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Abstract

Flavonoids are secondary metabolites present in all terrestrial plants. The flavonoid pathway has been extensively studied,
and many of the involved genes and metabolites have been described in the literature. Despite this extensive knowledge,
the functioning of the pathway in vivo is still poorly understood. Here, we study the flavonoid pathway using both
experiments and mathematical models. We measured flavonoid metabolite dynamics in two tissues, hypocotyls and
cotyledons, during tomato seedling development. Interestingly, the same backbone of interactions leads to very different
accumulation patterns in the different tissues. Initially, we developed a mathematical model with constant enzyme
concentrations that described the metabolic networks separately in both tissues. This model was unable to fit the measured
flavonoid dynamics in the hypocotyls, even if we allowed unrealistic parameter values. This suggested us to investigate the
effect of transcript abundance on flavonoid accumulation. We found that the expression of candidate flavonoid genes varies
considerably with time. Variation in transcript abundance results in enzymatic variation, which could have a large effect on
metabolite accumulation. Candidate transcript abundance was included in the mathematical model as representative for
enzyme concentration. We fitted the resulting model to the flavonoid dynamics in the cotyledons, and tested it by applying
it to the data from hypocotyls. When transcript abundance is included, we are indeed able to explain flavonoid dynamics in
both tissues. Importantly, this is possible under the biologically relevant restriction that the enzymatic properties estimated
by the model are conserved between the tissues.
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Introduction

Flavonoids are a group of secondary metabolites widespread in

the plant kingdom [1]. They are well known for their proposed

health effects, and are abundant in, for example, fruits and tea

[2,3]. All terrestrial plants contain flavonoids, and they are present

in all organs. Flavonoids have a large array of proposed functions,

for example in flower pigmentation, development, pollination, and

protection against UV radiation and pathogens [4–8].

Flavonoids are polyphenolic compounds (see Figure 1B),

consisting of two aromatic rings with six carbon atoms (ring A

and B) interconnected by a hetero cycle including three carbon

atoms (ring C). They are classified into subgroups according to the

structure and modifications of the central C-ring. The different

groups of flavonoids typically accumulate after glycosylation,

methylation or acetylation.

The flavonoid pathway has been extensively studied: over 6000

different flavonoids have been described, in many plant species the

main enzymes have been identified and characterized, and

transcript abundance, for example during fruit ripening, has been

studied [9–12].

In tomato, many steps in the flavonoid pathway and the

corresponding metabolites and enzymes have been identified [13].

The flavonoid pathway starts with the conversion of phenylalanine

to 4-coumaroyl-CoA by phenylalanine ammonia-lyase (PAL),

Cinnamate-4-Hydroxylase (C4H), and 4-coumaroyl:CoA-ligase

(4CL). 4-coumaroyl-CoA can be converted into the first class of

flavonoids, the chalcones, by the enzyme chalcone synthase (CHS).

After modification of the chalcones by chalcone isomerase (CHI)

the flavanones are formed, which in turn give rise to dihydro-

flavonols by flavanone 3b hydroxylase (F3H). At the level of the

dihydroflavonols, the pathway branches into the two groups of end

products. Flavonol synthase (FLS) synthesizes flavonols from

dihydroflavonols, and dihydroflavonol 4-reductase (DFR), antho-

cyanidin synthase (ANS), and glycosyltransferases (GT) lead to the

synthesis of anthocyanins. However, not only FLS and DFR are

important for the branching into anthocyanins and flavonols.

Anthocyanins found in tomato are derived from dihydromyricetin

only, while it is suggested that the FLS has a strong preference for

dihydrokaempferol and dihydroquercetin [14]. Hence, the

branching of the pathway is regulated by the enzymes that

function within the class of dihydroflavonols: flavonoid 3’-
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hydroxylase (F3’H) and flavonoid 3’5’-hydroxylase (F3’5’H); and

by the expression of DFR and FLS (see Figure 1A).

In seedlings, the genes functioning in the biosynthesis of

flavonoids are temporally regulated. Transcription and protein

levels peak a few days after germination [15,16]. CHS, CHI, F3H

and FLS are generally classified as ‘early’ genes and DFR and

ANS as ‘late’ genes.

Despite all available information on the separate steps in the

pathway, there is still very little known about the behavior of the

complete pathway in vivo. The extensive knowledge about the

individual subnetworks makes the flavonoid pathway a good

candidate for a systems biology approach in which experiments

and modeling go hand in hand. The functioning of all the separate

steps together in a pathway can be studied using mathematical or

computational models. Relatively simple and concise models can

already give important insights into a pathway and its efficacy.

