations in the species with C31 (283±246 mg/kg DM) and C33 (149±98 mg/kg DM) 

being the dominant alkanes. The δ
13

C values of the alkanes ranged from -19.37 to -37.40‰. 

Principal component analysis (PCA) revealed the presence of large variability among the 

pasture species. Orthogonal procrustes rotation analysis indicated that the majority of the 

interspecies variability explained by the two data sets was independent of each other. In 

general, n-alkane profiles of the pasture species in the study region can be used as markers for 

diet composition estimation and δ
13

C values in n-alkane can provide additional information to 

discriminate diets of grazing animals. 
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In Chapter 3, the accuracy with which the botanical composition of composite pasture 

mixtures can be estimated using n-alkanes and their δ
13

C values as markers was investigated. 

Several composite pasture mixtures containing different proportions of five dominant grass 

species from the Mid Rift Valley rangelands were used. The n-alkane profile and their δ
13

C 

values were determined for individual species and composite pasture mixtures. The botanical 

composition of composite mixtures was then estimated using least squares optimization 

procedures and linear programming. Three alternative scenarios were evaluated in the 

calculation, where 0, 5, or 10 species in addition to those that made up the composite mixtures 

were included. There was close alignment between estimated and actual botanical 

compositions. Introduction of additional botanical species reduced the accuracy of the 

prediction. The best fit equation (R
2
=0.996) was obtained when n-alkanes and their δ

13
C 

values were used together and no additional species were included. Increasing the number of 

markers used or limiting the number of potential diet components (using qualitative methods) 

is important to improve the quality of diet composition predictions. 

Reliable data on faecal recovery of alkanes is required to apply corrections to 

calculations of diet compositions. In Chapter 4, the faecal recovery rates of n-alkanes and the 

accuracy of molasses-based alkane boluses for feed intake and digestibility estimations were 

measured in eight growing bulls consuming low-quality tropical roughages. The experiment 

was performed in a 4 × 4 double Latin square with each period lasting 21 days (2 wks 

adaptation and 1 wk measurement period) and animals were assigned to one of four diets. 

During the last 2 wks of each period animals received 200 mg C32 and 150 mg C36 twice 

dailyin the form of molasses-based alkane bolus. The mean faecal recovery of natural and 

dosed n-alkanes ranged between 0.61 and 0.86, with the recovery showing an upward trend 

with increasing carbon-chain length. Dosed alkanes had considerably higher recovery than 

adjacent odd-chain alkanes and correction for the differences in the faecal recovery appeared 

necessary when intake is predicted using C31/C32 and C33/C32 ratios. The results showed that 

molasses-based boluses administered twice daily are suitable, and that knowledge of the 

faecal recovery rates of adjacent n-alkanes improves the reliability of the predictions. 

In Chapter 5, the nutritive value of forage species and environmental impact of their 

utilizations were evaluated by conducting chemical analysis, in vitro total gas and methane 

production measurements. The forage samples were collected during the main pasture growth 
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season at approximately similar stage of growth. Large variability was observed among the 

species in their nutritive value and in vitro methane production potentials, with an opportunity 

for selecting species with high nutritive value and low methane production potential for a 

sustainable grassland improvement. The pasture quality during the main growth season was 

evaluated as optimum, and any nutritional limitation in the Mid Rift Valley region during this 

period is likely to originate primarily due to the quantity rather than the quality of the forage 

consumed.  

Chapter 6 aimed to determine the nutritional status of cattle grazing in the Mid Rift 

Valley region using a combination of n-alkanes and their δ
13

C values as markers and visual 

observations. For this study, two research sites (a moderately-grazed ranch and heavily-grazed 

communal grassland) and 16 experimental animals (8 on each site) were used. Measurements 

of above ground herbaceous biomass, diet composition, nutrient intake, and body condition of 

grazing cattle were conducted during five periods for one year. The estimated biomass cover, 

the species diversity of the diets, the dry matter and nutrient intakes of the animals showed 

high seasonal variation following the rainfall pattern, reaching a maximum during the rainy 

season and minimum during the dry period. In the dry period the animals were in a negative 

