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1.1 Preface 

The exploitation of minerals has contributed to the economic growth of many regions 

all over the world. In 1999, for example, Mexico produced 182202 tons of lead (Pb), 

1485 tons of cadmium (Cd), 447948 tons of Zn and 402430 of copper (Cu) 

(www.inegi.gob.mx). Mining activities result in pollution problems due to the emissions 

of acid mine drainage (AMD) into the environment. AMD is one of the most 

widespread causes of pollution in the world (Gazea et al. 1996; Johnson and Hallberg 

2005). The principles governing the generation of AMD are relatively well understood. 

Upon exposure to oxygen and water and in the presence of oxidizing bacteria, pyrite 

and other sulfide minerals are oxidized to produce a leachate containing dissolved 

metals, sulfate and acidity (Tabak et al. 2003).  

 

1.2 Agreements and legislation 

 

In developed countries, like, Europe, USA and Australia, the source and amount of 

AMD generated as well as the damage caused to the environment are well described 

(GAO 1996; Harries 1997). In most developing countries these issues have not been 

well documented. Information on mining impact in these regions is limited and 

scattered widely in private and official files. The basic sources are reports produced by 

large mining firms, environmental organizations and government institutions which deal 

with environmental protection. As a consequence of this lack of information, the 

responsibility for the treatment of the wastes generated by the mining activities is also 

not clear. Small-scale and even some large-scale mining industries in developing 

countries seldom have their effluents properly treated before discharge into water 

bodies.  

More stringent legislation promoted by international agreements resulted in an 

increased interest in cost-effective technologies for the treatment of AMD.  One 

example of these international agreements is the partnership for acid drainage 

remediation in Europe (PADRE), which promotes international best practice in the 

stewardship of waters and soils on European sites subject to the generation and 

migration of acidic drainage. Another example of these international agreements is the 

Commission for Environmental Cooperation (CEC) which is an international 

organization created by Canada, Mexico and the United States under the North 

American Agreement on Environmental Cooperation (NAAEC). This commission leads 
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to a regional cooperation for the management of a range of chemical substances of 

mutual concern; including pollution prevention, source reduction and pollution control. 

 

1.3 Treatment of AMD  

1.3.1 Physico-chemical process 

Most industries treat metal containing wastewaters such as AMD by precipitation with 

hydroxide or limestone because of process simplicity, low cost chemicals and easy 

process control (Fu and Wang 2011).  These chemical precipitation processes have 

drawbacks in terms of application and effectiveness, e.g. hydroxide precipitation usually 

results in the production of unstable metal hydroxides, which is hardly suitable for 

metal recovery, leading to a greater disposal expense (Esposito et al. 2006).  Other 

technologies such as ion exchange, reverse osmosis and electro-dialysis are available to 

treat AMD but they are expensive and not commonly used (Fu and Wang 2011). All 

these methods require high capital investments and have sludge disposal problems due 

to the need of more drying facilities and further treatment (Aziz et al. 2008).  

Sulfide precipitation is an alternative over the conventional methods such as hydroxide 

precipitation for several reasons: 1) the formation of highly insoluble salts even in the 

acid region below pH 7 (Brooks 1991); 2) selective metal recovery due to the different 

solubility products of the different metal sulfides over the pH region (Sampaio et al., 

2009); 3) better settling, thickening and dewatering characteristics than hydroxide 

precipitates (Lewis and Swartbooi 2006; Esposito et al. 2006; Djedidi et al. 2009) and 

4) many metal refining operations, notably for copper and zinc, are designed for 

processing sulfide ores (Brooks 1991). 

 

1.3.2 Sulfate reducing process 

Biogenic sulfide produced by sulfate reducing bacteria (SRB) is also an option for metal 

sulfide precipitation from wastewater, especially when besides metals, also sulfate is a 

major wastewater constituent (Equation 2), e.g. in wastewaters from metal refineries 

and AMD. The biological sulfate reducing process requires the supply of an electron 

donor and carbon source as well as essential nutrients to maintain microbial activity:  

 

2 CH2O + SO4
2- à H2S + 2 HCO3

-                   

(1)  

where CH2O = electron donor 
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Removal of metals by SRB is mainly due to the production of highly insoluble 

precipitates with biogenic sulfide as shown:  

H2S + M2+ à MS(s) + 2H+                                                                                             (2)                                                                                 

where M2+ = metal, such as Zn2+, Cu2+, Pb2+ and Ni2+ 

 

SRB are either heterotrophic (using organic compounds) or autotrophic (using hydrogen 

as an electron donor and CO2 as carbon source) anaerobes, capable of reducing sulfate 

to sulfide by a dissimilatory, bioenergetic metabolism (Nagpal et al. 2000). SRB are 

prokaryotes found nearly everywhere in waters and sediments because of their ability to 

use a wide range of substrates and the ability of many SRB to tolerate extreme 

conditions (Schwartz 1985).  

SRB have optimal environmental requirements which must be met to enable sulfate 

reducing activity, such as an anaerobic environment (redox potential below –200 mV is 

generally needed), pH values greater than 5, the presence of an organic substrate or H2 

to be oxidized as electron donor and the presence of an appropriate sulfur species (as 

sulfate) to be reduced (Gibert et al. 2002).  

SRB can, in general, be divided into two major groups (Widdel 1988): those that 

oxidize the carbon source completely to CO2 (i.e. Desulfobacter, Desulfococcus, 

Desulfosarcina, Desulfonema and Desulfobacterium) and those that oxidize the carbon 

source incompletely to acetate, CO2 and H2 (i.e. Desulfotomaculum, Desulfovibrio, 

Desulfomonas, Desulfobulbus and Termodesulfobacterium) 

Although some SRB are capable of fermentative and sulfidogenic growth on sugars and 

amino-acids, in anaerobic reactors and in the presence of sulfate, SRB are more likely to 

be involved in the last stages of mineralization rather than in the initial fermentative 

stage (Figure 1.1).         
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Figure 1.1 Simplified schematic representation of the anaerobic degradation process in 

the absence (in black) and in the presence (in grey) of sulfate (Bijmans et al. 2011). 

 

1.3.2.1 Electron donor and carbon source for sulfate reduction  

Generally AMD contains low concentrations of dissolved organic carbon. For this 

reason, the addition of organic carbon source (electron donor) determines the overall 

costs of the sulfate reduction process (Gibert et al. 2004; Zagury et al. 2006). The 

choice of the substrate is based on different criteria: i) the ability of SRB to utilize the 

organic substrate, ii) the sulfate load to be reduced and the cost of the substrate per unit 

of sulfide produced, iii) the availability in sufficient quantities and iv) the remaining 

pollution load in case of incompletely substrate degradation (van Houten et al. 1994; 

Dries et al. 1998; Dijkman et al. 1999). Electron donor loss because of methane 

production or acetate production will add to the total costs of the process, and vary per 

electron donor. It is also important to consider the possible toxicity of intermediate 

compounds from the incompletely degraded substrate (Kaksonen and Puhakka 2007).  

 

Simple organic carbon sources 

SRB use the easily degradable fraction of organic matter such as low molecular weight 

compounds with simple structures, e.g., methanol, ethanol, lactate (Dvorak et al. 1992; 

NH4
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Acetogenesis 
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Nagpal et al. 2000; Tsukamoto et al. 2004), polylactic acid (Edenborn 2004) and simple 

carbohydrate monomers, e.g., glucose or sucrose (Mizuno et al. 1998).  

A higher negative Gibb’s free energy change of the lactate oxidation reaction further 

favors the preference of SRB for lactate as the electron donor and carbon source (Table 

1.1). Lactate is also preferable in terms of biomass production; the reason is that it is 

oxidized either completely or incompletely in the presence of sulfate by a diverse range 

of SRB strains (Okabe et al. 1995; Kaksonen et al. 2003b) which promotes microbial 

diversity. The main drawbacks are the high cost on large-scale and the predominance of 

undissociated lactate in acidic waters such as AMD which could be inhibitory or lethal 

to SRB (Brüser et al. 2000). With respect to the free energy change, ethanol is the 

second favorable electron donor; it is also cheaper than lactate (Nagpal et al. 2000). The 

ability of both incomplete and complete oxidizing SRB to grow with ethanol as electron 

donor has been demonstrated in several studies (Widdel 1988; Nagpal et al. 2000; 

Kaksonen et al. 2004). 

 

Table 1.1 Free energy of sulfate reducing reaction with different electron donors (J.W.H 

et al. 1994). 
Equation AG° (kJ/mol) 

4H2 + SO4
2- + H+ à HS- + 4H2O 

Acetate + SO4
2- à 2HCO3

- + HS- 

Propyonate + ¾ SO4
2- à Acetate + HCO3

- + ¾ HS- + ¼ H+ 

Butyrate + ½ SO4
2- à 2 Acetate + ½ HS- + ½ H+ 

Lactate + ½ SO4
2- à Acetate + HCO3

- + ½ HS- + H+ 

Ethanol + ½ SO4
2- à Acetate + HCO3

- +½ HS- + ½ H+ + H2O 

-38.1 

-47.6 

-37.7 

-27.8 

-80.0 

-66.4 

 

 

Complex organic carbon sources  

Alternatively, less expensive organic carbon sources such as waste materials from the 

agricultural and food processing industry have been assessed for their potential to 

sustain sulfate reduction. Various organic wastes have been used as electron donor for 

the SRB applied in the treatment of AMD including straw and hay (Bechard et al. 

1994), oak chips (Chang et al. 2000), spent mushroom compost (Dvorak et al. 1992; 

Chang et al. 2000), cow manure (La et al. 2003) and whey (Christensen et al. 1996). 

The use of these solid substrates has been particularly used for packed bed reactors 

since the substrates also function as a bacterial support.  
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In the food and beverage industry, paper industry, agriculture and households, organic 

waste streams are produced (De Mes et al. 2003). Currently organic waste streams are 

not used as electron donor for high rate sulfate reducing bioreactors for several reasons. 

In many cases the quantity and quality of the waste streams is not constant. In addition, 

such waste streams contain slowly degradable organic matter, which compromises its 

application (Bijmans et al. 2011). 

 

1.3.2.2 Bioreactor configurations 

Biological sulfate reducing reactors are mainly based on biomass retention inside the 

reactor. Numerous bioreactor systems have been used for sulfate reduction (Figure 1.2) 

including i) continuously stirred tank (CSTR) reactors (Barnes et al. 1991; White and 

Gadd 2000), ii) packed-bed (PBR) reactors (Maree and Strydom 1985; Elliott et al. 

1998; El bayoumy et al. 1999; Kolmert and Johnson 2001; Jong and Parry 2003), iii) 

gas-lift (GLR) reactors (van Houten et al. 1994; Weijma et al. 2002; Esposito et al. 

2006; Bijmans et al. 2009a), iv) up-flow anaerobic sludge blanket (UASB) reactors 

(Lettinga et al. 1980), v) membrane bioreactors (Vallero et al. 2005) and vi) fluidized-

bed (FBR) reactors (as described in more detail below). Each of the above cited reactor 

types is characterized by benefits and drawbacks (Table 1.2).  

 

Fluidized bed reactors 

FBRs have been used for sulfate reduction for treatment of acidic metal containing 

wastewaters with sand as carrier material (Kaksonen et al. 2006; Kaksonen et al. 

2003a). The FBR is based on the development of biofilm on particles that support 

bacterial growth, which allows the retention of biomass within the reactor and therefore 

to operate at short hydraulic retention time (HRT) (Shieh and Keenan 1986; Marin et al. 

1999). Carrier materials used include iron chips (Somlev and Tishkov 1992), synthetic 

polymeric granules covered with iron dust (Somlev and Tishkov 1992) and silicate 

minerals (Kaksonen et al. 2003b).  Fluidization of the carrier material is achieved by 

recycling the effluent from the top to the bottom of the reactor, so that a relative high 

upflow velocity is reached (Figure 1.3a). The FBR has various advantages over other 

high rate anaerobic reactors. There is no channeling or clogging in the reactors, biomass 

retention is good, biomass activity and treatment efficiency are high, and there is low 

risk of shock loads (Kaksonen et al. 2006).  
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Figure 1.2 Schematic representation of the continuously stirred tank  (A), packed bed 

(B), gas lift (C), up-flow anaerobic sludge blanket (D), immersed membrane (Geysen et 

al. 2004) (E) and extractive membrane (F) bioreactors (Papirio et al. 2012). 

 

The downflow FBR, also known as inversed fluidized bed (IFB) reactor, is based on a 

floatable carrier material which is fluidized downward with a downflow current of 

liquid (Figure 1.3b). After inoculation, a biofilm develops over the support that remains 

at the top of the reactor. The sulfate conversion rate largely depends on the biomass 

adhered and formed on the carrier material. Carrier materials used for downflow FBR 

have a density lower than water, e.g. polyethylene (Castilla et al. 2000; Celis-García et 

al. 2007; Celis et al. 2009; Gallegos-Garcia et al. 2009), polystyrene spheres (Nikolov 

and Karamanev 1987), cork (García-Calderón et al. 1998) and extendosphere (Buffière 

et al. 2000; Arnaiz et al. 2003).  

(A) (B)
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Table 1.2 Benefits and drawbacks of different bioreactor configuration operated for 

biological sulfate reduction (Papirio et al. 2012). 

 
 

 

 
Figure 1.3 Schematic representation of an up-flow (A) and inversed (B) fluidized bed 

reactor (Kaksonen and Puhakka 2007). 

 

 

 

Bioreactor type Benefits (+) / Drawbacks (-) References
(+) Consistency and reliability Barnes et al. (1991)

(-) High SRT result in high reactor volumes Barnes et al. (1991)
(-) Frequent active biomass washout Lens et al. (2003)

Packed-bed (+) High SRT result in mower reactor volumes than CSTRs Barnes et al. (1991)
(+) Possibility to be operated both in up-flow and down-flow 

modalities
Jong and Parry (2003);Zaluski (2003)

(-) Frequent clogging Anderson et al. (1990)
(-) High pressure for pumping the flow Anderson et al. (1990)

Gas lift (+) High mass transfer of the substrates into the bacterial 
agglomerates

Dijkman and Buisman (1999)

(+) Very good mixing Dijkman and Buisman (1999)

(+) High rate biological kinetics if H2 is used as electron donor Van Houten et al. (1994; 1997)

(-) High pressure needed for pumping the gaseous substrates 
inside the reactor

Lens et al. (2002)

(+) Biomass good settling capability Lettinga et al., (1980)
(+) No clogging Omil et al. (1996)

(+) No carrier material if compared to PBR Speece (1983)
(-) Possibility of biomass washout Vallero et al. (2003)

(-) High susceptibility to the influent characteristics Jhung and Choi, 1995
(+) No need for sedimentation basin Mack et al. (2004)

(+) High biomass retention result in high substrate degradation 
rates

Mack et al. (2004)

(+) Possibility to prevent direct contact between metals and 
SRB in a single basin

Chuichulcherm et al. (2001); Manconi 
and Lens (2009)

(-) High cost to overcome the trans-membrane pressure Fedorovich (2000)
(-) Periodic backwash because of the deposition of aggregates 

on the membrane surface
Tabak and Govind (2003b); Vallero et 

al. (2005)

Membrane 
bioreactor

Continuously 
stirred tank

Up-flow anaerobic 
sludge blanket
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1.3.2.3 Operational conditions of sulfate reducing bioreactors  

1.3.2.3.1 pH 

Low pH values increase toxicity as they promote the formation of undissociated sulfide 

(Hulshoff et al. 2001; Willow and Cohen 2003) and non-ionized organic acids (Kimura 

et al., 2006). Strong acidic wastewaters (pH 2.5-3) like AMD can be completely 

neutralized to pH 7.5-8.5 by the alkalinity produced by SRB during lactate or ethanol 

oxidation in a FBR (Kaksonen et al. 2003b). This is possible due to the alkalinity 

produced by the SRB and the recycle flow that dilutes influent concentrations and 

acidity so that SRB are active in a pH range close to that of the treated effluent. The pH 

increases although metal precipitation also produces acidity (Equation 2) (Kaksonen et 

al. 2003b). 

The pH increases up to values around pH 8 due to the production of HCO3
- by microbial 

metabolism (Equation 1). This has also the advantage to reduce the amount of non-

ionized sulfide which is the most toxic form of sulfide (Hulshoff et al. 2001). 

Even though sulfate reduction increases the pH of the effluent, this can occur under 

HRTs that allow dilution of the influent and adequate bicarbonate production rates.  The 

application of sulfate reduction at low pH opens the possibility to selectively recover 

metals from multi metal streams by varying the pH and sulfide concentration (Huisman 

et al. 2006; Tabak et al. 2003). 

 Previous studies on sulfate reduction in the acidification stage have shown a substantial 

decrease in sulfate reduction efficiencies when the reactor pH became lower than 6.2 

(Reis et al. 1992). More recently, Lopes et al. (2007) reported nearly complete sulfate 

reduction efficiencies during the acidification of sucrose at pH 6 and 5 at influent COD 

to SO4
2- ratios of 9 and 3.5. This ratio is an important parameter affecting the 

competition between SRB and other anaerobic bacteria involved in wastewater 

treatment. 

A shortcoming of most studies on sulfate reduction under acidic conditions is the short 

duration and the lack of pH control during the experiment. Little is known about sulfate 

reduction under acidic conditions in bioreactor runs under controlled pH. Sulfate 

reduction at pH 3.8 has been  reported in a batch reactor fed with glycerol (Kimura et 

al., 2006) and at pH 4 in a sucrose fed upflow anaerobic sludge bed (UASB) reactor 

(Lopes et al. 2007) and in an membrane bioreactor (Geysen et al. 2004) with formate 

and hydrogen as electron donor (Bijmans et al. 2010). The achieved rates limit 

industrial application and SRB growth has not yet been demonstrated at these low pH 
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values. A potential cause for the lack of growth is that the organic electron donor was 

partly converted to acetate, which has been shown to be toxic under acidic conditions. 

 

1.3.2.3.2 HRT 

Several studies assessed the effect of the HRT on a FBR treating a heavy metal and 

sulfate containing wastewater. In almost all studies, a higher HRT is applied at the 

beginning of the experiments to enhance the contact time between the microorganisms 

and the support (Celis et al. 2009). This results in a significant biomass immobilization 

on the carrier material. Then, in order to test the robustness of the reactors, the HRT is 

quickly or gradually decreased. If a significant biofilm development is attained on the 

carrier support, pseudo-steady states are reached in a short period of time after 

operational HRT changes (Celis-García et al. 2007). 

Kaksonen et al. (2004) demonstrated that an acidic fed pH-FBR can be successfully 

operated at low HRTs (6.5 h) if the HRT is gradually decreased. Effluent dissolved zinc 

and iron concentrations were below 0.1 mg/L during stable performance of the reactor 

at an HRT of 6.5 h (Kaksonen et al. 2004). However, a sudden decrease of the HRT 

from 9.7 h to 7.3 h resulted in a decrease of the reactor performance since higher metal 

concentrations were detected in the effluent solution. In contrast, Villa-Gomez et al. 

(2011) did not observe a relevant variation in metal precipitation with a sudden change 

of HRT from 24 to 9 hours in two IFB reactor treating a wastewater containing Zn, Cu, 

Pb and Cd operated at different sulfide concentrations.  

In terms of sulfate reduction performance, Nagpal et al. (2000) observed that a gradual 

decrease of the HRT from 35 h to 5 h led to a decrease of the sulfate reduction 

efficiency (from 90% to 65%) in the reactor at the highest influent sulfate concentration 

(2.5 g/L). At an HRT of 5 h the maximum sulfate reduction rate was reached (6.33 g/L ⋅

day) showing that the liquid–solid fluidized-bed process responded well to the 

intentional gradual HRT changes removing a higher sulfate quantity than during the 

previous experimental period. At low HRTs, incomplete ethanol oxidation resulted in an 

increase of the acetate effluent concentration, especially when the HRT was decreased 

below 12 h (Kaksonen et al. 2004). 

 

1.3.2.3.3 Sulfide inhibition 

The inhibitory effect of sulfide and organic acids is caused when these substances are 

present as unionized compounds because only neutral molecules permeate the cell 
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membrane (Oleszkiewicz et al. 1989; Hulshoff et al. 2001; Kimura et al. 2006) 

Undissociated acids enter the bacterial cell, acidify the cytoplasm and lead to bacterial 

death at high concentrations (Kimura et al. 2006; Celis-García et al. 2007). Celis-Garcia 

et al. (2007) showed that, although the sulfide concentration reached a value of 1215 

mg/L, both lactate consumption and sulfate reduction were not affected by high sulfide 

production and kept stable around 90% and 75% removal efficiency, respectively. The 

high recirculation rate may have contributed to the formation of a biofilm able to 

tolerate high total sulfide concentrations without any apparent toxic effect. 

 

1.3.2.3.4 Inhibition by heavy metals 

Heavy metals can affect the SRB metabolism by deactivating the enzymes and 

denaturing the proteins (Cabrera et al. 2006). According to the metal concentration, the 

effect can be different:  i) inhibition of the bacterial growth, ii) extension of the lag 

phase in sulfide production, iii) decrease in sulfate-reducing activity and iv) death of 

bacteria (Sani et al. 2003; Cabrera et al. 2006). However, the sulfide reacts quickly with 

metals forming metal sulfide particles, which reduces the metal toxicity and 

bioavailability. 

 
1.4 Sulfate reduction and metal precipitation process configuration 

1.4.1 Single stage process 

Many bioreactor configurations have been reported in the last years (section 1.3.2.4); 

however only some of them have been applied for sulfate reduction and metal 

precipitation in a single stage (Table 1.3). These include UASB reactors (Kaksonen et 

al. 2003b; Sierra-Alvarez et al. 2006; Steed et al. 2000), UAPBR reactors (Dvorak et al. 

1992; Hammack et al. 1994; Chang et al. 2000; Jong and Parry 2003; La et al. 2003), 

fixed-bed reactor (Foucher et al. 2001), FBRs (Kaksonen et al. 2003b; Kaksonen et al. 

2004), down-flow FBRs (Gallegos-Garcia et al. 2009), upflow packed anaerobic filter 

(Steed et al. 2000) and GLRs (Hammack et al. 1994).  

The single stage treatment process is a low-cost solution for AMD treatment, but it may 

not be viable if the wastewater is very acidic or contains high concentrations of heavy 

metals (Hao et al. 1994).  The optimum pH for SRB is usually stated as circum neutral. 

Studies in Table 1.3 show pH influents below 3; however this pH is increased due to the 

production of alkalinity during treatment by SRB which shows that the actual treatment 
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could be performed at pH values higher than that of the waste stream. Sulfate reduction 

has been described under acidic conditions as low as 3.8 (Kimura et al. 2006). In a 

single stage under acidic conditions, however, biological sulfate reduction and metal 

precipitation are reported at the lowest pH of 5 in the influent and effluent (Bijmans et 

al. 2008; Gallegos-Garcia et al. 2009).  

The interaction between the metals and the biomass is also a concern in single-stage 

processes due to metal toxicity. Depending on the sludge characteristics, the chemistry 

of the mixed liquor (e.g. sulfide concentration and pH), the dissolved metal species and 

their respective concentrations, SRB is capable of binding and accumulating high 

quantities of heavy metals (Labrenz et al. 2000). In addition, the exposure time 

determines the outcome of toxicity. Studies of short duration in minimal media have 

indicated that biofilms are highly tolerant to heavy metals, whereas long term exposures 

in rich media induce a complete inhibition of biomass (Teitzel and Parsek 2003). 

 

1.4.2 Two stage and multi stage process 

 Sulfate reduction and metal removal can be performed in a two-stage process 

consisting of a biological stage, separated from the precipitation stage. The major 

advantage is the avoidance of biomass toxic effects due to high acidity and metal 

concentrations in the AMD streams (Johnson and Hallberg 2005). Tabak et al. (2003) 

proposed a two stage process in which the metal precipitation step was separated from 

the SRB bioreactor system. In the last decade, this technique has been studied with 

metals like Cu and Zn (Foucher et al. 2001; Al-Tarazi et al. 2005b; Gramp et al. 2006; 

Esposito et al. 2006). Selective precipitation of individual heavy metals can be realized 

by controlling the pH and pS (pS=-log(S2-) (Veeken et al. 2003b; Esposito et al. 2006; 

König et al. 2006; Sampaio et al. 2009). This results in pure precipitates of metal 

sulfides that can be reused as a raw starting material in the metal industry 

(Grootscholten et al. 2008) 

Metal recovery is another drawback of single-stage treatment process configuration 

since metal sulfides can precipitate in the biomass. Although the metals can be 

recovered from the metal sulfide-containing sludge (Tabak et al. 2003), this might 

imply biomass lost. In this sense, IFB reactors are the most suitable reactor 

configuration for metal recovery separately from the biomass.  
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Table 1.3 Lab-scale reactors used for simultaneous biological sulfate reduction and 

heavy metal precipitation. 

  

 
UAPBR: Upflow anaerobic packed bed reactor, HRT: Hydraulic retention time, pH influent, aValues estimated from 

raw data, bOak chips,spent oak chips,organic rich soil, spent mushroom, paper sludge (each substrate was used in one 

reactor but the results were similar), cPartially packed with floating plastic pall rings; dCalculation based on lactate; 
eComposed of straw, hay, horse and poultry manure, ground corncobs, gypsum and limestone. 

 

 

 

Reactor
type 

UAPBR 12 Acid-washed 
mushroom 
compost e 

lactate

- 4.5 1.9a 3733.33ad - Ni 500 > 99 Hammack 
and 

Edenborn, 
1992

16.2 Lactate 25 ~ 4.5 2 5000 - Cu 50, 10, 20, 5 > 97.5
Zn 50, 10, 20, 5 > 97.5
Ni 50, 10, 20, 5 > 97.5
As 50, 10, 20, 5 > 77.5
Fe 50, 10, 20, 5 > 82
Mg 50, 10, 20, 5 0
Al 50, 10, 20, 5 0

480 25 6.8 - - - Fe 500 < 80
Zn 100 > 99
Mn 50 < 1
Cu 50 > 99

96 2.6 - 2.9 - - - Mg 122 > 99
Fe 279 > 99
Zn 33 > 99
Mn 27 > 94
Al 13 > 99
Cu 68 > 99
Cd 56 > 99

16 Lactate 35 2.5 0.66a ~ 1500a > 98 Zn 166 - 233 > 99
Fe 58 > 99

FBR 6.5 Ethanol 35 3 - 3.2 0.72a 1440a - Zn 200 > 98
Fe 100 > 98

24 5 - 6 0.8 2500 ~ 50 Fe 140 - 320 > 98
Zn 40 - 220 > 98
Cd 5 - 6 > 99

202 Acetic acid 30 7.2 0.7 3500 > 95 Fe 840 > 99
Zn 650 > 99
Mn 275 > 97
Cu 127 > 99
Cd 2.3 > 99
As 2.1 > 99
Pb 1.5 > 99

16 Lactate 35 3 0.66a ~ 1083a > 98 Zn 166 - 233 > 99
Fe 58 > 99

24 Ethanol 30 4.5 1.28 0.9 Cu 100 100
Zn 15 99.5
Ni 15 99.6

98.4 2.3 - 3861.8a - Fe 178 > 99
Cu 530 > 99
Zn 620 > 99
Al 278 > 99
Mn 191 > 91

Kaksonen 
et al., 2003

Sierra-
Alvarez et 
al., 2006

Hammack 
et al., 1994

GLR

UASB

UASB

Lactate 
syrup

Gallegos-
Garcia et 
al., 2009

Steed et al., 
2000

CompostbUAPBR

UAPBR

Ethanol/  
Lacate

cow manure

AFR

Down-
flow FBR

FBR

UAPBR

Jong and 
Parry, 
2003

Chang et 
al., 2000

La et al., 
2003

Kaksonen 
et al., 2003
Kaksonen 

et al., 2004

CO D 
(mg/L)

90.5 - 
85.8

18 - 
26

24 - 
30

20 -
23.5

HRT 
(h)

Substrate T 
(°C)

Influent 
pH

CO D/SO 4
2- 

ratio
CO D 

remov
al (%)

Metal  Metal 
concentration 

(mg/L)

Metal 
removal 

(%)

Reference
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1.5 Metal sulfide precipitation process 

Besides the reactor configuration and the number of stages in the treatment process, 

metal sulfide precipitation itself is a complex process that needs to be understood for 

metal recovery. Precipitation occurs through several steps, namely nucleation, crystal 

growth, aggregation and eventually breakup (Al-Tarazi et al., 2004).  Most of the 

fundamentals of precipitation theory are well understood and therefore, only a general 

summary is given in box 1. 

Metal sulfide precipitates have low solubility products (Table 1.4) and, as a 

consequence, very small particles normally prevail as the supersaturation level cannot 

be controlled at low levels (Hammack et al., 1994)  and because local supersaturation at 

the feed points due to micromixing limitation cannot be prevented (Tabak et al., 2003).  

As a result, metal sulfide precipitation reactions are difficult to control and a large 

number of small particles are formed during the process (Mokone et al., 2010).  

Metal sulfide species can be present as metal-sulfide complexes, nanoclusters (in the 

range of 2-10 nm) or colloids (small particles in the range 1nm-1µm) that are formed in 

supersaturated solutions (Sukola et al. 2005). Van Hille et al. (2005) found that elevated 

supersaturation causes the rapid precipitation of Cu sulfides, often resulting in the 

formation of fines and hydrated colloidal particles. On the other hand, Lewis and van 

Hille (2006) found that low sulfide concentrations lead to the formation of aqueous 

sulfide clusters at high supersaturation points. As a consequence of its particle size, 

metal sulfides are difficult to recover from the water phase by means of solid–liquid 

separation processes (Bhattacharyya et al. 1979). 

 

Table 1.4 Solubility product constants of metal sulfides at the standards condition (25℃, 

1atm) (Sampaio et al. 2009).  

 

 

Metal ion Log KSP (metal sulfide)
Hg(II) −52.4
Ag(I) −49.7
Cu(I) −48.0, −48.5
Cu(II) −35.1
Cd(II) −27.7, −25.8
Pb(II) −27.0, −27.5
Zn(II) −23.8
Ni(II) −20.7
Fe(II) −17.3
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Many studies on metal sulfide precipitation have focused on studying the way to reduce 

the high level of supersaturation on the metal sulfide precipitation in order to increase 

the size of the precipitates for better solid-liquid separation. Seckler (1996) suggested 

the use of a seeded fluidized bed reactor with multiple reagent feed points. This 

Nucleation is the step where the solute molecules dispersed in the solvent start to gather into clusters on 
the nanometer scale (elevating solute concentration in a small region), that becomes stable under the 
current operating conditions. These stable clusters constitute the nuclei. Nucleation produces only very 
small particles which are difficult to separate from the liquid phase, whereas crystal growth and 
agglomeration of crystals result in larger particles. The crystal growth is the subsequent growth of the 
nuclei that succeed in achieving the critical cluster size. Crystallization is the formation of a solid state of 
matter in which the molecules are arranged in a regular pattern (Larsen et al., 2006). 
The saturation concentration, also called solubility, represents the minimum solute concentration for 
which crystal growth can occur. The supersaturation level is the amount by which the solute 
concentration exceeds the saturation concentration. Crystallization occurs only if the system is 
supersaturated (Larsen et al., 2006). In general, high supersaturation levels favour nucleation, thus to 
produce large particles the supersaturation should be minimized. The supersaturation level σ for metal 
sulfides can be expressed in terms of the solubility product (Veeken et al., 2003b): 
 

 

σ= the supersaturation level , (Me2+)= metal activity (mol/l), (S2-)= sulfide activity (mol/l). 
Nucleation and growth continue to occur simultaneously while the supersaturation exists (Figure). 
Supersaturation is the driving force of the crystallization. Depending on the conditions, either nucleation 
or crystal growth may be predominant over the other, and as a result, crystals with different sizes and 
shapes are obtained.  

  
Simplified phase diagram of metal sulfide precipitation. 

 
During precipitation, a dispersed solid-liquid system is formed. The stability of this dispersed system is 
determined by the extent to which the original degree of dispersion is maintained over a period of time. 
The initial dispersion may change as a result of formation of larger entities by particle aggregation. This 
process is called coagulation for small particles and agglomeration for larger particles. Aggregate 
formation depends on the transport of the primary particles due to Brownian motion, fluid motion or 
sedimentation, frequency of collision between moving particles and the nature of interactions that take 
place when these particles collide (Söhnel and Garside, 1992).  The latter may be attractive or repulsive 
depending on the surface characteristics of the particles and the chemistry of the solution.  
 

Box 1. Precipitation theory 
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approach was used by Van Hille et al. (2005), who studied the influence of the sulfide 

to Cu molar ratio, recycle flow rate, inlet Cu flow rate and the inlet copper 

concentration on the Cu conversion and removal efficiency. They found that the sulfide 

to Cu molar ratio and the bisulfide ion formation were the most important factors 

determining local supersaturation. Al-Tarazi (2004) used gaseous H2S as precipitating 

reagent to reduce the high level of supersaturation in the precipitation of Cu and Zn 

sulfide in a bubble column and concluded that the morphology of the metal sulfide 

precipitate produced using gaseous hydrogen sulfide was more favorable than that of 

the precipitate produced using aqueous sulfide source.  

 Some studies have shown the influences of geometry and operating conditions of the 

precipitator reactor on the crystallization process. For instance, Al-Tarazi et al. (2005a) 

studied the effects of the reactor configuration on three different types of reactors for 

the precipitation of Zn and Cu: laminar jet, bubble column and a Mixed Solution Mixed 

Product Removal (MSMPR) reactor, studying the effects of mass transfer and process 

conditions on the morphology of the produced crystals. They found that the largest 

crystals of metal sulfides were obtained at high supersaturation concentrations, 

moderate stirrer speeds, short residence times, a pH value of around 5 and high Cu2+ to 

S2- ratios. Sampaio et al. (2009) observed that the particle size of CuS increased if 

allowed to settle (from 36 to 180 µm), whereas upon vigorously stirred, the particles 

decreased to below 3 µm in experiments done in a continuously stirred tank reactor. 

In addition to the influence of geometry and operating conditions, foreign particles also 

determine particle size of the metal sulfides by affecting the relative rates of nucleation 

and crystal growth. According to experiments carried out with foreign particle seeds 

added to the reactants, the nucleation is reduced to approximately 10% of the value for 

homogeneous primary nucleation (Schubert and Mersmann 1996). Furthermore, the rate 

of heterogeneous primary nucleation is proportional to the specific surface area of the 

foreign particles present in the solution (Mersmann 1999). Gramp et al. (2006) showed 

the differences between biogenic and abiotic sulfide used to precipitate copper in 

cultures of SRB and Na2S solutions. They found that bacterial cells alter crystal 

formation by inhibiting particle nucleation and as a consequence the chemically 

produced covellite (CuS) should be more resistant to biogeochemical oxidation as 

compared to poorly crystalline biogenic Cu-sulfide. Contrary to the previous authors, 

Bijmans et al. (2009) suggested that the biomass functioned as nucleation seeds, 
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enhancing crystal growth, reporting NiS precipitates formed with biogenic sulfide 

ranging from 13-73 µm. 

Foreign particles can also promote or impede aggregation of the metal sulfides that 

affects particle size. Peters et al. (1984) found that, for ZnS precipitated at pH 8, the 

complexing agents (ammonia, EDTA and 18-Crown-6 ether) reduced the nucleation 

rate, but promoted the aggregation rate. Esposito et al. (2006) found that the use of 

biogenic sulfide instead of Na2S as sulfide source for ZnS precipitation decreased the 

efficiency of the precipitation process both in terms of zinc effluent concentration and 

particle size of the precipitates due to the presence of substances commonly present in 

bioreactors such as ammonium and phosphate. 

 

1.5.2.1 Factors affecting metal sulfide precipitation 

1.5.2.1.1 pH  

The pH is important because it influences both the solubility of sulfides, and the kinetics 

of the precipitation processes for selective metal recovery. As shown in Equation 4 and 

5, aqueous sulfide speciation and thus the aqueous concentration of the reactive sulfide 

species (i.e. HS- and S2-) is dependent on the pH of the solution. Figure 1.4 shows the 

pH-dependent aqueous sulfide speciation (MEDUSA, software implemented by The 

Royal Institute of Technology, Sweden). It can be observed that for an increase of one 

pH unit, the S2- concentration increases by two orders of magnitude. Hammack et al. 

(1994) investigated the effect of pH on Cu sulfide precipitation using biologically 

produced gaseous hydrogen sulfide. The rate of gaseous H2S dissolution was found to 

be low under acidic conditions and this led to a decrease in the total dissolved sulfide 

concentration required for metal precipitation.  

