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ABSTRACT 

As part of the development of a sweet-pepper harvesting robot, obstacles should be detected. Objectives were to 

classify sweet-pepper vegetation into five plant parts: stem, top of a leaf (TL), bottom of a leaf (BL), fruit and 

petiole (Pet); and to improve classification results by post-processing. A multi-spectral imaging set-up with 

artificial lighting was developed to acquire images of sweet-pepper plants. The background was segmented from 

the vegetation and vegetation was classified into five plant parts, through a sequence of four two-class 

classification problems. True-positive detection rate/scaled false-positive rate achieved, on a pixel basis, were 

40.0/179%  for stem, 78.7/59.2% for top of a leaf (TL), 68.5/54.8% for bottom of a leaf (BL), 54.5/17.2% for 

fruit and 49.5/176.0% for petiole (Pet), before post-processing. The opening operations applied were unable to 

remove false stem detections to an acceptable rate. Also, many false detections of TL (>10%), BL (14%) and Pet 

(>15%) remained after post-processing, but these false detections are not critical for the application because 

these three plant parts are soft obstacles. Furthermore, results indicate that TL and BL can be distinghuished. 

Green fruits were post-processed using a sequence of fill-up, opening and area-based segmentation. Several area-

based thresholds were tested and the most effective threshold resulted in a true-positive detection rate, on a blob 

basis, of 56.7 % and a scaled false-positive detection rate of 6.7 % for green fruits (N=60). Such fruit detection 

rates are a reasonable starting point to detect obstacles for sweet-pepper harvesting. But, additional work is 

required to complement the obstacle map into a complete representation of the environment. 
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1. INTRODUCTION 

This research is part of a the EU funded CROPS project, 

„Clever Robots for Crops‟, in which a sweet-pepper 

harvesting robot will be developed. The manipulator of this 

harvesting robot should approach a target (fruit or peduncle) 

while avoiding obstacles. These obstacles should be detected, 

and eventually localized. Obstacle detection is the scope of 

this article and obstacles comprise supporting wires, 

construction elements and plant parts (stem, leaf, fruit and 

petiole). We separated obstacles in hard obstacles and soft 

obstacles. Hard obstacles (stems, fruits, supporting wires, 

construction elements) should be avoided by a manipulator or 

end-effector, whereas soft obstacles (leaves and petioles) can 

be touched or pushed aside. In addition, the top of a leaf and 

the bottom of a leaf were discerned to be able to control the 

motion of a pushed leaf. Pushing a top of a leaf, namely, will 

usually result in downward motion of the leaf and pushing a 

bottom of a leaf  will result in an upward motion of the leaf.  

Vision-based plant part classification studies under 

natural lighting conditions are scarce. Two studies describe 

classification of cucumber plant parts into leafs, stems and 

fruits: a study on a cucumber leaf picking robot using two 

near-infrared wavelengths (Van Henten et al., 2006) and a 

multi-spectral imaging study in which several wavelengths 

and sensors are compared (Noble and Li, 2012). 

Unfortunately, both studies lack classification performance 

values. The article most closely related to the work presented 

here is classification of grape foliage into leaves, branches 

and fruits (green or coloured) using RGB cameras under 

natural lighting conditions. For green grapes, the true-

positive rate was 91.9 % with a false-positive rate of 2.7 % 

(Dey et al., 2012). 

Objectives were to 1) classify sweet-pepper 

vegetation into five plant parts: stem, top of a leaf (TL), 

bottom of a leaf (BL), fruit and petiole (Pet); 2) improve 

classification results by post-processing techniques. 

2. MATERIALS AND METHODS 

A multi-spectral imaging set-up was used to acquire images 

of sweet-pepper plants (Fig. 1). The crop cultivar was 

“Viper” and only unripe green fruits occurred in the scenes. 

A 5 megapixel monochrome camera was used in combination 

with a filter wheel containing filters with the following 

wavelengths (bandwidth): 447 (60) nm, 562 (40) nm, 624 

(40) nm, 692 (40) nm, 716 (40) nm, 950 (100) nm. For each 

scene, a set of six 8-bit images was acquired with a resolution 

of 2082 by 2493 pixels. In total, 12 scenes were recorded 

under outdoor lighting conditions with additional artificial 

lighting (Fig. 1). 
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Fig. 1.Overview of the experimental set-up in the greenhouse. 

