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Abstract

Background: In terms of time, effort and quality, multiplex technology is an attractive alternative for well-established single-
biomarker measurements in clinical studies. However, limited data comparing these methods are available.

Methods: We measured, in a large ongoing cohort study (n = 574), by means of both a 4-plex multi-array biomarker assay
developed by MesoScaleDiscovery (MSD) and single-biomarker techniques (ELISA or immunoturbidimetric assay), the
following biomarkers of low-grade inflammation: C-reactive protein (CRP), serum amyloid A (SAA), soluble intercellular
adhesion molecule 1 (sICAM-1) and soluble vascular cell adhesion molecule 1 (sVCAM-1). These measures were realigned by
weighted Deming regression and compared across a wide spectrum of subjects’ cardiovascular risk factors by ANOVA.

Results: Despite that both methods ranked individuals’ levels of biomarkers very similarly (Pearson’s r all$0.755) absolute
concentrations of all biomarkers differed significantly between methods. Equations retrieved by the Deming regression
enabled proper realignment of the data to overcome these differences, such that intra-class correlation coefficients were
then 0.996 (CRP), 0.711 (SAA), 0.895 (sICAM-1) and 0.858 (sVCAM-1). Additionally, individual biomarkers differed across
categories of glucose metabolism, weight, metabolic syndrome and smoking status to a similar extent by either method.

Conclusions: Multiple low-grade inflammatory biomarker data obtained by the 4-plex multi-array platform of MSD or by
well-established single-biomarker methods are comparable after proper realignment of differences in absolute
concentrations, and are equally associated with cardiovascular risk factors, regardless of such differences. Given its greater
efficiency, the MSD platform is a potential tool for the quantification of multiple biomarkers of low-grade inflammation in
large ongoing and future clinical studies.
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Introduction

Biomarker measurements representing low-grade inflammation

have gained increasing importance in the management and

understanding of cardiovascular disease (CVD) [1–8]. Low-grade

inflammation is accompanied by inflammatory cells that closely

interact with the arterial wall, thereby driving the development of

atherosclerosis and CVD [1,2]. Because the role of low-grade

inflammation in the pathophysiology of CVD is multi-faceted

[1,2], an extensive characterization by multiple biomarkers of low-

grade inflammation is desirable. In this line, large cohort studies
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are increasingly adopting such a multiple biomarker approach [8–

15].

Among a large variety of potential biomarkers [16], acute-phase

reactants such as C-reactive protein (CRP) and serum amyloid A

(SAA), and vascular adhesion molecules such as soluble intercel-

lular adhesion molecule-1 (sICAM-1) and soluble vascular cell

adhesion molecule-1 (sVCAM-1) reflect low-grade inflammation

when present in low concentrations [1,2], whereas high concen-

trations, such as CRP.10mg/l, more likely reflect acute

inflammation or infection [9,17,18]. These four biomarkers of

low-grade inflammation were studied because they play an

important role in the pathophysiology of CVD [1,2] and higher

concentrations have been associated with (incident) CVD [3–8].

Traditionally, well-established analytical methods have enabled

the analysis of single biomarkers of low-grade inflammation in one

run. However, obtaining multiple biomarkers based on many

single-biomarker measurements is very labor intensive, expensive

and requires (relatively) large sample volumes. These limitations

hamper an efficient multiple biomarker approach, particularly in

large observational cohort or clinical trial studies. An attractive

solution to these limitations is the simultaneous, and thus more

efficient, measurement of a set of low-grade inflammatory

biomarkers in one run. Such methods have recently become

available with the use of multi-array platforms, such as the

LuminexH and the MesoScaleDiscoveryH (MSD) platforms and

provide the tools necessary for efficient multiple biomarker

detection. However, it remains to be established to what extent

biomarker concentrations, as measured with these multi-array

platforms, are comparable to well-established single-biomarker

measurements. Although some cross-validation studies have been

performed, most have not focused on biomarkers of low-grade

inflammation [19–23] and the only study that did so pointed the

problem of different measured concentrations, which may lead to

bias in epidemiological associations [23].

Therefore, introducing a multi-array platform in the context of

an ongoing longitudinal cohort study poses some challenges

[24,25] and cross-validation between methods within such a

cohort is necessary before the ‘new’ method may replace the ‘old’

one. Specifically, one needs to determine whether substantial

differences in biomarker concentrations are introduced by the new

method, in which case realignment of the data by appropriate

mathematical transformations may be required for the investiga-

tion of within-subjects changes in absolute concentrations of

biomarkers over the course of time [26,27]. In addition, the data

obtained need also to be similarly associated with risk factors (RFs)

known to be associated with low-grade inflammation to ensure

that the multi-array platform measures what it intends to measure

(i.e. face validity).

