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Abstract 

Herrero-Medrano, JM. (2013). Conservation genetics of local and wild pig 

populations: insight in genomic diversity and demographic history. PhD thesis, 

Wageningen University, the Netherlands 

 

A limited number of highly productive populations has progressively led to many 

local breeds becoming endangered or extinct. Genetic characterization of the 

genetic resources is, thereby, needed to prevent further loss of genetic and cultural 

heritage. The development of new genotyping technologies provides 

unprecedented opportunities for the implementation of effective conservation 

programs. The aim of the study described in this thesis was to explore the genetic 

diversity and demographic history of local pig populations, and the applicability of 

the results for the long-term future conservation of livestock genetic resources. In 

this thesis, mitochondrial DNA (mtDNA) and nuclear genetic marker systems were 

used to explore the past demographic history and genetic diversity of domestic and 

wild pigs. A Bayesian phylogeographic analysis using mtDNA allowed the detection 

of past dispersal events of Sus scrofa across Eurasia. Dispersal patterns consistent 

with fossil records described in other species as well as hitherto untested dispersal 

routes were detected. Insight in the demographic history of local pigs was obtained 

by using 60K SNP data. The study of regions of homozygosity (ROH) and past 

effective population size (Ne) showed genetic signs of past bottlenecks in some 

populations. The estimation of Ne revealed the bottleneck suffered by wild pigs 

during the last glacial maximum, and an increase of Ne of Iberian pigs may due to 

the domestication. The SNP panel proved to be highly efficient for population 

structure analyses, as it was able to differentiate 13 European local breeds and 

correctly assigning the pigs to their population of origin. Within the population 

structure analysis, identification of admixture is a relevant issue in conservation 

management of livestock species. A population structure analysis combined with 

an analysis of ROH and the calculated inbreeding factor at the individual level 

provided suitable parameters to identify pigs that have been recently crossed with 

other breeds. I observed a high correlation between genetic diversity computed 

with the 60K SNP and whole genome re-sequence data. This high correlation 

inferred indicates that the Porcine 60K SNP Beadchip provides reliable estimates of 

genomic diversity in European pig populations. The study of NGS data of local and 

commercial European breeds demonstrated that, despite the higher inbreeding 

observed in many local pigs, local pigs harbour different genomic variants that may 

represent a valuable genetic reservoir for the livestock breeding industry in the 

future. This thesis provides a benchmark to address rational management and 
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exploitation of local genetic resources. Moreover, the large representation of pig 

populations, the choice of genetic marker systems and the approaches utilized may 

benefit future studies that aim to genetically characterize livestock populations. 
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1.1 Introduction 

There are at least six species of the Genus Sus, of which Sus scrofa shows the 

largest geographic distribution [1]. It is estimated that around 3.0-3.5 million years 

ago Sus scrofa emerged from South East Asia and colonized Asia, Europe and North 

Africa [2, 3]. Similar to other mammals, the glaciation events that occurred during 

the middle to end of the Pleistocene had a great impact on the spatial distribution 

of Sus scrofa with some populations becoming extinct and others being 

marginalized in warmer areas  in so-called refugia [4]. After the Last Glacial 

Maximum, mammalian populations re-colonized regions previously covered by the 

permafrost, while others became isolated on islands (Figure 1.1).  

Two main factors shaped the current genetic variability of pig populations and 

other mammals. The first comprises of large climate changes in the Pleistocene [5] 

while the second is human intervention during the Holocene (i.e. roughly the last 

10,000 years). Interactions between humans and Sus scrofa have contributed 

markedly to the current variation in the latter species due to,  most notably, 

domestication [3, 6, 7]. The most ancient archaeological evidence of pig 

domestication was found in Anatolia, suggesting that Sus scrofa was first 

domesticated in the Near East ~10,000 years ago [8–10]. Archaeological findings 

such as the sharp decreased molar tooth size observed by Ervynck et al. [11] in pig 

remains, strongly supports that this geographic region represented an ancient 

domestication centre for the species Sus scrofa, as it proved to be for other species 

too, including for instance cattle and wheat. The specific geographic and temporal 

context in which domestication of the pig took place across Eurasia is still debated. 

The development of new molecular techniques applied to modern and ancient 

archaeological data have supported the theory of multiple independent 

domestication events throughout Eurasia [3, 6, 12]. In Asia, four regions of possible 

pig domestication centre were suggested: 1) China, 2) South Asia, 3) the island of 

Lanyu and 4) Sulawesi [3, 12]. Regarding pig domestication in Europe, dispersal 

from the Near Eastern pigs across Europe by Neolithic farmers has been suggested 

based on the presence of Near East mtDNA haplotypes in pig remains excavated 

from early farming sites [6]. However, the total absence of a genetic signal of Near 

Eastern haplotypes in modern European breeds [3, 13, 14], together with the 

archaeological remains of bones of small domesticated pigs found in Switzerland 

and Italy among others, seemed to indicate independent domestication events 

from European wild boars [3]. Recently, the role of Europe and other regions as 

domestication centres has been challenged. Larson and Burger [15] pointed out the 

high similarity between mtDNA from wild and domestic pigs, but also the lack of 
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strong archaeological evidence of long-term domestication in Europe and in South 

East Asia. These authors suggested that this discrepancy between archaeological 

and genetic data can be explained by repeated events of admixture between 

domestic pigs imported from Near Eastern regions and European wild pigs in 

Europe [16], and similarly, between domestic pigs imported from China and wild 

boars from South East Asia [15]. Eurasian domestic pigs were subsequently 

transported to Oceania, Africa and America [17–19] explaining the current 

worldwide distribution of Sus scrofa. 

 
 
 
 

 
Figure 1.1 Reproduced from Hewitt, 2000 [4]. The maximum extent of ice and permafrost at 
the end of the last ice age 20,000 yr BP. The lowered sea level, large deserts and main blocks 
of tropical forest are indicated. 
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Pigs were independently domesticated in Asia and Europe, and subsequently 

selected for traits valuable to humans for thousands of years [20]. Asian domestic 

pigs were reared in family farms and fed by the farmers at very initial stages of 

domestication. However, the transition from wild to farmed was much slower in 

Europe, where domestic pigs were commonly released in the forest where they fed 

on acorns or chestnuts (Figure 1.2). Therefore, while Asian domestic pigs started to 

show the classic phenotype of a domestic pig, including shorter legs and a pot-

belly, European pigs retained many similarities to their wild ancestor [20]. In 

addition, it is likely that human migrants transported domesticated pigs to different 

geographic locations. Wherever these pigs escaped, the result could be feral or 

hybrid pigs, potentially distorting the local wild boar population genetic structure 

[21]. A remarkable example of the human influence on the current genetic 

structure of Sus scrofa was the introgression of Asian domestic pigs into European 

pigs during the late 18th and 19th centuries [22, 23]. Chinese pigs were imported 

to England and used to improve local pigs for important production traits such as 

litter size and rapid weight gain. The ensuing English breeds, due to their improved 

production characteristics, subsequently became the founders of several of the 

currently recognized international, commercial pig breeds. This historical period 

constitutes the origin of the transformation from traditional systems into highly 

productive systems in Europe. The last 60-70 years have seen a revolution in 

livestock genetic improvement in general, and pigs in particular, due to strong 

selection schemes [24]. The modern animal production industry is characterized by 

the use of animals that are optimized for feed conversion, rapid growth and 

prolificacy in high-input production systems. While intensive systems are common 

in the developed world, the so-called low-input systems represent a fundamental 

source of meat in the developing world [25]. These systems are often based on the 

exploitation of local breeds reared under extensive or semi-extensive conditions.  

Like the domesticated pig, the demography of wild populations has been strongly 

influenced by human activities, even a long time before domestication [26]. 

Hunting, habitat degradation, and re-stocking have resulted in continuous change 

of wild populations for centuries [7, 27]. Wild boar populations have been 

subjected to strong bottlenecks that sharply reduced their population size during 

the last centuries [28]. On the other hand, in the last 50 years, an expansion of the 

population size occurred, particularly in Europe, due to rapid growth in population 

densities due to improved nature conservation measures, even leading to active 

management (i.e. hunting) to prevent overpopulation in many regions [29, 30].  

Nowadays, from a practical point of view, three groups of pig populations can be 

distinguished: (i) Commercial or international breeds, representing the pig 
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populations spread across different geographic regions; (ii) local breeds, restricted 

to one country or geographic region; (iii) wild, including feral, pigs that have not 

been domesticated [31].  

 

 

 

 

Figure 1.2 Men knocking down acorns to feed swine, from the 14th century English Queen 

Mary Psalter, MS. Royal 2 B VII f.81v. 

 

 

 

1.2 Genetic marker systems used in livestock populations 

The development of genetic marker systems has had an overwhelming impact in 

population genetic research [32, 33]. Microsatellites and mitochondrial DNA 

(mtDNA) revolutionized our understanding of evolutionary process and population 

history in humans and animals. Various limitations, e.g. difficulty of automation of 

genotyping assays, highlighted the need for marker systems that would better scale 

to genotyping at high density [32]. High-density SNP panels are currently widely 

used in a large variety and number of studies, thereby greatly improving our 

knowledge of genome variation both in wild and domesticated species. 

Technological advances have culminated in complete sequencing of livestock 

species such as chicken [34], pig [2], and cattle [35], opening up new possibilities in 

population genetics studies [15, 36]. 
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Direct sequencing of the hypervariable region, or control region, of the mtDNA can 

be rapidly obtained at relatively low cost. The study of mtDNA has proven to be 

informative for phylogenetic studies, and has unravelled key elements of the 

domestication process in many species, such as the fact that many species, 

including pig, were domesticated independently in different regions (e.g. see 

references [3, 23, 37, 38]). MtDNA evolves rapidly ─faster than nuclear DNA─, is 

maternally inherited and does not recombine [39–41] which largely explains its 

usefulness for phylogenetic studies. However, the fact that mtDNA represents a 

single locus, together with being exclusively inherited maternally, limits detailed 

studies to unravel some historical processes acting on populations [32, 42]. Thus, 

complex demographic events such as admixture [15] and sex-specific breeding 

practices, which have a very important role in livestock production, cannot be 

accurately estimated with mtDNA. These limitations have justified the need of 

incorporating nuclear data in population genetic studies. 

Microsatellites have been the marker system of choice in population genetic 

studies [32] for the better part of the last twenty-five years. The popularity of 

microsatellites stems from the possibility to genotype individuals with a very 

polymorphic and co-dominant genetic marker [43], at reasonable cost. 

Microsatellites have been harnessed by researchers on population genetic studies 

to test parentage or relatedness (e.g. [44]), genetic diversity (e.g. [45]), and 

population structure (e.g. [46]), due to the high polymorphism and distribution 

across the genome. The high level of heterozygosity and the genome-wide 

distribution made this type of marker suitable for developing genetic maps in 

humans [47] and livestock species such as cow [48], pig [49], chicken [50] and 

sheep [51] during the 1990s. However, several disadvantages have been associated 

with microsatellites. Complex patterns of mutation within and between loci add 

uncertainty to the use of microsatellites in phylogenetic studies [32]. Recurrent 

mutation may lead to homoplastic alleles that are identical by state but not by 

descent [52, 53]. From a practical point of view, genotyping a large number of 

microsatellites is labour-intensive and it is also difficult to compare studies across 

different laboratories unless reference control samples are genotyped to calibrate 

allele sizes. Finally, the density of microsatellite panels, usually not exceeding 

several hundred markers, is too low for fine mapping of QTLs [54]. 

Single nucleotide polymorphisms (SNPs) are (usually) bi-allelic markers and 

therefore, less polymorphic than microsatellites. However, the low polymorphism 

may be compensated by genotyping large SNP panels [46]. Modern high-

throughput SNP panels allows for single-reaction assays of tens of thousands to 

millions of SNPs. The high density of such marker assays can provide insight in the 
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genome not achievable with microsatellites. For instance, the use of a high-density 

SNP panel demonstrated that linkage disequilibrium (LD) extends to larger 

distances than expected in humans [55]. The high density of SNPs, the existence of 

automated and standardized panels, and its cost-effectiveness largely explain that 

dense SNP panels have revolutionized genome research in recent years. In fact, 

commercially available high-density SNP panels, now available for almost all 

important livestock species [56–58] at relatively low cost, have led to the 

adaptation of highly standardized marker assays by livestock industries [59]. 

The high number of neutral genetic markers included in the SNP panels has 

increased the accuracy to assess classic parameters within population genetics, 

including population structure and relationship among populations [60–62], 

although there is not a full agreement regarding which genetic marker –SNPs or 

microsatellites– better reflect genome-wide genetic diversity [45]. High-density 

SNP panels have proven their usefulness to study patterns of LD, for QTL mapping, 

and for genome-wide association studies [63–65]. An issue of some concern in the 

use of chip-based high-throughput genotyping is the presence of so-called 

ascertainment bias. Commercially available SNP chips are usually designed on the 

basis of genetic variation of a small number of individuals from selected 

populations, such as commercial breeds. Therefore, the utilization of this set of 

markers in a wider set of populations may distort the results, especially when used 

in populations genetically differentiated from those that were used to design the 

chip [66].  

A recent development to analyse entire genome-wide variation in livestock is the 

utilization of Next Generation Sequencing (NGS) technology. For instance, the 

study of the pig genome provided new insights of the demographic history of Sus 

scrofa [2], and also provided the opportunity to perform unbiased and accurate 

studies to estimate genomic diversity [67], regions of homozygosity [65] and to 

detect signatures of selection [68]. One of the most promising applications of NGS 

data is the study of functional consequences of mutations, and thereby to 

investigate the molecular basis of phenotypic traits of importance. Owing to its 

efficiency and wide applicability, NGS, is expected to become the most important 

tool in the coming years to study genomic variability. 

The use of NGS data involves new approaches, but also leads to new challenges 

that need to be met. Recently, genome-wide association analyses (GWAS) in 

humans have been replaced by studies based on NGS data [69]. While GWAS aims 

to identify genomic regions or mutations underlying production traits and disease 

phenotypes, whole-genome sequence analyses make it possible to point out target 

genes through a functional genomics approach. The great accumulation of data 
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generated with new sequencing technologies implies new approaches in functional 

genomics [70]. Thus, there is a shift from forward genetics to reverse genetics. 

Classically, in forward genetics, the starting point to study functional genetics is a 

phenotypic variation for which the researcher tries to determine the genetic basis 

by eventually sequencing genomic regions that may be involved in the observed 

phenotypic trait. The so-called reverse genetics approach operates in the opposite 

direction. Since NGS allows the researchers access to large volumes of genomic 

data, generally faster than to phenotypic data, it promotes a scenario where the 

gene sequence is known but its biological effect is unknown. Another consequence 

of the transition from marker systems such as microsatellites and SNP chips to 

whole-genome sequences is that, instead of a moderate number of individuals 

genotyped for a small or medium number of markers, a few or even a single 

individual is genotyped for (almost) all the variation in the genome [71]. This 

approach has some challenges. First, the use of a few individuals may not represent 

the idiosyncrasy of the population, leading to insufficient power to extrapolate 

biological questions to the population level. Second, random shot gun sequencing 

implies variable sequence coverage, with nucleotide sites genotyped with low 

coverage that may represent only one of the two parental chromosomes [71]. 

Moreover, sequencing errors at regions with high coverage can be misinterpreted 

as polymorphic sites [71]. 

 

1.3 Conservation genetics in livestock species 

Introduction 

Human activities are directly and indirectly decreasing the global biodiversity as 

reflected by the large number of species that have become extinct, while many 

others have declined to dangerously low population sizes that could lead to 

extinction [72]. An active response is needed to improve the management of 

endangered species in order to ensure their long-term survival. To achieve this 

goal, genetic factors must be considered [73]. Conservation genetics is the 

application of evolutionary and molecular genetics to preserve biodiversity. 

Preservation of genetic variation and population distinctiveness are major concerns 

in conservation genetics of livestock species since loss of genetic diversity increases 

the risk of extinction [73], while high genetic variation is related to higher adaptive 

potential to new environmental conditions such as changing climate conditions or 

emergence of new pathogens [73, 74].  

Another concern in conservation genetics is inbreeding depression, which refers to 

the accumulation of homozygous alleles with a negative effect on fitness. While 

damaging mutations are efficiently removed, or kept at low frequencies, from large 
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populations by natural selection, small populations have a higher probability to 

accumulate high frequencies of damaging mutations through random genetic drift, 

thereby reducing fitness and productivity [75, 76]. As in any managed population, 

in domestic breeds, the need to preserve genetic variation to avoid the risk of 

inbreeding depression must be considered. Avoiding health problems is a direct 

concern for animal breeders. Furthermore, the genetic variation is the raw material 

used by the breeders to accelerate genetic gain. The large amount of data provided 

by new genotyping technologies will aid to improve traditional approaches of 

maintaining genetic variation in populations, and, at the same time, will make it 

possible to address new approaches in conservation [36, 77, 78].  

 

Conservation of local breeds 

Management practices, developed mainly in Europe during the last two centuries, 

have tended to increase productivity and economic profitability to the detriment of 

the conservation of livestock genetic resources [79]. Specifically, advances in the 

livestock industry during the last decades have led to the existence of a limited 

number of highly productive breeds that have progressively marginalized, and even 

replaced, many local breeds. The FAO has cautioned that nearly 20% of the 

domestic animal breeds are threatened with extinction, while 30% lack data 

regarding the status [80]. Local breeds are particularly threatened due to their 

typically small population size and low productivity [25]. Low production of local 

breeds may compel farmers to choose different breeds on economic grounds, 

thereby increasing the risk of local breeds becoming extinct. Small-scale farmers 

play a key role in the management of livestock genetic recourses and therefore 

biodiversity, as recently recognized by FAO [81]. There are two major concerns in 

the conservation genetics of livestock domestic populations: inbreeding and 

crossbreeding. Inbreeding may erode genetic diversity and threaten long-term 

survival because of inbreeding depression. Crossbreeding, may pose a threat to the 

historical significance of the population by losing what is perceived to be its 

‘genetic integrity’ [82], as well as losing alleles particular to the population. Thus, 

rational use and protection of local breeds from genetic introgression from highly 

productive breeds are major goals in conservation genetics of livestock 

populations. 

Local breeds do provide a large contribution to the genetic diversity of the 

domestic stock [79, 83, 84]. The genetic variability of local breeds has been related 

to high adaptation to harsh environments and meat quality characteristics. While 

highly-productive breeds need proper nutritional and environmental conditions to 

be fully productive, local breeds may be productive under harsh local conditions. A 
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clear example of adaptation of local breeds in a local environment is observed in 

populations reared in tropical regions. Indigenous breeds from those geographic 

areas have to cope with heat stress, poor nutrition and disease pressure [25, 85]. 

Hansen [86] reviewed the differences between Zebu breeds, indigenous from 

tropical areas, and European breeds (Bos taurus). The Zebu breeds show 

physiological differences that confer superior ability to regulate body temperature 

during heat stress. Finally, it cannot be dismissed that local breeds are often 

regarded as part of the cultural heritage of local and national communities, having 

an important socio-economic value in their geographic regions. 

Once the need to preserve local breeds has been accepted, the genetic 

characterization of livestock resources arises as a major step in the design of 

proper conservation and management programs. The maintenance of genetic 

resources will increase the capability to respond to present and future needs of 

livestock production.  

 

New approaches in conservation genetics: conservation genomics 

The term conservation genomics has recently been introduced and refers to the 

use of genome-wide data to solve problems in conservation biology [36]. 

Traditionally, genetic studies to preserve biodiversity focused on the analysis of 

neutral variation by analysing neutral markers such as microsatellites and SNP 

panels. Neutral variation is shaped by evolutionary forces, i.e. genetic drift, 

mutation, migration and recombination, and it can be used to assess demography, 

population distinctiveness, gene flow and conservation status [77, 87]. Low levels 

of genetic diversity, as inferred from neutral loci, has been indirectly related to 

reduced individual fitness due to inbreeding depression [88, 89]. However, 

correlation between neutral variation and fitness of the population may be weak 

[87, 90]. 

New genomic tools will change conservation genetics approaches [36, 77]. Various 

applications will focus on estimating parameters that require the use of neutral 

markers at a higher accuracy, such as levels of inbreeding, and population 

differentiation [36]. Perhaps the most exiting application of whole-genome 

sequencing is the study of functional genetic variation. For instance, NGS enables 

direct assessment of the consequences of loss of genetic variation on the 

adaptability of populations [36, 77] (Figure 1.3). It furthermore enables 

identification of the effect and distribution of those loci involved in fitness [91]. The 

knowledge provided by NGS data combined with demographic history, may allow 

the identification of local populations with higher adaptive potential, as well as 
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detection of endangered populations with high levels of detrimental variation. Both 

situations may require specific actions from a conservation point of view [77, 92].  

The application of genomics tools in conservation biology will require overcoming 

several challenges and limitations. Understanding the relation between genomic 

variation within genes and its consequence in adaptation is still very much under 

development [78]. From a practical point of view, NGS data provides large amounts 

of data that may be challenging in terms of analysis and storage [36]. Moreover, 

the cost of re-sequencing representative samples of a population is still high. 

 

 

 

 
Figure 1.3 Reproduced from Ouborg et al. [78]. Schematic representation of 

conservation genetics (a) and conservation genomics (b) approaches. 
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1.4 Aim and outline of the thesis 

The first aim of this thesis is to provide further understanding of the past events 

that shaped the current genetic structure of Sus scrofa. To achieve this goal, 

historical migration patterns of wild boar populations across Eurasia are estimated 

as well as the genetic diversity and differentiation based on mtDNA data (Chapter 

2). Chapter 3 comprehensively characterizes a Spanish local breed (the Chato 

Murciano pig) by investigating the majority of all remaining breeding stock, and by 

integrating microsatellites, mtDNA and high-density SNP panel. This breed 

exemplifies the risks to which many other livestock populations are exposed as a 

result of inbreeding and crossbreeding with highly productive breeds. A broader 

study of local pig populations, including domestic and wild populations from the 

Iberian Peninsula is performed in the Chapter 4. Population structure, inbreeding 

and demographic history in each population was assessed using high-density SNP 

data to provide valuable insights in the conservation genetics of pigs from the 

Iberian Peninsula. Integration of high-density SNP and NGS data to assess genomic 

diversity in local pig breeds with a wide European distribution is presented in 

Chapter 5. Moreover, the analysis of NGS data from local and commercial breeds is 

compared to identify candidate mutations underlying phenotypic differences 

between highly productive breeds and low-input-breeds. Finally, in the general 

discussion the relevant findings of this thesis and the practical implication of the 

results in conservation genetics of livestock species are discussed. 
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Abstract 

Humans have influenced genetic variation of Sus scrofa by domestication, but also 

by marginalizing the natural environment, hunting and re-stocking of the wild 

species over thousands of years. As a result, the phylogeography of Sus scrofa is 

complex and not fully understood. In order to unravel historical dispersal patterns 

of wild boar, we applied a Bayesian phylogeographic inference to identify historical 

dispersal patterns. We analysed mtDNA sequences from 850 wild pigs selected 

from a wide distribution across Eurasia and North Africa. In addition, to explore the 

potential effect of domestic introgression in the analysis, we compared these to 

2423 mtDNA sequences from domestic and feral pigs from across the same wide 

region. We observed significant dispersal events consistent with the expansion of 

Sus scrofa from South East Asia to the rest of the continent and with the arrival of 

wild pigs to Japan and Ryukyu islands. In addition, we propose a novel dispersal 

route linking Siberia with South Asia. Regarding Europe, we observed signs of 

postglacial re-colonization from southern refugia to centre Europe. Finally, we 

discuss the limitations of phylogeographic analysis to infer the dispersal history of 

wild pigs. In particular, admixture between domestic and wild pigs strongly 

influences the analysis. Moreover, the prior determination of the geographic 

regions as well as the inclusion on the analysis of specific samples often 

conditioned the significance of the dispersal event. We conclude that the 

asymmetric discrete diffusion model as implemented in BEAST provides insights of 

past dispersal events of wild pigs, although the large human influence of pigs 

history reinforce the need of being cautions in the design of the study.  

 

Key words: demography, mtDNA, pig, phylogeography, Bayesian inference   
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2.1 Introduction 

Sus scrofa originated in South East Asia 5.3-3.5 million years ago [1]. Larson et al. 