energy and nutrient balance (with a predicted weight loss of about 110 g/d), whereas in the 

main rainy season, energy and nutrient intakes were in excess of maintenance (with a 

predicted daily weight gains of 500-800 g/d). Energy intake was more limiting than crude 

protein for body weight gain in most of the seasons. Na, P and Cu were limiting for one or 

more of the grazing seasons. It appears that the nutritional restriction experienced during the 

dry period was tolerable by mature and non-producing animals but may not be so for young 

animals before the age of puberty, for which supplementary feeding may be required. The 

body condition of the animals recorded over the measurement periods agreed well with the 

predicted performances.  

Alkane profiles of pasture species in the Mid Rift Valley of Ethiopia are suitable for 

use as nutritional markers. Accuracy of diet composition can be improved when used in 

combination with their δ
13

C values. The faecal n-alkane recovery of the tropical roughage 

feeds studied in this thesis tended to be lower than temperate forages; further investigation 

into the underlying factors affecting the faecal recovery rate of alkanes will improve the 

accuracy with which nutrient intake is predicted 
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Samenvatting 

Grazende runderen geven de grootste bijdrage aan het totaal van de dierlijke productie in de 

tropische gebieden. Het productieniveau van dit vee wordt, binnen het genetisch potentieel 

van de dieren, bepaald door het niveau van nutriëntopname. Het verkrijgen van betrouwbare 

informatie van de nutriëntenopname vormt dan ook een belangrijke randvoorwaarde voor het 

correct schatten van het productieniveau van weidend vee. Tevens is het van belang voor het 

ontwerpen van een doelmatig voer- en managementsysteem waarmee de gestelde 

productiedoelen behaald kunnen worden. Het direct meten van nutriëntopname door grazend 

vee is lastig en veelal worden verschillende indirecte methoden gebruikt zoals het observeren 

van het graasgedrag en het gebruikmaken van markeerstoffen. Gedurende de laatste twee 

decennia is het gebruik van n-alkanen als markeerstof voor het schatten van de gewasopname 

en nutriëntsamenstelling bij grazend vee als methode ontwikkeld en heeft een geaccepteerde 

status verworven. Er is echter slechts beperkte informatie beschikbaar over de geschiktheid 

van deze methode bij grazend vee welke onder tropische omstandigheden worden gehouden. 

Ethiopië is in Afrika het land met de grootste veepopulatieen hiervan wordt een grote 

populatie van het grazend vee gehouden in de Mid Rift Valley regio. Het verbeteren van de 

nutritionele status van het grazende vee in deze regio zal het levensonderhoud van de lokale 

boerengemeenschappen verbeteren evenals de nationale economie. Het eerste doel van het 

promotieonderzoek was om vast te stellen of het gebruik van cuticulairen-alkanen in 

combinatie met hun verrijkingsniveau van het stabiele isotoop van koolstof (δ
13

C) als 

markeerstoffen gebruikt kunnen worden om de nutritionele status van grazende dieren 

gehouden onder tropische omstandigheden te bestuderen. Daarnaast is de 

rantsoensamenstelling en nutriëntopname bij grazend vee in de Mid Rift Valley regio van 

Ethiopië in kaart gebracht met deze methode. Hierbij is eveneens gekeken naar de invloed van 

seizoen op de samenstelling en opname. 

Voor Hoofdstuk 2 zijn de meest voorkomende grassoorten in het graasland van de Mid 

Rift Valley regio verzameld gedurende het hoofd-groeiseizoenen vervolgens geanalyseerd op 

n-alkaan samenstelling en de δ
13

C-verrijking van de alkanen. De n-alkanen C27 tot en met C35 

werden in adequate hoeveelheden teruggevonden voor alle plantsoorten, waarbij C31 

(283±246 mg/kg DM) en C33 (149±98 mg/kg DM) het meest duidelijk aanwezig waren. De 

δ
13

C-verrijking van alkanen varieerde van -19.37‰ tot -37.40‰. Data-analyse van n-alkaan 
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en δ
13

C-waarden met behulp van een principale-componentenanalyse (PCA) liet een grote 

variatie zien tussen plantsoorten. Een orthogonal procrustus rotatie-analyse gaf aan dat de het 

grootste aandeel van de verklaarde tussensoorten-variabiliteit op basis van de twee datasets 

onafhankelijk van elkaar waren. Er werd dan ook geconcludeerd dat de n-alkaan profielen van 

plantsoorten in het studiegebied gebruikt kunnen worden als markeerstof om 

rantsoensamenstelling the schatten, en dat de δ
13

C-verrijking in n-alkanen additionele 

informatie geeft om rantsoensamenstelling van grazende dieren te onderscheiden.  

