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Abstract

Background

Genetic variation for environmental sensitivity indicates thahals are genetically different
in their response to environmental factors. Environmental factorsithes identifiable (e.qg.
temperature) and called macro-environmental or unknown and called-emezironmentall.
The objectives of this study were to develop a statisticahadeto estimate genetic
parameters for macro- and micro-environmental sensitivities @inedusly, to investigate
bias and precision of resulting estimates of genetic paranatdrio develop and evaluate
use of Akaike’s information criterion using h-likelihood to select the best fittiadel.




Methods

We assumed that genetic variation in macro- and micro-environmseisitivities i
expressed as genetic variance in the slope of a linear reaction amat environmental
variance, respectively. A reaction norm model to estimate gewatiance for macrag-
environmental sensitivity was combined with a structural model deidual variance
estimate genetic variance for micro-environmental sensitiviiyng a double hierarchidal
generalized linear model in ASReml. Akaike's information dote@ was constructed as
model selection criterion using approximated h-likelihood. Populationgrex with larg
half-sib offspring groups were simulated to investigate bias @edision of estimated
genetic parameters.

Results

Designs with 100 sires, each with at least 100 offspring, apeiresl to have standard
deviations of estimated variances lower than 50% of the true valbhen \tthe number
offspring increased, standard deviations of estimates acrossatepldecreased substantiglly,
especially for genetic variances of macro- and micro-enuiental sensitivities. Standard
deviations of estimated genetic correlations across redioaee quite large (between
and 0.4), especially when sires had few offspring. Practicatlybias was observed
estimates of any of the parameters. Using Akaike’s infoonatriterion the true genet
model was selected as the best statistical model in @t968s of 100 replicates when the
number of offspring per sire was 100. Application of the model tatiact milk yield in
dairy cattle showed that genetic variance for micro- and m&vwonmental sensitivitigs
existed.

Conclusion

The algorithm and model selection criterion presented here canibabatrto bettef
understand genetic control of macro- and micro-environmental sensgivillesigns g
datasets should have at least 100 sires each with 100 offspring.

=

Background

The term “genotype by environment (G x E) interaction” referghe fact that the best
genotype in one environment may not be the best genotype in anotirenment [1] and
that genotypes differ in their response to environmental factdnghwneans that genetic
variance for environmental sensitivity or phenotypic plasticity stexi[2]. Some
environmental factors (e.g., temperature, soil, diet, etc.) are fidbli and can be
categorised (e.g., temperate or tropical climate) or quah{ifgy., temperature) and thus are
referred to as macro-environmental factors. Other environm&d#&rs are unknown and
referred to as micro-environmental factors [1]. Therefore, genedr@ance in macro-
environmental sensitivity is the genetic variance due to known envenatahfactors and can
be expressed as the genetic variance in the slope of a reactionvhenrenvironments can
be quantified on a continuous scale. If environments are categoteed phenotypes in
different environments are considered as separate traits agdrtbgc covariances between
environments are a measure of genetic variation in macro-enviraarsensitivity. Genetic
variance in micro-environmental sensitivity is the genetic variadae to unknown



environmental factors and can be expressed as differences innememtal variance,
sometimes called genetic heterogeneity of environmental variance [3]

Numerous studies in the last 70 years have studied G x E imdagaot genetics of macro-
environmental sensitivity in animal and plant breeding as weh asolutionary biology [4-

6]. Different modeling approaches have been used [4]. In recent ye@rson norm models
have been applied in animal breeding to better understand the envirdnfaetues that

determine G x E interactions [7-9]. In evolutionary genetics, meaxgeriments on

Drosophila and other laboratory species have been carried out to umdle¢h&tagenetics of
macro-environmental sensitivity or phenotypic plasticity [6,10,11]. Gtgkamples of studies
on wild life populations include analyses of great tit [12] and bltElB] populations that

showed the existence of genetic variation in phenotypic plasticity to temmgecatinge.

The genetics of micro-environmental sensitivity or environmesrgaénce have been studied
less extensively than the genetics of macro-environmental sdmysitiai evolutionary
genetics, several studies have focused on canalization, i.eiefectreduced variance [14-
16]. Recently, there has been renewed interest on this topic due uevelopment of
methods to estimate genetic variance in environmental varianceBa&ygsian methods
[17,18] and double hierarchical generalized linear models (DHGLM)REML setting [19].
Hill and Mulder [20] reviewed 14 studies on this subject and concluded that there ig&mpi
evidence for the existence of genetic variance in environmental variance

Although there is substantial evidence for genetic variancemacro- and micro-
environmental sensitivities, very few studies have studied thentheyger studied their
genetic relationship. Jinks and Pooni [21] postulated the concepts aod-nend micro-
environmental sensitivity and studied bothNicotiana rustica but did not investigate the
relationships between these two types of environmental sensitidwever, Perkins and
Jinks [22] reported that both types of environmental sensitivity wexakly genetically
correlated for most traits iNicotiana rustica. In a study orPopulus, Wu [23] showed that
micro-environmental sensitivity was less heritable than maswronmental sensitivity and
that they were weakly genetically correlated. In another rpagso onPopulus, Wu and
O'Malley [24] detected different sets of genes for macro- amdro-environmental
sensitivities. In a mapping study of QTL for macro- and microrenmental sensitivities in
barley, Kraakman et al. [25] identified only a few QTL for maienvironmental sensitivity,
but did not detect any QTL for macro-environmental sensitivity. p@sky and Scheiner
[26] observed a weak genetic correlation between developmental smiskr to micro-
environmental sensitivity, and macro-environmental sensitivityDaphnia Magna. In
Drosophila melanogaster, both positive and negative genetic correlations between macro-
and micro-environmental sensitivities have been reported [27,28]. In daimals, the
genetic correlation between macro- and micro-environmental satressti has not been
investigated. In addition, to date, no suitable method was availablestitnate such
correlations in outbred populations and the requirements in terms of nofmenilies and
family sizes of the designs necessary to estimate gepatameters of macro- and micro-
environmental sensitivities were unknown.

The objectives of this study were to extend the double hierardeo&ralized linear model
(DHGLM) of Ronnegard et al. [19] with a reaction norm model torege genetic variance
for macro- and micro-environmental sensitivities and to investiggte and precision of
estimated variance components in designs resembling dairy jpafti¢ations. In addition,
we evaluated Akaike’s information criterion (AIC) using apprcaded h-likelihood to select



the best fitting model and studied situations in which true geaatichest fitting statistical
models differed. Finally, we applied the model to lactation milk yield in daittje.