 

!!!(!") ↔ !!!(!") + !!
(!")                                             pK1= 7                                (3)                                                                         

!!!(!") + !!
(!")   ↔ !!!(!") + 2!!

(!")                          pK2=13.9                            (4)         
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Figure 1.4 Aqueous hydrogen sulfide speciation as a function of pH. 

 

Solubility diagrams are used in order to predict the precipitation efficiency. Figure 1.5 

shows the solubility of several metal sulfides in distilled water at various pH values.  

The pH-dependent solubility of different metal sulfides has been successfully used to 

selectively recover metal ions from complex and simple mixed metal systems (Tokuda 

et al. 2008; Bijmans et al. 2009b; Sahinkaya et al. 2009; Tabak et al. 2003). Foucher et 

al. (2001) found that Cu and Zn could be selectively recovered at pH 2.8 and pH 3.5, 

respectively. Other metals such as Ni and Fe could only be removed (not recovered) at 

pH 6 by sulfide precipitation. Similar results were found by Sampaio et al. (2008) who 

selectively precipitated Cu (covellite) at pH 2 and 3 and ZnS (sphalerite) at pH 3 and 4. 

Bijmans et al. (2009) demonstrated that Ni can be selectively recovered from a Ni-Fe 

solution at pH 5 using a single stage bioreactor operating at low pH. The results also 

suggested that the pH should be lower than 4.8 for complete Ni-Fe separation. 

 

1.5.2.1.2 Solubility product 

The solubility product determines whether a metal sulfide will stay dissolved or will 

precipitate. For a solid precipitate of metal sulfide MxSy (s), the following general 

solubility expression can be written: 

 

MxSy (s) ⎯→←  x M2+ + y S2-                                                                                         (5)                      

  

The solubility product (Ksp) of the metal sulfide is defined as: 

 

Ksp = [M2+]x * [S2-]y                                                                                                        (6) 
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Where Ksp is in mol2/l2 when x=y=1, [M2+] is the equilibrium activity of metal ion M2+ 

(mol/l) and [S2-] is the equilibrium activity of S2- (mol/l).  

 

 
Figure  1.5 pH dependence of metal sulfide solubility (Lewis 2010). 

 

Sulfide gives the possibility of selective precipitation due to the different solubility 

products of the different metal sulfides (Table 1.3).  Having the solubility product 

defined as (6), it means that different sulfide concentrations (S2- potentials) are required 

to precipitate different metals. Several authors have found that the equilibrium in the 

metal sulfide reactions are ruled by the sulfide concentrations by means solubility 

product (Bryson and Bijsterveld 1991; Mishra and Das 1992; Lewis and Swartbooi 

2006; Veeken et al. 2003b). Veeken et al. (2003) showed that at pH 6 different metals 

(Cd, Cu, Ni, Pb and Zn) had different sulfide curves expressed in the logarithm of the S- 

species (pS) curves when titrated and precipitated with sulfide.  

 

1.5.2.1.3 Competing metal removal mechanisms 

Several mechanisms, such as sorption onto the biomass (Neculita et al. 2007), 

complexation and precipitation with other compounds typically present in the effluent 

of a sulfate reducing bioreactor such as extracellular polymeric substances (Beech and 
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Cheung, 1995), complexing agents (organic compounds) (Peters et al., 1984), phosphate 

and micronutrients from the biological process (Esposito et al., 2006; König et al., 

2006) compete with the metal sulfide precipitation process, thus jeopardizing the 

success of the metal sulfide recovery.  

Sorption mechanisms in the biomass are explained as either through an ion exchange 

mechanism on the surface of the biosorbent (biofilm) or surface precipitation of metal 

hydroxide/sulfide species (van Hullebusch et al. 2003). A comparison between batch 

growth tests (bioprecipitation) and dead biomass batch tests (biosorption) with SRB by 

Pagnanelli et al. (2010) showed that Cd was mainly removed by a biosorption 

mechanism (77%) due to metabolism-independent binding properties of the SRB cell 

wall surface. A sorption mechanism is described by Jong and Parry (2003) occurring 

through the formation of strong, inner–sphere complexes involving surface hydroxyl 

groups on the bacterially produced metal sulfides (BPMS). That is, the BPMS surfaces 

are hydrated in aqueous solution by water, producing surface hydroxyl (-OH) groups. 

This is followed by a ligand exchange reaction between the surface hydroxyl groups and 

metal–adsorbing ions, leading to the formation of inner-sphere metal complexes. 

Metal removal mechanism involving precipitation with compounds typically present in 

the effluent of a sulfate reducing bioreactor are due to the presence of hydroxides, 

carbonates and phosphates, contained in the synthetic wastewater. Hydroxide 

precipitation of metals has been reported in passive sulfate reducing reactors operating 

at a pH around 7 during the first stages of operation, when sulfate reduction is not yet 

well established and hence, low sulfide production occurs (Samaranayake et al. 2002; 

Neculita et al. 2008). Several studies have shown the potential of phosphates for the 

immobilization of divalent heavy metals like Zn, Pb, Cu, and Cd from wastewaters, 

solid wastes and contaminated soils (Ruby et al. 1994; Eighmy et al. 1997; Geysen et al. 

2004), surprisely, no evidence of phosphate precipitation is reported in sulfate reducing 

reactors. Bartacek et al. (2008) showed that cobalt depletion might be due to phosphates 

and carbonates precipitation in a study on the influence of cobalt speciation on the 

toxicity of cobalt to methylotrophic methanogenesis in anaerobic granular sludge 

evidencing the possibility of this removal mechanism in sulfate reducing reactors. 
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1.6 Optimization of the sulfate reducing process for metal precipitation  

1.6.1 Modeling 

Mathematical modeling is a powerful tool for process analysis and design. It also forms 

the basis for monitoring and control schemes of bioreactors. Sulfate reduction modeling 

has been well developed in several reactor configurations. These studies have been 

made for the modeling of sulfide toxicity (Kaksonen et al., 2004), competition of SRB 

with methanogenesis (Kalyuzhnyi and Federovich, 1997; Chou et al., 2008), kinetic 

parameters of sulfate reduction (Nielsen, 1987, Tabak et al., 2003), biofilm growth 

(Nielsen, 1987), and scale-up design (Tabak et al., 2003).  

The metal precipitation process has been modeled separately from the sulfate reducing 

process in CSTR’s to predict the effects of organic substances (Peters et al., 1984, 

König et al., 2006), sulfide concentration (König et al., 2006), pH variation (Luptakova 

and Kusnierova, 2005; König et al., 2006; Sampaio et al., 2008) and metal 

concentration (König et al., 2006) on the metal precipitation, to obtain crystallization 

kinetics (Peters et al., 1984; Al-Tarazi et al., 2004), and to design an adequate control 

strategy to estimate the effluent metal concentration (Sampaio et al., 2008).  

Mathematical modeling has facilitated the design of controllers for metal precipitation. 

These tools can predict optimal conditions like pH, temperature, and sulfide 

concentration, thus reducing costs on reactor construction and operation. However, 

these experiments have been carried out separated from the biological sulfate reduction 

process and when metal recovery is combined with biological sulfate reduction, the 

process is restricted with respect to the operational pH, temperature, and sulfide 

concentration (Widdel, 1988 #198). For the modeling of the process it is important to 

consider that if the sulfate reduction and metal precipitation take place in a single stage 

reactor, metals can also interact with the bacteria themselves (Jong and Parry, 2004; 

Gramp et al., 2006) and their excreted components (Beech and Cheung, 1995). 

Moreover, in general, modeling tools have only studied the sulfide precipitation of Zn 

and Cu. Therefore, it is necessary to make studies with other metals as well, so that the 

models can be adjusted for these other metals.  

 

1.6.2 Sulfide control 

Sulfide control production in sulfate reducing bioreactors is highly relevant to avoid the 

unnecessary production of sulfide that increases operational costs and may impose a 

sulfide removal post-treatment step. The principles of monitoring and control in 
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bioreactors are reviewed in Dunn et al. (2005) and Pind et al. (2003). A general block 

diagram representing a control configuration is given in figure 1.6. Biological process 

control has been studied for several desirable end products such as ethanol, penicillin, 

yeast, wastewater treatment and diverse fermentations (Dunn et al. 2005). Set-point 

control in these processes is typically based on the manipulation of temperature, pH, 

substrate or dissolved oxygen. The key issues in process control are the use of a suitable 

sensor and selecting an appropriate control strategy and control parameters. In the past 

years a method using a sulfide-selective electrode (pS electrode) to control the sulfide 

addition has been studied by several authors (Grootscholten et al. 2008; König et al. 

2006; Veeken et al. 2003a). These studies showed that the stoichiometric addition of 

sulfide to a solution containing heavy metals can be achieved using the pS electrode 

combined with a pH electrode resulting in very low concentrations of both metals and 

sulfide. These experiments have been carried out separate from the biological sulfate 

reduction process. Studies on the control of the sulfide production in bioreactors are 

lacking in the literature. 

 
Figure 1.6 Block diagram representing a control system. (t) = "set point" is a synonym 

for the desired value of the controlled variableε, (t) = process error or comparator, X(t) 

= process variable, M(t) = measurement variable, Y(t) = output variable 

 

Even though large progress has been made in modeling and control of anaerobic 

systems, there is still insufficient knowledge in control of sulfate reducing bioreactors. 

Some authors have designed algorithms for control of the pH, and concentration of 

organic compounds, by controlling the biodegradation of organic compounds (Aguilar 

et al. 2001; Mailleret et al. 2004; Ryhiner et al. 1993). Ryhiner et al. (1993) used the 

flow rate as the manipulated variable to control the pH, dissolved hydrogen and organic 
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acids concentration in simulation and experiments. The experimental results were found 

in close agreement with predetermined simulated values. Mailleret et al. (2004) 

developed a nonlinear controller for its application in anaerobic wastewater treatment 

plants. The controller was shown in simulations, while experiments were missing. 

Although some authors have developed mathematical models for sulfate reduction in 

anaerobic digestion (Kalyuzhnyi and Fedorovich 1998; Oyekola et al. 2012; Gupta et al. 

1994), they have focused on the population dynamics and substrate competition among 

microbial species while accounting for sulfide production.   

The selection of the most adequate control strategy largely depends on the process 

characteristics. A proportional-integral-derivative (PID) controller has been widely used 

in bioreactors partly due to the derivative time parameter used to overcome the lag 

presence caused by the time required for substrate degradation before being used or 

transformed to the desired product (Dunn et al. 2003; Dunn et al. 2005; Jagadeesh and 

Sudhaker 2010). This controller has three adjustable parameters Kc controller gain, τi 

integral time and τd derivative time. These parameters can be obtained by using different 

tuning methodologies. 

 

1.6.3 Metal speciation techniques in sulfate reducing reactors 

Since metal sulfides crystallize poorly or are found immerse on a solution matrix when 

biogenic sulfide is used, their analysis requires species-specific analytical methods 

(Neculita et al. 2007).  In some studies, the number of techniques for collecting 

mineralogical data has been limited by the poor crystallinity of the precipitates and the 

relatively low concentrations of metal sulfides (Neculita et al. 2007).  Since many 

samples from environmental matrices are either non-crystalline or in a solution matrix, 

XRD may not be the best method to investigate the structure of environmental samples. 

Another disadvantage of XRD is that many samples are not concentrated enough to be 

analyzed using XRD (Parsons et al. 2002). 

XAS, which consists of two complementary techniques, the X-ray absorption near edge 

spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) is a 

technique that has proven to be a powerful technique in environmental sciences 

(Parsons et al. 2002). XAS provides a clear picture of the local coordination 

environment of an element in both simple and complex mixtures of compounds 

(Parsons et al. 2002). XANES and EXAFS analysis have been applied in samples 
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obtained from bioreactors (Lenz et al. 2011; Villa-Gomez et al. 2012; Prange and 

Modrow 2002).  

Another powerful technique to predict speciation is the use of geochemical models of 

water chemistry data in bioreactors such as WATEQ4F and VMINTEQ. These models 

give useful insights into the chemical equilibrium reactions potentially controlling the 

concentrations of dissolved metals (Neculita et al., 2007).  

 

1.7 Research needs 

Different reactor configurations have been tested for sulfate reduction and metal 

precipitation (section 1.4). However, metal recovery cannot always be achieved in these 

reactors, since metals precipitate partly in the biomass, which hampers their recovery. A 

suitable reactor configuration for metal sulfate reduction and metal removal in a single 

unit is the inversed fluidized bed (IFB) reactor (section 1.3.2.2).  
Metal sulfide precipitation and recovery not only depend on the reactor configuration 

but also on the nature and morphology of the metal precipitates for metal sulfide settling 

and removal. Applications of metal precipitation with sulfide are still limited by the 

challenging liquid-solid phase separation due to the predominance of nucleation over 

crystallization (Mokone et al. 2010).  This leads to the formation of small, poorly 

settling particles or even sulfide clusters at high supersaturation conditions (Lewis and 

Swartbooi 2006). Therefore, it is important to study the bioreactor conditions that affect 

the size and structure of the metal precipitates, for example, the substances commonly 

present in the bioreactor mixed liquor such as dissolved organic matter (van Hullebusch 

et al. 2003) and macronutrients (Esposito et al. 2006; Sampaio et al. 2009; Bijmans et 

al. 2009a) and the hydrodynamic conditions(Al-Tarazi et al. 2005a; Al-Tarazi et al. 

2005b). 

Furthermore, steering sulfide production in bioreactors is highly relevant to avoid the 

over production of H2S that increases operational costs and may impose a sulfide 

removal post-treatment step. The development of a control strategy based on the sulfide 

concentration as control input parameter is necessary for the metal recovery further 

optimization.   

Also the low pH of the metal-containing wastewaters such as AMD limits the metal 

recovery in single stage applications due to SRB inhibition, lack of growth and low 

sulfate reduction rates (Bijmans et al. 2010). A clear understanding about how 
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operational parameters can help to achieve sulfate reduction at low pH has thus far not 

been analyzed. 

 

1.8 Scope and organization of this thesis 

The main objective of this thesis was to elucidate the factors affecting simultaneous 

sulfate reduction and selective recovery of heavy metals in an IFB reactor in order to 

optimize metal recovery from metal containing wastewaters such as AMD.  

The present dissertation comprises eight chapters. This chapter gave a literature review 

about the current knowledge of both sulfate reduction and metal precipitation processes. 

Based on that knowledge, the possibilities and limitations for metal recovery in an 

inverse fluidized bed reactor are addressed. 

Supersaturation, which depends on the stoichiometry of the reactants, is a key factor in 

understanding metal sulfide precipitation inside bioreactors. In Chapter 2, the effect of 

the sulfide concentration on the location of metal precipitates within the IFB reactor was 

evaluated.  

Chapter 3 explores the influence of the of sulfide and macronutrient concentration 

commonly present in mineral media and wastewaters on the metal removal kinetics and 

mechanisms. Chapter 4 analyzes the differences in the metal precipitation 

characteristics as a function of the decrease in the HRT in IFB reactors. The effect of 

the reactor operational changes on the SRB population in the biofilm and suspended 

biomass was also described. 

Chapter 5 investigates key components contained in the biogenic sulfide that affect the 

nature and morphology of the metal precipitates (Cu and Zn). Metal precipitation 

experiments using biogenic sulfide were performed for particle size, settling rate and 

dewaterability analysis of the metal precipitates under different pH values.  

Chapter 6 describes the individual and combined effect of COD in the influent, pH, 

metal to sulfide ratio and HRT on sulfide production, on the sulfate reduction efficiency 

at low pH. Different reactor runs at different conditions were analyzed using factorial 

design analysis to determine how these variables affect low pH sulfate reduction.  

Chapter 7 evaluates input strategies to control the sulfide concentration in bioreactors 

using a pS electrode. The experiments were designed to create a response to the signal 

of the pS electrode in order to determine optimal control parameters for the PID control. 

Chapter 8 concludes this thesis, discussing the implications of the obtained results for 
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metal recovery in inversed fluidized bed reactors and giving suggestions for future 

research. 
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Abstract  

The effect of the sulfide concentration on the location of the metal precipitates within 

sulfate-reducing inversed fluidized bed (IFB) reactors was evaluated. Two mesophilic 

IFB reactors were operated for over 100 days at the same operational conditions, but 

with different chemical oxygen demand (COD) to SO4
2- ratio (5 and 1, respectively). 

After a start up phase, 10 mg/L of Cu, Pb, Cd and Zn each were added to the influent. 

The sulfide concentration in one IFB reactor reached 648 mg/L, while it reached only 

59 mg/L in the other one. In the high sulfide IFB reactor, the precipitated metals were 

mainly located in the bulk liquid (as fines), whereas in the low sulfide IFB reactor the 

metal precipitates were mainly present in the biofilm. The latter can be explained by 

local supersaturation due to sulfide production in the biofilm. This paper demonstrates 

that the sulfide concentration needs to be controlled in sulfate reducing IFB reactors to 

steer the location of the metal precipitates for recovery.  
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2.1 Introduction 

 

Shortages in metal and mineral resources are expected in the next decades due to a 

growing demand by human consumption (Wouters and Bol 2009). Therefore, metal-

containing wastewaters can become a resource for metal recovery and reuse. Sulfide 

precipitation is an efficient method to remove and recover metals from wastewaters 

(Peters et al. 1984). It is an attractive option over hydroxide and carbonate precipitation 

due to the lower solubility and faster reaction rates (Bhattacharyya et al. 1981). 

Biological sulfate reduction has become an attractive alternative method for the 

production of sulfide. During this process, sulfate reducing bacteria reduce the sulfate to 

sulfide in the presence of an organic electron donor or hydrogen (Widdel 1988).  

Different reactor configurations have been tested for sulfate reduction and metal 

precipitation (Kaksonen and Puhakka 2007). However, metal recovery cannot always be 

achieved in these reactors, since metals precipitate partly in the biomass, which hamper 

their recovery. A promising reactor configuration for metal sulfate reduction and metal 

removal in a single unit is the inversed fluidized bed (IFB) reactor (Celis et al. 2009). 

This configuration is based on a floatable carrier material (on which the sulfate reducing 

bacteria biofilm is formed) which is fluidized downwards, whereas the metal sulfide 

precipitates settle and thus can be recovered at the bottom of the IFB (Gallegos-Garcia 

et al. 2009). 

From the standpoint of chemistry, supersaturation, which depends on the stoichoimetry 

of the reactants, is a key factor in understanding the metal sulfide precipitation. Sulfate 

reduction has been studied to treat organic and inorganic sulfate-rich wastewaters (Lens 

et al. 2002), and the sulfide concentration varies greatly in these studies. Thus, these 

lead to different levels of supersaturation. Van Hille et al. (2005) found that high 

supersaturation causes the rapid precipitation of copper sulfides, often resulting in the 

formation of fines and hydrated colloidal particles. On the other hand, Lewis and van 

Hille (2006) found that low sulfide concentrations lead to the formation of aqueous 

sulfide clusters at high supersaturation points. These conclusions cannot be transferred 

directly to biological systems, where sulfide is not directly supplied to the reactor, but is 

produced by the biomass and hence, sulfide supply is linked to the biomass distribution 

over the reactor.  
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Bijmans et al. (2009a) investigated the effect of the sulfide concentration on the ZnS 

precipitation characteristics in a sulfate reducing gas lift reactor. At low sulfide 

concentrations (0.26 mg/L), larger ZnS particles were formed with better settling 

properties than at high sulfide concentrations (3.2-70.4 mg/L). These authors used only 

a small range of sulfide concentration (0.26-70.4 mg/L) and studied the evolution of the 

particle size of the metal precipitates in a consecutive reactor run.  The aim of the 

present study was to evaluate the effect of a large difference in sulfide concentration (59 

versus 501 mg/L) on the fate and recovery efficiency of heavy metals (Cu, Zn, Cd and 

Zn) in IFB reactors.  

 

2.2 Materials and methods 

 

2.2.1 Source of biomass 

The two IFB reactors were inoculated with 25 mL anaerobic sludge from a digester 

treating activated sludge from a domestic wastewater treatment plant (De Nieuwe 

Waterweg in Hoek van Holland, The Netherlands). The sludge contained 35.4 g volatile 

suspended solids (VSS) of the mixed liquor sample per liter of sludge (wet weight). The 

sludge was added to the reactor, which was kept on recirculation for one day to promote 

microbial attachment on the carrier material. 

 

2.2.2 Carrier material 

The carrier material consisted of 600 mL low-density polyethylene beads (Purell Pe 

1810 E, Basell Polyolifins, The Netherlands) of 3 mm diameter. Prior to use, the surface 

of the polyethylene beads was roughened by abrasion with sand for approximately 15 

minutes. Then, the polyethylene beads were rinsed to remove the sand. 

 

2.2.3 Synthetic wastewater 

The synthetic wastewater used for the reactor operation and batch experiments 

contained (mg/L): KH2PO4 500, NH4Cl 200, CaCl2·2H2O 2500, FeSO4·7H2O 50 and 

MgSO4·7H2O 2500.  Lactate was used as electron donor. The pH of the medium was 

adjusted to 7.0 with NaOH. All reagents were of analytical grade. 
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2.2.4 IFB reactor   

The experiments were conducted in two IFB reactors (Figure 2.1) constructed from a 

transparent polyvinyl chloride (PVC) pipe operated at room temperature (25° C). Each 

reactor consisted of a column with a conical bottom of a total volume of 5 L (0.08 m 

diameter, 1 m height). The flow distributor and gas outlet were mounted in the 

removable cap covering the reactor.  The influent was supplied by using a multichannel 

peristaltic pump (Watson-Marlow BV, The Netherlands) connected to the influent tank 

of each reactor. The expansion of the bed (30% of the reactor volume) was maintained 

by means of the recirculation flow using a magnetic drive pump (IWAKI MD-20R-

22ON, Iwaki Holland BV, The Netherlands). The reactor was connected to an equalizer 

to maintain a constant liquid level in the reactor (Figure 2.1). In addition, the equalizer 

functioned as a second settler from which metal precipitates were recovered as well. 

 

 

Figure 2.1 Schematic representation of the IFB reactor set-up used in this study. 

 
 

2.2.5 Experimental design 

 

2.2.5.1 IFB reactor operation 

Reactor 1 (R1) and reactor 2 (R2) were run for 109 and 103 days, respectively, at the 

same operational conditions but with different lactate concentrations (Table 2.1). R1 

was operated at a chemical oxygen demand (COD) concentration and COD/SO4
2- ratio 

(g/g) of 5 g COD/L and 5, respectively, whereas R2 was operated at 1 g COD/L and 1, 
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respectively. After a start up period (I), Cu, Pb, Cd and Zn as chloride salts were added 

to the influent at a concentration of 5 mg/L each for 7 days (period II). In period III, no 

metals were added for 5 days to both reactors to ensure the complete removal of metals 

from the liquid phase prior to the increase of the metal concentration to 10 mg/L each 

(period IV to V).  

 

Table 2.1 Operational conditions of the two IFB reactors.  

 
From period I to IV, the HRT was maintained at 24 h, which was decreased to 9 h after 

day 76 for R1 and day 66 for R2 (period V) to test the robustness of the systems with 

respect to the metal removal efficiencies. The amount of COD, sulfate and dissolved 

metals removed were measured in the effluent during the whole reactor operation, 

whereas acetate and dissolved sulfide were started to be measured when the metal 

removal test started (period IV).  

It should be note that the dissolved sulfide concentration was always maintained above 

the stoichoimetric levels ([S]/[∑M2+] mol/mol) during the metal removal periods in 

order to ensure metal sulfide precipitation (confirmed by Visual Minteq Version 3.0, US 

EPA, 1999, http://www.lwr.kth.se/English/OurSoftware/vminteq/index.html) besides 

the presence of other possible precipitants contained in the synthetic wastewater. Iron 

was also considered in the [S]/[∑M2+] calculation since the medium contained rather 

high concentrations of this metal that easily precipitates as sulfide. 

 

2.2.5.2 Batch experiments  

Batch experiments to quantify the sulfide production in the presence and absence of 

metals were performed at room temperature (25 °C) in serum bottles of 117 mL shaken 

at 100 rpm. The bottles contained 5 mL of carrier material withdrawn from R1 at the 

end of the reactor operation and 112 mL synthetic wastewater.  

 

 Experimental periods 

Parameter I II III IV V 

Characteristic Start up  Metal adaptation No metals Metal removal test Decrease of HRT 

Days                 R1 0-43 44-50 51-56 57-76 77-109 

                         R2 0-35 36-42 43-48 49-66 67-103 

HRT (days) 1 1 1 1 0.37 

Metals added* (mg/L) No 5 No 10 10 

T=Room temperature (25 C), pH= 7, * Cu, Zn, Pb and Cd. 

 1 



Effect of sulfide concentration on the location of the metal precipitates in inverse fluidized 
bed reactors 	
  

 

 
 

41 

2.2.5.2.1 Sulfate-reducing activity 

The sulfate reducing activity (SRA) was determined in six serum bottles using lactate (1 

g COD/L) as the substrate at a COD/SO4
2- ratio of 1 (Exp A). Prior to the experiment, 

the carrier material with the biofilm was stored at 4 °C. Therefore, the biofilm was 

activated to the experimental conditions of Exp A, but at 30 °C for 72 hours. After this, 

the serum bottles were refilled with fresh synthetic wastewater containing lactate. 

 

2.2.5.2.2 Metal precipitation with active biofilm 

In order to study the effect of the metals on the sulfate reducing activity, three of the 

serum bottles used in Exp A, were refilled with fresh synthetic wastewater upon 

finishing (Exp B) and the other three were kept with the same medium (adding extra 

synthetic wastewater  to cover the headspace) (Exp C). Cu, Zn, Cd and Pb were added 

to the serum bottles to an initial concentration of 10 mg/L. 

The sulfide concentration was determined in Exp A, B and C approximately every 4 

hours and the metal concentration every hour during the initial 24 hours of Exp B and 

C.  

 

2.2.6 Analysis 

Total suspended solids (TSS) and volatile suspended solids (VSS) in the biofilm are 

reported per gram of dry polyethylene and were determined according to standard 

methods (APHA 2005) after detaching the biofilm from the polyethylene by successive 

washings with deionized water in an ultrasonic bath. COD was determined by the close 

reflux method (APHA 2005). Acetate was measured by gas chromatography (GC-CP 

9001 Chrompack) after acidification of the samples with 5% concentrated formic acid 

and filtration through a 0.45 µm nitrocellulose filter (Millipore).  The gas 

chromatograph was fitted with a WCOT fused silica column, the injection and detector 

temperatures were 175 and 300 °C, respectively. The temperature of the oven was kept 

at 115 °C. The carrier gas was helium at 100 mL/min.  

Sulfide was determined spectrophotometrically by the colorimetric method described by 

Cord-Ruwisch (1985) using a spectrophotometer (Perkin Elmer Lambda20). Sulfate 

was measured with an ion chromatograph (ICS-1000 Dionex with ASI-100 Dionex). 

The column (IonPac AS14n) was used in the ion chromatograph at a flow rate of 0.5 
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mL/min with an 8 mM Na2CO3/1 mM NaHCO3 eluent, a temperature of 35 °C, a 

current of 35 mA, an injection volume of 10 µL and a retention time of 8 min. 

Metals were measured by flame (AAS Perkin Elmer 3110) and furnace (AAS Solaar 

MQZe GF95) spectroscopy. Metal samples from batch experiments to determine the 

metal precipitation rate were measured in the liquid phase after diluting, acidifying with 

5% HNO3 and passing the sample through a 0.45 µm nitrocellulose filter (Millipore). 

Metal samples from the bottom of the reactor and equalizer were analyzed after taking 

50 mL of the liquid containing the precipitates and acidifying with 20% HNO3 to ensure 

the complete dissolution of the metal precipitates. After this, the procedure for metal 

measurements mentioned above was followed. 

 

2.2.7 Calculations 

The metal precipitates that could not settle at the bottom of the reactor and equalizer due 

to their small size were defined as fines. It is important to consider these fines to prove 

the system not only for the removal of metals but also for the potential recovery. The 

dissolved metal concentration (excluding fines) was determined by passing the liquid 

samples through a filter (0.45 µm) prior to acidification.  

The metal removal efficiency in the down-flow FBR was defined as: 

Metal removal efficiency (%) 100, ×
−

=
in

dissolvedoutin

M
MM

 

=inM Metal concentration in the feed (mg/L) 

=totaloutM , Dissolved metal concentration in the outlet (mg/L) 

 

The results of the metals accumulated in the bottom of the reactor and equalizer during 

each experimental period were used to calculate the metal recovery efficiency. Then, 

mass balance calculations were done to determine the fate of the metals. The metal 

recovery in the IFB reactor was defined as: 

Metal recovery efficiency (%) 
( )

1001 ×
+−

=
∑

total

n

beqtotal

M

MMM
 

=eqM Metals (mg) from the equalizer in the sample 

=bM  Metals (mg) from the bottom of the reactor in the sample 
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=totalM Total metals (mg) in the influent that entered the reactor over an operational 

period. 

=n  Number of samples in each operational period 

 

2.3 Results  

 

2.3.1 IFB reactor operation 

Table 2.2 compares the effluent characteristics of R1 and R2. The performance of both 

reactors during the start up period was characterized by instabilities in COD and sulfate 

removal. The gradual increase of the sulfate removal efficiency and the change in color 

of the polyethylene (Figure 2.2) and the reactor liquids from brown to black confirmed 

that anaerobic conditions and a sulfate reducing biofilm developed. The pH of the 

effluent was lower than the influent pH (6.6) in R1, while the pH was maintained at 7.0 

in R2. 

In period II, sulfate removal efficiencies were on average 88% and 68%, and the 

average pH was 7.1 and 7.6 in R1 and R2, respectively, with no changes in the 

subsequent periods. The COD removal efficiency in R1 and R2 increased to 22% and 

48%, respectively. 

 

 
Figure 2.2 Picture of the polyethylene beads a) before and b) after the biofilm formation 

in the IFB reactors. 
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Table 2.2 Effluent characteristics and removal efficiencies for sulfate reduction during 

the operation of the IFB reactors (mean ± standard deviation).  

 

 Experimental periods 

 Ia IIa, c IIIa IVa, d Vb, d 

R1      

COD removal efficiency (%) 15 (±3) 22* 34* 27 (±7) 27 (±10) 

SO4
2- removal efficiency (%) 56 (±24) 88(±3) 70* 76(±15) 74 (±13) 

Acetate concentration (g COD/L) ND ND ND 1.39 (±0.6) 1.36 (±0.4) 

Sulfide concentration (mg/L) 

[S]/[∑M2+] (mol/mol) 

ND 

ND 

ND 

ND 

ND 

ND 

212 (±26) 

14.8  

648 (±153) 

45.15 

Effluent pH 6.6 (±0.2) 7.1 (0) 7.0 (0) 7.1 (±0.1) 7 (±0.2) 

R2  

COD removal efficiency (%) 35 (±8) 48* - 68 (±11) 53 (±18) 

SO4
2- removal efficiency (%) 59 (+14) 68 (+15) 53* 17 (+11) 38 (±17) 

Acetate concentration (g COD/L) ND ND ND 0 0 

Sulfide concentration (mg/L) 

[S]/[∑M2+] (mol/mol) 

ND 

ND 

ND 

ND 

ND 

ND 

59 (±24) 

4.11 

44 (±30) 

5.16 

Effluent pH 7.0 (±0.1) 7.6 (0) 7.6 (±0.1) 7.5 (±0.2) 7.5 (±0.1) 

HRT= a24 h and  b9 h, Influent metal conc. = c5 mg/L and d10 mg/L, *Average of two values, NR= Not 

determined, [∑M2+]: The sum of Zn, Cu, Pb, Cd and Fe molar concentrations.  

 

In period III, the sulfate removal efficiency decreased in both reactors, in R1 to 70% 

and in R2 to 53%, while the COD removal efficiency continued to increase to 34 % in 

R1. In period IV, a recovery in the sulfate removal efficiency was observed in R1 

(76%), while in R2 the sulfate removal efficiency dropped to 17%. The COD removal 

efficiency continued increasing to 68% in R2, while it decreased to 27% in R1. In this 

period, it was shown that part of the COD supplied was transformed to acetate in R1 

(1.39 g COD/L), while the acetate concentration in R2 was below the detection limit.  

During period IV, the mean sulfide concentration in R1 and R2 was 212 mg/L and 59 

mg/L, respectively. In the same period, polyethylene beads started to settle in both 

reactors, this was more pronounced in R2. This caused a failure of the recirculation 

pump on day 87 in R1 and on day 66, 81 and 101 in R2. The failure of the pump was 

also reflected in the lower sulfate removal efficiency by R2 on days 74, 88, and 102 

(Figure 2.3). 
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In period V, the change of the HRT from 24 to 9 h did not vary the COD nor sulfate 

removal efficiencies in R1, while in R2 a partial recovery of the sulfate removal 

efficiency was observed (38%).  The maximum sulfide concentration was reached in 

period V for R1 (648 mg/L), while only 44 mg/L of sulfide was produced on average in 

R2. In period V, it was confirmed by the mass balances (data not shown) that most of 

the COD consumed was used for sulfate reduction (>87%) in R1. Acetate production 

remained close to the value obtained in the previous period (1.36 g/L) and accounted for 

43.4% of the COD consumed. 
 

 
Figure 2.3 Evolution of the sulfate concentration in the influent (□) and effluent (■) 

during reactor operation of a) R1 and b) R2. 

 

2.3.1.2 Metal removal/recovery in the IFB reactors 

Table 2.3 shows the metal removal efficiency of both R1 and R2 for the periods where 

the metals were added to the influent (II, IV and V).  Metal removal efficiencies 

exceeded 91% in both reactors in period II, which further increased for both reactors 

and exceeded 95% in period IV. The Cu, Zn, Pb and Cd removal efficiencies in both 
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reactors exceeded 98.4%, 96.5%, 96%, and 97.9%, respectively in period V, but were 

slightly higher in R2, in spite of the higher sulfide concentration in R1 compared to R2. 

Neither the increment of the metal concentration (Period IV) nor the change in HRT 

affected the metal removal efficiency (Period V). 

Table 2.3 also shows the percentage of metals that had accumulated at the bottom of the 

reactor and equalizer, expressed as the metal recovery efficiency.  In period II, only less 

than 5% of the metals were recovered in R2, while in R1 up to 17% of the metals could 

be recovered. In Period IV, the metal recovery increased in both reactors, the highest 

values were obtained in R2 (29.8%, 26.9%, 30.0%, and 26.2% for Cu, Zn Pb and Cd 

respectively). The recovery continued to increase in both reactors in period V achieving 

values of 41.1-60.3%. In general, the difference in the sulfide concentration and the 

operational conditions of both reactors did not result in any relevant variation in metal 

recovery. 

 

Table 2.3 Metal removal efficiency and metal recovery in the IFB reactors in periods II, 

IV and V (mean ± standard deviation). 

 

 
* Metal recovery from bottom of the reactor and equalizer. 

 

2.3.1.3 Location of metal precipitation in the biofilm 

It was assumed that the metals which were not present in the effluent, bottom of the 

reactor and equalizer were present in the reactor as fines or adsorbed or precipitated in 

the biofilm.  At the end of the reactor operation, metals, TSS and VSS in the biofilm 

Period 

Metal removal efficiency (%) Metal recovery* (%) 

II IV V II IV V 

R1             

Cu  99.1 (±1.3) 97.1 (±2.9) 98.4 (±3.1) 16.8 17.2 49.4 

Zn  92.3 (±4.2) 95.1 (±4.4) 96.5 (±3.8) 13.6 16.5 43.6 

Pb  92.7 (±4.9) 97.3 (±1.9) 96.0 (±5.1) 13.2 21.4 57.9 

Cd  95.6 (±1.7) 95.2 (±2.5) 97.9 (±3.0) 15.7 17.2 46.3 

R2        

Cu  99.1 (±1.5) 96.7 (±3.3) 99.9 (±0.3) 4.1 29.8 41.1 

Zn  91.3 (±10.0) 95.6 (±2.3) 98.6 (±1.2) 2.7 26.9 44.2 

Pb  92.4 (±8.0) 96.1 (±3.4) 99.2 (±1.1) 3.5 30.0 60.3 

Cd  96.5 (±2.4) 95.3 (±2.9) 99.7 (±0.3) 2.9 26.0 47.4 

 1 
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were analyzed on polyethylene bead samples located at the top and bottom of the 

polyethylene bed (Table 2.4). 

 

Table 2.4 TSS, VSS and metal concentration in the biofilm of both IFB reactors at the 

end of the experiment (average of duplicate samples). Samples taken at the top and the 

bottom of the polyethylene bed. 

 

 
 

The TSS and VSS in the biofilm were different at the top and at the bottom of both 

fluidized beds. The TSS was especially high at the bottom of the R2 polyethylene bed. 