In Hoofdstuk 3 is onderzocht met welke nauwkeurigheid de botanische compositie van 

handmatig samengestelde graslandmengsels kan worden geschat aan de hand van de n-alkaan 

concentraties en hun δ
13

C-verrijkingswaarden. Hiervoor werden een aantal graslandmengsels 

handmatig samengesteld uit de vijf meest voorkomende grassoorten in de Mid Rift Valley 

regio waarbij de grassen per mengsel in verschillende proporties werden toegevoegd. De n-

alkaan samenstelling en de δ
13

C-alkaanverrijking werden bepaald voor de individuele 

grassoorten en de samengestelde mengsels. De botanische samenstelling van de mengsels 

werd vervolgens geschat met behulp van een kleinste kwadraten optimalisatie procedure en 

lineaire programmering. Vervolgens werden drie alternatieve scenario’s geëvalueerd met deze 

procedure. Hiervoor werden 0, 5 of 10 plantsoorten toegevoegd aan de 5 soorten waaruit de 

mengsels waren samengesteld.  

Er werd een sterke overeenkomst gevonden tussen de geschatte en de feitelijke 

botanische samenstellingen. Wel bleek dat toevoeging van additionele grassoorten resulteerde 

in een verminderde nauwkeurigheid van de schattingen. De best schattende vergelijking 

(R
2
=0.996) werd verkregen als n-alkanen gebruikt werden in combinatie met de δ

13
C-

verrijkingswaarden en zonder toevoeging van additionele plantsoorten. De conclusie uit dit 

onderzoek was dat het verhogen van het aantal markeerstoffen of het beperken van het aantal 

betrokken plantsoorten (door kwalitatieve methoden) belangrijk is in het verhogen van de 

nauwkeurigheid van het schatten van de rantsoensamenstelling. 

Betrouwbare informatie over de faecale terugwinning van alkanen is benodigd om 

correcties door te voeren bij de berekening van de rantsoensamenstelling. Daarnaast is het 

belangrijk om even en oneven alkaan-paren te selecteren die een vergelijkbaar faecaal 

terugwinningspercentage hebben, ofwel een bekend verschil in terugwinning hebben, zodat 

correcties kunnen worden gemaakt. In Hoofdstuk 4 is een in vivo studie uitgevoerd waarbij de 
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faecale terugwinning van n-alkanen is vastgesteld bij acht stieren gehouden op rantsoenen van 

laagwaardige tropische grassen. Daarnaast werd de nauwkeurigheid van het schatten van de 

opname en rantsoensamenstelling met behulp van alkaan-houdende molasse bolussen 

vastgesteld. De dierproef werd uitgevoerd als een herhaalde 4 × 4 Latijnsvierkant waarbij 

iedere periode 21 dagen duurde (twee week adaptatie gevolgd door een meetweek). Dieren 

werden aan één van de vier proefrantsoenen toegekend. Vanaf de tweede week van adaptatie 

ontvingen de dieren tweemaal daags een alkaan-houdende melasse bolus (elk 200 mg C32 en 

150 mg C36) tot aan het einde van de meetweek. 

De gemiddelde faecale terugwinning van de natuurlijke en de gedoseerde synthetische 

alkanen varieerde tussen 0.61 to 0.86, waarbij de terugwinning een opgaande tendens liet zien 

met een toenemende koolstof ketenlengte. De gedoseerde alkanen hadden een beduidend 

hogere terugwinning dan de naastliggende oneven alkanen. Dit betekent dat een correctie voor 

het verschil in faecale terugwinning aan de hand van de C31/C32 en C33/C32 ratio’s noodzaak is 

voor het correct schatten van de opname. De resultaten lieten zien dat het tweemaal daags 

verstrekken van alkaan-houdende melasse bolussen een geschikte methode is om opname te 

schatten, en dat het corrigeren voor verschil in faecale terugwinning de betrouwbaarheid van 

de opnameschattingen verhoogt. 