[2] studied mtDNA from wild and domestic pigs and concluded a scenario where 

wild pigs expanded from Island Southeast Asia (ISEA) to East Asia before migrating 

to the West and colonizing Europe through Middle East. By adding whole-genome 

sequence data, Groenen et al. [1] supported the East-West expansion, specifying 

that migration may have taken place from North-eastern Eurasian populations to 

Europe along the Pleistocene. During this period, repeated glaciations, especially 

the Last Glacial Maximum (~ 20,000 years ago), likely shaped current genetic 

variability of Sus scrofa, as it did for other species [3–5]. Pleistocene glaciations 

caused an important decrease of the population size of wild pigs throughout 

Eurasia [1], and forced migrations of surviving populations that became 

marginalized in warmer areas, so-called refugia [4]. The repeated glaciations also 

brought about sea-level oscillations [6, 7], facilitating migrations or causing 

isolation of island populations. While the phylogeography of many species has been 

mostly influenced by geo-climatic events, the demographic history of wild pig 

populations have also been influenced by humans activities, especially 

domestication, deforestation, hunting and population re-stocking [2, 5, 8]. These 

extrinsic factors, together with intrinsic factors such as its high reproduction rate 

and adaptability to different environments [9], have resulted in a complex 

phylogeography. 

Mitochondrial DNA (mtDNA) evolves faster than nuclear DNA [10], it is maternally 

inherited and does not recombine [11, 12], which, combined, explains its use in  

phylogenetic studies. Dispersal or migration patterns of wild boar have been 

hypothesized by analysing the topology of phylogenetic trees based on molecular 

data (e.g. [2, 13]). These studies used parsimony inferences or Bayesian approach 

that did not include prior specifications of the geographical distribution of the 

sampling locations. Recent advances have been made in Bayesian phylogeographic 

modeling. The method conducted by Lemey et al. [14] to test the phylogeographic 

history of virus populations did overcome limitations of previous approaches. This 

improved methodology has been recently applied in several studies [15–18]. For 

instance, Marske et al. [16] studied the role of environmental changes in the 

dispersal histories of four New Zealand forest beetles. Applying the method to 

large mammals, Edwards et al. [15] explored the present and past dynamics of 

brown bear and polar bear, pointing out the large influence of climate events on 

disperal of bears and the probably admixture origin of the modern polar bear.  
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Here we implemented the same spatially explicit Bayesian inference approach in 

order to infer the historical dispersal patterns of wild boar populations across 

Eurasia using mtDNA. This Bayesian framework is applied for the first time in pig. 

Differently to other species such as beetle or bears, the aspect of domesticated 

pigs overlapping with much of the vast natural range of Sus scrofa has the potential 

to complicate the analysis in this species. Therefore, the effects of recent 

introgression from domestic pigs into wild boar were assessed by analysing more 

than 200 populations of wild, feral and domestic pigs with wide distribution 

throughout Eurasia. This study explores the historical dispersal patterns of wild 

boar and, at the same time, gives insight of the sensitiveness to sampling design 

and limitations in applying spatially explicit Bayesian inference in Sus Scrofa. 

 

2.2 Results 

A total of 3249 sequences were grouped into 467 haplotypes (Supplementary 

material_1). Of those, 231 haplotypes were exclusively present in wild pigs and 137 

were carried by both wild boars and domestic/feral pigs. The initial dataset of wild 

boar sequences was split into two groups based on their haplotype (Table 2.1). The 

first group, hereafter called SET_1, included exclusively those wild pigs carrying 

haplotypes not found in any domestic or feral pig. The second group, SET_2, 

included all the sequences of wild pigs regardless its haplotype. The relationships 

between the inferred haplotypes were visualized using median-joining networks. 

The discrete traits model as implemented in BEAST [14] was implemented to obtain 

a realistic estimation of historical dispersal patterns of wild boar across Eurasia. To 

implement this method, 14 geographic regions were determined in accordance 

with biogeographic features and incorporated to the model (Table 2.1). The 

significance of the migration pathways between those regions was computed by 

Bayes factor test (BF). These Phylogeographic analyses were performed separately 

for SET_1 and SET_2 to evaluate the sensitivity of the method to recent domestic 

introgression. Since the number of samples per geographic regions varied widely, 

we developed a random selection process to sample 15 sequences per geographic 

region for each group to avoid bias due to differences in sample size (Table S3, 

Supplementary material_2). Additionally, genetic diversity estimates and 

population expansion analysis were computed (Supplementary material_2). 
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Table 2.1 Number of sequences in each set of data. 

Regions Geographic Region Code SET_1 SET_2 

R01 Japan R01_JAP 18 21 
R02 Ryukyu Islands R02_RYU 13 13 
R03 Peninsula Malaysia/ISEA R03_MAL 14 15 
R04 North East Asia R04_NEA 117 123 
R05 Central Asia/China R05_CAS 45 74 
R06 South Asia/India R06_SAS 42 47 
R07 South East Asia/Thailand R07_SEA 59 89 
R08 Taiwan island R08_TAW 12 13 
R09 Middle East R09_NES 39 45 
R10 North Africa R10_NAF 1 9 
R11 Iberian Peninsula R11_IBP 40 43 
R12 Italic Peninsula R12_ITP 20 60 
R13 Balkan peninsula R13_BKP 58 74 
R14 Central Europe R14_CEU 117 295 

  Total 595 921 

 
 

 

Diffusion in Asia 

South East Asia (R07:SEA) presented the most significant migration pathways in 

Asia, both towards the south with the Islands of South East Asia (R03:MAL) and 

towards the north with Central Asia (R05:CAS) (Figure 2.1). The South East Asia 

region also presented the highest number of haplotypes (Number_Hap = 52) and 

mtDNA diversity (h = 0.98) (Table S1, Supplementary material_2).  

North East Asia (R04:NEA) had a significant link with Japan (R01:JAP) (SET_1, BF = 

32) representing  the best supported link between the main land and the Asian 

eastern islands ─Japan,  Ryukyu and Taiwan─. This pathway was in agreement with 

the similarity observed between haplotypes carried by pigs from Japan and pigs 

from south east Siberia (Figure 2.2). A detailed study of Asian eastern islands 

revealed significant dispersal patterns (BF> 39) between Japan (R01:JAP) and 

Ryukyu Islands (R02:RYU). No related haplotypes and no significant link were found 

between Taiwan and Ryukyu Islands. Taiwan, however, was linked with Central Asia 

in the analysis performed with the SET_2, in agreement with the occurrence of 

related and common haplotypes carried by wild boars from Taiwan and Chinese 

wild and domestic pigs (SS477 and SS320 respectively). Significant links were 

observed between Japan and both Central Asia and South East Asia, but only for 

SET_2. The study of the Network graphic showed that a haplotype common in 
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Japanese and Vietnamese wild boar was also highly frequent in domestic pigs 

(SS207). 

South Asia/India region (R06:SAS) was the region with fewest number of significant 

links in Asia, presenting only significant BF with the adjacent region of South East 

Asia/Thailand (R07:SEA) and with North East Asia (R04:NEA). Of these connections 

only four out of the 20 analysis presented a BF > 8 in both pathways. Two highly 

differentiated clusters of wild boars from South Asia/India were observed in the 

network analysis. The first cluster included pigs from this region and Russian wild 

boars, and the second cluster encompassed India and South East Asia. 

 

Diffusion in Middle East  

Two significant migration pathways were found between Middle East (R09:NES) 

and European regions.  (Figure 2.3). The pathway between Middle East  and central 

Europe (R14:CEU) was only supported by the SET_1 with a BF = 10 when samples 

from Malcantone region (Swiss Alps) were included. The pathway between Middle 

East and the Italian Peninsula (R12:ITP) was identified only in SET_2 (BF= 16). 

Network analysis revealed that Middle East haplotypes occupied an intermediate 

position between Asia and Europe (Figure 2.4), including five Iranian wild boar 

clustering in the Asian clade. Wild pigs from Armenia, Iraq and Israel had 

haplotypes in common with domestic and wild European pigs (Figure 2.4). No 

dispersal patterns were detected between Middle East and Asia. The most likely 

migration pathway that linked the regions Middle East and North East Asia 

(R04:NEA) gave a BF lower than 8 (BF= 5.3). This North East Asia to Middle East 

pathway depended entirely on the inclusion of  a single Russian wild boar collected 

around the Volga river, the only one we could sample for the analysis, that 

clustered together with Middle East pigs in the network analysis. 
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Figure 2.1 Migration pathways in Asia with BF > 8. Colour code: Pink, consistent pathway across sets 1 and 2; Red: path ways consistent only in 

SET_1; Yellow: pathway consistent only in SET_2 . The intensity of the colour is proportional to the BF value. The thickness of the pathway is 

proportional to the consistence of the pathway. 
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Figure 2.2 Medium-joining networks of Asian mtDNA haplotypes. The size of the circle is 

proportional to the frequency of the haplotype. 

 

 

 

Diffusion in Europe and North Africa 

The number of well-supported dispersal pathways was much lower in Europe than 

in Asia. Three highly significant and consistent pathways linked Central Europe 

(R14:CEU) with the Mediterranean Iberian (R11:IBP) (SET_1; BF = 70), Italian 

(R12:ITP) (SET_1; BF > 2000) and Balkan (R13:BKP) (SET_1; BF = 92) peninsulas. The 

Central Europe region (R14:CEU) contained 53 haplotypes shared between wild and 

domestic pigs representing the highest number among all regions. The three 

Mediterranean Peninsulas had haplotypes clustering together with Central 

European pigs. The exceptions were pigs from Italy and from Malcantone region 

(South of Swiss Alps), which carried haplotypes that clustered with Middle East 

haplotypes (Figure 2.4).  
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North Africa (R10:NAF) was only linked with Iberian Peninsula by a migration 

pathway that was significant in  SET_1 (BF = 17) (Figure 2.3). A wild boar from 

Morocco carried one of the most common haplotypes in domestic pigs from 

Europe (SS029) while wild boars from Tunisia had haplotypes that cluster with 

European pigs (SS308 and SS611). 

 

 

 

 

 
 

Figure 2.3 Migration pathways in Middle East, Europe and North Africa with BF > 8. Colour 

code: Pink, consistent pathway across sets 1 and 2; Red: pathways consistent only in SET_1; 

Yellow: pathway consistent only in SET_2 . The intensity of the colour is proportional to the 

BF value. The thickness of the pathway is proportional to the consistence of the pathway in 

each set. 
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Figure 2.4 Medium-joining network of Middle East, Europe and North Africa mtDNA 

haplotypes. The size of the circle is proportional to the frequency of the haplotype. 

 

 

2.3 Discussion 

Biogeographic research in Sus scrofa had led to general assumptions of dispersal 

patterns based on the topology of phylogenetic trees and the geographic origin of 

the samples, e.g. [2]. This approach implies that multiple, different migratory 

scenarios are consistent with the genetic data, but they do not explicitly test 

dispersal patterns. We performed a Bayesian phylogeographic analysis on 

mitochondrial DNA to reconstruct dispersal patterns of wild boar between 14 

geographic regions throughout Eurasia. Admixture between domestic and wild 

populations hamper the study of demographic history, particularly in studies based 

on mtDNA [19]. As a result of the overlapping ranges of wild and domestic pigs 

during thousands of years, repeated events of hybridization have occurred [20] as 

demonstrated by molecular data [21]. The effect of hybridization was taken into 

account, and thus mtDNA sequences of wild boars were compared with a 

comprehensive dataset of domestic and feral pigs, the largest compiled to date, 

resulting in the differentiation of SET_1 (wild pigs carrying haplotypes not detected 

in domestic pigs) and SET_2 (those wild pigs with haplotypes observed in domestic 

pigs). 
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Diffusion in Asia 

Fossil records of Pleistocene mammalian fauna and molecular data indicate an 

expansion of Sus scrofa species from southeast to northeast on the Asian Continent 

[2, 22]. Our results support the South East Asia region as the origin of dispersal 

events of Sus scrofa. The low sea-level during glacial periods of the Pleistocene 

formed a land bridge between South East Asian mainland and Island South East 

Asia (ISEA) enabled dispersal events of large mammals and other organisms[23], 

which explains the significant dispersal pathway linking these regions. Moreover, 

signs of recent demographic expansion, network analysis, and the significant 

dispersal pathway all indicate repeated dispersal events between South East Asia 

and Central Asia. We observed a significant pathway between South East Asia and 

North East Asia regions, mainly in SET_1. This is consistent with Cho et al. [13] who 

suggested a land bridge between Korea and Southern China based on mtDNA data. 

Given the weak link between Central Asia and North East Asia regions, we suggest a 

stepping stone model, where only a subset of migrants that settled in central China 

moved further toward northern East Asian regions. 

Land bridges enabled the gradual dispersion of plants, birds and mammals from 

continental to islands. Vertebrate paleontological studies revealed the existence of 

two main land bridges connecting Japan with the main land. The first land bridge 

connected the Korean peninsula with the island of Kyushu during the Middle 

Pleistocene [24, 25]. The second land bridge connected Siberia and what is now 

known as Hokkaido via the island of Sakhalin, serving as a migration route for 

mammals in the middle and late Pleistocene [22, 26]. The well-supported migration 

pathway between North East Asia and Japan, together with the existence of highly 

related haplotypes carried by wild boar from Japan and from southeast Siberia 

strongly indicates the second land bridge as the major migration pathway from the 

continent to Japan. The link between Japan and Ryukyu Islands forms the most 

significant connection among Eastern Asian islands. This is in agreement with 

Kawamura [22], who observed that migrant species of animal and plants arrived via 

land bridges from Southern Japan to southern Ryukyu Islands in the Middle-Late 

Pleistocene. 

Larson et al. [27] observed two well-differentiated wild boar lineages in the South 

Asia ─India region─ noting the peculiarity of such high genetic differentiation in a 

relatively small geographic region. Applying a far larger sample of wild boar 

mitochondrial haplotypes from India, we observed a similar signature in the 

network analysis. The two migration pathways linking South Asia with South East 

Asia and with North East Asia region may explain the existence of those highly 

differentiated mtDNA lineages in India. The significant migration pathway that links 
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South Asia with North East Asia regions is particularly interesting since it reveals a 

migration route not previously described in wild boar between Siberia and India. 

The inclusion in the analysis of a Russian wild boar from Lake Baikal that shared its 

haplotype with a Northwest Indian pigs was important for the statistical 

consistency of the migration pathway. Since only samples from the Northwest of 

India had haplotypes related with Russian haplotypes, and considering Himalaya as 

a geographic barrier, this novel north-south migration pathway would have 

extended across the western boundary of the Himalayas. A higher number of 

samples from Siberia are needed to confirm this migration route. 

The analysis of the SET_2 revealed three dispersal pathways that were not 

observed in the analysis performed in the SET_1 (see yellow links in Figure 2.2). 

While the link between Central Asia/China region with Taiwan could be due to the 

land bridge that appeared in the Holocene period, it is very unlikely that the 

significant dispersal events linking Central China with Japan, and the latter with 

South East Asia, correspond to a natural dispersal events of wild boar. Indeed, the 

links between these regions were only observed when haplotypes shared with 

domestic pigs were included in the analysis. This highlights the limitation of this 

Bayesian inference approach when admixed animals are included. 

 

Diffusion in Middle East 

In order to unravel the dispersal pathways used by the Asian wild boars to colonize 

Europe, we tested the significance of all the Asian regions with Middle East and 

Europe. The only trace of connection between Asia and western regions was found 

between North East Asia and Middle East. This link was found in the 50% of the 

analyses using SET_1 samples, though with a BF= 5.3 that was not significant 

considering our threshold of BF = 8 [15]. However, it is interesting that the use of 

whole-genome data supports the same dispersal pathway [1], and thus it can be 

speculated that North Asian pigs moved from North East Asia north of the 

Himalayas. From this location, Sus scrofa could have migrated either westbound to 

Caspian Sea, directly to Europe, or via a route south of the Caucasus to the Middle 

East. The antiquity of this East-West dispersal process –Early Pleistocene– could 

have obscured mtDNA signs of migration.  

We did observe significant pathways linking Middle East with Europe. Larson et al. 

[28] and more recently Ottoni et al. [20] demonstrated that European mtDNA 

haplotypes replaced Near Eastern domestic pigs as a result of human migrations or 

trade of animals from Europe to Middle East. Near Eastern wild pigs carrying 

European type haplotypes, as a result of admixture between wild and domestic 

pigs in Middle East, explains the link between Middle East and Italy in the Set_2. 
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Regarding the dispersal event between Middle East and Central Europe, the 

inclusion of Swiss pigs from Malcantone region carrying the mtDNA haplotypes 

indigenous from Italy (haplotype code E2 in [5, 29]  and D4 in [2]) was decisive for 

the significance of this dispersal event.   

 

Diffusion in Europe and North Africa 

During the Last Glacial Maximum (LGM), temperate species migrated to the 

southern peninsulas of Europe. This was followed by a postglacial re-colonization of 

north and central Europe [4, 5, 30–33]. Our analysis revealed highly significant and 

consistent pathways from Iberian, Italic and Balkan Peninsulas to Central Europe 

region reflecting genetic signs of this re-colonization event. Participation of the 

Balkan region in the postglacial colonization of central and north Europe in Sus 

scrofa has been observed using mtDNA [34]. The consistent dispersal event 

detected and the large proportion of haplotypes shared by wild boar from the 

Balkan and central European regions, even larger than haplotypes shared by the 

Iberian and Italic Peninsulas with the central European regions, support the Balkans 

as a major re-colonization area [4, 30]. 

Two different clades of haplotypes has been described in Italy: clade E2, endemic 

to Italy, and clade E1 common to central European wild boars  [5, 28]. The dispersal 

pathway between the Italian Peninsula and the central European region was solely 

due to the haplotypes of clade E1 (results not shown). Endemic wild boar from Italy 

would have been highly adapted to the Mediterranean environment and with the 

Alps representing an important geographic barrier hampering natural migrations. 

The existence of a pathway with an extremely high BF (BF > 2000) could be due to 

(i) recent and bidirectional migrations of wild pigs between central Europe and 

Northern regions of Italy [35]; (ii) the reintroduction of central European wild boars 

into Italy after World War II [36]; (iii) The inclusion of Malcantone region within the 

region central Europe. This region has the peculiarity of being located in the Swiss 

Alps, exactly in the boundary separating Italian and European regions, and also of 

having high variability of mtDNA haplotypes. Thus, the analysis performed can not 

unravel the role of Italian pigs in the postglacial re-colonization and exemplify the 

difficulty of determining the boundaries between geographic regions.  

A well-supported pathway connected North Africa with the Iberian Peninsula only 

in the SET_1 of samples. Ramirez et al. [37] observed a shared mtDNA haplotype 

between Europe, North Africa and Middle East suggesting a common ancient 

haplotype to those regions. Differently, our results are consistent with an Iberian 

origin of the pig populations from North Africa. The similarities between haplotypes 

detected in North Africa and central Europe might be due to a common haplotype 
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originated in Spain. In this scenario, Iberian wild pigs migrated to both, north Africa 

swimming through the strait of Gibraltar or carried by humans, possibly by the 

Romans who transported many large mammalian species across the 

Mediterranean to feature in arenas. 

 

2.4 Material and methods 

Sample sequencing 

Blood, tissue or hair samples from 390 wild boars, 43 feral and 884 domestic pigs 

were collected and the DNA was extracted using standard protocols. A 722 bp 

fragment of the mtDNA D-loop region, corresponding to positions 15451–16088 of 

the reference mtDNA genome, was amplified by polymerase chain reaction (PCR). 

The PCR amplicons were purified and sequenced for both strands on an ABI 3130® 

DNA sequencer (Applied Biosystems, USA). Since not all of the samples yielded the 

entire sequenced fragment, a 642 bp fragment was finally used for the analysis. 

The novo sequences were combined with sequences from 460 wild boars 57 feral 

and 1439 domestic pigs from Genebank entries with worldwide distribution. In 

total, the dataset encompassed 230 populations of wild pigs (850 individuals) from 

Eurasia and North Africa as well as domestic (2323 individuals) and feral pigs (100 

individuals) from 70 countries throughout Europe, Asia, Africa, America and 

Oceania (Table S2, Supplementary material_2).  

 

Alignment and haplotype determination 

D-loop region was visualised and exported with Genome Assembly Program (GAP4, 

[39] using the mtDNA pig sequence GenBank AJ002189 [40] as reference sequence. 

ClustalX V.2 [41] and ALTER [42] were respectively used to the alignment and 

subsequent grouping of the entire dataset of sequences -wild, domestic and feral- 

in haplotypes.  

 

Groups design 

Eurasia was split into 14 geographic regions according to biogeographic features 

such as zoogeography, vegetation and geographic barriers [23, 43–45]. Wild boars 

were assigned to their geographic region based on the origin of the sample. Wild 

boars whose haplotypes were exclusively carried by wild pigs but not by any 

domestic pig were assigned to the group SET_1. The entire dataset from wild boar, 

regardless of the haplotype, were assigned to the group SET_2 (Table 2.1). 

Additionally, European wild boars that had Asian-like haplotypes or vice versa 

where excluded to be considered a compelling sign of domestic introgression. 
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Genetic diversity and mismatch distribution 

We used ARLEQUIN 3.5 [46] to estimate haplotype diversity (h), nucleotide 

diversity (π), number of haplotypes and number of polymorphic sites (κ) within all 

the geographic regions of SET_1 and SET_2 separately. This software was also used 

to test for historical demographic patterns by calculating mismatch distributions of 

pairwise nucleotide differences between haplotypes. The sum of square deviations 

(SSD) between the observed and the expected mismatch was used as a statistic test 

for the departure from the model of population expansion [47]. Additionally, Fu’s 

Fs and Tajima’s D neutrality tests were calculated to obtain additional insights of 

population expansion history. 

 

Discrete phylogeographic diffusion model  

The spatial dynamics of wild boars were inferred using an asymmetric discrete 

diffusion model implemented within the Bayesian inference framework of BEAST 

v1.7.2 [47].  

The mtDNA sequences were assigned to one of the 14 discrete geographic regions 

previously determined. Both, mtDNA sequences and discrete geographic regions 

were used as BEAST input data. Phylogeographic relationships between geographic 

regions were estimated using a continuous-time Markov chain (CTMC) model [14] 

extended to allow for different rates of diffusion between locations depending on 

the direction traveled [15]. For a number of k discrete geographic regions, k(k-1) 

different dispersal patterns are possible, but not all of them are realistic in nature. 

Therefore, the discrete phylogeographic analysis was extended with the Bayesian 

Stochastic Search Variable Selection (BSSVS) to select only the most informative 

dispersal scenarios. Under BSSVS, we assume a truncated Poisson prior on the 

number of nonzero rates and that rates are, a priori, independent and gamma-

distributed [14]. This analysis enables computation of a Bayes Factor (BF) test [48] 

that establishes the parsimonious descriptions of the phylogeographic diffusion in 

order to identify significant migration pathways between geographic regions [14, 

15]. Those migration  pathways with a BF  > 8 were considered as well-supported 

diffusion rates between geographic regions [15].  

We assumed the HKY substitution model [49] and Bayesian skyline [50]  coalescent 

priors [51]. To estimate probable migration pathways, diffusion rate parameters 

and gene genealogies we ran Markov chain Monte Carlo (MCMC) simulations of 

100,000,000 iterations. We discarded the initial 10% of realizations as chain burn-in 

and sub-sampling every 10,000 iterations to decrease autocorrelation. We used 

Tree Annotator [47] to yield a Maximum Clade Credibility (MCC) consensus tree. 

Finally, to provide a spatial projection of the diffusion patterns, the MCC tree was 
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converted into a keyhole markup language (KML) file suitable for viewing with 

Google Earth (http://earth.google.com). 

The analyses described above were applied sequentially to the two sets of data 

previously described ─SET_1 and SET_2─. To overcome the potential bias due to 

the differences in sample size between geographic regions, the analysis was 

computed multiple times selecting randomly 15 sequences per geographic region 

and group of samples (Table S3, supplementary material_2). As a result of this 

resampling procedure, 20 subsets were generated: 10 subsets corresponding to 

SET_1 and 10 to the SET_2. 

 

Network analysis 

To obtain additional information of the relations among haplotypes we used the 

Median-Joining method implemented by Network 4.6.0.0 (Fluxus Technology, 

http://www.fluxus-engineering.com). 