No differences in the metal concentration were observed between beads sampled at the 

top and the bottom of the fluidized bed in R1. In general, higher metal concentrations in 

the biofilm were found in R2. Moreover, the differences in metal concentration between 

the top and the bottom were significantly higher in R2.  

 

2.3.2 Batch experiments 

 

2.3.2.1 Sulfate reducing activity of the biofilm 

Figure 2.4 compares the sulfide production in the absence (Exp A) and presence of 

metals (Exp B). The sulfide started to increase after a lag phase of 16 hours for Exp A, 

while no lag phase was observed for Exp B. Prior to the addition of metals (Exp A), the 

SRA was 0.16 mg S2-/mg VSS-h, which increased to 0.21 mg S2-/mg VSS-h after the 

addition of metals (Exp B). These results confirm that the metal concentration itself was 

not directly inhibitory to the biofilm. 

  TSS                             VSS  

Metal concentration 

 (mg/gpolyethylene) 

  (mg/gpolyethylene) Cu  Pb  Zn  Cd  

R1 
Top 2.7  0.8  0.4  0.2  0.5  0.3  

Bottom 6.8 1.4 0.4  0.2 0.5 0.3  

R2 
Top 4.8 0.8  0.6  0.3  0.8  0.7  

Bottom 35.6  4.6 1.5 0.8  1.8  1.4  

 1 
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Figure 2.4 Sulfide production in the absence (Exp A) and in the presence (Exp B) of 

metals in the batch experiments with the carrier material withdrawn from R1 (Vertical 

bars show ± standard deviation of three replicates).  

 

2.3.2.2 Metal precipitation with active biofilm 

Figure 2.5 compares metal precipitation when sulfide is formed by the sulfate reducing 

biofilm during the batch experiment (Exp B) and when sulfide is already produced by 

the sulfate reducing biofilm at the start of the experiment (Exp C). In Exp B, the metal 

concentration decreased within the first hour, even when sulfide was not yet 

accumulating in the medium. After 24 hours, the sulfide concentration was 30.9 mg/L, 

at this sulfide concentration Pb could not be detected in the liquid phase anymore 

(Figure 2.5). The sulfide concentration continued increasing with time, whereas the 

metal concentration reached steady state after 32 hours. Metals remained in the liquid 

phase at 1 mg/L for Cu and 0.3 mg/L for Cd and Zn.  

In Exp C, almost all the Cu, Cd and Pb precipitated within the first hour, while 6.7 mg/L 

of the Zn remained in the liquid phase. After 24 hours, Cd and Pb were not found in the 

liquid phase anymore, while 1.2 mg/L of Zn and 2.1 mg/L of Cu remained in the liquid 

phase with slight variations during the subsequent 48 hours. After 52 hours, Cu and Zn 

had further decreased and only 0.9 mg/L Zn remained in the liquid phase.  
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Figure 2.5 Evolution of the metal concentration in time when sulfide is formed by the 

biofilm (Exp B) or when sulfide (152 mg/L) is present in the liquid phase from t=0 

onwards (Exp C) in the liquid phase (top) and in the biofilm (bottom) (average of 

duplicate samples). 

 

2.4 Discussion 

 

This paper shows that the sulfide concentration in the reactor mixed liquor controls the 

location of the metal precipitates in an IFB reactor. Moreover, the results suggest that 

the recovery of the metal precipitates at the bottom of the IFB reactors is independent of 

the sulfide concentration, and hence, other mechanisms determine the settling properties 

of the sulfide precipitates, e.g. agglomeration. To the best of our knowledge, the present 
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study is the first to report the location of metal sulfide precipitation as a function of the 

sulfide concentration in an IFB reactor treating a multimetal wastewater. 

 

2.4.1 Location of metal sulfide precipitation 

Table 2.4 shows that the metals are partly immobilized in the biofilm. Bijmans et al. 

(2009b) suggested that biofilms might function as nucleation seeds, enhancing the 

crystal growth for metal sulfides. Other authors have induced the precipitation of heavy 

metals on the sand surface in fluidized bed reactors (FBR's) using sulfide or carbonate 

(Zhou et al. 1999; Guillard and Lewis 2001; van Hille et al. 2005). Zhou et al. (1999) 

observed that when the ratio of carbonate to metals (Cu, Ni and Zn) was low, metal 

precipitation was coated on the sand surface, while at high ratios (6:1 and 3:1) the 

precipitation occurred in the bulk solution. These findings are in agreement with this 

study: in R2 the sulfide concentration in the bulk liquid was much lower than in R1. 

Therefore, supersaturation, and thus precipitation of metal sulfides, mainly occurred 

within the biofilm in R2, where the sulfide is produced. In R1, in contrast, a larger 

fraction of the supersaturation, and thus precipitation, occurred in the bulk liquid, due to 

the much higher sulfide concentration in the reactor mixed liquor, resulting in a lower 

metal content in the biofilm (Table 2.4 and Figure 2.6).  

 

 
Figure 2.6 Location of the metal sulfide (MeS) precipitate formation, depending on the 

sulfide concentration: MeS precipitation outside the biofilm at high sulfide 

concentrations as in R1 and MeS precipitation in the biofilm at low sulfide 

concentrations as in R2. 

 

Metals might also be immobilized in biofilms due to sorption onto the microorganisms 

and/or on their extracellular polymeric substances (EPS) (Beech and Cheung 1995; 
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White and Gadd 2000; Chen et al. 2000). However, this mechanism was apparently not 

the case in this study as the sulfide concentration was always maintained above the 

stoichoimetric value to precipitate the four metals as metal sulfides in both reactors. In 

addition, the metal sulfide formation rate is extremely fast compared to the adsorption 

mechanisms reported in the literature (Peters et al. 1984; Wang et al. 2001). Wang et al. 

(2001) showed that CdS was formed at the cell surface because the cadmium sulfide 

formation rate is extremely fast (KCdS= 3.7 × 105 s-1) compared to the slow rate of 

sulfide transport (Kdiff= 1000 s-1) on the bacterial cell surface. 

 

2.4.2 Metal recovery 

In both reactors, the metal removal and recovery did not vary with the sulfide 

concentration or the different operational conditions. Metal removal efficiencies were 

on average 95% for the four metals tested (Table 2.3), while metal recovery from the 

bottom of the reactor and equalizer was less than 50% in both reactors (Table 2.3). In 

previous studies, similar metal removal efficiencies have been achieved in biological 

reactors treating wastewaters with more than two metals in a single unit (Gallegos-

Garcia et al. 2009; Kaksonen et al. 2003; Kaksonen et al. 2004; Sierra-Alvarez et al. 

2006; Steed et al. 2000; La et al. 2003; Foucher et al. 2001), although, the recovery of 

metals is often not reported. Gallegos-Garcia et al. (2009) reported 76-97% recovery of 

Fe, Zn, and Cd in an IFB at initial metal concentrations between 5 and 320 mg/L and 

sulfide concentrations over 140 mg/L. These results differ considerably from this study. 

The difference could be related to the treatment of the samples. Gallegos-Garcia et al. 

(2009) as well as other authors (Kaksonen et al. 2003) have reported the metal recovery 

assuming that the TSS concentrations equal the metal sulfide composition. However, in 

this study it was shown that the TSS also contained salts from the mineral medium that 

contribute to the weight (observed in the results of the biofilm composition, Table 2.4). 

Therefore, this study reports the recovery of the metals based on the direct measurement 

of metals after acidification of the recovered solids (Table 2.3).  

 

2.4.2.1 Formation of fines 

The difference between the metal removal and recovery efficiency (Table 2.3) can be 

party explained by the accumulation of metals in the biofilm (Table 2.4), but also by the 

formation of small precipitates (<0.45 µm), known as fines, which do not settle at the 
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bottom of the reactor and leave the IFB reactor with the effluent. These fines did not 

contribute to the metal concentrations in the effluent, as samples were filtered through a 

0.45 µm filter prior to analyses.  

The formation of fines is attributed to high levels of supersaturation (Guillard and Lewis 

2001) and high nucleation rates (Veeken et al. 2003) of the metal sulfides. This was 

observed in the batch experiments (Figure 2.5): when the sulfide was slowly produced 

(Exp B), the precipitation rate could be quantified, whereas when sulfide was already 

present (Exp C), metal precipitation occurs too fast to monitor the metal precipitation 

kinetics of Cu, Pb and Cd.  Note that the ZnS precipitation is slower due to the higher 

solubility product compared with the solubility products of the other three metals tested 

(Sampaio et al. 2009). 

 

2.4.2.2 Effect of agglomeration  

The metal recovery gradually increased in both reactors during reactor operation (Table 

2.3), despite the differences in operational conditions including sulfide and acetate 

production (Table 2.2). Both parameters influence the size of the particles, which affects 

the settling properties of the metal precipitates for recovery. However, this contribution 

is of lesser importance since the size range of the particles is still very small to allow 

fast settling (Lewis 2010). 

Fines in the reactor can form agglomerates, that later settle and dewater better.  

Precipitation occurs through several steps: nucleation, crystal growth, and eventually 

agglomeration (Al-Tarazi et al. 2004). Large particles can be produced if the 

supersaturation is optimum to promote crystal growth, and the residence time of the 

crystals is long enough to promote agglomeration (Mersmann 1999). In the precipitation 

process of metal sulfides, which have an extremely low solubility (Sampaio et al. 2009), 

the formation of fines is predominant over crystal formation. Therefore, agglomeration 

is an important mechanism for the settling of the precipitates. Biological processes can 

contribute to the agglomeration mechanism. It has been shown that the presence of 

extracellular proteins promotes the aggregation of metal sulfide nanoparticles (Moreau 

et al. 2007). Further research using Scanning Electron Microscope and Transmission 

Electron Microscope (TEM) coupled to X-ray diffraction (XRD) and dewatering tests 

are required to relate the morphology of the produced solids in the IFB reactor with 

substances present in sulfate reducing bioreactors, for example, extracellular proteins or 

nutrients added for bacterial growth. 
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2.4.2.3 Reactor operation 

A period of approximately 40 days was necessary to form a sulfate reducing biofilm on 

the polyethylene beads in an IFB reactor using lactate as electron donor, independent of 

the COD/SO4
2- ratio. A similar time was necessary in the study of Celis et al. (2009), 

who used a lactate:ethanol  mixture, a COD/SO4
2- ratio of 0.6 and operated in batch 

mode for 45 days. 

In R1, the production of acetate by incomplete oxidizers was probably more favorable 

than in R2 due to the excess of COD (Oyekola et al. 2009). This acetate also explains 

why the pH level did not increase in R1 (Table 2.2), since the incomplete oxidation of 

lactate generates protons (Kaksonen et al. 2003). Contrary to R1, in R2, acetate was not 

detected during the reactor operation and the pH increased in the effluent by H2S and 

CO2 production (Table 2.2). This suggests that different microbial populations 

developed in both reactors.  

The comparison of Exp A and Exp B in the batch experiments (Figure 2.5) confirmed 

that the metal concentration itself was not directly inhibitory to the biofilm. The 

inhibitory concentrations to SRB reported for Cu, Zn, Pb and Cd are in the range of  6-

100, 13–65, 25->80 and >4–112 mg/L, respectively (Kaksonen and Puhakka 2007). The 

inhibitory effects of metals, however, depend on the experimental conditions (Hao et al. 

1994), e.g. time exposure, which differed in batch experiments and continuous reactor 

operation.  

 

2.5 Conclusion 

 

Several studies with sulfate reducing bioreactors to treat metal containing streams have 

mainly concentrated on maximizing the sulfate reduction rate. In the present study, it 

was shown that the sulfide concentration is important, not only to precipitate metals but 

also to steer the location where the precipitates are formed.  Moreover, a sulfide 

concentration in excess is not desirable since it causes residual pollution problems in the 

effluents, and may impose a sulfide removal post-treatment step. 
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Abstract 

Metal sulfide recovery in bioreactors highly depends on their purity and settling 

properties. In this study, the influence of macronutrients and biofilm on the Cu, Pb, Cd 

and Zn depletion kinetics and characteristics was evaluated in batch experiments with 

sulfide at different concentrations. The kinetic values from the plots of the metals 

followed the solubility product order of the metal sulfides. They also showed that at low 

sulfide concentrations, the metals with slower depletion rates are susceptible to other 

removal mechanisms as well, i.e. biosorption onto the biofilm and precipitation with the 

macronutrients. X-ray absorption spectroscopy showed that the main mechanism of Zn 

removal is its sorption onto apatite (Ca5(PO4) 3
+ (OH-), a compound formed due to the 

addition of macronutrients. The size of the precipitates was similar in all experiments 

regardless the sulfide concentration (8.1-10.0 µm).   
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3.1 Introduction 

 

Metal recovery and reuse from industrial wastewaters is beneficial for both economic 

and environmental reasons. Sulfide precipitation (Equation 1) offer several advantages 

over other precipitation mechanisms such as high degree of metal removal over a broad 

pH range and better thickening and dewatering characteristics (Fu and Wang 2011). 

 

H2S + M2+ à MS(s) + 2 H+             (1)  

where M2+ = metal, such as Zn2+, Cu2+, Pb2+ and Ni2+ 

 

Furthermore, sulfide gives the possibility for selective precipitation of metals due to 

differences in solubility products of the different metal sulfides (Sampaio et al. 2009). 

Typical sulfide sources used to precipitate metals are Na2S, NaHS and H2S (Peters et al. 

1984). Biogenic sulfide produced by sulfate reducing bacteria (SRB) is also an option 

for metal precipitation from wastewater, especially when besides metals, also sulfate is 

a major wastewater constituent (Equation 2), e.g. in wastewaters from metal refineries 

and acid mine drainage. The biological sulfate reducing process requires the supply of 

an electron donor and carbon source as well as essential nutrients to maintain microbial 

activity:  

 

2 CH2O + SO4
2- à H2S + 2 HCO3

-                        (2) 

where CH2O = electron donor 

 

Reactor configurations studied for sulfate reduction and metal removal in a single unit 

are UASB reactors, UAPBR reactors, fixed-bed reactor, FBRs, and the inversed 

fluidized bed (IFB) reactor (for reviews see (Kaksonen and Puhakka 2007). The later is 

based on a floatable carrier material fluidized downwards on which the sulfate reducing 

bacteria biofilm is formed, whereas metal sulfide precipitates can be recovered at the 

bottom of the reactor (Villa-Gomez et al. 2011; Gallegos-Garcia et al. 2009).  

Metal sulfide precipitation and recovery not only depends on the reactor configuration 

but also on the settling properties of the metal precipitates as well as the influence of 

other metal removal mechanisms involved. With respect to the settling properties, the 

separation of sulfide precipitates has proven difficult due to the formation of small, 

poorly settling particles, or even sulfide clusters at high supersaturation conditions 



Chapter 3 
 

60 
 

(Lewis and Swartbooi 2006), for example inside the sulfate reducing biofilm (Villa-

Gomez et al. 2011). Furthermore, substances commonly present in the bioreactor mixed 

liquor affect the size and structure of the metal precipitates (Esposito et al. 2006; 

Sampaio et al. 2009; Bijmans et al. 2009). This affects the relative rates of nucleation 

and crystal growth and thus determines the particle size distribution (PSD). Esposito et 

al. (2006) found that the use of biogenic sulfide instead of Na2S as sulfide source for 

ZnS precipitation decreased the efficiency of the precipitation process both in terms of 

zinc effluent concentration and particle size of the precipitates. 

With respect to the metal removal mechanisms involved in bioreactors, sorption onto 

the biofilm and carrier material (Neculita et al. 2007), complexation and precipitation 

with other compounds typically present in the effluent of a sulfate reducing bioreactor 

(phosphate, micro-nutrients, acetate and EDTA) control the fate of the metals in the 

system (Samaranayake et al. 2002; Esposito et al. 2006). These compete with the metal 

sulfide precipitation process, thus jeopardizing the success of the metal recovery. 

This paper explores the influence of sulfide concentration on the settling properties of 

the metal precipitates as well as the contribution of other mechanisms to metal removal 

in bioreactors. To achieve this, batch experiments following metal depletion kinetics 

were done with a biofilm coated on polyethylene beads (obtained from an IFB reactor), 

synthetic wastewater containing sulfide added at different concentrations, 

macronutrients and heavy metals (Zn, Cu, Cd and Pb). The metals speciation and 

removal efficiencies were compared with the predictions of the speciation program 

Visual MINTEQ. X-ray diffraction (XRD) and particle size distribution (PSD) analysis 

were used to characterize the precipitates. In addition, X-ray absorption spectroscopy 

(XAS) analysis was applied to study specifically the molecular structure of Zn. These 

results can potentially provide a baseline for the application of inversed fluidized bed 

(IFB) reactors for metal recovery.   

 

3.2 Materials and methods 

 

3.2.1 Biomass origin 

Polyethylene beads (3 mm diameter) covered with a sulfate reducing bacteria (SRB) 

biofilm were collected at the end of an IFB reactor operation run as described by Villa-

Gómez (2011). The initial biomass content in the biofilm amounted to 3.07 mg volatile 

suspended solids (VSS) per gram of dry polyethylene (VSS/gpolyethylene). The initial 
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metal concentration in the biofilm was 0.32 mg Cu/gpolyethylene, 0.52 mg Zn/gpolyethylene, 

0.08 mg Pb/gpolyethylene and 0.40 mg Cd/gpolyethylene.  

 

3.2.2 Synthetic wastewater 

The synthetic wastewater used for this study was the same to the one used in the 

operation of two IFB reactors by Villa-Gomez et al. (2011) and adjusted to pH 7 as 

optimal biological sulfate reducing conditions. It consisted of 10 mg L-1 Zn, Cu, Pb and 

Cd each as metal chlorides and macronutrients (mM): 3.74 NH4Cl, 17.00 CaCl2 *2H2O, 

3.67 KH2PO4, 10.14 MgSO4·7H2O, 0.17 FeSO4·7H2O, 0.16 CuCl2·2H2O, 0.15 Zn Cl2, 

0.05 PbCl2, 0.09 CdCl2·2.5H2O. All reagents were of analytical grade.  

 

3.2.3 Precipitation experiments 

The precipitation experiments were performed at room temperature (23 ±2 °C) in serum 

bottles of 117 mL containing 112 mL synthetic wastewater and 5 mL of biofilm coated 

on polyethylene beads or bare polyethylene beads or synthetic wastewater only. Three 

sets of experiments were tested at different sulfide concentrations (mM: 0, 0.62, 1.25, 

2.49) as Na2S and hence, different metal to sulfide molar ratios (1:0, 1:1, 1:2, 1:4). 

These sulfide concentrations were chosen to simulate bioreactors operating above and 

below the stoichiometric amounts required for metal sulfide precipitation. The synthetic 

wastewater contained iron (as macronutrient), which easily precipitates with sulfide, 

and hence, it was also considered in the calculations of the metal to sulfide molar ratio 

([∑M2+]: The sum of Zn, Cu, Pb, Cd and Fe molar concentrations). The first 

precipitation experiment was done with biofilm coated on polyethylene beads (B1, B2, 

B3, B4), the second with bare polyethylene beads (P1, P2, P3 and P4) and the third with 

synthetic wastewater only (S1, S2, S3, S4). The serum bottles were stirred at 100 rpm 

during the whole experiment. Duplicate experiments were conducted in a non-parallel 

manner and the average of the duplicates is shown in the data. 

Metal depletion was followed by taking samples of the liquid phase every half hour 

during the first 3 hours and then every hour and a half over a 9 hours period (from 0.3 

mL at time zero to 1 mL at the end). This reaction time was chosen based on 

preliminary screening experiments (data not shown) that showed that the equilibrium 

was reached during this time period.  Sulfide concentration was verified at time zero by 

taking sample of the liquid phase (0.05 mL). 
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3.2.4 Analytical methods 

Metal measurements were done by flame spectroscopy (AAS Perkin Elmer 3110) and 

furnace spectroscopy (AAS Solaar MQZe GF95) after dilution, acidification with HNO3 

and filtration of the samples with a 0.45µm filter. Dissolved sulfide was determined 

spectrophotometrically by the colorimetric method described by Cord-Ruwisch (1985) 

using a Perkin Elmer Lambda20 spectrophotometer.  

The precipitates of the experiments S1, S2 S3 and S4 were collected and centrifuged for 

further XRD and XAS analysis. XRD analyses were performed on a Bruker D8 

Advance diffractometer equipped with an energy dispersion Sol-X detector with copper 

radiation (CuKα, λ = 0.15406 nm). The acquisition was recorded between 2° and 80°, 

with a 0.02° scan step and 1 s, step time. Samples were previously dried and crushed 

prior to XRD analysis. The sample was disposed on a Si low background sampler.   

X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine 

structure (EXAFS) were performed on the DUBBLE beam line BM26A of the 

European Synchrotron Radiation Facility (Grenoble, France) (Borsboom et al. 1998). 

Zn-K-edge EXAFS spectroscopy was applied to characterize the Zn-binding sites in the 

precipitates of the batch experiments. Spectra were also collected from multiple 

reference compounds, including ZnS, Zn sorbed on apatite and Zn3(PO4)2*4H2O 

(parahopeite and hopeite). Zn sorbed on apatite and Zn3(PO4)2*4H2O (hopeite) were 

prepared  according to Lee et al. (2005) and Pawling et al. (1999), respectively. The X-

ray energy was varied from 200 eV below to 750 eV above the absorption K-edge of Zn 

(9659 eV). The incident intensity and transmitted intensity was measured by 

appropriately positioned ionization chambers. The fluorescence signal was measured 

with a 9 element monolithic Ge detector. During data collection, samples were 

maintained at a temperature of approximately 80 K using a liquid helium-flow cryostat. 

EXAFS spectra were processed using the X-ray absorption fine structure software 

package (Winterer 1997) using standard procedures (Farges et al. 2001). 

Precipitates from the batch experiments S2, S3 and S4 were collected and analyzed in a 

particle size analyzer (Microtrac 53500) for particle size distribution (PSD) 

measurements after 24 hours of the termination of the experiments. Samples were also 

analyzed after sonication for 20 seconds at an ultrasound power of 30 KHz to 

differentiate the crystals from the agglomerates. The sonication was repeated until the 

agglomerates were completely dispersed and the values of the size distribution of the 

particles did not change. The mean particle size (D50) of each sample before and after 
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sonication was calculated after determining the minimum and maximum sizes 

contributing to the highest peak. 

 

3.2.5 Data analysis 

 

3.2.5.1 Determination of kinetic parameters 

The kinetic parameters were determined by monitoring the depletion of the metal 

concentration through time. The rate constants for the precipitation of the metals studied 

were determined using first order equations. The kinetic modeling of the metal 

precipitation has been carried out using the elementary rate equation on its graphical 

solution (Brezonik 1994): 

 

[ ] [ ]
303.2

loglog 0
ktMM !=                                                                                               (3) 

 

Where M is the metal concentration at time “t”, M0 is the initial metal concentration and 

k is the metal depletion rate constant. A plot of log [M] vs. t yields a straight line for 

reactions following first-order kinetics. The y-intercept is log [M0] and k is obtained 

from the slope, k= -2.3(slope). 

 

3.2.5.2 Chemical equilibrium model calculations 

Visual MINTEQ version 3.0 (US EPA, 1999, 

http://www.lwr.kth.se/English/OurSoftware/vminteq/index.html) was used to calculate 

speciation, solubility, and equilibrium of solid and dissolved phases for different 

experimental conditions to compare the predictions of the model with the obtained 

experimental data. Modeled data are termed MB1, MS1, MS2, MS3 and MS4 to 

differentiate from experimental data. In the model, 2 mgL-1 of sulfide was introduced to 

the input data of MB1 (no sulfide added), since endogenous sulfide production was 

observed by the SRB biofilm in the batch experiments, even without any external 

substrate addition (data not shown). 

Reactions for aqueous complexes and solid phases, including equilibrium constants, 

were taken from the Visual MINTEQ 3.0 thermodynamic database. During the model 

setup, the Davies approximation (Stumm and Morgan 1996) for activity correction was 

selected, oversaturated solutes were allowed to precipitate and the pH was fixed to 7.0. 
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Further, the program was set to output the ionic strength of the solution, the mineral 

identity and the amount of precipitates formed at the end of the reaction.  

 

3.3. Results 

 

3.3.1 Precipitation experiments 

The reaction of metal and sulfide in the batch experiments was almost instantaneous in 

all experiments, resulting in the formation of a brownish solution with different color 

intensities, the highest intensity was observed at the maximum sulfide concentration 

added. No differences (<5%) in the metal removal rates were observed between the 

experiments with bare polyethylene P1, P2, P3 and P4 or with synthetic wastewater 

only (S1, S2, S3 and S4) (data not shown). This shows that the polyethylene itself did 

not induce the sorption or precipitation.  

 

3.3.1.2 Metal depletion kinetics 

Figure 3.1 shows the metal depletion rates at different sulfide concentrations for the 

experiments with synthetic wastewater (S1, S2, S3, S4) and biofilm (B1, B2, B3, B4). 

Metals precipitated and reached equilibrium concentrations within 3 hours in the 

following order: Cu> Pb> Cd> Zn (Figure 3.1). Moreover, an increase in the sulfide 

concentration clearly resulted in a more rapid Zn and Cd depletion, this behavior was 

less for Pb and Cu. Cu is mainly removed within the first half hour after sulfide dosing, 

especially for the experiments S3 and S4 (Figure 3.1o and 3.1p) and the depletion rate 

could not be calculated. 

Zn and Cd depletion was different in batch experiments without sulfide addition (Figure 

3.1a and 3.1e). In S1, 3.1 mg L-1 of Zn remained in the liquid phase, while only 0.1 mg 

L-1 remained in B1. For Cd, 3.3 mg L-1 remained in the S1 liquid phase after 9 hours 

while only 0.9 mg L-1 remained in the liquid phase for B1. The batch experiments where 

sulfide was added show no significant differences in metal depletion rate (except for 

figure 3.1f), suggesting that the biofilm did not influence metal removal in the presence 

of sulfide. Therefore, only S2, S3 and S4 will be considered for the remainder of this 

manuscript. 
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Figure 3.1 Evolution of the metal concentration in the batch experiments with synthetic 

wastewater (■) and biofilm on polyethylene (▲) for Zn (a-d), Cd (e-h), Pb (i-l) and Cu 

(m-p). Average from duplicate data. 

 

3. 3.1.3 Kinetic parameters 

Figure 3.2 shows the plots for Pb, Zn and Cd depletion (logarithmic scale) vs. time for 

the experiments S2, S3 and S4. The precipitation of Cu was too fast (Figure 3.1m-p) 

and the kinetic model described by equation 1 could not be applied to these data. Pb 

depletion shows a similar rate for the three experiments (Figure 3.2a), while for Cd 

depletion, the rate was slightly faster in experiment B4 (Figure 3.2b). The Zn depletion 

rate occurred in two phases: first, a characteristic linear, rapid fall during the initial 3 

hours, followed by a slower removal in a second phase (Figure 3.2c).  

Figure 3.2 also shows the kinetic constants for the Cd and Zn precipitation rates for the 

experiments S2, S3 and S4 obtained with equation 3. The kinetic constants for Pb show 

no significant differences for S2 and S3, reflected in Figure 3.2a, while for S4, KPb 

decreased to 0.300 h-1. An increase of the KCd from 0.979 h-1 in S2 to 1.143 h in S4 was 

observed, while for S3, KCd was only 0.841 h-1. However, experiment S3 has a 
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relatively significant deviation (r2= 0.698) compared to the other kinetic constants. This 

could possibly be due to a combination of several errors such as lab work or analytical 

error. The KZn's were obtained for the first phase between the limits A0, t0 to A3, t3 (3 

hours). KZn values show a proportional increase with the increase in sulfide 

concentration. 

 
Figure 3.2 Log [A] vs. time of a) Pb, b) Cd and c) Zn concentration for experiments S2, 

S3 and S4. 
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3.3.2 Equilibrium analysis 

 

3.3.2.1 Speciation modeling results at the equilibrium 

Table 3.1 compares the modeled reactions (M) with experimental results from the batch 

experiments B1, S1, S2, S3 and S4. According to speciation calculations with Visual 

MINTEQ, metal sulfide precipitation is mainly responsible for metal depletion in batch 

experiments with added sulfide. Visual MINTEQ predicted at equilibrium, the 

formation of chalcopyrite (CuFeS2), galena (PbS), greenockite (CdS) and spharelite 

(ZnS) for the experiments with added sulfide. In addition, the model also predicted 

precipitation of the phosphate supplied as macronutrient in the synthetic wastewater, 

mainly as hydroxylapatite Ca5(PO4)3(OH) (> 99.26%). 

However, when sulfide is not present, the metals are removed by the biofilm (B1, Table 

3.1) and by the mineral medium components (MS1, Table 3.1). Cu and Pb modeled 

results agree with those found in the batch experiments S1 and B1 (Figure 3.1, Table 

3.1). When sulfide was not added externally, Cu was found to be removed as CuOH 

with (MB1) and without biofilm (MS1) present and partly as CuS (40%) due to the 

endogenously produced sulfide (explained in 2.5.2) in the presence of biofilm (B1), 

while Pb was removed as chloropyromorphite Pb5(PO4)3(Cl) in both cases. In contrast, 

Zn and Cd results differ from the modeled results when sulfide was not added 

externally. In the presence of the biofilm, Zn and Cd are completely removed, while in 

the absence of externally supplied sulfide 69.2 and 67.5% of Zn and Cd, respectively, 

was removed from the liquid phase (S1, Table 3.1).  

 

3.3.2.2 Solid phase characterization 

 

3.3.2.2.1 XRD of the precipitates 

The XRD diagrams of the precipitates are shown in Figure 3.3. Due to the poor 

crystallinity of the precipitates, not all the species could be identified. The identified 

species were brushite (CaHPO4·2H2O) and pyromorphite (Pb5(PO4)3Cl) for S1, while 

for S2, S3 and S4 only hydroxylapatite (Ca10(PO4)6OH) and galena (PbS) were 

observed. These species were identified also in the Visual MINTEQ program, including 

the precipitation of the phosphate as apatite in the form of hydroxylapatite (> 99.26%), 

while brushite was not predicted by the Visual MINTEQ program.  
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Table 3.1 Comparison of modeled reactions (M) versus experimental results from the 

batch experiments B1, S1, S2, S3 and S4. 

 

 
ND: Not determined 

 

3.3.2.2.2 Zn K-edge XAS analysis 

From the four metals tested, Zn has the highest solubility product and hence, it was 

more likely to be removed by other removal mechanisms as shown in the kinetic 

experiments. Therefore, XAS was used to examine the Zn speciation in the experiments. 

The spectra of the four experiments could fit with only 3 model compounds: ZnS, Zn 

sorbed on apatite and Zn3(PO4)2*4H2O. Other reference compounds spectra such as 

Zn(OH)2 were rejected in the fits of the experimental spectra. Figure 3.4 shows Zn K-

edge XANES spectra of the precipitates S1, S2, S3 and S4 as well as the references 

compounds: ZnS and Zn sorbed on apatite. The spectra for the experiments with the 

highest sulfide concentrations (S3 and S4) displays high similiraties with the ZnS 

XANES spectra implying that Zn is mainly removed through the formation of zinc 
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sulfide precipitate. In contrast, for the experiments with the lowest sulfide 

concentrations display different features compared to the ZnS XANES spectra. The 

comparison with the Zn sorbed apatite spectra shows that such phenomena are likely 

involved in Zn removal at low sulfide concentrations. Figure 3.5 shows the Zn K-edge 

EXAFS spectra and fourier transforms of the precipitates S1, S2, S3 and S4 as well as 

the references compounds: ZnS, Zn3(PO4)2*4H2O (parahopeite and hopeite) and Zn 

sorbed on apatite. The spectra for the experiments with the highest sulfide 

concentrations (S3 and S4) mainly have a similar frequency as the ZnS, showing that 

the synthetic wastewater does have little influence on the zinc precipitation (Figure 

3.5a). On the other hand, the spectra of the lowest sulfide concentrations (S1 and S2) 

were more in phase with the oscilations of Zn sorbed on apatite and parahopeite 

(Zn3(PO4)2*4H2O having and triclinic mineral structure) (Figure 3.5a), showing that 

sorption and precipitation with phosphate may contributed to the Zn depletion kinetics 

(Figure 3.2c). 

 

 
Figure 3.3 X-ray diffraction diagram of the precipitates from the batch experiments S1, 

S2, S3 and S4. 
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The Fourier transforms clearly show that at metal to sulfide ratios below 1, the nearest 

neighboring atom of the bound zinc ion is the oxygen atom, this in turn may be bound 

to phosphate: the two Zn-phosphate reference compounds and samples S1 and S2 have 

the major peak at near 1.5 Å (without phase shift correction), while the major peak for 

ZnS as well as samples S3 and S4 is at near 2 Å (without phase shift correction) (Figure 

3.5b).  

 
Figure 3.4 Comparison of the XANES spectra for the batch experiments S1, S2, S3, S4, 

and the reference compounds ZnS, Zn3(PO4)2*4H2O and Zn sorbed on apatite. 

 

 
Figure 3.5 Comparison of the EXAFS spectra for the batch experiments S1, S2, S3, S4, 

and the reference compounds ZnS, Zn3(PO4)2*4H2O (parahopeite), Zn3(PO4)2*4H2O 

(hopeite) and Zn sorbed on apatite. a) Zn K edge k3-weighted χ (k) curves and b) 

Fourier transform EXAFS corresponding radial structure functions (not corrected for 

phase shifts). 
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3.3.2.2.3 PSD of the precipitates 

Figure 3.6 shows the effect of the sulfide concentration on the average particle size of 

the produced solids. The PSD's determined before sonication and hence, considering the 

agglomeration of the particles, were reasonably close in the region, but differed in 

decreasing order of diffraction volume. The same behavior was found after sonication, 

but the range of the region was different (0 - 70 µm). The volume fraction of the particle 

size was greatly reduced after sonication and the fractions of some large particles were 

also decreased. The D50 for the particles before sonication (considering agglomeration) 

was in the range of 14.8-15.2 µm, and decreased to 8.1-10.0 µm after sonication. The 

D50 value obtained for the particles after sonication shows a slight decrease with the 

increment of the sulfide concentration. 

 

3.4 Discussion 

 

3.4.1 Metal depletion kinetic parameters 

This study shows that the metal depletion kinetics and removal mechanisms highly 

depend on the sulfide concentration (Figure 3.1, 3.4 and 3.5 and Table 3.1), while the 

growth and settling of the precipitates for potential recovery is more associated with an 

agglomeration phenomenon (Figure 3.6). The depletion rate of the metals when sulfide 

was added followed the same precipitation order according to the solubility product of 

metal sulfides (Sampaio et al. 2009). The sequential precipitation in multimetal systems 

has been described previously by the manipulation of the sulfide concentration and pH 

(Sahinkaya et al. 2009; Sampaio et al. 2009; Veeken et al. 2003). Sampaio et al. (2009) 

achieved the selective recovery of Cu over Zn due to the difference in solubility product 

of CuS and ZnS. However, these studies do not acknowledge that the extremely small 

particle sizes produced by the metal sulfide precipitation processes do not lead 

themselves to solid liquid separation (Lewis 2010). Metal precipitation, as a chemical 

reaction, can occur in seconds forming colloids at nanometer scale. However, particle 

growth and hence, the observed metal depletion occurs at a slower rate (Peters et al. 

1984; Luther and Rickard 2005). This differentiates the metal precipitation from metal 

depletion rates due to settling for real potential recovery. In the present study, the 

second argument was studied, and hence, a sequential metal depletion could be 

observed (Figure 3.1). The potentiality for metal recovery has already been 

demonstrated by Mishra and Das (1992). They observed that the precipitation kinetics 



Chapter 3 
 

72 
 

for cobalt sulfide show an induction period of a few minutes during which ZnS is 

precipitated. Based on this, a two stages precipitation was used obtaining 90% of Zn 

separated from cobalt.  

 

 
Figure 3.6 Particle size distribution of the precipitates in the batch experiments a) S2, b) 

S3 and c) S4 before ○ and after sonication □. 

