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Abstract 

Background 

Genetic variation for environmental sensitivity indicates that animals are genetically different 
in their response to environmental factors. Environmental factors are either identifiable (e.g. 
temperature) and called macro-environmental or unknown and called micro-environmental. 
The objectives of this study were to develop a statistical method to estimate genetic 
parameters for macro- and micro-environmental sensitivities simultaneously, to investigate 
bias and precision of resulting estimates of genetic parameters and to develop and evaluate 
use of Akaike’s information criterion using h-likelihood to select the best fitting model. 



Methods 

We assumed that genetic variation in macro- and micro-environmental sensitivities is 
expressed as genetic variance in the slope of a linear reaction norm and environmental 
variance, respectively. A reaction norm model to estimate genetic variance for macro-
environmental sensitivity was combined with a structural model for residual variance to 
estimate genetic variance for micro-environmental sensitivity using a double hierarchical 
generalized linear model in ASReml. Akaike’s information criterion was constructed as 
model selection criterion using approximated h-likelihood. Populations of sires with large 
half-sib offspring groups were simulated to investigate bias and precision of estimated 
genetic parameters. 

Results 

Designs with 100 sires, each with at least 100 offspring, are required to have standard 
deviations of estimated variances lower than 50% of the true value. When the number of 
offspring increased, standard deviations of estimates across replicates decreased substantially, 
especially for genetic variances of macro- and micro-environmental sensitivities. Standard 
deviations of estimated genetic correlations across replicates were quite large (between 0.1 
and 0.4), especially when sires had few offspring. Practically, no bias was observed for 
estimates of any of the parameters. Using Akaike’s information criterion the true genetic 
model was selected as the best statistical model in at least 90% of 100 replicates when the 
number of offspring per sire was 100. Application of the model to lactation milk yield in 
dairy cattle showed that genetic variance for micro- and macro-environmental sensitivities 
existed. 

Conclusion 

The algorithm and model selection criterion presented here can contribute to better 
understand genetic control of macro- and micro-environmental sensitivities. Designs or 
datasets should have at least 100 sires each with 100 offspring. 

Background 

The term “genotype by environment (G × E) interaction” refers to the fact that the best 
genotype in one environment may not be the best genotype in another environment [1] and 
that genotypes differ in their response to environmental factors, which means that genetic 
variance for environmental sensitivity or phenotypic plasticity exists [2]. Some 
environmental factors (e.g., temperature, soil, diet, etc.) are identifiable and can be 
categorised (e.g., temperate or tropical climate) or quantified (e.g., temperature) and thus are 
referred to as macro-environmental factors. Other environmental factors are unknown and 
referred to as micro-environmental factors [1]. Therefore, genetic variance in macro-
environmental sensitivity is the genetic variance due to known environmental factors and can 
be expressed as the genetic variance in the slope of a reaction norm when environments can 
be quantified on a continuous scale. If environments are categorized, then phenotypes in 
different environments are considered as separate traits and the genetic covariances between 
environments are a measure of genetic variation in macro-environmental sensitivity. Genetic 
variance in micro-environmental sensitivity is the genetic variance due to unknown 



environmental factors and can be expressed as differences in environmental variance, 
sometimes called genetic heterogeneity of environmental variance [3]. 

Numerous studies in the last 70 years have studied G × E interactions or genetics of macro-
environmental sensitivity in animal and plant breeding as well as in evolutionary biology [4-
6]. Different modeling approaches have been used [4]. In recent years, reaction norm models 
have been applied in animal breeding to better understand the environmental factors that 
determine G × E interactions [7-9]. In evolutionary genetics, many experiments on 
Drosophila and other laboratory species have been carried out to understand the genetics of 
macro-environmental sensitivity or phenotypic plasticity [6,10,11]. Other examples of studies 
on wild life populations include analyses of great tit [12] and butterfly [13] populations that 
showed the existence of genetic variation in phenotypic plasticity to temperature change. 

The genetics of micro-environmental sensitivity or environmental variance have been studied 
less extensively than the genetics of macro-environmental sensitivity. In evolutionary 
genetics, several studies have focused on canalization, i.e. selection for reduced variance [14-
16]. Recently, there has been renewed interest on this topic due to the development of 
methods to estimate genetic variance in environmental variance, e.g. Bayesian methods 
[17,18] and double hierarchical generalized linear models (DHGLM) in a REML setting [19]. 
Hill and Mulder [20] reviewed 14 studies on this subject and concluded that there is empirical 
evidence for the existence of genetic variance in environmental variance. 

Although there is substantial evidence for genetic variance in macro- and micro-
environmental sensitivities, very few studies have studied them together or studied their 
genetic relationship. Jinks and Pooni [21] postulated the concepts of macro- and micro-
environmental sensitivity and studied both in Nicotiana rustica but did not investigate the 
relationships between these two types of environmental sensitivity. However, Perkins and 
Jinks [22] reported that both types of environmental sensitivity were weakly genetically 
correlated for most traits in Nicotiana rustica. In a study on Populus, Wu [23] showed that 
micro-environmental sensitivity was less heritable than macro-environmental sensitivity and 
that they were weakly genetically correlated. In another paper, also on Populus, Wu and 
O'Malley [24] detected different sets of genes for macro- and micro-environmental 
sensitivities. In a mapping study of QTL for macro- and micro-environmental sensitivities in 
barley, Kraakman et al. [25] identified only a few QTL for micro-environmental sensitivity, 
but did not detect any QTL for macro-environmental sensitivity. Yampolsky and Scheiner 
[26] observed a weak genetic correlation between developmental noise, similar to micro-
environmental sensitivity, and macro-environmental sensitivity in Daphnia Magna. In 
Drosophila melanogaster, both positive and negative genetic correlations between macro- 
and micro-environmental sensitivities have been reported [27,28]. In farm animals, the 
genetic correlation between macro- and micro-environmental sensitivities has not been 
investigated. In addition, to date, no suitable method was available to estimate such 
correlations in outbred populations and the requirements in terms of number of families and 
family sizes of the designs necessary to estimate genetic parameters of macro- and micro-
environmental sensitivities were unknown. 

The objectives of this study were to extend the double hierarchical generalized linear model 
(DHGLM) of Rönnegård et al. [19] with a reaction norm model to estimate genetic variance 
for macro- and micro-environmental sensitivities and to investigate bias and precision of 
estimated variance components in designs resembling dairy cattle populations. In addition, 
we evaluated Akaike’s information criterion (AIC) using approximated h-likelihood to select 



the best fitting model and studied situations in which true genetic and best fitting statistical 
models differed. Finally, we applied the model to lactation milk yield in dairy cattle. 

