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Abstract

In this study, 1208 Campylobacter jejuni and C. coli isolates from humans and 400 isolates from chicken, collected in two
separate periods over 12 years in The Netherlands, were typed using multilocus sequence typing (MLST). Statistical evidence
was found for a shift of ST frequencies in human isolates over time. The human MLST data were also compared to published
data from other countries to determine geographical variation. Because only MLST typed data from chicken, taken from the
same time point and spatial location, were available in addition to the human data, MLST datasets for other Campylobacter
reservoirs from selected countries were used. The selection was based on the degree of similarity of the human isolates
between countries. The main aim of this study was to better understand the consequences of using non-local or non-recent
MLST data for attributing domestically acquired human Campylobacter infections to specific sources of origin when
applying the asymmetric island model for source attribution. In addition, a power-analysis was done to find the minimum
number of source isolates needed to perform source attribution using an asymmetric island model. This study showed that
using source data from other countries can have a significant biasing effect on the attribution results so it is important to
carefully select data if the available local data lack in quality and/or quantity. Methods aimed at reducing this bias were
proposed.
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Introduction

Campylobacter is the most common cause of bacterial gastroen-

teritis in the western world [1]. Several source attribution studies

have been performed to quantify the relative contributions of

different sources of infection to human campylobacteriosis. The

results of these studies can be used for identifying those sources of

infection that are the most promising targets for Campylobacter-

reducing intervention efforts, as well as for measuring the impact

of such efforts at varying levels of the transmission chain. Chicken

has been indicated as the major contributor to the disease burden

of human campylobacteriosis in most countries where source

attribution studies pertaining to those geographical regions have

been performed [2–5]. However, in other countries, ruminants

have also been found to be important [6,7]. As new Campylobacter

sequence types (STs) emerge and the relative occurrence of the

established ones change continually, attribution results may vary

over time [8]. In addition, the human exposure to Campylobacter

may vary as well, for example because of international travel and

trade, changes in food consumption patterns and eating habits,

either over space or time.

To estimate the proportion of human Campylobacter infections

attributable to different sources, differences in the relative

occurrence of bacterial subtypes in individual sources may be

used. The Campylobacter spp. subtypes found in human cases and

in food and environmental sources are compared to attribute

human campylobacteriosis cases to sources. Multilocus Sequence

Typing (MLST) [9] has been used as the typing method of

choice in most recent studies [3–5,7] as it displays a reasonable

level of heterogeneity of Campylobacter STs among the different

sources. Thus far, most published studies on Campylobacter source

attribution have been performed in countries in which a

relatively large number of local and recent Campylobacter spp.

strains from animal and environmental sources have been

isolated and typed with MLST. Yet, the set up of intensive

sampling schemes and the examination of the collected samples

to obtain Campylobacter MLST data from multiple sources is

costly. As a result, Campylobacter MLST data and related source

attribution studies are lacking in many countries. It has been
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noted that, although surprisingly robust [10], the use of non-

recent or non-local data in attribution studies may introduce

bias into the attribution results for human cases of campylo-

bacteriosis within a country [11]. In addition, the use of a

small-sized human or source dataset may result in uncertain

and, therefore, less generalizable estimates.

In the Netherlands, Campylobacter MLST data have been

collected from humans between 2002–2003 and 2010–2011 and

from chickens between 2000–2007 and 2010–2011. In this

study, we present these data and compare them with other

published data from different countries. In addition, we analyze

temporal changes in MLST frequencies of such data. Only a

small number of local Campylobacter MLST reference strains

were available from other sources than chicken. A method was

proposed to select MLST datasets representing sources other

than chicken from international studies to be used for source

attribution purposes.

The aim of this study was to better understand the

consequences of using non-local or non-recent MLST data for

attributing domestically acquired human infections to their

putative sources of origin. We investigated how the source

attribution model used performs in absence of local or recent

data, or when few data are available. Based on these analyses,

we give recommendations about which and how many data

from other countries should be used for obtaining reliable

source attribution estimates if the available local data lack in

quality and/or quantity.