Methods

In this section, we describe the assumed quantitative genetielnunderlying genetic
variance for macro- and micro-environmental sensitivities, theststal model to estimate
genetic variance in macro- and micro-environmental sensitivéied the AIC based on an
approximation of the h-likelihood that can be used to select the thiest fnodel. Finally, we
present the simulation used to test the statistical model andbaéeiee evaluated scenarios
as well as an application to milk yield in dairy cattle.

Quantitative genetic model

Here, we assume that genetic variance for macro-environnmssntsitivity is expressed as
the genetic variation in the slope of a linear reaction norm.ef®@ewariance in micro-

environmental sensitivity implies that genotypes respond differemotlyone or several

unknown environmental factors and thus, we assume that it is expresgededic variance
in environmental variance according to an exponential model [29]. Theisjuantitative

genetic model underlying genetic variance in macro- and reicvoronmental sensitivities
can be formulated as:

P=p+A, +AX+ exp( O.5Ir(0,§) + O.B\V)E (1)

whereP is the phenotype; is the population mean for the phenotypés the environmental
parameter (continuous or discrete) that cause genotypes to resgerehtif A, A andA,
are the additive genetic or breeding values for the interaapté slope of the reaction norm
(= macro-environmental sensitivity), and for the environmental vagia(e micro-

environmental sensitivity), respectively? is the environmental variance of the exponential
model ande is a scaled environmental deviation with variance one. Note thavérage
environmental variance isr_é =a,§exp(0.5:7,fV ) [3]. The additive genetic values., Aq and

A, have variance
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Statistical model

The basis of the statistical model is the DHLGM as presdmteRlonnegard et al. [19]. The
original DHGLM algorithm in Ronnegard et al. [19] iterates betwa linear mixed model

for the phenotypic observationg:= P; = phenotypic observation of animaland a Gamma
A2

g

GLM for the residual variance;, where ¢, = E{ j,éz is the squared estimated residual

of y; andh; is the diagonal element of the hat-matrixyaforresponding tg; [30]. Felleki et



al. [31] extended the model of [19] by allowingiewition of the genetic covariance |, )

between the genetic effect in the mean model aadyémetic effect in the variance model
(equation (2)) in the absence of a linear reaatiorm model and reported on computational

details and a theoretical assessment of this &hgoriln brief, equivalent to using a Gamma
A2

8
1-h
following bivariate linear model:

y X 0|b Z 0| a e
= + + 2
Uy 0 X,||b, 0 Z,jla,| |e,
where X(X,) is the incidence matrix for fixed effects fgr(y), b (by) is the vector with

solutions for fixed effects foy(Yr), Z(Zy) is the incidence matrix for relating observations
y(¢) to the additive genetic valuea (a) for phenotype (environmental variance)

GLM, linearizing

around its current fitted value results in veojorand yields the

a

2
a O-a . oy . . .
{ }~ N| O, ’:” OA |, whereA is the additive genetic or numerator relationship
a Oaa, T4,

matrix and o? (a—i) is the genetic variance afa,). The residuals oy (e) andy{s (e, are

v \

0|W?g? 0
assumed to be independent normally distribut (5} ~N| %o g oD
0 0 W, o’

T -~ 1 T 1_h 2 . . .
W—dlag(lp) and W, =diag — ) o, and ajv are scaling variances, which are

expected to be equal to 1, becaseandW, already contain the reciprocals of the residual
variances per observation. Estimatieg and aév allows more flexibility. An iterative

estimation procedure is required to obtain estimdte all parameters because of the
dependence of the model fpion the results of the model fgrand vice versa. The vectgr
and the diagonals & andW, are updated at each iteration until convergenbe.rodel in
equation (2) can be considered as combining the IMI@Gethod [19] with the iterative
method of Mulder et al. [32].

In order to consider macro- and micro-environmesgaisitivity simultaneously, the model
for phenotypey in equation (2) was extended with a linear reactiorm model to estimate
genetic variance in macro-environmental sensitiwiyereas the residual variance model
usingy estimates the genetic variance in micro-envirortaiesensitivity or environmental
variance. Instead of using an animal model, we asgide model because implementation of
the animal model DHGLM resulted in severely biasstimates of variance components with
single observations per animal. As an indicatiorpobr model fit, implementation of the
animal model DHGLM gave a lower adjusted profilékelihood (see next section “Model
selection”) than an animal model without heteroggnaf residual variance. Sire models are
commonly used in combination with reaction norm eled7,8,33]. In the reaction norm
model, we assumed that the environmental paramdiae equation (1)) is known without
error and does not need to be estimated from ttae @he resulting combined macro—micro
environmental sensitivity sire model can be forredaas:
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where y, is a vector with linearized values of transfornsgdared residuals (see calculation

in Appendix),Zs andZ, are respectively the incidence matrices for tie sffects for the
intercept of the reaction norm and for the envirental varianceZy is the matrix with the
environmental parameteras a covariate for the sire effects for the slopéhe reaction
norm, andsn, S ands, are the vectors with the estimated sire effeaténfiercept, slope, and
environmental variance. The sire effesg, s, ands, are assumed trivariate normally

distributed N(O,%GD Aj, assuming that sire (co)variances are a quarteéheofadditive

genetic variance. The residualsyofe;)) andyis(es,) are assumed to be independent normally
distributed,  because cov(e,ez) =0, when e is normally distributed (

e 0| W07 0 . .
*1~N| _, : } ), where g2 and o2 are scaling variances for the
|:esv:| (0 { O stlaﬂzw}J ’ >

residual variances in a sire model. Computationgcdind of the diagonals aVs andWs,
are different due to the use of a sire model corthbtr an animal model and are explained in
the Appendix. The algorithm was implemented byaitiely over several runs of ASReml
[34]. In each ASReml run, REML-estimates of theiatace components were obtained for
the current values afs, Ws andWs,. The vectons and the diagonals &/s andWs, were
updated after each ASReml run. On simulated dat&SReml runs were sufficient to obtain
converged parameter estimates. ASReml was run anthoption to check whether the
variance-covariance matrices were positive defiaitd were forced to be positive definite
[34] if they were not.

