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Plant breeding is a key factor in the future. 

A growing world population 
According to the United Nations (UN), the world population was just above 2.5 billion persons in 

1950; just under 6.2 billion in 2000 and passed 7 billion in 2010. Estimations from 2011 predict that 

more than 7.5 billion humans will be living on the planet in 2017. The world population will thus have 

tripled in less than 70 years. Previsions are that the world population will reach 9 billion in 2038; 10 

billion people in 2057 and by the end of the century, in 2100, will be just below 11 billion (United 

Nations, Department of Economic and Social Affairs, Population Division (2011). World Population 

Prospects: The 2010 Revision, CD-ROM Edition - http://esa.un.org/unpd/wpp/Excel-

Data/population.htm). Maslow’s hierarchy of needs puts access to food (one of the physiological 

needs) as one of the most important needs (Maslow 1943). The Food and Agriculture Organisation 

(FAO) believes that food safety will be one of the major challenges for the coming years: “Producing 

70 percent more food for an additional 2.3 billion people by 2050 while at the same time combating 

poverty and hunger, using scarce natural resources more efficiently and adapting to climate change 

are the main challenges world agriculture will face in the coming decades” 

(http://www.fao.org/news/story/en/item/35571/). We, humans, depend on agriculture directly or 

indirectly for food but also fuel, clothing and we compete with it for housing. 

As the world population increases, the competition on land for agriculture versus land for urban 

development will increase further but agricultural techniques and breeding will mitigate this. For 

example, between 1960 and 2000, the land used in agriculture world-wide has increased by 11% to 

reach 1.5 billion ha, while the world population has doubled 

(http://www.fao.org/docrep/005/y4252e/y4252e06a.htm). This low increase in land used for 

agriculture, is due to improved crops and agricultural techniques. These improvements have allowed, 

between 1961 and 1999, reducing by 56% the arable land required to produce any quantity of grain. 

Over this time period, the world average grain yield has increased from 1.4 T/ha to 3.05 T/ha 

(http://www.fao.org/docrep/005/y4252e/y4252e06a.htm). Plant breeding is therefore a key issue 

for the coming years. 

A short history of plant breeding and its goals 
Prehistoric visual selection of plants that facilitated the harvest or increased the productivity led to 

the first domesticated varieties (Harlan 1975). Since the domestication of the first plants 13,000 to 

11,000 years ago, mankind has tried to develop plants, especially food plants, which better serve his 

needs. In recent years, this process has become a recognized scientific discipline named plant 

breeding (Allard 1999). The hybridizations and selection pressure applied by mankind over these 

10,000 years has resulted in the domestication of wild varieties into hundreds of thousands of 

breeds, forming the basis of our current crops (McCouch 2004). This selection process however has 

reduced the genetic basis of the plants used for food production (Tester and Langridge 2010) leading 

to a situation where for instance in Russia, in 2006, more than 95% of all winter wheat varieties used 

are descendants of only two cultivars (Mba, Guimaraes et al. 2012). This narrow genetic base directly 

endangers food security as crops worldwide become susceptible to the same stresses (biotic or 

abiotic) and modern breeders use old, wild varieties to find genes to improve current crops (yield, 

resistance) (Gur and Zamir 2004). Breeders have two possibilities to improve current crops (McCouch 

2004), either select for a superior individual among the existing possibilities or efficiently swap, 
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replace or recombine to build a biological system from an extending range of possibilities which 

includes wild and old varieties containing traits lost in the course of domestication (Gur and Zamir 

2004). Modern breeding relies on the revolution that have brought advances in biotechnology, 

genomic and molecular marker development and application (Moose and Mumm 2008). 

The evolution of modern breeding: from marker development to genome 

sequencing 
Modern breeding integrating new biotechnological approaches started in the early 1980s with the 

production of the first transgenic plants using Agrobacterium tumefaciens transformation (Bevan, 

Flavell et al. 1983; Fraley, Rogers et al. 1983; Herrera-Estrella, Depicker et al. 1983). Genetic maps 

relying on molecular markers and allowing correlating genetic linkage between markers and 

quantitative traits appeared few years later (Edwards, Stuber et al. 1987; Paterson, Lander et al. 

1988). The development of molecular markers has allowed predicting the results of a cross without 

waiting for the plant to express the phenotype by looking for the presence of specific molecular 

marker(s) associated with the phenotype (Eathington, Crosbie et al. 2007). 

Over the last 30 years, the application of plant biotechnology, genomics and molecular breeding has 

led to the development of new cultivars with higher yield, more resistant to (a)biotic stresses, now 

used on a daily basis in our agriculture (Moose and Mumm 2008). These new cultivars together with 

agronomical practices are responsible for the yield increase observed by the FAO between 1961 and 

1999. 

Molecular marker technology has evolved over these 30 years, technics such as restriction fragment 

length polymorphism (RFLP) (Burr, Burr et al. 1988), random amplified polymorphic DNA (RAPD) 

(Williams, Kubelik et al. 1990; Molnar, James et al. 2000), simple sequence repeat (SSR) (Sundaram, 

Naveenkumar et al. 2008), diversity arrays technology (Dart) (Wittenberg, van der Lee et al. 2005), 

amplified fragment length polymorphism (AFLP) (Vos, Hogers et al. 1995; Brugmans, van der Hulst et 

al. 2003) and microsatellite-anchored fragment length polymorphism (MFLP) (Yang, Shankar et al. 

2002) have been used to develop molecular markers. These methods are effective but laborious and 

time consuming while the next-generation sequencing technology allows detecting large numbers of 

DNA markers in a short time-frame (Yang, Tao et al. 2012). 

 

Figure 1: Evolution of the sequencing costs in US dollar per mega-base in parallel with the evolution of the data 
generated by a single run of a sequencer in kilo-bases. (Sources: http://www.genome.gov/sequencingcosts/ and (Mardis 
2011)). 
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Since the first application of 454 (Margulies, Egholm et al. 2005) and Solexa (Bennett 2004) 

sequencing technologies, next generation sequencing technologies (NGS) have evolved to produce 

millions of bases sequenced in a single run (Egan, Schlueter et al. 2012). Figure 1 presents in parallel 

the evolution of the number of bases sequenced in a single sequencing run using the NGS 

technologies and the evolution of the sequencing cost in US dollar per mega-base (1,000,000 bases). 

The amount of data sequenced in a single run went from 104 kilo-bases to 1012 kilo-bases in 2005 and 

up to 1014 kilo-bases in 2011, in parallel the cost to sequence 1 million bases dropped from more 

than US$5,000 in 2001 to US$0.06 in 2013. 

With the development of the sequencing technology, the breeding paradigm is switching from a 

marker based system to a genomic base system and Marker Assisted Breeding is being replaced by 

Genomics Assisted Breeding. Genomics-assisted breeding is the holistic approach that tries to predict 

phenotypes from genotype information using genomic tools and strategies (Varshney, Graner et al. 

2005; Varshney, Hoisington et al. 2006). The development of sequencing technologies has greatly 

improved genomics-assisted breeding by providing a way to generate large amounts of DNA-markers 

rapidly and at decreasing prices. Most of these DNA markers are single nucleotide polymorphisms 

(SNP) that have been established genome wide by the different sequencing technologies and 

projects. Many crops have had these SNPs made available from sequencing projects like: rice 

(McNally, Childs et al. 2009; Yamamoto, Nagasaki et al. 2010), maize (Barbazuk, Emrich et al. 2007), 

durum wheat (Trebbi, Maccaferri et al. 2011), potato (Hamilton, Hansey et al. 2011) and tomato 

(Hamilton, Sim et al. 2012). These SNP may then be integrated into genotyping platform such as SNP 

arrays (Steemers, Chang et al. 2006; Gupta, Rustgi et al. 2008) allowing scoring of thousands of 

markers in parallel and thus facilitating the construction of high-density genetic maps (Sim, 

Durstewitz et al. 2012). 

While sequencing is becoming more efficient and cheaper, the number of genomes sequenced is 

greatly increasing to the point that projects dedicated to re-sequencing organisms are appearing to 

study the genetic diversity, for example the 1000 human genome project 

(http://www.1000genomes.org/) or the 150 tomato genome project 

(http://www.tomatogenome.net/). The pace of sequencing and of evolution of the technology are 

such that it is causing infrastructure problems to the bioinformaticians in the field (Stein 2010). 