Materials and Methods

Data
Campylobacter MLST data from the Netherlands. Data

of laboratory-confirmed human cases of Campylobacter jejuni and C.

coli infection in the Netherlands were obtained for two different

periods. Between April 2002 and April 2003, stool samples were

collected from 2858 C. jejuni and 257 C. coli human cases during a

case-control study on risk factors for indigenous campylobacter-

iosis and salmonellosis, the so-called CaSa study [12]. Of these,

948 C. jejuni and 66 C. coli isolates were subsequently successfully

typed with MLST [9] to be used for source attribution and source-

specific risk characterization [2]. Of these, 743 cases (699 C. jejuni

and 44 C. coli) were domestic cases, as the other cases had a recent

history of foreign travel.

Isolates from more recent domestic human cases of campylo-

bacteriosis routinely identified by the Dutch Regional Public

Health Laboratories through passive surveillance were obtained

between June 2010 and June 2011. In total, another 423 C. jejuni

and 42 C. coli strains were typed using MLST.

In addition, 218 Campylobacter isolates from fresh retail chicken

meat of Dutch origin, sampled between 2000 and 2007, were

obtained. More recent chicken isolates of Dutch origin were

obtained between 2010 and 2011. These consisted of 158 isolates

from retail chicken meat and 24 isolates from layer hens, pooled

together assuming that layers and chickens are a single reservoir

(Gallus gallus). Isolates from other Campylobacter sources in the

Netherlands were obtained between 2000 and 2006 (cattle, n = 9;

pigs, n = 13; environmental water, n = 106). These isolates were

also typed using MLST [9].

In this study, cases with a recent history of foreign travel were

excluded and C. jejuni/coli data were given at the species level for

humans but not for chicken isolates.

Campylobacter MLST data from international

studies. A literature review was conducted to identify published

studies that provide MLST data for Campylobacter isolates from

human cases and from various sources in countries other than the

Netherlands. It was required that the data in such studies were

representative of the natural strain diversity and relative frequen-

cies therein, in those countries. Therefore, studies presenting

isolates which are subject to any form of selection (e.g. reporting of

novel strains only) were excluded. Isolate collections used in this

study are shown in Table 1.

Comparison of Datasets
Analysis of diversity. The distributions of ST frequencies in

different datasets were compared visually by stacking the

frequency bars of the most common STs found in the different

studies next to each other. In addition, the frequency distributions

of the most common STs and clonal complexes (CCs) in different

datasets were compared with one another to allow for genetically

close relationships between STs within the same CC to be

evidenced. Approximate confidence intervals (CIs) for the ST or

CC frequencies were calculated using bootstrapping [13].

The proportional similarity index (PSI, or Czekanowski index)

[14] was used to measure the similarity of frequencies of STs

between the different datasets. The PSI is expressed as PSI = 1 2

0.5 gk |Pk 2 Qk|, where |Pk 2 Qk| is the absolute value of the

difference in the relative frequency of MLST genotype k in dataset

P compared to its frequency in dataset Q. The values of PSI range

from 0 to 1, with 0 indicating that both distributions have no types

in common and 1 that both distributions are completely equal. CIs

for the PSI were also calculated using bootstrapping [13].

Principal component analysis. In addition to the numer-

ical similarities measured by the PSI between datasets, a principal

component analysis (PCA) [15] provides additional insights

towards which STs are the main contributors to the differences

observed between the different datasets. Briefly, the original

coordinate system, in which each axis represents the relative

frequency of one ST in the datasets, is linearly transformed by

PCA. In the transformed coordinate system, most variability is

explained by the first coordinate (the first principal component),

the second largest variability is explained by the second

coordinate, etc. The proportion of the variability that is explained

by the nth coordinate equals the fraction of the nth eigenvalue out

of the summed total of all eigenvalues of the transformation

matrix. A plot of the transformed axes shows which STs are most

relevant for explaining the differences between the datasets. If the

first dimensions of the transformed system explain the majority of

variability, only these need to be plotted.

Source Attribution
Asymmetric island model. The large effective population

size of Campylobacter causes frequent mutation despite a relatively

low mutation rate per allele [16]. Also, Campylobacter recombines

[17] and migrates from one host to another [18]. With the

Asymmetric Island (AI) model [5], the parameters describing these

genetic changes within, and drift between, the source populations

are inferred using Bayesian inversion. Subsequently, they are used

for comparing one group of isolates (the attributable population) to

other groups (the source populations). For each case, the AI model

estimates a relative assignment posterior probability (Pr) to

originate from each source. The proportion of human infections

attributed to a given source is calculated as the average Pr over all

cases. The AI model has been used for source attribution in a

number of published studies [5,19,20] and has been reported to

provide results with a relatively high level of confidence [19].