Model selection

When working with real data, the true genetic masgalot known, thus statistical inference
can be used to find the statistical model thattfits data best. The h-likelihood concept can
be applied when using DHGLM [35], in which the adpd profile h-likelihood (APHL) is
used to assess the significance of variance compmn®ecause we use an iterative
reweighted least square approximation in ASRenel ARHL can be approximated from the
log REML likelihood (ogL) for the bivariate model in equation (3) fitted ASReml, after
correcting for the fact that the squared estimatsiduals ofy are used to compute the
response variabigs (see Appendix for derivation):

APHL = -2logL - Y'w,, (62 )" =3In(62) /w,, (4)

wherews,, is the weight for the variance model for obseovat] i.e. thei™ diagonal ofWi,.
Note that equation (4) can also be used for anmw@dels by replacing elementg,, and
o2 with the corresponding elements of equation (2).cbmpare nested and non-nested
models, we propose to use APHL in combination withike’s information criterion (AIC):



AIC = APHL +2t, (5)
where t is the number of variance parameters.

Simulation

Monte Carlo simulation was used to evaluate the aral precision of the estimated genetic
parameters of the model and proposed algorithmulBtpns of paternal half-sib families
were simulated, resembling a simplified populatstructure in an animal breeding context
with large half-sib offspring groups per sire likedairy cattle. Either the number of sires
(50, 100 or 200) was varied while keeping the nundjeoffspring per sire at 100, or the
number of offspring per sire (20, 50, 100 or 20@swaried while keeping the number of
sires at 100. Sires and dams were assumed unreladedere not selected. The offspring had
phenotypes but the dams or sires did not. Phenstypee generated for offspring according
to the quantitative genetic model in equation @ams were randomly assigned to herds
(herd size = 100 cows) and their offspring (daughte the case of dairy cattle) were in the
same herd. For each herd, the environmental cagarigas sampled from N(0,1). No fixed
effects other than a general mean were simulated Q) but offspring were randomly
allocated to contemporary groups with size 10 t@stigate the effect of fixed effects on the

precision of genetic parameters. Additive genetiecées were sampled frorN(O,G [ A).

Different values for genetic variances and genetirelations were used for simulation.
Table 1 gives an overview of the parameter valisesiun the simulation, both the default
and alternative values. In each scenario, onlygarameter was varied at a time, i.e. other
parameters were kept at their default values. Boh et of parameters, 100 replicates were
generated and means and standard deviations wiagss were calculated across replicates.

Table 1 Default and alternative parameters values used in hte Carlo simulation

Parameter Default Alternative values
oz, 0.3 0.1,0.5

a3, 0.05 0.025, 0.10
o 0.1 0.05, 0.2
Genetic correlations (see text below equation (1)) 0 0.5
Number of offspring per sire 100 20, 50, 200
Number of sires 100 50, 200
Number of replicates 100

ajint is the additive genetic variance for the interagfthe reaction normgz, is the additive
genetic variance for the slope of the reaction nornmacro-environmental sensitivity and
ajv is the additive genetic variance for micro-envirmmtal sensitivity or environmental
variance.

Scenarios in which true genetic and statistical maals differ

First, we tested situations in which the true genahd statistical models contained both

types of environmental sensitivities for differesgts of genetic parameters and designs. In
addition, we investigated the power of AIC to selbe correct model given the true genetic

model. Three situations were simulated with defpalameters: presence of genetic variance
in (i) macro- or (i) micro-environmental sensitiior in (iii) both. Four statistical models



were applied to these simulated situations: a coetbi macro—micro environmental
sensitivity model “macro—micro”, a macro-environrt@nsensitivity model “macro”, a
micro-environmental sensitivity model “micro” andsemple model “simple” with only one
additive genetic effect for the phenotype. The “roamicro” model and the “micro” model
were run for 10 ASReml runs to update the weights the transformed squared residuals,
whereas the “macro” model and the “simple” modejureed only one ASReml run. AIC
(equation 5) was used to select the best fittingeho

Finally, we tested scenarios in which the statétimodel deviated from the true genetic
model used for simulation, i.e. when model selectailed to select the right model (Table
2). These scenarios were analyzed to explore whgtreetic parameters are biased when the
statistical model deviates from the true geneticdehaand whether macro-environmental
sensitivity can be detected with a micro-environtaksensitivity model or vice versa. These
scenarios were run with the default set of pararseds listed in Table 1 but with various
values ofg;  andaj . Scenarios for which the true genetic and statiktinodels were the
same and included either macro or micro-environaiesgnsitivity were not analyzed since
these have been previously investigated, i.e. 38ef¢r macro-environmental sensitivity and
[19] for micro-environmental sensitivity.

Table 2 Scenarios with different combinations of true genet models and statistical
models

Statistical model

True genetic model Macro ES Micro ES Macro and micro ES
Macro ES Not addressed A B

Micro ES C Not addressed D

Macro and micro ES E F G (Default in this study)

Macro ES = macro-environmental sensitivityicro ES = micro-environmental sensitivity.

Application to milk yield in dairy cattle

The “macro—micro”, “macro”, “micro” and “simple” nuels were applied to 305-day
lactation milk yield of 142 565 first parity SwetidHolstein cows. Lactation yields were
calculated based on test-day data, as descrij8djimsing the test-day interval method [38].
Seasons were defined as three-month periods (Jaklzach, April-June, July-September,
October-December). Herd-year-season (HYS) class#is less than five cows were
excluded. Data on a total of 762 sires with on agerl87 daughters were available and 213
of these sires had more than 100 daughters. Imduel for phenotypeyf, HYS was a fixed
effect and in the model for residual varianog ), HYS was a random effect to allow

regression to the mean with few observations peEHyid avoid extreme HYS estimates.
The model fory included a fixed fourth order polynomial for agecalving and a fixed ninth-

order polynomial for lactation length, while the aeb for Y included a third and a sixth

order polynomial for age at calving and lactati@ndth, respectively. The orders of
polynomials were determined using a Wald test ivammate models foy and {, and were

kept the same for “macro—micro”, “macro”, “microia@ “simple” models. Herd-year average
milk yield standardized to a mean of zero and &awae of one was used as an environmental
parameter for macro-environmental sensitivity. Thecro—micro”, “macro”, “micro” and

“simple” models were all run for 50 ASReml runs.té&f50 runs, the change in variance



components was less than 0.2% of the change betemesecutive runs and therefore
parameters were considered converged.

