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Abstract— Climate change is expected to increase pressures on water use between different
sectors (e.g. agriculture, energy, industry, domestic uses) and ecosystems. While climate
change impacts on water availability have been studied widely, less work has been done to
assess impacts on water quality. This study proposes a modelling framework to incorporate
water quality in analyses of cross-sectoral conflicts for water between human uses and
ecosystems under climate change and socio-economic changes. We illustrate this with an
example that shows that increasing river temperatures and declines in summer low flow
under climate change are likely to increase environmental restrictions on cooling water use,
with substantial reductions in power plant capacities in Europe and the US. Hence, conflicts
between environmental objectives and electricity supply are expected to increase due to both
changes in water availability and water quality (water temperature) under climate change. A
new impact modelling framework is proposed, which integrates relations between water
availability, water quality and cross-sectoral water uses, including water requirements for
ecosystems. This could provide improved understanding of how climate change and socio-
economic developments will affect the ‘water-energy-food-ecosystem nexus’.

Index Terms—river flow, water temperature, water quality, climate change, socio-economic
developments, human water use, ecosystems

1 Introduction

Climate change in combination with other anthropogenic changes is expected to contribute to an in-
creasing pressure on water between human water use sectors (e.g. agriculture, energy, industry, domes-
tic uses) and ecosystems (Alcamo et al., 2003). In addition, water demand is expected to increase with a
growing and more prosperous global population (Vérésmarty et al., 2000). Sufficient water of suitable
quality to guarantee human uses and ecosystem health could therefore become a main challenge in the

next decades.

The increasing awareness that climate change may affect water resources has greatly stimulated the
study of the hydrological impacts of a changing climate. While impacts on water quantity have been
studied widely on different scales, varying from catchment (e.g. van Roosmalen et al., 2009) to conti-
nents (e.g. Feyen and Dankers, 2009) and the world (e.g. D6l and Miiller Schmied, 2012), considerably
less work has been done to assess climate change impacts on water quality. However, most sectors re-
quire not only sufficient water availability (quantity), but also suitable water quality. For instance, water

temperature is a critical parameter for cooling water use in the energy and industrial sector, while salini-
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ty and nutrient concentrations are important for agricultural and drinking water uses. The need to ex-
pand hydrological impact assessments to incorporate water quality issues has therefore been increasing-

ly recognized (Kundzewicz and Krysanova, 2010; Whitehead et al., 2009).

In this paper, we propose a modelling framework to incorporate water quality, in addition to water avail-
ability, in studies of cross-sectoral water stress under global change. We illustrate the need to include
water quality by focussing on water temperature, which is most directly affected by climate change. Wa-
ter temperatue also influences several other water quality parameters, such as dissolved oxygen and nu-
trient concentrations and toxicity of heavy metals (Ducharne, 2008; Murdoch et al., 2000). Water tem-
perature and river flow are also major parameters that characterize the physical conditions of freshwater
habitats (Carpenter et al., 1992; Rahel et al., 1996), and are of economic importance for cooling water
use for thermoelectric power production and manufacturing (Manoha et al., 2008). We highlight cross-
sectoral conflicts for water availability and quality, by focussing on impacts of changes in river flow and

water temperature on cooling water use in the energy sector and freshwater ecosystem health.

2 Modelling of conflicts for water availability and water temperature between
energy sector and freshwater ecosystems

To simulate large-scale conflicts for water between cooling water use in the energy sector and freshwa-
ter ecosystems, we worked on the development of a large-scale water temperature module linked to a
macro-scale hydrological model. We used a physically-based modelling framework, consisting of the
stream temperature River Basin Model (RBM) (Yearsley, 2009; Yearsley, 2012) and the Variable Infiltra-
tion Capacity (VIC) macro-scale hydrological model (Liang et al., 1994). RBM was further developed for
applications to large rivers worldwide, including human impacts of thermal pollution and reservoir im-
pacts on water temperature (van Vliet et al., 2012a). The resulting framework simulated observed condi-
tions realistically (van Vliet et al., 2012a). It was then forced with an ensemble of bias-corrected general
circulation model (GCM) output for the 21% century (Hagemann et al., 2011) provided within the EU FP6
WATCH project. Overall, water temperature sensitivities are exacerbated by projected declines in low-
flows, resulting in a reduced thermal capacity (van Vliet et al., 2011). Strong increases in water tempera-
ture and reductions in low flows are mainly projected in the south-eastern United States, southern and
central Europe and eastern China (van Vliet et al., 2013) (Fig. 1). These regions could therefore be poten-
tially affected by increased deterioration of water quality and freshwater habitats, and reduced poten-

tials for human water uses under future climate.
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Fig. 1: Impact of climate change on low river flows (10-percentile daily flow)(a) and mean water temperatures (b)
for 2031-2060 relative to 1971-2000 using the GCM ensemble mean simulations for SRES A2. The results are
masked (hatched areas) for regions with very low (<1 m3s'1) river flow.