Baseline attribution analysis. In the baseline attribution

analysis, the attributable population consisted of the 1208 non-

travel related Dutch human cases in 2002–2003 and 2010–2011.
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The source populations were defined by the available MLST

source data from the Netherlands supplemented with MLST

source data from a selection of other published studies. Supple-

mentary source data were used from countries where the human

isolates were most similar to Dutch human isolates, as indicated by

the PSI. Isolates that were used in the baseline attribution analysis

are printed in bold in Table 1. The augmented dataset is

composed in such a way that there were 168 isolates for cattle, 160

for sheep, 133 for pig and 289 for the environment. Chicken data

from countries other than the Netherlands were not used because

sufficient Dutch data were available for this source.

Advanced attribution analyses. Typically, the available

Campylobacter MLST data for source attribution are imperfect [2].

Source data are in fact scarcer than human data in many countries

because these are not collected routinely. To verify the impact of

imperfect source data, the following scenarios were tested:

N Source attribution with non-local source data

N Source attribution with limited source data

The impact of using non-local source data was assessed by

performing the following source attribution analyses of Dutch

human cases and comparing their results to the baseline

attribution results. First, chicken data from countries relatively

close to the Netherlands (UK, here Scotland and England, and

Switzerland) were used instead of the domestic chicken data. The

effect of using chicken data from countries further away from the

Netherlands (New Zealand, Finland and the US) was also

investigated. Ultimately, domestic chicken and chicken from

Scotland, England and Switzerland were considered as distinct

sources in the attribution analysis.

The impact of using non-local source data was further studied

by letting non-local chicken isolates be the attributable

population, and attributing these using the source populations

as defined in the baseline attribution analyses (bold numbers in

Table 1). This type of analysis is called self-attribution, and can

also be used to test the statistical power of the attribution model

[19]. In this case, a high similarity between the non-local and

local chicken isolates and a high statistical power of the model

should result in a self-attributed proportion of the chicken

isolates that is close to 1.

Self-attribution was also used to study the impact of using

source data with a limited sample size. Of the 400 chicken

isolates used in the baseline attribution, 250 were randomly

selected to be the attributable population. Experiments indicated

that the effect of modifying this initial split of the chicken data

on the attribution results was negligible; thus, only one random

split was considered in the following experiments. The

remaining 150 chicken isolates and 150 randomly selected

isolates from the remaining source populations (as defined in the

baseline attribution model) were the reduced source populations.

Subsequently, self-attribution was carried out. Self-attribution of

the same 250 chicken isolates was also done with random

subsets of 100, 75 and 50 isolates from each source population

to explore the effects of using smaller-sized source datasets. To

account for variability in the attribution results caused by the

random subset selection, self-attribution was done 10 times for

every subset of the source population, while keeping the

attributable population of 250 chicken isolates constant.

Finally, a source attribution analysis based on the minimum

possible non-recent and non-local data was performed. This was

made by letting the human cases in 2002–2003 be the attributable

population and using the corresponding Dutch source data (NL1

dataset in Table 1) supplemented with only the most similar non-

Dutch source data (SC dataset in Table 1).

Results

Temporal Variation
A large variety of STs was found in the Dutch human and

chicken data. In Figure 1, the contributions of those CCs including

STs that were found in the human data of 2002–2003 in

proportions over 1% (accounting for 83% of all isolates) are

represented together with the contributions of the same STs within

these CCs for chicken data of 2000–2007 and for human and

chicken data of 2010–2011; these CCs accounted for 65%, 67%

and 52% of all isolates, respectively.

Among the 743 human isolates from 2002–2003, 161 different

STs were observed. The five most frequent STs were ST53 (9.2%),

ST50 (6.8%), ST21 (6.1%), ST45 (4.4%) and ST48 (4.3%).

Among the 218 chicken isolates from 2000–2007, 87 different STs

were found, the five most common STs being ST2483 (7.8%),

ST53 (6.9%), ST50 (5.0%), ST584 (4.6%) and ST464 (4.6%). In

the 465 human isolates from 2010–2011, 129 different STs were

observed. The five most frequent STs were ST48 (10.7%), ST21

(9.9%), ST572 (9.3%), ST257 (6.7%) and ST50 (4.2%). Among

the 182 chicken isolates from 2010–2011, 82 different STs were

found, the five most common STs being ST2274 (11.5%), ST572

(9.3%), ST50 (4.4%), ST45 and ST257 (3.8%).