However, if sequencing may be interesting for SNP calling, further use of the genome information 

require the sequences to be annotated and a “genome is only as good as its annotation” (Stein 

2001). It is the annotation that links a DNA sequence to the biology of the organism (Stein 2001) 

using biological evidences collected by lab experiments. 

The annotation of a genome consists of annotating the genome sequence in three levels: the 

nucleotide level, the protein level and the biological processes level. The nucleotide level contains, 

for example, known molecular markers, known and predicted genes with their introns and exons 

structure, repetitive elements, eventually duplication information and nucleotide variation (for 

example: Single Nucleotide Polymorphism, SNP). The protein level contains, among other, 

information about the proteins generated by the identified genes, eventually referring to known 

proteins from an external resource such as UniProt (The UniProt Consortium 2013) and with details 

such as the protein domains eventually referring to known protein domain databases such as 

InterPro (Hunter, Jones et al. 2012). The last level, process-level annotation is the most challenging 

part, which tries to link the genome sequence to biological processes. As a result, genes and proteins 
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will be annotated with Gene Ontology (Ashburner, Ball et al. 2000) terms (GO terms) describing the 

known or putative cellular locations, molecular functions and biological processes (Stein 2001). 

The genome annotation often cross reference other resources (UniProt, InterPro, GO) allowing one 

to search for genes in other organisms involved in the same biological process or for proteins having 

the same protein domain. These cross-references in the annotation permit knowledge transfer from 

one species to another and also imply that when looking at a gene in a genome annotation, one has 

to query these other resources to retrieve more information about this gene, thus doing data 

integration which can be automated with bioinformatics tools. The genome annotation can then be 

used to investigate the genomic interval that a quantitative trait loci (QTL) mapping analysis links to a 

phenotype. 

Quantitative trait locus links phenotype to the genome 
If some parts of the natural variation of the plants are the results of “major genes”, much of the 

variation is the result of much more minor genetic changes in multiple genes (Kearsey 1998). QTL 

mapping is a statistical analysis linking phenotypic information (the trait of interest) with genotypic 

data (segregation of molecular marker over the individuals) to provide specific genomic regions 

linked with the studied trait (Miles and Wayne 2008). A QTL mapping study needs a population with 

as much variation as possible for the trait of interest. The mapping population is the result of the 

cross of two individuals having the most genetic diversity for the trait studied (i.e.: a different allelic 

composition) which will then segregate in the progeny producing different phenotypes. The resulting 

progeny can then be crossed again using one of the different crossing schemes (Darvasi 1998) to 

create the mapping population. This mapping population is then scored for as much molecular 

markers as possible providing a representation of the segregation in the population. The more 

markers, the lower the average distance between the markers, the more precise the genetic map is 

and the more accurate the mapping can be. The trait of interest is then measured in the population. 

The QTL mapping analysis consists of correlating the segregation of a marker with the measurement 

of the trait. The output of a QTL mapping analysis is therefore a region (also called QTL interval) on 

the genome, defined by molecular markers, which is statistically linked to the measured trait. For a 

simple trait, there might be a single QTL found while for a more complex trait there might be 

multiple QTL found each explaining a part of the variation that resulted in the measured phenotype 

(Remington and Purugganan 2003). 

Molecular markers are unique genetic sites that can easily be scored and mapped in a segregating 

population. For most species, it is not difficult to find 10 to 50 segregating markers per linkage group 

(Kearsey 1998) and most markers will not influence the trait of interest but some will be correlated 

with it. QTL mapping relies on the principle that where such correlation occurs, the markers and the 

genes underlying the QTL will not segregate independently creating a “linkage desiquilibrium” 

(Kearsey 1998). Relying on this linkage desiquilibrium, differences in marker scores are associated 

with differences in phenotypes allows selecting plants at an early stage without having to wait for 

them to express (or not) the phenotype of interest. This association is the basis of the “marker 

assisted selection” (Iohnson 2004). 

QTL mapping analyses are commonly used by breeders to find regions of the genome involved in a 

specific trait. This region are then introgressed from a genome to another allowing to enhanced the 
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guest genome (McCouch 2004). These regions (commonly covering 10 to 30cM (Kearsey and 

Farquhar 1998)) may contains hundreds or thousands of genes (Chibon, Schoof et al. 2012) among 

which only few might be influencing the trait of interest (Miles and Wayne 2008), finding them has 

been described as the “greatest challenge facing geneticists in the twenty-first century” (Luo, Wu et 

al. 2002). By developing more molecular markers to enhance the resolution of the genetic map, the 

size of the QTL interval can be reduced significantly (to less than 1 cM) but Price (2006) mentions that 

this technique is not applicable to most QTL. Price (2006), however, also suggests that there will be 

circumstances under which mapped based cloning would help finding the candidate genes while 

avoiding the fine-mapping step. A third option, not considered by Price (2006), is to rely on known 

information to filter from a large pool of genes the potential genes of interest. This is the approach 

taken by Chibon, Schoof et al. (2012) (Chapter 3 of this thesis). All these approaches aim at reducing 

the QTL interval to reduce the list of genes and finally find out which are the genes in the QTL interval 

that influence the trait of interest. This gene maybe a gene encoding for an enzyme in a pathway that 

influences the trait measured (Kloosterman, Oortwijn et al. 2010), but it may also be that the QTL is 

the result of a regulatory element which influences the expression of other genes and in this way 

results in the expression of the phenotype of interest (Remington and Purugganan 2003; Khan, 

Chibon et al. 2012). Such regulatory element might be a transcription factor. 

Transcription factor, a key to the gene regulatory network 
In any given cell, at any given time, thousands of genes ensure the cell’s function. To perform this 

task, genes must be expressed at a certain time and in a certain amount. This regulation is ensured 

by the presence of a gene regulatory network involving genes and transcription factors (Macneil and 

Walhout 2011). Transcription factors are proteins involved in the expression of other genes by 

binding to short DNA motifs, called transcription factor binding sites, in the promoter region of their 

target genes (Chen and Rajewsky 2007). A single transcription factor may influence the expression of 

several genes in the genome thus providing a coordination mechanism to control these genes (Lee 

and Young 2000). Finding the transcription factors as well as their binding site and thus their target 

genes is the first step in the understanding of the gene regulatory network of an organism. 

Transcription factors may influence gene expression either positively (activate the transcription of a 

gene) or negatively (repress the transcription of a gene) (Latchman 1997). Understanding the 

regulatory network implies knowing which transcription factor regulates which genes, how and if 

these transcription factors are also regulated. The deregulation of some transcription factors can 

cause dramatic effects in any organism. In human for instance, leukemia and cancer arise among 

others due to the deregulation of transcription factors (Latchman 1997). Understanding the gene 

regulatory network is important for biologists as it helps explaining the development or non-

development of certain traits in any organism but understanding the gene regulatory network is also 

important for breeders. In cases where a transcription factor leads to the detection of a QTL, 

introgressing the QTL region from a plant to another might not lead to the expected phenotype if for 

example the target genes are not of the right allele. 

When analyzing a QTL to find the genes linked to the phenotype measured, transcription factors are 

elements which might be present in the QTL interval and be actually the influencing factor for the 

phenotype studied. Knowing the gene regulatory network allows studying the processes influenced 

by a transcription factor, eventually associating it to the phenotype studied. Finding precisely which 
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are the genes influencing a trait in a certain genome region is important as the same region may also 

contain genes that influence a different trait. If introgressed that region may improve a certain 

characteristic while damaging another, this phenomenon is called “linkage drag” (Tanksley, Young et 

al. 1989). But even knowing the exact gene responsible for the trait of interest can have undesirable 

side effects, such as pointed out by Powell, Nguyen et al. (2012), who demonstrated that the 

breeding for the u locus leading to a uniform ripening influences negatively the sugar content of the 

fruit leading to a perception of less sweet and flavorful tomatoes by the consumers (Klee and Tieman 

2013). 