Results

Variance components and effect of fixed effects

Estimated genetic variances were close to theie tvalues when simulated genetic
correlations were zero, although occasionally therage value deviated slightly from the

true value (Table 3). The average of the estimgttketic variance in slopé: a“'f\j) was

biased upwards in all cases, but the bias was divetiveen +2 and +13%). Surprisingly,
standard deviations of; relative too, were small (between 21 and 30%af ). Note
that standard deviations across replicates repretamdard errors of estimates from a single
replicate, e.g. an analysis of one data set. Tleeage of the estimated genetic variance in
environmental varianc(a= &f\) had on average larger deviations from the truaevaut no

direction in bias could be detected. Standard dievia of 55\ relative to af\v were large

(between 31 and 74%), indicating that this paranfedd a low precision. In the presence of
fixed effects (i.e. contemporary group) for the meand residual variance, standard
deviations of estimated parameters increased oagedy 9% and the number of replicates
for which the genetic variance-covariance structues forced to be positive definite also
increased. Thus, the conclusion is that estimdtggrmetic variances are practically unbiased

but that the precision ofri is low.

Table 3Means and standard deviations of estimated genetparameters across 100
replicates when genetic correlations are zero

Fixed effectd  True parameters Estimated parameters (SD) Np
Ohme iy Ohy  Ohin; Ty Tk,
No 0.1 005 0.1 0.101 (0.020) 0.051 (0.012) 0.09%03xp) O
No 0.3 005 0.1 0.315 (0.053) 0.054 (0.015) 0.10M46) O
No 05 005 0.1 0.507 (0.066) 0.052 (0.013) 0.1001) 3
No 0.3 0.05 0.05 0.297 (0.047) 0.053 (0.012) 0.@329) 4
No 0.3 0.05 0.2 0.308 (0.049) 0.053 (0.014) o0.188065) O
No 0.3 0.025 0.1 0.298 (0.047) 0.026 (0.008) 0.@e041) O
No 0.3 0.1 0.1 0.296 (0.052) 0.104 (0.021) 0.08304p) 1
Yes 0.1 005 0.1 0.099 (0.022) 0.053 (0.014) 0.@eD37) 1
Yes 0.3 005 0.1 0.309 (0.044) 0.057 (0.015) 0.10451) O
Yes 05 005 0.1 0.503 (0.084) 0.052 (0.014) 0.104074) 10

'"Models have either only a mean as fixed effect fired effects) or have contemporary
groups as fixed effects (yesz)fmt = additive genetic variance of breeding value tfoe
intercept,o,, = additive genetic variance of breeding valuetfer slope variance (= macro-
environmental sensitivity)ajv = additive genetic variance for environmental aace (=

micro-environmental sensitivity); Np = number ofplieates with covariance structures
forced to be positive definite.



Effect of genetic correlations

In general, estimates of genetic variances remaiiesk to their true values when genetic
correlations were varied (<10% difference from thee value) (Table 4). When all genetic

correlations were equal to 0.5, the genetic vadaoicenvironmental variance was slightly
underestimated (—-11%). Estimates of genetic cdrogla were unbiased but had very high
standard deviations, especially the genetic cdiogldbetween the breeding value for slope
and environmental variancep,(, ). The number of replicates in which the variance-
covariance structure was forced to be positivenitefiwas in general small but slightly

higher when all genetic correlations were equa.t In addition to the results shown, we

simulated an extreme negative genetic correlatm { =-0.9), as well as an extreme

positive genetic correlatiopf_ 4 = 0.9). In these scenarios, for 40 to 60% of the repiea
the variance-covariance matrix was bended to batiyosdefinite. Due to the large
proportion of replicates with bended variance-carazte matrices, the average genetic
correlation was biased towards zero. Neverthethssgeneral conclusion is that estimates of

genetic correlations are largely unbiased but stienated with low precision.

Table 4Means and standard deviations across 100 replicates$ estimated genetic
parameters when genetic correlations are not zero

True parameters Estimated parameters (SD)

PAine Ay PApnpAs  PAg A, O-Azint O-jsl Oﬁv PAine Ay PApnpas  PAgsiAy Np

0 0 0 0.315 0.054 0.107 -0.005 0.004 0.012 O
(0.053) (0.015) (0.046) (0.165) (0.155) (0.249)

0.5 0 0 0.303 0.051 0.099 0554 -0.028 -0.007 1
(0.047) (0.012) (0.048) (0.155) (0.136) (0.203)

0 0.5 0 0.303 0.053 0.094 -0.010 0508 -0.014 1
(0.056) (0.012) (0.045) (0.200) (0.132) (0.239)

0 0 0.5 0.293 0.052 0.092 0.014 0.021 0558 2
(0.045) (0.013) (0.034) (0.185) (0.147) (0.208)

0.5 0.5 0.5 0.301 0.053 0.089 0.537 0.517 0530 6

(0.051) (0.013) (0.036) (0.171) (0.138) (0.192)
Pa,,.4, = geNetic correlation between additive genetieaff for intercept and environmental
variance;p,. 4, = genetic correlation between additive genetiea for intercept and
slope; pa 4, = genetic correlation between additive genetie@#f for slope (macro-
environmental sensitivity) and environmental vacen(micro-environmental sensitivity);
ajim = additive genetic variance of breeding value ifdercept (true value = O.S)zjsl =
additive genetic variance of breeding value forpslovariance (= macro-environmental
sensitivity; true value = O.OSMV = additive genetic variance for environmental aace (=

micro-environmental sensitivity; true value = 0 1Mp = number of replicates with
covariance structures forced to be positive definit

Effect of different designs

When varying the number of offspring per sire oe tiumber of sire families, means of
genetic variances were close to their true simdlaedues in most cases, except when the
number of offspring per sire was 20 for which esties forajsl andajv were biased upwards



(25% and 20%, respectively) (Table 5). In this ¢d&sE% of the replicates had variance-
covariance matrices that were forced to be positigénite, indicating that this is not a
suitable design to estimate genetic parameters nfiacro- and micro-environmental
sensitivities. When increasing the number of offgpiper sire, the standard deviations of
estimates ofrjsl andajv decreased substantially, e.g. from 50 to 200 aoffgpwith 54 and
60%, respectively, whereas the standard deviatioestimates ofs; = decreased only
slightly (-10%). When increasing the number of daenilies from 50 to 200, standard
deviations of estimates of all genetic parametesahsed substantially (from —52 to —58%).
Based on these results, we conclude that desighsatieast 100 sires with 100 offspring
each are required in order to estimate variance pooents for macro- and micro-
environmental sensitivities with low standard esror

Table 5Means and standard deviations across 100 replicates$ estimated genetic
parameters for different designs

Estimated parameters (SD)

NS NO Uf‘%int Oﬁsl 0-1‘%1; PAint, Ay PAintAst PagA, Np

100 20 0.301 0.063 0.120 —-0.008 -0.004 0.083 51
(0.057) (0.038) (0.113) (0.304) (0.216) (0.416)