Until now, very few mathematical models for the flavonoid

pathway have yet become available. Mathematical modeling was

used very elegantly to unravel the kinetic mechanism of DFR in

Vitis vinifera [17]. Another study explored properties of the network

of flavonoid biosynthesis taken from the KEGG database [18]. A

large data-based network has also been constructed for anthocy-

anin biosynthesis in Arabidopsis thaliana [19]. This network was used

to search for the minimal set of metabolites and enzymes that lead

to anthocyanin production. This minimal set differs per case,

because different tissues and plants accumulate different flavo-

noids.

It is intriguing that one backbone of interactions together with a

unique set of enzymes leads to the accumulation of different end

products. In this paper we study the pathway leading to flavonol

and anthocyanin accumulation in cotyledons and hypocotyls of

tomato seedlings. We iteratively conducted experiments and

adjusted the model to incorporate the information gained from

the experiments. In this way we followed the so-called ‘experi-

ment/modeling cycle’ several times [20]. We study the impact of

changing enzyme concentrations on metabolite dynamics, and the

usefulness of transcript abundance data in this matter.

Results

Measured Flavonoids
Tomato seedlings (Solanum lycopersicum L. cv. Moneymaker) were

grown for 9 days and harvested on day 5 to 9 after sowing. To

avoid fluctuations in flavonoid content due to circadian rhythm,

seedlings were harvested each day at the same time. To study the

differences between the different parts of the plants, the flavonoid

content was measured separately in hypocotyls, cotyledons and

roots using LC-MS. Concentrations were calculated from calibra-

tion curves of available standards (see Materials and Methods). In

the roots flavonoid concentrations were were below the detection

limit and for this reason only the data from the hypocotyls and

cotyledons is used. Of the many possible flavonoids in the pathway

shown in Figure 1A, only the methylated and/or glycosylated

flavonols and anthocyanins (the filled circles) could be detected,

meaning that all the other compounds are either absent or present

below the detection limit. A list of measured compounds is shown

in Table 1.

We sum all glycosylated and methylated compounds derived

from each type of aglycone, and the resulting flavonol and

anthocyanin concentrations are shown in Figure 2A and B. In the

cotyledons mainly flavonols accumulate: myricitin is most abun-

dant, kaempferol least abundant, and quercetin is present at

intermediate levels. Although anthocyanins are present at low but

detectable levels in the cotyledons, their concentrations decline

Figure 1. Synthesis and structure of flavonoids. (A) Scheme of the flavonoid pathway with the flavonoid aglycones at the nodes, and the
enzymatic reactions on the edges. Nodes are labeled with the name of the metabolite and the corresponding variable in the model (x1 to x12). Edges
are labeled with the enzyme name and the kinetic parameter estimated by the model (ki ,gi,di). At the ends of the pathway the modified flavonols
and anthocyanidins accumulate. Abbreviations: F3H, flavanone 3-hydroxylase; FLS, flavonol synthase; DFR, dihydroflavonol 4-reductase; ANS,
anthocyanidin synthase. (B) Molecular structure of quercetin, one of the flavonoid aglycones.
doi:10.1371/journal.pone.0068960.g001
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during seedling growth. In the hypocotyls, myricetin and

anthocyanins are present at high concentrations, whereas

kaempferol and quercetin are present at low concentrations,

compared to cotyledons. To interpolate the data, piecewise cubic

Hermite interpolating polynomials (PCHIP) were fitted to the

average measured concentrations.

Mathematical Modeling of Metabolite Dynamics
The results of the experiments raises important question: What

causes the differences between the accumulation patterns in

cotyledons and hypocotyls? Is it necessary to consider different

pathways in the two tissues, or different enzymatic rates?

To answer these questions we will investigate two mathematical

models, which show different levels of refinement. First, we assume

that all enzyme concentrations are constant over time. Because

enzyme concentrations may vary between tissues, we allow them

to differ between tissues. In a second approach, we take into

account that enzyme concentrations may vary in time. Measured

trends in transcript abundance are included in the model as

approximations for enzyme concentrations. This extended model

will be investigated in the next section.

In our models the interactions in the flavonoid pathway are

described with ordinary differential equations (ODEs). With

ODEs we can calculate the change in concentrations of the

metabolites at each time point, depending on the production and

conversion rates of the metabolites. The models describe the

reactions starting with the synthesis of dihydrokaempferol by F3H

and follow the scheme shown in Figure 1A down to the modified

flavonols and anthocyanins. Each reaction from one metabolite to

the next is facilitated by an enzyme. The flux involved in such a

reaction depends on the concentration of the enzyme involved ½E�,
the rate constant kcat and saturation constant Km of that enzyme,

and the concentration of the involved substrate ½S�. Since in our

case the substrate concentration is low (under 2mmolkg{1), the

rate of product formation v is given by the initial slope of the

Michaelis Menten curve:

v~
kcat½E�½S�

Km

: ð1Þ

If ½E�, kcat, and Km are known, the dynamics of the substrate

concentrations (½S�) can be calculated from the model. In the

literature, kcat and Km are available for some of the enzymes in the

pathway. However, without knowledge of the enzyme concentra-

tions in the seedlings the measured kcat and Km cannot be used to

predict metabolite concentrations. We therefore estimate new

parameter values that include both the enzymatic rates (kcat and

Km) and the available enzyme concentration. Using the equations

that describe the reactions leading from one metabolite to the next

we estimate values for
kcat½E�
Km

that result in the best fit to the

observed metabolite data (Figure 2). The equations of the model

can be found in the Materials and Methods section.