The PSI was used as a tool to quantify the (dis)similarity

between recent and non-recent isolates. Figure 2 indicates that the

STs isolated from chicken and human cases are increasingly

dissimilar as the period between which the samples were taken

increases. The linear decrease is borderline significant with a mean

slope of 20.011 (95% CI: 20.018 to 20.003). PSI was also

calculated for chicken data between 2000–2004 and 2005–2007

(PSI = 0.24, 95% CI: 0.11–0.38), between 2000–2004 and 2010–

2011 (0.20, 0.07–0.33), and between 2005–2007 and 2010–2011

(0.34, 0.22–0.46). Although the 95% CIs overlap one another, a

trend is notable towards dissimilarity of chicken data as the period

between which the samples were taken increases.

Geographical Variation
The frequency distributions of the most common CCs in human

datasets published in the international literature are shown in

Figure 3. The most commonly found CC in England is CC21,

followed by CC45, CC48 and CC257. For the Dutch human data,

these were also important CCs in 2002–2003 as well as in 2010–

2011. CC21 was less common in human cases in other countries,

in particular in Australia and in the US. CC48 was remarkably

prominent in New Zealand. This is mainly due to CC48 member

ST474, which accounted for 30% and 29% of all human cases in

the two New Zealand studies, respectively. ST45, the founder

strain of CC45 was by far the most common ST in Finland,

accounting for 28% of the human cases. CC354 member ST528,

which is frequently reported in New South Wales, Australia, was

not reported in the other studies.

The analysis of similarity of the Dutch human data from 2002–

2003 with the human data from other datasets shows that they are

most similar to Dutch human data from 2010–2011, followed by

human data from Scotland, England and Switzerland (Table 1). In

general, the Dutch human data were less similar to data from

Finland, Spain and the considered non-European countries. This

was expected because of the differences in geographical distance.

All international datasets were significantly different from the

Dutch human data from 2002–2003, as can be seen by the fact

Campylobacter Source Attribution in Space and Time
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that the similarity 95% CI within these Dutch data does not

overlap any other similarity confidence interval (Table 1).

In Figure 4, the first three dimensions of the PCA transformed

system of ST frequency vectors are plotted. ST474 sets the datasets

from New Zealand apart from other datasets and ST21 sets

datasets from Switzerland slightly apart from other datasets. The

Finnish dataset is set apart from other datasets by a high

prevalence of ST45 and the dataset from Curacao is set somewhat

apart from other datasets due to a high prevalence of ST508.

Evaluation of the eigenvalues of the transformation matrix

obtained in the PCA showed that the first three dimensions of

the transformed coordinate system explain about 73% of the

variability of ST frequencies between the datasets.

Attribution Analyses
In the baseline attribution analysis (Figure 5A), of all 1208

human cases of campylobacteriosis, 68% (95% CI: 61–74%) was

attributed to chicken, 24% (18–31%) to cattle, and 6% (2–10%) to

the environment, while the contributions of sheep and pig were

only minor (2% together). If the Dutch chicken data were replaced

Figure 1. Most common STs in human and chicken isolates in The Netherlands in two time periods. Only the contributions of those CCs
including STs that were found in the human data of 2002–2003 in proportions over 0.01 are represented. The contributions of less frequent STs
within these CCs are summed and presented by the ‘‘+’’ symbol; the contributions of other CCs are omitted. For the human data of 2002–2003 the
presented CCs make up for 83% of all isolates. For the chicken data of 2000–2007 and the human and chicken data of 2010–2011, these CCs make up
for 65%, 67% and 52% of all data, respectively.
doi:10.1371/journal.pone.0055029.g001
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by chicken data from Scotland, England and Switzerland

(Figure 5B), then the importance of chicken for human disease

decreased to 45% (37–52%), whereas the contributions of non-

chicken sources increased. Replacement of the Dutch chicken data

by chicken data from New Zealand, Finland and the US

(Figure 5C) greatly reduced the inferred role of chicken for

Figure 2. Similarity of STs in chicken and in human isolates from samples collected in different years. The x-axis gives the absolute
difference between years in which the isolates from human cases and chicken were obtained. To enhance the size of the sample subsets, chicken
isolates collected between 2000 and 2004 were aggregated and assigned to be collected in 2002, those collected between 2005 and 2007 were
assigned to be collected in 2006, and those collected in 2010–2011 were assigned to be collected in 2010. Human isolates were arranged in three
groups: 2002, 2003, and 2010–2011. The y-axis represents the PSI between those isolates collections.
doi:10.1371/journal.pone.0055029.g002