In view of these considerations, we compared the performance

of a 4-plex multi-array electrochemiluminescense detection

platform of low-grade inflammatory biomarkers (CRP, SAA,

sICAM-1 and sVCAM-1) of MSD with that of well-established

single-biomarker measurements, in a large ongoing cohort study of

individuals with a wide spectrum of cardiovascular risk factors

(RFs) known to be associated with low-grade inflammation.

Materials and Methods

Ethics Statement
The study was approved by the Medical Ethical Committee of

the Maastricht University and all individuals gave written

informed consent.

Study Population and Design
The Cohort on Diabetes and Atherosclerosis Maastricht

(CODAM) is a prospective cohort study that was originally

designed to study the effects of obesity, glucose and lipid

metabolism, lifestyle and genetics on cardiovascular complications,

as described in detail elsewhere [28–33]. Briefly, individuals were

selected from a large population-based cohort and included if they

were of Caucasian ethnicity and older than 40 years, and met one

or more of the following criteria: a body mass index (BMI)

$25 kg/m2, a positive family history for type 2 diabetes mellitus, a

history of gestational diabetes, use of anti-hypertensive medication,

a postprandial glucose $6.0 mmol/l and/or glucosuria. In total,

574 individuals [mean age 59.667.0 years; 38.7% women] were

included and extensively characterized with regard to their

metabolic, cardiovascular and lifestyle risk profiles during 2 visits

to the University research unit (CODAM-1, baseline examination:

September 1999-July 2002). A first follow-up examination took

place among 495 individuals (14% drop-out rate, mainly due to

morbidity or mortality) approximately 7 years later (CODAM-2,

July 2006-November 2009).

At baseline (i.e. CODAM-1), biomarkers of low-grade inflam-

mation were assessed by single-biomarker techniques. At follow-up

(i.e. CODAM-2), the single-biomarker techniques were replaced

by the multi-array platform of MSD. To ensure comparability

between methods, biomarkers of low-grade inflammation were

also reassayed by the multi-array platform of MSD in all samples

from the baseline examination (i.e. CODAM-1); at the time of

these measurements, baseline samples had thus been stored for ,7

years. The present cross-validation study reports on individuals’

paired data on biomarkers during the baseline examination

(CODAM-1) and thus is a cross-sectional method comparison

study. Method comparison for each biomarker was conducted on

paired data, which were available for CPR in 566 individuals, for

SAA in 563 individuals, for sICAM-1 in 566 individuals and for

sVCAM-1 in 567 individuals and full paired data on all four

inflammatory biomarkers were available in 550 individuals.

The CODAM study population is characterized by a wide

spectrum of conditions known to be associated with low-grade

inflammation [28–33]. Specifically, 52.4% of the individuals had

normal glucose metabolism (NGM), 22.2% had impaired glucose

metabolism (IGM) and 25.4% had type 2 diabetes mellitus (DM2)

[28–33]. On the basis of measured BMI, the prevalence of normal

weight, overweight and obesity was 18.2, 50.9 and 30.9%,

respectively [32]. The metabolic syndrome, i.e. the clustering of

$3 out of 5 cardiovascular RFs reflecting central obesity,

dyslipidemia, elevated blood pressure and fasting plasma glucose,

was prevalent in 54.7% of the study population [30,31]. On the

basis of self-reports, 29.3% of the individuals were never-smokers,

50.5% were ex-smokers and 20.2% were current smokers [33].

The prevalence of CVD was 27.6% and based on self-reports of

myocardial infarction, coronary bypass surgery, stent placement or

balloon dilatation, transient ischemic attack or stroke, abnormal-

ities on a 12-lead electrocardiogram?(Minnesota codes 1.1 to 1.3,

4.1 to 4.3, 5.1 to 5.3 or 7.1) and(or) self-reported narrowing of

peripheral arteries, non-traumatic limb amputation or a measured

ankle-arm index ,0.9 [30,31]. Glycated hemoglobin [(mean 6

SD) 6.060.82%] was measured as previously described [28–33].

Estimated glomerular filtration rate (eGFR) [(mean 6 SD)

95.7619.0 mL/min/1.73 m2] was calculated on the basis of

individuals’ age, sex and serum creatinine levels according to the

short Modification of Diet in Renal Disease (MDRD) equation

[34].