Methods 

In this section, we describe the assumed quantitative genetic model underlying genetic 
variance for macro- and micro-environmental sensitivities, the statistical model to estimate 
genetic variance in macro- and micro-environmental sensitivities, and the AIC based on an 
approximation of the h-likelihood that can be used to select the best fitting model. Finally, we 
present the simulation used to test the statistical model and describe the evaluated scenarios 
as well as an application to milk yield in dairy cattle. 

Quantitative genetic model 

Here, we assume that genetic variance for macro-environmental sensitivity is expressed as 
the genetic variation in the slope of a linear reaction norm. Genetic variance in micro-
environmental sensitivity implies that genotypes respond differently to one or several 
unknown environmental factors and thus, we assume that it is expressed as genetic variance 
in environmental variance according to an exponential model [29]. Thus, the quantitative 
genetic model underlying genetic variance in macro- and micro-environmental sensitivities 
can be formulated as: 

( )( )2 exp 0.5ln 0.5int sl E vP A A x Aµ σ ε= + + + +  (1) 

where P is the phenotype, µ is the population mean for the phenotype, x is the environmental 
parameter (continuous or discrete) that cause genotypes to respond differently, Aint, Asl and Av 
are the additive genetic or breeding values for the intercept, for the slope of the reaction norm 
(= macro-environmental sensitivity), and for the environmental variance (= micro-
environmental sensitivity), respectively, 2Eσ  is the environmental variance of the exponential 

model and ε is a scaled environmental deviation with variance one. Note that the average 

environmental variance is 2 2 2exp(0.5 )
vE E Aσ σ σ=  [3]. The additive genetic values Aint, Asl and 

Av have variance 
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Statistical model 

The basis of the statistical model is the DHLGM as presented by Rönnegård et al. [19]. The 
original DHGLM algorithm in Rönnegård et al. [19] iterates between a linear mixed model 
for the phenotypic observations: yi = Pi = phenotypic observation of animal i; and a Gamma 

GLM for the residual variance φi, where 
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 is the squared estimated residual 

of yi and hi is the diagonal element of the hat-matrix of y corresponding to yi [30]. Felleki et 



al. [31] extended the model of [19] by allowing estimation of the genetic covariance (, va aσ ) 

between the genetic effect in the mean model and the genetic effect in the variance model 
(equation (2)) in the absence of a linear reaction norm model and reported on computational 
details and a theoretical assessment of this algorithm. In brief, equivalent to using a Gamma 

GLM, linearizing 
2ˆ

1
i

i

e

h−
 around its current fitted value results in vector ψψψψ and yields the 

following bivariate linear model: 
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where X(X v) is the incidence matrix for fixed effects for y (ψψψψ), b (bv) is the vector with 
solutions for fixed effects for y(ψψψψ), Z(Z v) is the incidence matrix for relating observations of 
y(ψψψψ) to the additive genetic values a (av) for phenotype (environmental variance) 
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expected to be equal to 1, because W and Wv already contain the reciprocals of the residual 
variances per observation. Estimating 2∈σ  and 2

v∈σ  allows more flexibility. An iterative 

estimation procedure is required to obtain estimates for all parameters because of the 
dependence of the model for y on the results of the model for ψψψψ and vice versa. The vector ψψψψ 
and the diagonals of W and Wv are updated at each iteration until convergence. The model in 
equation (2) can be considered as combining the DHGLM method [19] with the iterative 
method of Mulder et al. [32]. 

In order to consider macro- and micro-environmental sensitivity simultaneously, the model 
for phenotype y in equation (2) was extended with a linear reaction norm model to estimate 
genetic variance in macro-environmental sensitivity, whereas the residual variance model 
using ψψψψ estimates the genetic variance in micro-environmental sensitivity or environmental 
variance. Instead of using an animal model, we used a sire model because implementation of 
the animal model DHGLM resulted in severely biased estimates of variance components with 
single observations per animal. As an indication of poor model fit, implementation of the 
animal model DHGLM gave a lower adjusted profile h-likelihood (see next section “Model 
selection”) than an animal model without heterogeneity of residual variance. Sire models are 
commonly used in combination with reaction norm models [7,8,33]. In the reaction norm 
model, we assumed that the environmental parameter x (see equation (1)) is known without 
error and does not need to be estimated from the data. The resulting combined macro–micro 
environmental sensitivity sire model can be formulated as: 
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where  sψψψψ  is a vector with linearized values of transformed squared residuals (see calculation 

in Appendix), Zs and Zsv are respectively the incidence matrices for the sire effects for the 
intercept of the reaction norm and for the environmental variance, Zx is the matrix with the 
environmental parameter x as a covariate for the sire effects for the slope of the reaction 
norm, and sint, ssl and sv are the vectors with the estimated sire effects for intercept, slope, and 
environmental variance. The sire effects sint, ssl, and sv are assumed trivariate normally 

distributed 
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residual variances in a sire model. Computations of ψψψψs and of the diagonals of Ws and Wsv 
are different due to the use of a sire model compared to an animal model and are explained in 
the Appendix. The algorithm was implemented by iterating over several runs of ASReml 
[34]. In each ASReml run, REML-estimates of the variance components were obtained for 
the current values of ψψψψs, Ws and Wsv. The vector ψψψψs and the diagonals of Ws and Wsv were 
updated after each ASReml run. On simulated data, 10 ASReml runs were sufficient to obtain 
converged parameter estimates. ASReml was run with an option to check whether the 
variance-covariance matrices were positive definite and were forced to be positive definite 
[34] if they were not. 

Model selection 

When working with real data, the true genetic model is not known, thus statistical inference 
can be used to find the statistical model that fits the data best. The h-likelihood concept can 
be applied when using DHGLM [35], in which the adjusted profile h-likelihood (APHL) is 
used to assess the significance of variance components. Because we use an iterative 
reweighted least square approximation in ASReml, the APHL can be approximated from the 
log REML likelihood (logL) for the bivariate model in equation (3) fitted in ASReml, after 
correcting for the fact that the squared estimated residuals of y are used to compute the 
response variable ψψψψs (see Appendix for derivation): 

( ) ( )12 2ˆ ˆAPHL 2 l ,n
i sv sv isv svlogL w w∈ ∈σ σ

−
= − − −∑ ∑  (4) 

where ���� is the weight for the variance model for observation i, i.e. the ith diagonal of Wsv. 
Note that equation (4) can also be used for animal models by replacing elements ���� and 
��	

�  with the corresponding elements of equation (2). To compare nested and non-nested 

models, we propose to use APHL in combination with Akaike’s information criterion (AIC): 



AIC APHL 2t,= +  (5) 

where t is the number of variance parameters. 