100 50 0.309 0.056 0.099 -0.016 -0.013 0.025 8
(0.051) (0.020) (0.060) (0.279) (0.165) (0.376)

100 100 0.315 0.054 0.107 —-0.005 0.004 0.012 0
(0.053) (0.015) (0.046) (0.165) (0.155) (0.249)

100 200 0.301 0.053 0.093 0.000 0.007 -0.013 0
(0.046) (0.009) (0.024) (0.135) (0.116) (0.168)

50 100 0.312 0.053 0.107 0.015 0.002 0.036 5
(0.079) (0.018) (0.064) (0.295) (0.199) (0.320)

200 100 0.301 0.053 0.099 0.009 -0.002 -0.009 0

(0.033) (0.009) (0.028) (0.142) (0.108) (0.163)
NS = number of sires; NO = number of offspring siee;ajim = additive genetic variance of
breeding value for intercept (true value = 04); = additive genetic variance of breeding
value for slope variance (= macro-environmentalsgisity; true value = 0.05)g; =
additive genetic variance for environmental varere micro-environmental sensitivity; true
value = 0.10)04,,,.4, = Papaq = Pag,a, = 0; Np = number of replicates with covariance
structures forced to be positive definite.

Model selection

Using AIC to select the best fitting model, theetrgenetic model was selected as the best
statistical model in at least 90% of the 100 regtbs when the number of offspring per sire
was 100 (Table 6). In only a few cases did the betistical model differ from the true
genetic model. However, when the number of offgpper sire was 50, the correct model
was selected for 63% to 95% of the replicates. Wiwh macro- and micro-environmental
sensitivity existed and the number of offspring giee was 50, the macro model was selected
rather than the macro—micro model in 27% of thdicefes. When only micro-environmental
sensitivity existed and 50 offspring per sire, fh@wver to select the correct model was
reduced. In conclusion, the power to select theecbmodel was high in designs with at least
100 offspring per sire.



Table 6 The best model selected in 100 replicates accorditgAkaike’s information
criterion and effect of the number of offspring for different true genetic models

NO True genetic model True parameters Nb of times model selected based on AIC

0z 04, Macro—-micro  Macro Micro Simple
100 Macro—micro 0.1 0.05 99 1 0 0
Macro 0 0.05 5 95 0 0
Micro 0.1 0 3 1 94 2
Simple 0 0 1 4 5 90
50 Macro—micro 0.1 0.05 63 27 8 2
Macro 0 0.05 7 87 1 5
Micro 0.1 0 4 1 71 24
Simple 0 0 1 1 3 95
NO = number of offspring per sire, “Macro—micro’mrodel accounting for both macro- and
micro-environmental sensitivities; “Macro” = modebith only macro-environmental

sensitivity; “Micro” = model with only micro-envimmental sensitivity; “Simple” = model
without macro- and micro environmental sensitigtiand only a genetic effect for the
phenotype'ajmt = additive genetic variance of breeding valueifitercept (true value = 0.3);

a;,, = additive genetic variance of breeding valuesiope variance (= macro-environmental
sensitivity), ajv = additive genetic variance for environmental aacde (= micro-
environmental sensitivitypa, 4. = Pa;.,.a, = Pag,a, = 0-

Scenarios in which true genetic and statistical maals differ

It is of interest to determine whether genetic peaters are biased if the wrong statistical
model is applied. When either macro or micro-envinental sensitivity was simulated
(Table 7), the variance-covariance structures wereed to be positive definite in many
replicates, due to estimates of variances at thendary. Estimates at the boundary were
expected since the estimated genetic variance ghmmitlose to zero when the true genetic
variance is zero. Forcing the genetic variance+tameae structures to be positive definite can
bias estimates of parameters. When true macro@mwigntal sensitivity existed, some

micro-environmental sensitivity was detect&fdf\(> 0) with the “micro” (scenario A) and
the “macro—micro” (scenario B) models, indicatirigatt part of the macro-environmental
sensitivity was captured as micro-environmentalsgisity, but 52 were small (0.010-
0.018). When true micro-environmental sensitivitxiseed, no macro-environmental
sensitivity was detectedé(f\g =0) with the “macro” (scenario C) and “macro—micro”

(scenario D) models, btﬁi were biased downwards (between —-16% to —28%),ilgss

because of the high number of genetic variancer@wee structures that were forced to be
positive definite. When both macro and micro-enwmental sensitivity existed, the “macro”
(scenario E) and “micro” (scenario F) models gawbiased estimates of either macro-
environmental sensitivity or micro-environmentalnsigvity and the genetic variance-
covariance structure was forced to be positiveniteffor at maximum three replicates. Thus,
the general conclusion is that a discrepancy betviee true and statistical models does not
lead to large biases in estimated genetic paramatef that contamination between estimates
of the two types of environmental sensitivity isywémited.



Table 7Means and standard deviations across 100 replicates$ estimated genetic
parameters when true and statistical models differ

Scenario  True model True parameters  Statistical model Estimated parameters (SD)
94, 9%, Ohwe iy I, Np
A Macro 0.025 0 Micro 0.303 0.010 51
(0.045) (0.020)
Macro 0.05 0 Micro 0.303 0.010 48
(0.044) (0.013)
Macro 0.1 0 Micro 0.308 0.018 37
(0.050) (0.019)
B Macro 0.025 0 Macro—micro 0.296 0.027 0.012 60
(0.046) (0.009) (0.011)
Macro 0.05 0 Macro—micro 0.298 0.052 0.013 51
(0.048) (0.011) (0.013)
Macro 0.1 0 Macro—micro 0.307 0.091 0.012 54
(0.051) (0.020) (0.013)
C Micro 0 0.05 Macro 0.296 0.002 0
(0.041) (0.003)
Micro 0 0.1 Macro 0.292 0.003 0
(0.039) (0.004)
Micro 0 0.2 Macro 0.289 0.002 0
(0.043) (0.003)
D Micro 0 0.05 Macro—micro 0.303 0.003 0.053 71
(0.050) (0.003) (0.024)
Micro 0 0.1 Macro—micro 0.300 0.003 0.084 60
(0.047) (0.003) (0.034)
Micro 0 0.2 Macro—micro 0.304 0.002 0.143 66
(0.049) (0.003) (0.058)
E Macro—micro 0.05 0.05 Macro 0.297 0.055 0
(0.047) (0.014)
Macro—micro 0.05 0.1 Macro 0.298 0.053 0
(0.052) (0.012)
Macro—micro 0.05 0.2 Macro 0.292 0.053 0
(0.049) (0.0112)
Macro—micro 0.025 0.1 Macro 0.306 0.026 0
(0.050) (0.008)
Macro—micro 0.1 0.1 Macro 0.298 0.106 0
(0.045) (0.022)
F Macro—micro 0.05 0.05 Micro 0.299 0.050 3
(0.051) (0.031)
Macro—micro 0.05 0.1 Micro 0.297 0.095 1
(0.047) (0.042)
Macro—micro 0.05 0.2 Micro 0.304 0.191 0
(0.045) (0.070)
Macro—micro 0.025 0.1 Micro 0.299 0.105 0
(0.049) (0.043)
Macro—micro 0.1 0.1 Micro 0.298 0.103 1
(0.045) (0.045)