Cross-Validation of Multi-Array Technology
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Biomarker Assessments
Individuals were asked to stop their lipid-lowering medication

14 days prior to the blood withdrawals and all other medication on

the day before. After an overnight fast (duration of at least 10

hours) blood was drawn from the anticubital vein and collected in

EDTA polypropylene tubes for plasma and in clot activator

containing polypropylene tubes for serum. EDTA tubes were

centrifuged at 3000 rpm for 15 min at 4uC, and plasma was

immediately divided into 1 ml aliquots and stored in 280uC
freezers until further analysis. Tubes with cloth activator were left

20 minutes before centrifugation at 3000 rpm for 15 min at 20uC,

and serum was immediately divided into 1 ml aliquots and stored

in 220uC freezers until analysis [28].

Biomarker detection by single-biomarker

techniques. CRP was measured in a single measurement in

serum with a high-sensitivity, immunoturbidimetric assay (detec-

tion range 100 ng/ml to 20000 ng/ml, i.e. factor 200) (Latex,

Roche Diagnostics Netherlands BV, Almere, The Netherlands,

www.roche.nl). This assay is based on the principle of particle-

enhanced immunological agglutination. Briefly, anti-CRP anti-

bodies coupled to latex micro-particles react with antigen present

in the sample to form antigen-antibody complexes. Then, these

micro-particles with antigen-antibody complexes agglutinate. This

changes the fluid turbidity of the sample, which is detected by

turbidimetry. sVCAM-1 was measured in EDTA plasma with a

high-sensitivity human Quantikine ELISA kit (detection range

6.25 ng/ml to 200 ng/ml, i.e. factor 32) (R&D Systems,

Minneapolis, MN, USA, www.rndsystems.com). sICAM-1 (detec-

tion range 0.625 ng/ml to 10 ng/ml, i.e. factor 16) and SAA

(detection range 9.4 ng/ml to 600 ng/ml, i.e. factor 64) were

measured in EDTA plasma by ELISA (Biosource, Invitrogen,

Carlsbad, CA, USA, www.invitrogen.com). All low-grade inflam-

matory biomarkers were measured at the Laboratory of

Toxicology, Genetics and Pathology of the National Institute for

Public Health and the Environment, Bilthoven, The Netherlands

[30]. The intra- and inter-assay coefficients of variation (CVs) for

these assays were, for CRP, 0.6% and 1.9%; for SAA, 6.1% and

17.5%; for sICAM-1, 5.6% and 6.6%; and for sVCAM-1, 3.1%

and 4.7%, respectively.

Biomarker detection by the 4-plex multi-array

electrochemiluminescense detection platform of

MesoScaleDiscovery. The 4-plex multi-array electrochemilu-

minescence platform of MesoScaleDiscovery (detection range

0.008 ng/ml to 1000 ng/ml, i.e. factor 125000) (MesoScaleDis-

covery, Gaithersburg, MD, USA, www.mesoscale.com) was used

to measure the four low-grade inflammatory biomarkers (CRP,

Table 1. Absolute biomarker concentrations in the total population and according to glucose metabolism, weight, metabolic
syndrome and smoking status as determined by the single-biomarker techniques or by the multi-array platform of
MesoScaleDiscovery.

CRP (mg/l) SAA (mg/l) sICAM-1 (mg/l) sVCAM-1 (mg/l)

Immunoturbidimetry Multi-array ELISA Multi-array ELISA Multi-array ELISA Multi-array

Total population (n = 550) 2.6 [1.4–4.5] 1.9 [0.9–3.8] 7.0 [4.0–13.8] 1.3 [0.8–2.2] 350691 219654 4766121 339675

Glucose metabolism statusa

NGM (n = 291) 2.2 [1.3–3.7] 1.6 [0.9–3.1] 6.2 [3.7–11.8] 1.2 [0.7–2.0] 338685 210650 4636121 331673

IGM (n = 122) 2.8 [1.5–4.8] 2.1 [1.0–3.9] 8.0 [4.5–14.9] 1.3 [0.9–2.6] 354690 220648 4676105 338668

DM2 (n = 137) 3.2 [1.9–5.7] 2.4 [1.3–5.3] 8.1 [4.7–15.5] 1.5 [1.0–2.6] 3736100 237663 5106127 356682

Weight statusb

Normal weight (n = 100) 1.4 [0.9–3.0] 1.0 [0.5–2.4] 5.3 [3.0–12.0] 1.0 [0.6–1.9] 326699 205650 4546130 323670

Overweight (n = 283) 2.2 [1.4–3.8] 1.6 [0.9–3.1] 6.4 [4.2–12.6] 1.2 [0.8–2.0] 341679 214647 4676114 334673