Impacts of projected changes in river flow and water temperature on cooling water use in the energy
sector and freshwater ecosystems (i.e. fish habitats) were assessed in more detail. The frequency and
magnitude of exceeding maximum temperature tolerance values of several fish species increased signifi-
cantly for considerable areas of current suitable habitats (van Vliet et al., in revision). This could, in com-
bination with changes in flow regime, affect the distributions of freshwater species. To maintain and pro-
tect current freshwater ecosystems, environmental standards are defined with regard to the volume and
temperature of water for cooling water use (European Water Framework Directive and Fish Directive,
and U.S. Clean Water Act). In Europe and the U.S., most electricity (91% and 78%, respectively) is cur-
rently produced by thermoelectric power plants depending on cooling water, and large fractions of water
for cooling are extracted from rivers. Projected increases in river temperatures and declines in low sum-
mer flow for both regions are expected to increase environmental restrictions on cooling water use. This
could result in substantial reductions in summer mean usable capacity of 6-19% for Europe and 4-16%
for the US (depending on cooling system type and climate scenario for 2031-2060 relative to 1971-2000)
(van Vliet et al., 2012b) (Fig. 2). Conflicts between environmental objectives and economic consequences
of reduced electricity production are thus expected to increase in both regions due to the combination of

increases in water temperatures and declines in summer low flow under climate change.
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Fig. 2: Changes in summer mean usable capacity of thermoelectric power plants in the U.S. and Europe for SRES A2
emission scenario for 2031-2060 relative to 1971-2000 assuming current environmental regulations to protect eco-
systems (figure panel of van Vliet et al. (2012b), with permission of Nature Climate Change) (a). Histograms present
the regional average changes in usable power plant capacity for power plants with once-through and combination
cooling systems and power plants with recirculation (tower) cooling systems for both the SRES A2 and B1 scenario
(b). For more results see van Vliet et al. (2012b).

3 Conceptual modelling framework including water quality impacts

Most of the modeling frameworks that are currently used for climate change impacts analyses on water
resources focus on water quanity and ignore water quality. Global water stress was commonly estimated
by calculating the withdrawals-to-availability ratio (e.g. Alcamo et al., 2007; Arnell et al., 2011) using only
river discharge and water withdrawal simulations. However, most water use sectors require not only suf-

ficient water availability (quantity), but also suitable water quality.

The proposed modelling framework (Fig. 3) consists of a multi-model ensemble of both climate change
scenarios (based on representative concentration pathways (RCPs) (Moss et al., 2010) and shared socio-
economic pathways (SSPs) (Kriegler et al., 2012). These climate and socio-economic scenarios are used in
global hydrological models with linked water quality modules and sectoral water use modules. To inte-
grate relations between water availability, water quality and cross-sectoral water uses, both surface wa-
ter availability and water quality will be simulated. In addition, water demand for different sectors and
water requirements for freshwater ecoystems will be calculated with regard to both water availability

and water quality.

Water quality parameters that are relevant for agriculture, domestic uses and ecosystem health are for
instance salinity, nutrients, heavy metals and PAHs (polycyclic aromatic hydrocarbon). Water tempera-
ture is mainly important for energy and industrial uses, and also for human health (drinking water) and

ecosystem functioning. For most of these water uses, specific threshold values that reflect a deteriora-
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tion or reduction in water usage potential are defined. For instance, for drinking water production, the
World Health Organization (WHO, 2011) defined water quality standards, like the 25°C water tempera-
ture limit for which thermophilic pathogens (e.g. Legionella Campylobacter and Vibrio cholerae) in sur-
face waters with low residual concentrations of chlorine proliferate. The focus should therefore be on
the availability of water of suitable water quality for each water use function. In addition, water quality
can also influence water demand and these impacts could also be included in water stress analyses. For
instance, the water demand for thermoelectric power strongly increases when water temperature rises
(van Vliet et al., 2012b). Changes in thermoelectric water demands and water stress under future climate
could therefore be underestimated if impacts of water temperature increases are ignored. Davies and
Simonovic (2011) also showed that inclusion of dilution capacity for pollutants in water demands has
large impacts on calculated water stress levels. Future changes in water quality under climate change
and socio-economic changes would therefore be important to consider. The use of simulations of river
flow, water quality and water demand (with regard to both availability and quality), is therefore highly

recommended to improve the assessment of water stress under global change.
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Fig. 3: Proposed modelling framework to integrate relations between water availability, water quality and cross-
sectoral water uses under climate change and socio-economic developments.
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4 Conclusions

Most water use sectors require not only sufficient water availability (quantity) but also suitable water
quality. As pointed out in Section 2, the pressure on water between cooling water use in the energy
sector and freshwater ecosystems in Europe and the U.S. will increase under climate change, because of
changes in both summer flow and water temperature. Ignoring water temperature increases could result

in an underestimation of the pressure on water between the energy sector and freshwater ecosystems.

For assessments of water stress and cross-sectoral conflicts for water under future climate and socio-
economic changes, we therefore propose a modelling framework that includes both water availability

and water quality.

Although the focus of our study has been limited to climate change impacts on global river flow and wa-
ter temperature, the hydrological - stream temperature modelling framework (VIC-RBM) used in this
study has potential to include other water quality parameters (van Vliet et al., 2013; Yearsley, 2009). An
extension of the modelling framework to other water quality parameters affected by water temperature
(e.g. dissolved oxygen), streamflow (e.g. conservative substainces) or both (nutrients, pathogens) could
be a next step. Analysis of the competition for water between different water use sectors and freshwater
ecosystems including water quality impacts, could contribute to improved understanding of the devel-

opments of the ‘water-energy-food-ecosystem nexus’ in the 21°% century.
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