See Table 2 for schematic overview of scenariosac¢id—micro” = model accounting for both macro- amétro-
environmental sensitivities; “Macro” = model withlg macro-environmental sensitivity; “Micro” = moldeith only micro-
environmental sensitivityy,fim = additive genetic variance of breeding valueiridercept (true value = 0.3y, = additive
genetic variance of breeding value for slope vaga(F macro-environmental sensitivity;)jv = additive genetic variance
for environmental variance (= micro-environmen@hsitivity), pa, . a, = Pa,ag = Pag.a, = 0; Np = number of replicates
with covariance structures forced to be positivénite.



Application to milk yield in dairy cattle
The “macro—micro”, “macro”, “micro” and “simple” nuels were applied to 305-day first
lactation milk yield data of Swedish Holsteins (mea8693 kg, standard deviation = 1652
kg, skew = 0.18, kurtosis = 0.28). “Macro”, “micrand “macro—micro” models fitted
significantly better than the “simple” model. Thaitro” model was favoured by AIC (Table
8) and had the best fit. The genetic variance facrarenvironmental sensitivity was
substantial but lower than for most reported trg#8]: one genetic standard deviation
changed micro-environmental sensitivity (= enviremtal variance) by 21%. The difference
in AIC between the “macro—micro” and “micro” modelas small and therefore it was
interesting to examine the genetic parameters ef‘tiacro—micro” model. The estimated
genetic variance for macro-environmental sensytiwias small in comparison to the genetic
variance in intercept. For instance, the estimateth®e genetic correlation between
environments that were -2 and 2 standard deviatioo®s the overall mean was 0.92,
indicating a small level of reranking of sires asahe environmental gradient. Estimates of
genetic correlations between intercept and macard-aicro-environmental sensitivities were
0.81 and 0.63, respectively, indicating that se@acfor higher milk yield increases both
types of environmental sensitivity. The estimatethed genetic correlation between macro-
and micro-environmental sensitivities was 0.76jdating that they are genetically similar.
Standard errors of parameter estimates were snihHerthe standard deviations found for
the simulations, due to the larger dataset i.e.ensimes and more offspring per sire. Thus,
macro- and micro-environmental sensitivities maigtefor milk yield in dairy cattle and are
positively correlated.

Table 8 Estimated genetic parameters for macro- and microfgvironmental sensitivity
of milk yield in dairy cattle

Parameter Macro—micro Macro Micro Simple
Estimate = SE  Estimate @ SE Estimate = SE Estimate  SE
ajm 420800 27960 420400 28004 416800 27696 416000 27692
ajsl 11 096 2288 11116 2320
ajv 0.043 0.008 0.042 0.008
PaineAqy 0.808 0.062 0.812 0.063
PAie s 0.627 0.073 0.608 0.0751
PagA, 0.765 0.098
APHL 193 704 194 179 193 692 202 832
AIC 193 722 194 191 193 704 202 840
ajint = additive genetic variance of breeding value for interog@;;: additive genetic variance of

breeding value for slope variance (= macro-environmentaltsaiy3j ajv = additive genetic variance
in environmental variance (= micro-environmental sensifivity, 4 = genetic correlation between
breeding value for intercept and environmental variamge; ., = genetic correlation between
breeding values of intercept and slope of reaction ngi;,, = genetic correlation between
breeding values of slope and environmental variance; APHL ustadf profile h-likelihood; AIC =
Akaike’s information criterion; “Macro—micro” = model accoimgt for both macro- and micro-
environmental sensitivities; “Macro” = model with only ma@nvironmental sensitivity; “Micro” =
model with only micro-environmental sensitivity; “Simple” model without macro- and micro
environmental sensitivities and only a genetic effect for thengtype; SE = approximate standard
error obtained with ASReml.



Discussion

Model and design

In this study, we developed a model to estimatestyervariances for macro- and micro-
environmental sensitivities. The model is an extenof the DHGLM as presented by
Ronnegard et al. [19]. Here, we combined a lineaction norm model to estimate genetic
variance for macro-environmental sensitivity witle tDHGLM to estimate genetic variance
for micro-environmental sensitivity. The animal nebth equation (2) was adapted to a sire
model because the animal model produced highlyetiastimated variance components
because of the high dependence of the estimatestibge values and residuals on the
variance ratio used in the mixed model equatiomsclwould differ for each animal. Felleki
et al. [31] also reported the presence of biasanamce components with few repeated
observations per animal but the bias decreasetleanumber of repeated observations per
animal increased. Furthermore, an animal model wgterogeneous residual variance
(DHGLM implementation) gave a poorer adjusted pedfi-likelihood than an animal model
without homogenous residual variance, which indsahat the former did not produce a
better fit than the latter in a scenario that ideld both macro and micro-environmental
sensitivities. Therefore, we decided to use amsioglel implementation, because it is more
robust than the animal model implementation with@M when animals only have a single
observation. Furthermore, sire models are commaséyl for reaction norm models, because
of their substantially lower computational burdesmpared to animal models and genetic
information about environmental sensitivity typlgacomes from paternal half-sibs that
perform in different environments. As far as we Wnahis is the first time that a model to
estimate genetic variance in macro- and micro-enwirental sensitivities suitable for
outbred animal populations is presented.