 

The different K values from the plots of Pb, Cd and Zn depletion for the different 

sulfide concentrations support the first-order kinetic model (Figure 3.2). Several authors 
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have found that the kinetics of the metal sulfide reactions is well described by a first 

order equation (Bryson and Bijsterveld 1991; Mishra and Das 1992; Lewis and 

Swartbooi 2006). For the metals Mn, Ni, Co and Zn, they showed a better data fit with a 

standard deviation close to 1, in contrast with this study (Figure 3.2). One reason is the 

presence of macronutrients that interfere in the metal sulfide precipitation process and 

causes competing precipitation reactions (Brezonik 1994). Another reason is the 

difference in solubility product of the metals of study. Mn, Ni, Co and Zn have the 

highest solubility product over the range of metals and hence, slower reaction rates that 

can be better described. In this study, Zn and Cd had a better fit (Figure 3.1a-h) 

compared to Pb. The latter has a lower solubility product and thus, faster precipitation 

kinetics (Figure 3.1i-p), whereas Cu could not be described at the sampling time interval 

chosen in this study. CuS precipitation has been reported to occur instantaneously 

(Sampaio et al. 2009; Sahinkaya et al. 2009; Lewis and van Hille 2006; van Hille et al. 

2005). Sahinkaya et al. (2009) observed that the Cu sulfide precipitation occurred 

within 30-50 min. in batch experiments with biogenic sulfide at metal to sulfide ratios 

of 1.4:1, 0.74:1 and 0.47:1 (229-342 mg L-1 of sulfide and 50-100 mg L-1 of Cu).  

 

3.4.2 Metal removal in the absence of sulfide 

This study also shows that metal sulfide precipitation can only be achieved when the 

sulfide concentration is maintained above stoichiometry and hence, metal sulfide 

precipitation is favoured. The differences between the experiments with and without 

biofilm when sulfide was not externally added (Figure 3.1) clearly show that Zn and Cd 

are partly removed via the biofilm, either through an ion exchange mechanism on the 

surface of the biosorbent (biofilm) or surface precipitation of metal hydroxide/sulfide 

species (van Hullebusch et al. 2003). A comparison between batch growth tests 

(bioprecipitation) and dead biomass batch tests (biosorption) with SRB by Pagnanelli et 

al. (2010) showed that Cd was mainly removed by a biosorption mechanism (77%) due 

to metabolism-independent binding properties of the SRB cell wall surface. 

Nevertheless, this sorption becomes less strong with the gradual occupancy of the active 

sites. This was confirmed when the experiment was repeated using the same biofilm 

from previous experiments (data not shown): metal depletion rate gradually behaved 

similar to the experiments without biofilm. 

Another metal removal mechanism is the precipitation with components of the synthetic 

wastewater. The presence of hydroxides and phosphates, contained in the synthetic 
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wastewater, caused the precipitation of 40% of the Cu and 100% of the Pb at low 

sulfide concentrations according to Visual MINTEQ prediction (Table 3.1), the 

hydroxide precipitation of metals has been reported in passive sulfate reducing reactors 

operating at a pH around 7 during the first stages of operation, when sulfate reduction is 

not yet well established and hence, low sulfide production occurs (Samaranayake et al. 

2002; Neculita et al. 2008). With respect to phosphate precipitation, several studies have 

shown the potential of phosphates for the immobilization of divalent heavy metals like 

Zn, Pb, Cu, and Cd from wastewaters, solid wastes and contaminated soils (Geysen et 

al. 2004). However, this removal mechanism has not been taken into account in sulfate 

reducing reactors. Bartacek et al. (2008) showed that cobalt depletion might be due to 

phosphates and carbonates precipitation in a study on the influence of cobalt speciation 

on the toxicity of cobalt to methylotrophic methanogenesis in anaerobic granular 

sludge.  

 

3.4.2.1 Zn removal mechanism 

In this study, the analysis of the Zn coordination with EXAFS analysis confirmed that 

apatite and Zn phosphates precipitates (parahopeite) may contributed to the Zn removal 

not only when sulfide was not externally added, but also in the presence of low 

concentrations of sulfide. This removal mechanism was not observed on XRD analysis 

or the Visual MINTEQ program. XRD analysis is effectively used when the precipitates 

are crystallized such as metal sulfides in nature. However, metal sulfides prepared in the 

laboratory have shown to be poorly crystallized limiting its analysis with XRD or other 

techniques such as scanning electron microscopy (Neculita et al. 2007). On the other 

hand, equilibrium calculations done with the geochemical program cannot predict 

solution concentrations of ions in contact with solids formed in the system. Hence, a 

removal of Zn with another compound formed in the system such as apatite could not be 

predicted using Visual MINTEQ or observed with XRD. Chen et al. (1997) explained 

that the interaction of apatite with heavy metals may form relatively insoluble metal 

phosphates and/or result in the sorption of heavy metals on apatite, thus significantly 

reducing aqueous metal concentrations. A sorption mechanism of Ca2+ ion exchange 

with a divalent metal such as Zn2+ on apatite (Ca5(PO4)3
+ (Cl-, OH-, F-, Br-) has been 

described as responsible for the formation of the precipitates. Aklil et al. (2004) showed 

that hydroxyapatite functions as an adsorbent capable to remove several toxic metals in 
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batch experiments with calcinated phosphate. The absorption capacities they obtained at 

pH 5 were 85.6, 29.8 and 20.6 mg/g for Pb, Cu and Zn, respectively.  

 

3.4.3 Particle size: crystallization and agglomeration for potential metal recovery 

The recovery of metals in bioreactors highly depends on the size of the particles formed. 

Large particles can be produced if the supersaturation is optimum to promote crystal 

growth, and the residence time of the crystals is long enough to promote agglomeration 

(Mersmann 1999). In this study it was observed that the sulfide concentration, and 

hence, supersaturation, barely varied the size of the metal precipitates, while 

agglomeration was more relevant for the increase of the particles (Figure 3.6). These 

results agree with other authors that have described metal sulfide particle growth 

characteristics (Al-Tarazi et al. 2004; Esposito et al. 2006; Sampaio et al. 2009). They 

have observed that the degree of supersaturation does not necessarily control the rate of 

particle growth since, due to the fast reaction kinetics of metal sulfides, primary 

nucleation predominates instead of crystallization and hence, only small particles with 

poor settling properties are formed. Consequently, agglomeration has been shown to be 

the predominant mechanism to obtain bigger particles in the precipitation of metal 

sulfides.  

The use of bioreactors might be beneficial to promote agglomeration of metal sulfides 

due to the presence of substances that contribute to this mechanism. Peters et al. (1984) 

found that, for ZnS precipitated at pH 8, the complexing agents (ammonia, EDTA and 

18-Crown-6 ether) reduced the nucleation rate, but promoted the aggregation rate. 

However, agglomerates are often relatively fragile and hence, the hydrodynamics might 

play a crucial role on the shape of the agglomerates obtained. Sampaio et al. (2009) 

observed that the PSD of CuS particles increased if allowed to settle (from 36 to 180 

µm) and if the same sample was vigorously stirred, then the PSD decreased to below 3 

µm. This study reports the agglomeration of the precipitates upon termination of the 

experiment (Figure 3.6) and with substances commonly present in bioreactors (e.g. 

macronutrients). However, the agglomeration process needs to be study in bioreactors in 

order to determine the effect of the hydrodynamics of the system on the PSD of the 

metal precipitates. 
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3.5 Conclusions 

 

• Metal sulfide precipitation can only be achieved when the sulfide concentration is 

maintained above stoichoimetry and hence, metal sulfide precipitation is favoured.  

• Zn and Cd, which are the metals with the highest solubility product in this study, were 

removed by metal removal mechanisms other than metal sulfide precipitation. These 

include biosorption, precipitation with macronutrients as phosphate and sorption onto 

their precipitates, e.g. apatite. 

• EXAFS analysis of Zn coordination confirmed that apatite and Zn phosphate 

precipitates contributed to Zn removal. 

• Agglomeration is the most important mechanism for particle growth and settling of the 

metal precipitates. However, hydrodynamics affect the agglomeration process. This 

needs to be studied in more detail in continuously operated bioreactors. 
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Abstract 

The change in size of the metal (Cu, Zn, Pb and Cd) sulfide precipitates as a function of 

the hydraulic retention time (HRT) was studied in two sulfate reducing inversed 

fluidized bed (IFB) reactors operating at different chemical oxygen demand 

concentrations to produce high and low sulfide concentrations. The change in HRT 

from 24 to 9 h affected the size of the metal sulfide precipitates due to the change in 

contact time allowing aggregation and growth of the metal sulfides. The further HRT 

decrease to 4.5 h affected the sulfate reducing activity for sulfide production and hence, 

the supersaturation level.  Moreover, the sulfide concentration at an HRT of 4.5 h was 

below the metal to sulfide stroichiometric ratio, resulting in free metal toxicity and 

subsequent process failure as well as metal precipitation other than metal sulfides.   The 

lowering of the HRT decreased the size of the SRB population and their activity in the 

biofilm, while this effect was less strong in the biomass suspended in the reactor liquid. 
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4.1 Introduction 

 

Metal-containing wastewaters represent an environmental and human health problem, 

but also a potential resource of valuable metals when these can be recovered (Lens et al. 

2002). Several technologies have been applied to treat this type of wastewaters 

including chemical precipitation, ion exchange, adsorption, coagulation-flocculation 

and membrane filtration (Fu and Wang 2011). Not all these technologies are, suitable 

for metal recovery and may lead to high disposal expenses (Tabak et al. 2003; Esposito 

et al. 2006). Metal sulfide precipitation enables the recovery of metals from these 

wastewaters and thus improves the economic value of the metal removal process 

(Kaksonen et al. 2003).  

Biologically produced (biogenic) sulfide by sulfate reducing bacteria (SRB) has become 

an alternative for sulfide generation since these wastewaters in most cases also contain 

sulfate (Boonstra et al. 1999). Simultaneous biogenic sulfide production and metal 

sulfide precipitation in a bioreactor simplifies the process design, reduces investment 

costs, and avoids transport of toxic sulfide to a precipitator reactor (Bijmans et al. 

2009). In this context, the inverse fluidized-bed reactor (IFB) is an attractive 

configuration to allow recovery of metal sulfides at the bottom of the reactor, separated 

from the floating SRB biomass (Villa-Gomez et al. 2011a; Gallegos-Garcia et al. 2009).  

Metal recovery, however, can only be possible if the particle size of the metal sulfide 

precipitates is increased, allowing the particles to settle. The size of the precipitates 

depends on the kinetics of nucleation, crystal growth and agglomeration (Al-Tarazi et 

al. 2004). Large particles can be produced if the supersaturation is optimum to promote 

crystal growth, and the residence time of the crystals is long enough to promote 

agglomeration (Mersmann 1999). Several studies have correlated the size of the metal 

sulfide precipitates with the change in operational parameters such as pH, sulfide 

concentration (Sahinkaya et al. 2009; Sampaio et al. 2009; Veeken et al. 2003; Bijmans 

et al. 2009; Al-Tarazi et al. 2005b) and reactor configuration (Al-Tarazi et al. 2005a). 

These studies show that nucleation outcompetes the crystallization mechanism due to 

the low solubility of metal sulfides, which results in high levels of supersaturation. High 

supersaturation leads to the formation of small precipitates known as "fines" with poor 

settling properties (Lewis 2010).  Several authors have reported that the increase in 

particle size is mainly a consequence of aggregation or agglomeration (larger 
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aggregates) of these fines (Al-Tarazi et al. 2005a; Al-Tarazi et al. 2005b). Agglomerates 

are, however, relatively fragile and so, the hydrodynamics in the bioreactor might play a 

crucial role in the size of the obtained precipitates (Frédéric et al. 2009).  

The hydraulic retention time (HRT) is a hydrodynamic parameter that has, up to now, 

only been studied with a focus on sulfate reduction and metal removal efficiencies 

(Kaksonen et al. 2004; Kaksonen et al. 2006; Neculita et al. 2008), but its effect on 

metal precipitate characteristics such as particle size for settling has not yet been 

addressed. The variation of the HRT can also lead to process failure as a consequence of 

biomass washout or metal toxicity due to shock loadings. Information on the microbial 

community structure is thus useful to explain the changes in bioreactor performance and 

metal recovery upon variations in the HRT. Recently, several authors have indeed 

shown the potential of using quantitative information about the microbial population 

structure in diagnosing problems of anaerobic bioreactor operation (Bialek et al. 2011; 

Siggins et al. 2011).  The objective of this study was, therefore, to analyze the 

differences in the metal precipitation characteristics and the SRB activity and 

community upon changes in the HRT of sulfate reducing IFB reactors.  

 

4.2 Materials and methods 

 

4.2.1 IFB reactor set-up 

The experiments were conducted at 25 (± 3) °C in two IFB reactors with the same 

configuration as described by Villa-Gomez et al. (2011a). The IFB reactors consisted of 

a 2.5 L conical bottom column with 0.05 m diameter and 1 m height. The carrier-bed 

expansion was maintained at 30% of the working volume of the IFB reactor column. 

The reactors were inoculated with 200 mL of polyethylene beads (3 mm diameter) 

covered with a SRB biofilm developed from two IFB reactors operating for 188 days 

described previously by Villa-Gomez et al. (Villa-Gomez et al. 2011a). 

 

4.2.2 Synthetic wastewater 

The synthetic wastewater used during reactor operation, batch experiments and metal 

precipitation experiments contained (mg/L): KH2PO4 500, NH4Cl 200, CaCl2·2H2O 

2500, FeSO4·7H2O 50, MgSO4·7H2O 2500 and micronutrients as described by Zehnder 

et al. (1980). Cu, Pb, Cd and Zn were added after the start-up period in the reactors. The 

yeast extract and the micronutrients were omitted from the synthetic wastewater when 
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metals were added in the reactors and in the metal precipitation experiments.  The pH of 

the medium was adjusted to 7.0 (±0.5) with NaOH. Lactate was used as electron donor 

and sulfate (SO4
2-) was supplemented as Na2SO4 to maintain a chemical oxygen 

demand (COD)/SO4
2- ratio of 1 (g/g). All reagents were of analytical grade. 

 

4.2.3 Experimental design 

Figure 4.1 gives a schematic representation of the experimental design. Reactor 1 (R1) 

and reactor 2 (R2) were run during the first 26 days at a COD concentration of 2 g/L. 

After this start-up period, R1 was maintained at the same operational conditions, 

whereas R2 was operated at an influent COD concentration of 3 g/L but maintaining the 

COD/SO4
2- ratio of 1. On day 59, Cu, Pb, Cd and Zn were added as chloride salts to the 

influent of both reactors at a concentration of 100 mg/L each. The HRT in both reactors 

was decreased from 24 h to 9 h on day 117 and to 4.5 on day 164. During the reactor 

operation at an HRT of 4.5 h, the reactors failed in terms of sulfate and COD removal 

efficiency and therefore, on day 173, they were operated without metals for seven days 

to allow the recovery of the process. After this, metals were re-supplied to the synthetic 

wastewater.  

 

 
Figure 4.1 Schematic representation of the changes in COD concentration and HRT 

(solid line) in R1 (+) and R2 (-). The vertical dashed line indicates the starting of Cu, 

Zn, Cd and Pb addition. Arrows indicate the biomass sampling times for molecular 

phylogenetic analysis. 
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4.2.4 Metal precipitation experiments  

The metal depletion rate in the liquid phase due to metal sulfide formation and 

precipitation was monitored in batch experiments to underpin the metal precipitation 

results in the bioreactors. The experiments were performed in triplicate at room 

temperature (25 ± 3 °C) in serum bottles of 117 mL with 112 mL of synthetic 

wastewater, containing initially 100 mg/L each of Cu, Pb, Cd and Zn and 300 mg/L of 

sulfide as Na2S. This sulfide concentration was chosen as an average of the sulfide 

concentration produced in the IFB reactors. Although chemically produced sulfide was 

used instead of biogenic sulfide, the results represented adequately the settling 

properties of the metal sulfide precipitates affecting the metal removal efficiencies 

obtained in the IFB reactors.   The serum bottles were stirred at 100 rpm during the 

experiment. Samples of the liquor were taken every half hour during 4.5 h. To 

differentiate metal sulfide formation (precipitation) from metal sulfide settling, two 

different sampling methods were tested. Samples of the liquor of a first set where 

filtered through 0.45 µm cellulose syringe filters and then acidified, while samples of a 

second set where first acidified and then filtered. All samples were analyzed for their 

metal concentration. 

 

4.2.5 Sulfate reducing activity tests 

Polyethylene beads covered with biofilm and bioreactor liquid samples were taken for 

sulfate reducing activity (SRA) tests before and after metal supply and upon termination 

of the IFB reactor operation. The SRA experiments were performed as described by 

Villa-Gomez et al. (Villa-Gomez et al. 2011a) with the synthetic medium used in this 

study and 2 g/L of COD (as lactate) and SO4
2- at a COD/SO4

2- ratio of 1. SRA tests with 

the suspended biomass from the bioreactor liquid contained 50 mL of the bioreactor 

liquid from the reactors and 64 mL of synthetic wastewater with COD and sulfate as in 

the SRA biofilm experiments. Since the bioreactor liquor samples already contained 

lactate, the COD concentration in the serum bottles was adjusted to 1 gCOD/L at the 

beginning of the experiments.  Prior to inoculation, the bioreactor liquor sample was 

bubbled with N2 for 15 minutes to remove previously produced sulfide. The 

polyethylene beads covered with biofilm and the bioreactor liquor samples were stored 

at 4 °C. Therefore, the experiments started after the activation of the biomass by its 

incubation under the same experimental conditions for 72 h. The bottles with biofilm 
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were drained to remove the old media and then re-suspended in new media. All 

experiments were done in duplicate with a control without COD addition. 

 

4.2.6 DNA extraction  

Polyethylene beads covered with biofilm and bioreactor liquid samples were collected 

from both IFB reactors prior to each change in operational condition (Figure 4.1) for 

phylogenetic analysis of the bacterial community, specifically SRB.  Total DNA was 

extracted from both biofilm and bioreactor liquid samples using an automated nucleic 

acid extractor (Magtration 12 GC, PSS Co., Chiba, Japan) as follows:  polyethylene 

beads covered in biofilm were first suspended in 150 µl of PCR grade H2O and 

sonicated for 30 seconds, ensuring the detachment of the biofilm. 100 µl of the solution 

was then used in the automated extraction process; 100 µl of the liquor samples were 

used directly in the automated extractor. Each extraction was performed in duplicate 

and the extracted DNA was eluted in PCR grade H2O and stored at - 4°C.  

 

4.2.7 Real-time PCR analysis 

One bacterial primer and probe set was used to quantify the total bacterial population 

(Yu et al. 2005; Lee et al. 2009) while the primers and probe sets used for the SRB 

population were DSR4R (5´-GTGTAGCAGTTACCGCA-3´) and DSRp2060F (5´-GC 

clamp-CAACATCGTYCAYACCCAGGG-3´) as described by Foti et al. (Foti et al. 

2007).  A pure culture of Desulfovibrio longus 6739T (Magot et al. 1992), grown up in 

Desulfovibrio medium no. 63 (DSMZ) was used to generate the SRB standard curve. 

All DNA samples were analyzed in duplicate.  

Reaction mixtures to target the total bacterial population were prepared using the 

LightCycler TaqMan Master kit (Roche): 8 µl of PCR-grade water, 1 µl of the probe 

(final conc. 200nM), 1 µl of each primer (final conc. 500 nM), 4 µl of 5x reaction 

solution and 5 µl of DNA template. Amplification was carried out using a two-step 

thermal cycling protocol consisting of pre-denaturation at 94 ºC for 10 min, followed by 

40 cycles at 94 ºC for 10 s and 60 ºC for 30 s. The SRB reaction mixture was prepared 

using the LightCycler 480 SYBR Green I Master kit (Roche): 3 µl of PCR-grade water, 

10 µl of SYBR green reaction solution (final conc. 200nM), 1 µl of each primer (final 

conc. 500 nM), and 5 µl of DNA template. The amplification consisted of 45 cycles, 

with 1 cycle of denaturation (95°C for 40 s), annealing (55°C for 40 s), and elongation 
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(72°C for 1 min). Quantitative standard curves were constructed using the standard 

plasmids containing the full-length 16S rRNA gene sequences (Lee et al. 2009; Yu et al. 

2005)  and the dsrB gene subunit from the representative strains of the target bacterial 

and SRB groups since it encodes key enzymes of the SRB energy metabolism (Wagner 

et al. 2005). Results are presented in copies per µl of sample (liquid phase or biofilm 

support volume). 

 

4.2.8 Chemical analysis 

Biofilm detachment for volatile suspended solids (VSS) analysis was carried out as 

described by Villa-Gomez et al. (2011a). After this, VSS in both biofilm and bioreactor 

liquid samples was determined according to standard methods (APHA 2005). COD was 

determined by the close reflux method (APHA 2005). Sulfate and metals determination 

followed the same procedure described by Villa-Gomez et al. (2011a). Sulfide was 

determined spectrophotometrically by the colorimetric method described by Cord-

Ruwisch (1985) using a spectrophotometer (Perkin Elmer Lambda20, Groningen, The 

Netherlands).  

The metal precipitates were recovered from the bottom of the reactors at different days 

during the different operational periods. The samples were collected and analyzed in a 

particle size analyzer (Microtrac 53500) for particle size distribution (PSD) 

measurements after sonication for 30 seconds at an ultrasound power of 30 KHz. This 

technique disrupts flocs and unstable agglomerates (Manual, Microtrac S3500) in order 

to enable quantification of metal sulfide precipitates at all ranges, including the small 

particles that tend to aggregate as well as the stable agglomerates. The sonication was 

repeated until the values of the size distribution of the particles did not change (about 3 

times) and taking care to avoid over-sonication that may dissolve fine particles or 

increase the particle surface energy leading to re-agglomeration (Manual, Microtrac 

S3500). All samples showed around five peaks over the size range, and hence, the 

results are presented in percentage of particles at the different size ranges. 

Visual MINTEQ version 3.0 (US EPA, 1999) was used to calculate speciation, 

saturation indices and theoretical precipitates in the IFB reactor at the sulfide 

concentrations observed during the IFB reactor operation and in the synthetic 

wastewater prior to enter the system. The procedure is explained in detail by Villa-

Gomez et al. (Villa-Gomez et al. 2012a). 
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4.3 Results 

 

4.3.1 IFB reactor performance 

The IFB reactors were operated at the start up under the same conditions during 27 

days, and after this, the COD in the influent of R2 was increased to produce different 

sulfide concentrations to study its effect on metal precipitation.  After the change in the 

COD influent concentration in R2, the COD removal efficiency was 52.3% for R1 and 

40.4% for R2 and the sulfate removal efficiency was 44.6% and 35.2%, respectively. 

The sulfide concentration in R2 increased considerably after the change in the COD 

influent concentration to 3 g/L, reaching values around 850 mg/L (Figure 4.2) that were 

kept for 4 days and then started to decrease until it was maintained at a mean sulfide 

concentration of 567.9 mg/L (Table 4.1), while the sulfide concentration in R2 was 

stable around 441.2 mg/L prior to metal addition.  

 

Table 4.1 Sulfide concentration, COD and sulfate removal efficiency in both reactors 

during the different operational conditions (mean ± standard deviation).  

 
*Results obtained after re-starting metal addition. 

 

After metals were added to the influent, the sulfide concentration increased, probably 

due to an increase in the SRB activity once the sulfide reacted with metals and thus 

alleviating SRB sulfide inhibition (Ferris et al. 1989). This lasted 4 days and then, the 

sulfide concentration decreased (Figure 4.2) until it established at around 290 mg/L 

(Table 4.1). The COD removal efficiency also decreased in R1 (41.4 %), while in R2, 

the values remained similar to the values obtained prior to metal addition (Table 4.1). 

During the reactor operation at an HRT of 9 h, the COD removal efficiency decreased 

considerably in both reactors to 25.6% and 18.4%, respectively, while the sulfate 

removal efficiency and the mean sulfide concentration decreased only in R2 (Table 4.1, 

HRT 24 HRT 9 Hr HRT 4.5*
COD (%) 52.3 ± 10.6 41.4 ±12.1 25.56 ± 5  46.5 ± 11.9
SO4

2- (%) 35.2 ± 10.2 36.82 ± 13.3 34.55  ±10.5 9.6 ± 12.9
Sulfide (mg/L) 441.2 ± 92 290 ± 41.1 301.87 ± 57.7 54.9 ± 87.6

COD (%) 40.4 ± 10.2 39.5 ± 9.5 18.4 ± 4.4  12.2 ± 2.2
SO4

2- (%) 44.6 ± 6.5 44.3 ± 9.9 33.8 ± 10.7 14.7 ± 15.3
Sulfide (mg/L) 567.9 ± 41.4 540 ± 53.9 379 ± 96 110.2 ± 144.9

R2

Metal addition

R1
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Figure 4.2).  The further decrease of the HRT to 4.5 h strongly affected the sulfate 

reduction efficiency in the two IFB reactors (Figure 4.2). During this operation mode, 

the interruption of the metal feeding induced a partial recovery of the COD and sulfate 

removal efficiency in both reactors (data not shown). After re-starting the metal addition 

to the influent, however, both the sulfate and COD removal efficiency dropped again to 

values below 14.7%, except for the COD removal efficiency (46.5%) in R1  (Table 4.1).  

The decrease in HRT from 24 to 9 and latter to 4.5 h produced stronger fluctuations in 

the sulfide concentration (Figure 4.2).  

 

 
Figure 4.2 Sulfide concentration profile during the changes in operational conditions in 

the IFB reactors. Dashed line 1 and 2 indicate the change in COD influent concentration 

in R2 and the start of metal addition, respectively. 

 

4.3.2 Metal removal efficiency in the IFB reactors 

Figure 4.3 shows the metal removal efficiencies for Cu, Zn and Cd at the HRTs of 24, 9 

and 4.5 h in R1 and R2. The Pb removal efficiencies are not reported since the 

measured values in the influent were very low already (1 mg/L) despite that no 

precipitates were visible in the influent tank.  Pb concentrations were also below 1 mg/L 

in the effluent at all HRTs applied. 

Up to 99% of the metals were removed from the influent at an HRTs of 24 h in both 

reactors, while at an HRT of 9 h, the Cu removal efficiency remained over 98% on 
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average and the Zn and Cd removal efficiency fluctuated around values from 34.8 to 

99.0% in R1 and from 39.8 to 99.0% in R2 (Figure 4.3).  

At the HRT of 4.5 h, metal removal efficiencies exceeded 50%, except for Cd with no 

removal on day 182 (Figure 4.3). The color of the metal precipitates in the effluent tank 

changed from dark brownish in the previous periods to turquoise light brown. These 

observations suggested that alternative metal precipitates other than metal sulfides were 

formed as the sulfide concentration constantly fluctuated during this reactor operation 

period (Figure 4.2). 

 
Figure 4.3 Cu (circles), Zn (squares) and Cd  (triangles) removal efficiency in a) R1 and 

b) R2 as a function of the HRT. 

 

4.3.3 Speciation analysis 

The thermodynamic model shows a wide diversity of oversaturated species in the 

influent tank before entering the bioreactors, mainly as phosphate, hydroxide and sulfate 

compounds (Table 4.2). However, the theoretical precipitates formed at equilibrium 
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were only hydroxyapatite (Ca5(PO4)3(OH)) as well as crystalline (c) and amorphous (s) 

pyromorphite [Pb5(PO4)3Cl] with a saturation index of 19 and 31.6-27.6, respectively 

(Table 4.2). These precipitates were included in the speciation model in the presence of 

sulfide, which predicted that only hydroxyapatite remained precipitated, while 

pyromorphite was transformed to galena (PbS) at sulfide concentrations exceeding the 

metal to sulfide stoichiometric ratio due to its very low solubility product (Table 4.2).  

The sulfide concentration in the IFB reactor during the reactor operation at 24 and 9 h 

(Figure 4.1, Table 4.1) ensured the precipitation of the metals as covellite for Cu, 

Galena for Pb, greenockite for Cd and sphalerite and wurzite for Zn with a saturation 

index in descendant order and in agreement with their solubility product (Table 4.2). At 

low sulfide concentrations (<50 mg/L) such as the ones observed at an HRT of 4.5 h 

(Figure 4.2), several metal-sulfate and phosphate precipitates were likely to be produced 

instead of sulfide precipitates (Table 4.2). However, it should be noted that the model 

used is based on thermodynamics rather than kinetic data, and hence, some of the 

precipitates formed during the timescale of the experiment might not be present at the 

equilibrium. In accordance, XRD analysis of the precipitates formed at the three HRTs 

tested in the IFB reactor (data not shown) shows the presence of covellite and 

hydroxyapatite, while the other precipitates predicted in the speciation model were not 

observed probably due to their poor crystallinity. 

 

4.3.4 Particle size distribution of the IFB reactor precipitates 

The PSD of the metal precipitates during the three HRTs ranged from <0.5 to 250 µm, 

but the majority of the particles were between 1 to 50 µm (Figure 4.4). In R1, the 

sulfide concentration remained similar at the HRTs of 24 and 9 h, while the PSD 

showed important differences. The percentage of particles above 10 µm at the HRT of 

24 h was substantially higher compared to the HRT of 9. Furthermore, the PSD shows a 

change in size range with the decrease of HRT from 24 to 9 h, where the amount of 

particles in the range of 50 to 100 and 100 to 250 µm decreased, while the number of 

particles below 0.5 µm increased (Figure 4.4). The PSD results were similar for both 

reactors despite the differences in sulfide concentration.  The metal removal efficiency 

decreased at an HRT of 9 h for Zn and Cd (Figure 4.3), which was associated with the 

appearance of particles below 0.5 µm in both reactors: up to 10.3% for R1 and 9.4% for 

R2 (Figure 4.4). The sulfide concentration fluctuated strongly and decreased at the HRT 

of 4.5 h (Figure 4.4). At this HRT, the PSD displayed a wider range in size compared 
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with the previous HRTs tested, but the range containing the highest percentage of 

particles was from 1-10 µm in both reactors.  

 

Table 4.2 Oversaturated species predicted in the speciation model in the influent and the 

bioreactor liquor at the sulfide concentrations obtained at the different operational 

conditions. Indexed small table shows the solubility product (log KSP) of the metal 

sulfide species formed at equilibrium. Number in parentesis indicate the saturation 

index and minerals highlighted in bold indicate the precipitates predicted at equilibrium. 

 

 
* Precipitates and values did not change above this sulfide concentration, (c) crystal, (s) 

solid and (am) amorphous.  

 
Figure 4.4 PSD and sulfide concentration for a) R1 and b) R2 at the HRTs evaluated. 

Influent
(No	
  sulfide) 34.9 50 290 	
  441*

Chloropyromorphite(c)	
  (31.6) Antlerite	
  (4.1) Antlerite	
  (4.2) Covellite	
  (19.8) Covellite	
  (19.5)

Chloropyromorphite(s)	
  (27.6) Atacamite	
  (3) Atacamite	
  (3.3) Cu3(PO4)2(s)	
  (0.2) Galena	
  (5.9)
Hydroxylpyromorphite	
  (19.0) Brochantite	
  (7.4) Brochantite	
  (7.6) Galena	
  (6.5) Greenockite	
  (5.1)

Pb3(PO4)2(s)	
  (11.3) Cd3(PO4)2(s)	
  (1) Covellite	
  (18.4) Greenockite	
  (5.8) Hydroxyapatite	
  (2)

Tsumebite	
  (7.6) Covellite	
  (17.9) Cu(OH)2(s)	
  	
  (0.6) Hydroxyapatite	
  (2) Spharelite	
  (6.7)

Brochantite	
  (5.8) Cu(OH)2(s)	
  	
  (0.4) Cu3(PO4)2(s)	
  (6.2) Spharelite	
  (7) Wurtzite	
  (4.5)

Zn3(PO4)2*4H2O(s)	
  (5.6) Cu3(PO4)2(s)	
  (6) Cu3(PO4)2*3H2O(s)	
  (4.5) Wurtzite	
  (4.8)
Cu3(PO4)2(s)	
  (4.7) Cu3(PO4)2*3H2O(s)	
  (4.3) Galena	
  (4.2)

Langite	
  (3.5) Galena	
  (4.2) Greenockite	
  (9.2)
PbHPO4(s)	
  (3) Greenockite	
  (9.4) Hydroxyapatite	
  (1.5)

Cu3(PO4)2*3H2O(s)	
  (3) Hydroxyapatite	
  (1.3) Langite	
  (5.4)
Antlerite	
  (3) Langite	
  (5.2) Spharelite	
  (7.6)

Atacamite	
  (2.1) Spharelite	
  (7) Tenorite(am)	
  (1.4)
Cd3(PO4)2(s)	
  (2.6) Tenorite(am)	
  (1.2) Tenorite(c)	
  (2.2)
Larnakite	
  (2.8) Tenorite(c)	
  (2.1) Wurtzite	
  (5.4)
Tenorite(c)	
  (1.6) Wurtzite	
  (4.9) Zn3(PO4)2*4H2O(s)	
  (6.6) Name log	
  KSP

Pb(OH)2(s)	
  (1.1) Zn3(PO4)2*4H2O(s)	
  (6.5) Covellite	
  (CuS) -­‐22.22

Pb3O2SO4(s)	
  (0.9) Galena(PbS) -­‐14.92

Tenorite(am)	
  (0.8) Greenockite	
  (CdS) -­‐14.02

Hydroxyapatite	
  (0.7) Sphalerite	
  (ZnS) -­‐10.82

Pb2(OH)3Cl(s)	
  (0.7) Wurtzite	
  (ZnS) -­‐8.62

Sulfide	
  concentration	
  (mg/L)
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4.3.5 Metal depletion kinetics in the batch experiments 

Metal precipitation experiments were done to differentiate metal-sulfide formation-

precipitation (filtrated samples) from metal-sulfide settling (samples without filtration). 

The metal depletion rate of the metals in the samples without filtration occurred in the 

following order: Cu and Pb depleted first, followed by Zn and Cd. After 8 h metals were 

still detected in the liquid phase (Figure 4.5a) suggesting that the metal sulfides formed 

were not big and thus, not heavy enough to settle. The metal concentrations in the 

filtrated samples depleted immediately (Figure 4.5b). Zn, Cd, Pb and Cu concentrations 

after the first measurement were 14.2, 16.1, 29.4 and 24.6 mg/L, respectively. However, 

fluctuations in metal concentrations ranging from 20-40 mg/L were observed until the 

end of the experiment (Figure 4.5b). These fluctuations were probably due to the size of 

the metal sulfides formed, which were still able to pass through the 0.45 µm filter used 

for metal analysis. 

 

 

 

 

 

 

 

 

Figure 4.5 Metal concentration in the liquid phase from the batch experiments as a 

function of time on the samples (a) without and (b) with filtration prior to acidification. 

 

4.3.6 SRA in the biofilm and in the bioreactor liquid  

The specific SRA and biomass concentration in R1 was lower than in R2 in both the 

biofilm and bioreactor liquid samples (Figure 4.6). This could be attributed to the higher 

COD and sulfate concentrations supplied to R2 compared to R1. After metal addition, 

the specific SRA and biomass concentration in the biofilm decreased in both reactors. In 

R1, the specific SRA decreased from 44.9 to 21.9 mg S2-/gVSS*h and in R2 from 95.2 

to 69.1 mg S2-/gVSS*h, while in the bioreactor liquid samples, the specific SRA 

remained similar for R1 before and after metal addition (23.4 mg S2-/gVSS*h) and 

increased from 47.8 to 62.6 mg S2-/gVSS*h in R2. The biomass concentration in the 
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bioreactor liquid samples (0.2 gVSS/L) remained similar before and after metal 

addition. 

 

 
Figure 4.6 Specific sulfate reducing activity (   ,  ) and biomass concentration (   ,   ) of 

the biofilm and bioreactor liquid prior and after metal addition. 

 

At the end of the reactor operation, no activity in the biofilm and bioreactor liquid was 

observed and therefore, the results are not shown.  The sulfide concentration in batch 

experiments with the bioreactor liquid and biofilm samples at the end of the reactors 

operation displayed only sulfide values for R1 (76.8 mg S2-/L) after 333 h of incubation, 

yielding similar values as in the controls with no COD added.  

 

4.3.7 Microbial community development 

The biofilm samples in both reactors showed a similar increase of the quantitative 

composition of the SRB community and reached a similar maximum value close to 650 

SRB gene copies/µL (Figure 4.7). After increasing the COD concentration in R2 on day 

59, an increase in the SRB concentration together with a decrease in the total bacterial 

number was observed in the biofilm in both reactors. In general, after metals addition 

and prior to the change in HRT to 9 h, the biofilm displayed a larger SRB population 

than in the bioreactor liquid in both reactors (610 versus 1587 SRB gene copies/µL, 

Figure 4.7). However, the SRB community in the bioreactor liquid displays a different 

trend during the different operational conditions: the SRB gene copies in the biofilm 

decreased with metal addition and HRT change, whereas the SRB gene copies in the 

suspended biomass from the bioreactor liquid increased during the whole reactor 
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operation except after the decrease in HRT to 4.5 h (Figure 4.7). At the latter HRT, the 

less affected SRB community was the one from R1 in the bioreactor liquid (Figure 4.7). 