Obese (n = 167) 3.6 [2.3–6.0] 3.0 [1.6–5.4] 8.6 [5.2–15.8] 1.6 [1.0–2.7] 380698 238662 5056121 357676

Metabolic syndrome statusc

0–1 risk factor (n = 134) 1.5 [0.9–3.1] 1.0 [0.5–2.4] 5.6 [3.4–11.6] 1.1 [0.7–1.8] 317675 198642 4476106 322665

2 risk factors (n = 119) 2.4 [1.3–3.8] 1.8 [0.9–3.2] 6.5 [4.0–14.7] 1.3 [0.8–2.5] 334680 205641 4646117 324667

$3 risk factors d (n = 297) 3.0 [1.8–5.2] 2.4 [1.3–4.7] 7.7 [4.5–14.2] 1.4 [0.9–2.4] 372696 235658 4946126 352679

Smoking status

Never (n = 161) 2.1 [1.3–3.4] 1.5 [0.9–2.7] 6.1 [3.8–13.6] 1.3 [0.8–2.1] 331682 211649 4856125 337675

Ex-smoker (n = 278) 2.6 [1.4–4.6] 2.0 [0.9–3.9] 6.8 [4.2–12.6] 1.3 [0.8–2.0] 347688 217657 4816117 344673

Current (n = 111) 3.2 [1.5–5.5] 2.4 [1.0–5.3] 9.4 [4.5–15.6] 1.5 [0.9–2.7] 3856101 237650 4506122 327678

Data are means 6 SD or medians [interquartile range].
aNGM, normal glucose metabolism: defined as fasting plasma glucose ,6.1 mmol/l and 2-hour post-load plasma glucose ,7.8 mmol/l; IGM, impaired glucose
metabolism: includes impaired fasting plasma glucose (between 6.1 mmol/l and 7.0 mmol/l) and/or impaired glucose tolerance (2-hour post-load plasma glucose
between 7.8 and 11.1 mmol/l); DM2, diabetes mellitus type 2 (fasting plasma glucose $7.0 mmol/l and/or 2-hour post-load plasma glucose $11.1 mmol/l);
bCategorized on the basis of individuals’ body mass index (BMI) as: normal (if BMI 18.5–24.9 kg/m2); overweight (if BMI $25.0 and ,29.9 kg/m2), and obese (if BMI
$30 kg/m2);
cMetabolic syndrome status was defined according to the revised NCEP-ATPIII definition (American Heart Association/National Heart, Lung and Blood Institute);
dany 3 out of the following traits/risk factors reflect the presence of the syndrome: elevated waist circumference ($102 cm in men, $88 cm in women); reduced HDL-
cholesterol (,1.03 mmol/l in men, ,1.29 mmol/l in women, and/or specific drug treatment); elevated triglycerides ($1.7 mmol/l and/or specific drug treatment);
elevated blood pressure (systolic/diastolic $130/85 mm Hg and/or anti-hypertensive treatment); and elevated fasting plasma glucose ($5.6 mmol/l and/or glucose-
lowering treatment); CRP, C-reactive protein; SAA, serum amyloid A; sICAM-1, soluble intercellular adhesion molecule 1; sVCAM-1, soluble vascular cell adhesion
molecule 1.
doi:10.1371/journal.pone.0058576.t001
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SAA, sICAM-1 and sVCAM-1) simultaneously in EDTA plasma.

This system uses multi-array plates fitted with multi-electrodes per

well with each electrode being coated with a different capture

antibody. For the present study the 4-plex assay (plates fitted with

four electrodes per well, i.e. four separate well spots with a

different capture antibody bound to each) was used. The assay

procedure follows that of a classic sandwich ELISA with any of the

analytes of interest captured on the relevant electrode. These

captured analytes were, in turn, detected by a secondary, analyte-

specific, ruthenium-conjugated antibody, which is capable of

emitting light after electrochemical stimulation. This method

minimizes nonspecific signals as the stimulation mechanism

(electricity) is decoupled from the signal (light). According to the

MSD protocol, each sample was analyzed in duplicate on the same

Figure 1. Left panel: comparison of biomarker concentrations between the single-biomarker techniques and the multi-array
platform by weighted Deming regression; Right panel: Bland-Altman plots of the differences between the two methods. (A) CRP, C-
reactive protein (n = 566); (B) SAA, serum amyloid A (n = 563); (C) sICAM-1, soluble intercellular adhesion molecule 1 (n = 566); and (D) sVCAM-1,
soluble vascular cell adhesion molecule 1 (n = 567). For loge transformed data limits of agreement can be converted to original units by anti-log
calculation (e.g., for CRP, e20.25 and e0.26 which are equivalent to 0.78 and 1.30 times or 22% below or 30% above the long axis of CRP, respectively).
doi:10.1371/journal.pone.0058576.g001