Fine mapping and mapped based cloning are valid options to identify the gene underlying a QTL; 

however, they will not circumvent potential negative side-effects of the selection of a certain allele 

as eventually they do not provide any information about the gene. Using bioinformatics tools to 

aggregate and integrate the knowledge available for the genes of the QTL interval would provide 

information regarding the processes in which each gene is involved and give the possibility to a 

biologist or a breeder to learn more about the genes and how it influences the trait measured. 

Data integration in (bio)informatics 
The Internet is a network of computers relying on the same standard “Internet protocol suite” also 

known as TCP/IP (Transmission Control Protocol / Internet Protocol) to send requests and serve 

documents to each other. However, the Internet is just a network, the resources and services it 

carries compose what is called, the Web. The TCP/IP communications protocol tests were performed 

in 1975 and became the main communication protocol between computers in 1983. 

In March 1989, Sir Tim Berners-Lee proposed a project of global hypertext while working at CERN. 

The work started in October 1990 and the outcome, a program called WoldWideWeb was made 

available in December 1990 within CERN and publicly on the Internet in the summer of 1991, that 

summer, the web was born. 

First revolution, web 1.0 
The apparition of the web in the early 1990 has been a revolution in (bio)informatics as for the first 

time it allowed, almost real-time, exchange of data and information between people. 

However the web 1.0 was a static web where the information had to be manually generated or 

extracted. The web 1.0 relied on static html pages, written by hand and on which information had to 

be manually inserted and updated. Eventually, this led to a very stable web, where the information in 

one page was unlikely to change from one hour to the next. This web already supported sharing files 

allowing researchers to share data. 

Sharing information on the web implies that one can start integrating by aggregating them from 

different locations. The web 1.0 had no specific mechanism or technology to perform data 

integration. Screen scrapping is the process of extract specific data from HTML page while ignoring 

graphics links and explanatory text targeted for humans to read (Stein 2002). In the web 1.0, screen 

scrapping was a valid approach as the content and structure of the HTML pages did not change too 

often. 
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From its launch in the summer of 1991, the Web has not stopped to expand. The number of 

resources and services on the Web has rapidly increased. Tilburg University and the ILK workgroup 

provide a website estimating the size of the World Wide Web (http://www.worldwidewebsize.com/) 

above 14 billion pages on April 8th 2013. Not only has the size of the Web changed but also its 

content and technology, all these changes cumulated led to the term “Web 2.0”. 

Web 2.0, dynamic, social and chainable 
The development of programming languages to render HTML or text content dynamically has led to 

the web as we know it today. It has allowed the creation of new programming languages generating 

dynamically HTML content on the fly, the creation of the HTTP cookies, used to track our browsing 

history but also allowing online shopping via the cart mechanism. It has led to the development of 

the social network and media sites, connecting people all across the world in a real-time fashion. 

Facebook started in 2003; Twitter, in 2006 but also blogging sites (such as Wordpress), Wikipedia and 

flickr to share images are examples of how we are consuming the Web nowadays (O'Reilly 2005). 

Bioinformatics is not lagging behind regarding the development of new resources. The Nucleic Acid 

Research (NAR) journal publishes every year a special issue dedicated to databases available online, 

resources which they then keep up-to-date in their own database. The number of databases 

identified and recorded increases every-year and reached 1512 in the 2013 edition (Fernandez-

Suarez and Galperin 2013). In addition to the NAR yearly database issue, a community driven project, 

Metabase is aiming at listing and organizing all databases resources available in bioinformatics. 

MetaBase took the form of a wiki, using the same software as Wikipedia, where anyone can edit or 

create a resource and help structure the information. As of August 2011, the wiki contained over 

2,000 entries (Bolser, Chibon et al. 2012). Another token of this increase of bioinformatics resources 

is the number of publications on PubMed containing the word “database” in their title. Figure 2 

shows this trend in PubMed since 1980 when only two articles mentioning “database” in their title 

were published, until 2012 when 1427 articles were published. 

The increasing number of resources is also valid for genomic information as many of the sequenced 

genome were sequenced by consortium who tend to publish the data on their own resources (such 

as chicken (Chicken genome consortium 2004) or tomato (Tomato genome consortium 2012). 

 

Figure 2: Evolution of the number of articles mentioning “database” in their title recorded in PubMed since 1980 (As of 
January 28

th
 2013). 
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Facing an increasing number of biological and bioinformatics resources, in a dynamic Web, data 

integration technology also had to adjust, screen scrapping turning into a “mediaeval torture” (Stein 

2002). The web 2.0 is the achievement of data integration via SOAP (Simple Object Access Protocol) 

web-services (W3C April 27th, 2007) and REST APIs (Representational State Transfer Application 

Programming Interface) (Fielding and Taylor 2002). 

SOAP web-services 

Web-services are defined by the W3C as: “A Web service is a software system designed to support 

interoperable machine-to-machine interaction over a network. It has an interface described in a 

machine-processable format (specifically WSDL). Other systems interact with the Web service in a 

manner prescribed by its description using SOAP-messages, typically conveyed using HTTP with an 

XML serialization in conjunction with other Web-related standards.” (W3C February 11th, 2004). In 

other words, web-services are systems designed for machine-to-machine interaction relying on HTTP 

and with a clearly described input and output formatted in XML (W3C January 24th, 2012). With the 

development of the Web 2.0, web-service is a solution for data integration allowing developers to 

retrieve data or perform an analysis from a remote machine. In 2006, Hull et al. found 3000 web-

services publicly available in the field of molecular biology. Major data providers have set up web-

services to give access to their data and resources, for example, the National Center for 

Biotechnology Information, better known as NCBI, provides a set of web-services to query its 

database (PubMed, PMC, Sequences, Gene, SNP) (Sayers and Miller 2010, January 21) but also to run 

analysis or tools such as BLAST (Camacho and Madden March 2nd, 2011). 

Besides the clear advantages to the use of web-services (remote access to resources, designed for 

machine-to-machine interaction, clearly defined protocol) there are also some disadvantages, such 

as relying on a third party for your analysis and the lack of information about the services (Hull, 

Wolstencroft et al. 2006). The insufficient or just inexistent metadata about the services is one of the 

major drawbacks of web-services. The lack of information can be regarding the input that the service 

relies on or the analysis it runs. Wilkinson, Schoof et al. (2005) found 20 ways to represent a DNA 

sequence. It is based on this observation that they create the BioMoby project (Wilkinson, Schoof et 

al. 2005), a biological web-service interoperability initiative. To resolve the lack of metadata about 

the input of the web-services, BioMoby provides a registry where developers can register their web-

service and define clearly the type of input and output their services consume. These inputs and 

outputs are defined using a flexible ontology structure format allowing them to be shared between 

services (Wilkinson, Schoof et al. 2005; Wilkinson, Senger et al. 2008). However, not all web-services 

are using the BioMoby framework and registry, making them eventually harder to discover and 

query. The BioCatalogue project tries to circumvent this void by providing an online resource listing 

all web-services available as well as a description of their input, output and action. The resource is 

also community driven, making anyone an editor of the website to add new services or provide more 

information about existing ones (Bhagat, Tanoh et al. 2010). Having web-services with clearly defined 

inputs and outputs implies that the input of one service may correspond to the output of another 

service. In this way services can be chained into a workflow. For example, Taverna (Oinn, Addis et al. 

2004; Hull, Wolstencroft et al. 2006) is a tool that creates workflow by chaining multiple web-services 

in order to perform one main analysis composed of multiple steps each being a different web-

service. Fisher, Hedeler et al. (2007) demonstrated the successful use of a workflow in a large-scale 

genotype to phenotype correlation to identify candidate genes involved in resistance against African 

trypanosomiasis in the mouse. However, Taverna itself does not provide any way to share the 
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constructed workflow in a way that someone can use to reproduce the work. MyExperiment is a 

resource to publish bioinformatics workflow and designed to share them with a network of 

researchers (De Roure, Goble et al. 2009; Goble, Bhagat et al. 2010). For example, the workflow used 

by Fisher, Hedeler et al. (2007) has been published on the MyExperiment website 

(http://www.myexperiment.org/workflows/1661.html). 

SOAP web-services have been largely developed in the bioinformatics community but they are not 

the only type of services available to do data integration. 