The total bacterial number followed the trends of the SRB community upon the 

operational changes applied to the reactor, except for the change in HRT to 9 h where 

the total bacterial number in the liquid phase highly increased in both reactors (376000 

and 5.91000 total bacterial gene copies/ µL for R1 and R2, respectively). 

 
Figure 4.7 Quantification of the SRB community (primary axis) and total bacterial 

community (secondary axis) in the biofilm and bioreactor liquid at the days of the 

operational changes applied. 

 

4.4 Discussion 

 

4.4.1 Metal precipitation characteristics  

This study shows that the HRT is an important factor determining the size of the metal 

sulfide precipitates (Figure 4.4) as this operational parameter affects the retention time 

of the metal sulfides for growth and the sulfide production for metal sulfide 

precipitation (Figure 4.2). The size of the precipitates (Figure 4.4) determines the 

settling rate of the metal sulfides (Figure 4.5), and consequently, the metal removal 

efficiencies (Figure 4.3). Other operational parameters that could affect the size of the 

metal sulfides due to changes in solubility, such as the pH (Villa-Gomez et al. 2012a; 

Mokone et al. 2010), remained fairly stable at neutral values in both reactors (Figure 

4.1) and hence, their influence can be discarded. Metal sulfides are highly insoluble at 

neutral pH (Table 4.2), and only strong drops in pH to as low as 5, for ZnS, CdS and 

PbS, and as low as 2 for CuS can increment their solubility (Peters et al. 1984). 
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At HRTs of 24 and 9 h, the sulfide concentration in both reactors exceeded the metal to 

sulfide stoichiometric ratio (Figure 4.2, Table 4.1). This resulted in metals precipitating 

as sulfides (Table 4.2) and high supersaturation levels were maintained in both reactors 

favoring nucleation over crystal growth (Al-Tarazi et al. 2004; Mokone et al. 2010; 

Villa-Gomez et al. 2011b; Lewis 2010). Therefore, the variations in particle size were 

mainly due to the residence time of the precipitates allowing agglomeration of the small 

precipitates. An indication of agglomeration/aggregation is the low percentage of 

particles in the small size ranges, followed by a higher percentage of the mid-size 

ranges and then again a small percentage of bigger size ranges (Figure 4.4). The former 

are due to an increment of the number of large particles at the expense of the number of 

mid-size particles as a function of the residence time (Lewis 2010). 

At an HRT of 9 h, metal precipitates at smaller ranges were observed (Figure 4.4) and at 

the same operational conditions, metal removal efficiencies decreased for Cd and Zn 

(Figure 4.3). This is an indication that the HRT was too short to allow all the Cd and Zn 

sulfide precipitates to grow and settle. Although the time scales of particle growth in 

metal sulfide precipitation has only been reported for a retention time of 200 min in 

chemical precipitator reactors (Frédéric et al. 2009), in contrast with a change of 

retention time from 24 to 9 h applied  in this study (Figure 4.4), there is evidence that 

the growth of the precipitates continues exponential at the time length studied in 

chemical precipitator reactors (Frédéric et al. 2009; Couto and Mesquita 1994). In 

addition, substances commonly present in bioreactors such as phosphate (Villa-Gomez 

et al. 2012b) and bioproducts such as extracellular proteins (Moreau et al. 2007), which 

are not present in chemical precipitator reactors, could enhance the agglomeration 

process. The presence of extracellular proteins produced by SRB indeed promotes the 

aggregation of zinc sulfide precipitates in natural environments (Moreau et al. 2004; 

Moreau et al. 2007). 

The change of HRT to 4.5 h showed that this operation mode is a risk for the process 

performance as the sulfide production highly decreased (Figure 4.2). Although lower 

sulfide concentrations could have led to a decrease in supersaturation, which is 

favorable for crystal growth of metal sulfides (Mersmann 1999), the formation of 

alternative precipitates such as brochantite (Cu4(OH)6SO4) (Mokone et al. 2010) and 

Zn-phosphate (Villa-Gomez et al. 2012b) also occurred (Table 4.2). Therefore, the 

decrease of the HRT should be aligned to the sulfate reduction rate in order to maintain 
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an adequate sulfide concentration within the reactors ensuring metal sulfide 

precipitation, yet avoiding free metal toxicity. 

 

4.4.2 Settling characteristics of the metal sulfide precipitates 

The settling rate of the metals obtained in the batch experiments (Figure 4.5a) followed 

the solubility product order (Table 4.2). Accordingly, CuS precipitates settle faster than 

other metals such as Fe (Ucar et al. 2011) and Zn (Sahinkaya et al. 2009), probably due 

to their higher tendency to agglomerate (Mokone et al. 2010; Sahinkaya et al. 2009; 

Villa-Gomez et al. 2012c). This is because nucleation particles tend to agglomerate 

more in comparison with crystals (Mersmann 1999), and the lower solubility product 

value (Table 4.2), the higher the number of these particles (Al-Tarazi et al. 2004; Lewis 

2010). 

Previous authors have used several settling tanks to separate metals based on their 

differences in settling rate (1992) as well as on the manipulation of other operational 

parameters such as the pH (Ucar et al. 2011). Due to its configuration, the use of the 

IFB reactor is a step forward to this approach as it acts not only as a sulfate reducing 

(sulfide producing) bioreactor but also as a settler for recovery of CuS precipitates, 

whereas the remaining metal sulfides with higher solubility product can be recovered in 

subsequent settlers. 

 

4.4.3 Variations of the SRB activity and community  

The effect of the operational changes was observed by tracking the variations of the 

SRB activity (Figure 4.6) and community (Figure 4.7) in the biofilm and the bioreactor 

liquid in the IFB bioreactors.  The specific SRA (Figure 4.6) and the number of SRB 

copies (Figure 4.7) were higher in R2 than in R1 prior to the operational changes due to 

the higher COD and electron acceptor concentration (Figure 4.1) that favored bacterial 

(especially SRB) growth (Oyekola et al. 2009). In addition, the quantitative composition 

of the SRB community displayed a noticeable disparity between the biofilm and the 

biomass in the bioreactor liquid (Figure 4.7), which demonstrates that the biofilm was 

the main responsible for the sulfide production in both bioreactors.  

Despite that the sulfide concentration produced in both IFB reactors (Table 4.2) 

prevented free metal toxicity (Kaksonen and Puhakka 2007), and that biofilms are 

reported to be more resistant towards high metal concentrations compared to suspended 

biomass (van Hullebusch et al. 2003), in this study, the biofilm was more affected by 
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the metal addition (Figure 4.6) and by the HRT decrease (Figure 4.7) compared to the 

biomass from the bioreactor liquid. This could be due to the tendency of the metal 

sulfides to precipitate within/near where the sulfide production mainly occurs and 

therefore, local supersaturation is encountered (Villa-Gomez et al. 2011a), causing, 

consequently,  inhibition of the SRB activity (Utgikar et al. 2002).  

Despite the significant reduction of the specific SRA of the biofilm in both reactors 

following metal addition (Figure 4.6), no significant relationship between the  specific 

SRA, the abundance of the SRB community (Figure 4.7) and reactor performance 

(Table 4.1, Figure 4.2) was observed. This suggests that the SRB population was only 

deactivated but still viable. Similarly, Uitkar et al. (Utgikar et al. 2002) observed that 

the SRB cultures were still viable after a strong decrease in their activity in a study 

about metal toxicity by insoluble metal sulfides in batch reactors. In contrast, the size of 

the SRB biofilm community itself decreased after the change in HRT to 9 (Figure 4.7). 

This decrease could be due to an excessive accumulation of the metal sulfides causing 

mortality. Notwithstanding this possibility, the presence of metal sulfide precipitates at 

sizes below 0.5 µm (Figure 4.4), especially for Zn and Cd (Figure 4.3), which were not 

observed at the HRT of 24 h, could have contributed to the decreased size of the SRB 

community. The presence of small ZnS precipitates, even at nanometer scale, has been 

previously postulated in bioreactors (Dar et al. 2009) and in natural environments 

(Moreau et al. 2007), however, the correlation between these metal sulfide sizes and 

their effects on SRB activity/community has not been studied yet. Therefore, further 

research using techniques to distinguish the size of the precipitates that are located in 

the biomass, such as scanning electron microscopy (Hennebel et al.) and transmission 

electron microscopy, should be used to confirm the correlation between the particle size 

of the metal sulfides and the SRB activity/population.  

The change in the HRT to 4.5 h caused a significant performance drop (Table 4.1), 

indicating that the loading rate threshold may have passed the sulfate reduction rate, as 

indicated by the decrease in the SRB activity (Figure 4.6) and community (Figure 4.7). 

In agreement, by studying the kinetics of sulfate reduction and lactate utilization in 

chemostat cultures, Oluwaseun et al. (Oluwaseun et al. 2011) observed that sulfate 

reduction rates increased at starting sulfate concentrations of 2.5 and 5.0 g/L and long 

residence times (3-5 d) yielding sulfide concentrations of 0.13-0.53 g/L, whereas at 

short residence times (1-2 d), associated with sulfide concentrations of 0.014-0.088 g/L, 
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there was a sharp decline in the volumetric sulfate reduction rates. In the 

aforementioned study, however, no metals were added and thus, the decrease of the 

sulfate reduction rate was exclusively due to the change in electron acceptor and donor 

loading rates. Bioreactor operation has been reported at HRTs as short as 6.5 h 

(Kaksonen et al. 2004) for less toxic metals (Fe and Zn) or at lower metal 

concentrations (Gallegos-Garcia et al. 2009). Therefore, this study is an important step 

forward to gain insight into the effect of bioreactor operation at low HRTs and high 

metal loading rates on the SRB community.  

The lack of SRB activity (Figure 4.6) and the strong decrease of the SRB community 

(Figure 4.7) at the end of the reactor operation supports that free metal toxicity had 

occurred and demonstrated that the process failure was irreversible. Indeed, the metal 

effluent concentrations (Figure 4.3) were above the toxic values reported for SRB in 

both bioreactors (Kaksonen et al. 2006; Gonzalez-Silva et al. 2009).  Zn completely 

inhibits SRB in the concentrations range 25-60 mg/L (Kaksonen et al. 2006), while 

337.2 mg/L of Cd causes 44% inhibition of their substrate utilization rate in an UASB 

reactor (Gonzalez-Silva et al. 2009).  It should be noted that the COD removal still 

proceeded after no SRB activity was observed anymore (Table 4.1) and a severe 

decrease in the SRB community (Figure 4.7). This can be attributed to the presence of 

other different microbial groups (Figure 4.7) in the bioreactors, such as acetogens and 

fermentatives (Omil et al. 1998; Gallegos-Garcia et al. 2009). 

 

4.5 Conclusions 

 

• The change in HRT from 24 to 9 h affects the size of the metal sulfide precipitates due 

to the change in contact time allowing aggregation and growth of metal sulfidic 

precipitates. 

•  The further HRT decrease to 4.5 h affects the sulfate reducing activity for sulfide 

production and hence, the supersaturation level and solid phase speciation.  As a 

consequence, this induced free metal toxicity and process failure. Moreover, metal 

precipitates other than metal sulfides were formed. 

• Metal sulfides affect the SRB activity and community in the biofilm, probably because 

of the stronger local supersaturation causing metal sulfides accumulation in the biofilm. 
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Abstract 

Tuning strategies to control the dissolved sulfide concentration in a sulfate reducing 

bioreactor using a direct measurement of the sulfide species (pS electrode) were 

evaluated. The experiments were performed in an inverse fluidized bed (IFB) bioreactor 

with automated operation using LabVIEW software version 2009®. Step changes in the 

OLR through variations in the influent chemical oxygen demand (CODin-Tuning I) 

concentration or in the hydraulic retention time (HRT-Tuning II) at constant COD/SO4
2- 

ratio (0.67) were applied to create a sulfide response. The pS output values obtained 

from tuning I and II were used to determine proportional-integral-derivative (PID) 

controller parameters. A rapid response and high sulfide increment was obtained 

through an increase in the CODin concentration, while a decrease in the HRT exhibited 

a slower response and a smaller sulfide increment. Decreasing the OLR irrespective of 

the tuning strategy caused a longer response time of the bioreactor and a poor or non 

observable decrease of the sulfide concentration due to sulfide accumulation (tuning II) 

or non-accounted substrate sources utilization (tuning I). The pS electrode response is 

adequate for its application in controlling sulfate reducing bioreactors. However, pH 

variations and high sulfide concentrations should be carefully observed for correction of 

the pS values displayed.  
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5.1 Introduction 

 

Biological sulfate reduction is a process for the treatment of metal containing 

wastewaters enabling the recovery of metals as sulfidic precipitates (Bijmans et al. 

2011). Sulfate reducing bacteria (SRB) reduce sulfate through the oxidation of either 

organic compounds or hydrogen, resulting in the production of hydrogen sulfide 

(Kaksonen and Puhakka 2007). Most of the metal containing wastewaters are deficient 

in organic compounds (Papirio et al. 2012). Thus, their addition as electron donor for 

sulfate reduction determines the overall costs of the process (Gibert et al. 2004; Zagury 

et al. 2006). For metal removal and recovery processes, the required amount of sulfide 

to be produced by SRB depends on the composition of the wastewater to be treated, i.e. 

its metal concentration. Steering the sulfide production towards this required 

stoichiometric amount in bioreactors is highly relevant to avoid over production of H2S 

that increases operational costs and may impose a sulfide removal post-treatment step.  

Process control has been used for several biological production processes yielding 

desirable end products such as ethanol, penicillin and diverse fermentation products as 

well as for waste water treatment (Dunn et al. 2005). In these processes, typically, set-

point control is based on the manipulation of temperature, pH, substrate or dissolved 

oxygen concentration. In anaerobic digestion, control variables commonly used for 

process control are intermediate compounds such as volatile organic acid concentration, 

pH, bicarbonate alkalinity or gas concentrations/flow rates (Pind et al. 2003).  

Even though large progress has been made in the control of anaerobic (methanogenic) 

systems, there is insufficient knowledge about process control of sulfate reducing 

bioreactors. Mathematical models have been developed to support the design of a 

control strategy for sulfate reduction in bioreactors (Kalyuzhnyi and Fedorovich 1998; 

Oyekola et al. 2012; Gupta et al. 1994). In these studies the objective was to outcompete 

or favor microbial trophic groups other than SRB, while accounting for the control of 

the sulfide production. Torner-Morales and Buitrón (2010) used the redox potential as a 

control variable to maintain the sulfate reduction efficiency and subsequent partial 

sulfide oxidation in a single sequencing batch reactor unit.  This controlled variable, 

combined with the control of the pH, allowed a combined sulfate-reducing/sulfide-

oxidizing process with a continuous operation and a significant yield of elemental sulfur 

(64%). 
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The development of a control strategy based on the sulfide concentration as the 

controlled variable is a more direct approach than the redox potential for the control of 

the sulfide concentration for metal recovery. For this, the most adequate sensor 

developed is the pS electrode that measures the activity of the S2- species. The use of a 

pS electrode in biological systems was already described by Dan et al. (1985) to 

monitor photosynthetic sulfide oxidation by Chlorobium phaeobacteroides. This sensor, 

in combination with a pH electrode, has also been successfully validated in the control 

of the sulfide concentration in precipitator reactors for selective metal recovery using 

chemically and biologically produced (biogenic) sulfide (König et al. 2006; Veeken et 

al. 2003b; Grootscholten et al. 2008; Veeken et al. 2003a; Sampaio et al. 2009).  

The selection of an appropriate control strategy largely depends on the process 

characteristics. A proportional-integral (PI) control strategy using the pS electrode was 

found to be sufficient for biogenic sulfide control entering a precipitator reactor with 

only metal sulfide precipitation taking place (König et al. 2006). The control of the 

sulfide concentration directly in the SRB bioreactor is more complex as it needs to take 

into account the biological sulfide production process as well. Therefore, it requires a 

control strategy that manipulates the organic loading rate (OLR) to the sulfide 

producing SRB bioreactor, where the set-point ideally depends on the metal 

concentration that is required to be precipitated. Thus, an additional control parameter is 

required to overcome the lag time between substrate dosing and substrate degradation or 

transformation into the desired product. Even though robust control strategies appear as 

a very promising option over conventional control types such as the PI, there are only a 

few experimental results in the literature validating their application in anaerobic 

bioreactors (Steyer et al. 1999). The proportional-integral-derivative (PID) controller, 

which has been widely used in anaerobic bioreactors (Dunn et al. 2003; Dunn et al. 

2005; Jagadeesh and Sudhaker 2010; Pind et al. 2003; Marsili-Libelli and Beni 1996), 

contains a derivative control parameter that is used to overcome lag phases, therefore, it 

can be seen as an option for sulfide control in SRB bioreactors. The PID control 

parameters can be obtained by using different tuning strategies and tested 

experimentally or through model simulations (Pind et al. 2003).  

The aim of this study was thus to evaluate tuning strategies to manipulate the OLR via 

changing the influent COD (CODin) concentration or the hydraulic retention time 

(HRT) to control the sulfide concentration in an inverse fluidized bed (IFB) reactor 

using a pS electrode and a PID controller. The evaluation of the tuning strategies was 
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based on analyzing the response of the system to the applied change in terms of 

response time and time delay, load and set point (sulfide) changes, as well as robustness 

and stability of the sensor (Rodrigo et al. 1999). The Cohen-Coon method (Dunn et al. 

2005) was used to determine the PID parameters of the controller. Since pS sensors 

have not yet been applied in sulfate reducing bioreactors, their feasibility for application 

was also analyzed.  

 

5.2 Materials and methods 

 

5.2.1 Reactor set-up 

The experiments were carried out in an IFB bioreactor as described by Villa-Gomez et 

al. (2012) but with automated operation using a data acquisition card (NI cDAQ-9174, 

National Instruments, The Netherlands) and Labview software version 2009® (Figure 

5.1). Lactate was used as electron donor and carbon source and sulfate was added as 

Na2SO4 at a COD/SO4
2- ratio of 0.67.  The synthetic medium used in the bioreactor 

experiment and batch activity tests was the same as used by Villa-Gomez et al. (2012). 

The pH and pS in the IFB bioreactor were monitored using a sulfide resistant pH 

electrode (Prosense, Oosterhout, The Netherlands) and a solid state Ag2S ion selective 

(S2-) electrode (Prosense, Oosterhout, The Netherlands) of 40 cm length each inserted 

on the top of the bioreactor column (Figure 5.1). The Labview software® contained a 

PID controller (PID and Fuzzy Logic Toolkit, National Instruments, The Netherlands) 

for the control of the pH using stock solutions of HCl/NaOH connected to the 

recirculation tube and with PID parameters obtained by error minimization. 

 

5.2.2 Experimental design 

The IFB bioreactor was operated for 105 days at an HRT of 24 h with incremental 

changes to the CODin concentration from 0.5 to 1.5 gCOD/L followed by a change in 

the HRT from 24 to 12 h on day 106 and, on day 133, the decrease in the CODin 

concentration from 1.5 to 0.5 gCOD/L. 

Then, several OLR step changes were applied in the IFB bioreactor to create responses 

of the sulfide concentration produced by SRB for the acquisition of the tuning 

coefficients of the PID controller.  The experiments consisted of running the IFB 

bioreactor at a constant OLR and, once the pS electrode displayed constant values for at 
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least 5 HRTs, to change this OLR to create a step response in the sulfide concentration 

until the time that the reactor reaches a new steady pS value (response time).  The OLR 

was changed from 0.5 to 1 gCOD/L*d through either variations in the CODin 

concentration (Tuning I) or in the HRT (Tuning II) by changing the influent flow rate. 

Once the reactor reached a new steady state in the pS values, the same methodology 

was applied but to return the OLR to its initial setting.  

 

 
Figure 5.1. Experimental set-up of the IFB bioreactor with pH and pS online 

measurement as well as pH control. 

 

The reliability of the pS electrode response under the IFB bioreactor operational 

conditions was also evaluated. The pS electrode response in the IFB bioreactor after 

sulfide variations ranging from 100 to 500 mg/L of total dissolved sulfide (TDS) 

concentration was analyzed. In addition, the pS signal was analyzed at TDS 

concentrations ranging from 20 mg/L to 400 mg/L at constant pH of 7 with chemically 

produced sulfide (Na2S) and with biogenic sulfide. Chemically produced sulfide stock 

solutions were made with Na2S*H2O (Merck, extra pure, about 35% Na2S), while 

biogenic sulfide samples were taken from the IFB bioreactor at different operation 

periods and thus, different TDS concentrations. In the chemically produced samples, 

TDS concentrations were re-measured once the pH was adjusted to 7, as the sulfide 
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concentration modifies the pH. In the TDS samples from the bioreactor liquid, the pH 

was not adjusted as the bioreactor was already at pH 7 (± 0.2). The theoretical S2- was 

calculated using equation 1; these values were converted to mV with the calibration line 

made following the pS electrode calibration procedure.  

 

!!!   = !"#

!!(!
!)

!!"
! (!!)!
!!"!!"

                                                                                                            (1) 

Where: !!!is measured by the pS electrode; Ka2 = 10-7 and Ka2 = 10-13.9 

 

The pS electrode measures the concentration of the S2- species (pS= -log [S2-]), which 

depends on the TDS and pH (equation 1). Hence, an increase in the TDS leads to a 

decrease of the pS values. For practicality, sulfide in this manuscript refers to all sulfide 

species (HS, S2- and H2S), while TDS (all dissolved sulfide species) and pS (S2-) are 

specific determinations of the sulfide species. 

 

5.2.3 pS electrode calibration 

The calibration of the pS electrode followed the procedure described by Veeken et al. 

(2003b), but using a sulfide solution containing the synthetic medium used in the 

bioreactor operation. Approximately 10 mM (320 mg/L) of Na2S were titrated with 1 M 

of HCl, from high (12) to low (2.5) pH values. Two pS electrodes were used during this 

study: the first electrode exhibited a calibration curve that covered a range in voltage 

from 119 mV to 470 mV, while the working range of the second electrode covered from 

353 to 672 mV. Both electrodes did not show significant variations in the repetitions of 

the calibration curve during this work and displayed a correlation coefficient > 0.99 

(data not shown). 

 

5.2.4 PID controller tuning  

The pS electrode output values obtained from the step responses via tuning I and II were 

used to determine the tuning coefficients of the PID control. From these step responses 

the following tuning parameters were determined: 
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Where B is equal to [pSfinal - pS initial], A is equal to [OLRfinal - OLRinitial] and S is the 

slope of the sigmoidal response at the point of inflection. 

 

The Cohen-Coon tuning method (Dunn et al. 2005) was used to provide estimates of the 

PID parameters (!!, !!,  !!) on the basis of the characteristics (equation 2) of the 

experimental step response data: 
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5.2.5 Residence time distribution in the IFB bioreactor 

To discard time delays in the sulfide response due to the hydrodynamic behavior of the 

system, the residence time distribution (RTD) of the IFB bioreactor was determined as 

described by Warfvinge (2009) at a theoretical HRT of 12 and 24 h. The residence time 

distribution curves were determined using LiCl, since this compound is not degraded 

nor adsorbed by microorganisms (Olivet et al. 2005). LiCl was dissolved in small 

amounts of water and then injected at the top of the bioreactor column with a syringe 

over a time as short as possible. The amount of tracer used corresponded to a bulk 

concentration of 30 mg/L in the bioreactor working volume (2.5 L). Samples of the 

effluent were taken at predetermined time intervals until the recovery of the total tracer 

was completed. 

 

5.2.6 Analyses 

COD was measured by the closed reflux method (APHA 2005). Sulfate was measured 

as described by Villa-Gomez et al. (2011). TDS was determined spectrophotometrically 

by the colorimetric method described by Cord-Ruwish (1985) using a 

spectrophotometer (Perkin Elmer Lambda 20). Acetate was measured by gas 

chromatography (GC-CP 9001 Chrompack) after acidification of the samples with 5% 

concentrated formic acid and filtration through a 0,45 µm nitrocellulose filter 

(Millipore). The gas chromatograph was fitted with a WCOT fused silica column, the 
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injection and detector temperatures were 175 and 300 °C, respectively. Methane was 

measured with a gas chromatograph (Gas Chromatograph CP 3800), fitted with a 

PORABOND column Q (25m*0,53mm*10µm) and a TCD detector. The carrier gas 

was helium at 15 psi, the oven temperature was 22ºC, and the injection volume was 500 

µL.  

 

5.3 Results  

 

5.3.1 Sulfide response during start-up of the IFB reactor  

The TDS concentration increased after 9 days of the first change from 0.5 to 1 

gCOD/L*d on day 14. The response time of the TDS concentration to the increase in 

OLR from 1 to 1.5 gCOD/L*d on day 47 took 2 days, reaching a maximum TDS value 

of 618 mg/L. After this maximum value, a strong drop of the TDS concentration to 222 

mg/L was observed and later the TDS concentration began to increase again.  Biomass 

lost from the system on day 89 due to clogging of one of the tubes caused an overflow 

in the reactor column and strongly decreased the TDS concentration (from 400 to 250 

mg/L). The change of the HRT from 24 to 12 h on day 105 did not show noticeable 

changes in the TDS values, while the decrease in the CODin concentration from 1.5 to 

0.5 gCOD/L on day 133 caused the decrease of the TDS to values around 124 mg/L 

after 13 days of reactor operation.  

Figure 5.2. TDS profile during the IFB bioreactor operation at different OLR. 
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5.3.2 Evolution of the biomass activity in the IFB reactor 

On day 40, the SSRA with lactate and acetate as electron donor was 32.5 and 1.7 

gCOD/gVSS*d, respectively, while the SMA was 22.2 gCOD/gSSV*d (Table 5.1). 

After 150 days of the reactor operation (Figure 5.2), the SSRAs with lactate strongly 

decreased (12.5 gCOD/gVSS*d) probably due to the biomass lost on day 89, while the 

SSRA with acetate as electron donor highly increased (16.4 gCOD/gVSS*d). The SMA 

from day 146 onwards was no longer detectable (Table 5.1). The SSRA after 289 days 

of reactor operation notably increased for acetate (37.1 gCOD/gVSS*d) while for 

lactate, the increase was not that significant (Table 5.1). 

 

Table 5.1. Evolution of the SSRA and SMA in the IFB reactor.  
Time of the reactor 

operation  SSRA lactate SSRA acetate SMA  
(d) (gCOD/gVSS*d) 

40 32.5 1.7 22.23 
146 12.5 16.4 ND 
289 16.7 37.1 ND 

ND: Not detectable 

 

5.3.3 Response of the system to changes in OLR (tuning I and II) 

In tuning I, the step changes in the OLR from 0.5 to 1 and from 1 to 0.5 gCOD/L*d 

increased and decreased, respectively the sulfate removal efficiency (Table 5.2), while 

the COD removal efficiency maintained similar values despite the OLR change (>80%).  

Prior to the first step response, no acetate could be detected, while the change in OLR to 

1 and later to 0.5 gCOD/L*d caused an accumulation of acetate in the system to 28.2 

and 52.2 mg/L, respectively.  The TDS concentration increased from 113.4 to 333.1 

mg/L with the change in OLR from 0.5 to 1 gCOD/L*d. The return to the initial OLR 

conditions yielded a different TDS concentration value at the steady state (152.8 mg/L) 

as compared to the value obtained on the first step change (Table 5.2).   
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Table 5.2 Steady state values in the IFB bioreactor prior to and after the change in OLR 

for tuning I and II (± deviation error, negligible for pS and pH). 

 
 

The step response from 0.5 to 1 gCOD/L*d for tuning II caused an increase in both the 

TDS concentration (131 to 160.8 mg/L) and the sulfate removal efficiency (39 to 

63.2%), while the return to the initial OLR value (0.5 gCOD/L*d) further increased 

both values (5. 2). The acetate concentration increased from 37.5 to 121.6 mg/L after 

the change in the OLR, while upon return to the initial OLR, acetate values were similar 

to the ones obtained prior to the step responses. The COD removal efficiency did not 

show noticeable changes after the changes in the OLR and only a slight increase 

(75.9%) was observed once the OLR returned to its initial value.  The mean residence 

time in the IFB bioreactor for the theoretical HRT of 24 and 12 h was 21.7 and 11.15 h, 

respectively (Table 5.2). Figure 5.3 shows the RTD analysis of the IFB bioreactor that 

resembled the hydrodynamic behavior of a completely mixed reactor characterized by a 

rapid increase in the Li concentration in time followed by a slow, steady tail indicates a 

pulse moving through a completely mixed reactor (Figure 5.3). This behavior was 

confirmed for the IFB bioreactor operation at an HRT of 12 and 24 h.   

OLR  (gCOD/L*d) 0.5 1 0.5 0.5 1 0.5
COD (g/L) 0.5 1 0.5 0.5 0.5 0.5
HRT (h) 24 24 24 24 12 24

Mean residence time (h) 21.7 21.7 21.7 21.7 11.15 21.7

SO4
-2 removal (%) 39.3 ± 6.3 56.4 ± 13.9 24.6 ± 6.5 39.0 ± 5.4 63.2 ± 3.5 76.9 ± 15.1

COD removal (%) 86.3 ± 6.1 78.6 ±14 83.4 ± 6.5 63.8 ± 13.9 59.3 ± 5.5 75.9 ± 0.4
Acetate (mg/L) 0 28.2 ± 7.7 52.2 37.5 ± 6.5 121.6 ±20.1 34.2 ± 13.2

TDS (mg/L) 113.4 ± 15.68 333.1 ± 58.1 152.8± 6.5 131.0 ± 6.31 160.8 ± 12.8 207 ± 21.4
pH 6.8 7 6.9 6.9 6.7 6.8
pS 8.76 7.6 8.05 11.07 9.97 9.32

pS (mV) -567 -592.7 -582.5 -513.7 -538.8 -553.8

Tuning I Tuning II
Change in CODin Change in HRT
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Figure 5.3 Residence time distribution profile in the IFB reactor. 

 

5.3.4 pS electrode response to changes in OLR (tuning I and II)  

The step response for tuning I displayed an exponential increase in the sulfide 

concentration that lasted 4 days with no significant time delay and reached a steady 

state pS value of 7.6 after the OLR increment (Figure 5.4a). When the OLR was again 

decreased to 0.5 gCOD/L*d, the pS response time was longer and the pS values at 

steady state (pS 8.0) were different compared to ones at the beginning of the 

experiment. Time delay in the response of the system was less than 24 h and the 

decrease of the sulfide concentration for this tuning strategy lasted 2 days until the 

values reached a steady state. 

Tuning II showed a time delay of approximately 7 days and an exponential curve that 

lasted 15 days following the OLR step change (Figure 5.4b). The sulfide concentration 

slowly increased and consequently, the pS decreased from 11.1 to 9.9. The return of the 

HRT from 12 to 24 h showed a faster response in the system with a time delay of less 

than one day, reaching a steady state after 2 days. Surprisingly, the return to the initial 

conditions led to a further increase in the sulfide concentration giving a new pS value of 

9.3 at steady state.  During this experiment, strong drops in the pS values (sharp picks) 

were observed on day 7 and 30 due to fouling of the ion selective membrane that 

reduced its sensitivity. However, the electrode sensitivity was recovered immediately as 

this fouling was not-adhesive and thus, the bioreactor liquor contact cleans the 

membrane.  
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The pS signal showed in general negligible fluctuations in the signal for tuning I, while 

for tuning II, the signal fluctuated prior to the step change in OLR. This was due to 

small variations in the pH (Figure 5.3b), which induced changes in the S2- species 

(Equation 1).   

 

 
Figure 5.4 Step responses of the pS electrode response for a) tuning I and b) tuning II. 

 

5.3.5 Tuning coefficients for the acquisition of the PID parameters 

The pS response following the tuning I and II strategies (Figure 5.4) were analyzed for 

the acquisition of the tuning coefficients (Equation 2-Table 5.3) and PID parameters 

(Equation 3-Table 5.3). For comparison purposes, the response time and the ΔTDS are 

also included in Table 5.3. Tuning I showed the smallest response time with an 

important increment in the sulfide concentration for a step change in the OLR from 0.5 

to 1 gCOD/L*d (Table 5.2), while in tuning II, a longer response time and a lower 

sulfide increment was observed for the same step change (Table 5.3).  

The comparison of the coefficients obtained for tuning I and II show that the sulfide 

load change (K) for an increment in the OLR is higher in contrast to the values obtained 

when the OLR is decreased for both tuning strategies (Table 5.3). Furthermore, the 

value obtained in tuning II for a decrease in the OLR was positive, in contrast with the 



Chapter 5 

 112 

other K parameters. This was due to the increase in the sulfide concentration, despite 

the decrease in the OLR that lowers the substrate available for sulfate reduction. τ 

values display differences that are due to the differences in slope (Equation 1) of the 

exponential curve (Figure 5.4). The longest time delay was observed in tuning II for an 

increase in the OLR, while the shortest time delay was obtained in tuning I for a 

decrease in OLR (Table 5.3). 

The comparison of the PID parameters showed that because of the negligible time delay 

(td), especially for the OLR decrease in tuning I, the contribution of the differential and 

integral part to the PID controller parameters was small, while the proportional gain 

(Kc) parameter was remarkably high, especially for the decrease in OLR as compared to 

the OLR increase in both tuning strategies (Table 5.3). 

 

Table 5.3 Response time, TDS increment (ΔTDS), tuning coefficients and PID 

parameters obtained with tuning I and II. 

 
 

 

5.3.6 Analysis of the pS electrode signal  

Figure 5.5a shows a typical pS electrode response to a change in TDS concentration in 

the IFB bioreactor operation in the TDS concentration range between 100 and 50 mg/L. 

The pS response was consistent with the variations in TDS concentration and the small 

jumps in the signal on days 3.5, 6.5, 13 and 14.9 were due to small variations in pH 

(data not shown). Variations in the TDS concentration above 200 mg/L did not induce 

noticeable changes in the output pS value compared to the TDS concentrations below 

200 mg/L. A similar trend was found in the pS response at low and high sulfide 

concentrations when the pS signal was tested to check its reliability at constant pH for 

biogenic and chemically produced sulfide (Figure 5.5b and 5.5c). The pS values show a 

OLR step change  (gCOD/L*d) 0.5-1 1-0.5 0.5-1 1-0.5
Response time (d) 4 2 15 2

ΔTDS 206.46 -180.3 29.8 46.17
K (L*d/g) -2.23 -0.68 -2.18 1.27
τ (d) 30.83 -51.79 132.40 879.88
td (d) 0.29 0.04 2.00 0.40

Kc -63.71 2420.57 -40.60 2311.62
τi 0.71 0.10 4.89 0.98
τD 0.10 0.01 0.73 0.14

Tuning I Tuning II (A)
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logarithmic response with an exponential increase from approximately 0 to 100 mg/L of 

TDS (Figure 5.5b).  Above this concentration, the pS values differed considerably 

between the biogenic and chemically produced sulfide as well as for the theoretical 

sulfide concentration (Figure 5.5c). This is because the differences in sulfide sampling 

between the sulfide sources (inside the bioreactor and in open bottles) are more 

noticeable at higher sulfide concentrations as the voltage response obtained from the S2- 

concentration is less pronounced due to its logarithmic behavior (Equation 1) and thus, 

small variations in sulfide concentration highly affect the pS values. 

 

 
Figure 5.5 a) Typical response of the pS electrode to the sulfide production increment in 

the IFB bioreactor, b) Relationship between pS and TDS concentration c) Relationship 

between S2- (M) and TDS concentration. 

 

5.4 Discussion  

 

5.4.1 Bioreactor response to tuning strategies applied  

This study shows that the sulfide concentration in bioreactors can be controlled by the 

variation of the CODin concentration (high ΔTDS) or the HRT (low ΔTDS) (Table 5.2) 

a) 

c) 

b) 
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using the direct measurement of the sulfide species (S2-) with a pS electrode (Figure 

5.4). The PID parameters from the different step response experiments with both tuning 

strategies (Table 5.2) provide a baseline to evaluate the potential of the PID controller 

for its application in SRB bioreactors and to foresee, the parameters that need to be 

adapted or included (Heinzle et al. 1993). 

At the beginning of the IFB reactor operation (Figure 5.2), time delays in the system 

after a change in the OLR occurred due to substrate utilization by microbial groups 

other than SRB such as methanogenic bacteria (Table 5.1) and lactate fermentation to 

acetate (Oyekola et al. 2012). However, the favorable thermodynamic (Widdel 1988) 

and operational conditions (Oyekola et al. 2009) for sulfate reduction that outcompeted 

the methanogenic activity (Table 5.1) decreased the response time at the latter stages of 

the IFB reactor operation. In addition, the increase in acetate utilization by SRB (Table 

5.1) could contribute to the faster response time (Figure 5.2). 