Figure 2. Box-and-whisker plots showing median and interquartile (box) and 10th and 90th centiles (whiskers) for each biomarker,
before and after realignment to current (multi-array) concentrations. (A) CRP, C-reactive protein (n = 566); (B) SAA, serum amyloid A
(n = 563); (C) sICAM-1, soluble intercellular adhesion molecule 1 (n = 566); and (D) sVCAM-1, soluble vascular cell adhesion molecule 1 (n = 567); ITB,
immunoturbidimetry; MA, multi-array.
doi:10.1371/journal.pone.0058576.g002
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array plate. All multi-array plates were analyzed within 16 days.

The intra- and inter-assay CVs for the platform of MSD were, for

CRP, 3.0% and 4.1%; for SAA, 2.5% and 11.8%; for sICAM-1,

2.5% and 4.7%; and, for sVCAM-1, 2.6% and 5.0%, respectively.

Variation between production lots of multi-array plates could

influence biomarker measurements. We have evaluated the

possible effect of lot-to-lot variation in the current 4-plex assay

using additional data of previous studies [35,36]. Based on

biomarker data of 6 separate production lots (with an average of

30 plates per lot) the lot-to-lot CV for CRP was 9.8%, for SAA was

28.9%, for sICAM-1 was 3.4% and for sVCAM-1 was 4.9%.

Thus, these variations were quite acceptable, except for SAA. Still,

to avoid any noise due to lot-to-lot variation, all plasma samples of

the CODAM study were measured within a single production lot

of multi-array plates.

Statistical Analyses
Method comparisons. Absolute concentrations of each

biomarker as measured by the single-biomarker techniques and

the multi-array platform were examined on all paired samples

from the CODAM study baseline examination (n = 566 for CRP,

n = 563 for SAA, n = 566 for sICAM-1 and n = 567 for sVCAM-1,

after exclusion of erroneous outliers [37]). Pearson’s correlation

coefficients were used to assess whether the ranking of each

biomarker was similar between methods. Weighted Deming

regression was used to assess the extent of constant and/or

proportional bias between methods [26,27]. This state-of-the-art

statistical technique for method comparison is superior to simple

linear regression by taking into account the error in both the

dependent and independent variables [37,38]. In addition, it

allows random errors of each method to be proportional to the

measured concentrations, such that the ratio of the CVs between

methods remains constant over the concentration ranges (set at 1:1

for regression calculations; e.g. 2% vs. 2% at low ranges, and 10%

vs. 10% at high ranges) [37,38].

Realignment and agreement. We anticipated that absolute

biomarker concentrations, as obtained by either single- or multi-

array methods, would differ due to a lack of standardization.

Realignment of the data would, therefore, be necessary to enable

direct comparison of absolute concentrations. For that purpose we

used equations derived from Deming regression analyses to realign

the data as obtained by one to the other method.

To examine the levels of agreement and verify the absence of

systematic error after the re-alignment procedure, Bland-Altman

plots of the differences between single-biomarker and multi-array

data vs. their mean were obtained [39]. Bland-Altman plots were

drawn on loge transformed data whenever the distribution of the

differences was skewed [39,40]. In addition, two-way mixed effects

models (absolute agreement) were used to calculate intra-class

correlation coefficients (ICC), which reflect similarity in individ-

uals’ rank and similarity in absolute biomarker concentrations as

obtained by single-biomarker techniques (realigned) and multi-array

platform [41]. Note that the results of these analyses are shown in

detail for single-biomarker data realigned to multi-array data for

the following reason. The multi-array platform has recently been

introduced in the CODAM study population and represents the

methodology intended to carry on in follow-up assessments in this

cohort.

Method performance across different cardiovascular risk

groups. We used ANOVA to investigate the extent to which

biomarker concentrations, either assessed by the single-biomarker

techniques or the multi-array platform, increased across categories

of glucose metabolism (i.e. NGM, IGM and DM2), weight (i.e.

normal weight, overweight and obesity), number of traits of the

metabolic syndrome (0–1 RFs, 2 RFs and $3 RFs) and smoking

status (never, ex- and current-smoker), by appreciation of the

group effects. ANOVA for repeated measures were subsequently

used to ascertain whether such patterns of associations were

similar between methods, by appreciation of group-by-method

effects (the P-values of which should then be $0.05). In these

analyses, (non-aligned) individual biomarker data, which are

expressed in different scale units, were first standardized to

comparable units by calculation of Z-scores as follows: (the

individuals’ value – the population mean) \ the population SD.