Simulation 

Monte Carlo simulation was used to evaluate the bias and precision of the estimated genetic 
parameters of the model and proposed algorithm. Populations of paternal half-sib families 
were simulated, resembling a simplified population structure in an animal breeding context 
with large half-sib offspring groups per sire like in dairy cattle. Either the number of sires 
(50, 100 or 200) was varied while keeping the number of offspring per sire at 100, or the 
number of offspring per sire (20, 50, 100 or 200) was varied while keeping the number of 
sires at 100. Sires and dams were assumed unrelated and were not selected. The offspring had 
phenotypes but the dams or sires did not. Phenotypes were generated for offspring according 
to the quantitative genetic model in equation (1). Dams were randomly assigned to herds 
(herd size = 100 cows) and their offspring (daughters in the case of dairy cattle) were in the 
same herd. For each herd, the environmental covariate x was sampled from N(0,1). No fixed 
effects other than a general mean were simulated (µ = 0) but offspring were randomly 
allocated to contemporary groups with size 10 to investigate the effect of fixed effects on the 
precision of genetic parameters. Additive genetic effects were sampled from ( )N , ⊗0 G A . 

Different values for genetic variances and genetic correlations were used for simulation. 
Table 1 gives an overview of the parameter values used in the simulation, both the default 
and alternative values. In each scenario, only one parameter was varied at a time, i.e. other 
parameters were kept at their default values. For each set of parameters, 100 replicates were 
generated and means and standard deviations of estimates were calculated across replicates. 

Table 1 Default and alternative parameters values used in Monte Carlo simulation 
Parameter Default Alternative values 

���
�
�   0.3 0.1, 0.5 

��	�
�   0.05 0.025, 0.10 

��

�   0.1 0.05, 0.2 

Genetic correlations (see text below equation (1)) 0 0.5 
Number of offspring per sire 100 20, 50, 200 
Number of sires 100 50, 200 
Number of replicates 100  

���
�
�  is the additive genetic variance for the intercept of the reaction norm; ��	�

�  is the additive 
genetic variance for the slope of the reaction norm or macro-environmental sensitivity and 
��

�  is the additive genetic variance for micro-environmental sensitivity or environmental 

variance. 

Scenarios in which true genetic and statistical models differ 

First, we tested situations in which the true genetic and statistical models contained both 
types of environmental sensitivities for different sets of genetic parameters and designs. In 
addition, we investigated the power of AIC to select the correct model given the true genetic 
model. Three situations were simulated with default parameters: presence of genetic variance 
in (i) macro- or (ii) micro-environmental sensitivity or in (iii) both. Four statistical models 



were applied to these simulated situations: a combined macro–micro environmental 
sensitivity model “macro–micro”, a macro-environmental sensitivity model “macro”, a 
micro-environmental sensitivity model “micro” and a simple model “simple” with only one 
additive genetic effect for the phenotype. The “macro–micro” model and the “micro” model 
were run for 10 ASReml runs to update the weights and the transformed squared residuals, 
whereas the “macro” model and the “simple” model required only one ASReml run. AIC 
(equation 5) was used to select the best fitting model. 

Finally, we tested scenarios in which the statistical model deviated from the true genetic 
model used for simulation, i.e. when model selection failed to select the right model (Table 
2). These scenarios were analyzed to explore whether genetic parameters are biased when the 
statistical model deviates from the true genetic model and whether macro-environmental 
sensitivity can be detected with a micro-environmental sensitivity model or vice versa. These 
scenarios were run with the default set of parameters as listed in Table 1 but with various 
values of ��	�

�  and ��

� . Scenarios for which the true genetic and statistical models were the 

same and included either macro or micro-environmental sensitivity were not analyzed since 
these have been previously investigated, i.e. see [36] for macro-environmental sensitivity and 
[19] for micro-environmental sensitivity. 

Table 2 Scenarios with different combinations of true genetic models and statistical 
models 

 Statistical model 
True genetic model Macro ES Micro ES Macro and micro ES 
Macro ES Not addressed A B 
Micro ES C Not addressed D 
Macro and micro ES E F G (Default in this study) 
Macro ES = macro-environmental sensitivity; micro ES = micro-environmental sensitivity. 

Application to milk yield in dairy cattle 

The “macro–micro”, “macro”, “micro” and “simple” models were applied to 305-day 
lactation milk yield of 142 565 first parity Swedish Holstein cows. Lactation yields were 
calculated based on test-day data, as described in [37] using the test-day interval method [38]. 
Seasons were defined as three-month periods (January-March, April-June, July-September, 
October-December). Herd-year-season (HYS) classes with less than five cows were 
excluded. Data on a total of 762 sires with on average 187 daughters were available and 213 
of these sires had more than 100 daughters. In the model for phenotype (y), HYS was a fixed 
effect and in the model for residual variance ( sψψψψ ), HYS was a random effect to allow 
regression to the mean with few observations per HYS and avoid extreme HYS estimates. 
The model for y included a fixed fourth order polynomial for age at calving and a fixed ninth-
order polynomial for lactation length, while the model for  sψψψψ  included a third and a sixth 
order polynomial for age at calving and lactation length, respectively. The orders of 
polynomials were determined using a Wald test in univariate models for y and  sψψψψ  and were 
kept the same for “macro–micro”, “macro”, “micro” and “simple” models. Herd-year average 
milk yield standardized to a mean of zero and a variance of one was used as an environmental 
parameter for macro-environmental sensitivity. The “macro–micro”, “macro”, “micro” and 
“simple” models were all run for 50 ASReml runs. After 50 runs, the change in variance 



components was less than 0.2% of the change between consecutive runs and therefore 
parameters were considered converged. 

Results 

Variance components and effect of fixed effects 

Estimated genetic variances were close to their true values when simulated genetic 
correlations were zero, although occasionally the average value deviated slightly from the 

true value (Table 3). The average of the estimated genetic variance in slope ( )2ˆ=
slAσ  was 

biased upwards in all cases, but the bias was small (between +2 and +13%). Surprisingly, 
standard deviations of 2ˆ

slAσ  relative to 2

slAσ  were small (between 21 and 30% of 2

slAσ ). Note 

that standard deviations across replicates represent standard errors of estimates from a single 
replicate, e.g. an analysis of one data set. The average of the estimated genetic variance in 

environmental variance ( )2ˆ=
vAσ  had on average larger deviations from the true value but no 

direction in bias could be detected. Standard deviations of 2ˆ
vAσ  relative to 2

vAσ  were large 

(between 31 and 74%), indicating that this parameter had a low precision. In the presence of 
fixed effects (i.e. contemporary group) for the mean and residual variance, standard 
deviations of estimated parameters increased on average by 9% and the number of replicates 
for which the genetic variance-covariance structure was forced to be positive definite also 
increased. Thus, the conclusion is that estimates of genetic variances are practically unbiased 
but that the precision of 2ˆ

vAσ  is low. 