On the other hand, the differences in COD and sulfate removal efficiencies, sulfide and 

acetate production between tuning I and II for a positive or negative step change in OLR 

(Table 5.2) suggest that different metabolic pathways accounting for sulfate reduction 

and organic matter oxidation were induced (Dunn et al. 2005) depending on the tuning 

strategy applied. In addition, several days (response time) were needed to achieve pS 

steady values in both tuning strategies (Figure 5.4 and Table 5.3) that can destabilize the 

bioreactor due to an excesive control action needed. The substrate utilization by 

microbial groups other than SRB such as lactate fermentation to acetate (Oyekola et al. 

2012) can be favored with the changes in OLR and can also increase the response time 

even though acetate utilization by SRB occurred, since every degradation step delays 

the final sulfide concentration at steady state. The decrease of the HRT (tuning II) 

caused the acetate accumulation in the bioreactor (Table 5.1), while longer HRT 

allowed acetate utilization (Table 5.2). This is in agreement with Zhang and Noike 

(1994) who demonstrated that the HRT is a significant factor in the selection of the 

predominant microbial species, where acetogens were found to be particularly sensitive 

to changes in HRT.  

The measurement of the acetate concentration as an additional output measurement is 

an option to adapt the PID controller for its application in bioreactors to control the 

sulfide concentration. This option has been applied by Alvarez-Ramirez et al. (2002) in 

anaerobic bioreactors to regulate the effluent COD concentration by using the volatile 

fatty acids concentration (including acetate) as a secondary measurement in the control 
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gain configuration that is incorporated into the feedback loop scheme of a traditional PI 

controller to enhance the robustness of the control scheme with respect to influent 

disturbances. Another adaptation the PID parameters can be obtained from the 

information of the dynamics of the bioprocess such as reaction pathways and kinetics as 

well as mass balances, which are always required in biological systems due to their non 

linearity and non stationary characteristics (Steyer et al. 2000). This information can 

help to predict the response time of the system to the change applied and thus prevent 

excessive control action. 

 

5.4.2 Tuning I strategy- advantages and drawbacks for sulfide control 

The increase of the OLR following tuning I strategy (a reaction of the CODin) showed 

rapid responses (Figure 5.4a), a high sulfide load change and almost negligible time 

delays (Table 5.3). However, COD overload and hence, substrate inhibition (Qatibi et 

al. 1990) as well as sulfide toxicity (O'Flaherty and Colleran 2000; Reis et al. 1992) 

may occur. Therefore, maximum permissible CODin loads should be considered in the 

controller for obtaining the desirable sulfide concentration without risking loss of the 

biomass due to inhibition.  This optimization in the controller has been previously 

reported in anaerobic process to avoid pH inhibition due to volatile fatty acids (Ryhiner 

et al. 1993).  

Contrary to the important increment in the sulfide concentration when the change in the 

OLR is positive (Figure 5.4a), decreasing the OLR via tuning I displayed a slower 

response time (Figure 5.4a) and lower sulfide load changes (Table 5.3), and thus, a 

higher Kc (Table 5.3). This means that the sulfide production could be maintained under 

similar conditions despite the decrease in the CODin concentration that lowers the 

substrate available. This was not related to an increase in the sulfate reduction rate 

(Table 5.2) nor a more efficient use of the substrate available as the COD removal 

efficiency prior to and after the step response for a positive and negative OLR change 

was similar (Table 5.2). It is also not due to a potential difference between the 

theoretical and real HRT that could delay the sulfide response to the change in OLR 

(Table 5.2 and Figure 5.3). Therefore, it is most probably related to the consumption of 

storage products accumulated during the COD increase. Indeed, SRB has the capacity to 

accumulate storage products under feast-famine conditions (Hai et al. 2004), which can 

be promoted with the increase and decrease of the OLR such as in this study. The step 
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responses can originate periods of excess of carbon alternated with substrate limitation, 

favoring the selection of biomass with substrate storage capacity (Serafim et al. 2008). 

This possibility should thus be considered as it can affect the control of the sulfide 

concentration in bioreactors due to non-accounted substrate sources. 

 

5.4.3 Tuning II strategy- advantages and drawbacks for sulfide control 

An increment in the OLR via the tuning II strategy displayed a slower response time 

(Figure 5.4b) and less strong changes in the sulfide load as compared with tuning I 

(Table 5.3). Thus, tuning strategy II yielded to higher integral and derivative parameters 

(Table 5.3). This was due to the insufficient sulfate reducing activity (for lactate: 16.7 

gCOD/gVSS*d, for acetate: 37.1 gCOD/gVSS*d) and SRB biomass (data not shown) to 

overcome the OLR increment applied. In addition, increasing the OLR via decreasing 

the HRT can yield to a sulfide and biomass washout (Kaksonen et al. 2004). In contrast, 

longer HRTs (a decrease in the OLR) caused accumulation of sulfide (Figure 5.4b and 

Table 5.2) as well as an increment in the COD and sulfate removal efficiencies (Table 

5.3). Indeed, longer residence times allow for more SRB bioconversion, and thus, a 

reduction of the sulfide concentration is not observed (Figure 5.4b). Therefore, another 

strategy to decrease the sulfide concentration in the IFB bioreactor should be considered 

since both tuning strategies failed to achieve this (Figure 5.4). In addition, the PID 

controller parameters obtained for this action (Table 5.3) can become the bioreactor 

unstable due to the high values of the Kc that results in a large change in the output 

(Stephanopoulos 1984). One strategy to decrease the sulfide concentration is to dilute 

the effluent up to the required level for metal precipitation. This strategy is widely used 

as control action for obtaining the effluent quality criteria (Metcalf and Eddy 2002). 

Nevertheless, for this electron donor-deficient type of wastewaters (Papirio et al. 2012), 

this strategy would imply substrate losses, which contradicts one of the aims of sulfide 

control in bioreactors.  

 

5.4.4 Validation of the pS electrode response  

This study shows that the online measurement of the sulfide concentration via the pS 

can be used for the control of the sulfide concentration in SRB bioreactors. The use of 

the pS electrode in bioreactors gives an advantage over non-online methods for sulfide 

determination in bioreactors since the sulfide in the system is measured inside the 

bioreactor avoiding volatilization or oxidation (Hu et al. 2010) that causes a decrease of 
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the reported sulfide values (Table 5.2), in contrast with the fairly stable pS reading 

values (Figure 5.4).  

The pS electrode response is highly sensitive to pH variations (Figure 5.5b), as it 

influences the predicted values of the sulfur species (Beneš and Paulenová 1974; Al-

Tarazi et al. 2004) and  its voltage response is also less pronounced at high sulfide 

concentrations; (Figure 5.5a). The former is due to the logarithmic response of the pS 

values (Equation 1) to the changes in the TDS concentration (Figure 5.5b). Therefore, 

errors in TDS measurements above 100 mg/L are more likely to occur when the S2- 

species is followed, as the solution becomes saturated in H2S and therefore the 

maximum S2- concentration is not attained (Petrucci and Moews 1962). 

Notwithstanding these characteristics,  the pS electrode readings are valid for utilization 

in the control of  SRB bioreactors as high sulfide concentrations in the bioreactor are 

not desirable since: 1) the H2S can inhibit SRB (Chen et al. 2008; Kalyuzhnyi and 

Fedorovich 1998), 2) the necessary sulfide amount to precipitate metals for their 

recovery from wastewaters is rather  low as metal concentrations in mine wastewaters 

range between 10 to 250 mg/L (Papirio et al. 2012). Thus, the sulfide concentrations 

remain below the pS sensitivity range limit. 

 

5.5 Conclusions 

 

• The sulfide concentration in bioreactors can be controlled by the variation of the CODin 

concentration (high ΔTDS) or the HRT (low ΔTDS) depending on the desired evolution 

of the sulfide concentration. The PID parameters obtained via the manipulation of the 

CODin concentration are adequate for the increase of the sulfide concentration. If the 

aim is to decrease the sulfide concentration, a dilution strategy can be applied for sulfide 

washout of the system. 

• Delays in the response time and a high control gain were the most critical factors 

affecting the application of a control strategy in bioreactor that were caused by the 

induction of different metabolic pathways accounting sulfate reduction including the 

accumulation of storage products and substrate utilization.  

• The pS electrode response is adequate for its application in controlling sulfate reducing 

bioreactors. However, pH variations and high sulfide concentrations should be carefully 

observed for correction of the pS values displayed. 
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Abstract 

The characteristics (morphology, mineralogy and solid-liquid phase separation) of the Cu and 

Zn precipitates formed with sulfide produced in a sulfate reducing bioreactor were studied at 

pH 3, 5 and 7. These characteristics were influenced by the dissolved organic matter and 

macronutrients present in the bioreactor liquid. The precipitates formed at pH 7 display faster 

settling rates, better dewaterability and higher concentrations of settleable solids as compared 

to the precipitates formed at pH 3 and 5. These differences were linked to the agglomeration 

of the sulfidic precipitates and co-precipitation of the phosphate added to the bioreactor 

influent. The Cu and Zn quenched the intensity of the dissolved organic matter peaks 

identified by fluorescence-excitation emission matrix spectroscopy suggesting a binding 

mechanism that decreases supersaturation, especially at pH 5. X-ray absorption fine structure 

spectroscopy analyses confirmed the precipitation of Zn-S as sphalerite and Cu-S as covellite 

in all samples, but also revealed the presence of Zn-sorbed on hydroxyapatite. These analyses 

further showed that CuS structures remained amorphous regardless the pH, whereas the ZnS 

structure was more organized at pH 5, as compared to the ZnS formed at pH 3 and 7, in 

agreement with the cubic sphalerite type structures observed through scanning electron 

microscopy at pH 5. 
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6.1 Introduction 

 

Mining activities all over the world result in pollution problems due to the emissions of acid 

mine drainage (AMD) into the environment (Gazea et al. 1996; Johnson and Hallberg 2005). 

AMD results from the transformation of pyrite and other sulfide minerals into a leachate 

containing dissolved metals, sulfate and acidity upon their exposure to oxygen and water in 

the presence of sulfur oxidizing bacteria. The water pH progressively decreases, resulting in 

the mobilization of metals from the mine wastes to water streams (Neculita et al. 2007). 

These metal containing waste streams need to be treated for environmental reasons but also 

for the recovery of valuable metals.   

Recovery of metals as metal sulfide precipitates is an appealing alternative to the 

conventional treatment methods such as hydroxide precipitation for several reasons: 1) the 

formation of highly insoluble salts even at pH values below 7 (Brooks 1991); 2) possibility of 

selective metal recovery due to the differences in solubility product of the various metal 

sulfides over the pH range (Sampaio et al. 2009); 3) better settling, thickening and 

dewatering characteristics compared to hydroxide-treated sludge (Lewis and Swartbooi 2006; 

Esposito et al. 2006; Djedidi et al. 2009) and 4) direct reuse of Cu and Zn precipitates as 

many metal refining operations are designed for processing these metal sulfide ores (Brooks 

1991). Despite these advantages, the use of metal sulfide precipitation for metal recovery is 

still limited by the challenging solid-liquid phase separation, since the predominance of 

nucleation over crystallization favours the formation of small precipitates known as fines that 

are difficult to settle (Lewis 2010). 

Biogenic sulfide produced by sulfate reducing bacteria (SRB) is an alternative to chemically 

produced sulfide to precipitate and recover metals from AMD. The sulfate present in most 

AMD streams is reduced to sulfide by SRB when an organic electron donor or hydrogen is 

added (Kaksonen et al. 2003; Esposito et al. 2006; Gallegos-Garcia et al. 2009; Kaksonen and 

Puhakka 2007). Investigations on metal precipitation using biogenic sulfide have mainly 

focused on metal removal efficiencies, with little attention given to the morphology and 

mineralogy of the metal sulfide precipitates that determine the ability to separate the 

precipitates from the wastewaters. Compounds commonly present in the biogenic sulfide 

such as organics and nutrients supplied for bacterial growth affect the size and structure of 

the metal sulfide precipitates (Esposito et al. 2006; Sampaio et al. 2009; Bijmans et al. 2009). 

Knowledge regarding the influence of these key components on the metal precipitate 
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characteristics such as particle size and solid-liquid separation is important to optimize the 

metal recovery efficiency.  

The objective of this study was thus to determine the characteristics of the metal (Cu and Zn) 

precipitates formed with biogenic sulfide. Metal precipitation experiments using biogenic 

sulfide were performed for the evaluation of the efficiencies in solids-liquid separation trough 

particle size, settling rate and dewaterability analysis at different pH values. Mineralogical 

analysis and dissolved organic matter characterization were carried out to correlate the results 

with the conditions tested. X-ray absorption fine structure (XAFS) spectroscopy was used as 

a probe of the local atomic structure of the metal sulfides since they crystallize poorly and/or 

are found immerse into biological products (Lenz et al. 2011; Prange and Modrow 2002) and 

therefore, species-specific analytical methods are required.  

 

6.2 Materials and methods 

 

6.2.1 Metal precipitation experiments  

Three sets of metal precipitation experiments (A, B, and C) using biogenic sulfide were 

tested at three different pH values (3, 5 and 7) keeping the metal to sulfide ratio constant at 

stoichiometric values with only Zn (Experiment A), under excess of metals (Experiment B) 

and marginally under excess of sulfide with Zn and Cu (Table 6.1). The experiments were 

performed at room temperature (23 ± 2 °C) in serum bottles of 117 mL containing 100 mL of 

biogenic sulfide and 17 mL of a Zn (A) or Cu-Zn (B and C) concentrated solution to obtain 

the final metal concentration desired in the experiment (Table 6.1). Once the biogenic sulfide 

was poured into the bottles, the headspace was bubbled with nitrogen gas for 5 to 10 seconds 

to strip out the air prior to adding the metal solution to avoid oxidation. The pH was adjusted 

by adding the required amounts of 1.0 M HCl or 1.0 M NaOH. After the pH adjustment, the 

sulfide concentration was measured and the metal solution added. Experiments were done in 

triplicate. The lactate, acetate and sulfate concentration of the biogenic sulfide used on each 

experiment is also shown in Table 6.1. 

The biogenic sulfide was taken from an inverse fluidized bed (IFB) reactor described by 

Villa-Gomez et al. (2011), operating at an organic loading rate of 2 gCOD/L*day with a 

COD/SO4
2- ratio of 0.67 (mol/mol) and at an HRT of 24 h. Table 6.1 the IFB reactor influent 

composition. 
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Table 6.1 Composition of the biogenic sulfide used in the batch experiments and composition 

of the bioreactor influent used for biogenic sulfide production. 

 
 

6.2.2 Analyses 

Metal measurements in the liquid phase were done three hours after the start of the 

experiment (A, B and C) to determine metal removal efficiencies from the liquid phase as a 

consequence of a reaction with the biogenic sulfide. Flame spectroscopy (AAS Perkin Elmer 

3110) and furnace spectroscopy (AAS Solaar MQZe GF95) was used after dilution, filtration 

(0.45 µm pore size) and acidification of the samples with concentrated HNO3. Dissolved 

sulfide was determined spectrophotometrically by the colorimetric method described by 

Cord-Ruwisch (1985) using a Perkin Elmer Lambda20 spectrophotometer.  

 

6.2.3 Analyses to the precipitates from experiment C 

Total suspended solids (TSS), non-volatile suspended solids (NVSS) and volatile suspended 

solids (VSS) concentration were determined according to standard methods (APHA 2005). 

The dewatering properties of the precipitates were assessed by the capillary suction time 

(CST) using a CST test kit (Triton CST Filterability Tester, model 200, Triton Electronics 

Ltd., Essex, UK) using standard filter papers and a 18 mm sludge reservoir. The CST value 

recorded was standardized to a TSS concentration of 1 g/L. 

Particle size distribution (PSD) analysis were done following the procedure from Villa-

Gomez et al. (Villa-Gomez et al. 2012) using a particle size analyzer (Microtrac 53500). The 

PSD varied greatly after each instrument run with the same sample, therefore, sonication was 

applied to remove macroscale agglomeration as described by Villa-Gomez et al. (Villa-

Experiment  A  B C KH2PO4 1.47

Sulfide [HS-, S2-] 5 7.2 1.1 NH4Cl    3.74

[Zn2+] 4.7 6.8 0.5 CaCl2·2H2O 0.102

[Cu2+] 0 6.8 0.4 MgCl2·6H2O 0.59

[∑M2+]/[S2-] ratio 1 2 0.8 KCl 3.35

Acetate 4.9 13.1 * C3H5NaO3 20.8

Lactate 10.7 5.3 15.6  Na2SO4 31.2

Sulfate [SO4
2-] 25 20.3 13.7

Composition of the biogenic sulfide (mM): Composition of the  bioreactor influent (mM): 

∑M2+: Metals, *: Below detection limit.
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Gomez et al. 2012). The mean particle size (D50) of each sample was calculated after 

determining the minimum and maximum sizes contributing to the highest peaks. 

Scanning electron microscopy (SEM) was performed on a Jeol JSM-5400 for visual 

characterization of the precipitates at 1, 10 and 100 µm resolution. The precipitates were 

collected with a plastic fine bore Pasteur pipette and placed on an aluminum pin and 

sputtered with carbon. 

A small amount of precipitates was collected and centrifuged at 5000 rpm during 10 minutes 

for mineralogical characterization using XAFS experiments, including X-ray absorption near 

edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) regions. 

The spectra were collected on the DUBBLE beam line BM26A of the European Synchrotron 

Radiation Facility (Grenoble, France) (Borsboom et al. 1998). Spectra were also collected 

from Cu and Zn reference compounds, including ZnS (sphalerite), Zn-acetate and Cu-acetate 

dihydrate. Zn sorbed on apatite and Zn3(PO4)2•4H2O (hopeite) were taken from previous 

experiments of Villa-Gomez et al. (2011). CuS (covellite) and Cu2S (chalcocite) spectra were 

taken from the literature (Parsons et al. 2002; Pattrick et al. 1997) and the EXAFS/XANES 

database of standard materials (http://x18b.nsls.bnl.gov/data.htm).  

The X-ray energy was varied from 200 eV below to 750 eV above the absorption K-edge of 

Zn (9659 eV) and Cu (8984 eV). The sample analysis and data acquisition followed the same 

procedure as Villa-Gomez et al. (Villa-Gomez et al. 2012). Zn spectra were first collected 

followed by Cu spectra. It was observed that the X-ray beam induced photoreduction of Cu in 

the samples, as confirmed by the growing presence of native copper in overexposed samples. 

To avoid this artefact, beam exposure was minimized as much as possible. Also, each sample 

was divided into two parts for EXAFS data collection at the Zn and at the Cu K-edge, 

respectively. In addition, the X-ray beam was defocused while data was collected in a 

cryostat (liquid nitrogen) operated at 80 K.  

EXAFS spectra were normalized using the XAFS software package (Winterer 1997) using 

standard procedures (Farges et al. 2001). A wavelet analysis of the EXAFS spectra was 

performed according to Muñoz et al. (Muñoz et al. 2003) to better define the various atomic 

pairs contributing to the spectroscopic data at the Zn and Cu K-edges. The goal of those 

computations is to display the normalized EXAFS spectrum for each sample (on the X-axis), 

associated to its computed Fourier Transform, FT (on the Y axis) with, in between those last 

two spectra, the computed wavelet diagram. The latter displays 3 dimensions: k-space (like 

the EXAFS), (R+∆) space (like the FT) and the intensity of the wavelet indicated as a 

continuum of greys. 
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Experiment C was repeated to determine the settling rate of the precipitates by transferring 

the whole sample (liquid+solid phase) to Imhoff settling graduated cones. Settleable solids 

were calculated following standard procedures (APHA 2005). The height of the liquid/sludge 

interface was registered every 30 minutes up to 2 h. The results are presented as h/h0 vs time, 

where h is the height of the settled volume at time t(h) and h0 is the height of the settled 

volume at time = 0 h. 

 

6.2.4 Fluorescence-Excitation Emission Matrix (F-EEM) spectroscopy analysis 

F-EEM spectroscopy analysis was used to characterize the dissolved organic matter (DOM) 

changes with the pH and metal addition following the experimental conditions of experiment 

C. The DOM concentration was determined as dissolved organic carbon (DOC) by a total 

organic carbon analyzer (TOC-VCPN (TN), Shimadzu, Japan) on filtrated samples (0.45 µm 

pore size) to adjust the samples to 1 mg/L of DOC before F-EEM spectroscopy analysis. F-

EEM spectra were then obtained using a FluoroMax-3 spectrofluorometer (HORIBA Jobin 

Yvon, Edison, NJ, USA) following the procedure described in Maeng et al. (Maeng et al. 

2011). The 3-D maps were built using Matlab 7.5 software. Coordinates of the main 

noticeable peaks were established in these maps.  

 

6.2.5 Speciation modeling 

Visual MINTEQ version 3.0 (US EPA, 1999) was used to calculate speciation, saturation 

indices and equilibrium of solid and dissolved phases in all the experiments (A, B and C). 

The influent composition used in the bioreactor and the effluent lactate, acetate and sulfate 

concentration present in the biogenic sulfide (Table 6.1) were used as input in the model. The 

pH was fixed while for each run, the model calculated the ionic strength. The program was 

set to give information of the precipitation efficiencies and mineral identity of the precipitates 

formed at equilibrium as well as the saturation index of the theoretical precipitates formed 

(oversaturated species) prior to (predecessor) and at equilibrium. The saturation index of the 

oversaturated species refers to the logarithm of the ion activity product minus the logarithm 

of the solubility product.  
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6.3 Results 

 

6.3.1 Metal removal/precipitation efficiencies 

 Figure 6.1a shows the Zn removal efficiency in the batch experiments versus the predicted 

precipitation efficiency at equilibrium obtained with the speciation model. The Cu removal 

efficiency in the precipitation experiments was always high (>88.1%) as in the calculated 

model despite the differences in pH and biogenic sulfide compounds concentration. 

Therefore, the Cu removal efficiencies in the experiments are only shown in the supporting 

information. In contrast, the Zn removal efficiency as a function of pH showed considerable 

fluctuation, ranging from 5.9 to 94.6% (Figure 6.1a). In the experiments A, in which no Cu 

was present, the Zn removal efficiency was low despite the sufficient stoichiometric sulfide 

concentration for ZnS precipitation (approximately 6% at pH 3 and 50% at pH 5 and 7). In 

the experiments B, in which both Zn and Cu were present in equimolar quantities, the Zn 

removal efficiency was 7.4, 93 and 94.6% at pH 3, 5 and 7, respectively. At pH 3, the 

measured removal efficiency (7.4% ±3) fairly agreed with the precipitation efficiency 

calculated using the speciation model (Figure 6.1). In contrast, at pH 5 and pH 7, measured 

values were 2 to 3 times higher than the predicted precipitation efficiency by the speciation 

model, suggesting that additional mechanisms than those considered in the model were 

involved in Zn removal. For the experiments C, the Zn removal efficiency was high for pH 3 

and 7 as predicted in the speciation model, while for pH 5 it was notably lower (69.5% 

±13.4).  

The speciation model shows that oversaturated species, and therefore possible precipitates, 

were mainly due to sulfide binding (Figure 6.1b). The main predecessor of the Cu 

precipitates was covellite (Cu(I)S), and for Zn, sphalerite (ZnS) and wurtzite (ZnS). At pH 7, 

a further diversity of predecessor-precipitated species were found, including phosphate 

precipitates as Zn3(PO4)2*4H2O and hydroxyapatite (Ca5(PO4)3(OH)) (Figure 6.1b).  

A proportional increase of the saturation index is observed with the increase of the pH for 

covellite and sphalerite, nevertheless, covellite values are much higher (Figure 6.1b). The 

organic compounds from the biogenic sulfide: lactate and acetate, remained in the dissolved 

state without being involved in the precipitation of neither Zn nor Cu (data not shown). The 

species predicted at the final thermodynamic equilibrium were sphalerite for Zn and covellite 

for Cu in all experiments (data not shown).  

 



Effect of pH on the characteristics of Cu and Zn precipitates produced with biogenic sulfide	
  
 

 
 

129 

 
Figure 6.1 A) Zn removal efficiencies in the batch experiments and their standard deviations 

versus the predicted precipitation efficiencies at equilibrium in the speciation model and B) 

saturation index of the oversaturated species predicted in the speciation model. Data labels 

are given for the saturation index of covellite and sphalerite. 

 

6.3.2 Metal precipitates characterization 

6.3.2.1 Particle size and morphology 

The measured PSD of the samples showed multiple D50 peaks. Figure 6.2 shows the volume 

fractions of these peaks versus their position in the PSD. At the pH values tested, the majority 

of the peaks fall in the range of 0.5 to 7 µm, while larger D50 peaks are observed at pH 3 and 

5 that are probably loosely bound aggregates. At pH 7, three peaks were identified around 

0.5, 3 and 7 µm. A more heterogeneous precipitates with respect to size were observed at pH 

3 and 5 with peak values ranging from 5.6 to 35.6 µm and from 0.5 to 132 µm, (data not 

shown) respectively. 

 

 
Figure 6.2 Volume fractions of the identified peaks in the PSD of the precipitates formed at 

pH 3, 5 and 7 in experiments C. 
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The SEM images of the solids collected at the three pH values tested showed aggregation of 

particles with no crystal forms observable at pH 7 (Figure 6.3a). At pH 5, a large number of 

small cubic crystals over a wide range of sizes below 10 µm are observed, but no aggregation 

(Figure 6.3b). At pH 3, a different aggregation characteristic is observed as compared with 

the SEM images of the precipitates formed at pH 7, where the precipitates agglomerated as 

clumps with smooth surface (Figure 6.3c).  

 

 
 

Figure 6.3 SEM pictures of the precipitates formed at pH: a) 7, b) 5 and c) 3 at 10 µm 

magnification (zoomed picture B at 1 µm magnification). 

 

6.3.2.2 Mineralogical analysis of the Zn and Cu precipitates 

The Zn K-edge XANES spectra for the precipitates at the three pH values tested suggest the 

presence of Zn-S compound as sphalerite (Figure 6.4). The spectroscopic similarities with 

sphalerite are highest at pH 5, where XANES features A to E are almost identical, while at 

pH 3, these features are in a lesser extent. In contrast, at pH 7, features A to E are much 

broader as compared to sphalerite, thus suggesting the presence of a much less ordered local 

structure in the Zn-S pairs. The feature A is remarkably different, indicating a contribution 

from another Zn environment (Figure 6.4). At the same pH, the feature E is slightly shifted 

towards lower energies, suggesting the presence, in that sample, of minor amounts of Zn-O 

environments, as in Zn-sorbed hydroxyapatite, Zn:Ca5(PO4)3•(OH) (Figure 6.5). 

a b c 
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Figure 6.4 Zn K-edge XANES spectra for selected model compounds (ZnS sphalerite and Zn 

sorbed on apatite) as compared to the samples of the precipitates formed at pH 3, 5 and 7. 

Capital and small letters indicate the main features of the reference compounds. 

 

The wavelet diagrams computed for the various Zn K-edge EXAFS spectra collected for this 

study as well as for the ZnS model compound (Figure 6.5) show, accordingly, first 

neighbours S as an elongated spot centered near 7 Å-1 (Muñoz et al. 2003). Hence, Zn-S pairs 

are identified in all batch samples, as in sphalerite (Figure 6.4 and 6.5). Due to their relatively 

higher backscattering amplitude, second neighbours Zn are characterized by a spot centered 

at slightly higher k-values, namely around 8 Å-1 (Muñoz et al. 2003). These next-nearest Zn 

neighbours are only present for pH 7 and 5, while for pH 3, those contributions are, if 

present, too weak and/or disordered to be detected by EXAFS spectroscopy (Figure 6.5) thus 

suggesting that these precipitates are somewhat amorphous. In contrast, ZnS at pH 5 shows 

the presence of next-nearest Zn neighbors and thus, a more crystallized structure, where the 

presence of significant amounts of colloidal and/or aperiodic and/or amorphous phase is not 

observed.  Contrary to the suggestions on the Zn XANES spectra (Figure 6.4), no significant 

contribution from O first neighbours around Zn was observed at pH 7. This is due to the fact 

that those Zn-O pairs must be too highly disordered to be detectable in the EXAFS region, 

whereas disorder effects are much less destructive in the XANES region (Farges 2001). 
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Figure 6.5 Wavelet analyses of the normalized Zn K-edge EXAFS spectra for sphalerite (top 

left) as compared to the samples of the precipitates formed at pH 3, 5 and 7. The spots are 

labelled for the corresponding atomic pairs. The wavelet modulus ranges from zero (white) to 

its maximum value (black). 

 

The XANES spectra at the Cu-K edge for all the samples (Figure 6.6) showed close to that 

for covellite when compared the feature A-F from the reference compounds (Cu(I)2S 

(covellite) and Cu(I)S) (chalcocite), while the pre-edge features related to Cu(0) (foil) and 

Cu(II) (ac) (labelled a, b and c on Figure 6.6; (Farges et al. 2006)) are not visible in the three 

batch samples. In particular, the XANES spectrum for the pH 5 sample is the closest to 

covellite. Despite Cu is also monovalent and coordinated by sulfide first neighbours, the 

speciation of Cu in the samples at pH 3 and 7 is slightly different from pH 5, probably as a 

result of radial distortion (Farges et al. 2006).  
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Figure 6.6 Cu K-edge XANES spectra for selected model compounds containing either 

Cu(0)(as native copper), Cu(I) (as sulfides) and Cu(II) (as an organic-oxide) as compared to 

the samples of the precipitates formed at pH 3, 5 and 7. Capital and small letters indicate the 

main features of the reference compounds. 

 

Figure 6.7 shows the wavelet diagrams computed for the various Cu K-edge EXAFS spectra 

collected for this study as well as for models compounds of Cu(0), Cu(I) and Cu(II). The 

wavelet diagrams confirm that the Cu-containing precipitates at all pH values are made 

primarily of Cu(I)-sulfides, with little or no forms of Cu(0) nor Cu(II). The lack of significant 

amounts of native Cu(0) confirms the absence of photoreduction artefacts that could have 

affected our measurements. The lack of Cu(0) and Cu(II) is also consistent with the absence 

of Cu and O first neighbours, in inorganic or organic form, around Cu in the samples. As for 

the XANES spectra, the analogies with covellite are the highest, with Cu-S pairs at 1.9 Å on 

the (R+∆) axis and Cu-Cu pairs between 3 and 4 Å. Those uncorrected distances correspond 

to ~ 2.2 and 3.2-3.8 Å for Cu-S and Cu-Cu pairs in covellite (Goh et al. 2006). Therefore, the 

predominant Cu speciation in all samples is covellite despite that the Cu-Cu pairs appear less 

intense in the precipitates of this study (Figure 6.7), thus suggesting a more disordered local 

structure (amorphous) around Cu. 
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Figure 6.7 Wavelet analyses of the normalized Cu K-edge EXAFS spectra. The top three are 

reduced forms of Cu, namely native copper (left), covellite (middle) and chalcocite (right). 

The middle section show the samples of the precipitates at pH 3, 5 and 7. The lower three 

wavelets correspond to oxidized compounds of Cu, namely Cu-acetate dihydrate (left), 

azurite, a copper hydroxycarbonate (middle) and tenorite, CuO (right). The various Cu-X 

pairs (where X=O, S, Cu, C) are shown. The wavelet modulus ranges from zero (white) to its 

maximum value (black). 

 

6.3.3 Influence of pH on the solid-liquid phase separation  

The solid-liquid phase separation characteristics of the metal precipitates were pH-dependent 

(Figure 6.8). The settling rate after metal addition showed a similar decrease rate behavior in 

the dimensionless height of the solid/liquid interface but higher settling velocity for the 

precipitates formed at pH 7, followed by an increase in height at the end of the experiment 

due to the thickening of the sludge (Figure 6.8a). 

The metal precipitates formed at pH 7, showed a faster settling rate (Figure 6.8a), more 

settleable solids and better dewaterability (Figure 6.8b) as compared to the other pH values 
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tested. The increase in pH from 3 to 7 increased the settleable solids from 5.1 to 9.4 mL/L 

and decreased the CST from 59 to 33 ms. The settleable solids were composed of inorganic 

solids (NVSS), most probably due to the metal precipitation, but also contained a 

considerable amount of organic matter as observed in the VSS (Figure 6.8b), especially at pH 

5 (128 mg/L). At pH 7, the precipitates contained a higher amount of NVSS (217.7 mg/L) as 

compared to the other precipitates that could be linked to a higher amount of precipitated 

species as predicted by the speciation model (Figure 6.1b). 

 

Figure 6.8 A) Settling rate and B) dewaterability (including VSS and NVSS concentrations) 

of the precipitates produced at pH 3, 5 and 7 in experiment C.  

 

6.3.4 Influence of pH on metal quenching by fluorescencent dissolved organic matter  

Four main peaks were identified by the F-EEM spectroscopy analysis in the biogenic sulfide 

suspensions prior to the metal addition (A, B, C and D) with higher intensities at pH 7 (Table 

6.2). The peaks were detected at excitation/emission wavelengths of 270-280 nm/312-354 nm 

(A), 270 nm/298-336 nm (B), 370-410 nm/450-454 nm (C) and 270 nm/452-454 nm (D). The 

identified peaks were located in the humic (peak C) and fulvic (peak D) acid-like region and 

in the soluble microbial byproducts-like region (A and B) (Chen et al. 2003). Peak A and B 

location from this study have been identified for extracellular polymeric substances (EPS) in 

anaerobic methanogenic sludge (Sheng and Yu 2006; Ni et al. 2009) as well as in anaerobic 

sludge sulfate/ethanol rich wastewater (Bhatia et al. 2013). 

Prior to metal addition to the biogenic sulfide suspensions, peaks A and B had similar 

intensities at all the pH values tested, whereas the intensity of the peaks C and D decreased 

markedly as the pH level decreased (Table 6.2). The addition of metals to the biogenic sulfide 

suspensions induced a notable decrease in the fluorescence signal of all the identified peaks, 

with different intensities depending of the pH value. In addition, peak A location slightly 
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shifted in all samples and new peaks were observed near peaks A and B for all pH values as 

well as for pH 7, respectively. The intensity of the peaks C and D highly decreased after 

metal addition for pH 3 and 5, while for pH 7, the quench was much weaker. The strongest 

quenched of the peaks intensity after metal addition was observed at pH 5 for all peaks 

(Table 6.2).  

 

Table 6.2 Fluorescence spectral results of the samples at various pH values without and with 

metal addition. 

Em: emission; Ex: excitation and Int: Intensity  

 

6.4 Discussion  

 

6.4.1 Metal removal and solid-liquid phase separation of the metal sulfide precipitates 

This study shows that the bioreactor influent and the DOM produced in the bioreactor 

affected the metal removal efficiencies and solid-liquid phase separation characteristics of the 

metal sulfide precipitates, and their effect was pH dependent. Zn and Cu precipitation was 

mostly ascribed to a reaction with the sulfide species (Figure 6.1b, 3-6). However, 

components present in the biogenic sulfide modified the structure (Figure 6.2 and 6.3), purity 

(Figure 6.1b, 6.4-6.7) and agglomeration of these precipitates, thus affecting their solid-liquid 

phase separation characteristics (Figure 6.8).  

The variations in the metal removal efficiencies (Figure 6.1a) were related to the particle size 

of the metal sulfides. Particle sizes below 0.45 µm, which could not be retained with the filter 

used to determine metal removal efficiencies,  were only observed at pH 5 on the SEM 

Em Ex Int Em Ex Int Em Ex Int Em Ex Int

pH 3 312 280 131.75 298 270 122.75 454 400 2198.4 452 270 1830.9

pH 5 342 280 146.84 298 270 137.06 454 400 2086 452 270 2397.2

pH 7 312 280 136.18 336 280 147.04 454 400 3781.6 452 270 2914.8

pH 3 336 270 118.39 324 270 111.12 450 410 506.55
344 280 119.35

pH 5 340 280 80.1 406 270 79.18 452 370 43.42 454 270 60.44
312 280 69.01

pH 7 308 280 83.53 298 270 97.86 454 410 2395.9 454 270 1992.8
354 280 67.52 324 270 69.19

Peak A Peak B Peak C Peak D

Samples prior metal addition

Samples after metal addition
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images (Figure 6.3b), while at pH 7, the images clearly show agglomeration of the 

preciptiates that increases the particle size (Mersmann 1999; Villa-Gomez et al. 2011). 