In addition to the production rates from one metabolite to the

next, there is also a reduction rate for each end product. This is

necessary to explain the observed decrease in the end products.

Table 1. Measured flavonoids in tomato seedlings during day
5 to 9 after sowing.

Kaempferol -3-O-glucoside

-3-O-rutinoside

-3-O-diglucoside

-3-O-rutinoside-7-O-glucoside

-triglucoside

Quercetin -3-O-glucoside

-3-O-rutinoside

-3-O-diglucoside

-rutinoside-pentose

-3-O-rutinoside-7-O-glucoside

-triglucoside

-3,7-O-diglucoside

-3-O-diglucoside

Myricetin -hexose

-deoxyhexose-hexose

Laricitrin –

-hexose

Delphinidin -hex-deoxyhex-p-coumaroyl-hex

Petunidin -hex-deoxyhex-p-coumaroyl-hex

-hexose-deoxy-feruloyl-hexose

Malvidin -hex-deoxyhex-p-coumaroyl-hex

doi:10.1371/journal.pone.0068960.t001

Figure 2. The concentration of flavonoids during seedling development. (A) measured flavonoids in cotyledons during seedling growth; (B)
measured flavonoids in hypocotyls during seedling growth. Kaempferol in shown in green, quercetin in blue, myricetin in red, and anthocyanins in
black. Shown are the sums of all glycosylated and methylated compounds derived from each type of aglycone. (C) Schematic of a seedling, showing
the tissues used for the measurements: cotyledons and hypocotyls.
doi:10.1371/journal.pone.0068960.g002
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This reduction rate can be contributed to degradation, export into

other tissues or conversion of the compound to other products.

When the rates change, the time dependent metabolite

concentrations predicted by the model change as well. By

iteratively changing the rates, and comparing the model results

with the data, we search for the best fit of the model to the data.

To this end we use a genetic algorithm, that searches for a global

optimum, followed by a local algorithm to improve on the solution

(details can be found in the Materials and Methods section). The

best fit is defined as having the smallest relative distance to the

measured curves of the end products. Additionally, concentrations

of intermediates should be below 2mmolkg{1, since they could not

be detected.

In Figures 3A and B we show results obtained with this model.

All 22 rates were allowed to vary freely between the tissues.

Despite this enormous freedom, the model is incapable of

capturing the differences between the accumulation patterns in

the two tissues. The data of the cotyledons can be fitted very well,

but the fit to the data from hypocotyls is very poor. Especially the

fast increase and decrease of myricetin and anthocyanins in

hypocotyls are not yet captured (Figure 3B). What is correctly

captured by this model is the low concentration of intermediate

compounds (colored lines close to the 0 axis in Figure 3A and B),

i.e. dihydrokaempferol, dihydroquercetin, dihydromyricetin,

kaempferol aglycone, quercetin aglycone, myricetin aglycone,

leucodelphinidin, delphinidin aglycone.

In conclusion, a model that uses constant rates does not explain

the flavonoid dynamics in the seedlings satisfactorily.

Mathematical Model that Combines Metabolic and
Transcript Abundance Data
To improve the model discussed in the previous section, we here

no longer assume that the rates (v~
kcat ½E�
Km

) are constant over time,

because ½E� may be time dependent. In vivo, gene regulation

changes enzyme concentration, which results in time dependent

rates. In previous studies, basic regulatory processes were taken

into account in, for example, flux balance analysis to improve

model performance [21]. Instead of implementing largely

unknown specifics of regulatory interactions in the flavonoid

pathway, we will use transcript abundance data of the target

enzymes as predictors for enzyme concentrations. Although many

processes take place between transcript abundance and the

resulting enzyme concentration, transcript abundance provides

the model with information about the relative abundance of an

enzyme in different tissues in the seedlings.

Transcript abundance was quantified in tomato seedlings by

using micro-array data, and values for relative expression of a

subset of genes were confirmed by quantitative RT-PCR (Figure

Figure 3. Fits obtained using the two models. Shown are the sums of all glycosylated and methylated compounds derived from each type of
aglycone (filled circles with error bars) and the predicted curves by the model (lines). (A) and (B) results for the model using constant enzyme
concentrations. The rates from one compound to the next are allowed to vary freely between the tissues. (C) and (D) results for the model using
transcript abundance. The kinetic rates are constant between the tissues, except for the reduction rates of the anthocyanins and flavonol derivatives.
Left graphs show cotyledons data and fits, right graphs hypocotyls data and fits. Kaempferol is shown in green, quercetin in blue, myricetin in red,
and anthocyanins in black.
doi:10.1371/journal.pone.0068960.g003

Modelling the Flavonoid Pathway

PLOS ONE | www.plosone.org 4 July 2013 | Volume 8 | Issue 7 | e68960



S1). The expression patterns of the flavonoid genes vary both over

time and between the tissues. Almost all genes decrease greatly in

expression during the experiment (see Figure 4). DFR and ANS

are 4 times more highly expressed in the hypocotyls than in the

cotyledons (Figures 4C and D). The expression of FLS in

cotyledons is 2 times higher than in hypocotyls (Figures 4A and B).