Figure 3. Bar chart of frequency distributions of the most prevalent CCs in 12 human datasets. Only CCs of which a prevalence higher
than 10% was found are plotted.
doi:10.1371/journal.pone.0055029.g003
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human disease (20%, 14–25%), leading to cattle being the most

important source (45%, 36–55%), followed by the environment

(32%, 23–40%). When data from domestic chicken and data from

Scottish, English and Swiss chicken were considered as separate

sources in the model (Figure 5D), then it is evident that there is

much more overlap of MLST genotypes between the domestic

chicken and Dutch human isolates (63%, 55–70%) rather than

non-Dutch chicken (17% together).

If the self-attribution analysis were done with domestic chicken

as the attributable population and the source populations the same

as in the baseline attribution analysis, then 89% (81–95%) of these

isolates were attributed to the right source. If chicken isolates from

Scotland, England and Switzerland were assigned as the

attributable population, then the percentage of correct self

attribution was 62% (47–75%). Similarly, if chicken isolates from

New Zealand, Finland and the US were assigned as the

attributable population then 62% (49–73%) of these isolates were

attributed to the right source.

Figure 6 shows the impact of using limited source data. It is seen

that the variability over the mean attributed proportions (caused

by randomly generating reduced datasets) increases for smaller

subsets of the original source data. This is evident as the random

effects increase for these smaller subsets. Also the statistical power

of the AI model decreases if fewer data are available, which leads

to a larger uncertainty. This implies that the confidence of the

attribution results decreases as fewer data are available. The

statistical power of the attribution model was fairly robust for

smaller-sized source datasets until a minimum number of 100

Figure 4. PCA transformed vectors of CC frequencies in 12 human datasets. The first, second and third PCA transformed dimensions
explain together 73% of the total variability in the data. Weighted sums of the CC frequency distributions of the human isolates in the different
datasets reported in Table 1 are plotted in the first two (upper graph) and in the second two (lower graph) dimensions of the PCA transformed space.
doi:10.1371/journal.pone.0055029.g004
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isolates per source. If fewer than 100 isolates are available per

source then the statistical power of the attribution model decreased

substantially. For an average 2.5% confidence over 50% of correct

source attribution, it is advisable that more than 25 isolates per

source are used.

In the attribution analysis based on the minimum possible

non-recent and non-local data (where the word ‘‘minimum’’

here refers to the supplementary non-Dutch source data used in

the model and not to the sample size), 63% (95% CI: 56–69%)

of the 743 human cases of 2002–2003 was attributed to

chicken, 25% (19–32%) to cattle, and 11% (6–15%) to the

environment, while the contributions of sheep and pig were

again minimal (1% together).

Discussion

We presented the results of a study in which Campylobacter

isolates from Dutch human patients (n = 1208) and Dutch chicken

(n = 400) collected between 2002–2003 and 2010–2011 were typed

using MLST. The large size of this dataset provided the

opportunity to perform a multitude of analyses aimed at defining

the effect of time and geographical location on the diversity of the

Campylobacter population. Other reservoirs for Campylobacter were

less well sampled in the Netherlands. Therefore, non-local source

data were used to supplement the Dutch ones in order to attribute

the human infections to the different sources. A practical method

was also proposed to select such supplementary data with the aim

of minimizing potential biases of the attribution estimates. This

method is based on the assumption that if the human data between

different countries and time periods resemble one another (as

revealed by PSI and PCA), then also will their respective source

data, which may therefore be borrowed interchangeably for the

purposes of source attribution. Inherent to this way of choosing the

source data is the assumption that the consumption patterns and

exposure pathways from sources to humans are similar in the

Netherlands and in the countries/time periods from which the

supplementary source data were collected, and that diversity

Figure 5. Overall mean probability (%) and 95% confidence interval for human C. jejuni and C. coli infections to originate from
chicken, cattle, pig, sheep, and the environment. A. Baseline attribution results (see main text); B. Attribution results with Dutch chicken
isolates replaced by chicken isolates from Scotland, the UK and Switzerland; C. Attribution results with Dutch chicken isolates replaced by chicken
isolates from New Zealand, Finland and USA; D. Attribution results with Dutch, Scottish, English and Swiss chicken isolates as separate Campylobacter
reservoirs.
doi:10.1371/journal.pone.0055029.g005
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between the human datasets can only be explained by intrinsic

differences in the genotype distribution and by sampling uncer-

tainty.