REST services 

REST (Representational State Transfer) service or API (Application programming interface) 

correspond more to software design or architecture for services on the Web (Fielding and Taylor 

2002). Among the criticisms for the SOAP web-services there is often the concern about the 

complexity of the process as well as performance concerns on the use of XML, which is enveloped 

into the SOAP message format resulting eventually into large to very large document which may 

become cumbersome to parse. REST services try to circumvent these problems. The UniProt 

Consortium (March 21st, 2012) explains in their FAQ that the data available via the UniProt website 

can be access via a REST interface, we will use UniProt as an example of REST API when possible. 

To reduce the complexity, a REST API relies on Unique Resource Identifier that if called will return a 

representation of the object requested (Fielding and Taylor 2002). For example, requesting 

http://www.uniprot.org/uniprot/P12345 will return the normal, HTML, page with the information 

about this protein. Depending on the protein, other format will be available simply by adding an 

extension to the url, for example http://www.uniprot.org/uniprot/P12345.txt to retrieve a text 

representation of the information about the protein or http://www.uniprot.org/uniprot/P12345.xml 

to retrieve a xml representation or http://www.uniprot.org/uniprot/P12345.fasta to retrieve the 

protein sequence. 

Internet Media Type (previously known as MIME type) is meta-data provided by the web servers with 

the data, informing on the type of data delivered. Using this information the client can adjust its 

behavior. It is via these Internet Media Types that a web-browser can offer to start a music player 

when the user downloads a MP3 or start a spreadsheet program when the user downloads a CSV file. 

For UniProt, the page http://www.uniprot.org/uniprot/P12345 has the type txt/html, the page 

http://www.uniprot.org/uniprot/P12345.txt has the type txt/plain, the page 

http://www.uniprot.org/uniprot/P12345.xml has the type application/xml and the page 

http://www.uniprot.org/uniprot/P12345.rdf has the type application/rdf+xml. One can thus adjust 

its parser according to the Internet Media Type returned. 

Web-services have been and are still used to perform data aggregation and integration on the Web, 

whether they are being called directly or as part of a framework or a workflow, they are useful tools 

to do bioinformatics. However, they also have a number of disadvantages, some of which have been 

improved or worked on. Despites these efforts, they failed the data interoperability at a large scale 

(Wilkinson, Vandervalk et al. 2011). One of the main elements in this lack of global acceptation of the 

technology is the lack of semantics regarding the meaning of the element embedded in the XML 

input or output of these workflows. It is something that BioMoby (Wilkinson, Senger et al. 2008) tried 

to work on but without completely succeeding. Adding semantics to the data is intrinsic to the 

Semantic Web, also known as Web 3.0. 
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The semantic web, adding meaning to data 

Why the Semantic Web 

The Oxford dictionary defines Semantic as: “relating to meaning in language or logic”. The Web 1.0 as 

well as the Web 2.0 is designed for human consumption, with the notable exception of web-services 

the web is designed to be visualized, used and process by humans being able to associate concepts to 

chain of characters: words. Web-services are designed for machine-to-machine interaction but are 

mainly manually linked to each other (Wilkinson, Vandervalk et al. 2011) while with a correct 

description of the input and output and some reasoning one could foresee the situation where the 

user specifies his/her input and desired output and the programs builds the workflow calling the 

correct services to return the data desired. In order to do so, input and outputs have to be clearly 

defined in a way that a computer can “understand” and reason upon. 

The Semantic Web was first mentioned in 2001 by Sir Tim Berners-Lee (Berners-Lee, Hendler et al. 

2001) who is also the creator of the Web. The main idea is to transform the current web of human 

readable documents into a web of machine readable data, where machine to reason upon the 

information accessible to answer more sophisticated questions. Sir Tim Berners-Lee provides an 

example of what the Semantic Web could do: a person needs to make a series of appointments with 

a therapist, the program checks the treatment this person should receive, finds a list of therapists 

that could deliver this treatment, filters this list by distance to home and rating of these therapists on 

a trusted rating service and then gains access to each therapists’ agenda to find match between 

available appointment times and that person’s own agenda. If the resulting proposition of 

appointment is not satisfying, the search can then be made stricter regarding distance and time of 

the day in order to avoid the traffic jam occurring at the end of the day. Eventually, a solution could 

be found that would include rescheduling a couple of meetings rated less important than others in 

that person’s own agenda. 

Transferred to bioinformatics this example could be converted to: a researcher is interested in 

drought resistance in potato. The program would find out that potato is a specific organism also 

known as Solanum tuberosum, that has been sequenced and whose genome annotation is available. 

Using a trait ontology, the program can find that drought resistance is related to the GO term 

GO:0042631 “cellular response to water deprivation” or the GO term GO:0009819 “drought 

recovery”. From there, the program can find using the genome annotation, all the genes related to 

one of these two GO terms but not only these two terms but also their children as the gene ontology 

is built as a tree where each child satisfies and specifies the condition of its parent. It can then, using 

the gene ontology, see in which pathways are the genes related to these GO terms and return the 

genes of potato involved in the same pathways. As proof for the biologists, the program could return 

for each assertion made the bibliographic references justifying the assertion made. 

All these reasoning needs to be on the fly in order to remain valid, otherwise, you may end up with 

two persons having an appointment at the same time, or with an outdated gene annotation where a 

gene is wrongly annotated with a GO term, or wrongly missing the GO annotation. 
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The data representation for the Semantic Web 

 

Figure 3: Knowledge that a computer needs to make assertion from the sentence “My cat is named Garfield”. The blue 
node represents concepts and the orange node represents an attribute. This example shows that reasoning can be based 
on hierarchy of concepts (cat is an animal) as well as presence of attributes (pet has name). 

The Semantic Web is not a separate Web but an extension of the current one where both human and 

machine can extract the information available and reason upon them (Berners-Lee, Hendler et al. 

2001). Transforming the Web of documents into a Web of data is the challenging part as it implies 

defining everything. Most humans will understand the sentence “My cat is named Garfield”, they 

know what a name is, they know what a cat is, that it is an animal, eventually a pet and that it can be 

named. A computer will only understand that something called a “cat” has an attribute “name” 

which is “Garfield”. To arrive to the same representation as a human, a computer will need to be 

taught as well that “Garfield is a cat”, “cat is an animal”, “animal can be a pet” and “name is an 

attribute of pet”. From these assertions, now the computer will be able to make the conclusion that 

if “Garfield is a cat” therefore “Garfield is an animal” and if “Garfield is an animal” and “Garfield has a 

name” therefore “Garfield is a pet”. Figure 3 represents graphically the knowledge needed for a 

computer to make these assertions. 

In the example above the assertions used are using the same construction: subject, verb, 

complement. This is a simple way to phrase a piece of information. The Semantic Web used the same 

construction to represent information in the form of: subject, predicate, object (Figure 4). Subjects 

and objects are represented as the nodes of a graph. Predicates are represented as the edges; they 

are the properties that link two concepts. The graph can be further expanded as the object of a triple 

(an assertion) can be the subject of another triple. The Resource Description Framework (RDF) (W3C 

February 10th, 2004) is a framework to represent information on the web. It relies on a graph data 

model using triples, Unique Resource Identifier (URI) to uniquely identify concepts (subjects or 

objects). Object may have a specific data-type (for example, Boolean or date) or be literals (for 

example, number or string). 
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Figure 4: The underlying data structure of the Semantic Web: a triple. Each triple is consisting of a subject, a predicate 
(denote a property) and an object. The object of one triple can be the subject of another triple and vice-versa, leading to 
the creation of a graph of information. 

Several formats are available to represent the graph of information built with RDF. The original 

format is XML based (W3C January 24th, 2012) and known as rdf/xml (W3C February 10th, 2004) and 

other formats have been developed, the N-triples format (W3C February 10th, 2004) which was 

originally designed for RDF test-cases, Notation3 (N3) (W3C March 28th, 2011) meant to be more 

human readable than XML and turtle (W3C February 19th, 2013) which provides some level of 

compatibility with N-triples. With the exception of N-triples, all these formats have a dedicated 

Internet Media Type (former MIME type) and can be used to represent a RDF graph. 