Monte Carlo simulation was used to evaluate biag precision of estimated genetic
parameters. Genetic parameters were unbiased insmagtions. The precision was not very
high, especially of estimates fofv, as indicated by the high standard deviation tineges
across replicates, particularly in designs with Isri@milies. Designs with at least 100 sire
families, each with at least 100 offspring, areurszf to have sufficient precision. Presence
of fixed effects, such as contemporary group effewbuld increase the required number of
sire families and the number of offspring per &wmily. These results are in agreement with
standard error and power calculations reported iy39], Mulder [40] and Hill and Mulder
[20] with respect to estimation of genetic variaf@emicro-environmental sensitivity or for
environmental variance. For instance, Hill and Mul{R0] derived that the optimal family
size to estimate genetic variance for environmentaiance with a family design is
approximately 2f, where)” is the square of the coefficient of variation leé within-family
variance. Thus, the optimal family size for halissis 137 Whemrjv = 0.10. The only study
providing Monte Carlo results for the DHGLM to es#ite genetic variance for micro-
environmental sensitivity is by Rénnegard et a@][They considered a design with clones,
which is more powerful and leads to lower standidations of estimates than those in our
study.

With respect to macro-environmental sensitivity thagnitude of the standard deviations of
theajsl estimates across replicates was similar to thettrted by Calus et al. [36], but larger

than those reported by Lillehammer et al. [41], clhis explained by the fact that the latter
authors simulated more sire families, i.e., 100@ $amilies with 100 offspring each. In



general, the number of required offspring per famd lower for macro-environmental
sensitivity than for micro-environmental sensityyitas indicated by the lower standard
deviations of estimates of genetic variance for fibiener. This is in agreement with a
previous study by Mulder [40], which showed that fower to detect G x E interactions
between two environments is greater than the potwerdetect genetic variance for
environmental variance or micro-environmental sensi. In the present study, we assumed
that the environmental parametensed for the reaction norm was known without effbis

will be true in some cases, e.g. when using tentyperaor rainfall or other herd
characteristics [42]. In other cases, an estimawd mean is used as the environmental
parameter, which is estimated from the data [7]8,3alus et al. [36] showed that genetic
variance in macro-environmental sensitivityjs() was severely underestimated when the
environmental parameter was estimated from the d&ia may have also led to the genetic
variance in macro-environmental sensitivity to belerestimated in our application to milk
yield. Su et al. [43] reported that a Bayesian appn that estimates simultaneously the herd
mean and the reaction norm parameters leads tasetestimates of;, .

Lilehammer et al. [41] showed that sire modelsegapward biased estimatesqﬂ;l when
heterogeneity of residual variance was ignoredabse the unexplained genetic variance in
the reaction norm parameters becomes part of giguad variance when using a sire model.
In our study, the bias in estimates @f, was smaller than in Lillehammer et al. [41].

Lilehammer et al. [41] proposed including a dumarymal effect in the model to account
for the residual three-quarters of the geneticavene that is not accounted for by the sire
effect. This solution was also tested in our modet gave severely biased variance
components because of the high dependency of déstinbaeeding values and residuals on
variance ratios that were used in the mixed modeh&ons, which differ by animal when

considering heterogeneity of residual variance.

The algorithm developed in this study allowed eating genetic correlations between the
different genetic effects. Standard deviations stingated genetic correlations were large,
especially those of the genetic correlation betweeacro- and micro-environmental
sensitivities f,,4,). This large magnitude of the standard deviatibrestimates of the
genetic correlation was expected considering teigenetic correlation between macro- and
micro-environmental sensitivities is mainly based paternal half-sib information and that
both traits have low heritability. Using the eqoatiin Robertson [44] and assuming a
heritability of 0.05 for both traits, the standaedor is approximately 0.26 when the true
genetic correlation between the traits is zerochlig close to the value found here, i.e. 0.25
(Table 4). To increase the precision of estimafeth® genetic correlation between macro-
and micro-environmental sensitivities, designs vétharger number of families and larger
family sizes are required. The application to mylkld data in dairy cattle shows that it
should be possible to estimate genetic correlatieiis standard errors between 0.06 and
0.10, since in most countries datasets with att I#86 bulls each with 100 daughters are
easily obtained. Full-sib families or clones woaldo reduce standard errors of estimates of
genetic correlations in comparison to half-sibs.

Here, we showed that the adjusted profile h-likedith (APHL) can be approximated from
REML-output and used in combination with AIC to yide an efficient model selection tool.
In addition, we showed that biases in genetic patara were relatively small when
statistical and true models differed. Both reswte re-assuring that these models can
discriminate between macro- and micro-environmesgakitivities and that the true model of



environmental sensitivity can be elucidated usin@€.AWe also found that the Bayesian
information criterion (BIC) was too conservativedaiavoured the simpler model too often
(results not shown). AIC has the advantage thadrntbe used independent of the order of the
fitted models, whereas the likelihood ratio tegjuiees a hierarchical structure such as in a
forward selection scheme [45].

Improving biological understanding of environmental sensitivity

The proposed model can contribute to better uraledstthe genetic architecture of
environmental sensitivity, e.g. whether macro- amitro-environmental sensitivities are
genetically related. Most studies in plants andifatory species indicate that macro- and
micro-environmental sensitivities are weakly catetl [22-24,26-28]. This seems to indicate
that selection on one type of environmental sentsitvill hardly affect the other. The first
application of the model on milk yield data in gatattle, revealed a high genetic correlation
between macro- and micro-environmental sensitwi{i@.76), suggesting that selection on
one type of environmental sensitivity will also et the other in the same direction.
Generally, little is known about these relationship livestock. Knowledge about these
genetic correlations could be used to optimize ctele strategies for environmental
sensitivity.

In this study, we assumed a linear reaction norrdehdut reaction norms can also be non-
linear [8]. The model presented here can easilyXiended to higher-order polynomials.
Furthermore, the genetic basis of micro-environ@esgnsitivity may not be the same along
an environmental gradient and the model for residigiance or micro-environmental
sensitivity in equation (3) could be extended tmtamm a reaction norm with a known
environmental gradient. For instance, in stressfiironments, there might be more genetic
variance for micro-environmental sensitivity tham iless stressful environments.
Furthermore, G x E interactions often exist betweategorical environments and are often
analysed with character state or multivariate modg]. Character state models do not
explicitly estimate breeding values for macro-eoninental sensitivity, but these breeding
values could be back-calculated by using covariaiicetions when the environmental
parameter responsible for G x E interactions istifled because reaction norm models and
character state models are interchangeable [2hdrcase of two environments, a reaction
norm model with a dummy environmental parameteh wélues 0 and 1 would yield results
that are identical to a bivariate character statdeh Multivariate versions of the DHGLM or
reaction norm models with dummy environmental \ldga could be used to simultaneously
investigate macro- and micro-environmental sens#s/when environments are discrete.