The attribution analyses showed that chicken was the most

important source of human campylobacteriosis in the Netherlands,

accounting for 61–74% of the human cases in the baseline model

where the two human datasets for 2002–2003 and 2010–2011

were pooled based on their high similarity and the fact that the

corresponding source data covered on average the whole time

period. This is in line with findings from previous source

attribution studies conducted in several other countries

[2,3,7,21,22]. Nevertheless, our analyses suggest that the high

proportion of human cases attributed to chicken and the smaller

proportions of cases attributed to non-chicken sources (which are

less intensively sampled in the Netherlands) may depend on the

origin of the source data included in the model. When domestic

chicken data were replaced by chicken data from countries

showing the closest possible human MLST profiles to those of the

Netherlands, i.e. Scotland, England and Switzerland, the ranking

of sources remained the same as that of the baseline model but the

contribution of chicken to human cases decreased considerably.

This was more evident and the ranking of sources was even

reversed when domestic chicken data were replaced by chicken

data from countries with human MLST data less similar to those

of the Netherlands, i.e. New Zealand, Finland and the US.

Moreover, when Dutch, Scottish, English and Swiss chicken data

were included as separate sources, it became apparent that

domestic chicken is much more important than foreign chicken in

accounting for domestic human cases. Together these findings

suggest that the further in region and time one takes the source

data, the more their MLST profiles will differ, and the smaller will

be the estimated proportions of human cases attributable to those

sources that were sampled less close in time and space to the

human cases.

ST50 is shared as a common ST among the human and chicken

isolates collected in the periods 2002–2003 and 2010–2011, and

results from the AI model showed that human cases with ST50

had a 90% probability of having been infected by chicken or by

strains with chicken origin. This ST belongs to CC21, which is

reported to have a relatively wide distribution across many host

species but slightly more dominant in ruminants [23]. Other STs

belonging to this complex are ST21 and ST53. ST21 was more

common in human cases than in chicken in both periods. Results

of the AI model showed that human cases with ST21 were slightly

more likely to have been infected by ruminants (Pr = 0.51) than by

chicken (Pr = 0.43). The decline of ST53 in samples from chicken,

being the most frequent ST in samples from 2000–2007 but a

minor ST in samples from 2010–2011, coincided with a decline of

this ST in the human samples as well. A similar decline was seen

for ST584 in the chicken and in the human samples. This may

indicate the importance of chicken as the source for campylo-

bacteriosis caused by these STs. Results of the AI model confirmed

that the probability that these STs originated from chicken was

0.84 and 0.97 for ST53 and ST 584, respectively. In contrast,

ST2274 was increasingly common in chicken samples, which

coincides with an increase of this ST in the human samples.

Results from the AI model showed that human cases with ST2274

were most likely to have been infected by chicken (Pr = 0.97). The

predominant STs in human data in the Netherlands in 2002–2003

were ST53 and ST50, both belonging to CC21. Also in other

studies [7,20,21,24], these strains were reported to be common in

human patients.

Figure 6. Statistics of the self-attributed proportions of 250 chicken isolates for reduced source datasets of size n (on x-axis). Every
reduced dataset is generated from the original dataset by randomly removing isolates from an original set of 150. The boxes indicate variability in the
mean attributed proportions over the 10 different reduced datasets per model and per reduction factor. Indicated are the minimal, maximal and
average means. The whiskers indicate the average 2.5% and 97.5% confidence limits over the different reduced datasets. The star-symbols represent
the minimum 2.5% limit and the maximum 97.5% limit.
doi:10.1371/journal.pone.0055029.g006
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By comparing the human datasets from several countries to the