Per definition, each Z-score has a mean of 0, a SD of 1, and the

same distribution as the absolute biomarker concentration (i.e. the

ranking of individuals in the population remains the same). This

thus enabled a direct comparison of the magnitude of relative

Table 2. Weighted Deming regression.

Regression equations (weighted Deming)a

Variable N pairs Y X intercept slope Sylx

a 95% CI b 95% CI

CRP (mg/l) 566 CRPMA CRPITB 20.33 20.35; 20.31 0.93 0.91; 0.94 0.102

SAA (mg/l) 563 SAAMA SAAELISA 0.47 0.05; 0.90 0.14 0.07; 0.20 0.239

sICAM-1 (mg/l) 566 sICAM-1MA sICAM-1ELISA 36.01 24.63; 47.39 0.53 0.49; 0.56 0.104

sVCAM-1 (mg/l) 567 sVCAM-1MA sVCAM-1ELISA 77.83 58.90; 96.75 0.55 0.51; 0.59 0.124

CRP (mg/l) 566 CRPITB CRPMA 0.35 0.34; 0.37 1.08 1.06; 1.10 0.110

SAA (mg/l) 563 SAAELISA SAAMA 23.46 27.37; 0.45 7.33 4.40; 10.25 1.751

sICAM-1 (mg/l) 566 sICAM-1ELISA sICAM-1MA 268.49 294.71; 242.27 1.90 1.77; 2.03 0.197

sVCAM-1 (mg/l) 567 sVCAM-1ELISA sVCAM-1MA 2141.52 2186.54; 296.49 1.82 1.68; 1.96 0.225

aData are intercepts (a) and (slopes) b of the Deming regression equation, which all differed significantly from 0 and 1, respectively, as indicated by their 95% CI;
rejection of the hypothesis that a= 0 means that the two methods differ at least by a constant amount; rejection of the hypothesis that b= 1 implies that there is a
proportional difference between methods; Sylx are standard deviations of the residuals;
Upper panel: these equations are used as cross-validation equations to realign single-biomarker data (ITB, immunoturbidimetry; or ELISA) to multi-array (MA) data.
Lower panel: these equations are used as cross-validation equations to realign multi-array (MA) data to single-biomarker data (ITB, immunoturbidimetry; or ELISA).
CRP, C-reactive protein; SAA, serum amyloid A; sICAM-1, soluble intercellular adhesion molecule 1; sVCAM-1, soluble vascular cell adhesion molecule 1.
doi:10.1371/journal.pone.0058576.t002
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differences in each biomarker by RF categories. All comparisons

included adjustments for sex, age, eGFR and prior CVD and were

conducted among individuals with complete paired data on all

four biomarkers (n = 550).

All analyses were performed with the use of the Statistical

Package for Social Sciences (SPSS Inc, version 15.0, Chicago,

Illinois, USA, www.spss.com), except weighted Deming regression,

which was analyzed using the Analyse-It software (Analyse-it

Software Ltd, Leeds, UK, www.analyse-it.com) for Microsoft

Excel (Microsoft Corporation, Washington, USA, www.microsoft.

com). Statistical significance was set at a P-value ,0.05.

Results

Biomarker Concentrations
Table 1 shows the absolute concentrations of CRP, SAA,

sICAM-1, and sVCAM-1, as measured with the single-biomarker

techniques or the multi-array platform, in the whole study

population and across RFs categories.

Method comparison. Despite the very high Pearson’s

correlation coefficients (i.e. 0.994 for CRP, 0.758 for SAA, 0.816

for sICAM-1 and 0.755 for sVCAM-1) absolute concentrations of

biomarkers as obtained by single-biomarker vs. multi-array

techniques differed considerably. Indeed, weighted Deming

regression analyses for all biomarkers showed significant constant

(intercepts) and proportional (slopes) bias between methods such

that the absolute mean concentrations of all four biomarkers were

lower when measured with the multi-array platform than with the

single-biomarker techniques (Fig. 1A–D, left panels). The above

indicates that, when comparing absolute values, realignment of the

single-biomarker data to the multi-array data (or vice-versa) is thus

warranted.