Images were recorded from 11:00 am until 11:30 am under a 

clear sunny sky. Outdoor solar irradiance was measured 

during image recording and varied between 374 and 435 

W/m
2
. Camera-stem distance was on average 80 cm and 

varied in a range of 63 cm to 109 cm among scenes. 

 Ground truth data was obtained through manual 

labelling of pixels in recorded images. In total, 14.6 ∙ 10
6
 

pixels were labelled and this number comprised 29.4% of the 

vegetation present in the 12 scenes. Labelled pixels were 

mostly leaves – TL (54.6%),  BL (22.4%). Other labelled 

pixels were fruits (15.6%), stems (3.7%) and petioles (3.7%). 

A large part of the vegetation pixels, mostly leaves, was not 

labelled (70.6%) because we assumed labelled leaves already 

represented the majority of the leaf variation occurring in the 

scene. In addition, labelling all samples would increase the 

computational load dramatically during training of the 

classifier. An example of a labelled scene is in Fig. 2. 

 

Fig. 2. Labelled image comprising five classes: stem (red), 

top of a leaf (green), bottom of a leaf (blue), green fruit 

(yellow) and petiole (purple). 

2.1. Performance assessment 

Performance was assessed as a binary classification problem. 

Hence, we compared the detection rates for one class versus 

the union of the other four classes. As a result, we calculated 

five 2 by 2 sized confusion matrixes. The elements in each 

matrix describe true-positive (TP), true-negative (TN), false-

positive (FP) and false-negative (FN) detected pixels 

(Bradley, 1997). Based on these elements, a true-positive 

detection rate TPR (equation (1)) and a scaled false-positive 

detection rate SFPR (equation (2)) were calculated.  
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Note that this measure SFPR is identical to how authors of 

previous and recent fruit detection literature refer to „false-

positive rate‟ (Jiménez et al., 2000, Bulanon et al., 2010, 

Linker et al., 2012). Such a definition of false-positive rate is, 

however, confusing because in other research disciplines 

false-positive rate is calculated as FP/(FP+TN) (Mackinnon, 

2000, Gu et al., 2009). Hence, we use scaled false-positive 

rate instead of false-positive rate to avoid ambiguous 

definitions of false-positive rate.  

Similar to authors of fruit detection literature, we 

consider scaled false-positive rate to be a more useful 

measure to report than false-positive rate because false-

positive detections are expressed in terms of the class to be 

detected. False detection rate is therefore not biased by 

unbalanced class sizes, as is the case with false-positive rate. 

A drawback of scaled false-positive rate is, however, that 

rates can exceed 100 %. 

2.2. Pixel classification of vegetation 

Pixels were classified using Classification And Regression 

Trees (CART) in MATLAB
®

 2007b in combination with the 

Sequential Floating Forward Selection (SFFS)  feature 

selection algorithm (Pudil et al., 1994). Vegetation 

classification was performed on a computer with an Intel 

Core i5 CPU 2.4 GHz Quad core processor including 4 GB 

memory. 

The first step in the image processing sequence was 

to remove the background to obtain remaining pixels of 

interest. To remove the background, a threshold operation 

was applied on the 900 nm image (gray-value threshold: ≤ 

27) and holes in the background region were filled by a fill-

up operation. Subsequently, overexposed regions, mostly 

construction elements and supporting wires, were removed 

by a threshold (>139) on the 447 nm image. As a result, only 

vegetation remained. The vegetation was classified into five 

plant parts: stem, top of a leaf, bottom of a leaf, green fruits 

and petiole. Pixel-based features were used, i.e. Normalized  

Difference Index (NDI) (Davies, 2009) and raw gray-values. 

In total 15 NDI features were calculated from the six 

wavelengths. Consequently, 15+6 = 21 features were used. 

Classification of the five plant parts was split into 

four two-class classification problems instead of one five-

class classification problems because this approach resulted 

in greater accuracy in previous research (Kavdır and Guyer, 



 

 

     

 

2004). Fig. 3 shows which plant part classes were separated 

in each classification problem.   