Table 3 Means and standard deviations of estimated genetic parameters across 100 
replicates when genetic correlations are zero 

Fixed effects1 True parameters Estimated parameters (SD) Np 
���
�
�   ��	�

�   ��

�   ���
�

�    ��	�
�    ��


�    

No 0.1 0.05 0.1 0.101 (0.020) 0.051 (0.012) 0.095 (0.035) 0 
No 0.3 0.05 0.1 0.315 (0.053) 0.054 (0.015) 0.107 (0.046) 0 
No 0.5 0.05 0.1 0.507 (0.066) 0.052 (0.013) 0.115 (0.061) 3 
No 0.3 0.05 0.05 0.297 (0.047) 0.053 (0.012) 0.053 (0.029) 4 
No 0.3 0.05 0.2 0.308 (0.049) 0.053 (0.014) 0.186 (0.065) 0 
No 0.3 0.025 0.1 0.298 (0.047) 0.026 (0.008) 0.097 (0.041) 0 
No 0.3 0.1 0.1 0.296 (0.052) 0.104 (0.021) 0.083 (0.045) 1 
Yes 0.1 0.05 0.1 0.099 (0.022) 0.053 (0.014) 0.091 (0.037) 1 
Yes 0.3 0.05 0.1 0.309 (0.044) 0.057 (0.015) 0.104 (0.051) 0 
Yes 0.5 0.05 0.1 0.503 (0.084) 0.052 (0.014) 0.104 (0.074) 10 
1Models have either only a mean as fixed effect (no fixed effects) or have contemporary 
groups as fixed effects (yes); ���
�

�  = additive genetic variance of breeding value for the 
intercept; ��	�

�  = additive genetic variance of breeding value for the slope variance (= macro-
environmental sensitivity); ��


�  = additive genetic variance for environmental variance (= 
micro-environmental sensitivity); Np = number of replicates with covariance structures 
forced to be positive definite. 



Effect of genetic correlations 

In general, estimates of genetic variances remained close to their true values when genetic 
correlations were varied (<10% difference from the true value) (Table 4). When all genetic 
correlations were equal to 0.5, the genetic variance of environmental variance was slightly 
underestimated (−11%). Estimates of genetic correlations were unbiased but had very high 
standard deviations, especially the genetic correlation between the breeding value for slope 
and environmental variance (��	�,�
). The number of replicates in which the variance-
covariance structure was forced to be positive definite was in general small but slightly 
higher when all genetic correlations were equal to 0.5. In addition to the results shown, we 
simulated an extreme negative genetic correlation (��	�,�
 �–0.9), as well as an extreme 
positive genetic correlation (��	�,�
 � 0.9). In these scenarios, for 40 to 60% of the replicates, 
the variance-covariance matrix was bended to be positive definite. Due to the large 
proportion of replicates with bended variance-covariance matrices, the average genetic 
correlation was biased towards zero. Nevertheless, the general conclusion is that estimates of 
genetic correlations are largely unbiased but are estimated with low precision. 

Table 4 Means and standard deviations across 100 replicates of estimated genetic 
parameters when genetic correlations are not zero 

True parameters Estimated parameters (SD) 
���
�,�
  ���
�,�	�  ��	�,�
  ���
�

�   ��	�
�   ��


�   ���
�,�
  ���
�,�	�  ��	�,�
  Np 

0 0 0 0.315 0.054 0.107 −0.005 0.004 0.012 0 
(0.053) (0.015) (0.046) (0.165) (0.155) (0.249) 

0.5 0 0 0.303 0.051 0.099 0.554 −0.028 −0.007 1 
(0.047) (0.012) (0.048) (0.155) (0.136) (0.203) 

0 0.5 0 0.303 0.053 0.094 −0.010 0.508 −0.014 1 
(0.056) (0.012) (0.045) (0.200) (0.132) (0.239) 

0 0 0.5 0.293 0.052 0.092 0.014 0.021 0.558 2 
(0.045) (0.013) (0.034) (0.185) (0.147) (0.208) 

0.5 0.5 0.5 0.301 0.053 0.089 0.537 0.517 0.530 6 
(0.051) (0.013) (0.036) (0.171) (0.138) (0.192) 

���
�,�
 = genetic correlation between additive genetic effects for intercept and environmental 
variance; ���
�,�	� = genetic correlation between additive genetic effects for intercept and 
slope; ��	�,�
 = genetic correlation between additive genetic effects for slope (macro-
environmental sensitivity) and environmental variance (micro-environmental sensitivity); 
���
�
�  = additive genetic variance of breeding value for intercept (true value = 0.3); ��	�

�  = 
additive genetic variance of breeding value for slope variance (= macro-environmental 
sensitivity; true value = 0.05); ��


�  = additive genetic variance for environmental variance (= 
micro-environmental sensitivity; true value = 0.10); Np = number of replicates with 
covariance structures forced to be positive definite. 

Effect of different designs 

When varying the number of offspring per sire or the number of sire families, means of 
genetic variances were close to their true simulated values in most cases, except when the 
number of offspring per sire was 20 for which estimates for ��	�

�  and ��

�  were biased upwards 



(25% and 20%, respectively) (Table 5). In this case, 51% of the replicates had variance-
covariance matrices that were forced to be positive definite, indicating that this is not a 
suitable design to estimate genetic parameters for macro- and micro-environmental 
sensitivities. When increasing the number of offspring per sire, the standard deviations of 
estimates of ��	�

�  and ��

�  decreased substantially, e.g. from 50 to 200 offspring with 54 and 

60%, respectively, whereas the standard deviation of estimates of ���
�
�  decreased only 

slightly (−10%). When increasing the number of sire families from 50 to 200, standard 
deviations of estimates of all genetic parameters decreased substantially (from −52 to −58%). 
Based on these results, we conclude that designs with at least 100 sires with 100 offspring 
each are required in order to estimate variance components for macro- and micro-
environmental sensitivities with low standard errors. 