Accordingly, the formation of small precipitates with no agglomeration (Figure 6.3c) 

explains the low removal efficiency observed at pH 5 (Figure 6.1a). Parallel, even though the 

CuS precipitates were amorphous (Figure 6.7) and small precipitates (fines) are known to be 

formed (Lewis 2010), high Cu removal efficiencies at all pH values investigated were 

achieved (Figure 6.1a) due to the tendency of the CuS precipitates to agglomerate (Mokone et 

al. 2010; Sahinkaya et al. 2009), as their surface is charged (Al-Tarazi et al. 2005).  

The tendency of the particles to agglomerate occurs due to a reduction of the electrical forces 

of repulsion among particles as in the electro/coagulation process (Lai and Lin 2004) and, in 

the case of metal sulfide precipitates, the supersaturation level plays an important role as 

nucleation promotes agglomeration (Al-Tarazi et al. 2004; Mokone et al. 2010). The 

speciation model predicted a proportional increase of the saturation index with the increase in 

pH (Figure 6.1a), thus, less agglomeration and consequently lower removal efficiencies are 

expected towards low pH values, at which the supersaturation diminishes (Peters et al. 1984). 

However, this argument contradicts the high Zn removal efficiencies encountered at pH 3 

(Figure 6.1a), and thus, factors such as the DOM content from the biogenic sulfide, 

contributed the agglomeration of the metal sulfide precipitates as well.  

Agglomeration, together with the particle size, structure and composition of the metal sulfide 

precipitates, contributes to the solid-liquid phase separation characteristics [46]. Contrary 

with previous authors (Mokone et al. 2010; 2003), faster settling rates (Figure 6.8a), shorter 

CST and higher concentrations of settleable solids of the metal sulfide precipitates (Figure 

6.8b) were obtained at higher pH values (pH 7), regardless the differences in particle size 

(Figure 6.2). Veeken et al. (2003) calculated the settling velocities of ZnS particles and found 

that particles with a D50 of 3 µm displayed a much lower settling rate (0.006 m/h) as 

compared with particles with a D50 of 10 µm (0.6 m/h).  Overall results thus suggest that the 

metal removal efficiencies and the solid-liquid phase separation results were influenced by 

the DOM and the macronutrients present in the bioreactor medium, which were not present in 

the aforementioned studies. The hydroxyapatite precipitated at pH 7, for instance, could have 

increased the precipitate concentration and consequently, the NVSS content and settleable 

solids concentration (Figure 6.8b) and could have also influenced the dewatering 

characteristics (Figure 6.8b). However, since hydroxyapatite formation is pH dependent (as 

referred in the results from the Visual Minteq model), their contribution to the solid-liquid 
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phase separation characteristics is expected to be rather small upon the decrease of the pH 

such as in AMD waste streams. 

 

4.2 Effect of the DOM 

This study shows that the DOM present in the biogenic sulfide (Table 6.2) contributed to the 

characteristics of the metal sulfide precipitates, and their influence was pH dependent. A 

higher fluorescence intensity of the peaks (previously reported as EPS (Chen et al. 2003; 

Sheng and Yu 2006; Ni et al. 2009; Bhatia et al. 2013)) was observed at pH 7, as compared to 

pH 5 and 3 (Table 6.2). This intensity barely decreased after metal addition at pH 7 (Table 

6.2), demonstrating that the molecular structure of the DOM was not modified with the metal 

addition. Despite this, the DOM could have been involved in the agglomeration of the 

precipitates as observed in the SEM pictures (Figure 6.3) and the dewatering characteristics 

(Figure 6.8). In natural environments, extracellular proteins are reported to promote the 

precipitation and agglomeration of ZnS precipitates (Moreau et al. 2004; Moreau et al. 2007). 

Additionally, EPS are known to induce the formation of bioflocs in activated (Bala 

Subramanian et al. 2010) and anaerobic granular (D'Abzac et al. 2010) sludge, thus 

contributing to their structural, surface charge and settling properties as well as dewaterability 

(Bala Subramanian et al. 2010; Raynaud et al. 2012) and this contribution is pH dependent 

(Chen et al. 2001; Sobeck and Higgins 2002).  

 In contrast with the results at pH 7, the fluorescence intensity highly deceased at pH 5 after 

metal addition (Table 6.2), coinciding with a higher amount of VSS in the settled sludge 

(Figure 6.8b). Therefore, it is inferred that the metals bound to the DOM at pH 5. The binding 

of metals with DOM have been suggested to decrease the supersaturation of the metal sulfide 

precipitation and hence, to allow crystallization over nucleation (Gadd 2009; Johnson et al. 

2007). In the case of Zn, this corroborates with the crystalline structures observed in the SEM 

pictures (Figure 6.3) and the more organized sphalerite structure observed in the EXAFS 

analysis at pH 5 (Figure 6.5). In the absence of another reactive agent such as sulfide, the 

increase of the pH makes the metals-DOM interaction stronger. This is due to a variation in 

charge density of the organic molecules (Piccolo 2002), since the functional groups such as -

COOH and -OH become available for binding with metals. However, metal complexation 

with DOM in the presence of sulfide is rather different as sulfide also complexes with the 

DOM functional groups (Rozan et al. 2000). 
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4.3 Solid phase speciation and morphology assessed by EXAFS and XANES 

spectroscopy 

The XANES and EXAFS analyses showed the speciation of the Zn and Cu precipitates 

formed with biogenic sulfide, which is difficult to observe by commonly used techniques 

such as microscopy and X-ray diffraction analysis (Neculita et al. 2007; Villa-Gomez et al. 

2012b; Brown and Calas 2012).  Covellite was the only Cu precipitate formed at all the pH 

values tested, which was formed with Cu (I) (Figure 6.6), as previously reported on CuS 

formation under biotic (Ehrlich et al. 2004) and abiotic (Goh et al. 2006; Pattrick et al. 1997; 

Ehrlich et al. 2004) conditions. The EXAFS analysis also suggested a disordered local, and 

thus, less crystalline structure in all samples (Figure 6.7). This may be caused by the 

instantaneous reaction kinetics and the low CuS solubility over the entire pH range (Lewis 

2010), which makes CuS precipitation predominant over the formation of another Cu species 

but also leads, as a consequence, to the formation of amorphous CuS precipitates (Figure 

6.7). The latter confirms the findings of Shea and Helz (Shea and Helz 1989), who 

demonstrated that by mixing CuC12 with NaHS under acidic conditions, poorly crystalline 

CuS precipitates were formed.  The pH can, nevertheless, affect CuS crystallinity under 

abiotic conditions as demonstrated by Rickard (Rickard 1972), who found that both covellite 

and “blaubleibender covellite” were crystalline at high pH values (pH>7). However, these 

had been subjected to considerable (several days) ageing and heating to enhance the 

crystallization process.  

Whereas Cu undeniably precipitates only with sulfide and both the XANES and EXAFS 

analyses confirmed the presence of Zn-S as sphalerite in all samples analyzed (Figure 6.4), 

the EXAFS analysis revealed another Zn environment for the samples of the precipitates at 

pH 7 (Figure 6.5). Figure 4 shows the presence of minor amounts of Zn-O environments, as 

in Zn-sorbed hydroxyapatite. Thus, the predicted presence of hydroxyapatite at pH 7 is 

plausibly responsible for the difference in Zn speciation observed at this pH. The contribution 

of hydroxyapatite on the removal of Zn is not observed at pH 3 and 5, because the formation 

of this compound is rather pH dependent. A previous study (Villa-Gomez et al. 2012b) also 

confirmed that Zn can be sorbed on the apatite when sulfide is present in minor amounts (<20 

mg/L). This is less expected under stoichiometric excess of sulfide, as in the present study. 

However, unlike this study, the metal sulfide precipitation was studied with chemically 

produced sulfide (Villa-Gomez et al. 2012b), and the DOM present in the biogenic sulfide 

(Table 6.2) could have played a role in the decrease of the supersaturation. 
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The EXAFS analysis also evidenced that there are differences in the local structure of the 

precipitates depending on the pH (Figure 6.5). A more crystallized structure is inferred at pH 

5 (Figure 6.5), in agreement with the cubic shapes observed in the SEM images (Figure 6.3b) 

that suggest sphalerite type structures (http://webmineral.com/data/Sphalerite.shtml) as 

compared to the other pH values. A decrease in supersaturation results in the formation of 

larger and more crystalline ZnS precipitates (Bijmans et al. 2009; Mokone et al. 2010; 

Sampaio et al. 2010), which could be favored at pH 5, as the threshold in ZnS solubility is 

reported to be around this pH value (Peters et al. 1984), and by the DOM present in the 

biogenic sulfide (Table 6.2). 

 

6.4.4 Implications for metal recovery in bioreactors 

Metal-recovery in bioreactors ultimately depends on the ability to separate the particles from 

the process wastewater (Wilson 2005). The small particle size of the metal sulfides (Figure 

6.2-(Lewis 2010) is an important bottleneck towards the biotechnological application of 

sulfate reducing bioreactors for metal recovery in AMD and metallurgical waste streams. 

Such particle sizes are difficult to settle using standard clarifiers for solid state separation 

(Federation 2005). Crystal growth can be favoured when the supersaturation is decreased 

(Mersmann 1999) or agglomeration is promoted (Al-Tarazi et al. 2004; Esposito et al. 2006; 

Sampaio et al. 2009).  In this study, those processes were found to be mediated by the DOM 

contained in the biogenic sulfide (Table 6.2). Despite the rather small size of the crystals 

formed under the conditions evaluated in this study (Figure 6.3b), clearly, further research on 

the characteristics of the DOM produced in sulfate reducing reactors promoting larger metal 

sulfide precipitates should be done. This approach has been previously used to elucidate 

fluorescent characteristics and metal binding properties of individual molecular weight 

fractions of DOM in landfill leachate (2012). These binding characteristics could, 

nevertheless, modify the supersaturation, thus mediating crystallization and agglomeration. 

In the literature, other approaches to reduce the supersaturation have been also explored. The 

use of membranes to spread the sulfide dosing points not only reduced the local 

supersaturation, and consequently increased the size of the metal sulfide precipitates (from 10 

to 22 µm), but also contributed to the agglomeration process yielding particles in the 100-200 

µm range in a study of Zn and Ni precipitation with Na2S in a continuously stirred tank 

reactor (Sampaio et al. 2010). One none explored approach in bioreactors is the use of a 

“seeding material” to promote crystal growth and thus to increase the size of the precipitates 

(Mersmann 1999) as used in chemical precipitators for the precipitation of heavy metals on 
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the sand surface using sulfide or carbonate (Zhou et al. 1999; van Hille et al. 2005). This 

approach can be extrapolated for its application in bioreactors by using the sulfide producing 

biomass as seeding material to enhance crystal growth. A hint on the assessment of this 

approach can be observed in a previous study by Villa-Gomez et al. (Villa-Gomez et al. 

2011), where the metal (Zn, Cd, Cu, Pb) sulfides accumulated in the polyethylene beads 

coated with SRB biofilm till the point where these beads became so heavy that they lost their 

floating characteristic in an inverse fluidized bed reactor.  

 

6.5 Conclusions  

• Cu and Zn sulfide precipitation characteristics are affected by the pH-dependant speciation 

of compounds present in the biogenic sulfide effluent such as phosphate and DOM. 

• Evidence is presented that suggests that the presence of DOM might decrease the 

supersaturation due to binding or complexation of metal ions affecting nucleation, growth 

and agglomeration in metal sulfide precipitation. 

• The increase of the pH displayed faster settling rate and capillary suction time as well as 

higher concentration of settleable solids that were linked to the DOM and macronutrients 

affecting nucleation, crystallization and agglomeration.   

• The XANES analysis confirmed the precipitation of Zn-S as sphalerite and Cu-S as 

covellite in all the samples but also revealed the presence of minor amounts of Zn-sorbed 

on hydroxyapatite. The EXAFS analysis showed that at pH 5 a more crystallized ZnS 

structure is formed as in agreement with the SEM images where the cubic forms confirm 

sphalerite type structures, while amorphous CuS structures were observed regardless the 

pH. 
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Abstract  

The individual and combined effect of the pH, chemical oxygen demand (COD) and 

SO4
2- concentration, metal to sulfide (M/S2-) ratio and hydraulic retention time (HRT) 

on the biological sulfate reduction (SR) process was evaluated in an inverse fluidized 

bed reactor by factorial design analysis (FDA) and response surface analysis (RSA). 

The regression-based model of the FDA described the experimental results well and 

revealed that the most significant variable affecting the process was the pH. The 

combined effect of the pH and HRT was barely observable, while the pH and COD 

concentration positive effect (up to 7 and 3 gCOD/L, respectively) enhanced the SR 

process. Contrary, the individual COD concentration effect only enhanced the COD 

removal efficiency, suggesting changes on the microbial pathway. The RSA showed 

that the M/S2- ratio determined whether the inhibition mechanism to the SR process was 

due to the presence of free metals or precipitated metal sulfides.  
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7.1 Introduction 

 

Waste and process water from the mining and metallurgical industry typically contain 

high concentrations of dissolved metal-ions and sulfuric acid (Johnson and Hallberg 

2005). Although these acidic waste streams are a major environmental problem, they 

contain valuable metals that can be recovered by processes such as metal sulfide 

precipitation (Huisman et al. 2006; Tabak et al. 2003). Sulfate, which is commonly 

found in these wastewaters, can be easily transformed to sulfide by sulfate reducing 

bacteria (SRB) (Kaksonen and Puhakka 2007).  

Simultaneous biological sulfate reduction and metal sulfide precipitation can be 

achieved in a single stage process that aids to reduce the number of process units. 

However, such a process requires careful monitoring of the sulfate reduction process to 

avoid microbial inhibition due to either metals toxicity or low pH conditions in the 

bioreactor. It is also necessary to maintain an acceptable process performance and to 

avoid failure in case of shock loadings. In addition, metal sulfide precipitates are 

difficult to recover from the bioreactor because the metal precipitation occurs nearby or 

within the biomass, which thus necessitates an additional unit operation to separate the 

biomass from the precipitated metals. Consequently, biomass may be lost in the process 

leading to reduced system performance. These drawbacks could be overcome by 

employing an inverse fluidized bed (IFB) reactor that enables sulfide production by 

SRB and metal recovery in the same unit due to its floating biomass bed (Gallegos-

Garcia et al. 2009; Villa-Gomez et al. 2011). 

Over the last few decades, different sulfate reducing bioreactor configurations have 

been used for the treatment of metal-containing wastewaters in a single stage (Kaksonen 

and Puhakka 2007; Neculita et al. 2007; Bijmans et al. 2011; Papirio et al. 2012). 

However, the operational conditions such as pH, hydraulic retention time (HRT), 

electron donor and metals (type and concentration) applied in these studies vary too 

significantly that comparison of process performance across these studies is 

complicated. The individual effect of different operational parameters such as the pH, 

HRT, electron donor concentration and metal to sulfide molar (M/S2-) ratio in sulfate 

reducing bioreactors has been reported (Kaksonen and Puhakka 2007). In the case of 

pH, simultaneous biological sulfate reduction and metal precipitation is reported at the 

lowest pH of 5 in the influent and effluent (Bijmans et al. 2008a; Gallegos-Garcia et al. 
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2009), while sulfate reduction without metal addition has been reported at pH 3.8 in a 

batch reactor fed with glycerol (Kimura et al. 2006) and at pH 4.0 in a sucrose fed 

upflow anaerobic sludge blanket (UASB) reactor (Lopes et al. 2007) as well as in a 

formate/hydrogen fed membrane bioreactor (Bijmans et al. 2010).  The study of the 

effect of process parameters is particularly important from a standpoint of 

understanding the role of the different variables on the sulfate reduction process. 

However, the data obtained in these studies are based on experiments performed by 

manipulating the variables one-at-a-time and neglect the effect of multi-variables on the 

sulfate reduction process.  

Factorial design analysis is a useful tool to interpret the effect of multiple parameters, 

especially when interactions between the process variables are involved (Montgomery 

2004). This tool has been applied to study certain biological processes and has not only 

yielded a better interpretation of the results, but also a reduction of the number of 

experiments to be performed. For instance, White and Gadd (1996) studied the metal 

removal and alkalization by SRB of a typical acid leachate containing metals from 

contaminated soils. Key variables affecting the process were found to be the type of 

substrate, the chemical oxygen demand (COD)/SO4
2- ratio and the interaction between 

these variables along with the dilution rate.  

The objective of this study was to understand the effect of significant operational 

parameters on the sulfate reduction process in an IFB reactor for the treatment of metal 

containing wastewater. The IFB reactor was operated at different influent COD 

(concomitantly SO4
2-) concentration and HRT, varying thus the organic loading rate 

(OLR), as well as different M/S2- ratio and pH for the identification of the main and 

interaction effects and their significances on the sulfate reduction process, as given by a 

factorial design and response surface analysis of the results obtained. 

 

7.2 Materials and methods 

 

7.2.1 Bioreactor set up and experimental design 

All bioreactor experiments were conducted employing two simultaneously operated IFB 

reactors as described in detail by Villa-Gomez et al. (2012a). All the reactor runs were 

performed at 25 (±3) °C and at a fixed recirculation liquid down flow rate. The 

COD/SO4
2- ratio for runs 1-10 was 0.67, while for runs 11-16 the COD/SO4

2- ratio was 

1. A SRB biofilm was established, yielding incomplete oxidation of lactate producing 
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acetate and sulfide as the end products (Villa-Gomez et al. 2012a) and no further 

biomass was added during this study. 

The individual and combined effect of the CODin concentration, pH, M/S2- ratio and 

HRT on the effluent sulfide concentration, COD and sulfate removal efficiency were 

evaluated in a total of 16 reactor runs (Table 7.1). These three responses were chosen as 

they indicate the sulfate reduction efficiency. The levels of the CODin concentration, pH 

(inside the reactor), M/S2- ratio and HRT were varied in the range 1-3 g/L, 4-7, 0-2.6 

and 4.5-24 h, respectively.  The sulfate concentration varied proportionally with the 

CODin concentration to keep the COD/SO4
2- ratio constant. The effect of the OLR was 

not evaluated separately as it depends on two variables (HRT and CODin) that were 

already included in the parameter study. The parameter M/S2- ratio, shown in Table 7.1, 

was calculated from the effluent sulfide concentration in each run at steady state 

conditions. 

 

Table 7.1 Operational conditions in the different experimental reactor runs.  

Run 

Operation 

time (d) 

CODin 

(gCOD/L) pH HRT (h) 

Sulfide 

(mg/L) 

M/S2- 

ratio 

(mol/mol) 

1 52 2.0 7.0 24.0 413.4 0.0 

2 40 2.0 6.5 24.0 366.6 0.0 

3 26 2.0 6.0 24.0 178.6 0.0 

4 23 2.0 5.0 24.0 170.0 0.0 

5 26 2.0 4.0 24.0 42.7 0.0 

6 28 2.0 7.0 24.0 176.0 0.8b 

7 38 1.0 5.0 24.0 61.0 0.8b 

8 25 1.0 4.0 24.0 23.0 0.8b 

9 30 1.0 7.0 24.0 253.3 0.0 

10 20 1.0 4.0 24.0 25.1a 0.0 

11 58 2.0 7.0 24.0 287.2a 0.5c 

12 47 2.0 7.0 9.0 301.9 0.5c 

13 34 2.0 7.0 4.5 54.9 2.6c 

14 58 3.0 7.0 24.0 540.0 0.3c 

15 47 3.0 7.0 9.0 379.0 0.4c 

16 34 3.0 7.0 4.5 146.5 1.0c 
aCalculated from the sulfate removal efficiency results, M/S2- ratio: bΣ(Zn2+,Cu2+)/[S2-] 

and cΣ(Zn2+,Cd2+, Pb2+, Cu2+)/[S2-]. 
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The operation time of the reactors depended on the time needed to reach pseudo-steady 

state conditions of the sulfide concentration values for at least 5 × HRT at the 

conditions of each run. Thus, the duration of each experimental run was in the range of 

20-51 days (Table 7.1). The experimental runs 1-11 were performed by varying the 

levels of pH and CODin concentration one-at-a-time and by keeping the HRT constant, 

whereas the results from Villa-Gomez et al. (2012a) were included to study the effect of 

HRT (runs 12-16).  

 

7.2.2 Synthetic wastewater 

The synthetic wastewater fed to the IFB reactors contained (mg/L): KH2PO4 500, 

NH4Cl 200, CaCl2·2H2O 2500, FeSO4·7H2O 50 and MgSO4·7H2O 2500 and 

micronutrients as described by Zehnder et al. (1980).  Sulfate was supplemented as 

Na2SO4, whereas NaC3H5O3 and C3H6O3 were used for lactate. Zn and Cu were added 

to the influent in the runs 6-8 and Zn, Cd, Pb and Cu were added to the influent in runs 

11-16 (Table 7.1), for which the respective chloride salts were used. When metals were 

added in the influent, the yeast extract and the micronutrients were eliminated from the 

synthetic medium as these can interfere with the metal sulfide precipitation. All reagents 

were of analytical grade. 

 

7.2.3 pH control and monitoring 

The pH inside the reactor was adjusted to the desired pH by either manual addition of 

NaOH or HCl to the influent or by an automated operation using a data acquisition card 

(DAC) (NI cDAQ-9174, National Instruments, The Netherlands) and LabView® 

software (version 2009). The LabView® software contained a PID controller (PID and 

Fuzzy Logic Toolkit, National Instruments, The Netherlands). A pH electrode 

(Prosense, The Netherlands) submerged in the IFB bioreactor mixed liquor and 

connected to the DAC was used for monitoring the reactor pH. 

 

7.2.4 Analytical methods 

COD was determined by the close reflux method (APHA 2005). Sulfate and metal 

determination followed the procedures as described by Villa-Gomez et al. (2011). 

Sulfide was determined spectrophotometrically by the colorimetric method described by 

Cord-Ruwisch (1985) using a UV-visible spectrophotometer (Perkin Elmer Lambda 20, 

USA). Acetate was measured as described by Villa-Gomez et al. (2012b). 
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7.2.5 Statistical analysis of the results  

For the interpretation of the role of the different process variables investigated in this 

study, the results obtained from the experimental reactor runs were submitted to 

statistically valid full factorial design and response surface analyses. The results were 

thus analyzed in the form of analysis of variance (ANOVA), student t test and response 

surfaces (Montgomery 2004). For this purpose, the values of the input variables were 

coded by the statistical software Minitab® (Ver 14.1, PA, USA) and used as such for the 

analyses. Thus, -1 and +1 represented the lowest and highest levels, respectively, in the 

coded units of the input variables. For estimating the individual and combined effect of 

the variables (CODin concentration, pH, HRT and M/S2- ratio) and their significance, a 

statistical regression based model was developed using the Minitab® software. The 

estimated effects were relative measures of the sign and magnitude of impact of the 

process variables as described in the results section. The effect due to a variable was 

defined as either enhancement (positive) or reduction (negative) in the responses. 

 

7.3 Results  

 

7.3.1 Effect of pH on COD and sulfate removal efficiency and sulfide concentration 

A linear correlation between the pH and the COD removal as well as between the pH 

and sulfate removal efficiency was observed by varying the pH from 5 to 7 in all the 

experimental runs (Figure 7.1a). At pH 4, the COD removal efficiency was 25, 50 and 

90%, while the sulfate removal efficiencies remained similar to those achieved at pH 5 

(Figure 7.1a). The difference in COD and sulfate removal efficiency (Figure 7.1a) as 

well as in sulfide concentration (Figure 7.1b) obtained at pH 7 is due to the differences 

in the other operational parameters (CODin and metals concentration), which is not 

observable in this two dimension figure. The sulfide concentration decreased linearly 

with the pH decrease regardless of the metals addition (Figure 7.1b). On the contrary, 

the sulfide concentration was slightly higher with the metal addition in the system at pH 

7 (Figure 7.1b).  
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Figure 7.1 Influence of pH on a) COD and sulfate removal efficiency and b) sulfide 

concentration in experimental runs with and without metals during reactor operation at 

an HRT of 24 h (vertical bars indicate ± standard deviation).  

 

7.3.2 Effect of HRT on the sulfide concentration produced 

The comparison of the runs carried out at different HRTs (runs 11-16) underlined the 

increase in sulfate reducing activity when the reactors were submitted to longer HRTs 

(Figure 7.2). When the HRT is decreased from 24 to 9 h, the sulfide concentration 

slightly decreased at a CODin concentration of 3 gCOD/L, while at 2 gCOD/L, the 

sulfide concentration is even higher at an HRT of 9 h compared to that obtained at an 

HRT of 24 h. The sulfide concentration greatly decreased when the HRT is decreased 

from 9 to 4.5 h at both the CODin concentrations.  

 

b
) 

a) 
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Figure 7.2 Sulfide production at different HRTs with a CODin concentration of 2 and 3 

gCOD/L in the presence of metals (runs 11-16). Continuous lines indicate the fitted 

logarithmic curve for both CODin concentrations (vertical bars indicate ± standard 

deviation).  

 

7.3.3 Metal removal efficiency 

Table 7.2 shows the metal removal efficiencies obtained in the experimental runs 6-8, 

while the metal removal efficiencies for runs 11-16 are found in a previous study (Villa-

Gomez et al. 2012a). In all the experimental runs with metal addition, precipitation 

occurred due to metal sulfide formation when the M/S2- ratio was above 1, which was 

confirmed by speciation analysis (data not shown) using the Visual MINTEQ version 

3.0 (US EPA, 1999). Thus, the variation in the metal removal efficiency can be 

attributed to a decrease in particle size of the metal precipitates that escaped with the 

effluent. At HRTs of 4.5 h in runs 13 and 16, the M/S2- ratio was below 1, and therefore, 

the decrease in the metal removal efficiencies are attributed to the decrease in metal 

sulfide precipitation (Villa-Gomez et al. 2012a).  

 

Table 7.2 Zn and Cu removal efficiencies in IFB reactor runs 6 to 8. 

 

Runs
Zn removal 

efficiency (% ) 
Cu removal 

efficiency (% ) 

6 94.5 ±	
  6.4 92.7 ± 7.5 
7 97.2 ± 0.75 97.9 ± 0.9
8 81.4 ± 13.8 94.4 ± 3.1
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7.3.4 Statistical analysis of the results 

7.3.4.1 Factorial design analysis 

Statistical analysis of the results in the form of analysis of variance (ANOVA) and 

Student t test was performed for interpretation of the main and interactive (2 and 3-way) 

effects of the operational parameters on the sulfate reduction process (Table 7.3). In 

general, a high Fisher's (F) value with a low probability P indicates a high significance 

of the corresponding regression model term (Montgomery 2004). Thus, the very low P 

values of the main and 2-way interaction effects for sulfide concentration (0.072 and 

0.058, respectively) reveal a very high significance of this response over the other two 

(COD and sulfate removal efficiency). After the sulfide values, the 2-way and 3-way 

interactions for the COD removal efficiency were more significant with greater F-values 

(13.01 and 11.89, respectively) as compared to the main effects (7.28). 

 

Table 7.3 ANOVA of the sulfate reduction process showing the significance of the main 

and interactive effects between the process variables. 

 
 

In order to further ascertain which of the main and interaction effect between the 

process variables played significant roles in the process, a student t test was performed 

on all the three responses (COD and sulfate removal efficiency and sulfide 

concentration). Table 7.4 gives the calculated individual (main) and interactive effects 

between the variables for these three responses, which are reflected in the sign and 

magnitude of the impact of the process variable. For all the three responses, the pH had 

the most significant effect (P<0.1) and its effect was positive in comparison with the 

other variable effects. The individual effects of both the CODin and M/S2- ratio were 
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also significant (P<0.1), but mainly for the sulfide concentration (Table 7.4), whereas 

the significance of the individual effect for the HRT was low (P>0.3), particularly for 

the COD removal efficiency (P= 0.9).  

The individual effect of the HRT displayed negative values for the sulfide concentration 

and the COD removal efficiencies, while for the sulfate removal efficiency, its effect 

was positive. Whereas an increase in pH showed a positive effect on all the three 

responses, an increase in the CODin concentration and the M/S2-ratio was inhibitory to 

the sulfate reduction (sulfide concentration and sulfate removal efficiency) as indicated 

by their strong negative values. Conversely, the CODin concentration displayed a 

positive main effect on the COD removal efficiency.  

 

Table 7.4 Student ‘t’ test to determine the significant individual and interaction effects 

between the variables on the sulfide concentration and the COD and sulfate removal 

efficiency. 

 
 

The significance levels of the interactive effects ranged between 0.229 and 0.925. 

Among the interactive effects, the pH and CODin concentration showed a positive effect 

on the sulfide concentration. For the COD removal efficiency, all the interactive effects 

that involved the CODin concentration as one of the parameters were positive. The 

interactive effects for the sulfate removal efficiency were all positive, in contrast to that 

of the sulfide concentration. 

Table 7.5 presents the estimated coefficients of individual and interaction effects 

between the variables on sulfide production (Y1), COD and sulfate removal efficiency 

(Y2 and Y3, respectively), where (X1), (X2), (X3) and (X4) represent the variables 

CODin, pH, HRT and M/S2- ratio. These estimated coefficients could thus be used to 

Effect T
Significance 

level (P) Effect T
Significance 

level (P) Effect T
Significance 

level (P)
Main effects

pH 362.7 5.6 0.005 47.26 2.22 0.091 27.148 3.78 0.019
HRT -113.5 -1.2 0.307 -3.9 -0.1 0.909 3.043 0.28 0.791

CODin -496.7 -2.3 0.084 2.79 0.04 0.971 -11.352 -0.5 0.661
M/S ratio -451.3 -3.9 0.018 -16.47 -0.4 0.69 -17.482 -1.4 0.247

Interactive effects
pH+CODin 152.7 0.65 0.549 125.26 1.63 0.179 24.148 0.93 0.403

HRT+CODin -146.1 -0.4 0.729 163.06 1.26 0.276 34.993 0.8 0.466
HRT+M/S ratio -145.3 -1.3 0.266 -49.94 -1.4 0.249 14.917 1.2 0.297

CODin+M/S ratio -759.3 -1.4 0.229 188.19 1.07 0.346 5.924 0.1 0.925
HRT+CODin+M/S ratio -377.7 -0.7 0.502 209.3 1.24 0.283 17.849 0.31 0.769

Variable
Sulfide (mg/L) COD  removal (%) Sulfate removal (%)
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represent the regression model equation for each of the responses (Y1, Y2, Y3) as shown 

below: 

Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X1X2 + b6X1X3 + b7X1X4 + b8X2X4 + b9X3X4 + 

b10X1X2X3…………………………………………………………………………… (1) 

 

Table 7.5 Estimated coefficients (bi) from equation 1 for the sulfide production, COD 

and sulfate removal efficiency. 

 
 

These coefficients (Table 7.5) and the regression (Equation 1) for each of the responses 

were used to obtain the model predicted values, from which the normal probability plots 

of the residuals and the residuals versus fitted values plots were generated to compare 

the accuracy of these models in predicting the experimental data (Figure 7.3). 

The normal probability plots of the sulfide concentration as well as the COD and sulfate 

removal efficiency display an approximately linear profile (Figure 7.3) indicating the 

validity of the model observation of the experimental data (Montgomery, 2004). 

However, a negative value for both the COD removal efficiency and the sulfide 

concentration as well as a positive value for the sulfate removal efficiency deviate from 

the linear tendency (Figure 7.3). These off-set values are also observed in the residual 

plots that correspond to the predicted values for run 11. This unusual observation is due 

to the low efficiency values obtained during this reactor run despite the favorable 

operational pH (Table 7.1). A probable reason for this unusual observation in run 11 

could be that the previous reactor runs were performed at a low pH conditions from 

which the biomass was not recuperated quickly enough.  

Y= Sulfide Y=COD removal Y=Sulfate removal
Xo (constant) b0 251.4 13.44 80.6

X1 b1 -­‐167.1 -­‐15.12 -­‐307.6
X2 b2 -­‐34.7 5.97 12.9
X3 b3 2.3 -­‐1.34 -­‐4.4
X4 b4 -­‐91.5 159.19 1179.9

X1X2 b5 23.3 1.46 57.5
X1X3 b6 -­‐0.1 0.34 3.2
X1X4 b7 -­‐12.6 -­‐23.61 -­‐267.6
X2X4 b8 18.9 -­‐18.2 -­‐104.9
X3X4 b9 -­‐2.8 -­‐4.65 -­‐32.1

X1X2X3 b10 1.2 2.63 12.6

Coefficient (bi)Term
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Figure 7.3 Normal probability (left) and residual (right) plots showing the difference 

between the observed and the model predicted values for a) COD removal efficiency 

(%), b) sulfate removal efficiency (%) and c) sulfide concentration (mg/L). 

 

7.3.4.2 Response surface analysis 

The regression equations obtained using the coefficients displayed in Table 7.5 for the 

CODin concentration, HRT and M/S2- ratio were used to generate matrices of data for 

constructing two dimension contour plots on the three responses as a function of the pH 

and the other variables tested (Figure 7.4). The response surfaces for the sulfide 

production and the sulfate removal efficiency show a decrease with decrease of both the 

pH and CODin concentration, while no linear tendency is observed for the M/S2- ratio 

(Figure 7.4a and 7.4c). The contour plots between pH and the CODin concentration for 

the three responses confirm the strong interactive effect of these two parameters as also 
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revealed by the ANOVA and the student t test results (Table 7.3). However, unlike the 

strong negative interaction between the two parameters on the sulfide concentration and 

sulfate removal efficiency, the individual effect of pH predominated over that of CODin 

for the COD removal efficiency. For instance, with a decrease of the pH in the reactor 

below 5, the COD removal efficiency decreased (35%), whereas an increase above pH 5 

improved the COD removal efficiency (65%) (Figure 7.4b left). 

The interaction effect between the pH and HRT on the three responses is barely 

observable (Figure 7.4 middle), and the contours of the sulfide concentration and sulfate 

removal efficiency are strongly defined by the pH in the reactor. Similarly, the COD 

removal efficiency did not vary much following a change in these two parameters 

(Figure 7.4b middle). 

 

 
Figure 7.4 Two dimension contour plots between pH and CODin concentration (left), 

HRT (middle) and M/S2-ratio (right) for a) sulfide production, b) COD removal 

efficiency and c) sulfate removal efficiency. The data matrix was generated using the 

coefficients presented in Table 7.5. 

 

CODin (g/L) 
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The combined effect of the pH and M/S2- ratio shows two regions where the change in 

the sulfide concentration and the sulfate removal efficiency vary considerably (Figure 

7.4a and 7.4c right). These regions are located at the M/S2- ratio below 0.5 and above 

1.5. The increase in the M/S2- ratio up to 1 decreases the sulfide concentration and the 

pH effect is less strong, while the effect of the M/S2- ratio above 1 is less strong but it is 

more sensitive to the pH (Figure 7.4c, right). It is interesting to observe that the COD 

removal efficiency is highly affected by the M/S2- ratio, while the pH effect is less 

pronounced on this response (Figure 7.4b right). 

 

7.4 Discussion 

 

7.4.1 Statistical interpretation on the effect of process variables 

The statistical analysis (Tables 7.4, 7.5 and Figure 7.3) indicated that the regression-

based model described the experimental results well (Montgomery 2004). Among the 

different process variables evaluated in this study (pH, CODin concentration, HRT and 

M/S2- ratio), the most significant variable affecting the sulfate reduction process was 

found to be the pH (Table 7.4, Figure 7.4), whereas the other variables affected mainly 

the sulfide concentration response. Other than the individual effects, two or three way 

interaction effects between the variables were only slightly significant or not significant 

at all (Tables 7.4 and 7.5).  

The main and interactive effects of the variables on the sulfide concentration were 

found to be the most significant compared to the other two responses (COD and sulfate 

removal efficiency), revealing that the sulfide concentration in the system was the most 

reliable response for assessing the sulfate reduction efficiency in the IFB bioreactor. In 

contrast, the significance of the sulfate removal efficiency was notably low, suggesting 

that small amounts of the sulfate could be transformed due to other mechanisms apart 

from biological sulfate reduction process. These mechanisms include: sulfate 

precipitation with the synthetic wastewater components (Villa-Gomez et al. 2012a), 

biological sulfide re-oxidation to sulfate due to air intrusion into the bioreactor 

(Canfield and Raiswell 1999) and possibly anaerobic oxidation by photosynthetic 

bacteria (Bruser et al. 2000) as the reactors were not shielded from light. The low 

significance observed in the response of the COD removal efficiency could be attributed 

to the fact that microorganisms, such as fermentative bacteria and methane producing 
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bacteria, compete with SRB for the electron donors (Omil et al. 1998; Oyekola et al. 

2009). 