Application to breeding

Taking macro- and micro-environmental sensitiviil@® consideration is highly relevant in

animal breeding. Due to the high level of globdimain animal breeding programs, it is
necessary to breed animals that can perform wellviinde range of environments. Therefore,
it may be important to select animals that havetéichenvironmental sensitivity, especially
for environments with a higher risk of environméntdisturbances. Reduction in

environmental sensitivity increases the prediciigbdf performance and reduces risk for
farmers [46]. Furthermore, reduction in micro-eomimental sensitivity will increase the

uniformity of animal products [47], which is a gealegoal. In plant breeding, application of
a model for macro- and micro-environmental sensigw is also highly relevant since G x E
interactions are generally very strong and uniftynaf crops is very important. Recent



papers by Ordas et al. [48], Makumburage and Stap[d9] and Kliebenstein [50] show that
there is an interest for increased uniformity ians. Economic values could be derived for
micro-environmental sensitivity [47]. The economialue of macro-environmental
sensitivity can be determined as a function of ithportance of environments along the
environmental gradient. Based on Mulder et al. 1B,¢rogeny testing schemes are more
efficient than sib testing schemes to reduce mggraronmental sensitivity since it behaves
as a trait with a small heritability. Genomic sél@e could be an alternative selection
strategy with sufficient accuracy and shorter gatien intervals.

Conclusions

In this study, a model was developed to estimateetie parameters of macro- and micro-
environmental sensitivities, combining a reactiarnm model with a double hierarchical
generalized linear model within a REML frameworkm8lations showed that the genetic
parameters obtained were mostly unbiased, but meswgh at least 100 sires, each with 100
half-sib offspring, were required to estimate genearameters with sufficient precision.
Using AIC, the true genetic model was selectedhadest statistical model in at least 90% of
replicates when the number of offspring per sirs W0. Application of the model to milk
yield data in dairy cattle showed that both typé®mvironmental sensitivity existed. Our
model and AIC based on h-likelihood can be usedntoease our understanding of the
genetic control of environmental sensitivity indstock populations but more research is
needed to test the model in a wider range of sinst
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Appendix
DHGLM algorithm for a sire model

The original DHGLM algorithm of Ronnegard et al9]vas developed for an animal model.
Here we describe the estimation algorithm for thhe model used in the current paper,
including a few adjustments of the algorithm in Régard et al. [19] to correct for the fact
that the residual variance in a sire model (withmerimanent environmental effects, e.g. with
animals with a single observation) contains threarigrs of the additive genetic variance in
addition to the environmental variance. The adjesti® in the algorithm are as follows:
adjustment of the squared residuglg @ccounting for the fact that the residual vareairca
sire model includes three quarters of the addigjeeetic variance, use of average residual

variance&js to calculataps (instead of predicted individual values), and catafions of the

diagonal weight matrice¥Vs and Ws,. These adjustments resulted in a computationally
robust algorithm with small or no bias (as presgmeResults).

To compute the linearized responpefor the bivariate sire model in equation (3), tfivee
calculatey,, as:

&2 a2
Y, S = (6)
" (1-h) ;

This is equivalent to the calculations for the mesgey, in [19], except for the multiplication
by the ratio of the average estimated residuakwas in a sire modeld¢ = o7, /w,, where

W, :tr(WS)/n andn is the total number of records) and the averagelual variance in an

. o > 77 3. - A
animal model, which is calculated 8§ =5 2 & (0% =462 ). Because we use a log

link function, y, is linearized as:
y, =log(&2 )+ == 7)

The diagonals oWV are the reciprocals oﬂ;s (le. W, :1/&3), which is the vector of

predicted residual variances for each observatiaseth on the previous iteration and is
calculated as:

~ > 3. 3.
j, = o 7307 Jos, |+ 327, ®

The sire effects for environmental variange only affect the part of the residual variance

which is truly environmental variance and thereftieee-quarters of the additive genetic
variance is subtracted in the multiplicative pdrequation (8). The diagonals %f., are the
reciprocals of the residual varianceyafand were calculated as:



W, =%(1—h)2[ijj | ©)

This is motivated by the fact that by combining &pns (6) and (7), and by assuming that
the estimated residuals are close to the true oveebave:

(10)

—\2
2 A2
€ 1 | O
var[l—sxA=2J= 2(1-h) Z{A—EZJ :
(-h)" ez 5
since the true residuals are assumed normal andgdgbared true residuals are therefore
: . an\2
Gamma distributed with a variance b(fajs) .

The algorithm can be summarized as:

1. Run model ory in equation (3) with homogeneous residual variance
2. Calculateys, Ws, Ws,, where W, = diag(ﬁz) in iteration 1.

e

3. Run bivariate model in equation (3).
4. Updateys, W, W,
5. Iterate steps 3 till 4 until convergence

Approximation of the adjusted profile h-likelihood

In our paper, the model selection was based ormpproaimation of the adjusted profile h-
likelihood (APHL), which is defined as [51]:

APHL = (2h~-log(def{H) )) K (11)

whereH is the Hessian of the h-likelihood ands the vector of all fixed and random effects
both in the mean and variance parts of the modelte model in equation (3), minus two
times the h-likelihood (-1 is:

-2h=-2(1(ykw .3 .9)+ (5 .8.9)

n &? - - 12

="| log(2) +3 |+log(detG )& G's. (12)
i=1 o-el

wherel is log-likelihood, 67 (&% =67, /wS , with w, being thei™ diagonal ofWy) is the

residual variance of observation&” is the estimated squared residual of observatiéh is



: . -, 1 . :
the covariance matrix of all random effects (:ZG JA), sis a vector of all random sire

effects (é':[sfm S §]) andws, is the weight for the mean model for observatiohhe
minus two log REML likelihoodlpgL) from the bivariate model in equation (3) is:

n+k

A2
—2logL = Z[Iog(&é%%} +
i=1

g (13)

log(det ) +8 G5+ log def C))

where the firsh residual variances come from the first part oftilvariate modely) and the
next k residual variances come from the second part @fbiliariate modelydfs) (k = n =
number of records), an@ is the Hessian of the bivariate model (i.e. lefk-side of the
mixed model equations). Because log (@) (s a reasonable approximation of log (de})(
[31], we can approximat&®PHL as given in equation (4) in the main text:

APHL = -2logL -
Sw, (62)" -3in(62)) w,, (14)

Thus, the REML likelihood for the bivariate modsldorrected for the fact that the squared
residuals are used as “observations” in the bitemaodel. Note that equation (14) can also
be used for animal models by replacing the elemegtsand o, with the corresponding
elements of equation (2) or for models with mordewer random effects in the mean and
variance model.
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