The measured relative transcript abundance is included in the

model. In the previous section we estimated the rate
kcat½E�
Km

independently in both tissues, because enzyme concentration can

vary between the tissues. Since we now include transcript

abundance that was measured in the different tissues, we already

have a measure for this variation of enzyme concentration

between the tissues. For example, the production rate of

kaempferol from dihydrokaempferol in cotyledons will decrease

according to the FLS curve in Figure 4A, while the same reaction

in hypocotyls will follow the FLS curve shown in Figure 4B.

Remaining to estimate are the kcat
Km

values. For simplicity, we

assume that the kcat
Km

values do not change during seedling growth.

These values are kinetic properties of the enzymes, and there is no

reason to assume that these would differ between the tissues.

We therefore estimate values for these coefficients based solely

on the data from the cotyledons and then apply the model with the

estimated coefficients to the data from the hypocotyls. The

differences between the tissues in the model are thus completely

caused by the measured differences in transcript abundance.

However, we do allow different degradation, or reduction rates of

the end products, since it is possible that these also differ between

the tissues, and the identity of the enzymes involved in that step is

not known.

Using this approach we obtained the results shown in Figures 3C

and D. This model correctly fits the cotyledons data. When the

model and estimated parameter values are tested on data from

hypocotyls, we find that this model can also explain the dynamics

in the hypocotyls. From these fits we conclude that our eventual

model explains the large difference in flavonol and anthocyanin

accumulation between the cotyledons and the hypocotyls very

well. In particular, the model explains the strong increase in

myricetin and anthocyanins in the hypocotyls, which was not

possible without incorporating the transcript abundance data. This

result implies that the time dependent trends of the genes are able

to explain the dynamics of the metabolite concentrations; and that

the differences in transcript abundances measured in the two

tissues turns out to be sufficient to explain the different metabolite

accumulation patterns.

All rates from one metabolite to the next vary between the

tissues according to the measured transcript abundance curves.

That results in a higher flux towards myricetin and the

anthocyanins in the hypocotyls, while the estimated reaction rate

remains constant. Only the reduction rates are estimated

separately in the two tissues. We find that the reduction rates

are all estimated within the same order of magnitude. Degradation

of kaempferol and quercetin is estimated to be 2 to 4 times higher

in hypocotyls than in cotyledons. Anthocyanin degradation is up

Figure 4. Relative transcript abundances(indicated as ‘expression’) of flavonoid genes during seedling development. Left graphs
show cotyledons data, right graphs data from hypocotyls. (A) and (B) show the elative transcript abundances of F3H (red), FLS (green), and flavonoid
3-GT (black); (C) and (D) show the relative transcript abundances of F3’H (blue), F3’5’H (cyan), DFR (magenta), and ANS (orange).
doi:10.1371/journal.pone.0068960.g004
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to 5 times higher in cotyledons, degradation of myricetin is similar

in both tissues.

Due to the network topology there are multiple routes to end

products. The combination of this network topology and the lack

of information on intermediate dynamics, leads to identifiability

problems. This means that multiple sets of rates fit the data more

or less equally well. To study this problem in more detail 250

independent runs were executed to fit the data, and we found that

all lead to a good fit to both cotyledons and hypocotyls. The

average fit has a total sum of squares of 2.18, the best fit has a

value of 0.78, the worst 3.87. Shown in Figure 3C and D is a fit of

1.89.

We found that in many estimated parameter sets not all

connections are used (reaction rate is zero). For example,

myricetin is in most fits not produced by FLS. Generally, more

edges in a network will lead to a better fit. Here this is not the case,

because the time dependent trends of transcript abundance on the

edges might not result in the correct metabolite dynamics. Only

5.2% of the estimated parameter sets use all 22 reactions, all the

other solutions exclude 1 to 5 edges. Some connections are used in

all fits, and are therefore indispensable for correct metabolite

accumulation.

In the scheme shown in Figure 5 the results of the 250 runs are

summarized. The edges are labeled with the percentage of

simulations that the edge occurred. We can now infer the routes

through the pathway that lead to the different end products.