 

Supporting Information 

Chapter_2.zip 

https://mega.co.nz/#!DBkxHKyL!WN-_uzv5Y_Em7Bu-DMZjpHO2Irh7eGOEXWQ3SlmLPDU 
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Abstract 

The Chato Murciano (CM), a pig breed from the Murcia region in the South-East of 

Spain, is a good model for endangered livestock populations. The remaining 

populations are bred on around 15 small farms, and no herd book exists. To assess 

the genetic threats to the integrity and survival of the CM breed, and to aid in 

designing a conservation program, three genetic marker systems –microsatellites, 

SNPs and mtDNA– were applied across the majority of the total breeding stock. In 

addition, mtDNA and SNPs were genotyped in breeds that likely contributed 

genetically to the current CM gene pool. The analyses revealed levels of genetic 

diversity within the range of other European local breeds (He = 0.53). However, 

when the eight farms that rear at least 10 CM pigs were independently analysed, 

high levels of inbreeding were found in some. Despite the evidence for recent 

crossbreeding with commercial breeds on a few farms, the entire breeding stock 

remains readily identifiable as CM, facilitating design of traceability assays. The 

genetic management of the breed is consistent with farm size, farm owner, and 

presence of other pig breeds on the farm, demonstrating the highly ad-hoc nature 

of current CM breeding. The results of genetic diversity and substructure of the 

entire breed, as well as admixture and crossbreeding obtained in the present study, 

provide a benchmark to develop future conservation strategies. Furthermore, this 

study demonstrates that identifying farm-based practices and farm-based breeding 

stocks can aid in design of a sustainable breeding program for minority breeds.  

 

Key words: Genetic diversity, pig, endangered breed, mitochondrial DNA, 

microsatellites, SNP, Chato Murciano.   
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3.1 Introduction 

Local breeds are important for the maintenance of the genetic diversity and future 

food security as stated by the United Nations Food and Agricultural Organization 

(FAO). Moreover, domesticated animal breeds often are regarded as part of the 

cultural heritage of local and national communities. The FAO has warned that the 

decline of animal genetic resources is proceeding at an alarming rate [1], 

highlighted by the fact that nearly 20% of domestic animal breeds are threatened 

with extinction [2]. 

One of the local, heritage pig breeds that is categorized as endangered on the List 

for Domestic Animal Diversity Information System (DAD-IS, http://dad.fao.org/) is 

the Chato Murciano (CM) pig breed. The CM is autochthonous to the Region of 

Murcia  (Spain) (Google Earth projection, supplementary material), and ‘Chato’ 

refers to the snub-nose characteristic of the breed. The ancestor of the breed is a 

rustic black Mediterranean pig, also referred to as primitive Murcia pig, that lived in 

the South-East of Spain at least 150 years ago [3]. Due to the high rusticity of the 

black Mediterranean pig, farmers designed crosses with breeds such as Berkshire, 

Large White, Retinto Iberian pig and Tamworth in the late 19th century and early 

20th century in order to improve production parameters [3]. As a result, a 

phenotypically differentiated breed was described as “Chato Murciano”. The 

depreciation of animal fat by the consumer in the second part of the 20th century, 

and the low growth rate and feed conversion efficiency, lead the CM breed to the 

edge of extinction with 20-30 breeders in 1997. However, conservation programs 

have raised the population number to 287 individuals in 2009.  

Despite favourable appreciation of CM meat products by local customers [4], 

several concerns remain regarding the long-term survival of the breed. In the early 

years of this century, a conservation program based on the supply of semen and 

replacement gilts to the farms was very successful. However, after the year 2008 

the program lost popularity, perhaps because of the increase of the population 

number of the CM pig. Nowadays, breeding stocks tend to be isolated by farm, and 

the farmers each tend to apply their own breeding strategies, which in some cases 

may even include crossing with commercial breeds. While crossbreeding may 

potentially enhance production traits, it simultaneously threatens the heritage 

status of the breed and with that the higher value of its meat. For the smallest 

farms in particular, there is a concern of high inbreeding levels and related risks of 

inbreeding depression and subsequent decrease in productivity of the pigs. Further 

loss of breeding stock may result from farmers being unable to cope with the 

economic consequences of the low productivity of the CM breed. All these factors 
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directly threaten the loss of this breed that represents over 150 years of cultural 

and agricultural history and that remains to have an important socio-economic 

influence in the Region of Murcia. However, in order to design an effective 

conservation program, a detailed genetic study of the CM breed diversity is a 

necessary first step. 

Endangered domesticated breeds and populations generally face two major 

threats: inbreeding and crossbreeding. Because the CM breed is currently almost 

exclusively confined to a single region in Spain (i.e. Murcia), where it is being bred 

in small numbers on a small number of farms, together with the high propensity of 

being crossbred with other pig breeds, the CM is a very suitable model to study the 

effect of both threats on endangered domesticated populations. This study surveys 

eight farms (50% of all farms that currently are listed as official CM breeding farms) 

that breed at least 10 animals, representing 70% of the current breeding 

population, and include all major pig breeds that are thought to have contributed - 

historically and recently – to the genetic make-up of the CM breed. We apply three 

different marker systems comprehensively, to investigate 1) inbreeding and farm-

based population stratification, and 2) genetic contributions from other pig 

populations, especially recent crossbreeding with commercial breeds. The results 

of this study are important to address a basis for rational exploitation of the CM 

breed in the future. 

 

3.2 Materials and Methods 

Animals and sampling 

Genomic DNA was extracted from blood and hair using the Gentra Pure Gene Blood 

kit (Qiagen) and the Danapure Spin kit (Genedan SL, Spain) respectively according 

to the manufacturer‘s protocol. The study included 194 Chato Murciano (CM) pigs 

representing 70% of the current breeding population. All the breeders reared in 

each of the eight most important registered farms were sampled. In addition, 194 

domestic pigs from the breeds Large White (LW, n = 53), Landrace (LR, n = 29), 

Duroc (DU, n = 42), Tamworth (TA, n = 15), Berkshire (BK, n = 19), Iberian pig (IP, n 

= 26) and Meishan (MS, n = 10) were included. The samples used for each 

molecular marker are detailed in the Table 3.1. 
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Table 3.1 Sampling information and analysis performed in each pig population. 

 

Breed Country N  D-Loop* 60k* Microsatellites* 

Chato Murciano      

Farm1 Spain 44 32 8 36 

Farm2 Spain 18 14 5 16 

Farm3 Spain 22 18 5 21 

Farm4 Spain 32 26 6 32 

Farm5 Spain 9 7 3 7 

Farm6 Spain 42 35 8 42 

Farm7 Spain 16 10 2 11 

Farm8 Spain 11 10 2 10 

Total Spain 194 152 39 175 

Large White Commercial 53 48 53 0 

Landrace Commercial 29 34 29 0 

Duroc Commercial 42 42 42 0 

Tamworth United Kingdom 15 14 15 0 

Berkshire United Kingdom 19 19 19 0 

Iberian Retinto Spain 11 11 11 0 

Iberian Negro  Spain 15 15 15 0 

Meishan China 10 10 10 0 

* Number of animals genotyped 

 

 

Microsatellite genotyping 

A total of 34 autosomal markers were analyzed, of which 24 belong to the panel 

recommended by the ISAG-FAO Advisory Group on Animal Genetic Diversity   [5] 

and ten to the panel designed by the Roslin Institute, UK [6]. Microsatellites were 

chosen based on their absence of null alleles, sharpness of peaks and possibility of 

being grouped into six multiplex PCR. Each multiplex set PCR contained markers 

without overlapping of alleles of the same dye (Table 7, supplementary material). 

Amplified products were electrophoresed in an ABI 3130® (Applied Biosystems, 

USA) and allele calling was performed in Genemapper v.3.7 (Applied Biosystems, 

USA). The French Pig Map reference samples DNAs F9110010 and F9119912 

(courtesy of INRA, http://www.toulouse.inra.fr) were used to normalize the allele 

sizes. 



3 Farm-by-farm analysis reveals inbreeding and crossbreeding 

 

 

58 

 

Mitochondrial sequencing 

Part of the D-loop region of the mitochondrial DNA was amplified using the primers 

described by Luetkemeier et al. (2010)  yielding a 772 bp fragment. The PCR 

amplicons were purified and sequenced for both strands on an ABI 3130® DNA 

sequencer (Applied Biosystems, USA). The Genbank accession numbers of the 

sequences are described in Table 8 (supplementary material). 

SNP genotyping 

High density SNP genotyping was performed using the PorcineSNP60 BeadChip 

(IlluminaInc, USA; Ramos et al. 2009) according to manufacturer’s protocol. For this 

study, only SNPs mapped to one of the 18 autosomes on Sus scrofa build 10.2 were 

included in the analysisand SNP markers with more than 5% missing genotypes 

were excluded by using Plink software [9]. Finally, 46,887 SNPs of the 62,163 

potential SNPs were used for the analysis. 

Data analysis 

The numbers of alleles per marker microsatellite and allele frequencies, as well as 

observed and expected heterozygosity were calculated with Genalex V.6.3  [10]. To 

analyze the genetic differentiation between farms, Wright’s F-statistics [11] was 

used as defined by [12] and as implemented in the GENEPOP 4.0.10 software [13]. 

The matrix of genetic distances [14] between the farms was calculated with the 

software Genalex V.6.3 and used to construct a Neighbor-Joining (NJ) tree with 

Mega 5.03 [15].  

The Structure software version 2.0 [16] was used to infer population stratification 

in CM breed based on microsatellite data. Structure uses a Bayesian clustering 

algorithm to identify clusters with distinctive allele frequencies. To detect the best 

value of K (number of assume clusters), the Bayesian Information Criterion (BIC) 

implemented by the package of R Adegenet[17] was used. All Structure runs used 

10,000 iterations after a burn-in of length 10,000 MCMC replications. The Structure 

results were graphically displayed by using Distruct 1.1 [18]. 

Genome Assembly Program (GAP4) [19] was used to view and obtain the consensus 

sequence of D-loop region for each individual relative to pig mtDNA sequence 

GenBank ID AJ00218 as a reference. Sequences were subsequently aligned by 

Clustal X V.2 [20] and grouped into haplotypes using the program ALTER [21]. 

Phylogenetic relationships among the haplotypes were determined with Mega 5.03 

using the NJ method based on the maximum composite likelihood. 

The Plink software was used to compute the Identity by State (IBS) matrix for all 

pairs of individuals based on genome similarity derived from the 60K SNP data. The 

 IBS matrix was used to perform multidimensional scaling analysis (MDS). The 

Structure software was used to examine relatedness among breeds and also 
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population stratification between farms in order to compare the results of 

Structure with the microsatellite markers. Pairwise Fst values and genetic distances 

between breeds were calculated using Powermarker [22]. 

 

3.3 Results 

Genetic diversity and population substructure of Chato Murciano pig 

All tested microsatellite markers were polymorphic for all the Chato Murciano (CM) 

pigs with an average number of detected alleles of 6.4 ranging from 2 (SW796) to 

12 (S0005). The expected heterozygosity was 0.539 and the observed 

heterozygosity was 0.516 (Table 3.2). The heterozygosity analysis performed by 

farms showed that Farm 6 had the highest genetic diversity (He = 0.563) while 

Farm 8 had the lowest (He = 0.262). The occurrence of allele frequencies is 

summarized in Table 4 (supplementary material). There were at least two 

monomorphic loci in seven out the eight farms under study. 

The average value of Fst across all loci was 0.114 indicating that 11% of genetic 

variation was explained by differences between farms. The pairwise genetic 

distances (DA) between farms are given in Table 5 (supplementary material) and 

graphically represented in the Figure 3.1. The phylogenetic tree had two 

differentiated clusters (Farms 2, 3, 4, 5 and 7, in green, and Farms 6 and 8, in red), 

while one farm (Farm 1) occupied an intermediate position. 

To estimate the existence of different genetic clusters in the CM population, the 

admixture model implemented by Structure software was used for the 

microsatellites and SNP genotyping data separately (Figure 3.2). For K = 2 

consistent results were obtained across microsatellites and SNPs data and also with 

the tree of genetic distances. Farms 2-5 and 7 (green), and Farms 6 and 8 (red) each 

appeared to represent different gene pools, while pigs from Farm 1 were assigned 

to each of these gene pools.  However, for K = 3 a third cluster represented by Farm 

1 (yellow) appeared with microsatellite data but not with SNPs data. 
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Table 3.2 Number of alleles (Na), Na mean (NMa), and observed (Ho) and expected 

(He) heterozygosity of microsatellite analysis in Chato Murciano breed as a whole 

population and in each farm separately. 

 

 N* N** Na NMa Ho He 

Farm1 44 36 122 3.588 0.495 0.482 

Farm2 18 16 114 3.353 0.576 0.465 

Farm3 22 21 116 3.412 0.460 0.429 

Farm4 32 32 138 4.059 0.486 0.460 

Farm5 9 7 95 2.794 0.608 0.487 

Farm6 42 42 161 4.735 0.585 0.563 

Farm7 16 11 77 2.265 0.338 0.324 

Farm8 11 10 40 1.176 0.318 0.262 

CM 194 175 217 6.386 0.516 0.539 

* Number of animals reared in each farm. ** Number of animals analysed. 

 

 

 

 

 
Figure 3.1 NJ tree of Chato Murciano farms constructed from Nei genetic distances 

(DA). 
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Figure 3.2 Estimated membership coefficients from K = 2 - 4. (A) microsatellites data; (B) 

SNPs data. Each color represents the proportion of the genome assigned to each assumed 

cluster. 
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Relationships of Chato Murciano breed with other domestic breeds 

Based on the 60K SNP data three main clusters were identified by the MDS analysis 

(Figure 3.3). The first one was the Asian cluster represented by the Meishan breed, 

which was the most divergent population. The second cluster was in the opposite 

end of the first component relative to the Asian cluster, and was represented by 

the Duroc breed. Finally, a third cluster that included two commercial breeds, Large 

White and Landrace, the English breeds Tamworth and Berkshire, and the Spanish 

breeds Iberian and Chato Murciano (CM).  

Since the Meishan breed and the Duroc breed accounted for a large part of the 

variation observed, these two breeds were removed subsequently to analyze the 

European cluster (Figure 3.3B). All the breeds formed discrete clusters with the 

exception of Retinto and Negro Iberico that are actually two varieties of Iberian Pig.  

CM occupied an intermediate position, in between the commercial breeds and 

Tamworth, Berkshire, and Iberian Pig, in the first component, but the second 

component explained the difference between CM and the other breeds. All the CM 

pigs were grouped in the same area of the plot, although seven individuals 

separated slightly from the main CM cluster. Four of those animals belonged to 

Farm 6 (Figure 8, supplementary material). 

To infer whether CM is a distinct genetic population and to detect admixed 

individuals, an admixture model was tested without defining the population from 

which the individuals were obtained. K values from six to nine were tested using 

the 60K SNP data (Figure 5, supplementary material), with K = 8 determined to be 

the optimum value (Figure 7, supplementary material). Membership Coefficients in 

the eight clusters inferred by Structure are detailed in Table 3.3. Large White and 

Landrace were the breeds with lower membership coefficient (0.77 and 0.71 

respectively) while Meishan showed the highest (1.00). For the rest of the breeds 

the average membership coefficient was over 0.93 with the exception of CM, for 

which it was 0.85. A detailed study of the individual membership coefficient in CM 

breed was made, which revealed that every CM pig clustered together with a 

membership coefficient over 0.75 except for four pigs that had a membership 

coefficient of around 0.5. 

The results from Nei´s genetic distances and the pairwise Fst between breeds are 

detailed in Table 6 (supplementary material) and Nei´s genetic distances graphically 

represented in Figure 3.4. Meishan was the most divergent population while Negro 

Iberico and Retinto were the least divergent groups. CM occupied an intermediate 

position between Berkshire and Large White - Landrace populations. 

Figure 6 (supplementary material) shows a NJ phylogenetic tree based on genetic 

distances between mtDNA sequences. The tree showed two main clades: the first 



3 Farm-by-farm analysis reveals inbreeding and crossbreeding 

 

 

63 

 

included exclusively European and commercial breeds and the second represented 

an Asian mitochondrial clade, and included all pigs of the Chinese Meishan breed, 

and some commercial and English pigs. Asian mtDNA haplotypes were highly 

frequent in British pigs, with 100% of Berkshire pigs and in 93% of Tamworth pigs 

having Asian haplotypes. The only two European breeds that exclusively carried 

European haplotypes were Iberian Pig and CM. Three haplotypes common in CM 

(HP2-4, together 77% occurrence) were shared with commercial breeds. One 

haplotype was shared with Iberian Pig (HP1). All CM pigs carrying HP1 belonged to 

Farm 7 which rears both Iberian Pig and CM pigs. One haplotype was unique to CM 

(HP5) and occurred in 14% of CM pigs. 

 

 

 

Table 3.3 Membership Coefficient of the breeds tested in the eight clusters inferred by 
Structure software. 

 
 

Inferred clusters 

P
re

d
e

fi
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e
d

 p
o

p
u
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n

 

 
1 2 3 4 5 6 7 8 N 

LW 0.011 0.025 0.017 0.036 0.768 0.030 0.045 0.069 53 

LR 0.005 0.036 0.002 0.710 0.087 0.025 0.048 0.087 29 

DU 0.957 0.005 0.001 0.001 0.000 0.003 0.001 0.033 42 

TA 0.001 0.000 0.000 0.000 0.000 0.998 0.000 0.001 15 

BK 0.003 0.950 0.001 0.007 0.005 0.006 0.008 0.020 19 

IP_RE 0.004 0.008 0.000 0.002 0.004 0.010 0.002 0.969 11 

IP_NI 0.063 0.002 0.000 0.000 0.004 0.001 0.001 0.929 15 

MS 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 10 

CM 0.064 0.011 0.001 0.003 0.019 0.007 0.854 0.041 39 

* Large White (LW); Landrace (LR); Duroc (DU); Berkshire (BK); Tamworth (TA); Iberian Pig 

Retinto (IP_RE) and Negro Ibérico IP_NI; Meishan, (MS); Chato Murciano (CM). 
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Figure 3.1 MDS (A) All breeds; (B) European breeds. 
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Figure 3.4 NJ tree of the breeds tested constructed from Nei genetic distances based on 

SNPs data. 

 

 

3.4 Discussion 

In the conservation genetics of specific populations or breeds of domestic animals, 

there are always two major threats to consider: inbreeding and crossbreeding. The 

former may erode genetic diversity and threaten long-term survival because of 

reduced productivity or inbreeding depression [23]. The latter may threaten the 

historical significance of the population or breed by loosing what is perceived to be 

the ‘genetic integrity’. Although difficult to quantify, this may result in decreased 

value of the breed for being a unique reservoir for genetic or phenotypic variation. 

In addition, crossbreeding may reduce the perceived value of a breed for being a 

representative for cultural or culinary heritage. 

The Chato Murciano (CM) breed is vulnerable to both threats. CM pigs are 

currently being bred and reared on approximately 15 farms, and only eight of them 

are breeding at least 10 breeders. The limited number of farms in the Murcia 
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region that breed this pig together with their geographical proximity, also provides 

the unique opportunity for highly, and so unprecedented, detailed dissection of 

how both threats influence the genetic make-up of an endangered domesticated 

population.  

The current study found levels of genetic diversity in the CM breed to be within the 

range of other European local breeds such as Iberian Pig [24], Magalitsa [25] and 

Portuguese breeds [26] in terms of expected heterozygosity and mean number of 

alleles per microsatellite locus. A farm-by-farm analysis, however, revealed marked 

differences between farms in the genetic diversity, with particularly Farms 7 and 8 

displaying the characteristics of isolated small farms with high inbreeding and 

genetic drift. The CM breed shows a high degree of substructure that is correlated 

with the farms they are reared on. Specifically, there appear to be two distinct 

gene pools. The first one includes Farms 2, 3, 4, 5 and 7, and within these farms, 

Farms 2, 3 and 4 displaying an even closer relationship(DA < 0.07). These three 

farms belong to the same farmer and occupy the same geographic area (Google 

Earth projection, supplementary material).  Therefore, it is likely that an increased 

rate of swapping of boars between farms enhances gene flow between them, 

explaining the high similarity. Farms 6 and 8 represented the second gene pool, 

while Farm 1 seemed to represent a mix of animals from both clusters instead of 

forming a distinct third group, since Farm 1 had animals assigned to both clusters 

inferred by Structure using SNPs data and occupied an intermediate position in the 

DA tree (Figure 3.1)  

These results demonstrate that all farmers appear to have their own breeding 

strategies. It is clear that breeding strategy is not limited to effective population 

size on farms and exchange of breeding stock of the CM pigs between farms, 

however Farms 6 and 7 showed signs of genetic introgression with other breeds. In 

Farm 7, 60% of the pigs presented a mtDNA haplotype found only in Iberian Pigs 

(IP, haplotype HP1). Considering that Farm 7 reared both CM and IP, and high level 

of inbreeding (Table 3.2), it is likely that the farmer preferred to cross animals of 

those breeds to improve production parameters sometime in the past, rather than 

exchange CM breeding stocks with other farms. Similarly, for Farm 6, several 

indications of genetic introgression were found. Firstly, Farm 6 showed the lowest 

allele frequency in two loci microsatellite previously described as exclusive of CM 

pure animals [27]. Specifically, allele 123 of loci SW951had a frequency of 0.54 in 

Farm 6 but it was close to 1.00 in the other farms. Secondly, animals belonging to 

Farm 6 were clearly separated from the CM cluster when the Identity by State (IBS) 

matrix was computed. Finally, four pigs from Farm 6 were assigned to CM breed 

with membership coefficients lower of ~0.5 indicating a high level of genetic 
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admixture. It seems, therefore, that breeding practices of Farms 6 and 7 include, or 

included, crossbreeding strategies. This is noteworthy since breeders with high 

level of admixture maybe excluded from a future conservation program in order to 

preserve the genetic identity of the CM breed. 

All the pig breeds, including CM, were unambiguously identified by the 

stratification models used, showing that high density SNP genotyping data provided 

a powerful tool for assessing genetic differentiation between populations and 

breed assignment [28]. Meishan was the most divergent population whilst Large 

White and Landrace were less differentiated as was previously observed e.g. [29]. 

Structure analysis showed a lower membership coefficient in the CM breed (0.85) 

than in Berkshire, Tamworth, Duroc and Iberian Pig breeds (>0.90), but this was 

mainly due to the existence of a limited number of admixed animals within the CM 

pigs tested. 

We found evidence of genetic contributions from other pig populations into CM 

breed. Specifically, the breeds Large White, Berkshire and Iberian Pig appear to 

have had large influence on the CM gene pool (Table 3.3). All three breeds showed 

lower genetic distances to CM than Tamworth for instance, which is in agreement 

with the recorded history of the CM breed. Interestingly, the Duroc breed 

seemingly had a large contribution to the CM gene pool (6%), although no historical 

records exist that support such crossbreeding. Crossbreeding with Duroc appears 

to have been recent and localized, as it is mostly evident in CM pigs from Farm 6. 

The analysis of mtDNA has been an important tool to identify genetic introgression 

of Asian pigs into European pigs . Occurrence of Asian haplotypes can be 

particularly high in commercial and English breeds [30, 31], as confirmed by this 

study. However, despite the very high occurrence of Asian haplotypes in English 

breeds such as Berkshire, which are thought to have been used in the past for 

crossbreeding with the CM pigs, no Asian haplotypes were found in this Spanish 

breed. Because of recorded breed history, the presence of Asian haplotypes in CM 

might be expected since English pig breeds could have carried Asian haplotypes 

into the CM breed as happened with other local breeds such as Jabugo Spotted 

[32]. The absence of Asian haplotypes is however consistent with historical records 

that report that only males were imported to Murcia Region [3]. Therefore, Asian 

haplotypes may have never been introduced in the CM population, or, 

alternatively, may have disappeared during the bottleneck suffered by the breed in 

the second part of the 20th century. Most of the CM (55%) carried haplotypes that 

are common in other European pigs. Although this may reflect past and present 

day crossbreeding with commercial pig breeds, these common haplotypes may 

have had a wide distribution area even at the time the first CM pigs were 
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historically described. It is noticeable that one haplotype (HP5), which was present 

in 14% of the CM pigs analyzed, was not detected in any other breed. It is possible 

that HP5 had been inherited from the primitive Murcia pig, or, alternatively, a more 

recent mutation may have gained prominence during recent bottlenecks because 

of drift. Unfortunately, no biological material (e.g. mounted skeletons or stuffed 

animals) from the primitive Murcia pig remain, which makes a direct comparison to 

the present work impossible. 