Realignment and agreement. Realignment of the data as

obtained by different methods was therefore conducted with the

use of the coefficients retrieved from the Deming regression

models (Table 2). Bland-Altman plots of the single-biomarker data

realigned to the multi-array data (Fig. 1A–D, right panels) showed

that no obvious relation of differences between methods with their

mean was present. For all biomarkers, except SAA, Bland-Altman

plots confirmed the removal of systematic bias after the

realignment (all mean values for differences between methods

around 0 (Fig. 1A, 1C and 1D, right panels)). For SAA, a

systematic difference between ELISA and multi-array data still

persisted after the realignment (about 15%, i.e. e0.145 as compared

to their mean (Fig. 1B, right panel)). In addition, the equations

applied for the realignment (Table 2) resulted in similar distributions

of single-biomarker and multi-array data (Fig. 2). The resulting

ICCs between single-biomarker (realigned) and multi-array data

were 0.996 for CRP, 0.711 for SAA, 0.895 for sICAM-1 and 0.858

for sVCAM-1.

Method performance across different cardiovascular risk

groups. Concentrations of all biomarkers, as measured by

single-biomarker or multi-array methods (expressed as Z-scores),

increased significantly across categories of glucose metabolism,

weight, metabolic syndrome and smoking status (all P-trends

#0.028, except for sVCAM-1 and smoking status), independently

of sex, age, eGFR and prior CVD (Table 3). Importantly, the

patterns of associations between RFs level and individual

biomarker concentrations did not differ by method of detection

[all P-values for group*method interaction were .0.05, except for

metabolic syndrome status and LogeCRP (P-value = 0.002)]

(Table 3).

These results did not materially change, when the analyses were

repeated excluding individuals with CRP values .10 mg/l, likely
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to indicate an acute inflammatory response [9,17,18] (data not

shown).

Additional Analyses
A key step in biochemical tests comparison is to ascertain

whether the level of agreement between methods is acceptable

from a clinical standpoint [40]. For CRP, values ,1, 1–3, and

.3 mg/l have been proposed to identify individuals at low,

intermediate and high-risk for incident CVD, respectively,

whereas such values are lacking for the other biomarkers

examined herein. This impairs the appreciation of the clinical

relevance of the limits of agreement between methods obtained for

these biomarkers (Fig. 1B–D, right panels) [8,9]. Still, for CRP we

could ascertain that, on the basis of immunoturbidimetry, 12.9%

of the CODAM Study population would be classified at ‘low risk’,

46.4% at ‘intermediate risk’ and 40.7% at ‘high-risk’; on the basis

of the multi-array platform these numbers would be 28.0%, 39.5%

and 32.5%, respectively (Cohen’s k= 0.641, which is a measure of

agreement for categorical data; overall concordance rate of

76.7%). After realignment of the immunoturbidimetry to the

multi-array data and vice versa, the agreement between methods

increased considerably (Cohen’s k of 0.931 and 0.946 and

concordance rates of 95.4 and 96.7%, respectively - Table 4).

Discussion

The present study has three main findings. First, the absolute

concentrations of CRP, SAA, sICAM-1 and sVCAM-1 differed

significantly between the single-biomarker techniques and the

multi-array platform of MSD. Second, equations retrieved by

weighted Deming regression enabled proper realignment of the

data to overcome these absolute differences. Finally, the overall

pattern of associations between levels of the individual biomarkers

with glucose metabolism, weight, metabolic syndrome and

smoking status did not differ by method of detection. This is the

first study that has examined and cross-validated, in a large

ongoing cohort study, measurements of biomarkers of low-grade

inflammation by means of single-biomarker techniques and the

multi-array platform of MSD.

Our results are in line with a previous study, which suggested

that data measured with single-biomarker techniques and data

measured with the multi-array platform cannot be combined

without appropriate realignment of the data as this would distort

epidemiological associations [23]. In our study, the absolute

concentrations of all four biomarkers were lower when measured

with the multi-array platform than with the single-biomarker

techniques. It should be emphasized, however, that the absolute

concentration of each biomarker is based on the standards

provided by the commercial kits and the lack of international

standardization among these may therefore explain the differences

between methods [9]. Although CRP reference materials exist,

bias attributed to standardization remains due to the fact that

reference materials were developed to distinguish between CRP

values below 10 mg/l, from 10 to 40 mg/l and above 40 mg/l,

whereas current assays aim for accurate and reproducible

detection down to 0.3 mg/l [18]. Also according to the Centers

for Disease Control and Prevention and the American Heart

Association laboratory science discussion group, further standard-

ization efforts are therefore required as measurements of absolute

biomarker concentrations are of paramount importance for direct

comparison between studies using different methods and for

definition of clinical cutoff values [18]. Nevertheless, in the present

study we were able to appropriately realign the data to overcome

the absolute differences between both methods. Thus, the

introduction of a multi-array platform in an ongoing cohort study

may be implemented without impairing the investigation of

within-subject changes in biomarker concentrations over the

course of time. This was enabled by re-assaying all the baseline

samples with the new multi-array method. In addition, we show

that the agreement in risk level assignment on the basis of CRP

levels (,1, 1–3, and .3 mg/l [8,9]) is very high after realignment.