Logically, kaempferol is produced via dihydrokaempferol and

FLS, since there is no other route. Quercetin can be produced via

two different routes. We always find a connection of dihydro-

kaempferol to dihydroquercetin, and from kaempferol to querce-

tin. This reaction can be either facilitated by F3’H or F3’5’H, or

both. There is also always a connection from dihydroquercetin to

quercetin. These findings indicate that quercetin is produced

through both routes: via F3’H or F3’5’H and kaempferol, and via

FLS and dihydroquercetin. We find that myricetin is in all 250

cases produced from quercetin, while in only 33% of the cases it is

produced from dihydromyricetin as well. These results suggest that

FLS activity on dihydromyricetin is not necessary to explain the

dynamics. This finding is in agreement with the hypothesis by

Bovy et.al [14] that FLS has a low affinity for dihydromyricetin.

The most interesting enzyme in this part of the pathway is F3’5’H.

It could facilitate many reactions and it is crucial in the production

of dihydromyricetin, and consequently indispensable for anthocy-

anin production. We find that it should facilitate almost all

reactions it was implicated in to result in correct metabolite

accumulation (Figure 5). Only the reaction from dihydroquercetin

to dihydromyricetin is not necessary when it is possible that

dihydromyricetin is directly produced from dihydrokaempferol.

It is difficult to infer from the model topology and the transcript

abundance exactly how the full model is able to explain the

difference in flavonoid accumulation in the two tissues. This

however, is clear when looking at the flow of compounds through

the network. To this end we calculate the total flux from

compound to compound. We multiply the transcript abundance

with the catalytic rate and the concentration of the compound,

and sum this over time. The resulting accumulated flux is shown in

Figure 6. The arrow thickness represents accumulated flux in the

network.

The largest differences in flavonoid accumulation between the

two tissues lies in the larger accumulation of myricetin and

delphinidin derivatives in the hypocotyls. From the calculated

fluxes can be seen that the flux from dihydrokaempferol towards

dihydroquercetin and dihydromyricetin is much larger in hypo-

cotyls than in the cotyledons (Figure 6). In the hypocotyls there is a

much larger influx into the pathway, caused by increased

expression of F3H. The combination of reduced expression of

FLS and enlarged expression of F3’5’H forces this flux towards

dihydroquercetin and myricetin. From dihydromyricetin it con-

tinues towards delphinidin, and from dihydroquercetin the flux

can only continue towards quercetin. Again the increased

expression of F3’5’H drives the flux towards myricetin. Please

note that the differences in fluxes is solely caused by the measured

transcript abundance. The accumulated fluxes shown in Figure 6

are derived from only one possible solution, the one that is also

used for Figure 4. When other solutions are used, the accumulated

fluxes can differ because the lack of some connections will lead to

an increase in flux through other connections (see Figure 5).

However, all solutions show an increased flux into the hypocotyl

network, and increased flux towards dihydromyricetin and

myricetin. Concluding, the different expression of genes in the

pathway leads to distinctive patterns in flux towards certain

compounds, leading to the observed accumulation patterns.

Discussion

Despite the detailed information available about enzymes and

metabolites, the functioning of the flavonoid metabolic pathway

in vivo is still poorly understood [22]. Here we combined

experiments with mathematical modeling to unravel the pathway

leading to flavonol and anthocyanin accumulation in tomato

seedlings.

Four types of flavonoids accumulate in tomato seedlings:

kaempferol, quercetin, myricetin, and delphinidin derivatives.

For each of these four end products, concentrations were

measured on day 5 to 9 in cotyledons and hypocotyls of tomato

seedlings. Interestingly, the accumulation patterns vary between

the tissues, although they share the same backbone of interactions

(Figure 1A). Questions that arise are: what causes the differences

between the tissues, and do we have to consider different routes or

networks to explain these differences?

We found that a mathematical model with constant rates from

and to metabolites was unable to fit the data, even though all

parameters were allowed to vary between the tissues. The fit to

cotyledons data was reasonable, but the fit to data from hypocotyls

was poor.

Expression patterns of genes coding for known flavonoid

enzymes were measured and incorporated in the model. The

extended model then allowed for a good fit to the data. In the

model, the only difference between the tissues is in the measured

transcript abundance patterns, whereas the rates at which the

enzymes convert substrates are taken to be the same for both

tissues. Incorporation of enzyme dynamics is still not often used in

metabolic modeling, but turns out to be essential in the present

system. We found that transcript abundance data is very useful in

explaining the observations, even though there are many processes

taking place between transcript abundance and enzyme concen-

tration, which we could not take into account. In conclusion, we

have shown that the used transcript abundance patterns are useful

data to estimate enzyme concentrations, and that the quantitative

information in relative transcript abundance was able to explain

the difference between flavonoid accumulation in cotyledons and

hypocotyls.

In preliminary studies, we have considered some other

topologies. We first attempted to fit the data with a more concise

model that did not include F3’H and F3’5’H. That model

described the reactions between groups of flavonoids: from

flavanones to dihydroflavonols (F3H), and from dihydroflavonols

to anthocyanins (DFR, ANS and GT) or flavonols (FLS and GT).