 

Fig. 3. Approach taken to reduce a five-class classification 

problem into four two-class problems: P1, P2, P3 and P4.  

The decision trees for each two-class problem were trained 

and pruned in MATLAB
®
. Two scenes were used for training 

and ten scenes were used for testing. Before training, class 

sample sizes were balanced such that the classifier would 

equally favour both classes. After pruning, trees were 

exported to Halcon (MVTEC, 2012). As a result, both 

classification and post-processing techniques were applied in 

Halcon.  

2.3. Post-processing applied to each class 

For post-processing, morphological image processing was 

first applied to improve results of pixel classification. We 

applied an opening operation, with rectangular mask sizes of 

3x3, 5x5 and 7x7 pixels, to each of the five plant parts. 

Subsequently, results were compared with unprocessed data, 

in terms of true-positive detection rate and scaled false-

positive detection rate. Note that only labelled regions in the 

image were assessed for performance of classification and 

post-processing on a pixel basis. 

2.4. Green fruit detection 

Detection of the fruits, turned out to be more successful than 

the other plant parts and therefore additional post-processing 

was applied to improve fruit detection. We applied a 

sequence of fill-up, opening (circular mask with a radius 2.5 

of pixels), connection and area-based segmentation. The 

circular mask was chosen because fruits mimic a circular 

shape more than a rectangular shape. The value for area-

based segmentation was tested in a range of 1000 to 13000 

pixels, with steps of 2000 pixels, to determine the effect on 

true-positive fruit detection rate and scaled false-positive 

detection rate. 

Performance of fruit detection was not only 

determined on a pixel basis, but also on a blob (or region) 

basis. To compare results of blob analysis to the literature, 

the full image was classified instead of only labelled regions. 

Separation of fruit clusters into individual fruits is a 

challenging task in fruit detection (Linker et al., 2012) and 

was not performed in this research. To calculate the number 

of individual fruits detected we manually counted the number 

of fruits present in a cluster, before and after detection. If, for 

instance, a blob covered three fruits, we counted such a blob 

as three successfully detected fruits. We counted a fruit as 

successfully detected if at least some part (>0 %) of the 

visible fruit surface was detected. In total, 60 distinct fruits 

were visible (partially or completely) in the ten test scenes. 

3. RESULTS 

3.1. Pixel classification of vegetation 

NDI features turned out to be the strongest features to 

classify plant parts. True-positive detections with NDI 

features were about 4-6 % greater than for raw spectral 

features. The result of plant part classification, using NDI 

features, is shown in Fig. 4. 

 

Fig. 4. Classification of vegetation into five classes: stem 

(red), top of a leaf (green), bottom of a leaf (blue), fruit 

(yellow) and petiole (magenta). Black parts are either 

background regions or overexposed regions. 

Fig. 4 shows that performance of classification based on only 

pixel information is limited because many false-positive 

detections occur in the scene. At pixel level, average true-

positive detection rates (standard deviations) among scenes 

(N=10) are: 59.2 (7.1)% for hard obstacles and 91.5 (4.0)% 

for soft obstacles. Furthermore, detection rates per class are: 

40.0 (12.4)% for stem,  78.7 (16.0)% for top of a leaf, 68.5 

(11.4)% for bottom of a leaf, 54.5 (9.9)% for fruit and 49.5 

(13.6)% for petiole. 

Total execution time for one scene in Halcon was 

2.3 s: 1.5 s for calculation of 12 NDI features and 0.8 s for 

decision tree classification. Calculation time of post-

processing methods reported in the following sections was in 

the order of 1-20 ms and therefore negligible to the time 

required for classification. 

3.2. Post-processing applied to each class 

To assess the effect of post-processing on true-positive 

detection rates and scaled false-positive detection rates, 

results are shown for three post-processing operations and for 

unprocessed data (Fig. 5).  



 

 

     

 

Post-processing improved ratio between true-

positive detection rate and scaled false-positive detection rate 

for all classes. Yet this ratio does not exceed a value of one 

for the stem and petiole, which indicates that stem and petiole 

detection was difficult. Furthermore, standard deviation (SD) 

of detection rate among scenes does not decrease 

significantly, except for false-positive fruit detections. 

Apparently, these opening operations do not decrease the 

variability of detection among scenes. 