 

7.4.2 Effect of the pH 

This study shows that the main factor affecting the process is the pH, while the effect of 

the other variables is of less importance on the sulfate reducing process (Table 7.4, 

Figure 7.4). Several studies have reported a notable decrease of the sulfate reducing 

activity at low pH values in bioreactors regardless of the differences in substrate type 

and concentration (Kimura et al. 2006; Lopes et al. 2007) or bioreactor configuration 

(Bijmans et al. 2010). In addition, various operational conditions such as the metal 

sulfide solubility product and sulfide species (H2S, HS-, S2-) that can potentially cause 

metal and sulfide toxicity are influenced by the pH (Petrucci and Moews, 1962). 

Nevertheless, this study also showed differences in both the individual as well as the 

combined effect of the pH with other process variables on the responses (Table 7.4, 

Figure 7.4). 

The response surface analysis showed that the combined effect of the pH differed 

between the COD removal efficiency and the sulfate reduction (sulfide concentration 

and sulfate removal efficiency) (Figure 7.4b and 7.4c). The contour plots clearly show 

that the COD removal efficiency is affected with the decrease of pH up to 5, and above 

this pH value, the effect was reversed with slight differences due to its combined effect 

with other parameters (CODin concentration, HRT or M/S2- ratio) (Figure 7.4b). 

Microorganisms other than the SRB present in the bioreactor can contribute to the 

substrate consumption at pH 4 (Figure 7.4b). For instance, acidic conditions are needed 

to induce the activity of lactic-acid-degrading L. buchneri (Elferink et al. 2001). At a pH 

above 5.8, lactic acid consumption was negligible, whereas cells grown at pH 4.3 

showed an increased conversion rate of lactic acid with very high conversion rates when 

grown at pH 3.8 (Elferink et al. 2001). In contrast, the sulfate removal efficiency and 

sulfide concentration decreased linearly with the pH in the range studied (Figure 7.4). 

The toxicity of HS- to SRB and other microbes is less than that of H2S (Mora-Naranjo et 

al. 2003), which predominates under the acidic conditions (pH<5) (Petrucci and Moews, 

1962) tested in this study (Table 7.1).  
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7.4.3 Effect of the M/S2- ratio 

The response surface analysis indicates that the three responses are affected by the 

M/S2- ratio (Figure 7.4a and 7.4c right). Furthermore, although the ANOVA results 

(Table 7.3) did not reveal a significant interaction between the pH and the M/S2- ratio, 

the response surface analysis showed a significant combined effect between these two 

factors on the sulfate reduction process (Figure 7.4a and 7.4c right). The combined 

effect of the pH and the M/S2- ratio is also due to the fact that the pH determines the 

solubility of the metal species and, therefore, their availability in solution (Labrenz et al. 

2000; Gonzalez-Silva et al. 2009). Since the metals tested in this study (Cd, Zn, Cu, Pb) 

are not soluble at a pH below 4 (Petrucci and Moews, 1962), which is the lowest pH 

tested in this study (Table 7.1), their toxic effect is neglected under excess of sulfide. As 

a consequence, the effect of the metal addition depended whether the M/S2-ratio was 

above or below the M/S2- ratio of 1 (Figure 7.4a and 7.4c right). At a M/S2- ratio below 

1, the amount of sulfide produced is high thus ensuring metal sulfide precipitation and 

therefore any toxic effects by free metals can be neglected (Kaksonen et al. 2006). 

However, inhibition of sulfate reduction by insoluble metal sulfides can still occur 

(Utgikar et al. 2004; Utgikar et al. 2002), particularly at pH values below neutral (Reis 

et al. 1992; Moosa and Harrison 2006). In case the M/S2- ratio is higher than 1, the 

probability of free metal toxicity in the system is high, resulting in a decrease of the 

sulfate removal efficiency and thus the sulfide concentration (Figure 7.4a and 7.4c 

right).  

Unlike sulfate reduction, the COD removal efficiency highly depended on the M/S2- 

ratio but not on the pH (Figure 7.4b right). Metals can stimulate or inhibit certain 

anaerobic microorganisms depending on process-related factors such as pH and redox 

potential (Chen et al. 2008). For example, acetogens are more resistant to heavy metal 

toxicity than methanogens (Zayed and Winter 2000). This is important since the 

outcome of the competition between SRB and other anaerobic microorganisms 

determines the sulfide concentration produced in the reactor. This study thus evidences 

that the sulfate reduction efficiency is less affected by the metal addition (Figure 7.4a 

and 7.4c, right) as compared with the strong effect caused by the pH change (Table 7.4, 

Figure 7.4a and 7.4 c, right). 

 

 



Chapter 7 

 164 

7.4.4 Combined effect of the pH and CODin concentration 

The combined effect of the pH and CODin concentration seems to be positive for the 

sulfate reduction efficiency when both parameters are set at their high levels (pH 7 and 

3 gCOD/L-Figure 7.4a and 7.4b left), whereas the individual effect due to CODin 

concentration was not at all significant on the sulfate removal efficiency (Table 7.3). 

Due to its role as carbon/energy source, the COD concentration is known to enhance the 

microbial growth rate; however, in this study it was shown that its effect is only positive 

when the pH is also high (Figure 7.4 left). This synergistic effect is due to an excess of 

COD in the system, which favors the diversity of the microbial species present 

(Oyekola et al. 2009) that can help maintain sulfate reduction even under adverse 

conditions such as low pH. Similarly, Lopes et al. (2007) reported a nearly complete 

sulfate reduction efficiency during the acidification of sucrose at pH 6 and 5 at influent 

COD to SO4
2- ratios of 9 and 3.5, respectively.  

 

7.4.5 Effect of the HRT 

The statistical analysis shows that the HRT parameter had barely any effect on the 

sulfate reducing process (Table 7.3 and Figure 7.4 middle). However, the experimental 

data show that the sulfide concentration does not increase at HRT values above 9 h 

(Figure 7.2). This is because the sulfide production rate depends on the kinetics of the 

microbial community and the quantity of SRB biomass in the bioreactor. Therefore, 

operating at an HRT above this value might be unnecessary for the process 

improvement since an increment in the sulfate reduction at longer HRTs depends on the 

SRB activity and growth. In contrast, short HRTs could decrease the sulfide 

concentration as the sulfate-loading rate surpasses the sulfate reduction rate. Similar 

observations were encountered in a reactor operated at pH 4-6 with a pH auxostat in 

which the HRT solely depends on the sulfate conversion rate (Bijmans et al. 2008b; 

Bijmans et al. 2009). 

 

7.5 Conclusions 

 

• The statistical analysis carried out to the operational performance of the sulfate reducing 

IFB bioreactors revealed the clear roles played by the different process variables on the 

sulfate reduction process.  
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• The most significant variable affecting the process was the pH, whereas the other 

variables affected mainly the sulfide concentration response.  

• The combined effect of the pH and COD concentration enhanced the sulfate reduction 

process, while the individual COD concentration effect only enhanced the COD 

removal efficiency, suggesting changes on the microbial pathway.  

• The addition of metals was negative for the process, but the inhibition mechanism 

depended on the M/S2- ratio. 
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8.1 Introduction  

Metal-containing wastewaters represent an environmental and human health problem, 

but also a potential resource of valuable metals when their recovery is possible (Lens et 

al. 2002). These wastewaters typically contain high concentrations of dissolved metal-

ions and sulfuric acid but are deficient in organic compounds (Johnson and Hallberg 

2005; Papirio et al. 2012). 

Several technologies have been applied to treat this type of wastewaters including 

chemical precipitation, ion exchange, adsorption, coagulation-flocculation and 

membrane filtration (Fu and Wang 2011). Not all these technologies are, however, 

suitable for metal recovery and may lead to high disposal expenses (Tabak et al. 2003; 

Esposito et al. 2006). Biological sulfate reduction is a process for the treatment of metal 

containing wastewaters enabling the recovery of metals as sulfidic precipitates (Bijmans 

et al. 2011). To date, metal recovery using this process has been demonstrated at large-

scale when sulfate reduction and metal precipitation occur in separate stages (Huisman 

et al. 2006).  

Simultaneous biogenic sulfide production and metal sulfide precipitation in a single unit 

simplifies the process design, reduces investment costs, and avoids transport of toxic 

sulfide to a precipitator reactor (Bijmans et al. 2009b). In this context, the inverse 

fluidized-bed reactor (IFB) is an attractive reactor configuration to allow recovery of 

metal sulfides at the bottom of the reactor, separated from the floating SRB biomass 

(Villa-Gomez et al. 2011; Gallegos-Garcia et al. 2009). Although metal removal has 

been achieved successfully in this reactor configuration (Chapter 2; Gallegos-Garcia et 

al., 2009), there are still some challenges to achieve metal recovery and practical 

implementation. 

Metal recovery depends on the particle size of the metal sulfides, determined by the 

kinetics of nucleation, crystal growth and agglomeration (Al-Tarazi et al. 2004), as well 

as their purity and their dewatering characteristics. Several studies have correlated the 

size and morphology of the metal sulfide precipitates with the change in operational 

parameters such as pH, sulfide concentration (Sahinkaya et al. 2009; Sampaio et al. 

2009; Veeken et al. 2003; Bijmans et al. 2009b; Al-Tarazi et al. 2005b) and reactor 

configuration (Al-Tarazi et al. 2005a). However, the bioreactor media contain biomass, 

organics and macronutrients supplied for bacterial growth that can also affect the metal 

precipitate characteristics for potential recovery (Esposito et al. 2006; Sampaio et al. 

2009; Bijmans et al. 2009a). The study of the metal sulfide precipitate characteristics in 
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bioreactors is not well documented, partly due to the lack of use of metal species-

specific analytical methods for their identification (Neculita et al. 2007).  

Practical implementation of metal sulfide precipitation and sulfate reduction in a single 

unit is also challenging because these metal containing waste streams are acid and 

contain metals that can affect the biological process performance. Several studies have 

reported the individual effect of different operational parameters such as the pH, HRT, 

electron donor concentration and metal to sulfide molar (M/S2-) ratio in sulfate reducing 

bioreactors (Kaksonen and Puhakka 2007). However, the effect of key variables 

affecting the sulfate reduction process such as pH and metal addition connected to the 

reactor operational conditions (i.e. HRT, OLR) must be understood in a multi-variable 

context,  and not only one variable-at-a-time effects. 

Finally, these waste streams are deficient in organic compounds as electron donor for 

sulfate reduction. Thus, for practical implementation, steering the sulfide production 

towards its required stoichiometric amount in bioreactors is highly relevant to avoid 

unnecessary electron donor addition and over production of sulfide. Therefore, process 

control in sulfate reducing bioreactors is essential for the control of the sulfide 

concentration depending on the metal amount desired to precipitate.   Mathematical 

models have been developed to support the design of a control strategy for sulfate 

reduction in bioreactors (Kalyuzhnyi and Fedorovich 1998; Oyekola et al. 2012; Gupta 

et al. 1994). However, in these studies the objective was to outcompete or favor 

microbial trophic groups other than SRB, while accounting for the control of the sulfide 

production. 

 

8.2 Objective 

The main objective of this thesis was to elucidate the factors affecting simultaneous 

sulfate reduction and precipitation of heavy metals in an inverse fluidized bed reactor 

(IFB) reactor in order to optimize the metal recovery from wastewaters such as acid 

mine drainage (AMD).  Therefore, this thesis focused on varying different operational 

conditions to study their effect on the solid-liquid separation and purity of the metal 

sulfide precipitates as well as on their effect on the sulfate reducing process for process 

control (Figures 8.1, 8.2 and 8.3). In addition, recommendations for further research to 

improve the recovery of the metal sulfides in bioreactors are given. 
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Figure 8.1. Overview of the structure of this thesis on the aspects of biogenic sulfide 

production for metal recovery in inverse fluidized bed reactors. HRT: hydraulic 

retention time; SRB: Sulfate reducing bacteria. 
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Figure 8.2. Overview of the results of this thesis concerning biomass activity and SRB 

community dynamics, metal sulfide allocation in the IFB reactor and metal removal 

mechanisms in the sulfate reducing process. HRT: hydraulic retention time; COD: 

chemical oxygen demand; SRB: sulfate reducing bacteria and PID: proportional integral 

derivative. 
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Figure 8.3. Overview of the results of this thesis concerning solid/liquid separation and 

metal removal mechanisms in the metal precipitation process. F-EEM: fluorescence 

excitation emission matrix; XANES: X-ray absorption near edge spectroscopy; EXAFS: 

extended X-ray absorption fine structure; SS: settleable solids and CST: capillary 

suction time. 
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8.3 Effect of sulfide, pH and HRT on the metal sulfide precipitation characteristics 

and sulfate reducing activity in the IFB reactor 

This thesis shows that the characteristics of the metal sulfides formed in the IFB reactor 

depend on the operational conditions, such as the sulfide concentration (Chapter 1 and 

2), the hydraulic retention time (HRT; Chapter 4) and the pH (Chapter 5). These 

parameters control the extent of agglomeration for particle growth and settling as well 

as the supersaturation for crystallization of the metal sulfides (Figure 3, Chapter 5). 

 

8.3.1 Effect of sulfide concentration 

8.3.1.1 Sulfide concentration affecting the location of metal sulfide precipitation in 

the IFB reactor 

The sulfide concentration controlled the location of the metal sulfides in the IFB 

reactor. At high sulfide concentrations (>200 mg/L), high levels of supersaturation were 

present in the bulk liquid allowing the formation of "fines", while local supersaturation 

in the biofilm occurred at low sulfide concentrations (<50 mg/L) (Chapter 2), because 

biofilms function as nucleation seeds, enhancing the formation and growth of the metal 

sulfides crystals (Bijmans et al. 2009a).  

Although the sulfide concentration ensures prior metal sulfide precipitation that 

prevented free metal toxicity (Kaksonen and Puhakka 2007), and that biofilms are 

reported to be more resistant towards high metal concentrations in comparison with 

bacterial cultures growing in suspension (van Hullebusch et al. 2003), in chapter 4 it 

was shown that the tendency of the metal sulfides to precipitate within/near the biofilm 

(Chapter 2) causes inhibition of the SRB activity and decreases their population size 

(Figure 6, Chapter 4) as previously reported (Utgikar et al. 2002).  

 

8.3.1.2 Alternative metal removal mechanisms at low sulfide concentrations 

The metals with the highest solubility product are not only removed by metal sulfide 

precipitation, but through a variety of removal mechanisms, particularly when the 

sulfide concentration is below the sulfide to metal stoichiometry (Figure 1, Chapter 3). 

These include biosorption, precipitation with macronutrients as phosphate and sorption 

onto their precipitates, e.g. apatite. Previous studies confirm the presence of alternative 

precipitates at low sulfide concentrations (Mokone et al. 2010; Neculita et al. 2007). 

However, these studies could not identify clearly the metal removal mechanisms 

because of the poor crystallinity of the metal precipitates. The use of species-specific 
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analytical methods such as EXAFS and XANES, allowed to identify that Zn is also 

sorbed onto apatite (Ca5(PO4) 3
+ (OH-) or hydroxyapatite (depending on the pH) and that 

these sorption mechanisms contribute to the Zn removal in bioreactors (Figure 4 and 5, 

Chapter 3).  

 

8.3.2 Effect of HRT 

The change in HRT affected the retention time of the metal sulfides for particle growth 

as well as the sulfate reducing activity (sulfide production) for metal sulfide 

precipitation (Chapter 4). The change in HRT from 24 to 9 h affected the size of the 

metal sulfide precipitates due to the change in contact time allowing aggregation and 

growth of the metal sulfides. The further HRT decrease to 4.5 h affected the sulfate 

reducing activity for sulfide production and hence, the supersaturation level. In addition, 

free metal toxicity caused process failure. Although the decrease in supersaturation is 

favorable for crystal growth of metal sulfides (Mersmann 1999), the formation of 

alternative precipitates such as brochantite (Cu4(OH)6SO4) (Mokone et al. 2010) and 

Zn-phosphate (Chapter 3) also occurred (Table 2, Chapter 4).  

 

8.3.3 Effect of pH 

The pH varies the influence of the influent macronutrients and the dissolved organic 

matter (DOM), present in the bioreactor, on the characteristics of the metal sulfide 

precipitates. At pH 5, the DOM from the bioreactor liquor (Figure 6, Chapter 5), 

induces crystallization and hampers agglomeration of the metal sulfides. This is 

explained as a passive binding between the metals and the organic matter that decreases 

the supersaturation of the metal sulfide precipitation and hence, allows crystallization 

over nucleation (Gadd et al., 2009; Johnson et al., 2007). In contrast, the metal sulfides 

formed at pH 7 showed aggregation of particles impeding the visualization of crystals 

via SEM (Figure 3, Chapter 5). In addition, the metal precipitates formed at pH 7 

displayed faster settling rates and capillary suction times as well as a higher 

concentration of settleable solids.  The reason could be that at this pH, the precipitates 

are also composed of phosphate (hydroxyapatite) (Figure 1b, Chapter 5) that are known 

to exhibit better liquid-solid separation as compared with the metal sulfides (Chapter 5, 

Djedidi et al., (2009).  

The X-ray absorption fine structure spectroscopy analyses confirmed the precipitation 

of Zn-S as sphalerite and Cu-S as covellite in all the samples, but also revealed the 
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presence of minor amounts of Zn-sorbed on hydroxyapatite. The analyses further 

showed a more organized ZnS structure at pH 5, in agreement with the scanning 

electron microscopy images of cubic sphalerite type structures. In contrast, amorphous 

CuS structures were observed regardless the pH. 

 

8.4 Multivariable analysis of the effect of the operational conditions on the sulfate 

reducing process 

A statistical analysis yielded valuable information on the synergistic and antagonistic 

effects of the influent pH, chemical oxygen demand concentration (CODin), metal to 

sulfide (M/S2-) ratio and HRT on the sulfate reduction process (Chapter 7). The three 

variables evaluated (COD, sulfate removal efficiency, and sulfide concentration) 

evidenced the strong effect of the pH over the other operational parameters (Figure 1 

and 3, Chapter 7). The pH as well as the CODin can lead to a selection of microbial 

species that was reflected in the differences between COD removal and sulfate 

reduction effiency (Figure 4). This is because an excess of CODin enhances the biomass 

growth rate and diversity of microbial species (Oyekola et al., 2009) that can help to 

maintain sulfate reduction at adverse conditions such as low pH (Elferink et al. 2001). 

The RSA showed that the M/S2- ratio determined whether the inhibition mechanism to 

the SR process was due to the presence of free metals (Figure 5 right, Chapter 7) or 

precipitated metal sulfides (Utgikar et al. 2002; Utgikar et al. 2004). 

 

8.5 Control and monitoring of the sulfide concentration in the IFB reactor 

This Ph.D study shows that the control of the sulfide concentration in the bioreactor 

liquid for metal sulfide precipitation can be applied to avoid electron donor losses, to 

obtain pure metal sulfides (Chapter 2, 4, and 5) and to avoid biomass toxicity (Chapter 

4). Therefore, tuning strategies to control the sulfide concentration in sulfate reducing 

bioreactors were evaluated using a direct measurement of the sulfide species (pS) for 

the acquisition of proportional-integral-derivative (PID) controller parameters (Chapter 

6). The PID parameters from the different step response experiments with both tuning 

strategies (Table 2) provided a baseline to evaluate the potential of the PID controller 

for its application in SRB bioreactors and to foresee the parameters that need to be 

adapted or included (Heinzle et al. 1993). 

The changes in the OLR during the IFB reactor operation show rapid responses in the 

sulfide concentration and a higher sulfide increment when a change of CODin 
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concentration was applied compared to the change in the OLR via the manipulation of 

the HRT. The decrease of the sulfide concentration was more difficult to achieve as it 

displayed a longer response time irrespective of the manipulated variable (CODin and 

HRT) (Figure 5, Chapter 6).  Therefore, another strategy to decrease the sulfide 

concentration in the IFB bioreactor should be considered such as the dilution of the 

effluent, as used in the control of wastewater treatment plants (Metcalf and Eddy 2002). 

Delays in the response time and a high control gain were the most critical factors 

affecting the application of a sulfide control strategy in bioreactors. These were caused 

by the induction of different metabolic pathways in the anaerobic sludge. These 

included substrate utilization by microbial groups other than SRB such as lactate 

fermentation to acetate (Oyekola et al. 2012) when the HRT was manipulated (Table 1, 

Chapter 6) and the accumulation of storage products under feast-famine conditions (Hai 

et al. 2004) promoted with the increase and decrease of the OLR via the manipulation of 

the CODin. 

In addition, chapter 6 showed that the online measurement of the sulfide concentration 

via the pS (Figure 2 and 3, Chapter 6) can be used for the control of the sulfide 

concentration in SRB bioreactors. However, pH variations and high sulfide 

concentrations should be carefully observed for correction of the recorded pS values. 

 

8.6 Implication for biotechnological applications 

The small particle size of the metal sulfides (Chapter 2, 3, 4 and 5) and the adaptation of 

the controller parameters for sulfide control (Chapter 5) are an important bottleneck 

towards the biotechnological application of the IFB sulfate reducing reactor for metal 

recovery in AMD waste streams.  

At sulfide concentrations above the sulfide to metal stoichiometric ratio, high 

supersaturation conditions are difficult to be avoided (Chapter 1 and 2) and thus, crystal 

growth is less relevant for particle growth as compared to the agglomeration of the 

metal sulfide precipitates (Figure 6, Chapter 2). As agglomerates are, however, 

relatively fragile, the precipitates displayed a wide range in size distribution (0.48-250 

µm; Chapter 4) that varied with the retention time of the crystals in the IFB reactor 

(Chapter 4). Thus, promoting agglomeration for particle growth might be a difficult 

option to control the particle size compared with the manipulation of other parameters 

that favour the formation of more compact crystals.  
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Crystal growth can be favoured at low sulfide concentrations and hence, the decrease of 

the supersaturation in the bioreactor (Mersmann 1999). However, up to now, the 

maximum crystal size for several metal sulfides is reported to be below 10 µm (Lewis 

2010). Such particle sizes are still difficult to settle using standard clarifiers for solid 

state separation (WEF, 2005). Besides, low sulfide concentrations bring a tradeoff 

between crystallization and metal sulfide purity (Chapter 3 and 4).   

The evaluation of tuning strategies to control the sulfide concentration was the first 

approach to obtain the PID parameters towards an automated metal 

precipitation/recovery in the IFB reactor (Chapter 6). However, several issues were 

encountered related to variable process dynamics that could affect the stability of the 

process control such as delays in response time and a high control gain (Table 2, 

Chapter 6), which may cause an excessive control action and instabilities in the reactor 

(Stephanopoulos 1984). These issues have been observed when PID controllers are used 

in biological systems, since time delays cannot be incorporated in the system model 

(Mailleret et al. 2004; Alvarez-Ramirez et al. 2002). In addition, the accumulation of 

storage products allows the SRB to continue producing sulfide even when the organic 

loading rate is decreased, thus causing an unexpected sulfide response that cannot be 

considered in the conventional PID controller. Therefore, the adaptation and 

introduction of additional parameters to the controller should be explored. 

 

8.7 Recommendations for future research 

 

8.7.1 Seeding material to promote crystallization 

In chemical precipitators, “seeding material” are used to promote crystal growth and 

thus to increase the size of the precipitates (Mersmann 1999). Several authors have 

induced the precipitation of heavy metals on the sand surface in fluidized bed reactors 

using sulfide or carbonate (Zhou et al., 1991; Guillard et al 2001; van Hille et al., 2005). 

Zhou et al. (1991) observed that when the ratio of carbonate to metals (Cu, Ni and Zn) 

was low, metal precipitates were coated on the sand surface, while at high ratios (6:1 

and 3:1) the precipitation occurred in the bulk solution. Similarly, this study shows that 

the metal sulfides accumulated in the polyethylene beads coated with SRB biofilm till 

the point where these beads became so heavy that they lost their floating characteristic 

(Chapter 2). Even though, the crystallization characteristics of the metal sulfides 

precipitated in the biofilm was not determined in this work, such biomass could be an 
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alternative not only to enhance crystal growth but also to separate the metals from the 

liquid phase. However, the metal precipitates are then impure and biomass will be lost 

from the bioreactor upon metal harvesting, which is undesirable as the growth rate of 

SRB is rather slow (Widdel, 1988). To overcome this, a strategy could be explored to 

separate and re-circulate the biomass back to the bioreactor after the metal sulfides have 

been recovered. 

 

8.7.2 Alternative substrates promoting EPS that can decrease supersaturation 

In chapter 5, it was observed that the DOM produced under the IFB reactor operational 

conditions helped to mediate the crystallization process of metal sulfides probably by 

reducing the supersaturation at pH 5.  Several studies have examined the influence of 

the operational conditions and type of substrate on the characteristics of the 

extracellular polymeric substances (EPS) produced to understand biofouling in 

membrane bioreactors (Wu et al. 2012). Wu et al. (2012) found that a fulvic acid-like 

component was the main responsible for Cd(II) binding while Cu(II) inclined to 

complex with humic-like components rather than protein-like ones. Additionally, the 

molecular weight of the substrate analyzed was found to exert less influence on metal 

binding than that of specific metals. In this Ph.D study, the changes in fluoresecence 

intensity of the DOM are related to the use of lactate as substrate at one single 

concentration (Table 2, Chapter 5). Other types or different concentrations of substrate 

could lead to different characteristics of the DOM affecting the metal sulfide precipitate 

characteristics. Therefore, a deeper study on the characteristics of the DOM produced in 

sulfate reducing reactors for the enhancement of crystallization should be done.   

 

8.7.3 Additional settlers for sequential precipitation 

The degree of agglomeration for particle growth and settling on the metal sulfides was 

shown to be metal specific and linked to their solubility product (Chapters 3, 5 and 5). 

During the reactor operation (Chapter 4) and the metal depletion kinetics in the batch 

experiments (Chapter 2 and 3), Cd and Zn had lower settling rates compared to Cu and 

Pb. This study (Chapter 3), in agreement with a previous study (Al-Tarazi et al. 2005b), 

has shown that the agglomeration of precipitates is correlated with the solubility product 

(Blais et al. 2008). This is because nucleation enhances agglomeration, and the 

nucleation rate is dependent on the solubility product (Al-Tarazi et al. 2005b). This 

characteristic can be used for the selective recovery of the metal with the lowest 
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solubility product from a multi-metal wastewater in the IFB reactor itself acting as the 

first settler, whereas the remaining metal sulfides with higher solubility product can be 

recovered in additional settlers placed in sequence with the IFB reactor.  

 

8.7.4 Adaptation of the PID controller for the control of the sulfide concentration 

Delays in response time and a high control gain (Table 2, Chapter 6) were found the 

most critical factors affecting the application of a control strategy in bioreactors. 

Therefore, the PID controller should be modified to reduce these factors. One 

alternative can be to decrease the timing of the output (Steyer et al. 2000), in this case, 

the pS readings. However, this option might cause information losses of significant 

changes affecting the bioreactor, and consequently, operation failures that could be 

prevented with the pS readings information.  

The use of an adaptive PID controller with gain scheduling or a model-based adaptive 

controller (Haugen, 2004) could be a better option to overcome delays in response time 

and to diminish a high control gain both caused by variations in the SRB activity. An 

approach for the design of linear feedback controllers for anaerobic digestion systems 

was presented by Alvarez-Ramirez et al. (2002) using a PI controller with a novel 

control gain configuration to regulate the effluent COD concentration. They proposed a 

cascade control structure to overcome time delays by measuring VFA concentrations 

instead of the total COD concentration.  In the case of the use of a model-based adaptive 

controller, the parameters are estimated continuously based on the changes in the 

microbial activity and population (Rodrigo et al., 1999). This information can be 

obtained by the dynamics of the bioprocess such as reaction pathways and mass 

balances (Steyer et al. 2000). 
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Summary 
This study shows that the contribution of nucleation, crystal growth and agglomeration on the 

particle size and purity of the metal sulfides in the inverse fluidized bed (IFB) reactor varies 

with the sulfide concentration, the residence time of the precipitates and the pH.  

The sulfide concentration was found to control the location of the metal sulfides in the IFB 

reactor as well as their purity, but not the particle size. At high sulfide concentrations (>200 

mg/L), high levels of supersaturation were in the bulk liquid allowing the formation of 

"fines", while local supersaturation in the biofilm occurred at low sulfide concentrations (<50 

mg/L). The allocation of the metal sulfides in the biofilm affects its SRB activity, while this 

was not observed in the SRB suspended in the bioreactor liquid. Metal removal mechanisms 

other than metal sulfide precipitation were favored when the sulfide concentration was below 

the sulfide to metal stroichiometric ratio. These included biosorption, precipitation with 

macronutrients as phosphate and sorption onto their precipitates, e.g. apatite.  

The change in HRT affected the retention time of the metal sulfides for particle growth and 

the sulfate reducing activity for sulfide production. As a consequence, variations in the size 

of the metal sulfide precipitates were observed. The decrease of the HRT also affected the 

SRB activity and quantity that was partly attributed to the variations of the size of the metal 

sulfide precipitates but also to the insufficient sulfide concentration that allowed free metal 

toxicity.  

The pH was found to determine the influence the dissolved organic matter (DOM) and the 

compounds present in the biogenic sulfide such as phosphate, on the characteristics of the 

metal sulfide precipitates. At pH 5, the DOM present in the bioreactor liquor, induced 

crystallization and hampered agglomeration of the metal sulfides due to a passive binding 

mechanism between the metals and the -COOH and –OH groups that decreases the 

supersaturation. In contrast, the metal sulfides formed at pH 7 showed aggregation of 

particles, faster settling rates, more settleable solids and better dewaterability. This as 

suspected to be due to the presence of phosphate precipitates as Zn3(PO4)2*4H2O and 

hydroxyapatite that are known to exhibit better liquid-solid separation as compared with 

metal sulfides. 

A statistical analysis was made with the results of the IFB reactor runs operating at different 

influent pH, chemical oxygen demand concentration (CODin), metal to sulfide (M/S2-) ratio 

and HRT to gain knowledge on their individual and combined effects of these parameters on 

the sulfate reduction process. Based on the results of analysis of variance (ANOVA) and 
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response surface analysis, the combined effect of pH (up to 7) and CODin (up to 3 gCOD/L) 

was positive for sulfate reduction, whereas the individual effect of CODin was not significant 

at all. The effect of metal addition on the process performance depended on the M/S2- ratio. 

The COD removal and sulfate reducing process were adversely affected with the addition of 

metals (Zn, Pb, Cu, Cd) in the influent, however, the effect differed and highly depended on 

the M/S2- ratio as it determines insoluble metals sulfide inhibition and free metal toxicity. 

As a result of the general conclusion about the need to control the sulfide concentration for 

process improvement in the previous chapters, this study evaluated two tuning strategies to 

manipulate the OLR via changing the CODin or the HRT for controlling the sulfide 

concentration in sulfate reducing bioreactors for acquisition of the proportional-integral-

derivative (PID) controller parameters. The changes in the OLR during the IFB reactor 

operation showed rapid responses in the sulfide concentration when the change was applied 

to the CODin and a higher sulfide increment compared to the change in the OLR via the 

manipulation of the HRT. The step change applied by the manipulation of either CODin or 

HRT for sulfide decrease displayed a small change and a longer response time. Changes in 

microbial activity affected the sulfide concentration set-point after the changes in the OLR. 

Thus, the information obtained by the dynamics of the bioprocess or an adaptive PID 

controller that includes the modeling of the system should be used for constant updating of 

the PID parameters. 
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Samenvatting 
Deze studie toont aan dat in IFB (inverse fluidized bed) reactoren de sulfideconcentratie, de 

verblijftijd van de sulfideneerslagen en de pH bijdroegen aan het ontstaan en de groei van 

metaalsulfide kristallen en aan de zuiverheid ervan. De sulfideconcentratie bepaalde the 

plaats van de metaalsulfiden in de IFB reactor: hoge sulfideconcentraties (>200 mg/L) 

leidden tot superverzadiging in de hele reactor en de vorming van kleinere deeltjes, terwijl 

lokale superverzadiging in de biofilm optrad bij lage sulfideconcentraties (<50 mg/L).  De 

activiteit van de sulfaatreducerende bacteriën in de biofilm werd beïnvloed door de plaats van 

de metaalsulfiden in de biofilm; uiteraard gold dit niet voor de activiteit van de bacteriën 

gesuspendeerd in bioreactor.  Als de sulfideconcentratie onder de stoichiometrische 

verhouding sulfide-metaal kwam, kregen andere metaalverwijderende mechanismen dan het 

neerslaan van metaalsulfide de overhand, zoals biosorptie, neerslag met macronutriënten 

(fosfaat) en adsorptie aan apatiet. 

Verandering van de HRT (hydraulische verblijftijd) beïnvloedde niet alleen de verblijftijd 

van de metaaldeeltjes en dus hun aangroei, maar ook de sulfaatreducerende activiteit en dus 

de sulfideproductie. Dientengevolge was er variatie in de grootte van de metaalsulfide 

deeltjes. De verlaging van de SRB activiteit bij verlaagde HRT kon deels worden 

toegeschreven aan de veranderde deeltjesgrootte van de metaalsulfiden, maar ook aan 

verhoogde toxiciteit van vrije metalen, die niet konden neerslaan bij gebrek aan voldoende 

sulfide.  

Bij pH 5 stimuleerde het aanwezige DOM (opgeloste organische stof) de kristallisatie, maar 

verhinderde de samenvoeging van afzonderlijke metaalsulfidedeeltjes. De metaalsulfides 

gevormd bij pH 7 daarentegen aggregeerden wel en bezonken sneller. Ook hun 

ontwaterbaarheid was groter door de aanwezige fosfaatneerslagen, zoals Zn3(PO4)2.4H2O en 

hydroxyapatiet.  

Met behulp van een statistische analyse (ANOVA) zijn zowel de afzonderlijke als de 

gecombineerde effecten van pH, CZVin, metaal/sulfide ratio en HRT op de sulfaatreductie in 

kaart gebracht. De combinatie van verhoging van pH (tot 7) en CZV (tot 3g/L) stimuleerde 

de sulfaatreductie, terwijl alleen CZV verhoging geen effect had. Het effect van 

metaaltoevoeging op het proces hing vooral af van de verhouding M/S2-. De CZV 

verwijdering en de sulfaatreductie activiteit waren omgekeerd evenredig met de toevoeging 

van metalen (Zn, Pb, Cu, Cd), hoewel het effect verschilde en vooral afhankelijk leek te zijn  
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van de  M/S2- verhouding, omdat dit de remming door vrije, niet neergeslagen metalen 

beïnvloedt.  

De discussie in de eerste hoofdstukken over de noodzaak om de sulfideconcentratie te kunnen 

reguleren ter verbetering van het proces, leidde tot twee "tuning strategies" om de organische 

belasting te kunnen manipuleren: hetzij via de CZVin, hetzij via de HRT zou de 

sulfideconcentratie in sulfaatreducerende reactoren gecontroleerd kunnen worden. Dit alles 

om de juiste parameters te kunnen krijgen  voor de PID (proportional-integral-derivative) 

controller.  

Als de organische belasting in de IFB reactoren werd aangepast door middel van de  CZVin, 

dan  wisselde de sulfideconcentratie sneller en met grotere sprongen dan wanneer die 

aanpassing  kwam door verandering van de HRT. Stapsgewijze sulfide verlaging door het 

manipuleren van hetzij de CZVin, hetzij de HRT,  leidde tot kleinere veranderingen en een 

langere responstijd. 

Door veranderingen in de organische belasting en de daarmee gepaard gaande veranderingen 

in microbiologische activiteit veranderde het sulfideconcentratie set-point. De PID 

parameters moeten dan ook continu worden aangepast, hetzij op grond van resultaten 

verkregen uit het proces, hetzij door middel van een adaptieve, modelgestuurde PID 

controller.   
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Industrial activities like textile processing and mining are typical sources of heavy 
metal-rich wastewaters. The sulfate reducing process has become an attractive 
method for the production of sulfide to precipitate metals since most of these streams 
also contain sulfate, which is the electron acceptor and, in less common cases, 
chemical oxygen demand which is the electron donor of sulfate reducing bacteria. 
The inverse fluidized bed (IFB) reactor is a system for the production of biogenic 
sulfide and metal precipitation in the same unit due to its configuration: the biomass 
floats on top of the reactor, whereas metal sulfide precipitates settle and thus can be 
recovered at the bottom. 

The main objective of this thesis was to elucidate the factors affecting simultaneous 
sulfate reduction and precipitation of heavy metals in an IFB reactor in order to 
optimize the metal recovery from wastewaters such as acid mine drainage. Therefore, 
this thesis focused on varying different operational conditions to study their effect 
on the solid-liquid separation and purity of the metal sulfide precipitates as well 
as on their effect on the sulfate reducing process. Furthermore, one chapter was 
focused on the study of strategies for sulfide control in the IFB reactor. In addition, 
recommendations for further research to improve the recovery of the metal sulfides 
in bioreactors are given. 
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