Modelling the Flavonoid Pathway
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Even though transcript abundance data was used, we were unable

to find rates that could explain the data in both cotyledons and

hypocotyls. Another topology included only kaempferol, querce-

tin, and myricetin, including dynamics of FLS, F3’H, F3’5’H, and

GT. This model also failed to fit the data. The only topology that

currently can explain the data is the topology shown in Figure 1A.

Our results suggest that F3’5’H directed flux towards dihydromyr-

icetin and myricetin at both the level of the dihydroflavonols and

the flavonols is crucial for explaining flavonoid accumulation in

the seedlings.

Although the current pathway with multiple routes to the

different end products results in very good fits, this topology leads

to identifiability problems. The model described here is a typical

‘‘sloppy model’’: almost all parameters have a sloppy spectrum of

parameter sensitivities [23]. Unfortunately, the knowledge that

intermediates should be below detection level is not specific

enough to give quantitative predictions. Additional information

about the concentration of intermediates may allow for estimation

of these fluxes. Since such detailed measurements are technically

limited, our future research will focus on unraveling the network

further using the current model and qualitative biological

knowledge on the enzymes in combination with parameter

reduction [24]. Another important topic in the functioning of

the flavonoid pathway is the impact of the observed interactions

between enzymes. Recently it has been shown that FLS and DFR

are able to directly associate with CHS [25]. More mathematical

modeling is needed to explore the effect of these complexes on

flavonoid accumulation.

The sloppiness of the model does not prohibit biologically

relevant conclusions to be drawn. In our case we can use the

model to study through what routes the end products are most

likely produced. We found that the connection of dihydromyr-

icetin to myricetin is dispensable for a good fit to the data. This is

in accordance with the previous hypothesis that FLS might not use

dihydromyricetin as a substrate [14]. It could be the case that ANS

rather than FLS, mediates synthesis of myricetin, because it is

known that ANS is capable of acting as an FLS [26].

The model described here can be used to test candidate genes.

For example, many glycosyltransferases have been putatively

annotated (in total over 200 in the tomato genome), but their

specificity remains unknown. Mathematical modeling approaches

to link these transferases to substrates is currently being studied as

a valuable predictor tool for gene-function analysis [27,28].

Materials and Methods

Plant Material
Sterilized seeds of tomato (Solanum lycopersicum L. cv. Money-

maker) were sown in pots filled with 70 ml of half Hoagland

nutrition solution/0.5% Agar. Pots were placed in a growth

chamber under a cycle of 16 h light (100 mmol m{2s{1) and 8 h

of darkness at 25uC (standard growth-light conditions). Samples

were harvested each day at 13h00 from day 5 to 9 after sowing.

After harvesting we divided the seedlings into cotyledons,

hypocotyls, and roots; ground with liquid nitrogen; freeze-dried

and stored at -80uC. For each day three biological replicates were

harvested (3 pots per day).

Flavonoid Detection and Quantification
For flavonoid detection 5–10 mg dry weight (DW) of seedling

samples (cotyledons and hypocotyls) were extracted with 1:70 (v/v)

volume of water/methanol (70%) solution acidified with 1% (v/v)

formic acid. Extracts were sonicated for 15 min, centrifuged and

filtered through a 0.45 mm inorganic membrane filter (Sarturius

stedim, Biotech). The resulting extract was used for LC-PDA-

QTOF MS analysis. Chromatography separation was performed

Figure 5. Summary of 250 independent parameter estimations. Shown is the modeled flavonoid network leading to the accumulated end-
products: keampferol-, quercetin-, myricetin- and delphinidin-glycosides. Edges are shown with a solid line if they occur in more than 2/3 of the 250
independent parameter estimations, they are dashed when the occur less often. Shown next to each edge are the facilitating enzyme and the
percentage of runs that used this edge. The double edges by F3’H and F3’5’H from x1 to x4 and from x2 to x5 are never zero at the same time, that is,
there is always a connection between x1 and x4 , and between x2 and x5 . Arrows without endpoints represent reduction rates due to, e.g.,
degradation.
doi:10.1371/journal.pone.0068960.g005
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using a Luna C18 (2) precolumn (2.0 x 4 mm) and an analytical

column (2.0 x 150 mm, 100, particle size 3 um) from Phenom-

enex. The injection volume of standards and samples was 5 ml.
The mobile phase consisted of water/formic acid (1000:1, v/v;