Fig. 6 demonstrates that many false-positive stem 

detections remain after post-processing. Such false stem 

detections are unacceptable because the motion planning 

algorithm of the robot arm considers these false „hard 

obstacle‟ detections as forbidden areas during calculation of a 

collision-free path, whereas in reality a path can be planned 

through these soft obstacles (e.g. leaf). 

  

Fig. 6. Stem detections after classification and unprocessed 

(left). Stem detections after an opening operation (7x7) mask 

(right). Despite the opening operation, many false detections 

occur on the leaf and fruit, and many true detections 

disappear.  

Although ratio between true-positive detection rate 

and scaled false-positive detection rate increased after post-

processing (Fig. 5), scaled false-detection rates remain 

greater than 10 % for TL and greater than 14 % for BL. An 

example of an opening operation applied to TL is in Fig. 7. 

  

Fig. 7. Top of a Leaf (TL) detections after classification and 

unprocessed (left). TL detections after an opening operation 

(7x7) mask (right). Despite the opening operation, many false 

detections occur on the stem, bottom of a leaf, fruit and 

petiole. 

Fig. 7 (right) demonstrates that few false BL detections 

remain after an opening operation (in bottom left part of 

image). Such remaining false detection may be removed 

through area-based segmentation. Similarly, few false BL 

detections occurred in the TL (not shown). Hence, these 

results indicate that TL and BL can be distinguished.   

3.3. Green fruit detection 

In contrast to detection of other plant parts, a scaled false-

positive detection rate of <5.2%, on a pixel basis, was 

achieved for fruit detection (Fig. 5). The remaining blobs 

were further processed and Fig. 8 demonstrates that many 

false-positive blob detections were removed, whereas most 

true-positive fruit detections remained.  

Stem TL BL Fruit Pet
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Fig. 5. Mean (N=10 scenes) and SD of true-positive detection rate ( ) and scaled false-positive detection rate ( ), on a pixel 

basis, for unprocessed pixels and for three post-processing operations: opening with mask sizes 3x3, 5x5 or 7x7 pixels. These 

results are shown for each of the five plant part classes: Stem, Top of a Leaf (TL), Bottom of a Leaf (BL), Fruit and Petiole 

(Pet). Post-processing of fruits resulted in the lowest scaled false-positive rate compared with other classes: 5.2 % for a 3x3 

mask, 2.5 % for a 5x5 mask and 1.4 % for a 7x7 mask. 

 



 

 

     

 

  

Fig. 8. Classified fruit pixels (left) and the result after fill-up, 

opening, connection and area-based segmentation (right). The 

fruit visible in the top right (no. 5) is unfortunately not 

detected after a sequence of fill-up, opening and area-based 

(>5000 pixels) segmentation. Hence, four (no. 1-4) of the five 

fruits (no. 1-5) were detected. 

 

Results of different thresholds, for area of blobs, are 

in Table 1. 

Table 1. True-positive detection rate (TPR) and scaled false-

positive detection rate (SFPR) of green fruits, on a blob 

basis, for different area-based thresholds. 

Area-based 

threshold [> 

pixels] 

True-positive 

detection rate 

[%] 

Scaled false-

positive 

detection rate 

[%] 

Ratio of 

TPR/SFPR 

[-] 

1000 88.3 126.7 0.70 

3000 83.3 55.0 1.51 

5000 78.3 30.0 2.61 

7000 68.3 18.3 3.73 

9000 68.3 13.3 5.14 

11000 61.7 11.7 5.27 

13000 61.7 10.0 6.17 

15000 56.7 8.3 6.83 

17000 56.7 6.7 8.46 

19000 55.0 6.7 8.20 

21000 51.7 6.7 7.72 

We chose the threshold with greatest ratio of true-positive 

detection rate vs. scaled false-positive detection rate because 

here the post-processing approach is most effective in 

removing false detections while preserving true fruit 

detections. Greatest ratio (8.46) of true-positive vs. false-

positive detections is achieved at an area-based threshold of 

17000 pixels: TPR = 56.7% and SFPR = 6.7%.  