From the importance of the URI and ontologies 

In a RDF graph, subjects are always URI and objects can be either URI or literals. URI uniquely identify 

a concept, ideally it should also be Unique Resource Locator (URL) to which one would find more 

information about the concept represented by this URI. URI represents concepts but they also 

indicate where the concept was defined. English as well as French and other languages have 

homonyms where the same word has a different meaning, for example “bark” which refers both to 

the outer layer of a tree trunk as well as the sound a dog makes. They are also situations where a 

single word covers a large range of concepts, for example “ice-cream” (Figure 5). Ontologies are tools 

used within a community to specify the meaning this community attaches to a word. 

 

Figure 5: All the items on the boards are “ice-cream” but they are all different and can all be classified in a way that 
uniquely represents it, allowing anyone to order clearly from the ice-cream truck. (Source: An ontology of ice cream - Roz 
Chast for New Yorker cover, August 4th, 1986) 
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The word “ontology” is subject to debate, originally coming from philosophy were it refers to the 

subject of existence, it has been adopted by computer science which uses it in the context of 

knowledge sharing and where it is defined as: “An ontology is a specification of a conceptualization” 

(Gruber 1995). In other words, ontology is a description of the concepts and its relationships. 

Ontologies are often approach as a set of definitions allowing sharing knowledge between different 

parties. Gruber defines using an ontology as: “a commitment to a common ontology is a guarantee of 

consistency, but not completeness, with respect to queries and assertions using the vocabulary 

defined in the ontology” (Gruber 1993). In bioinformatics, ontologies can be used to define the 

concept used such as gene sequence for example: is it the full sequence including introns and exons 

or just the coding sequence. In other fields such as plant breeding, ontologies can be used when 

collaborating on field experiments to make sure the same scales are applied when making the 

measurement and that each level of the scale matches between the different partners. 

The Semantic Web relies on ontologies to define the concepts present in the RDF graphs in the form 

of URI. The URI represents not only the concept itself but also the ontology in which it is defined. 

Ontologies can then be mapped onto each other and a program will be able to reason and make 

assertions using the mapping information. 

Querying the Semantic Web 

RDF is a data structure to store information with a semantic context. The size of a RDF graph has no 

limits; the only limiting factor is the technology. Different graph database system, also called triple 

store, exist to store RDF graph, such as Sesame (Broekstra, Kampman et al. 2002), Virtuoso (Erling 

and Mikhailov 2007) or Neo4j (Partner, Vukotic et al. 2013). The W3C defined a query language 

named SPARQL (SPARQL Protocol for RDF Query Language) specific to the graph structure of the RDF 

data (Prud'hommeaux and Seaborne 2008). This query language relies on pattern matching to extract 

the information from a triple store. Triple store also offer a SPARQL endpoint, service giving public 

access to a triple store via SPARQL allowing anyone to extract and use the data hosted in the triple 

store. The latest version of SPARQL (1.1) published in March 2013 (W3C March 21st, 2013) brings 

support for federated query allowing to query different SPARQL endpoint over the WEB within a 

single query. These federated queries allow doing data aggregation and integration within a single 

query. 

The semantic web offers a technology dedicated to data integration across multiple resources, 

providing different formats inter-compatible and defined in clear specifications from the W3C. The 

Semantic Web also provides a way to handle, via the use of ontologies and ontology mapping, the 

difference in vocabulary used to represent the same concept in different location. For bioinformatics, 

the Semantic Web technology is one of the technologies allowing data integration over different 

resources while still preserving the provenance information. In addition, the semantic web relies on 

ontologies allowing easier collaboration between partners by setting a common vocabulary agreed, 

upon by every partner and thus reducing the source of misunderstanding. Ultimately, the Semantic 

Web should allow inferring new patterns or associations automatically using reasoning algorithms 

and rules. 

Data warehouse for data integration 
The evolution of the web has changed the way data integration is performed on the fly. However, an 

alternative approach to on-the-fly data integration (which means that the integration is performed 
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when the request is sent) is data warehouse. Data warehouses are large databases built to integrate 

the data from different resources into one place which can then be queried locally without 

dependency on the network or the resource provider. There are several advantages to data 

warehouse: since the data is local, querying and retrieving information is normally fast. Another 

advantage is that doing a lot of queries will not impact the data provider and thus other users of this 

resource. Some tools such as Atlas (Shah, Huang et al. 2005) offer a framework to build a data 

warehouse, others such as SRS (Harte, Silventoinen et al. 2004) or LCB-DWH (Ameur, Yankovski et al. 

2006) offer access to a data warehouse and provide analysis tools. For example SRS provides many of 

the EMBOSS tools (Rice, Longden et al. 2000). SRS and Atlas offer a structure to build a data 

warehouse but most data warehouses are built by bioinformatics departments according to their 

own needs by integrating their resources of interest. 

Data warehouses, however, also have a number of downsides. The first issue is hardware. The larger 

the data warehouse, the bigger the hardware needs to be. This issue is becoming less and less of a 

problem with the recent development of the technologies, terabytes of hard-drives and gigabytes of 

RAM are more and more accessible. Another disadvantage of data warehouse is the maintenance 

costs. Building a data warehouse is a large task but keeping the data up to date has a costs in time 

and efforts. The different data providers have to be monitored for new data releases, these new 

releases have to be integrated into the data warehouse. This may be automated but might need 

some adjustments if the data structure has changed from a release to another, meaning that before 

starting the update one has to check if the data structure did not change, otherwise, for example, 

one might retrieve a gene identifier where a protein identifier was expected leading to the wrong 

integration of the data. Relying on tools such as Atlas might help but if the data structure changes, 

they also likely have to be adjusted. There are several ways to update a data warehouse, either via 

releases: every certain time the data provider provides a file with all the data stored at this date, or 

via incremental changes: every certain time the data provider provides a list of what has changed in 

the data stored (new entries, updates, deletion). For example, UniProt (The UniProt Consortium 

2013) provides every month a copy of its data while RefSeq (Pruitt, Tatusova et al. 2012) provides 

daily changes as well as bi-monthly releases updates which contain and the full data and the changes 

between this release and the previous (Pruitt, Brown et al. 2002 (revised April 6, 2012)). However, 

the data changes in between releases and therefore, the information in the data warehouse can only 

be up to date if it is updated just after the data provider made a release. 

The data warehouse approach of data integration offers a number of advantages and choosing 

between the data warehouse approach and the on-the-fly data integration approach is a trade-off 

between time, maintenance costs and dependency on the latest data (or tolerance for slightly 

outdated data). 

Motivation and objectives of this thesis 
In the context where the world population is increasing and where feeding this population is 

becoming a challenge, plant breeding is a key element to face this challenge. The development of 

Next Generation Sequencing technologies are helping speeding up the molecular breeding 

approaches but are also placing the breeders in the middle of a “tsunami of genome data” (Stein 

2010). In addition, not only has the amount of data generated by a single experiment increased 

drastically, but the number of biological resources available on the web is also increasing every year 
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(Figure 2) coupled with the evolution of the web which has become an ever changing place. It is no 

longer possible for a human to know all the resources available on one topic, nor is it possible to 

work without the help of bioinformatics tools. 

Nowadays, bioinformatics tools have to be able to handle the large amounts of data generated by 

the new biotechnologies, provide an overview of the results as well as the possibility to look in more 

details to a particular result and integrate information from the ever increasing number of resources 

available in order to provide the most accurate image of the state of the knowledge on a specific 

subject. It is within this context and with these goals in mind that this thesis was built up. The 

applications and analyses presented here are aiming for high-throughput datasets, visualization and 

data integration in order to provide the most accurate image on the subject and help biologists to 

build their hypotheses for their next experiments.  

To improve crops in general breeders rely on wild varieties as a source of diversity containing new 

alleles, expressing new phenotypes. Using QTL mapping allows identifying the region of the genome 

containing the gene(s) responsible for this diversity. However, searching for the exact genes, the 

candidate genes, is much more time consuming and requires a lot of data aggregation and 

integration as well as a solid biological background to assess the probability that a gene might be of 

interest. With high-throughput QTL mapping such as performed by Khan, Chibon et al. (2012) 

(Chapter two of this thesis), the problem becomes even more overwhelming and require automation 

tools to help digging through the pile of data. 

In parallel, the evolution of the web has come up with technologies dedicated to data integration. 