In Hoofdstuk 5 is de nutritionele waarde van plantsoorten en de effecten op het milieu 

onderzocht aan de hand van chemische analyses in combinatie met een in vitro gas en 

methaan productie studie. De plantmonsters werden verzameld tijdens de hoofd-groeiperiode 

bij vergelijkbare groeistadia. Er was een grote variatie in de nutritionele waarde en in vitro 

methaanproductie tussen planten. Dit biedt perspectief om te selecteren op plantensoorten met 

een hoge nutritionele waarde en een laag methaanproductie potentieel, waarmee de 

duurzaamheid van graslandaanwending verbeterd kan worden. De kwaliteit van de grassen 

tijdens het hoofd-groeiseizoen werd als matig bevonden. De nutritionele limitaties in de Mid 

Rift Valley regio tijdens deze periode kunnen dan ook voornamelijk toegeschreven worden 

aan kwantitatieve beperkingen en niet zozeer aan de kwaliteit van het opgenomen ruwvoer. 

Hoofdstuk 6 beschrijft een studie waar de nutritionele status van grazend vee in de 

Mid Rift Valley regio gedurende het jaar is bepaald door middel van de nieuw ontwikkelde n-

alkanen en de δ
13

C-verrijking methode in combinatie met visuele waarnemingen. De studie 

werd uitgevoerd op twee onderzoek locaties (gematigd begraasd land vs. intensief begraasd 
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gemeenschappelijk land) met op elke locatie acht dieren. De bovengrondse biomassa, 

rantsoensamenstelling, nutriëntopname en conditiescore van dieren werd, verdeeld over vijf 

perioden, gedurende een jaar gemonitord.  

De geschatte bovengrondse biomassa, de soorten diversiteit in het rantsoen, de droge 

stof en nutriëntenopname van dieren liet een grote seizoenvariatie zien gerelateerd aan het 

regenvalpatroon, waarbij het maximum bereikt werd tijdens het regenseizoen en het minimum 

tijdens de droge periode. Tijdens de droge periode waren de dieren in negatieve energie- en 

nutriëntenbalans (met een geschat gewichtsverlies van ~110 g/d). Gedurende de belangrijkste 

regenperiode echter lag de energie- en nutriëntenopname boven onderhoud (met een geschatte 

dagelijkse groei van 500-800 g/d). De energieopname bleek meer limiterend te zijn dan de 

eiwitopname voor groei gedurende het grootste deel van het seizoen. Na, P, en Cu waren één 

of meerdere keren limiterend tijdens het graasseizoen. De nutritionele beperkingen die 

ondervonden werden tijdens de droge periode werden verdragen door de volwassen niet-

producerende dieren. Echter, het kan zijn dat jonge onvolwassen dieren wel gevoelig zijn voor 

deze beperkingen en waarvoor mogelijk aanvullende voedingmiddelen nodig is. De conditie 

score van de dieren liet een goed verband zien met de geschatte producties.  

Alkaanprofielen van plantensoorten in grasland in de Mid Rift Valley regio in 

Ethiopië kunnen gebruikt worden als markeerstof voor rantsoenbepaling. De nauwkeurigheid 

van rantsoensamenstelling kan worden verbeterd als de n-alkaan methode gecombineerd 

wordt met δ
13

C-verrijkingdata. De faecale terugwinningcoëfficiënten van de tropische grassen 

opgenomen in het huidige onderzoek neigden naar lagere waarden ten opzichte van 

ruwvoeders uit gematigde klimaatstreken. Verder onderzoek naar de achterliggende factoren 

die van invloed zijn op de faecale terugwinning van alkanen zal de nauwkeurigheid van 

nutriëntopnameschatting verbeteren. 
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