Dutch human data, it was concluded that the importance of the

differences in ST frequencies is correlated with the geographical

distance between the countries, with the data from nearby

European countries being generally more similar than data from

more distant countries with respect to the Netherlands, such as

New Zealand, Australia and the US. PCA was proposed as a

method to show in a visually appealing way the difference in

occurrence of STs in different studies. The transformed vector

representing the Dutch human data is relatively close to the origins

of these PCA plots. This indicates that the 2002–2003 Dutch

human dataset does not contain one or more CCs in markedly

different frequencies than the average frequency distribution over

all datasets that were considered. This may be caused by the ease

of traveling and trade within the European Union, which leads to

a larger exposure to Campylobacter from reservoirs present in

European countries. However, limited exposure to this interna-

tional diversity of Campylobacter strains may occur in people living

in countries where there is a less open national market such as

New Zealand or Australia, or where less international importation

of meat products, including poultry meat, takes place, such as

Spain or Finland. Indeed, approximately 8% and 11% of the total

amount of meats available for consumption in 2000–2009 in Spain

and Finland were imported, respectively, and these figures are

considerably lower than those for the Netherlands (,45%), the

UK (,30%), and Switzerland (,16%) [25]. Human isolates from

Curacao were taken from Guillain-Barré cases [26], which is a

particular subset of campylobacteriosis cases. These may be

reasons that studies in these countries show different frequencies of

certain CCs compared to the averaged frequencies over all studies,

which may be seen by the larger distance from the origins in the

PCA plots. Also the CCs that set the studies from these countries

apart from other studies are shown in the PCA plots. Indeed,

CC48, in particular the CC48 member ST474, is reported in New

Zealand more frequently than in other countries [20], ST528,

belonging to CC354, is more frequently reported in New South

Wales, Australia [27], and the CC45 member ST45 is more

frequently reported in Finland [7].

The PCA shows only those CCs which explain the largest

variation between the different datasets. Yet, in many studies the

same STs (e.g. ST21, ST22, ST48 and ST 257) turn up as the

predominant strains. This provides evidence to the suggestion

made by Mickan et al [27] that some STs have a global

distribution, while others are restricted in their distribution to a

more local environment, however the ‘‘local STs’’ may be more

associated with countries with less international travel and trade

[28].

The results of our study show that it is recommended to have

over 100 isolates per food source to perform source attribution

using the AI model in order to have satisfactory statistical power.

More detailed research questions with respect to attribution

estimates might ask for more precision, hence a larger strain set. If

this amount of data is not available for each potential source when

using only recent and domestic data, then the investigator may be

forced to use non-recent or non-local data. We have shown that

the MLST data supply for Campylobacter within a food source is

subject to dynamic changes in time and over geographical

location; thus, in principle, this introduces temporal and

geographical bias into the study.

As the AI model is based on a population genetics approach,

source data collated from studies that show large variations

between isolates obtained from the same sources but from different

datasets may distort the gene frequencies upon which source

attribution relies [5]. Sample size may impact on such variation by

letting certain sources to exhibit relatively more unique (with

respect to humans and the other sources) genotypes than others;

thus, more intense sampling of small-sized sources is generally

desirable, as oversampling certain sources relative to the others

does not seem to affect the point estimates but only their accuracy

[5]. Indeed, the source dataset becomes denser and better defined

in terms of representative genotypes by increasing the number of

samples. Therefore, notwithstanding the distortion of gene

frequencies due to the pooling of source datasets from different

studies, this may become less important with increasing sample

size.

In conclusion, we have shown that, even on a small time-scale,

MLST data within two sources become increasingly dissimilar as

the time between different datasets are collected increases so that

the AI model may underestimate the importance of a source

whose data are not collected contemporaneously with the human

cases to be attributed. Temporal bias can be minimized by

choosing the most recent data that are available for a source. In

addition, the AI model may underestimate the importance of

sources from which non-local source data were used. A coarse rule

is that this bias increases with the geographical distance between

the countries in which the attribution is performed and from which

source data are used. Nevertheless, our results show that

geographical distance is not the only factor, and it may act

together with factors related to travel and trade between countries.

It also has been found that association of genotypes to a particular

host is reported to be stronger than their association to a

geographical location [10]. Our results show that, although this

may make the consequences of geographically biased data less

severe, it does not fully compensate for them (Figure 5). In general,

the extent to which this bias is a matter of concern depends on

how detailed (in time and region) is the research question to be

addressed. A method based on the comparison of human isolates

from different studies using PSI and PCA was proposed to select

non-recent and non-local MLST datasets for the purposes of

source attribution while minimizing potential biases.
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