Despite historical records and genetic observations that support past and present 

introgression, the CM breed remains genetically distinct from other breeds. This 

distinctness offers the opportunity for designing genetic marker sets that could 

unambiguously trace products sold to be from CM origin back to the origin. This 

distinctness therefore will greatly facilitate creating tools to enforce product 

identity certification, in this way stimulating local farmers, but also local butchers 

and the local government, to maintain their breeding stock sustainably. 

In conclusion, the joint analysis of microsatellite, SNPs and mtDNA has showed a 

farm-based population stratification due to both, the existence of small genetically 

isolated farms with concerning levels of inbreeding and independent breeding 

strategies developed by the farmers. Moreover, we were able to detect signs of 

past and recent introgression from other breeds, and even locate in which farms- it 

had occurred. Therefore, identifying farm-based practices and farm-based breeding 

stocks seems to be an accurate approach to set up sustainable breeding programs 

for minority livestock breeds when pedigree information is absent.  
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Abstract 

Background 

Inbreeding is among the major concerns in management of local livestock 

populations. The effective population size of these populations tends to be small, 

which enhances the risk of fitness reduction and extinction. High-density SNP data 

make it possible to undertake novel approaches in conservation genetics of 

endangered breeds and wild populations. A total of 97 representative samples of 

domestic and wild pig populations from the Iberian Peninsula, subjected to 

different levels of threat with extinction, were genotyped with a 60K SNP panel. 

Data analyses based on: (i) allele frequency differences; (ii) linkage disequilibrium 

and (iii) regions of homozygosity were integrated to study population relationships, 

inbreeding and demographic history. 

Results 

The domestic pigs analyzed belonged to local Spanish and Portuguese breeds: 

Iberian ─ including the variants Retinto Iberian, Negro Iberian and Manchado de 

Jabugo ─, Bisaro and Chato Murciano. The population structure and persistence of 

phase analysis demonstrated high genetic relations between Iberian variants, with 

recent crossbreeding of Manchado de Jabugo with other pig populations. Chato 

Murciano showed a high frequency of long runs of homozygosity indicating recent 

inbreeding and reflecting the recent bottleneck reported by historical records. The 

Chato Murciano and the Manchado de Jabugo breeds presented the lowest 

effective population sizes in accordance with their status of highly inbred breeds. 

The Iberian wild boar presented a high frequency of short runs of homozygosity 

indicating past small population size but no signs of recent inbreeding. The Iberian 

breed showed higher genetic similarities with Iberian wild boar than the other 

domestic breeds. 

Conclusions 

High-density SNP data provided a consistent overview of population structure, 

demographic history and inbreeding of minority breeds and wild pig populations 

from the Iberian Peninsula. Despite the very different background of the 

populations used, we found a good agreement between the different analyses. Our 

results are also in agreement with historical reports and provide insight in the 

events that shaped the current genetic variation of pig populations from the 

Iberian Peninsula. The results exposed will aid to design and implement strategies 

for the future management of endangered minority pig breeds and wild 

populations.  

Key words: Local breeds, population genetics, SNP, genetic diversity, effective 

population size, pig, Iberian Peninsula   
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4.1 Background 

Progressive population decline has called the attention of the conservation 

management and scientific communities. Both for wild and domesticated 

populations alike there is a fear that inbreeding may lead to loss of allelic variation 

and adverse phenotypic consequences [1]. In addition, loss of variation may lead to 

reduced response to changing environments, of which genetic susceptibility to 

novel infectious diseases is a specific concern. Agricultural diversity in particular is 

of concern for future food safety [2]. Variation conserved in local breeds is often 

related to important traits that classically are attributed to traditional populations, 

such as adaptation to the environment and greater resistance to local pathogens. 

In addition to these concerns, local populations are often considered to be part of 

the local culture and history. For instance, local pigs are often linked to local cuisine 

and the local landscape. The Spanish Iberico or Iberian, and Portuguese Alentejano 

pigs, for instance, are used to produce highly priced products due to their quality 

that in part results from feeding with acorns from sparse Mediterranean oak 

forests, the so called ‘Dehesas’. The wild relative of the pig, the wild boar, on the 

other hand, plays a significant role in the wildlife of the Iberian Peninsula. It is 

among the main prey species of an iconic predator from the Iberian Peninsula such 

as Iberian wolf [3]. Moreover, wild boar is an important reservoir of infectious 

diseases as relevant as tuberculosis in the Iberian Peninsula [4], and therefore also 

of concern for public and animal health. 

Local pig populations, both wild and domestic, have been highly affected by 

human-induced changes.  Local, usually fat, breeds for instance, were affected by 

changes in consumer preference in the middle of the 20
th

 century when consumers 

started to avoid high-fat meat. As a result, a relatively small number of highly 

productive pig breeds progressively replaced and marginalized the traditional 

breeds. Many breeds became extinct in the past decades, while many other 

traditional breeds today face near-extinction either through dwindling population 

numbers or hybridization with highly productive breeds [5]. At the same time, the 

increase in woodland across Europe has allowed wild boar populations to increase 

in many countries, after having been marginalized for centuries [6]. The Iberian 

Peninsula provides a good representation of local pig populations, both wild and 

domestic. While sharing the same geography, these populations have undergone 

different historical events, have different phenotypic attributes, and have a 

different conservation status. The Iberian pigs have been reared in an extensive 

traditionally system in the South and West of the Iberian Peninsula for centuries, 

remaining isolated from the modern breeding practices developed in the late 18
th 
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and 19
th 

century in NW Europe [7]. Iberian pigs are related to other Mediterranean 

pigs of Italy and The Balkans [5], which are thought to have a smaller influence 

from Asian pigs than the NW European pigs.  Conversely, Chato Murciano and 

Manchado de Jabugo, now both highly endangered populations, and Bisaro 

resulted from crosses between native pigs from the Iberian Peninsula and foreign 

pigs at the end of the 19
th

 century [8]. Beside these domestic populations, the 

Iberian Peninsula is also inhabited by wild boars that may represent the ancestor of 

these local breeds, and also constitute an important wildlife species of the Iberian 

Peninsula. 

The recent availability of a high-density porcine SNP panel [9] provides an essential 

tool for genome wide association studies and genomic selection for economically 

important traits [10, 11]. Besides the use of high-density SNP arrays for economic 

purposes, these panels have demonstrated their power to assess major questions 

in conservation genetics [12, 13]. The study of linkage disequilibrium (LD) and 

genetic distances enable the estimation of effective population size from genetic 

data [14], which is of major interest in conservation genetics, especially when 

pedigree information is unavailable as is frequently the case for minority breeds 

and wild populations. In addition, high-density SNP arrays allow assessing 

similarities in the patterns of LD across populations (i.e. persistence of phase), 

providing information about the relatedness of populations [15]. The occurrence of 

runs of homozygosity (ROH) is indicative of demographic history and recent 

inbreeding [13, 16]. While the same parameters can be interpreted as signatures of 

selection on genomic regions [17, 18], when taken as global genomic parameters, 

they are highly indicative of demographic history [19], if properly corrected for 

local recombination rate [13]. A genome-wide SNP assay, combined with a detailed 

recombination map for the species [20] can therefore aid in giving insight into the 

conservation management of pig populations. Despite the fact that SNP assays are 

gaining interest for traceability purposes [21, 22], only few studies have used a 

high-density SNP assays for conservation purposes [1, 12, 23–25]. 

Here we present a comprehensive study in which high-density SNP data from 

domestic and wild pigs were used to address questions important to conservation 

genetics. First, we assessed the relationships between pigs by population structure 

analysis and by investigating the persistence of LD phase. Secondly, patterns of LD 

in each population were used together with a high-density recombination map to 

estimate past and present effective population size. Finally, the number and size of 

ROH were investigated in each individual. The joint analysis of all those parameters 

allowed us to obtain reliable and consistent data of population structure, 
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inbreeding and demographic history in each population providing valuable insights 

for future management strategies in pig from the Iberian Peninsula. 

 

4.2 Results 

A total of 97 pigs from domestic and wild autochthonous populations from the 

Iberian Peninsula were genotyped with the Porcine SNP60 Beadchip [9]. The SNPs 

located on the sex chromosomes and those with more than 5% missing genotypes 

were excluded from the analysis, resulting in a total of 47,594 SNPs used for the 

analysis. 

Population structure 

The Principal Component Analysis (PCA) revealed four main clusters represented by 

wild boar, Iberian, Bisaro and Chato Murciano (Figure 4.1). Among populations, 

Chato Murciano was the most divergent breed, showing a pairwise Fst ≥ 0.22 with 

all populations except for Bisaro where it was 0.18. The variants of Iberian 

─Retinto, Negro Iberian, Manchado de Jabugo and five unclassified Iberian pigs─ 

showed low Nei’s genetic distances between them (≤ 0.06) and low Fst (≤ 0.055), 

and likewise the two populations of wild boar from Spain and Portugal (0.04 and 

0.056 respectively). Among domestic pigs, Iberian variants showed the lowest Nei´s 

genetic distance to wild boar (0.10 - 0.12). The results from Nei’s genetic distances 

and the pairwise Fst between populations are detailed in Additional file 1.  

The Bayesian clustering algorithms implemented in the Structure software assigned 

all individuals to their expected clusters (K), with the exception of one Manchado 

de Jabugo pig (MJ_02) that was placed in the cluster of the other Iberian variants. 

Pairwise genetic distances between individuals (Additional file 5) and PCA analysis 

done using the Iberian pig data only (Additional file 2) confirmed this finding. K 

values from 2 to 7 were tested (Figure 4.2). The optimal K-value was estimated 

using the method described by Evanno et al. [26], indicating that K = 4 was the 

most parsimonious number of clusters (Additional file 3) in full agreement with the 

PCA analysis. Chato Murciano and Bisaro appeared as differentiated clusters when 

K=2-3, while Iberian and wild pigs shared the same cluster for those K values. The 

Iberian cluster (yellow) contributed to all the other populations, in particular to 

Bisaro (25%) and wild pigs from Spain (12%) (Additional file 3). No differentiation 

between wild boar from Portugal and Spain was apparent, nor between the 

Iberian, Retinto and Negro Iberian variants, for any of the K values tested. 

However, signs of admixture from an unspecified origin were observed in 

Manchado de Jabugo for K ≥ 5. Thus, for subsequent analysis, samples were 

grouped as follows: Bisaro, Chato Murciano, Manchado de Jabugo, Iberian pig and 

wild boar. In addition, the Iberian variants Retinto and Negro Iberico were also 
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analyzed separately. Finally, for population-based analyses the pig MJ_02 was 

removed since it fell outside of any of the groups considered in the analysis. 

 

 

 

 
Figure 4.1 Different population groups defined with PCA analysis. WB, wild boar; IB_Unk, 
Iberian unidentified variant; NI, Negro Iberian; RE, Retinto; MJ, Manchado de Jabugo; BI, 
Bisaro; CM, Chato Murciano. 
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Figure 4.2 Graphic representation of estimated membership coefficients for each individual 

for K = 5. Each color represents the proportion of the genome assigned to each assumed 

cluster.WB, wild boar; IB_Unk, Iberian unidentified variant; NI, Negro Iberian; RE, Retinto; 

MJ, Manchado de Jabugo; BI, Bisaro; CM, Chato Murciano. 
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Linkage disequilibrium among populations 

Markers that deviated from Hardy-Weinberg equilibrium (P < 0.001) or had a minor 

allele frequency (MAF) below 0.05 were excluded prior to LD analysis. 

Subsequently, 24,703 SNPs in wild boar, 29,856 SNPs in Bisaro, 33,454 in Chato 

Murciano, 27,858 in Iberian and 26,246 in Manchado de Jabugo were used to 

estimate LD for all SNP pairs less than 3 Mbp apart. Pairwise r
2
 values were 

averaged over all 18 autosomes and plotted as a function of increasing genetic 

distance in all populations studied (Figure 4.3). The persistence of LD as the 

distance between loci increased and the strength of LD, varied widely between 

populations and between chromosomes (Table 4.1). The decay of LD as a function 

of marker distance was greater in wild boar (r
2
< 0.2 within 0.1 Mbp) than in the 

domestic breeds and showed the lowest average r
2 

across all genetic distances. 

Among the domestic breeds, LD was the lowest in Iberian (r
2
< 0.2 within 0.2 Mbp). 

By contrast, Manchado de Jabugo and Chato Murciano had the most pronounced 

extent of LD at short genetic distances, although LD decreased faster in Chato 

Murciano than in Manchado de Jabugo for genetic distances higher than 1 Mbp. 

 

 

 
Figure 4.3  Average LD measure as r

2
 across all chromosomes. WB, wild boar; IB, Iberian; MJ, 

Manchado de Jabugo; BI, Bisaro; CM, Chato Murciano. 



4 Conservation genomic analysis of pig populations 

  
 

81 

 

Table 4.1 Linkage disequilibrium (r
2
) and recombination rate averaged per chromosome and 

per population. 
 

Chro
m 

Rec.  Rate 
(cM/Mb)* 

r
2
 ± SD 

  CM BI IB MJ WB 

1 0.36 0.29±0.27 0.25±0.24 0.13±0.15 0.26±0.29 0.11±0.15 

2 0.64 0.22±0.24 0.24±0.22 0.16±0.17 0.3±0.31 0.1±0.13 

3 0.71 0.25±0.25 0.17±0.19 0.12±0.13 0.26±0.29 0.09±0.13 

4 0.67 0.27±0.27 0.18±0.2 0.12±0.12 0.24±0.26 0.11±0.13 

5 0.86 0.25±0.25 0.2±0.21 0.11±0.13 0.25±0.28 0.09±0.12 

6 0.80 0.26±0.23 0.22±0.23 0.15±0.17 0.27±0.29 0.1±0.14 

7 0.85 0.24±0.24 0.21±0.22 0.12±0.12 0.3±0.31 0.09±0.12 

8 0.65 0.28±0.26 0.24±0.23 0.15±0.17 0.24±0.27 0.11±0.14 

9 0.73 0.24±0.25 0.24±0.23 0.12±0.13 0.3±0.3 0.09±0.12 

10 1.14 0.24±0.25 0.18±0.2 0.09±0.11 0.23±0.27 0.08±0.1 

11 0.75 0.23±0.23 0.19±0.2 0.16±0.18 0.26±0.26 0.1±0.12 

12 1.24 0.26±0.24 0.2±0.2 0.13±0.13 0.24±0.27 0.09±0.12 

13 0.46 0.3±0.26 0.27±0.26 0.17±0.19 0.36±0.29 0.11±0.15 

14 0.73 0.3±0.26 0.24±0.24 0.17±0.18 0.3±0.28 0.09±0.12 

15 0.61 0.3±0.26 0.21±0.22 0.14±0.15 0.26±0.27 0.11±0.14 

16 0.78 0.31±0.26 0.21±0.21 0.13±0.15 0.27±0.29 0.1±0.13 

17 0.95 0.27±0.26 0.22±0.23 0.11±0.13 0.24±0.29 0.09±0.11 

18 0.81 0.21±0.22 0.2±0.2 0.09±0.12 0.23±0.28 0.09±0.12 

Total 0.76 0.26±0.25 0.22±0.22 0.13±0.14 0.27±0.28 0.10±0.13 

*Averaged recombination rate among 4 pig populations[20]. 

 

 

Persistence of phase 

The persistence of LD phase was calculated as the Pearson correlation (r) between 

SNP pairs in all possible population pairs. Similar to LD, r decreased as the distance 

between markers increased (Figure 4.4). This was observed for all pairs of 

populations, although at different degrees (Figure 4, Additional file 4). Bisaro and 

Chato Murciano showed the greatest correlation of phase at short genetic distance. 

However, for SNP pairs spaced more than 1.5 Mb apart, Iberian and Manchado de 

Jabugo showed the highest correlation of phase. Correlations between the other 

pairs of domestic pig populations (CM-MJ, CM-IB, BI-IB, BI-MJ) tended to be similar. 
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The persistence of phase found between wild boar and all domestic pigs was lower 

than between domestic populations. 

 

 

 
 

Figure 4.4 Correlation of Phase between populations for SNP pairs grouped by distance 

across the whole genome. The pairs between wild boar and domestic pigs (WB – 

IB/MJ/CM/BI) were uniformly plotted in gray for ease of reading. WB, wild boar; IB, Iberian; 

MJ, Manchado de Jabugo; BI, Bisaro; CM, Chato Murciano. 

 

 

Current effective population size 

The mean values of LD for all 1 Mb bins across the entire genome were used to 

estimate the current effective population size (Ne) implementing the equation r
2
 = 

1/(4Nec +1) [27]. This estimation was performed taking into account the 

recombination for each of these bins [20]. Large Ne was observed for the wild boar 

population (Table 4.2). Among the domestic breeds, Iberian also had a high Ne (Ne = 

151±84) while Manchado de Jabugo and Chato Murciano had smaller effective 
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population sizes (Ne = 46±50 and 59±31 respectively). Nevertheless, notice the 

large SD of these estimates. 

 

 

Table 4.2 Current Effective population size (Ne) in each population. Sample size (N); Current 

effective population size (Ne); Standard deviation (SD). 

 

POP N Ne ± SD 

BI 15 74±37 

CM 25 59±31 

MJ 7 46±50 

NI 15 95±49 

RE 10 88±126 

IB* 31 151±84 

WB 18 180±61 

 

*Ne in Iberian Breed, considering RE, NI and IB_Unk as a single population. 

 

 

Past effective population size 

The past Ne at generation T, where T = 1/2c [14], was similarly estimated for each 

bin of 1 Mb and sorted based on decreasing recombination rate values. This 

approach allowed studying Ne from as few as 5 to 20,000 generations ago (Figure 

4.5). Similar to the estimation of the current Ne, wild boar tended to have the 

highest past Ne, followed by Iberian pigs. A noteworthy drop in Ne was observed in 

wild boar 10,000 – 20,000 generations ago, with a decrease of Ne from over 70,000 

to below 30,000. The Ne increased rapidly in Iberian pigs at ~3,500 - 5,000 showing 

a maximum Ne at ~3,500 generations ago (Ne ~ 12,000). This increase in Ne was not 

observed in any other population (Additional file 7).  

Runs of homozygosity 

ROH of a minimum of 10 kbp containing at least 20 homozygous SNPs were studied 

in each individual separately. All individuals included in this study showed ROH. 

However, there were marked differences between populations in terms of number 

and length of ROH (Figure 4.6). The sums of all ROH per animal allowed the 

estimation of the percentage of the genome covered by ROH in each population 

(Additional file 6). The Chato Murciano had the largest mean proportion of its 

genome covered by ROH (29%). Other populations had mean values lower than 

20%, with Bisaro displaying the lowest mean proportion (10%). The mean of the 
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total number of ROH per population was higher in Chato Murciano and wild boar 

(34 and 30 respectively) than in Iberian and Manchado de Jabugo (26 and 24 

respectively). The Bisaro breed showed the lowest mean number of ROH (13). 

Regarding the length of ROH, approximately 36% of the Chato Murciano pigs 

analyzed had long ROH (> 100 Mbp) and 92% of the pigs of this breed had ROH in 

the range of 50-100 Mbp, making Chato Murciano the population with the highest 

proportion of long ROH. By contrast, none of the wild boars analyzed had long 

ROH, and only 20% of wild pigs analyzed contained ROH in the range of 50-100 

Mbp, indicating that wild boar had shorter ROH than the other populations. 

 

 

 

 
 

Figure 4.5 Estimated effective population size (Ne) over time. WB, wild boar; IB_Unk, Iberian 

unknown variant; NI, Negro Iberian; RE, Retinto; MJ, Manchado de Jabugo; BI, Bisaro; CM, 

Chato Murciano. 
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Manchado de Jabugo and Bisaro contained fewer ROH than the other populations, 

with Manchado de Jabugo displaying a higher proportion of long ROH than Bisaro. 

Twenty-five percent of Manchado de Jabugo pigs showed long ROH and 75% 

contained ROH in the range of 50-100 Mbp. These percentages are 6% and 33% 

respectively in Bisaro. Finally, Iberian had values intermediate to these breeds, 

since 16% of Iberian pigs displayed long ROH and 58% in the range of 50 – 100 Mb. 

All the pigs analyzed showed ROH shorter than 50 Mbp. 

A Pearson’s correlations matrix was made including LD, length of ROH and 

recombination rate. We found a positive correlation between mean values of LD 

and length of ROH per chromosome (ρ = 0.70, p < 0.002) while the correlation was 

negative between lengths of ROH and recombination rates (ρ = - 0.67, p < 0.003).  

 

 

 
Figure 4.6 Average of Number of ROH Vs. Average of length of ROH. Each dot represents an 

individual. WB, wild boar; IB, Iberian; MJ, Manchado de Jabugo; BI, Bisaro; CM, Chato 

Murciano. 
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4.3 Discussion 

High density SNP analysis can provide information on past and current population 

demography. LD is largely affected by population history and demography [28–30], 

constituting a potential tool to be applied to genetic population management. 

Specifically, LD can be used to estimate past and present effective population size 

[31] and to study persistence of LD phase [24]. The availability of a large number of 

SNPs, allows the study of parameters that can be directly relevant to assess effects 

of inbreeding such as the occurrence of Runs of Homozygosity (ROH). In addition, 

high-density SNP arrays are expected to improve the accuracy to assess population 

structure and relationship among populations [32–34]. Nevertheless, the 

applications of high-density SNP assays for investigations into genetic population 

management of minority breeds and wild populations in pig are scarce.  

Relationships between populations 

Understanding the relationships among and within populations of livestock is a 

necessary first step to establish conservation priorities and strategies [35, 36]. 

Population structure analysis, based on differences in allele frequencies, has been a 

proven method to assess relationships between populations [23, 37]. We combined 

this widely used approach with the estimates of persistence of phase as a measure 

of relationship between populations [24]. The different methods implemented to 

assess the relationships between populations showed a high degree of congruence. 

The results obtained from the population structure and persistence of phase 

analyses indicate closer relationships between Chato Murciano and Bisaro, and 

between Iberian pigs and wild boar. This observed division seems to reflect the 

classical separation of pig populations from the Iberian Peninsula into two origins: 

the Celtic type and the Iberian type pigs [5]. Most of Celtic type breeds from the 

Iberian Peninsula are now extinct or are highly endangered. The Bisaro pig is a 

representative of this group [38]. All the variants of Iberian, which include Retinto, 

Negro Iberico and Manchado de Jabugo, belong to the Iberian type. Although the 

similarity between Chato Murciano and Bisaro could be due to a Celtic origin ─ or at 

least a mixed origin ─ of Chato Murciano, it is possible that the differentiation 

between the two groups of pigs actually differentiate admixed and non-admixed 

populations.  

The high Pearson correlations for persistence of phase at long genetic distances 

detected between Manchado de Jabugo and other Iberian variants is typical for 

subpopulations of the same breed [15]. Furthermore, structure analysis confirmed 

the close genetic relationship between variants of Iberian pig but also signs of 

genetic admixture in Manchado de Jabugo. This is agreement with historical 
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records documenting that Manchado de Jabugo is a variant of the Iberian crossed 

with foreign pigs [8].  

Inbreeding and effective population size 

The analysis of Ne and ROH can be used to address major issues in conservation 

genetics such as effects of genetic drift and inbreeding [39].  The small population 

size inferred for the majority of local populations enhances the effect of 

consanguinity and genetic drift, which could compromise the long-term viability of 

the populations. With the absence of pedigree data in many local breeds, genetic 

marker data can be used as a surrogate to estimate current and past Ne, for 

instance through exploring the extent of LD [31]. Despite the interest in Ne for 

conservation of populations, the estimation of this parameter is remarkably 

complex [40]. The estimation of Ne assumes an ideal population that is isolated, 

without migration, with random mating and with a constant Ne. Although it is 

recognized that these assumptions are generally violated in natural populations, 

estimation of Ne is widely used. The estimation of recent Ne has been computed 

using linked [31, 41] and unlinked [42] genetic markers. We estimated Ne 

separately for 1 Mb bins containing information of recombination rates in order to 

obtain more information of demographic history [41]. While this method may 

provide a greater temporal dimension of Ne [43] it may make it difficult to interpret 

the results of current Ne [40].  Additionally, our estimate of current Ne must be 

treated with care due to the low sample sizes, especially in those populations with 

a sample size lower than 15 animals (i.e. Manchado de Jabugo and Retinto).  