Table 5 Means and standard deviations across 100 replicates of estimated genetic 
parameters for different designs 

  Estimated parameters (SD) 
NS NO ���
�

�   ��	�
�   ��


�   ���
�,�
  ���
�,�	�  ��	�,�
  Np 

100 20 0.301 0.063 0.120 −0.008 −0.004 0.083 51 
(0.057) (0.038) (0.113) (0.304) (0.216) (0.416) 

100 50 0.309 0.056 0.099 −0.016 −0.013 0.025 8 
(0.051) (0.020) (0.060) (0.279) (0.165) (0.376) 

100 100 0.315 0.054 0.107 −0.005 0.004 0.012 0 
(0.053) (0.015) (0.046) (0.165) (0.155) (0.249) 

100 200 0.301 0.053 0.093 0.000 0.007 −0.013 0 
(0.046) (0.009) (0.024) (0.135) (0.116) (0.168) 

50 100 0.312 0.053 0.107 0.015 0.002 0.036 5 
(0.079) (0.018) (0.064) (0.295) (0.199) (0.320) 

200 100 0.301 0.053 0.099 0.009 −0.002 −0.009 0 
(0.033) (0.009) (0.028) (0.142) (0.108) (0.163) 

NS = number of sires; NO = number of offspring per sire; ���
�
�  = additive genetic variance of 

breeding value for intercept (true value = 0.3); ��	�
�  = additive genetic variance of breeding 

value for slope variance (= macro-environmental sensitivity; true value = 0.05); ��

�  = 

additive genetic variance for environmental variance (= micro-environmental sensitivity; true 
value = 0.10); ���
�,�
 = ���
�,�	� = ��	�,�
 = 0; Np = number of replicates with covariance 
structures forced to be positive definite. 

Model selection 

Using AIC to select the best fitting model, the true genetic model was selected as the best 
statistical model in at least 90% of the 100 replicates when the number of offspring per sire 
was 100 (Table 6). In only a few cases did the best statistical model differ from the true 
genetic model. However, when the number of offspring per sire was 50, the correct model 
was selected for 63% to 95% of the replicates. When both macro- and micro-environmental 
sensitivity existed and the number of offspring per sire was 50, the macro model was selected 
rather than the macro–micro model in 27% of the replicates. When only micro-environmental 
sensitivity existed and 50 offspring per sire, the power to select the correct model was 
reduced. In conclusion, the power to select the correct model was high in designs with at least 
100 offspring per sire. 



Table 6 The best model selected in 100 replicates according to Akaike’s information 
criterion and effect of the number of offspring for different true genetic models 
NO True genetic model True parameters Nb of times model selected based on AIC 
 ��


�   ��	�
�   Macro–micro Macro Micro  Simple 

100 Macro–micro 0.1 0.05 99 1 0 0 
 Macro 0 0.05 5 95 0 0 
 Micro 0.1 0 3 1 94 2 
 Simple 0 0 1 4 5 90 
50 Macro–micro 0.1 0.05 63 27 8 2 
 Macro 0 0.05 7 87 1 5 
 Micro 0.1 0 4 1 71 24 
 Simple 0 0 1 1 3 95 
NO = number of offspring per sire, “Macro–micro” = model accounting for both macro- and 
micro-environmental sensitivities; “Macro” = model with only macro-environmental 
sensitivity; “Micro” = model with only micro-environmental sensitivity; “Simple” = model 
without macro- and micro environmental sensitivities and only a genetic effect for the 
phenotype; ���
�

�  = additive genetic variance of breeding value for intercept (true value = 0.3); 
��	�
�  = additive genetic variance of breeding value for slope variance (= macro-environmental 

sensitivity), ��

�  = additive genetic variance for environmental variance (= micro-

environmental sensitivity), ���
�,�
 = ���
�,�	� = ��	�,�
 = 0. 

Scenarios in which true genetic and statistical models differ 

It is of interest to determine whether genetic parameters are biased if the wrong statistical 
model is applied. When either macro or micro-environmental sensitivity was simulated 
(Table 7), the variance-covariance structures were forced to be positive definite in many 
replicates, due to estimates of variances at the boundary. Estimates at the boundary were 
expected since the estimated genetic variance should be close to zero when the true genetic 
variance is zero. Forcing the genetic variance-covariance structures to be positive definite can 
bias estimates of parameters. When true macro-environmental sensitivity existed, some 
micro-environmental sensitivity was detected (2ˆ 0

vAσ > ) with the “micro” (scenario A) and 

the “macro–micro” (scenario B) models, indicating that part of the macro-environmental 
sensitivity was captured as micro-environmental sensitivity, but 2ˆ

vAσ  were small (0.010-

0.018). When true micro-environmental sensitivity existed, no macro-environmental 
sensitivity was detected (2ˆ 0≈

slAσ ) with the “macro” (scenario C) and “macro–micro” 

(scenario D) models, but 2ˆ
vAσ  were biased downwards (between −16% to −28%), possibly 

because of the high number of genetic variance-covariance structures that were forced to be 
positive definite. When both macro and micro-environmental sensitivity existed, the “macro” 
(scenario E) and “micro” (scenario F) models gave unbiased estimates of either macro-
environmental sensitivity or micro-environmental sensitivity and the genetic variance-
covariance structure was forced to be positive definite for at maximum three replicates. Thus, 
the general conclusion is that a discrepancy between the true and statistical models does not 
lead to large biases in estimated genetic parameters and that contamination between estimates 
of the two types of environmental sensitivity is very limited. 



Table 7 Means and standard deviations across 100 replicates of estimated genetic 
parameters when true and statistical models differ 
Scenario True model True parameters Statistical model Estimated parameters (SD) 
 ��	�

�   ��

�   ���
�

�   ��	�
�   ��


�   Np 

A Macro 0.025 0 Micro 0.303  0.010 51 

(0.045) (0.020) 

Macro 0.05 0 Micro 0.303  0.010 48 

(0.044) (0.013) 

Macro 0.1 0 Micro 0.308  0.018 37 

(0.050) (0.019) 
B Macro 0.025 0 Macro–micro 0.296 0.027 0.012 60 

(0.046) (0.009) (0.011) 
Macro 0.05 0 Macro–micro 0.298 0.052 0.013 51 

(0.048) (0.011) (0.013) 
Macro 0.1 0 Macro–micro 0.307 0.091 0.012 54 

(0.051) (0.020) (0.013) 
C Micro 0 0.05 Macro 0.296 0.002  0 

(0.041) (0.003) 
Micro 0 0.1 Macro 0.292 0.003  0 

(0.039) (0.004) 
Micro 0 0.2 Macro 0.289 0.002  0 

(0.043) (0.003) 
D Micro 0 0.05 Macro–micro 0.303 0.003 0.053 71 

(0.050) (0.003) (0.024) 
Micro 0 0.1 Macro–micro 0.300 0.003 0.084 60 

(0.047) (0.003) (0.034) 
Micro 0 0.2 Macro–micro 0.304 0.002 0.143 66 

(0.049) (0.003) (0.058) 
E Macro–micro 0.05 0.05 Macro 0.297 0.055  0 

(0.047) (0.014) 
Macro–micro 0.05 0.1 Macro 0.298 0.053  0 

(0.052) (0.012) 
Macro–micro 0.05 0.2 Macro 0.292 0.053  0 

(0.049) (0.011) 
Macro–micro 0.025 0.1 Macro 0.306 0.026  0 

(0.050) (0.008) 
Macro–micro 0.1 0.1 Macro 0.298 0.106  0 

(0.045) (0.022) 
F Macro–micro 0.05 0.05 Micro 0.299  0.050 3 

(0.051) (0.031) 
Macro–micro 0.05 0.1 Micro 0.297  0.095 1 

(0.047) (0.042) 
Macro–micro 0.05 0.2 Micro 0.304  0.191 0 

(0.045) (0.070) 
Macro–micro 0.025 0.1 Micro 0.299  0.105 0 

(0.049) (0.043) 
Macro–micro 0.1 0.1 Micro 0.298  0.103 1 

(0.045) (0.045) 