eluent A) and acetonitrile/formic acid (1000:1, v/v; eluent B) with

flow set at 0.19 mL.min21. The gradient elution program was the

following: 5% B to 35% B in 45 min, after which the column was

washed for 15 min and equilibrated before the next injection. The

column temperature was maintained at 40uC and the samples at

20uC. After chromatography, the UV absorbance of the column

eluent was measured using a Waters 2996 PDA (range from 240 to

600 nm) and ESI-MS analysis was performed using a QTOF

Ultima V4.00.00 mass spectrometer (Waters- Corporation, MS

technologies) in negative mode. Collision energy of 10 eV was

used for full-scan LC-MS in the m/z range 100 to 1,500. Leucine

enkephalin, [M H] =554.2620, was used for online mass

calibration (lock mass). Acquisition and visualization of the LC-

PDA-QTOF data was performed using MassLynx 4.0 software

(Waters). Identification of the different flavonoids detected in

cotyledons and hypocotyls samples was based on the accurate mass

and retention time previously determined in the literature. To

determine the concentration of flavonols (quercetin, kaempferol

and myricetin) and anthocyanin derivatives, calibration curves

were performed with the available commercial standards. Stan-

dard stock solutions were prepared in methanol (1%v/v Formic

Acid) at different concentrations: 0.2, 0.5, 1, 2 and 10 mg/ml, and

UV and MS signals were used to calculate the linear regression of

the signal with respect to concentration. In case of metabolites for

which no standards were available, the UV calibration curve of the

most related compound was used. In these cases the molar

absorption constant of the compound was assumed to be the same

for the available compound and the derivatives. Quercetin 3-O-

rutinoside (Sigma) calibration curve was used for quercetin

derivatives, kaempferol 3-O-rutinoside (Sigma) for kaempferol

derivatives, myricetin 3-O-glucoside (Extrasynthese) for myricetin

Figure 6. Accumulated flux of metabolites predicted by the model using transcript abundances. Shown is the the total flux of product
throughout day 5 to 9, which is expressed in mmol kg21. Arrow thickness increases for increasing accumulated flux. The parameters of Figure 3 were
used to calculate accumulated flux. (A) Fluxes in cotyledons and (B) in hypocotyl. Arrows without endpoints represent reduction rates due to, e.g.,
degradation.
doi:10.1371/journal.pone.0068960.g006
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derivatives and delphinidin 3-glucoside (Extrasynthese) for all the

anthocyanins detected in the tomato seedlings [29].

Transcript Abundance Analysis and Gene Selection
Transcript abundance data of the different flavonoid related

genes were obtained from a transcriptomic analysis performed

with the same plant material that was used for the flavonoid

detection [29]. In brief, RNA was isolated from the three

biological replicates of 4 different days (5, 6, 7 and 9) and 2

tissues (hypocotyls and cotyledons) using QuickGeneTM RNA

Cultured Cell HC Kit (Fujifilm, USA). Transcript abundance

analysis was performed using a customer array from the EUSOL

project. The Affymetrix EUTOM3 GeneChip was analysed

according to the manufacturer’s instructions. EUTOM3 is a

cDNA microarray representing ca. 32,000 genes representative of

the tomato genome. The preprocessing and normalization of all

CEL files was performed with RMA algorithm [30,31]. The

EUTOM3 Affymetrix microarrays were annotated with the

official annotation for the tomato genome provided by the

International Tomato Annotation Group (ITAG).

Candidate flavonoid genes were selected based on prior

biological knowledge (see Table 2). Genes encoding the enzymes

of the flavonoid pathway have largely been identified. However,

the tomato genome is complex, in the sense that often more than

one copy of a gene is present [32]. For all enzymes, a single

candidate with high homology to a well-characterized protein

from Petunia x hybrida (a closely related plant) could be identified

among the annotated genes (Table S1). In the case of GT,

enzymes encoded by multiple genes could facilitate the same step

in the pathway. In this study however, we used only genes that

were previously described or were similar to previously described

genes and we did not test on enzyme synthesis expression levels

due to other genes than the ones that were selected. Quantitative

RT PCR experiments were performed on the same RNA that was

used for microarray experiments. 1 mg of total RNA was used for

cDNA synthesis using the iScript cDNA Synthesis Kit (Bio-Rad).

Realtime PCR reactions were carried out in triplicate in a total

volume of 20 ul containing 10 ml of 26iQ SYBR Green Supermix

(Bio-Rad), 0.3 mM of forward and reverse primer and 10 ng of

cDNA in a MyiQ real-Time PCR machine from Bio-Rad. The

following PCR program was used: 95uC for 3 min, followed by 40

cycles of 95uC for 15 sec and 60uC for 1 min. Ribosomal protein

L33 was used as a reference gene. Relative transcript abundance

was calculated as: 2DCt, where DCt=Ct CnVS Ct L33.

Oligonucleotides used are shown in Table 3.

The obtained transcript abundance curves are shown in

Figure 4. As transcript abundance values the RMA (Robust

Multichip Average) values were used, which were generated from

Affymetrix output data by a background adjustment and a

quantile normalization, according to standard procedures [30].