ROH have been used to infer the history of consanguinity in human populations 

[39, 44] and cattle [16]. These studies have demonstrated that long ROH are 

related with high consanguinity levels and also have shown the existence of a good 

correlation with pedigree inbreeding coefficients [16, 45]. The existence of Chato 

Murciano pigs with a high number of long ROH shows the importance of recent 

inbreeding and thus low individual genetic diversity. Indeed, we observed three 

Chato Murciano pigs that had more than 45% of the genome covered by ROH, but 

also pigs with much lower percentage. This observation is consistent with known 

management strategies of this breed [23] and in agreement with a strong 

bottleneck described for this breed about 20 years ago when the entire breed  

consisted of only 30-40 breeding animals. The high number of long ROH also 

indicates that this breed has not recently been extensively crossed with other 

breeds otherwise the long ROH would have broken down. The frequency of long 

ROH in Manchado de Jabugo was similar to the other Iberian variants. Recent 

admixture between Manchado de Jabugo and other pig breeds, as observed in the 

structure analysis, may have resulted in the break-down of long (>100 Mbp) 
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homozygous haplotypes. Despite the fact that Manchado de Jabugo is highly 

endangered with extinction as suggested from the small census population size 

(http://dad.fao.org/), this population did not show signs of high levels of 

consanguinity, likely because of its admixed origin. Thus, the conservation program 

currently implemented in Manchado de Jabugo is effective and necessary to assure 

the future viability of this population. What is also evident, however, is that this 

management strategy has gone at the expense of the historical genetic 

distinctiveness of the breed.  By contrast, Bisaro showed signs of low consanguinity 

in agreement with its mixed origin and the strict conservation program 

implemented in this breed [46]. Although the Iberian pigs generally showed 

relatively low percentage of the genome covered by ROH, a few individuals showed 

a high coverage by ROH [47]. This can be expected in this heterogeneous breed 

which consists of local populations and different color forms.  

The agreement between our observations and expectations based on historic 

reports highlights that analyzing the structure of ROH can aid in assessing levels of 

current consanguinity, and historic events such as bottlenecks in local pig 

populations. Furthermore, the assessment of ROH at the individual level has 

practical implications in conservation programs. Animals displaying high levels of 

ROH, for instance, could be excluded or given lower priority for breeding purposes 

in endangered populations. However, it must be taken into account that the 60K 

SNP panel applied may underestimate the number of small ROH due to 

ascertainment bias [13] and may inflate the length of the longest ROH [16]. Yet 

Bosse et al. [13] and Purfield et al. [16] concluded that high-density SNP panels 

allow an appropriate estimation of ROH, especially for the analysis of large ROH. 

Demographic history 

The study of demographic history provides a better understanding of the current 

risk of inbreeding, and might facilitate predicting the effects of future changes in 

effective population size. Despite the fact that estimation of demography implies 

the simplification of a complex biological reality, estimation of effective population 

size based on LD and recombination rate provides useful predictions and consistent 

comparisons between populations [31, 48]. It must be considered that the 

estimation of recent Ne is more inaccurate than the estimation ancient Ne owing to 

the increase in the variability of Ne values as the length of the segment used for the 

estimation increase [14]. The estimation of past Ne for wild boar tended to be 

higher than for domestic populations, with important drops in Ne. Moreover, wild 

boar had a very high number of short ROH and no long ROH. A high number of 

short ROH has been related with a reduced population size in the past and low 

inbreeding in recent times [39]. This pattern could be explained by the bottlenecks 



4 Conservation genomic analysis of pig populations 

  
 

89 

 

that occurred in Europe in the last century [49], that would have reduced the Ne of 

wild boar drastically. Moreover, continuous events of formation of subpopulations 

and migration between them, favored by the lack of geographic barriers across the 

Iberian Peninsula, and even occasional admixture with domestic pigs, could have 

avoided high inbreeding in wild boar populations. Genetic signs of migration 

between subpopulations of Iberian wild boars have been described in Portugal 

[50]. 

The low recombination rate observed in large parts of the porcine genome 

essentially allows a much wider window in the past effective population size. 

Assuming a generation interval of approximately 2 years [24]. We observed a 

distinct drop of the Ne between 20,000 and 10,000 generations ago exclusively in 

wild boar that seems to reflect the sharp population decrease during the Last 

Glacial Maximum [51]. The increase in population size observed exclusively in 

Iberian pigs around 4000-4500 generations ago (Additional file 7) is consistent with 

admixture events during domestication in Europe [52, 53]. Recently the role of 

Europe as domestication centre has been dismissed [52, 53]. In this scenario of 

domestication, European domestic pigs appeared as a result of repeated events of 

admixture between domestic pigs imported from Near Eastern regions around 

8,000 years ago [54] and wild pigs from Europe [52]. On one hand, the fact that 

Iberian pig allowed the study of domestication events implies that this breed 

represents a suitable model to study domestication in Europe, reinforcing the need 

to preserve the breed and avoid admixture with other pig populations. On the 

other hand, it confirms historic reports and previous studies with mtDNA showing 

that Iberian pigs did not originate from crosses with other breeds [55]. Admixture 

events may mask genetic signs of past demographic events [53] explaining why 

other domestic breeds such as Bisaro and Chato Murciano showed a different 

pattern of past Ne. Studies using Next Generation sequence data are needed to 

support and increase the accuracy of past Ne estimations in Iberian pig. 

Structure analysis showed that Iberian pigs contributed to the wild boar genetic 

stock (Figure 4.2). This fact together with the genetic distances and Fst values 

between wild boar and Iberian pigs provide support that Iberian may have been 

crossbreeding with wild boar until medieval times [56]. This is in agreement with 

results for the European breeds studied by Groenen et al. [51], who describe a 

complex history in European breeds and incomplete lineage sorting, supporting 

admixture between wild and domestic pigs in Europe. It must be kept in mind that 

Iberian pigs were traditionally bred outdoors, which has enabled crossbreeding 

between wild and domestic pigs. Intriguingly, this is unlikely to have affected only 

the domesticated pigs, but rather also the wild boar of the Iberian Peninsula, as 
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suggested by recent investigations on introgression from domesticated into wild 

populations [12]. 

 

4.4 Conclusions 

This study provides a comprehensive picture of demographic history, population 

structure and inbreeding of wild and domestic pig populations from the Iberian 

Peninsula as well as their relevance in conservation genetics. The occurrence of 

ROH in Chato Murciano was very high in some individuals, which may be due to a 

recent bottleneck and also highlights the lack of a well-designed genetic 

management program. Manchado de Jabugo showed a relatively high 

heterozygosity. This is unexpected given the extremely low census population size, 

and most likely reflects recent admixture with commercial pig breeds observed in 

this population. Conservation programs need to be maintained and carefully 

designed in order to avoid further loss of genetic distinctiveness. The study of Ne 

and ROH in Bisaro indicated high genetic diversity of this breed as a result of its 

mixed origin and the efforts carried out to preserve this breed. We observed that 

the Iberian breed may represent a good model to assess genetic signs of past 

demographic events as domestication, being and additional argument for the need 

to preserve Iberian pig breed and to avoid crossbreeding with other breeds. 

Previous evidence supporting the Iberian breed as being closely related to wild 

boar were confirmed and further evidence was provided for recurrent 

crossbreeding between these populations in the past. The analysis of wild 

populations from different regions of the Iberian Peninsula indicates that migration 

of wild pigs across the Iberian Peninsula may be important for the maintenance of 

low levels of inbreeding of Iberian wild boar. 

 

4.5 Methods 

Animals and sampling 

A total of 97 unrelated pig samples were collected from populations of the Iberian 

Peninsula, and genomic DNA was extracted by standard protocols. The study 

included 18 wild boars (WB) from different regions of Portugal (n = 11) and Spain (n 

= 7), and 79 domestic pigs. The domestic pigs utilized for the analysis belonged to 

three local breeds: Iberian ─including a Retinto Iberian variant (RE, n = 11), a Negro 

Iberian variant (NI, n = 15), an unidentified Iberian variant (IB, n = 5), and 

Manchado de Jabugo (MJ, n = 8) ─, Bisaro (BI, n = 15) and Chato Murciano (CM, n = 

25). 
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SNP genotyping 

High-density SNP genotyping was performed using the Porcine SNP60 Beadchip 

(IlluminaInc, USA) designed to genotype 62,163 SNPs [9], per manufacturer’s 

protocol. For this study, only SNPs mapped to one of the 18 autosomes on Sus 

scrofa build 10.2 and with less than 5% missing genotypes were included in the 

analysis.  

Data analysis 

Pairwise genetic distances between animals were calculated as one minus the 

average proportion of alleles shared using PLINK v1.07 *45+. Nei’s genetic distances 

[57] and Fst values between populations were calculated using the Power marker 

software [58].  The pairwise distances between individuals were used to construct 

a Neighbor-Joining tree in Mega 5.03[59]. The admixture model implemented by 

the program Structure v2.0 [60] was used to examine relatedness among pig 

populations and population stratification. K values (number of assumed clusters) 

from two to seven were tested. Consistent results were obtained by using a 

burning period of 10,000 followed by 10,000 Markov chain Monte Carlo (MCMC) 

repetitions. This analysis was replicated after 100,000 burning steps and 100,000 

MCMC repetitions. The most likely number of clusters was determined by the 

Evanno method [26] using the web server Structure Harvester [61]. Moreover, to 

obtain further detail of the population structure, the PCA was performed using the 

program Eigenstrat [62]. 

Linkage Disequilibrium analysis 

Markers significantly deviating from Hardy-Weinberg equilibrium (P < 0.001) and 

with a MAF lower than 0.05 were excluded for LD analysis using PLINK v1.07 [63]. 

LD (r2) was estimated for all marker pairs less than 3Mbp apart across all 

populations and in each autosomal chromosome independently using Haploview 

4.2 [64]. Graphic display of r
2 

vs. distance per chromosome and means plot of r
2
 in 

each breed vs. each chromosome were made in R environment (http://www.r-

project.org/). 

Persistence of phase 

To calculate the persistence of phase and the time since two breeds diverged we 

followed the procedure implemented by Badke et al. [24]. Briefly, the SNP data was 

split into groups of SNPs with pairwise marker distance of 100 kbp, and the 

pairwise Pearson correlation between SNP was estimated across the 10 possible 

pairs of population.  

Effective Population size 

Effective population sizes were calculated in all populations implementing the 

equation r
2
 = 1/(4Nec +1), where r

2
 is the LD, c is the marker distance in morgans 
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between SNP and Ne is the effective population size [27]. Additionally, past 

effective population size at generation T was calculated as T = 1/2c [14]. Logically, 

this equation depends on recombination rates. 

Previous authors [25] tended to apply the generalization 1 Mb ~ 1 cM to calculate 

Ne, but this assumption may lead to incorrect estimates of Ne. Recombination rate 

varies considerably across and within porcine chromosomes [20], to an even larger 

extent than observed in other mammals [13]. Instead, we used the averaged high-

density recombination map described by Tortereau et al. [20]. The effective 

population size estimates were derived by averaging multiple genomic regions in 

order to have a better approximation of the effective population size [48]. Towards 

this end, the chromosomes were divided in 1 Mb bins containing information of 

recombination rates and average r
2 

for all possible pairs of SNPs included in each 

bin. These bins were subsequently used to estimate past and present effective 

population size. The approximation of past Ne assumes that c is much larger than 

the mutation rate (~10
-8

 per locus and generation) [15] so bins with c < 10
-6

 where 

not considered for past Ne estimation. 

Runs of homozygosity 

The software PLINK v1.07 [63]was used to detect ROH for individuals separately. 

The ROH were defined by a minimum of 10 kbp in size and 20 homozygous SNPs. 

One heterozygous SNP was permitted in ROH, so that the length of the ROH was 

not disrupted by an occasional heterozygote. In addition, minimum SNP density of 

1SNP/Mb and a largest possible gap between SNPs of 1Mb were predefined in 

order to assure that the ROH were not affected by the SNP density. 

Number of ROH, total length of ROH and the average of ROH length in each animal 

were calculated for each chromosome and the mean across animals was estimated 

for each breed. Those ROH longer than 100 Mbp were categorized as long ROH. 

The percentage of the total genome length affected by ROH in each animal was 

also inferred.  
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Abstract 

A major concern in conservation genetics is to maintain the genetic diversity of 

populations. Genetic variation in livestock species is threatened by the progressive 

marginalisation of local breeds in benefit of high-output pigs worldwide. We used 

high-density SNP and re-sequencing data to assess genetic diversity of local pig 

breeds from Europe. In addition, we re-sequenced pigs from commercial breeds to 

identify potential candidate mutations responsible for phenotypic divergence 

among these groups of breeds. Our results point out some local breeds that 

harbour low genetic diversity, whose genome shows a high proportion of regions of 

homozygosis and that harbour a large number of potentially damaging mutations. 

We also observed a high correlation between genetic diversity estimates using 

high-density SNP data and Next Generation Sequencing (NGS) data. The study of 

non-synonymous fixed mutations in commercial and local breeds revealed 

candidate mutations that may underlie differences in the adaptation to the 

environment but also potentially disadvantageous genotypes in highly productive 

breeds. This finding may be due to the strong artificial selection in the intensive 

production systems in pig. Our study highlights the importance of low input breeds 

as a valuable genetic reservoir for the pig production industry, emphasizing the 

need to implement conservation programmes to preserve the genomic variability 

of local breeds.  

 

Key words: conservation genetics, pig, SNP, NGS, genetic diversity  
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5.1 Introduction 

The use of a relatively small number of international high-output or commercials 

breed largely explains the increase in livestock productivity over the last 50-60 

years. In addition, the number of commercial populations is even decreasing due to 

consolidation of breeding stock and breeding companies [1]. While high productive 

breeds may not compete with low-input breeds in marginal regions or extensive 

production, FAO has expressed concern due to the shift from local breeds to high-

output animals [2]. Local breeds may be more resistant than high-performance 

breeds to local diseases, may be better adapted to local climate, and may be 

adapted to poorer food quality [2, 3]. These characteristics of local breeds are very 

relevant for humans living in developing countries where local domestic animals 

form an important source of protein. Local breeds are also appreciated in 

developed countries for their cultural heritage value, and as producers of 

traditional and high quality meat products [4]. Increasingly, local heritage breeds 

are recognized for their potential in sustainable or organic food production 

systems. Moreover, they represent a yardstick against which to compare highly 

selected breeds and allowing the detection of genes under selection [5]. Lastly, 

local breeds are claimed to harbour a large amount of the variation of 

domesticated species [6, 7], and as such are recognized as important genetic 

reservoirs that need to be protected for future food security [8].   

Despite all those inherent properties of local breeds, the long term survival of many 

of them is not assured [8]. Inbreeding is particularly relevant in local breeds that 

have low population numbers [6, 7]. The loss of genetic diversity within a breed 

due to drift and inbreeding can have direct consequences for reduction of survival, 

reproduction efficiency and capacity of adaptation to environmental changes [9]. 

The reduction in reproduction and growth rates is particularly relevant for local 

livestock breeds as it can directly lead to economic loss. Minimising inbreeding is, 

therefore, a major goal to guarantee the sustainability and maintenance of 

domestic populations of livestock species.  

Genetic characterization of livestock breeds by applying genetic marker technology 

is needed to enhance breeding and to better direct biodiversity conservation 

strategies. In pigs, the Porcine SNP60 Bead-array [10] is a commercially available 

marker system extensively used in genetic studies (e.g. [11, 12]). However, whole-

genome re-sequencing has emerged as a tool for assessing genomic variation 

among pig populations [13]. In contrast to the commercially available SNP chip, the 

study of the whole genome sequence provides the opportunity of performing 

unbiased and accurate studies to estimate genetic diversity [14], regions of 
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homozygosity [15], and scanning the pig genome to detect signatures of selection 

[16]. The study of entire genomes increases the availability of information on 

neutral loci, and thereby the accuracy of estimates of demographically important 

parameters, such as the inbreeding factor (F) [17]. Next generation sequencing 

(NGS) also allows for direct assessment of polymorphisms in coding regions that 

could have consequences in selective processes. For instance, genes involved in 

local adaptation, or alleles responsible for inbreeding depression can be analysed 

[17]. 

In this study, we first assess and compare genetic diversity of low-input breeds 

from Europe by integrating high-density SNP and re-sequencing data. Secondly, we 

explore the role of local breeds as reservoirs for genetic variation in a domesticated 

species. Finally, we assess differences between local and commercial populations in 

terms of functional variation and explore evidences for inbreeding in local breeds 

that could lead to inbreeding depression. 

 

5.2 Results  

We genotyped 12 local populations (Table 5.1) from different countries across 

Europe with the Porcine SNP60 BeadChip [10]. SNP markers with more than 5% 

missing genotypes were excluded from the analysis. A total of 48,641 SNPs that 

could be mapped to autosomes on Sus scrofa build 10.2 [13] were finally used for 

the genetic diversity analysis. In addition, one or two representative genotyped 

pigs of these populations were re-sequenced to approximately 10x depth of 

coverage. The number of genomic variants, SNPs, and insertions or deletions 

(INDELs), varied greatly among the animals studied, ranging from 3.10 million in 

one Large White pig to 5.77 million in one British Saddleback pig. The number of 

variants and variability within exonic, intergenic, and intronic regions in all the re-

sequenced animals is shown in the supplementary Table S1. In addition, a re-

sequenced African Warthog was used as an out-group to deduce which fixed allele 

is ancestral or derived. Lastly, to understand the distribution of alleles in non-

western domestic populations, we made comparisons with a panel consisting of 

European and Asian Wild Boar and Chinese pigs.  
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Table 5.1 Sampling information and analysis performed in each pig population. 

 

Breed Code Category Country N SNP NGS 

British Saddleback BS Local UK 29 29 2 

Gloucester Old Spots GO Local UK 33 33 2 

Large Black LB Local UK 30 30 1 

Middle White MW Local UK 27 27 2 

Tamworth TA Local UK 30 30 2 

Chato Murciano CM Local Spain 46 46 2 

Iberian Pig IB Local Spain 29 29 2 

Cinta Senese CS Local Italy 13 13 1 

Cassertana CT Local Italy 15 15 2 

NeraSiciliana NS Local Italy 15 15 0 

Calabrese CA Local Italy 15 15 1 

Mangalica MA Local Hungary 25 0 2 

Duroc DU Commercial International 2 0 2 

Large White LW Commercial International 2 0 2 

Landrace LR Commercial International 2 0 2 

Pietrain PI Commercial International 2 0 2 

Warthog - Wild - 2 0 2 

Wild boar WB Wild China 3 0 3 

Wild boar WB Wild The Netherlands 2 0 2 
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Genetic diversity 

To estimate genetic diversity with 60K data, we used the gene diversity parameter 

computed with Arlequin [18] per population (He_60K). We also estimated 

individual inbreeding factor averaged in each population (F_60K) (Table 5.2). In 

addition, NGS data was used to calculate heterozygosity (h_NGS) [14]. The 

estimation of h_NGS was performed for each pig separately, and, when data from 

two individuals were available, the average was used as the estimation of h_NGS in 

the breed. The comparison of genetic diversity derived from 60K and NGS is shown 

in Table 5.2 and Figure 5.1. All parameters indicated that Mangalica has the lowest 

genetic diversity (He_60K = 0.19; h_NGS = 5.55E-04) and British Saddleback the 

highest (He_60K = 0.29; h_NGS = 1.56E-03). The two marker systems also agreed in 

the low genomic variability of Cinta Senese breed (He_60K = 0.21, h_NGS = 8.23E-

04), high variability in Chato Murciano and Middle White (He_60K = 0.27-0.28; 

h_NGS= 1.30E-03-1.35E-03 respectively) and intermediate levels for Calabrese 

(He_60K = 0.25; h_NGS = 1.14E-03). Minor disagreements between the genotyping 

methods were observed in Iberian breed, with a lower estimate of genetic diversity 

based on NGS than on 60K data. In the English breeds Tamworth and Gloucester 

Old Spots the genetic diversity was low according to the 60K data (He_60K < 0.21) 

but intermediate based on the NGS data (h_NGS~ 1.10E-03). The major 

disagreement between 60K and NGS data was found in the populations Cassertana 

and Large Black. We observed a proportionally higher diversity in Large Black when 

NGS data was used and the opposite for the Cassertana breed. We observed that 

all English breeds and Chato Murciano had higher genetic diversity in the estimates 

based on NGS than in 60K in those breeds, relative to the fitted line. On the other 

hand, pigs from Italy, Hungary and Iberian pig showed lower than estimated 

genetic diversity based on NGS relative to the 60K SNP data. Despite these 

systematic deviation of the fitted model, the Pearson’s correlation coefficient was 

high and significant between He_60K and h_NGS genetic diversity estimates (0.70, 

P = 0.02), as well as between F_60K and h_NGS (-0.83, P = 0.003). 

In order to allow a direct comparison between genetic diversity using the two 

marker systems, parameters studied at the individual level ─ F_60K and h_NGS ─ 

were compared (Figure 5.2). The correlation between h_NGS and F_ 60K for the 

individual comparisons was   -0.91 (P = 0.0).  

The number of Runs of Homozygosity (ROH) as well as their length varied greatly 

among populations as estimated from both 60K and NGS. In agreement with the 

genetic diversity estimates, all the analyses showed that the Mangalica breed had 

the highest proportion of the genome covered by ROH (Figure S1, supplementary 

material). The Italian breeds Cassertana and Cinta Senese and the English breeds 
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Tamworth and Gloucester Old Spots also had a high coverage of ROH (50-55% using 

NGS data). At the other end of the spectrum, the breed British Saddleback showed 

the lowest proportion (35%) followed by Calabrese and Chato Murciano (~ 40%). 

A high correlation between estimates of ROH was observed between estimates 

derived from NGS and 60K SNP data, although the 60K SNP data consistently 

underestimated the proportion of the genome covered by ROH (Figure S1). The 

comparison between the number and length of ROH using 60K and NGS revealed 

that 60K data tended to not discover short ROH and to overestimate the length of 

long ROH (Figure S2, supplementary material). The correlation between length of 

ROH and genetic diversity estimates was high (~ -0.8, P < 0.05) as inferred in Figure 

S3 (supplementary material). The comparison of F value against the total length of 

ROH in the populations Calabrese, Chato Murciano, Cassertana and Middle White 

encompassed pigs with a pattern of negative F values as well as shorter and lower 

number of ROH (see cut-off, Figure S3). 

 

 

 

Table 5.2 Genetic diversity parameters 

 

Breed Na* He* F* h** 

BS 1.88 0.29 0.13 1,56E-03 

NS 1.79 0.26 0.19 NA 

MA 1.60 0.19 0.55 5,55E-04 

CS 1.70 0.21 0.37 8,23E-04 

CA 1.71 0.25 0.19 1,14E-03 

MW 1.84 0.27 0.16 1,30E-03 

CM 1.95 0.28 0.17 1,35E-03 

LB 1.75 0.25 0.23 1,50E-03 

IB 1.85 0.24 0.33 9,51E-04 

CT 1.91 0.28 0.20 9,16E-04 

TA 1.61 0.20 0.38 1,07E-03 

GO 1.71 0.21 0.34 1,12E-03 

*Estimates of genetic diversity using Porcine 60SNP Beadchip data. He: expected 

heterozygosity; F: inbreeding coefficient; Na: Mean number alleles. **Heterozygosity 

estimated using NGS data. h: observed heterozygosity 
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Figure 5.1 Genetic diversity with NGS Vs. Genetic diversity using 60K data. Each dot 
represents the average value in the populations. The size of the dots is proportional to the 
inbreeding factor (F_60K) observed in the population. 
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Figure 5.2 Genetic diversity with NGS Vs. Inbreeding factor using 60K data at individual level. 
The size of the dots is proportional to the He_60K of the population. BS, British Saddleback; 
GO, Gloucester Old Spots; LB, Large Black; MW, Middle White; TA, Tamworth; CM, Chato 
Murciano; IB, Iberian Pig; CS, Cinta Senese; CT, Cassertana; CA, Calabrese; MA, Mangalica. 