See Table 2 for schematic overview of scenarios; “Macro–micro” = model accounting for both macro- and micro-
environmental sensitivities; “Macro” = model with only macro-environmental sensitivity; “Micro” = model with only micro-
environmental sensitivity; ���
�

�  = additive genetic variance of breeding value for intercept (true value = 0.3); ��	�
�  = additive 

genetic variance of breeding value for slope variance (= macro-environmental sensitivity); ��

�  = additive genetic variance 

for environmental variance (= micro-environmental sensitivity), ���
�,�
 = ���
�,�	� = ��	�,�
 = 0; Np = number of replicates 
with covariance structures forced to be positive definite. 



Application to milk yield in dairy cattle 

The “macro–micro”, “macro”, “micro” and “simple” models were applied to 305-day first 
lactation milk yield data of Swedish Holsteins (mean = 8693 kg, standard deviation = 1652 
kg, skew = 0.18, kurtosis = 0.28). “Macro”, “micro” and “macro–micro” models fitted 
significantly better than the “simple” model. The “micro” model was favoured by AIC (Table 
8) and had the best fit. The genetic variance for micro-environmental sensitivity was 
substantial but lower than for most reported traits [20]: one genetic standard deviation 
changed micro-environmental sensitivity (= environmental variance) by 21%. The difference 
in AIC between the “macro–micro” and “micro” models was small and therefore it was 
interesting to examine the genetic parameters of the “macro–micro” model. The estimated 
genetic variance for macro-environmental sensitivity was small in comparison to the genetic 
variance in intercept. For instance, the estimate of the genetic correlation between 
environments that were −2 and 2 standard deviations from the overall mean was 0.92, 
indicating a small level of reranking of sires across the environmental gradient. Estimates of 
genetic correlations between intercept and macro- and micro-environmental sensitivities were 
0.81 and 0.63, respectively, indicating that selection for higher milk yield increases both 
types of environmental sensitivity. The estimate of the genetic correlation between macro- 
and micro-environmental sensitivities was 0.76, indicating that they are genetically similar. 
Standard errors of parameter estimates were smaller than the standard deviations found for 
the simulations, due to the larger dataset i.e. more sires and more offspring per sire. Thus, 
macro- and micro-environmental sensitivities may exist for milk yield in dairy cattle and are 
positively correlated. 

Table 8 Estimated genetic parameters for macro- and micro-environmental sensitivity 
of milk yield in dairy cattle  

Parameter Macro–micro Macro Micro  Simple 
 Estimate SE Estimate SE Estimate SE Estimate SE 

���
�
�   420 800 27960 420 400 28 004 416 800 27 696 416 000 27 692 

��	�
�   11 096 2288 11 116 2320     

��

�   0.043 0.008   0.042 0.008   

���
�,�	�  0.808 0.062 0.812 0.063     

���
�,�
  0.627 0.073   0.608 0.0751   

��	�,�
  0.765 0.098       

APHL 193 704  194 179  193 692  202 832  
AIC 193 722  194 191  193 704  202 840  

���
�
�  = additive genetic variance of breeding value for intercept; ��	�

�  = additive genetic variance of 
breeding value for slope variance (= macro-environmental sensitivity); ��


�  = additive genetic variance 
in environmental variance (= micro-environmental sensitivity); ���
�,�
 = genetic correlation between 
breeding value for intercept and environmental variance; ���
�,�	� = genetic correlation between 
breeding values of intercept and slope of reaction norm; ��	�,�
 = genetic correlation between 
breeding values of slope and environmental variance; APHL = adjusted profile h-likelihood; AIC = 
Akaike’s information criterion; “Macro–micro” = model accounting for both macro- and micro-
environmental sensitivities; “Macro” = model with only macro-environmental sensitivity; “Micro” = 
model with only micro-environmental sensitivity; “Simple” = model without macro- and micro 
environmental sensitivities and only a genetic effect for the phenotype; SE = approximate standard 
error obtained with ASReml. 



Discussion 

Model and design 

In this study, we developed a model to estimate genetic variances for macro- and micro-
environmental sensitivities. The model is an extension of the DHGLM as presented by 
Rönnegård et al. [19]. Here, we combined a linear reaction norm model to estimate genetic 
variance for macro-environmental sensitivity with the DHGLM to estimate genetic variance 
for micro-environmental sensitivity. The animal model in equation (2) was adapted to a sire 
model because the animal model produced highly biased estimated variance components 
because of the high dependence of the estimated breeding values and residuals on the 
variance ratio used in the mixed model equations, which would differ for each animal. Felleki 
et al. [31] also reported the presence of bias in variance components with few repeated 
observations per animal but the bias decreased as the number of repeated observations per 
animal increased. Furthermore, an animal model with heterogeneous residual variance 
(DHGLM implementation) gave a poorer adjusted profile h-likelihood than an animal model 
without homogenous residual variance, which indicates that the former did not produce a 
better fit than the latter in a scenario that included both macro and micro-environmental 
sensitivities. Therefore, we decided to use a sire model implementation, because it is more 
robust than the animal model implementation with DHGLM when animals only have a single 
observation. Furthermore, sire models are commonly used for reaction norm models, because 
of their substantially lower computational burden compared to animal models and genetic 
information about environmental sensitivity typically comes from paternal half-sibs that 
perform in different environments. As far as we know, this is the first time that a model to 
estimate genetic variance in macro- and micro-environmental sensitivities suitable for 
outbred animal populations is presented. 