The semantic web technologies, if still under development, are raising and, we believe, are 

addressing a fundamental issue for bioinformatics. 

In this thesis, we choose to address the question of candidate gene prediction using semantic web 

technologies. QTL are used on a daily basis by breeders and biologists to investigate the genetic 

reason underlying an observed phenotype. However, finding the specific genes (or even alleles) 

responsible for this phenotype in a single QTL remains a challenge. As the number of QTL found with 

high-throughput technologies increases, breeders and biologists need a bioinformatics approach of 

this question to help them reduce the list of potential candidate genes. 

Searching for candidate genes means investigating a potentially large list of genes to find the one 

related to a specific trait. DAVID (Huang da, Sherman et al. 2009; Huang da, Sherman et al. 2009) and 

Ondex provide an interface to investigate gene lists. Thus, the list of the genes present in the QTL 

interval needs to be extracted first, this process is feasible via the genome browser (GBrowse, (Stein, 

Mungall et al. 2002)) but it would mean that to start looking for candidate genes, one would have to 

use at least three different tools: the QTL mapping software to compute the QTL and extract their 

interval, the genome browser (assuming one is available for their species) to extract the list of genes 

present in these intervals and then DAVID or Ondex to search these lists. DAVID integrates different 

resources and allows investigating large gene lists. However, DAVID is designed to extract the global 

trends in the gene list, finding what are the main processes linking these genes, what are the main 

GO terms, create clusters of genes in the list. However, for a QTL interval, the list of genes can be 

large and most genes will not be functionally related to the trait of interest. The main trends might 

be for house-keeping genes and the genes related to the trait of interest might be considered as 

noise by DAVID. Finally, DAVID only supports a limited set of organisms among which Arabidopsis 
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thaliana is the only plant, it would thus have to be extended. Ondex (Köhler, Baumbach et al. 2006) 

also integrates different resources, visualizes them in a graph model and offers some filtering on the 

graph to extract the main cluster or find the elements related to a specific entity. However, the 

Ondex graph visualization approach tends to clutter when confronted with large to very large 

datasets which renders the interpretation of the graph very complex. Ondex integrates the different 

data resources using its own data structure. A number of data sources and structures are supported 

for import (i.e.: GFF, OBO, SBML and for the data source: UniProt, TAIR, KEGG, Gramene) but it does 

imply that a single change in the data structure from these data providers and the code has to be 

adjusted. Ondex could be used to search a list for genes involved in a specific trait. However, like 

DAVID the visualization aims at showing the global trends.  

The semantic web, although being more than 20 years old, is starting to appear in bioinformatics. 

Resources such as UniProt are providing their information in RDF as a standard format. The semantic 

web allows easier data integration. Each concept is uniquely identified, meaning that if a change 

occurs in the data structure, the concepts will change as well and thus there is no risk of retrieving 

incorrect information by error. The use of ontologies in the semantic technologies allows mapping a 

concept from a data provider to another concept of another provider if they used two different 

ontologies. Eventually, integrating multiple resources is equivalent to building a large meta-ontology 

that maps the same concept from the different resources. Via this mechanism, these different 

resources can be integrated on-the-fly and queried as one while still preserving the original structure 

from the data provider making maintenance easier and reducing the risk of false information. 

 While working on candidate gene prediction, we encountered other needs, such as the visualization 

of high-throughput QTL mapping experiments, or the ability to search the complete genome for 

genes matching certain criteria in their annotations. We also encountered cases where our biological 

knowledge was the limiting factor and we thus worked on predicting transcription factor binding 

sites in the tomato genome sequence, in order to integrate this information back into our tools to 

improve their outcome. 

Outline of this thesis 
This thesis presents analysis, visualization tools and research tools developed in the context of high-

throughput analyses. 

Chapter two is an example of a high-throughput QTL analyses. An apple segregating population has 

had been measured for its metabolites content. Several hundreds of metabolites were detected and 

further investigated in an untargeted QTL mapping analyses performed by MetaNetwork. More than 

660 QTL were detected which led to the discovery of a hotspot of QTL in linkage group 16. The QTL of 

this hotspot have then been further analyzed using MapQTL, the metabolites have been annotated 

revealing that the expression of these metabolites with a QTL on linkage group 16 is related to the 

phenylpropanoid biosynthetic pathway. 

Chapter three is built upon the outcome of chapter two. In chapter two, two different QTL mapping 

tools have been used for the QTL mapping analysis because MapQTL is able to perform QTL mapping 

on several hundreds of traits but cannot provide an overview of the output. MQ2 has been created as 

an answer to this problem. MQ2 is a visualization program designed for high-throughput QTL 

mapping analysis allowing biologists and breeders to keep using the QTL mapping tool they are used 



Chapter 1 

 

26 
 

to while still benefiting from a visualization tool providing them with an insight on the distribution of 

the QTL along the genetic map. Nowadays, MQ2 could be used to generate Figure 1 of chapter two 

for example. 

Chapter four presents a tool aiming at helping biologists and breeders to investigate the outcome of 

their QTL mapping analysis. As outlined in this introduction, it is important to understand the 

biological mechanisms as well as for breeding purposes to find the gene(s) underlying a QTL. 

Marker2sequence uses data integration from genome annotation to retrieve the list of all genes 

present in a region of the genome and aggregate as much known information as possible. It will 

provide a list of all these genes with the possibility to learn more about each of them as well as a 

possibility to search in the annotation of these genes to filter out genes of potential interest which 

might be used as hypothesis for further research. 

If Marker2sequence presented in chapter four already provides some insight into the genes 

underlying a given QTL, one of its current limitations is the lack of integration of information 

regarding the regulatory gene network present in each genome. In Chapter five data from the 

genomic structure of the introgression lines built from the cross between Solanum chmielewskii 

LA1840 and Solanum lycopersicum cv. Moneyberg and gene expression data have been combined to 

study transcription factor binding sites. By comparing the gene expression between some progeny 

plants and the parent, we were able to retrieve a list of genes differentially expressed in the progeny. 

These genes are cis-genes (located in the introgression region) or trans-genes (located outside the 

introgression region). This study searched for DNA motifs present in the promoter region of trans-

genes differentially expressed in genotypes with a S. chmielewskii introgression compared to 

genotypes without. These DNA motifs are potential TFBS of genes regulated by transcription factors 

present in the introgression regions. 17 DNA motifs, potential transcription factor binding sites have 

been found, which will need to be validated in the lab but are a first step in building the gene 

regulatory network of tomato. 

Chapter six presents Annotex, a tool to explore genome annotation. Annotex provides a way to ask 

any question to a genome annotation or the network of information surrounding it. For a specific 

species, providing an input, an input type and an output type, Annotex browses its different 

resources to return the type of information asked related to the provided input. Using Annotex one 

can retrieve all the genes related to a protein, all the genes related to a GO term or all the proteins 

associated with a pathway. The lists returned could then be combined, subtracted, and intersected 

to provide a list combining the different factors. 

Finally, Chapter seven is a general discussion on what was achieved with this thesis. It provides some 

insight on how this thesis is included in the work being done in the field and what remains to be done 

to reach an ideal workflow for high-throughput candidate gene predictions from high-throughput 

QTL mapping analyses. 
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Abstract 
Apple (Malus x domestica Borkh.) is among the main sources of phenolic compounds in the human 

diet. The genetic basis of the quantitative variations of these potentially beneficial phenolic 

compounds was investigated. A segregating F1 population was used to map metabolite quantitative 

trait loci (mQTL). Untargeted metabolic profiling of peel and flesh tissues of ripe fruits was 

performed using liquid chromatography-mass spectrometry (LC-MS), resulting in the detection of 

418 metabolites in peel and 254 in flesh. In mQTL mapping using MetaNetwork, 669 significant 

mQTL were detected: 488 in the peel and 181 in the flesh. Four linkage groups (LGs) i.e. LG1, LG8, 

LG13 and LG16 were found to contain mQTL hotspots, mainly regulating metabolites that belong to 

the phenylpropanoid pathway. The genetics of annotated metabolites was studied in more detail 

using MapQTL®. A number of quercetin conjugates had mQTL on LG1 or LG13. The most important 

mQTL hotspot with the largest number of metabolites was detected on LG16: mQTL for 33 peel-

related and 17 flesh-related phenolic compounds. We located structural genes involved in the 

phenylpropanoid biosynthesis pathway, using the apple genome sequence. The structural gene 

leucoanthocyanidin reductase (LAR1) was in the mQTL hotspot on LG16, as were seven transcription 

factor genes. We believe this is the first time that a QTL analysis was performed on such a high 

number of metabolites in an outbreeding plant species. 