 

 

Functional significance of non-synonymous variants 

Of all the SNPs discovered by NGS, an average of 0.17% was annotated as non-

synonymous variants (Table S1, supplementary material). Considering all 

individuals, we observed a total of 16,409 different non-synonymous SNPs. All non-

synonymous SNPs were analysed with Polyphen2 [19], that classifies mutations as 

benign and possible/probably damaging. In agreement with the genetic diversity 

estimations (File S1, supplementary material) a high number of potentially 

damaging mutations is fixed in the breeds Mangalica, Cinta Senese, Tamworth and 

Gloucester Old Spots. 

In order to find SNPs that potentially explain phenotypic differences between local 

populations and high-output pigs, we extracted all possible non-synonymous SNPs 

and we computed Fst (File S2). Eight pigs derived from commercial elite lines 
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(Duroc, Large White, Landrace and Pietrain) were considered as one population 

and each local breed was used separately to determine Fst. We focussed on those 

non-synonymous SNPs that were fixed in commercial breeds and also in any local 

breed but with different allele, i.e. Fst = 1. This analysis revealed 99 SNPs with 

different fixed alleles in commercial and at least one of the local breeds (Table S2, 

supplementary material). Moreover, we explored the occurrence of ROH and 

published QTL overlapping these SNPs and the result of the Polyphen2 analysis.  

The 99 non-synonymous fixed SNPs affected 65 genes (Table S2). The comparison 

with a Warthog pig revealed that in 64% of fixed alleles it was the derived allele 

that was fixed in local pigs and 36% in commercial pigs. Among these 65 genes, we 

focused on those (i) with a potential phenotypic effect, (ii) with the two alleles –the 

ancestral and the derived–  present in wild populations, (iii) those that were 

affected by several fixed SNPs and (iv) with a mutation classified by polyphen2 

(Figure 5.3). We observed a possible damaging mutation in the gene AZGP1 in the 

breeds Mangalica, Cinta Senese and Gloucester Old Spot, as well as in European 

wild boar. This mutation overlaps with a QTL related with the number of vertebra 

and occupied a 50 kb genomic region where genetic diversity varied greatly among 

populations –from 0 to 5 times the averaged genetic diversity in the pig–. We 

observed two fixed SNPs within the gene IL12RB2, with Gloucester Old Spots, 

Middle White, Tamworth, Calabrese carrying the two ancestral alleles. Other local 

breeds such as British Saddleback and Chato Murciano were heterozygous at this 

locus, as were European and Asian wild pigs. This genomic region overlaps with a 

QTLs for back fat thickness and intramuscular fat content. It also overlaps with ROH 

or low genetic diversity regions, except in British Saddleback and Large Black. A 

mutation classified as benign was observed within the gene STAB1. This gene codes 

for a protein involved in defence against bacterial infection by binding to bacteria 

and inducing phagocytic activity [20–22]. The allele was present in English breeds, 

Casertana and Asian pigs. STAB1 overlaps with four QTLs related with CD4 and CD8 

leukocyte percentage and ratio. The genetic diversity in this region is low, 

especially in commercial breeds with seven out of eight commercial breeds 

overlapping with a ROH. The two animals of the breed Mangalica, Chato Murciano 

and several English pigs were all homozygous for three derived alleles within the 

gene EIF2AK3. The protein coded by this gene is involved in skeletal system 

development. The gene overlaps with QTL for feet and leg conformation and 

Osteochondrosis score. Local pigs carrying the derived allele have a ROH or a low 

genetic diversity in the 50Kb region overlapping this gene. 
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Figure 5.3 Chromosomes are arranged circularly end-to-end using Circos[54]. The four inner 
rings display ROH (green and blue bars) and genetic diversity (red histograms) in Large 
White, Landrace, Mangalitza and Tamworth respectively. Some QTLs overlapping any of the 
four genes studied are represented in yellow (QTL1: Abdominal fat weight; QTL2: 
Osteochondrosis score; QTL3: Intramuscular fat content; QTL4: Backfat  thickness; QTL5: 
Feet and leg conformation ; QTL6: Vertebra number. The outer ring represents the averaged 
high-density recombination map described by Tortereau et al. [55]. 
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5.3 Discussion 

The advances in sequencing technologies now allows sequencing whole genomes in 

multiple individuals [17, 23]. However, the cost of this technology is still high, and 

budgets for conservation genetics research are limited. While high-density SNP 

panels allow the study of a representative sample size of a population at a much 

lower cost, there is a concern regarding the ascertainment bias implicit in the use 

of SNP chips [24]. This concern is even higher for local pig populations since they 

were not considered in the design of the Porcine SNP60 Beadchip [10]. In this 

study, we found a high correlation between diversity estimates derived from the 

Illumina porcine 60SNP Beadchip and NGS data. These results indicate that the 

Illumina porcine 60SNP Beadchip provides reliable estimates of genomic diversity 

for comparative studies between European populations, despite the expected bias. 

Nevertheless, the English breeds and Chato Murciano, showed greater diversity 

with NGS compared to 60K data than expected compared to expected values 

derived from all populations combined. These results may highlight the influence of 

historical breeding practices, whereby Asian pigs were used to improve local 

English pigs during the late 18
th

 and 19
th

 century [13, 25] which were subsequently 

used to improve other European breeds such as Chato Murciano [26]. Despite the 

additional diversity found in English pigs owing to Asian introgression, some English 

pigs display high levels of ROH. These ROH are the result of recent inbreeding and 

could indicate that these breeds are prone to inbreeding depression.  

SNP variants were annotated and potential deleterious effects were predicted with 

Polyphen2. Recessive deleterious alleles can be a major cause of inbreeding 

depression in populations with low genetic diversity [27]. In our study we find the 

largest number of putative deleterious mutations in those animals that also have 

the highest percentage of the genome covered by ROH and the lowest genetic 

diversity, i.e. Mangalica and Cinta Senese breeds, and in the breeds Tamworth and 

Gloucester Old Spots.  Genomic diversity in these breeds  was lower than almost all 

domestic and wild populations from Europe and Asia [15] corroborating the 

hypothesis that damaging mutations can accumulate, due to drift, in populations 

with high levels of inbreeding. A similar relation between genetic diversity and 

proportion of deleterious alleles has been described in human populations [28]. 

This finding points out the need to develop conservation programs for endangered 

livestock populations that are very prone to high levels of inbreeding.  

We found non-synonymous, high allele frequency differences (fixed for different 

alleles) at non-synonymous sites to be overrepresented in genes involved in 

immune response, anatomical development, behaviour, and sensory perception 



5 Whole-genome sequence analysis reveals differences in populations 

 

 

111 

 

between commercial and local populations. Local breeds tend to be reared in 

traditional systems without being subjected to intense artificial selection (e.g. 

BLUP, GBLUP selection) as applied to commercial pig populations. As a result of 

years of different selection pressures and environments, genomic variations 

underlying phenotypic differences can be expected. We have specifically focussed 

on non-synonymous variants because they will alter the amino acid sequence of 

gene products, which may result in different phenotypes [29]. Although phenotypic 

change is expected to a large extent to result from regulation of genes, rather than 

differences in amino acid sequences, regulatory important variations are currently 

difficult to predict reliably and were therefore not considered in this study. 

The gene AZGP1 stimulates lipid degradation in adipocytes and subsequently is 

considered a lipid-mobilizing factor [30]. This gene is linked with obesity in humans 

and its expression is inversely associated with body weight and percentage of body 

fat in mice and humans [31, 32]. In pigs, a 20Mb QTL in chromosome 3 [33] for 

abdominal fat weight overlaps this gene. Mangalica, Cinta Senese and one 

European wild boar are homozygous for a derived allele annotated as probably 

damaging. This allele is absent in commercial pigs and also in some local pigs. The 

inferred status of the allele as ‘probably damaging’ may, for pig, rather result in 

having a large effect on the phenotype. Whereas pigs used to be bred for high fat 

deposition, in modern pig production systems lean meat is desired.  

AZGP1 also overlaps with a 8.5Mb QTL for vertebra number [34].  Related to that 

same phenotype, we found a fixed non-synonymous mutation in the Mangalica 

breed within the gene PLAG1 that has been related with stature in humans and 

cattle [35, 36]. Rubin et al. [16] concluded a strong signature of selection in the 

domestic pig genome at PLAG1. These data suggest that the mutations found in the 

genes AZGP1 and PLAG1 may represent signatures of different selection pressures 

between local breeds as Mangalica and commercial pigs. Another compelling 

example of potential differential selection between commercial and local 

populations are the two mutations found in the bitter taste receptor TAS2R40. The 

high variability within the family of taste receptor genes has been suggested a 

consequence of adaptation of  populations to specific dietary repertoires and 

environment [37], such as prevention of consumption of plant toxins [38].  

It has been observed that selection for economically important traits tends to 

increase the susceptibility to environmental factors [39, 40]. In our study, ancestral 

mutations classified as benign in genes involved in immune related genes such as 

IL12RB2 and STAB1, were observed in several local pigs. The IL12RB2 subunit plays 

an important role in Th1 cell differentiation that is critical for an effective immune 

response against different types of pathogens [41]. The three mutations observed 
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in this gene overlap with important QTLs in pig production such as back fat 

thickness and intramuscular fat content [42, 43]. The fact that mutations in IL12RB2 

can lead to a defective IFN-gamma response to microorganisms [44, 45], suggests 

that disadvantageous genotypes could have been maintained in commercial 

populations.  

The EIF2AK3 gene overlaps with QTLs for osteochondrosis score [46] and feet and 

leg conformation [47]. Interestingly, this gene encompass functions of bone 

mineralization, chondrocyte development insulin secretion and fat cell 

differentiation and has being related with the Wolcott-Rallison syndrome in 

humans [48]. Leg weakness is a major concern in growing pigs raised under modern 

production systems and osteochondrosis is considered to be the primary cause of 

this syndrome. Indeed, forced selection for high growth capacity predisposes to 

these disorders due to an imbalance between the development of the skeletal 

system and muscle [49]. The allelic differences between local and commercial pigs 

within the EIF2AK3 gene, could underlie strong directional selection in commercial 

breeds. The fact that the same alleles are segregating in both wild boar and low-

input breeds supports this hypothesis. 

The genes discussed above had different fixed alleles for non-synonymous SNPs 

between commercial and local pigs. The presence of both alleles, the ancestral and 

the derived, in wild boars indicates that the variation was present before 

domestication. While differences in allele frequencies of SNPs in genes such as 

AZGP1 and TAS2R40 may underlie a rapid adaptation to different environments, it 

can also occur due to drift effects in small populations in the absence of selection, 

or even if the allele is in fact disadvantageous. The fixed alleles in EIF2AK3 and 

IL12RB2 could potentially result in disadvantageous phenotypes in high-output 

breeds owing to the strong artificial selection for production traits. We 

demonstrated that genetic variability found in wild populations is also being 

preserved in local breeds at genomic sites with potential phenotypic effect. This 

further highlights the importance of preserving local breeds as a source of genomic 

diversity that could be used in future selection programs of commercial pigs. 

However, the results presented also highlight high levels of ROHs, inbreeding and 

potentially damaging mutations that threat the future of local pig breeds, 

emphasizing the need of implementing conservation programmes to preserve the 

genomic variability of low-input breeds. 
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5.4 Conclusion 

In this study, we assessed genetic diversity of low-input breeds from different 

European regions by integrating high-density SNP and re-sequencing data. The 

comparison of the two marker system estimations provided insights for strategies 

to the genetic characterization of local breeds. Furthermore, the re-sequenced 

local pigs were compared with re-sequenced commercial pigs to report candidate 

mutations responsible for phenotypic divergence among those groups of breeds. 

We observed that local pig breeds are an important source of genomic variation 

within-species, and thereby, they represent a genomic stock that could be 

important for future adaptation to long-term changes in the environment or 

consumers preferences. However, high levels of inbreeding threaten the long term 

survival of some of the local breeds studied. 

 

5.5 Material and methods  

Animals and sampling and SNP genotyping 

Blood samples from 315 unrelated domestic pigs were collected and DNA was 

extracted by using the QIAamp DNA blood spin kit (Qiagen Sciences). The study 

included domestic pigs that belonged to 12 local breeds from England, Spain, Italy 

and Hungary (Table 5.1). Samples were genotyped using the Illumina Porcine 60K 

iSelect Beadchip [10] per manufacturers protocols. We included only SNPs mapped 

to one of the 18 autosomes on Sus scrofa build 10.2 and that had less than 5% 

missing genotypes. In addition, 1-2 animals of each local breed were selected for 

re-sequencing with the exception of the Nera Siciliana breed. We also re-

sequenced eight individuals that belonged to the commercial, international pig 

breeds Duroc, Large White, Landrace and Pietrain. The samples used are detailed in 

Table 5.1.  

Sequencing alignment and SNP discovery 

Library construction and re-sequencing of the samples was performed using 1-3 µg 

of genomic DNA following the Illumina library prepping protocols (Illunima Inc.). 

The library insert size ranged for 300–500 bp and fragments were sequenced from 

both sides yielding two times 100bp mated sequences.  Short read alignment was 

done against the Sus scrofa genome, build 10.2 [13] using Mosaik. The pigs were 

sequenced to a depth of approximately 10x. Further details on sequence mapping 

can be found in [15]. 

Archives in BAM format generated with the Mosaik Text function were used for the 

SNPs calling against the Sus scrofa genome, build 10.2. The mpileup function 

implemented in SAMtools v1.4-r985 [50] was used to obtain variant calls. 

Variations were filtered for a minimum genotype SNP and INDEL quality (20 and 50 



5 Whole-genome sequence analysis reveals differences in populations 

 

 

114 
 

respectively). Only variations based on coverage in the range of 5x until twice the 

genome average were considered. 

Data analysis using high-density SNP genotyping 

We used ARLEQUIN 3.5 [18] to compute the expected heterozygosity, number of 

polymorphic sites and mean number of alleles in each population.  

The ROHs were defined with PLINK 1.07 as regions of a minimum size of 10 kbp and 

encompassing 20 homozygous genomic sites, while allowing one heterozygous 

SNP. We predefined a minimum SNP density of 1 SNP/Mb and a largest possible 

gap between SNPs of 1Mb to assure that the ROHs were not severely affected by 

the SNP density. Finally, we computed the Pearson’s correlation coefficient 

between length of ROHs and genetic diversity parameters in each breeds using R 

(www.r-project.org). 

Data analysis using NGS data 

Heterozygosity was estimated for each individual as the number of heterozygous 

sites per 50 Kb-bin, corrected for total number of sites per bin [14]. Only bins that 

were sufficiently covered (per base at least a sequence depth of 7x and maximum 

of approximately 2*average coverage) were considered. We obtained the 

heterozygosity for the population by averaging the individual heterozygosity of all 

individuals that belonged to that population. Correlations between 60K and NGS 

genomic diversity estimates were calculated using Pearson’s correlations in R 

environment. Graphics were obtained using the plotting system ggplot2 for R. To 

estimate the ROH from re-sequencing data, we followed the procedure 

implemented by Bosse et el. [15], using a 100 Kb sliding window. ROH were defined 

as a genomic region of at least 10kb where the number of SNPs in an individual is 

less than expected based on the genomic average. Briefly, if the number of SNPs 

per bin =< 0.25 the genomic average, and if 10 or more consecutive bins showed a 

total SNP average lower than the total genomic average, they were extracted as 

candidates ROH. ANNOVAR [51] was used to obtain the functional annotation (non-

synonymous, synonymous, stop codon gain/loss, amino acid changes) of the 

genomic variants in each animal based on the pig reference genome (Swine 

Genome Sequencing Consortium Sscrofa10.2) obtained from the UCSC database 

(http://genome.ucsc.edu). For further analysis, only the non-synonymous sites 

were considered. The genes that overlap with the non-synonymous mutations 

were retrieved using Biomart [52]. 

The Fst value for all non-synonymous mutations was calculated using Genepop [53]. 

For this analysis all the commercial pigs were considered as a single population 

while each local breed was considered separately. To reduce the number of SNPs 

to those that most likely represent the genetic basis of the phenotypic differences 
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between commercial and local breeds, we only included in the study SNPs with Fst = 

1 between the groups (i.e. fixed differences). Moreover, in order to avoid false 

positives, we exclusively considered those mutations that were homozygous in at 

least the two animals of the local breed. In the case of the local breeds that had 

only one animal re-sequenced or when one of the two animals of the breed 

showed missing data, the SNP was not considered for the functional analysis 

regardless its Fst value. Those SNPs with missing data in more than three 

commercial pigs were equally excluded. The sequence of a re-sequenced Warthog 

was used to ascertain the alleles as ancestral or derived. The genotypes for those 

SNPs were also obtained from re-sequenced data from two domestic Meishan pigs, 

one wild boar from South China, two from North China and two European wild 

boars. The sequencing alignment and SNP discovery of these samples was the same 

as previously detailed. Finally, we used the Polymorphism Phenotyping (PolyPhen2) 

algorithm [19] to predict phenotypic consequences of the non-synonymous sites. 

PolyPhen2 predicts whether a SNP is 'benign', 'possibly damaging' or 'probably 

damaging' on the basis of evolutionary conservation, structure and sequence 

information. 
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6.1 Introduction 

A basic assumption in conservation genetics is that genetic diversity is directly and 

positively related with population size [1]. The effect of genetic drift is strong in 

isolated and small populations, leading to a loss of alleles and resulting in 

inbreeding via the fixation of deleterious recessive alleles [2]. The loss of genetic 

variation may result in lower reproduction rates and losses in the capacity of 

populations to adapt to changing environments [3]. The genetic characterization of 

populations provide a knowledge base for population management strategies 

within conservation programs [4]. Advances in molecular genetics and data analysis 

have increased the number of available neutral markers, providing tools to assess 

population diversity and structure at a higher accuracy than ever before [5]. 

Recently, the availability of complete genome sequences makes it possible to study 

functional genomics and thus, explore the genetic basis of local adaptation and 

inbreeding depression. 

By integrating nuclear and mitochondrial molecular data, I reported the effect of 

past demographic events -genetic drift, migration, bottlenecks and crossbreeding- 

on the genetic variation of pig populations. By analyzing a wide representation of 

pigs that inhabit different environments and have been subjected to different 

selection histories, it was possible to make comparisons between populations and 

interpret differences. In the previous chapters different marker systems and 

statistical methods have been comprehensively integrated to address important 

questions for the conservation and rational exploitation of domestic and wild pig 

populations. In this chapter, the main findings and the practical relevance of the 

results presented in this thesis are discussed.  

 

6.2 Genetic marker systems and demographic history of 

pig populations 

Historical records on populations or breeds often provide inaccurate or biased 

accounts, but can provide hypotheses that can be tested with genetic studies [6]. 

Genetic data represents an objective tool to reliably assess population structure, 

effective population size, migration and admixture (e.g. [4, 7, 8]). Here, my goal 

was to obtain insight in population genetic processes and demographic history 

based on mitochondrial DNA (mtDNA), microsatellites, high-density SNP data and 

Next Generation Sequence (NGS) data.  

Population structure 

Population structure analysis allows the assignment of the individuals to their 

population of origin [9], the identification of admixed individuals [10] and the 
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traceability of meat products in livestock [11]. Within conservation genetics, 

population structure analyses aid to identify those populations that deserve special 

attention for conservation purposes [4, 12, 13]. In this thesis, Bayesian methods 

[14], Fst estimations [15], genetic distances and Principal Component Analysis (PCA) 

were used to assess population structure and substructure of pig populations. 

Generally, it is assumed that the availability of a higher number of genetic markers 

implies higher precision in population structure analysis. Nevertheless, I observed a 

high agreement between the structure analysis computed with 34 microsatellites 

and with ~48,000 SNPs (Chapter 3) in the Spanish pig Chato Murciano. In 

agreement with these findings, microsatellites have shown their usefulness to 

discern between closely related populations within the same breed [16].  

High-density SNP panels suffer from ascertainment bias, distorting population 

structure inferences in e.g. human populations [17]. Nevertheless, the results 

presented in this thesis indicate that the Illumina Porcine 60K Beadchip can be 

reliably used to assign pigs to their population of origin, a finding in agreement with 

other studies [11]. The results presented in this thesis are particularly noteworthy 

since a large variety of populations including commercial, wild and local breeds 

from multiple European regions could be clearly differentiated. The Bayesian 

structure analysis implemented in the software Structure [14] allowed clustering 

the individuals to their population of origin. This study at individual level is 

interesting since it makes it possible to detect potential sampling errors and 

admixed individuals. For example, in Chapter 4 two Iberian pigs belonging to 

different variants where not correctly assigned to their putative population of 

origin, possibly due to a sampling error. Regarding admixture, Manchado de Jabugo 

and Chato Murciano showed signs of admixture with other pigs in agreement with 

historical records. 

Effective population size 

The estimation of effective population size (Ne) from genetic data [18] is of major 

interest in conservation genetics. Since wild and local populations often have 

limited, or even no pedigree information available, genetic data is a suitable tool to 

assess past and present Ne [8, 19, 20]. In Chapter 4, 60K SNP data was used to 

estimate present and past Ne based on Linkage Disequilibrium (LD), in conjunction 

with a recombination map of the pig [21]. Previous studies in livestock species used 

an approximation of 1 Mb = 1cM to compute Ne, but this assumption may lead to 

incorrect estimates due to the fact that recombination rate varies substantially 

across and within porcine chromosomes [22].  The results showed good agreement 

with historical records of the populations and other genetic parameters. Thus,  the 

populations Manchado de Jabugo and Chato Murciano are those categorized as 
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endangered with extinction according to the records of the Food and Agriculture 

Organization of the United Nations(FAO; http://dad.fao.org/) showed indeed the 

lowest current Ne. 

It has been stated that LD is highly affected by sample size. Since the estimation of 

Ne depends on LD [18], the use of a low sample size is expected to decrease the 

accuracy of Ne estimations. Nevertheless, I observed that populations with low 

sample size (N < 15) showed Ne values consistent with genomic diversity 

estimations and with historical records, despite the standard deviation being high. 

The study of the 60K SNP data also allowed us to obtain insights in past population 

size. The results presented were consistent with known events such as the 

decrease of Ne in wild pigs during the Last Glacial Maximum. Groenen et al. [23] 

described a decrease in past Ne of European wild boar using whole-genome 

sequence data similar to the decrease observed in wild Iberian pigs (Chapter 4). I 

also observed an increase in population size around 4,000 generations ago 

exclusively in the Iberian pigs, highly consistent with the domestication timeframe. 

Admixture or Crossbreeding 

Crossbreeding or admixture refers to the interbreeding between different 

populations, breeds or varieties. Admixture has been important in shaping genome 

variation of domestic animals [6]. Despite the fact that new production systems 

largely avoid crossbreeding between domestic and wild pigs, the existence of wild 

boars with domestic introgression has been confirmed using nuclear [24] and 

mitochondrial [25, 26] data. The study of mtDNA haplotypes showed Asian wild 

pigs from Japan and Taiwan carrying mtDNA haplotypes that are common in 

European domestic pigs. Likewise wild pigs from Italy and the Netherlands among 

others carry haplotypes of Asian origin. With regard to domestic pigs, I observed a 

high frequency of mtDNA haplotypes of Asian origin in English and commercial 

breeds, which is in agreement with the deliberate introgression of Asian pigs into 

European pig populations in the late 18th and 19th centuries [23, 25, 27]. Around 

25-50% of the pigs belonging to the commercial breeds Pietrain, Large White and 

Landrace, and 20-90% of English local pigs – depending on the breed- carried Asian 

haplotypes [28]. Asian haplotypes were also found in European local pigs such as 

Manchado de Jabugo, and, conversely, haplotypes of European origin were 

observed, mostly at low frequencies, in Asian breeds. Thus, introgression between 

pig populations was corroborated using mtDNA. The use of mtDNA to detect 

crossbreeding has, however, major disadvantages [6]. The fact that mtDNA 

represents a single locus that is maternally inherited hampers the detection of 

crossbreeding from the paternal side. This is particularly relevant for a species like 

the pig, which, in the wild, displays pronounced male-driven dispersal. 
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Furthermore, in pig trading and breeding, both male and female biased practices 

may occur. An additional drawback of mtDNA is that timeframe and degree of 

admixture cannot be precisely determined since mtDNA does not recombine. 