Monte Carlo simulation was used to evaluate bias and precision of estimated genetic 
parameters. Genetic parameters were unbiased in most situations. The precision was not very 
high, especially of estimates for ��


� , as indicated by the high standard deviation of estimates 
across replicates, particularly in designs with small families. Designs with at least 100 sire 
families, each with at least 100 offspring, are required to have sufficient precision. Presence 
of fixed effects, such as contemporary group effects, would increase the required number of 
sire families and the number of offspring per sire family. These results are in agreement with 
standard error and power calculations reported by Hill [39], Mulder [40] and Hill and Mulder 
[20] with respect to estimation of genetic variance for micro-environmental sensitivity or for 
environmental variance. For instance, Hill and Mulder [20] derived that the optimal family 
size to estimate genetic variance for environmental variance with a family design is 
approximately 2/γ2, where γ2 is the square of the coefficient of variation of the within-family 
variance. Thus, the optimal family size for half-sibs is 137 when ��


� � 0.10. The only study 
providing Monte Carlo results for the DHGLM to estimate genetic variance for micro-
environmental sensitivity is by Rönnegård et al. [19]. They considered a design with clones, 
which is more powerful and leads to lower standard deviations of estimates than those in our 
study. 

With respect to macro-environmental sensitivity, the magnitude of the standard deviations of 
the ��	�

�  estimates across replicates was similar to that reported by Calus et al. [36], but larger 
than those reported by Lillehammer et al. [41], which is explained by the fact that the latter 
authors simulated more sire families, i.e., 1000 sire families with 100 offspring each. In 



general, the number of required offspring per family is lower for macro-environmental 
sensitivity than for micro-environmental sensitivity, as indicated by the lower standard 
deviations of estimates of genetic variance for the former. This is in agreement with a 
previous study by Mulder [40], which showed that the power to detect G x E interactions 
between two environments is greater than the power to detect genetic variance for 
environmental variance or micro-environmental sensitivity. In the present study, we assumed 
that the environmental parameter x used for the reaction norm was known without error. This 
will be true in some cases, e.g. when using temperature or rainfall or other herd 
characteristics [42]. In other cases, an estimated herd mean is used as the environmental 
parameter, which is estimated from the data [7,8,33]. Calus et al. [36] showed that genetic 
variance in macro-environmental sensitivity (��	�

� ) was severely underestimated when the 
environmental parameter was estimated from the data. This may have also led to the genetic 
variance in macro-environmental sensitivity to be underestimated in our application to milk 
yield. Su et al. [43] reported that a Bayesian approach that estimates simultaneously the herd 
mean and the reaction norm parameters leads to unbiased estimates of ��	�

� . 

Lillehammer et al. [41] showed that sire models gave upward biased estimates of ��	�
�  when 

heterogeneity of residual variance was ignored, because the unexplained genetic variance in 
the reaction norm parameters becomes part of the residual variance when using a sire model. 
In our study, the bias in estimates of ��	�

�  was smaller than in Lillehammer et al. [41]. 
Lillehammer et al. [41] proposed including a dummy animal effect in the model to account 
for the residual three-quarters of the genetic variance that is not accounted for by the sire 
effect. This solution was also tested in our model but gave severely biased variance 
components because of the high dependency of estimated breeding values and residuals on 
variance ratios that were used in the mixed model equations, which differ by animal when 
considering heterogeneity of residual variance. 

The algorithm developed in this study allowed estimating genetic correlations between the 
different genetic effects. Standard deviations of estimated genetic correlations were large, 
especially those of the genetic correlation between macro- and micro-environmental 
sensitivities (��	�,�
). This large magnitude of the standard deviation of estimates of the 
genetic correlation was expected considering that the genetic correlation between macro- and 
micro-environmental sensitivities is mainly based on paternal half-sib information and that 
both traits have low heritability. Using the equation in Robertson [44] and assuming a 
heritability of 0.05 for both traits, the standard error is approximately 0.26 when the true 
genetic correlation between the traits is zero, which is close to the value found here, i.e. 0.25 
(Table 4). To increase the precision of estimates of the genetic correlation between macro- 
and micro-environmental sensitivities, designs with a larger number of families and larger 
family sizes are required. The application to milk yield data in dairy cattle shows that it 
should be possible to estimate genetic correlations with standard errors between 0.06 and 
0.10, since in most countries datasets with at least 100 bulls each with 100 daughters are 
easily obtained. Full-sib families or clones would also reduce standard errors of estimates of 
genetic correlations in comparison to half-sibs. 

Here, we showed that the adjusted profile h-likelihood (APHL) can be approximated from 
REML-output and used in combination with AIC to provide an efficient model selection tool. 
In addition, we showed that biases in genetic parameters were relatively small when 
statistical and true models differed. Both results are re-assuring that these models can 
discriminate between macro- and micro-environmental sensitivities and that the true model of 



environmental sensitivity can be elucidated using AIC. We also found that the Bayesian 
information criterion (BIC) was too conservative and favoured the simpler model too often 
(results not shown). AIC has the advantage that it can be used independent of the order of the 
fitted models, whereas the likelihood ratio test requires a hierarchical structure such as in a 
forward selection scheme [45]. 

Improving biological understanding of environmental sensitivity 

The proposed model can contribute to better understand the genetic architecture of 
environmental sensitivity, e.g. whether macro- and micro-environmental sensitivities are 
genetically related. Most studies in plants and laboratory species indicate that macro- and 
micro-environmental sensitivities are weakly correlated [22-24,26-28]. This seems to indicate 
that selection on one type of environmental sensitivity will hardly affect the other. The first 
application of the model on milk yield data in dairy cattle, revealed a high genetic correlation 
between macro- and micro-environmental sensitivities (0.76), suggesting that selection on 
one type of environmental sensitivity will also affect the other in the same direction. 
Generally, little is known about these relationships in livestock. Knowledge about these 
genetic correlations could be used to optimize selection strategies for environmental 
sensitivity. 

In this study, we assumed a linear reaction norm model, but reaction norms can also be non-
linear [8]. The model presented here can easily be extended to higher-order polynomials. 
Furthermore, the genetic basis of micro-environmental sensitivity may not be the same along 
an environmental gradient and the model for residual variance or micro-environmental 
sensitivity in equation (3) could be extended to contain a reaction norm with a known 
environmental gradient. For instance, in stressful environments, there might be more genetic 
variance for micro-environmental sensitivity than in less stressful environments. 
Furthermore, G × E interactions often exist between categorical environments and are often 
analysed with character state or multivariate models [2]. Character state models do not 
explicitly estimate breeding values for macro-environmental sensitivity, but these breeding 
values could be back-calculated by using covariance functions when the environmental 
parameter responsible for G × E interactions is identified because reaction norm models and 
character state models are interchangeable [2]. In the case of two environments, a reaction 
norm model with a dummy environmental parameter with values 0 and 1 would yield results 
that are identical to a bivariate character state model. Multivariate versions of the DHGLM or 
reaction norm models with dummy environmental variables could be used to simultaneously 
investigate macro- and micro-environmental sensitivities when environments are discrete. 