Key words: Malus x domestica Borkh., untargeted and targeted mQTL mapping, genetical 
metabolomics, LC-MS, MetaNetwork, MapQTL. 

Introduction 
The fruit of apple (Malus x domestica Borkh) is a rich source of phytochemicals including phenolic 

compounds (Gerhauser 2008). There is increasing evidence that apple is an important source for 

various compounds that are beneficial for human health. For example, its consumption has been 

associated with a risk reduction of many human diseases, such as asthma, type-2 diabetes, 

thrombotic stroke, ischemic heart disease, and various cancers (Eberhardt, Lee et al. 2000; Mcghie, 

Hunt et al. 2005). Some of the major phenolic compounds isolated and identified from apple are 

procyanidins, anthocyanins, chlorogenic acid, hydroxycinnamic acid, flavan-3-ols such as; (-)-

epicatechin, (+)-catechin, and gallaocatechin; phloridzin and quercetin glycosides (Mazza and 

Velioglu 1992; Lu and Foo 1997; Awad, De Jager et al. 2000; Treutter 2001). 

The current study aims at elucidation of the genetic basis of metabolic variability in apple fruits. We 

initiated this study without any a priori with regard the specific metabolites groups. For that reasons 

we chose for large-scale LC-MS based metabolic profiling. 

Metabolomics is defined as the large scale analysis of metabolites in an organism, and it concerns 

the simultaneous measurement of these metabolites in a given biological system (Dixon and Strack 

2003). Metabolomics is developing as an important functional genomics tool in crop plants, including 

fruit trees (Carrari and Fernie 2006; Moco, Bino et al. 2006). Although QTL have been mapped in 

cultivated apples for different traits such as disease resistance (Calenge, Faure et al. 2004; Calenge 

and Durel 2006; Khan, Duffy et al. 2006), fruit quality (King, Lynn et al. 2001; Liebhard, Kellerhals et 

al. 2003; Davey, Kenis et al. 2006) and tree morphology (Kenis and Keulemans 2007), there is only 
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one report on the genetic mapping of a large number of metabolites in apple fruits, and, in that case, 

on volatiles (Dunemann, Ulrich et al. 2009). 

The LC-MS metabolomics showed numerous metabolic compounds in the segregating F1 population, 

both in peel and in flesh of the fruits, allowing mQTL (metabolomic QTL) mapping. Standard QTL 

mapping software is designed to map individual traits, one by one, and is not suited to map 

hundreds of metabolites simultaneously. Therefore we decided to use the software MetaNetwork 

(Fu, Swertz et al. 2007). MetaNetwork enables simultaneous genome-wide screening of numerous 

traits. Keurentjes, Fu et al. (2006) used MetaNetwork to find mQTL for secondary metabolites in an 

Arabidopsis thaliana recombinant inbred line population.  

In the current research metabolites from untargeted metabolic profiling were mapped. The majority 

of the mapped metabolites belong to phenylpropanoid pathway. A major mQTL hotspot was found 

on LG16. Only one structural gene leucoanthocyanidin reductase (LAR1) was detected in the mQTL 

hotspot, as were seven transcription factor genes. We believe that this is the first time that such a 

large mQTL mapping was performed in a highly heterozygous and cross pollinating crop species like 

apple. 

Materials and methods 

Plant Materials 
For mQTL mapping, a segregating F1 population from the cross ‘Prima’ x ‘Fiesta’ (PF) was used. This 

population was also used for the first international reference linkage map of apple covering all 

chromosomes (Maliepaard, Alston et al. 1998). In this study a subset of 113 progenies and both 

parents was used. For the F1 population, two trees per genotype were present. 

Harvesting and storage of the apples 

Mature fruits of all genotypes were harvested in September and October, 2008 in a trial orchard in 

Elst, The Netherlands. The maturity of the fruits was assessed by checking the colour of the peel, the 

taste, and the browning of the seeds. For each progeny, more than ten fruits from each of the two 

trees were harvested separately, while for the two parents ‘Prima’ and ‘Fiesta’ fruits from five trees 

(five replicates) were harvested. The fruits were harvested randomly from different sides of each 

individual tree to level out possible differences due to environmental factors such as light. Fruits 

were over sampled in the field to forestall the possible damage or decay during transit. After 

harvesting, fruits were immediately stored at 0 °C in a cold storage room to minimize enzymatic 

activities. Once fruits for all of the genotypes were harvested, these were shifted to a storage room 

at 20 °C for seven days. This was done to mimic the storage conditions in a consumer’s household. 

Selection and grinding of apples 

Samples of eight apples per genotype were selected. For the progeny genotypes, four apples from 

each of the two trees of one genotype were combined as one sample, giving one replicate per 

genotype. For each sample, the individual fruit was cut transverse wise to obtain a 1-cm thick round 

slice, and the round slice was peeled. The peel (1.4 mm thick) was chopped into small pieces and 

snap-frozen in a separate beaker with liquid nitrogen. The core was removed from the flesh and a 

slice (3.2 mm thick) of the flesh was also chopped into small pieces and snap-frozen. This was 

repeated for all of the eight apples of one genotype, and the samples from a tissue were pooled per 
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genotype. The samples were then ground using an IKA coffee grinder (model A11 basic). The powder 

for the flesh and peel was collected separately in 50-ml falcon tubes and stored at -80 °C. For the 

parents ‘Prima’ and ‘Fiesta’, the samples were treated separately in five replicates each and treated 

in the same way as described for the progenies. 

Extract preparation 

The aqueous-methanol extracts were prepared as described by De Vos, Moco et al. (2007), with 

minor modification (Keurentjes, Fu et al. 2006). Ice-cold 99.9% methanol (1.5 ml) acidified with 

0.133% (vol/vol) formic acid, was added to each plant sample (final methanol concentration of 75%, 

assuming 90% water in the 500 ± 5 mg tissues). The ensuing steps, from sonication to the injection of 

the samples and separation using the Alliance 2795 HT system, were performed as described by De 

Vos, Moco et al. (2007). The separation was performed at 40 °C, by applying a 45 min gradient of 5-

35% acetonitrile in water (acidified with 0.1% formic acid) at a flow rate of 0.19 ml/min. The 

compounds eluting from the column were detected online, first by a Waters 996 photodiode array 

detector at 200-700 nm and then by a Q-TOF Ultima MS (Waters) with an electron spray ionisation 

(ESI) source. Ions were detected in negative mode in the range of m/z 80 to 1,500 at a resolution of 

10,000, using a scan time of 900 ms and an interscan delay of 100 ms. The desolvation temperature 

was 250 °C, with a nitrogen gas flow of 500 l/h, the capillary spray was 2.75 kV, the source 

temperature was 120 °C, the cone voltage was 35 V with 50 l/h nitrogen gas flow and the collision 

energy was 10 eV. 

The mass spectrometer was calibrated as described by De Vos, Moco et al. (2007). MassLynx 

software version 4.0 (Waters) was used to control all instrumentation and for the calculation of 

accurate masses. 

Pre-processing the dataset 

Unbiased mass peak picking and baseline correction of the raw LC-MS data were performed using 

Metalign software (De Vos, Moco et al. 2007; Lommen 2009); www.metalign.nl) with a signal to 

noise ratio of 3 or higher. Thus, a total of 18,582 mass signals were extracted from the peel samples 

and 11,817 signals from the flesh samples. Both peaks lists were subsequently filtered for signals 

present in more than 10 samples, resulting in 4830 peel signals and 2826 flesh signals. A single 

metabolite may produce a number of mass peaks, due to natural isotopes, unavoidable 

fragmentation and adduct formation in the ESI source, resulting in data redundancy. Therefore, 

mass signals originating from the same metabolite were grouped, based on their corresponding 

retention time and intensity pattern over samples, using MSClust software (Tikunov, Laptenok et al. 