The analysis of nuclear DNA corroborated crossbreeding in various pig populations 

with recorded histories pigs. In Chapter 3, the population structure analysis using 

60K SNP data revealed that some Chato Murciano pigs had been introgressed with 

Duroc pigs in a farm where Duroc and Chato Murciano are reared together. This 

demonstrates that genetic structure analysis is a suitable tool to infer recent 

introgression based on the 60K SNP panel. Indirect signs of introgression were 

detected by the joint analysis of regions of homozygosity (ROH) and inbreeding 

factor (F) in each animal. Indeed, the four Chato Murciano pigs recently 

introgressed with Duroc pigs, as discussed in Chapter 3, had a characteristic pattern 

consisting of short ROH and a low inbreeding. In chapter 4 I observed other local 

pigs with the same pattern that probably indicates similar introgression events. 

Goedbloed et al. [24] also observed higher levels of genetic diversity in wild pigs 

that had been crossed with domestic pigs. 

 

6.3 Genetic marker systems and genetic diversity of pig 

populations  

In this thesis, genetic diversity was estimated using microsatellites, a high-density 

SNP panel and NGS data. The analysis of 34 microsatellites in the Chato Murciano 

pigs showed that different farms can have different levels of genetic diversity. 

These estimations were in good agreement with documented reports regarding the 

history of the breed and the census of the farms. Estimation of genetic diversity 

with high-density SNP data was also in agreement with the expected results 

regarding the history of other breeds. For example, populations with well-known 

high level of inbreeding like Mangalica had very low genetic diversity. Contrary to 

the microsatellite data, the high number and even distribution of SNPs using 60K 

SNP data allowed the estimation of parameters that rely on genome-wide 

information such as ROH. While the expected heterozygosity is computed at the 

population level, ROH and also inbreeding factor were calculated in each pig 

separately, being well correlated with genetic diversity estimates [21]. The 

individual assessment of genetic diversity has practical implications in a 

conservation program. We may prioritize breeders that display low inbreeding 

factor and proportion of genome covered by ROH.  
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High-density SNP chips are designed on the basis of the genetic variability between 

relatively small numbers of populations. Furthermore, such SNP discovery panels 

are usually focusing on a population of prior interest, such as an experimental 

population or commercially relevant breeds. In pigs, the Porcine SNP60 Beadchip 

was designed using the breeds Duroc, Large White, Landrace and Pietrain [29]. 

Although some wild boar information was added to the SNP discovery process, the 

contribution was very small. The bias originating from the SNP discovery process, 

also referred as the ascertainment bias, results in under estimation of variation in 

populations as they are more dissimilar to the SNP discovery panel. Nevertheless, 

the correlation between genetic diversity computed with the 60K SNP and NGS 

data was high when the same individual animals were both genotyped and 

sequenced and also when averaged estimations across each population were 

compared. These results indicate that the Porcine 60SNP Beadchip provides reliable 

estimates of genomic diversity for comparative studies between European pig 

populations despite the inherent bias. However, the inability of the Porcine SNP60 

Beadchip to detect part of the genetic diversity in English breeds and also local 

breeds crossed with English breeds demonstrates the strength of applying whole 

genome sequencing in conservation studies. 

 

6.4 Genomic variation within pig populations 

Since the first pigs were domesticated around 10,000 years ago, selection, in 

particular artificial selection, for traits such as coat colour, body size, reproduction 

and behaviour have resulted in hundreds of breeds worldwide [30]. Breeding 

practices developed in England in the 18
th

 – 19
th

 century resulted in rapid 

phenotypic changes with the emergence of new improved breeds [27]. Some of the 

English breeds that emerged from crosses with Asian pigs, were subsequently 

crossed with traditional breeds [27, 31]. Advances in the livestock industry during 

the last 50-60 years have accelerated phenotypic change between a hand-full of 

widely used, highly productive, commercial breeds, and the local breeds. These 

local breeds have largely escaped such intense selection and, as a consequence, 

generally show low performance in production traits. However, while commercial 

pigs have seen a large increase in production traits, they may, simultaneously, have 

become more sensitive to housing system, food quality, climate and disease [32, 

33]. In wild populations, pigs have not been subjected to domestication events but 

the human influence on this populations still has been remarkable due to hunting 

and restocking activities, together with crossbreeding with domestic pigs [7, 24, 

26]. These disparities in selection pressures are expected to affect the genomic 
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variability between pig populations. Indeed, genomic regions under selection due 

to domestication –based on a comparison between wild and domestic pigs–  and 

with breed development –based on  a comparison between domestic pig breeds– 

have been recently pinpointed [34, 35]. Rubin et al. [35] observed signatures of 

selection at loci related to the number of vertebrae and elongation of the back 

[27]. Wilkinson et. al. [34] reported evidence for  genomic differences between 

European breeds associated with genes involved in breed standard characteristics 

such as coat colour and certain production traits. In Chapter 5, the genomic 

variation underlying phenotypic differences between local and commercial 

European breeds was explored. The differentiation of allele frequencies among 

populations is considered to be an appropriate approach to detect genomic regions 

under selection for local adaptation [5, 36]. The study of non-synonymous SNPs 

that may have phenotypic consequences, revealed candidate SNPs with a high 

allele frequency difference between local breeds and commercial pigs (Fst=1).  

These data demonstrate that local breeds harbour different genomic variants than 

commercial pigs, even though most of the local breeds did show lower genetic 

diversity overall. Considering the eight commercial pigs of four different breeds as 

a single population, I observed 99 homozygous non-synonymous sites for which 

some local pigs were heterozygous or homozygous for both possible alleles, while 

all commercial pigs carried the same allele. The lack of variation at certain genomic 

regions despite the high genetic diversity found in commercial breeds could have 

resulted from different selection pressures between commercial and local pigs. 

Artificial selection may have reduced diversity at loci under selection, as well as the 

neighbouring linked sites [37]. In local pigs, population-wide homozygosity may 

have been induced due to genetic drift, particularly in those breeds that have 

become highly marginalized.  

Genetic drift effects, however, are likely also important in commercial populations, 

particularly in boar lines that are generally kept at effective population sizes of a 

few tens of animals[38]. Low effective population size has been related to the 

occurrence and maintenance of recessive damaging mutations in livestock species 

[39]. Thus, disadvantageous genotypes can easily spread in the population due to 

(partially) recessive genotypes carried by a founder. For example, missense 

mutations within the gene encoding bovine CD18 and the gene SLC35A3 were 

associated to immune deficiency and vertebral malformation, respectively, in 

Holstein-Friesian bulls. These mutations were widely disseminated in the 

population by a founder used extensively in the Holstein-Friesian breed [40, 41].  

According to Allendorf et al. [5], the application of genomics to conservation will 

allow the identification of loci related with fitness and demographic vital rates, and 
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thereby, the prediction of population’s viability or capacity to adaptation. This 

novel approach may be incorporated to the conservation management of the 

populations. Several mutations detailed in Chapter 5 were found in genes that may 

be involved in sensory perception such as the taste receptor TAS2R40 [42] or the 

gene USH1C related to hearing function [43]. Other mutations affect genes with 

immune related and skeletal development functions. These non-synonymous 

mutations could reflect differences in the adaptation between local and 

commercial animals. Furthermore, given that many of these mutations –

particularly within immune-related genes– were classified in Polyphen analysis as 

“benign” for the fixed allele carried by local pigs, one may argue advantageous 

selection in local pigs for harsher environment. However, the lack of detailed 

phenotypic information of the animals genotyped, and having little information on 

the environment and artificial selection pressure, preclude accurate interpretation. 

As presented in Chapter 1, the access to the whole genome sequence led us to a 

reverse genetics approach –a gene sequence is known, but the exact function is 

unknown–. Given that the genes presented here can potentially be involved in a 

better adaptation of local pigs to a harsher environment, further studies are 

needed to unravel the phenotypic effect of these mutations. 

Interestingly, for most of the fixed variants observed in commercial and local pigs, 

wild populations also preserved both, ancestral and derived alleles. On one hand, 

this indicates that the majority of the variation presented in domestic pigs is not 

new but derived from the wild ancestor. On the other hand, it implies that local 

breeds preserve genetic variants from wild populations that could eventually be 

used to increase the genomic diversity of commercial animals, highlighting the 

convenience of conserving local pig populations. 

 

6.5 Phylogeographic diffusion of Sus scrofa using mtDNA 

Migration implies movement of alleles between populations and thereby can be 

responsible for changes in allele frequencies [44]. The high reproduction rate and 

adaptability to different environments of wild boar populations [45] can result in a 

high dispersal rate. Thus, the study of migration patterns of wild populations is of 

importance to understand the current genetic structure of Sus scrofa worldwide.  

Inferences of migration pathways in Sus scrofa using genetic data have traditionally 

been based on the topology of phylogenetic trees or networks, estimated with 

standard methods that do not explicitly take spatial information into account. In 

Chapter 1, the migration patterns of wild pigs throughout Eurasia were inferred 

using a Bayesian approach. This Bayesian method used an asymmetric discrete 
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diffusion model as implemented in BEAST with a stochastic search variable 

selection procedure that identifies the parsimonious descriptions of the diffusion 

process that includes prior geographic information [46] to unravel historical 

migration patterns. Most of the significant and consistent migration pathways 

described in Chapter 2 are consistent with fossil records, or with migrations 

described for other animal species. For instance, the re-colonization of central 

Europe from the so-called refugia  was strongly supported by our analysis and 

corroborates previous studies [47]. In addition, recently postulated migration 

events of Sus scrofa were apparent also from the mtDNA analysis. Larson et al. [48] 

noticed the existence of two divergent lineages of mtDNA in South Asia. A hitherto 

untested migration route from Siberia to India west of the Himalaya would explain 

this observation. We also found evidence for the migration of wild pigs from North 

East Asia to Japan through the island of Sakhalin that so far has not been described 

in pigs, but which was postulated based on fossil evidence [49, 50]. Recently, whole 

genome sequence data analysis revealed that north Asian pigs migrated to Europe 

1.6-0.8 million years ago [23]. The mtDNA analysis, however, does not offer a well-

supported migration pattern from Asia to Europe highlighting the apparent 

limitation of mtDNA to infer this migration event. Furthermore, the poor 

representation of samples from west Asia could also explain the absence of a 

significant link between Asia and Europe. 

The Bayesian phylogeographic analysis performed in this study has shown its 

robustness to infer historical migration events in bears [51], beetles [52, 53] and 

viruses [46, 54]. Despite the fact that our work shed light on migration patterns of 

Sus scrofa dating, at least, of middle-late Pleistocene, we must point out limitations 

when applied in species with complex demographic history such as Sus scrofa. First, 

human mediated events, particularly domestication, may have a large influence on 

the results [6] as was observed when the analysis performed in SET_1 and SET_2 

were compared. Second, the resampling procedure used identified “key samples” 

that determined well-supported migration pathways, implying that a 

representative set of samples is required. Third, an inappropriate delineation of 

geographic regions will lead in a loss of accuracy in the conclusions. Testing 

migration between restricted and well-delimited geographic regions may be 

desirable in particular geographic regions. 
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6.6 Genetic characterization of local breeds. Insights for 

conservation genetics 

Conservation management of any population requires in depth knowledge of 

biogeography, population structure and genetic diversity. To prevent the 

permanent loss of our genetic and cultural heritage, local breeds need to be 

managed by conservation programs. While governments and farmer associations 

generally subscribe to this need, they usually lack funds to include the necessary 

genetic characterization and monitoring of local breeds. Therefore, an ideal 

conservation program based on genetic data to be implemented in low input 

populations must find the best trade-off between accuracy and economic 

affordability. At this point major questions may arise: which marker systems are 

appropriate for the genetic characterization of local livestock breeds? which 

analysis better explains the idiosyncrasy of the population? which individuals or 

populations are worth to prioritize within the conservation program?. 

The study of mtDNA aided to unravel parts of the demographic history of Sus 

scrofa. However, major questions in conservation genetics such as genetic diversity 

and population structure could not be accurately assessed using mitochondrial 

data. Microsatellites and High-density SNP panels showed high reliability to 

perform population structure analysis and to estimate genetic diversity. High-

density SNP panels in particular are highly suitable for conservation genetics 

purposes. The cost of genotyping a high number of microsatellites is lower than 

genotype animals with high-density SNP panels although the possibility to 

automate SNPs will provide steadily higher panels to be used at low cost. In this 

thesis, the cost for genotyping 35 microsatellites and the 60K SNP panel were ~30€ 

and ~100€ respectively per animal. However, the high number of SNP markers 

widely distributed across the genome allowed the estimation, not only of genetic 

diversity and population structure, but also other highly informative parameters. 

For instance, high accuracy in the estimation of LD, Ne and ROH can only be 

obtained with high-density marker systems. Therefore, genotyping a smaller 

number of individuals with a higher number of markers can result in higher 

accuracy of the parameters estimated. Another important disadvantage of 

microsatellites is the complexity of comparative studies across laboratories, while 

results obtained from commercially available SNP panels can be readily compared.   

Even though, for a fixed budget, SNP panels offer more accurate estimates of 

relevant parameters, the sampling of animals becomes very important. This is due 

to the fact that a smaller number of animals can be assayed for the same budget. In 

pigs, as in other livestock species, sampling must focus on the founders whose 
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genetic material is spread across the population. Typically, livestock breeds are 

reared in separate farms. The exchange of animals between farms can vary from 

total isolation to a continuous flow which may have consequences on the genetic 

patterns of the population. In Chapter 3, the local breed Chato Murciano was 

studied in detail. This endangered breed has been affected by inbreeding and 

crossbreeding, which are among the most important threats to local livestock 

breeds [30]. This breed, therefore, represents a good model for conservation 

genetic studies, further enhanced by a) the possibility of genetically characterizing 

the majority of the breeding animals and b) the low number of farms (n=15) where 

these pigs are bred. The estimation of population structure and genetic diversity of 

Chato Murciano revealed relatively high genetic diversity of the whole population, 

but also a strong substructure by farms. Several farms showed high levels of 

inbreeding. Similar results have been observed in other studies [55] revealing that 

in a situation of strong substructure of the population, genetic diversity estimates 

must be assessed in each subpopulation separately [56]. Population genetic studies 

generally consider each breed as a single unit. While this may be appropriate to 

study wild populations of the same geographic regions, this is completely 

inappropriate for endangered breeds such as Chato Murciano. Chapter 3 highlights 

the necessity to consider farms separately and assess the substructure within the 

breeds as an initial step to characterize livestock populations. 

This thesis demonstrates that estimations of structure, inbreeding and ROH at the 

individual level using genome-wide SNP assays allows the detection of animals with 

a high level of inbreeding and of recent admixture. Admixture or crossbreeding is a 

major issue in conservation genetics [5]. Crossbreeding between different 

divergent populations may be advantageous due to the increase of genetic 

variation [57]. In fact, fragmentation of a population into subpopulations  has been 

proposed as a strategy to manage populations, as long as a minimum number of 

migrations between subpopulations is carried out to maximize the genetic diversity 

[58]. This would be the case for the Chato Murciano breed, were gene flow 

between farms may reduce the erosion of genetic diversity of the breed as a whole. 

Crossbreeding between populations can also be undesirable, for instance, when 

results in out-breeding depression reduces the fitness of the population as may be 

the case between domesticated and wild animals [57]. Crossbreeding furthermore 

poses a threats to the integrity of the gene pool of a valuable population [59], and 

thereby to the perceived heritage value of the breed. Detection of recent 

admixture is of particular interest for those livestock breeds whose products are 

highly priced and appreciated by the consumer, such as for example Iberian pig to 

produce the famous Iberico ham [60]. Furthermore, information on admixture can 
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be used to prioritise pure breed animals or discard hybrid individuals when so 

dictated by the management program. In must be considered that the admixed 

animals are likely to have far higher levels of heterozygosity (as demonstrated in 

Chapters 3 and 4 of this thesis), and therefore, discarding them from the breeding 

program effectively increases the overall rate of inbreeding.  

An ascertainment-bias free estimate of genetic diversity parameters and ROH can 

be made from whole-genome sequences as showed in Chapter 5. Moreover, NGS 

offers the possibility to carry out functional genomics approaches by identifying loci 

involved in adaptation to local environments [5] and deleterious alleles related to 

inbreeding depression [39]. This is of particularly interest for local breeds since they 

may have been adapted to harsh environments. At the same time, prolonged 

inbreeding in such populations may have led to an accumulation of relatively high-

frequency deleterious alleles as a consequence of drift effects as observed in 

Chapter 5 [30]. Despite the advantages of using genome-wide data sets, the cost 

per pig is still high ─ ~1500€ for a 10-12x coverage at the time of writing ─ and the 

budget available to characterize a low-input population typically will allow to re-

sequence a few individuals, at most. In this thesis, one or two animals per breed 

were re-sequenced while on average around 20 pigs of the same population were 

genotyped using the 60K SNP panel. Valuable conclusions can be obtained from 

these analyses. First, the high correlation between 60K SNP and NGS estimates 

points out the usefulness of 60K SNP data to infer genomic diversity in spite of the 

ascertainment bias implicit in high-density SNP chips [17],  as discussed in section 

6.2. Second, genetic diversity estimations from two re-sequenced individuals were 

highly correlated with the estimations obtained from the analysis of ~20 individuals 

genotyped with the 60K SNP panel. This shows that a small number of individuals 

that is re-sequenced in comparison with high-density SNP, is compensated by the 

very larger number of genomic sites studied [61]. Therefore, the selection of 

population-representative animals to be re-sequenced is a major issue, especially 

when the available budget only allows sequencing a small number of individuals. 

The results in this thesis clearly show that implementation of NGS to characterize 

local population adds valuable information to the high-density SNP marker 

systems. Nevertheless, due to the high cost and analysis and computational 

challenges, nowadays NGS is not yet a suitable tool for long-term genetic 

monitoring of local populations [5, 62], although this may change rapidly in the 

coming years as price of sequencing is projected to drop further. 
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6.6 Conclusions 

This thesis provided both theoretical and practical insights for addressing the 

rational management and exploitation of local genetic resources. Those insights 

stress the need to assess genetic diversity at all possible levels, from breed, to 

subpopulations and to individual. At the same time, 60K SNP data allows discarding 

animals that may not represent the population very well due to recent 

crossbreeding and aids in prioritizing founders with lower level of inbreeding. NGS 

data of at least two representative animals of the population can provide additional 

information that cannot be accurately obtained using other marker systems. For 

example, NGS enables functional genomics for adaptation to the environment and 

assessment of genetic load due to inbreeding. Finally, the large variety of 

populations, marker systems, and analyses to assess genomic diversity described, 

represents a valuable source of information for comparative purposes. Future 

studies that aim to assess genomic diversity in livestock species will be able to 

perform direct comparisons with the results presented in this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 General discussion 

 

 

137 

 

References 

1. Ouborg NJ: Integrating population genetics and conservation biology in the era 

of genomics.Biology letters 2010, 6:3–6. 

2. Lynch M: The Genetic Interpretation of Inbreeding Depression and Outbreeding 

Depression. Evolution 1991, 45:622–629. 

3. Keller L: Inbreeding effects in wild populations. Trends in Ecology & Evolution 

2002, 17:230–241. 

4. Bowden R, MacFie TS, Myers S, Hellenthal G, Nerrienet E, Bontrop RE, Freeman 

C, Donnelly P, Mundy NI: Genomic tools for evolution and conservation in the 

chimpanzee: Pan troglodytes ellioti is a genetically distinct population.PLoS 

genetics 2012, 8:e1002504. 

5. Allendorf FW, Hohenlohe P a, Luikart G: Genomics and the future of 

conservation genetics.Nature reviews. Genetics 2010, 11:697–709. 

6. Larson G, Burger J: A population genetics view of animal domestication.Trends 

in genetics : TIG 2013, 29:197–205. 

7. Scandura M, Iacolina L, Apollonio M: Genetic diversity in the European wild 

boar Sus scrofa: phylogeography, population structure and wild x domestic 

hybridization. Mammal Review 2011, 41:125–137. 

8. Tenesa A, Navarro P, Hayes BJ, Duffy DL, Clarke GM, Goddard ME, Visscher PM: 

Recent human effective population size estimated from linkage 

disequilibrium.Genome research 2007, 17:520–6. 

9. Negrini R, Nicoloso L, Crepaldi P, Milanesi E, Colli L, Chegdani F, Pariset L, Dunner 

S, Leveziel H, Williams JL, Ajmone Marsan P: Assessing SNP markers for assigning 

individuals to cattle populations.Animal genetics 2009, 40:18–26. 

10. Herrero-Medrano JM, Megens HJ, Crooijmans RP, Abellaneda JM, Ramis G: 

Farm-by-farm analysis of microsatellite, mtDNA and SNP genotype data reveals 

inbreeding and crossbreeding as threats to the survival of a native Spanish pig 

breed.Animal genetics 2012, In press. 

11. Ramos AM, Megens HJ, Crooijmans RPMA, Schook LB, Groenen MAM: 

Identification of high utility SNPs for population assignment and traceability 

purposes in the pig using high-throughput sequencing.Animal genetics 2011, 

42:613–20. 

12. Scandura M, Iacolina L, Cossu A, Apollonio M: Effects of human perturbation 

on the genetic make-up of an island population: the case of the Sardinian wild 

boar.Heredity 2011, 106:1012–20. 



6 General discussion 

 

 

138 
 

13. Fabuel E, Barragán C, Silió L, Rodríguez MC, Toro M a: Analysis of genetic 

diversity and conservation priorities in Iberian pigs based on microsatellite 

markers.Heredity 2004, 93:104–13. 

14. Pritchard JK, Stephens M, Donnelly P: Inference of population structure using 

multilocus genotype data.Genetics 2000, 155:945–59. 

15. Weir BS, Cockerham C. C: Estimating F-Statistics for the Analysis of Population 

Structure. Evolution 1984, 38:1358–1370. 

16. Martínez a M, Delgado J V, Rodero a, Vega-Pla JL: Genetic structure of the 

Iberian pig breed using microsatellites.Animal genetics 2000, 31:295–301. 

17. Albrechtsen A, Nielsen FC, Nielsen R: Ascertainment Biases in SNP Chips Affect 

Measures of Population Divergence Research article. 2010, 27:2534–2547. 

18. Hayes BJ, Visscher PM, McPartlan HC, Goddard ME: Novel multilocus measure 

of linkage disequilibrium to estimate past effective population size.Genome 

research 2003, 13:635–43. 

19. Flury C, Tapio M, Sonstegard T, Drögemüller C, Leeb T, Simianer H, Hanotte O, 

Rieder S: Effective population size of an indigenous Swiss cattle breed 

estimated from linkage disequilibrium.Journal of animal breeding and genetics = 

Zeitschrift für Tierzüchtung und Züchtungsbiologie 2010, 127:339–47. 

20. Uimari P, Tapio M: Extent of linkage disequilibrium and effective population 

size in Finnish Landrace and Finnish Yorkshire pig breeds.Journal of animal 

science 2011, 89:609–14. 

21. Bosse M, Megens H-J, Madsen O, Paudel Y, Frantz L a. F, Schook LB, Crooijmans 

RPM a., Groenen M a. M: Regions of Homozygosity in the Porcine Genome: 

Consequence of Demography and the Recombination Landscape. PLoS Genetics 

2012, 8:e1003100. 

22. Tortereau F, Servin B, Frantz L, Megens H-J, Milan D, Rohrer G, Wiedmann R, 

Beever J, Archibald AL, Schook LB, Groenen MA: A high density recombination 

map of the pig reveals a correlation between sex-specific recombination and GC 

content.BMC genomics 2012, 13:586. 

23. Groenen MAM, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, 

Rogel-Gaillard C, Park C, Milan D, Megens H-J, Li S, Larkin DM, Kim H, Frantz LAF, 

Caccamo M, Ahn H, Aken BL, Anselmo A, Anthon C, Auvil L, Badaoui B, Beattie 

CW, Bendixen C, Berman D, Blecha F, Blomberg J, Bolund L, Bosse M, Botti S, 

Bujie Z, et al.: Analyses of pig genomes provide insight into porcine demography 

and evolution.Nature 2012, 491:393–8. 