Smooth curves were fitted to the measured transcript abundance

with a PCHIP (Piecewise Cubic Hermite Interpolating Polynomi-

al). The obtained functions describe relative changes in enzyme

expression and were used in the mathematical model.

Computational Methods
The reactions of the flavonoid pathway (Figure 1A) are

described using ordinary differential equations:

dx1

dt
~k1F3H

{(k2kFLSzk3aF3’Hzk3bF3’5’Hzk3cF3’5’H)x1

ð2Þ

dx2

dt
~k2kFLSx1

{(k4aF3’Hzk4bF3’5’Hzk4cF3’5’HzgkGT)x2

ð3Þ

dx3

dt
~gkGTx2{dkx3 ð4Þ

dx4

dt
~(k3aF3’Hzk3bF3’5’H)x1{(k5F3’5’Hzk2qFLS)x4 ð5Þ

dx5

dt
~k2qFLSx4

z(k4aF3’Hzk4bF3’5’H)x2{(k6F3’5’HzgqGT)x5

ð6Þ

dx6

dt
~gqGTx5{dqx6 ð7Þ

dx7

dt
~k5F3’5’Hx4zk3cF3’5’Hx1{(k7DFRzk2mFLS)x7 ð8Þ

dx8

dt
~k2mFLSx7zk6F3’5’Hx5zk4cF3’5’Hx2{gmGTx8 ð9Þ

dx9

dt
~gmGTx8{dmx9 ð10Þ

dx10

dt
~k7DFRx7{k8ANSx10 ð11Þ

dx11

dt
~k8ANSx10{gaGTx11 ð12Þ

Table 2. Selected genes from tomato seedlings.

function id number A. thal. ref

F3H Solyc02g083860 at3g51240.1 [14]

F3’H Solyc03g115220 at5g07990.1 [14]

F3’5’H Solyc11g066580 at5g07990.1 [33]

FLS Solyc11g013110 at5g08640.2 [14]

DFR Solyc02g085020 at5g42800.1 [33]

ANS Solyc08g080040 at4g22880.2 [33]

GT Solyc10g083440 at5g17050.1 [14]

doi:10.1371/journal.pone.0068960.t002
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dx12

dt
~gaGTx11{dax12 ð13Þ

Here, x1 to x12 represent the metabolite concentrations as

shown in Figure 1A. x1,x2,x4,x5,x7,x8,x10, and x11 represent

aglycone flavonoids, x3,x6,x9 and x12 modified (methylated or

glycosylated) flavonoids. F3H, FLS, F3’H, F3’5’H, GT , DFR
and ANS represent the enzyme concentrations; ki the enzymatic

rates; and g the glycosylation rates. These linear reaction rates

represent the initial slope of the Michaelis Menten curve of the

enzymes, that is,
kcat½E�
Km

. A linear degradation term is present in the

equations of the modified flavonoids (eqs. (4), (7), (10), (13)).

Parameter values were iteratively changed to find the best fit to

the data. The relative distance between the measured metabolite

concentrations (Figure 2) and the model results, measured by the

sum of relative errors, was optimized. Additionally, a weighted

penalty was added for intermediates that accumulate to values

above the experimental threshold (taken as 2 mmol kg21).

The optimization started with a MATLAB global genetic

algorithm (ga) followed by the local search algorithm FMINCON.
Model 1. Enzyme concentrations were assumed constant

during the experiment, and were allowed to vary freely between

tissues. The 22 catalytic rates (
kcat½E�
Km

, for example k1F3H and

k2FLS in eq. 2–13) are estimated separately for cotyledons and

hypocotyls, resulting in a total of 44 parameters to fit the data.
Model 2. Instead of assuming constant enzyme concentra-

tions, we used curves fitted to enzymatic expression data (Figure 4).

The curves were fitted with a Piecewise Cubic Hermite

Interpolating Polynomial (PCHIP), and transcript abundance

was extracted from these curves during the solving of the ODEs.

Because a single set of enzymes functions in both tissues of the

seedling, the enzymatic rates (kcat
Km

), should be equal in both tissues.

Only the reduction rates were allowed to vary between tissues.

Therefore, the model with 22 pars was first fitted to the cotyledons

data and then applied to the hypocotyls data. Only the 4 reduction

rates were allowed to vary between the tissues. Note, however, that

all
kcat ½E�
Km

values vary between tissues according to the measured

differential transcript abundance.

Supporting Information

Figure S1 Comparison of gene expression measure-
ments in a quantitative RT-PCR platform (left panels)
and in a micro-array platform. Cotyledon and hypocotyl

tissues on different days are represented. The values indicate gene

expression relative to L33 (left) and micro-array signal intensity

(right).

(TIFF)

Table S1 Candidate genes identified by their annotation in

ITAG2.30 were scored for expression intensity on the micro-array

and by sequence similarity to Petunia x hybrida genes that have

been experimentally implicated in flavonoid metabolism.

(XLSX)
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