Application to breeding 

Taking macro- and micro-environmental sensitivities into consideration is highly relevant in 
animal breeding. Due to the high level of globalisation in animal breeding programs, it is 
necessary to breed animals that can perform well in a wide range of environments. Therefore, 
it may be important to select animals that have limited environmental sensitivity, especially 
for environments with a higher risk of environmental disturbances. Reduction in 
environmental sensitivity increases the predictability of performance and reduces risk for 
farmers [46]. Furthermore, reduction in micro-environmental sensitivity will increase the 
uniformity of animal products [47], which is a general goal. In plant breeding, application of 
a model for macro- and micro-environmental sensitivities is also highly relevant since G × E 
interactions are generally very strong and uniformity of crops is very important. Recent 



papers by Ordas et al. [48], Makumburage and Stapleton [49] and Kliebenstein [50] show that 
there is an interest for increased uniformity in plants. Economic values could be derived for 
micro-environmental sensitivity [47]. The economic value of macro-environmental 
sensitivity can be determined as a function of the importance of environments along the 
environmental gradient. Based on Mulder et al. [3,47], progeny testing schemes are more 
efficient than sib testing schemes to reduce micro-environmental sensitivity since it behaves 
as a trait with a small heritability. Genomic selection could be an alternative selection 
strategy with sufficient accuracy and shorter generation intervals. 

Conclusions 

In this study, a model was developed to estimate genetic parameters of macro- and micro-
environmental sensitivities, combining a reaction norm model with a double hierarchical 
generalized linear model within a REML framework. Simulations showed that the genetic 
parameters obtained were mostly unbiased, but designs with at least 100 sires, each with 100 
half-sib offspring, were required to estimate genetic parameters with sufficient precision. 
Using AIC, the true genetic model was selected as the best statistical model in at least 90% of 
replicates when the number of offspring per sire was 100. Application of the model to milk 
yield data in dairy cattle showed that both types of environmental sensitivity existed. Our 
model and AIC based on h-likelihood can be used to increase our understanding of the 
genetic control of environmental sensitivity in livestock populations but more research is 
needed to test the model in a wider range of situations. 
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Appendix 

DHGLM algorithm for a sire model  

The original DHGLM algorithm of Rönnegård et al. [19] was developed for an animal model. 
Here we describe the estimation algorithm for the sire model used in the current paper, 
including a few adjustments of the algorithm in Rönnegård et al. [19] to correct for the fact 
that the residual variance in a sire model (without permanent environmental effects, e.g. with 
animals with a single observation) contains three quarters of the additive genetic variance in 
addition to the environmental variance. The adjustments in the algorithm are as follows: 
adjustment of the squared residuals (yv) accounting for the fact that the residual variance in a 
sire model includes three quarters of the additive genetic variance, use of average residual 
variance 2ˆ

seσ  to calculate ψψψψs (instead of predicted individual values), and computations of the 

diagonal weight matrices Ws and Wsv. These adjustments resulted in a computationally 
robust algorithm with small or no bias (as presented in Results). 

To compute the linearized response ψψψψs for the bivariate sire model in equation (3), first we 
calculate ��� as: 

2 2
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σ
= ×

−
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This is equivalent to the calculations for the response yv in [19], except for the multiplication 

by the ratio of the average estimated residual variance in a sire model (2 2ˆ
s se sw∈σ σ= , where 

( )trsw n= sW  and n is the total number of records) and the average residual variance in an 

animal model, which is calculated as 2 2 23
ˆ ˆ ˆ

4a s inte e Aσ σ σ= − , ( 2 2ˆ ˆ 4 
int intA sσ σ= ). Because we use a log 

link function, ��� is linearized as: 
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The diagonals of Ws are the reciprocals of ̂sψψψψ  (i.e. ˆ1/
i is sW = ψ ), which is the vector of 

predicted residual variances for each observation based on the previous iteration and is 
calculated as: 

2 2 23 3ˆ ˆ ˆ ˆexp log  .
4 4i s int i ints e A v Asσ σ σ  = − + +  

  
ψ  (8) 

The sire effects for environmental variance 
ivs  only affect the part of the residual variance 

which is truly environmental variance and therefore three-quarters of the additive genetic 
variance is subtracted in the multiplicative part of equation (8). The diagonals of Wsv are the 
reciprocals of the residual variance of ψψψψs and were calculated as: 
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This is motivated by the fact that by combining equations (6) and (7), and by assuming that 
the estimated residuals are close to the true ones, we have: 
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since the true residuals are assumed normal and the squared true residuals are therefore 

Gamma distributed with a variance of ( )22ˆ2
seσ . 

The algorithm can be summarized as: 

1. Run model on y in equation (3) with homogeneous residual variance. 

2. Calculate ψψψψs, Ws, Wsv, where ( )2ˆdiag eσ=sW  in iteration 1. 

3. Run bivariate model in equation (3). 
4. Update ψψψψs, Ws, Wsv 
5. Iterate steps 3 till 4 until convergence 

Approximation of the adjusted profile h-likelihood 

In our paper, the model selection was based on an approximation of the adjusted profile h-
likelihood (APHL), which is defined as [51]: 

( )APHL (2 log(det )) | ,h
=

= −
τ τ

H �
 (11) 

where H is the Hessian of the h-likelihood and τ is the vector of all fixed and random effects 
both in the mean and variance parts of the model. For the model in equation (3), minus two 
times the h-likelihood (− 2h) is: 
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where l is log-likelihood, 2ˆ
ieσ  ( 2 2ˆ ˆ

i s ie sw∈σ σ= , with 
isw  being the ith diagonal of Ws) is the 

residual variance of observation i, 2
îe  is the estimated squared residual of observation i, G�  is 



the covariance matrix of all random effects (
1

4
= ⊗G G A� ), s is a vector of all random sire 

effects ( [ ]' = int sl vs s s s� ) and ��� is the weight for the mean model for observation i. The 

minus two log REML likelihood (logL) from the bivariate model in equation (3) is: 
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where the first n residual variances come from the first part of the bivariate model (y) and the 
next k residual variances come from the second part of the bivariate model (ψψψψs) (k = n = 
number of records), and C is the Hessian of the bivariate model (i.e. left-hand-side of the 
mixed model equations). Because log (det (C)) is a reasonable approximation of log (det (H)) 
[31], we can approximate APHL as given in equation (4) in the main text: 

2APHL logL= − −   

( ) ( )12 2ˆ ˆln
i sv sv isv svw w∈ ∈σ σ

−
−∑ ∑  (14) 

Thus, the REML likelihood for the bivariate model is corrected for the fact that the squared 
residuals are used as “observations” in the bivariate model. Note that equation (14) can also 
be used for animal models by replacing the elements ���� and ��	


�  with the corresponding 
elements of equation (2) or for models with more or fewer random effects in the mean and 
variance model. 
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