24. Goedbloed DJ, Megens HJ, Van Hooft P, Herrero-Medrano JM, Lutz W, 

Alexandri P, Crooijmans RPM a, Groenen M, Van Wieren SE, Ydenberg RC, Prins 

HHT: Genome-wide single nucleotide polymorphism analysis reveals recent 



6 General discussion 

 

 

139 

 

genetic introgression from domestic pigs into Northwest European wild boar 

populations.Molecular ecology 2012, 22:856–866. 

25. Giuffra E, Kijas JM, Amarger V, Carlborg O, Jeon JT, Andersson L: The origin of 

the domestic pig: independent domestication and subsequent 

introgression.Genetics 2000, 154:1785–91. 

26. Scandura M, Iacolina L, Crestanello B, Pecchioli E, Di Benedetto MF, Russo V, 

Davoli R, Apollonio M, Bertorelle G: Ancient vs. recent processes as factors 

shaping the genetic variation of the European wild boar: are the effects of the 

last glaciation still detectable?Molecular ecology 2008, 17:1745–62. 

27. Darwin C: The Variation of Animals and Plants under Domestication. John 

Murry. London: 1868. 

28. Fang M, Andersson L: Mitochondrial diversity in European and Chinese pigs is 

consistent with population expansions that occurred prior to 

domestication.Proceedings. Biological sciences / The Royal Society 2006, 

273:1803–10. 

29. Ramos AM, Crooijmans RPM a, Affara N a, Amaral AJ, Archibald AL, Beever JE, 

Bendixen C, Churcher C, Clark R, Dehais P, Hansen MS, Hedegaard J, Hu Z-L, 

Kerstens HH, Law AS, Megens H-J, Milan D, Nonneman DJ, Rohrer G a, Rothschild 

MF, Smith TPL, Schnabel RD, Van Tassell CP, Taylor JF, Wiedmann RT, Schook LB, 

Groenen M: Design of a high density SNP genotyping assay in the pig using SNPs 

identified and characterized by next generation sequencing technology.PloS 

one 2009, 4:e6524. 

30. FAO: Global Plan of Action for Animal Genetic Resources and the Interlaken 

Declaration.(available at 

http://www.fao.org/docrep/010/a1404e/a1404e00.htm). 2007. 

31. Porter V: Pigs. A Handbook to the Breeds of the World. Mountfield, East Sussex: 

Helm Information, Ltd.; 1993. 

32. Van der Waaij EH: A resource allocation model describing consequences of 

artificial selection under metabolic stress.Journal of animal science 2004, 

82:973–81. 

33. Bloemhof S, Kause A, Knol EF, Van Arendonk JAM, Misztal I: Heat stress effects 

on farrowing rate in sows: genetic parameter estimation using within-line and 

crossbred models.Journal of animal science 2012, 90:2109–19. 

34. Wilkinson S, Lu ZH, Megens H-J, Archibald AL, Haley C, Jackson IJ, Groenen M a. 

M, Crooijmans RPM a., Ogden R, Wiener P: Signatures of Diversifying Selection 

in European Pig Breeds. PLoS Genetics 2013, 9:e1003453. 

35. Rubin C-JC-J, Megens H-JH-J, Barrio AM, Maqbool K, Sayyab S, Schwochow D, 

Wang C, Carlborg O, Jern P, Jorgensen CB, Archibald AL, Fredholm M, Groenen 



6 General discussion 

 

 

140 
 

MAM, Andersson L, Martinez Barrio A, Carlborg Ö, Jørgensen CB: Strong 

signatures of selection in the domestic pig genome.Proceedings of the National 

Academy of Sciences of the United States of America 2012, 109:19529–36. 

36. Storz JFAYF: Using genome scans of DNA polymorphism to infer adaptive 

population divergence.Molecular ecology 2005, 14:671–88. 

37. Tenaillon MI, U’Ren J, Tenaillon O, Gaut BS: Selection versus demography: a 

multilocus investigation of the domestication process in maize.Molecular 

biology and evolution 2004, 21:1214–25. 

38. Welsh CS, Stewart TS, Schwab C, Blackburn HD: Pedigree analysis of 5 swine 

breeds in the United States and the implications for genetic 

conservation.Journal of animal science 2010, 88:1610–8. 

39. Charlier C, Coppieters W, Rollin F, Desmecht D, Agerholm JS, Cambisano N, 

Carta E, Dardano S, Dive M, Fasquelle C, Frennet J-C, Hanset R, Hubin X, 

Jorgensen C, Karim L, Kent M, Harvey K, Pearce BR, Simon P, Tama N, Nie H, 

Vandeputte S, Lien S, Longeri M, Fredholm M, Harvey RJ, Georges M: Highly 

effective SNP-based association mapping and management of recessive defects 

in livestock.Nature genetics 2008, 40:449–54. 

40. Shuster DE, Kehrli ME, Ackermann MR, Gilbert RO: Identification and 

prevalence of a genetic defect that causes leukocyte adhesion deficiency in 

Holstein cattle.Proceedings of the National Academy of Sciences of the United 

States of America 1992, 89:9225–9. 

41. Thomsen B, Horn P, Panitz F, Bendixen E, Petersen AH, Holm L-E, Nielsen VH, 

Agerholm JS, Arnbjerg J, Bendixen C: A missense mutation in the bovine 

SLC35A3 gene, encoding a UDP-N-acetylglucosamine transporter, causes 

complex vertebral malformation.Genome research 2006, 16:97–105. 

42. Go Y, Satta Y, Takenaka O, Takahata N: Lineage-specific loss of function of 

bitter taste receptor genes in humans and nonhuman primates.Genetics 2005, 

170:313–26. 

43. Lentz JJ, Jodelka FM, Hinrich AJ, McCaffrey KE, Farris HE, Spalitta MJ, Bazan NG, 

Duelli DM, Rigo F, Hastings ML: Rescue of hearing and vestibular function by 

antisense oligonucleotides in a mouse model of human deafness.Nature 

medicine 2013, 19:345–50. 

44. Star B, Spencer HG: Effects of genetic drift and gene flow on the selective 

maintenance of genetic variation.Genetics 2013, 194:235–44. 

45. Bieber C, Ruf T: Population dynamics in wild boar Sus scrofa: ecology, 

elasticity of growth rate and implications for the management of pulsed 

resource consumers. Journal of Applied Ecology 2005, 42:1203–1213. 



6 General discussion 

 

 

141 

 

46. Lemey P, Rambaut A, Drummond AJ, Suchard M a: Bayesian phylogeography 

finds its roots.PLoS computational biology 2009, 5:e1000520. 

47. Hewitt G: The genetic legacy of the Quaternary ice ages.Nature 2000, 

405:907–13. 

48. Larson G, Cucchi T, Fujita M, Matisoo-Smith E, Robins J, Anderson A, Rolett B, 

Spriggs M, Dolman G, Kim T-H, Thuy NTD, Randi E, Doherty M, Due RA, Bollt R, 

Djubiantono T, Griffin B, Intoh M, Keane E, Kirch P, Li K-T, Morwood M, Pedriña 

LM, Piper PJ, Rabett RJ, Shooter P, Van den Bergh G, West E, Wickler S, Yuan J, et 

al.: Phylogeny and ancient DNA of Sus provides insights into neolithic expansion 

in Island Southeast Asia and Oceania.Proceedings of the National Academy of 

Sciences of the United States of America 2007, 104:4834–9. 

49. Kawamura Y: Immigration of mammals into the Japanese islands during the 

Quaternary. The Quaternary Research 1998, 37:251–257. [in Japanese with 

English abstract]. 

50. Takahashi K: Nihon Retto no Senshin-Koshinsei ni okeru rikusei honyu 

dobutsu-so no keisei katei (The formative history of the terrestrial mamalian 

fauna of the Japanese Islands during the Plio-Pleistocene).Kyusekki Kenkyu 

(Palaeolithic Research) 2007, 3:5–14. 

51. Edwards CJ, Suchard M a, Lemey P, Welch JJ, Barnes I, Fulton TL, Barnett R, 

Connell TCO, Coxon P, Monaghan N, Valdiosera CE, Lorenzen ED, Willerslev E, 

Baryshnikov GF, Rambaut A, Thomas MG, Bradley DG, Shapiro B, Tables S, 

O’Connell TC: Ancient hybridization and an Irish origin for the modern polar 

bear matriline.Current biology : CB 2011, 21:1251–8. 

52. Marske KA, Leschen R a B, Buckley TR: Reconciling phylogeography and 

ecological niche models for New Zealand beetles: Looking beyond glacial 

refugia.Molecular phylogenetics and evolution 2011, 59:89–102. 

53. Marske KA, Leschen RAB, Buckley TR: Concerted versus independent evolution 

and the search for multiple refugia: comparative phylogeography of four forest 

beetles.Evolution; international journal of organic evolution 2012, 66:1862–77. 

54. De Bruyn A, Villemot J, Lefeuvre P, Villar E, Hoareau M, Harimalala M, Abdoul-

Karime AL, Abdou-Chakour C, Reynaud B, Harkins GW, Varsani A, Martin DP, Lett 

J-M: East African cassava mosaic-like viruses from Africa to Indian ocean 

islands: molecular diversity, evolutionary history and geographical 

dissemination of a bipartite begomovirus.BMC evolutionary biology 2012, 

12:228. 

55. Nishimaki T, Ibi T, Tanabe Y, Miyazaki Y, Kobayashi N, Matsuhashi T, Akiyama T, 

Yoshida E, Imai K, Matsui M, Uemura K, Watanabe N, Fujita T, Saito Y, Komatsu T, 

Yamada T, Mannen H, Sasazaki S, Kunieda T: The assessment of genetic diversity 



6 General discussion 

 

 

142 
 

within and among the eight subpopulations of Japanese Black cattle using 52 

microsatellite markers.Animal science journal = Nihon chikusan Gakkaiho 2013. 

56. Ji Y-Q, Wu D-D, Wu G-S, Wang G-D, Zhang Y-P: Multi-locus analysis reveals a 

different pattern of genetic diversity for mitochondrial and nuclear DNA 

between wild and domestic pigs in East Asia.PloS one 2011, 6:e26416. 

57. Verhoeven KJF, Macel M, Wolfe LM, Biere A: Population admixture, biological 

invasions and the balance between local adaptation and inbreeding 

depression.Proceedings. Biological sciences / The Royal Society 2011, 278:2–8. 

58. Fernández J, Toro MA, Caballero A: Management of subdivided populations in 

conservation programs: development of a novel dynamic system.Genetics 2008, 

179:683–92. 

59. Berthouly-Salazar C, Thévenon S, Van TN, Nguyen BT, Pham LD, Chi CV, Maillard 

J-C: Uncontrolled admixture and loss of genetic diversity in a local Vietnamese 

pig breed.Ecology and evolution 2012, 2:962–75. 

60. García-González DL, Aparicio R, Aparicio-Ruiz R: Volatile and amino Acid 

profiling of dry cured hams from different Swine breeds and processing 

methods.Molecules (Basel, Switzerland) 2013, 18:3927–47. 

61. Lynch M: Estimation of nucleotide diversity, disequilibrium coefficients, and 

mutation rates from high-coverage genome-sequencing projects.Molecular 

biology and evolution 2008, 25:2409–19. 

62. Engelsma KA: Use of SNP markers to conserve genome-wide genetic diversity 

in livestock. 2012.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 
 

 
 
 

 
 

Summary 
 



 
 



Summary 

 

 

145 

 

Summary 

The developments in sequencing technologies, high density SNP panels and data 

analysis have provided an increasing number of neutral markers to study genetic 

variation. This allows better estimation of relevant parameters in conservation 

genetic studies such as genetic diversity, population structure and demographic 

history. The recent availability of whole-genome sequences makes it possible to 

further improve and complement these studies with novel functional genomics 

approaches. The identification of loci involved in adaptation to the environment 

and inbreeding depression may have a large impact on conservation genetics, 

providing additional knowledge to design effective population genetic 

management of livestock species. The aim of the study presented in this thesis was 

to explore the genetic diversity and demographic history of local pig populations by 

integrating various genetic marker systems. 

A novel Bayesian phylogeographic approach was implemented in Chapter 2 to infer 

the historical dispersal patterns of wild boar populations across Eurasia using 

mitochondrial DNA (mtDNA). This study aimed to obtain further understanding of 

the past events that shaped the current genetic structure of Sus scrofa. We 

observed dispersal events of wild pig populations consistent with fossil records and 

with migration events described in other species. Moreover, statistically significant 

routes were detected between wild pig populations that were not previously 

corroborated. In Chapter 3, microsatellites, mtDNA and high-density SNP panel 

were jointly used for the genetic characterization of the local Spanish breed Chato 

Murciano. This breed represents a good model for endangered livestock 

populations because it has a small population size, there is no studbook, it is prone 

to inbreeding and prone to being crossbred with commercial breeds to improve 

specific traits. The analysis of pigs that likely contributed to the genetic stock of 

Chato Murciano revealed that the entire breeding stock is genetically 

distinguishable from other breeds. While genetic diversity of the breed was similar 

to other European local pig breeds, the independent analysis on farm level showed 

a high level of substructure and high levels of inbreeding in some farms. However, 

the farm-by-farm approach allowed the identification of farms with signs of recent 

crossbreeding with other breeds. Therefore, identifying farm-based management 

practices and farm-based breeding stocks, seems to be an accurate approach for 

the development of a sustainable breeding program for minority livestock breeds, 

particularly when pedigree information is absent. 

To study population relationships, inbreeding and demographic history, domestic 

and wild populations from the Iberian Peninsula were genotyped with the 60K SNP 
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panel (Chapter 4). The integrated data analyses were based on allele frequency 

differences, linkage disequilibrium (LD) and regions of homozygosity (ROH). 

Analysis of population structure and persistence of LD phase indicated a close 

relationship between two variants of the Iberian breeds -Retinto and Negro Iberico- 

while the variant Manchado de Jabugo showed signs of recent crossbreeding in 

agreement with historical records. The study of ROH revealed signs of a recent 

population bottleneck in the Chato Murciano breed, resulting in part of the pigs 

having a high proportion of the genome covered by ROH. The study of past 

effective population size revealed a sharp decrease in effective population size 

approximately 10,000-15,000 generations ago exclusively in wild populations, 

probably as a result of the last glacial maximum. Genetic signs of domestication in 

Europe were solely observed in Iberian pig. The low level of substructure of Iberian 

wild populations from different geographic regions, together with the pattern of 

ROH, suggest that migration of wild boar across the Iberian Peninsula may be 

important for the maintenance of low levels of inbreeding. A broader study of local 

pig breeds from Europe is presented in Chapter 5. High-density SNP and Next 

Generation Sequencing (NGS) data were applied for 12 local pigs from England, 

Spain, Italy and Hungary to assess genomic diversity. We observed that pigs from 

local breeds with high levels of inbreeding also had large number of potentially 

damaging mutations. Genetic diversity was computed based on high-density SNP 

data and NGS data. There was a high correlation between these marker systems. 

NGS data from commercial breeds was included in the study to explore potential 

candidate mutations responsible for phenotypic divergence among local and 

commercial breeds. This study revealed fixed non-synonymous genomic variants 

that may underlie differences in commercial and local breeds for adaptation to the 

environment. This study highlights the importance of the low input breeds as a 

valuable genetic reservoir for the pig production industry. Therefore, emphasis is 

needed to preserve the genomic variability of local breeds in conservation 

programmes. In Chapter 6, the relevant findings of this thesis are discussed as well 

as the strengths and limitations of the methods used. I put special attention on the 

practical implications of the results in conservation genetics management of 

livestock species. The use of 60K SNP data proved to be a suitable tool for the study 

of relevant parameters in conservation genetics of European pig populations, 

concretely, genetic diversity, population structure, admixture and past effective 

population size. This, in combination with NGS data of at least two representative 

animals of a population, provided important information to assess the 

ascertainment bias of the high-density SNP chip and to perform functional 

genomics related to adaptation to the environment. 
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Samenvatting 

Recente ontwikkelingen in de technologie om DNA basen volgorde te bepalen, het 

zogenaamde “Next Generation Sequencing (NGS)”, hebben geresulteerd in het 

beschikbaar komen van een toenemend aantal genetische merkers ten bate van de 

varkensgenetica. Dit heeft onder meer geleid tot de beschikbaarheid van 

gestandaardiseerde, genoom-wijde merker analyses om variatie te bestuderen, de 

zogenaamde “High-Density SNP analyses” waarmee zo’n 60 duizend potentieel 

variabele genomische posities tegelijk kunnen worden bepaald, ook wel SNP chip 

genaamd. Hierdoor is het mogelijk een betere schatting te maken van genetische 

parameters die relevant zijn voor het begrijpen van diversiteit, populatie structuur 

en geschiedenis, en demografie. De recente beschikbaarheid van een referentie 

genoom voor het varken maakt het verder mogelijk om deze parameters nog 

nauwkeuriger te schatten en bovendien aan te vullen met functionele analyses, 

bijvoorbeeld door te kijken naar potentiele veranderingen in de functies van 

specifieke genen. Dit kan leiden tot het identificeren van loci die bijvoorbeeld 

betrokken zijn bij aanpassing aan de omgeving of inteelt problemen. Dit kan 

vervolgens van grote betekenis zijn bij het optimaal behouden van genetische 

variatie middels het ontwerpen van een optimaal fokprogramma. Het doel van het 

onderzoek zoals beschreven in dit proefschrift was om de genetische diversiteit en 

demografische geschiedenis van lokale varkenspopulaties te verkennen middels 

het integreren van verschillende genetische merker systemen. 

Hoofdstuk 2 beschrijft het gebruik van een nieuwe Bayesiaanse fylogeografische 

aanpak voor het verklaren van de historische verspreidingspatronen van wild zwijn 

populaties over het Euraziatische super continent aan de hand van mitochondriaal 

DNA (mtDNA). Deze studie had als doel om inzicht te krijgen in hoe 

versprijdingspatronen uit het verleden de huidige genetische structuur in de soort 

Sus scrofa kunnen verklaren. De geschatte migratie patronen – op basis van 

genetische data - van wilde varkenspopulaties zijn consistent met paleontologische 

data, en zijn verder consistent met fylogeografische patronen zoals die voor andere 

soorten zijn beschreven. Bovendien werden statistisch significante migratieroutes 

ontdekt tussen wild zwijn populaties die voorheen niet werden bevestigd. Deze 

studie legt een belangrijke basis voor het interpreteren van de variatie in de gehele 

soort – zowel wild als gedomesticeerd. 

Vervolgens werden verschillende genetische merkersystemen – microsatellieten, 

mitochondriaal DNA, en High-Density SNP analyses (de 60K SNP chip) – gezamenlijk 

gebruikt voor de genetische karakterisering van het lokale Spaanse ras Chato 

Murciano (Hoofdstuk3). Dit ras is een uitstekend model voor bedreigde huisdier 
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rassen, omdat het een klein aantal dieren betreft, het ras slechts op acht 

boerderijen word gefokt, er geen stamboek is, er een hoog risico is op inteelt en er 

een hoog risico bestaat van kruising met commerciële rassen  - bijvoorbeeld om 

specifieke eigenschappen te verbeteren. De analyse van het grootste deel van alle 

dieren die binnen het ras voor de fokkerij worden gebruikt, laat zien dat het ras op 

dit moment nog duidelijk onderscheidbaar is van andere varkensrassen.  Hoewel de 

genetische diversiteit in zijn totaliteit vergelijkbaar is met andere Europese lokale 

varkensrassen, blijken er interessante verschillen tussen individuele boerderijen 

waar Chato Murciano word gefokt. Enkele boerderijen laten een veel hoger inteelt 

niveau zien dan anderen, terwijl op sommige boerderijen beslist sprake is van 

kruisingen met andere rassen. Het identificeren van boerderij-specifiek beheer en 

boerderij-specifiek fokmateriaal lijkt daarmee een belangrijke strategie voor het 

genetisch beheer van bedreigde huisdier rassen, met name wanneer een stamboek 

niet voorhanden is.  

De inzichten zo verkregen van het Spaanse Chato Murciano ras worden in 

Hoofdstuk 4 in breder perspectief geplaatst door demografische geschiedenis, 

inteelt en populatie structuur van een aantal wilde en gedomesticeerde 

varkenspopulaties van het Iberische Schiereiland te bestuderen middels genetische 

merkertechnologie (60K SNP chip). Deze studie is gebaseerd op een integratie van 

Linkage Disequilibrium (LD) analyse, allel frequentie verschillen, en het voorkomen 

van grote gebieden zonder variatie in individuele genomen (Regions Of 

Homozygosity, ofwel ROH). De analyse van demografie en overeenkomsten in 

patronen van LD laten nauwe verwantschappen zien tussen de twee varianten van 

het zogenaamde Iberico ras, de roodgekleurde Retinto en de zwarte Negro Iberico. 

De Iberico variant Manchado de Jabugo daarentegen vertoont tekenen van recente 

kruising met andere rassen, in overeenstemming met de opgetekende geschiedenis 

van deze variant. Het Chato Murciano ras vertoont de sporen van een recente 

populatie contractie, waardoor in een deel van de varkens een grote fractie van het 

genoom geen variatie aanwezig is (“Regions of Homozygosity”; ROH). Het Chato 

Murciano ras blijkt verder ook geen nauwe verwantschap te hebben met de Iberico 

varianten, wat eveneens in lijn is met wat uit historische bronnen bekend was.  De 

schatting van de effectieve populatiegrootte laat een scherpe daling van de 

effectieve populatiegrootte ,ongeveer 10.000-15.000 generaties geleden, zien in de 

wilde populaties, waarschijnlijk het gevolg van de laatste ijstijd. De lage mate van 

populatie substructuur tussen de verschillende Iberische wilde populaties en de 

lage mate van recente inteelt zoals gesuggereerd door analyse van ROH, geven aan 

dat natuurlijke migratie op het Iberisch schiereiland een belangrijke component is 
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in het behoud van natuurlijke variatie. Genetische tekenen van domesticatie in 

Europa worden uitsluitend waargenomen in Iberische varkens.  

Een nog bredere en gedetailleerdere studie van lokale varkensrassen uit Europa 

wordt gepresenteerd in Hoofdstuk 5 . Een combinatie van High-Density SNP en  

Next Generation Sequencing (NGS ) gegevens werd toegepast voor 12 lokale 

varkensrassen uit Engeland , Spanje , Italië en Hongarije om genoom-wijde 

diversiteit te karakteriseren. Er is een sterke correlatie tussen schattingen van 

genetische diversiteit gebaseerd op de 60K SNP Chip en NGS data. De NGS data is 

verder gebruikt om direct inzicht te krijgen in mutaties die potentieel 

verantwoordelijk zijn voor veranderingen in het fenotype. Deze studie identificeert 

niet-synonieme genomische varianten in genen die bepaalde verschillen tussen 

lokale en commerciële varkensrassen kunnen verklaren, en die bijvoorbeeld ten 

grondslag liggen aan aanpassingen aan de lokale omgeving. Eén van de 

bevindingen is dat in varkens van lokale rassen waarbij een hoge mate van inteelt is 

geschat op basis van neutrale genetische merkers, ook een relatief groot aantal 

potentieel schadelijke mutaties werd gevonden. Deze studie toont het belang van 

de oude, lokale rassen als een waardevol genetisch reservoir voor toekomstige 

fokprogramma’s, en de noodzaak deze genetische variabiliteit te behouden 

middels beschermingsprogramma's.  

In Hoofdstuk 6 worden de relevante bevindingen van dit proefschrift besproken 

alsook de sterke punten en beperkingen van de gebruikte methoden. Ik besteed 

speciaal aandacht aan de praktische implicaties van de resultaten in genetisch 

beheer van diersoorten . Het gebruik van 60K SNP data blijkt een geschikt 

instrument voor de studie van relevante parameters ten bate van genetisch beheer 

van Europese varkenspopulaties, met name door het schatten van genetische 

diversiteit , de effectieve populatie-grootte, demografie, en het kruisen met andere 

rassen. In combinatie met NGS gegevens van ten minste twee representatieve 

dieren van een populatie kan een gedetailleerde inschatting van de functionele 

genomica van aanpassing aan de omgeving worden gemaakt, alsook de functioneel 

genomische implicaties van beheersmaatregelen, zoals inteelt, helpen voorspellen. 
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