It remains, however, that subjects’ risk-level assignment depends

on the method used for CRP assessment, and that if this were done

on the basis of MSD readings, less individuals from the CODAM

Study would be considered to be at high-risk than if this were done

on the basis of immunoturbidimetry readings. However, to

establish which method is superior in risk prediction further

studies are warranted.

Another option to directly compare individual biomarker levels

between methods (but also between clinical studies) is by

transformation of data to Z-scores, especially if realignment

equations are lacking. By Z-score transformation, between-

subjects ranking in terms of their biomarkers levels are preserved

within the population. The present study shows that Z-scores of

CRP, SAA, sICAM-1, sVCAM-1 differed across categories of

glucose metabolism, weight, metabolic syndrome and smoking

status in a similar fashion irrespective of the method of detection.

Although it is evident that a high correlation between assays will

result in identical associations, these results, illustrate and

emphasize that, despite absolute differences, the relative differ-

ences are comparable between the single-biomarker techniques

and the multi-array platform.

Taken together, our findings suggest that the multi-array

platform of MSD could potentially replace the single-biomarker

techniques for the detection of multiple biomarkers in large

ongoing and future clinical studies aiming at the investigation of

the role of low-grade inflammation in the etiology of CVD, though

careful validation would be required.

Furthermore, the multi-array platform of MSD has several

practical advantages over the well-established single-biomarker

techniques for biomarker detection, although CRP assays are

generally automated [18]: 1) it has simple operating procedures; 2)

it has a higher sensitivity and greater detection range, which

eliminates multiple dilutions and freeze and thaw cycles per

sample; 3) it allows determination of four (or more) biomarkers

simultaneously, improving the labor-efficiency, and due costs; and

4) it uses a small sample volume (5 mL instead of 50 mL for the

detection of these four markers), which is useful in clinical and

epidemiological studies.

The present study has some limitations. First, with the single-

biomarker techniques, CRP was measured in serum and SAA,

sVCAM-1 and sICAM-1 were measured in plasma, whereas with

the multi-array platform all biomarkers were measured in plasma.

This may, in part, explain the differences between methods in

absolute concentrations of CRP, since a different matrix might

effect detection. Furthermore, the measurement of biomarkers by

the single-biomarker techniques and the multi-array platform were

performed ,7 years apart, which could also have contributed to

an underestimation of absolute biomarker concentrations by the

multi-array platform. However, because storage time of samples

was the same for all study individuals, if anything: 1) this

underestimation was likely systematic and properly incorporated

in the realignment equations; and 2) could not have affected the

relative differences in biomarkers across different levels of subjects’

cardiovascular RFs. Second, we showed realignment equations to

enable transition of ‘old’ to ‘new’ methods within our ongoing

cohort study (and vice versa). However, the results were shown in

detail for single-biomarker data realigned to multi-array data. This

Cross-Validation of Multi-Array Technology
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way of presentation facilitates future comparisons of those

biomarkers measured with the multi-array platform at follow-up

examinations within this ongoing cohort study. However, any

other cohort study should calculate realignment equations within

their own data. These may be susceptible to lot-to-lot variation,

although in our laboratory the lot-to-lot variation between multi-

array assays was low for most of the biomarkers. Nevertheless, the

measured concentrations will always depend on the standards

provided by the commercial kits (for both the single biomarker and

multi-array techniques), which have not been satisfactorily

standardized internationally [9,18].

In conclusion, multiple biomarker detection by the 4-plex multi-

array platform of MSD including CRP, SAA, sICAM-1 and

sVCAM-1 shows comparable results with well-established single-

biomarker techniques, despite differences in absolute concentra-

tions. Subjects’ risk-level assignment therefore depends on the

method used. It is, however, uncertain which method is superior in

risk prediction. Nevertheless, these biomarkers of low-grade

inflammation are associated with glucose metabolism, weight,

metabolic syndrome and smoking status, irrespective of the

method of detection. In terms of time, effort and quality, this

multi-array platform of MSD is an attractive alternative for single-

biomarker measurements. Therefore, this platform is a potential

tool for the quantification of multiple biomarkers of low-grade

inflammation using small sample volume in one single run in large

ongoing and future clinical studies.
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