4. DISCUSSION 

Accurate hard obstacle detection is more critical for the 

application than accurate soft obstacle detection because false 

hard obstacle detection limit the free workspace of a robot 

manipulator, whereas false soft obstacle detections do not. A 

motion without hitting either soft or hard obstacles is ideal, 

but, if required, a motion can be planned through soft 

obstacles. A motion through hard obstacles is, however, 

unacceptable because a damage to the stem affects growth of 

the plant and a damage to the fruit causes yield loss.  

Detection rate achieved for soft obstacles (top of a 

leaf, bottom of a leaf and petiole) is limited, but acceptable 

for this application.  

Regarding hard obstacles, stem detection rate is too 

small for a useful obstacle map because, after an opening 

operation (7x7 mask), a TPR of 9.5% and a SFPR of 12.2% 

was achieved. For green fruit detection, a TPR of 56.7% and 

a SFPR of 6.7% was achieved. This performance is far from 

perfect, but probably a reasonable starting point to find a 

collision-free path to a ripe fruit. However, with such fruit 

detection rates, the obstacle map will not be complete and 

additional detection is therefore required. Such detection may 

be obtained from additional sensors on the end-effector. Also, 

the manipulator should be able to adapt its path during 

motion if the sensor detects additional obstacles, or if a false-

positive obstacle detection is re-detected as a true negative 

detection. 

Fruit detection rate is worse than related work 

regarding green apple detection. Linker et al. (2012) achieved 

a TPR of 88% and a SFPR of 25% under intense natural 

lighting and a TPR of 95% and a SFPR of 4% under diffuse 

natural lighting. The methods used in this article are rather 

basic compared with methods used for apple detection, which 

may elucidate why those authors achieved a better 

performance. However, for green citrus detection, Kurtulmus 

et al. (2011) achieved a TPR of 75% and a SFPR of 27%, 

which is comparable to results achieved in this research.  

The artificial lighting used mitigates the effect of 

outdoor lighting variations. Nevertheless, classification 

performance is rather limited and, in addition to outdoor 

lighting variations, varying plant-camera distances may 

elucidate why classification performance was rather limited. 

In related work, geranium cuttings were classified based on 

RGB images recorded indoor and, seemingly, camera-object 

distances were more constant (Humphries and Simonton, 

1993). These authors achieved a TPR of 85% for leaf, 21% 

for petiole and 74% for stem, on a pixel basis. They did not 

report false-positive detection rate, which renders it hard to 

compare results with this research. Nevertheless, their true-

positive rates are slightly higher than results reported here, 

except for petiole classification. Yet, our study probably 

benefitted from the near-infrared wavelengths used and the 

performance gap may have been larger if we would have 

recorded RGB images combined with such varying lighting 

conditions and varying camera-object distances. In summary, 

one can observe that pixel-based classification is limited and 

addition of object-based features can improve performance 

because, after addition of object-based features, Humphries 

and Simonton (1993) achieved a TPR of 97% for leaf, 95% 

for petiole and 94% for stem. 

5.  CONCLUDING REMARKS 

This study is one of the first multi-spectral imaging studies, 

under varying lighting conditions, in which detection rates 

are reported. True-positive detection rate/scaled false-positive 

rate achieved, on a pixel basis, are: 40.0/179% for stem,  

78.7/59.2% for top of a leaf (TL), 68.5/54.8% for bottom of a 

leaf (BL), 54.5/17.2% for fruit and 49.5/176.0% for petiole 

(Pet). The opening operations applied were unable to remove 

false-positive stem detections to an acceptable rate. An 



 

 

     

 

improved stem detection algorithm is therefore a task for 

future work. Also, many false detections of TL, BL and Pet 

remained after post-processing, but these false detections are 

not critical for the application because these three plant parts 

are soft obstacles. Furthermore, results indicate that TL and 

BL can be distinguished.  

Green fruits were post-processed using a sequence 

of fill-up, opening and area-based segmentation. Several 

area-based thresholds were tested and the most effective 

threshold resulted in a true-positive detection rate of 56.7 % 

and a scaled false-positive detection rate of 6.7 % for green 

fruits (N=60). Such fruit detection rates are a reasonable 

starting point for an obstacle map in an application regarding 

sweet-pepper harvesting. But, additional sensor information 

and detection is required to complement the obstacle map 

into a complete representation of the environment.  
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