2011) that can be freely downloaded from the Metalign website (www.metalign.nl). From the 

clustered mass signals, i.e. reconstructed metabolites, the most representative signal per mass peak 

cluster was taken for further data analyses. The metabolite signals were 10log transformed to 

normalise the variances among the metabolites. 

Genetic linkage maps 
Genetic linkage maps were available for both ‘Prima’ and ‘Fiesta’, representing the 17 linkage groups 

of apple. The maternal map consists of 562 markers and the paternal map consists of 452 markers, 

including DArT, AFLP, RFLP, NBS-LRR, SSRs, RAPD markers and some isozymes (Schouten, van de 

Weg et al. 2011). 
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In the untargeted mQTL mapping of metabolites in apple, the individual maps of ‘Prima’ and ‘Fiesta’ 

were used, as the MetaNetwork could not incorporate the integrated map of cross-pollinating crops 

such as apple. In the targeted mQTL mapping using MapQTL® 6.0, an integrated map of both parents 

was constructed and used for the analysis of the annotated metabolites. The integrated map 

contained 801 markers, spanning 1,348 cM. 

Untargeted mQTL mapping of metabolites using MetaNetwork 
MetaNetwork was designed for the mQTL analysis of homozygous recombinant inbred line (RIL) 

populations of inbreeding plants such as A. thaliana (Fu, Swertz et al. 2007), and was therefore not 

applicable for the analysis of a segregating F1 population of an out-crossing species. Therefore, we 

transformed the data, using single parental maps, giving 2x17=34 linkage groups. Hereby each 

parent was considered to be derived from a cross between two inbred lines, and the F1 progeny was 

considered to be the result of a backcross. The linkage phase information from the linkage map was 

used to assign F1 marker alleles to the respective parental inbred lines, thus giving the dichotomous 

marker scores as required by MetaNetwork. Missing marker data were imputed using information of 

flanking markers if they were within a 20-cM distance and in a non-recombinant segment. 

MetaNetwork implements a two-part parametric model per trait, combining a non-parametric 

approach (Wilcoxon-Mann-Whitney test; (Brem, Yvert et al. 2002; Yvert, Brem et al. 2003) with a 

parametric test (ANOVA). The non-parametric test uses a user-defined spike value to distinguish 

qualitative segregation from quantitative differences. The value chosen as spike was 37, because this 

value was the noise level in the LC-MS analysis. MetaNetwork also allows setting a threshold for the 

significance of mQTL by performing permutation tests on samples. A bootstrap procedure was 

performed with a type I error of 5 % (default value of MetaNetwork) for finding an mQTL considering 

all genetic markers. This procedure rendered a -10log(P) threshold of 3.8 for individual marker – trait 

combinations. This threshold was used for all analyses. 

Annotation of metabolites 
MetaNetwork revealed clusters of mQTL on the apple genome. We annotated the underlying LC-MS 

mass peaks of mQTL clusters by comparing their accurate mass and retention time with standards, 

with the metabolite databases Moto (Moco, Bino et al. 2006), KNapSack, Metabolome Japan, and 

the Dictionary of Natural Products. The results are shown in Tables S1 and S2. 

Targeted mQTL mapping of annotated metabolites using MapQTL® 6.0 
We aimed at studying the genetics of these annotated metabolites in more detail, such as revealing 

the allelic contributions to traits, and performing co-factors analysis to filter out the effect of strong 

mQTL. MetaNetwork appeared to be less suitable for these deeper analyses of individual 

metabolites. Therefore, we decided to use MapQTL® (Van Ooijen, 2009) for this. We applied interval 

mapping, followed by rMQM mapping with regression algorithm, Haldane’s mapping function, with 

a mapping step size of 1, and independent LOD (logarithm of odds) test statistics was used. The 

threshold for mQTL significance was determined using a genome-wide permutation test with 1,000 

iterations, which gave α = 0.005 for the 17 chromosomes of apple, to obtain a 95% confidence 

interval. Two LOD support intervals were used to estimate the range in cM where the mQTL reside. 

Markers near mQTL peaks or at mQTL peaks were used as co-factors for rMQM mapping. This was 

followed by another round of co-factor selection by using markers from the newly found minor 
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mQTL from the rMQM. The results from this second round were recorded as the final result. An 

mQTL was named as minor QTL if its LOD score was close or just at threshold level. 

Mapping of the metabolites that segregated as a monogenetic trait 
The metabolites procyanidin dimer I, procyanidin dimer II, procyanidin trimer I, procyanidin trimer II, 

(+)-catechin and (-)-epicatechin had only one mQTL, segregating in a clear 3:1 ratio. This single locus 

explained a major part of the variation in the metabolite content (up to 81 %, Table S3). These 

metabolites were treated as monogenic traits and were integrated into the genetic linkage map by 

JoinMap 4.0 (Van Ooijn 2009). This was performed with the aim of locating the positions of the 

underlying genes more precisely. 

Testing additional simple sequence repeats (SSR) loci for LG16 
To map the monogenetically segregating metabolites more precisely, 17 additional SSR loci at the 

upper part of LG16 were tested for the 42 progenies that showed recombination in this genetic area. 

These SSRs along with their primers, have been previously published in other apple molecular 

marker linkage maps (Liebhard, Gianfranceschi et al. 2002; Kenis and Keulemans 2005; Silfverberg-

Dilworth, Matasci et al. 2006; Celton, Tustin et al. 2009). The 17 SSR loci along with their primer 

sequences are listed in Table S7. 

Locating structural genes of the phenylpropanoid pathway in the apple 

genome 
To find the position of the orthologous genes on the 17 chromosomes of apple, the DNA sequences 

of the structural genes of A. thaliana (Table 2 in(Lillo, Lea et al. 2008), were aligned to the entire 

genome sequence of the apple cv. ‘Golden Delicious’ (Velasco, Zharkikh et al. 2010). 

Results 

Untargeted mQTL mapping of metabolites showed 669 mQTL in peel and 

flesh 
From the cross of ‘Prima’ x ‘Fiesta’, 113 progeny individuals were analyzed by accurate LC-MS. A 

total of 18,582 and 11,817 mass signals were detected in peel and flesh tissues respectively. 

Clustering of the mass signals based on their corresponding retention time and abundance profile 

across samples resulted in 672 centrotypes: 418 and 254 for peel and flesh, respectively. In the 

following sections these centrotypes are named metabolites.  

In view of the genetic mapping, the distributions of these metabolites were studied. The 10log 

transformation appeared to provide Gaussian distributions in both peel and flesh for the majority of 

the metabolites follow (data not shown). In the untargeted mQTL mapping using MetaNetwork, a 

total of 669 mQTL were detected (Table 1), spread over all of the 17 linkage groups of the apple 

genome (Figure 1). Not all of the metabolites showed mQTL; 50% of the metabolites in peel and 44% 

in flesh exhibited statistically significant mQTL. Figure 2 shows that several mQTL had very high –

log(P) values. 
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Table 1: MetaNetwork results of mQTL mapping in peel and flesh of apple from F1 mapping population from ‘Prima’ x 
‘Fiesta’ 

 ‘Prima’  

Peel  

‘Prima’ 

Flesh 

‘Fiesta’ 

Peel 

‘Fiesta’ 

Flesh 

Total 

Peel 

Total 

Flesh 

Total 

Number of metabolites 
with at least one mQTL 

184 77  169 67    

Number of mQTL  288 101 200 80 488 181 669 

Number of markers with at 
least one mQTL 

133 
(28%) 

62 
(13%) 

81 
(24%) 

50 
(13%) 

214 112 326 

 

LG16 has a strong hotspot of mQTL in both parental genotypes and in both 

peel and flesh for phenolic compounds 
The striking thing in Figs. 1 and 2 is the strong hotspot of mQTL on LG16. On other linkage groups 

such as LG1 and LG13, also many mQTL were detected, but these were not as strongly clustered as 

on LG16. The mQTL on LG16 clustered mainly around a single locus. Notable also is that the hotspot 

of mQTL on LG16 was present in both parents and in both tissues, in contrast to the mQTL hotspot 

on LG8, which was explicitly present in ‘Prima’ but absent in ‘Fiesta’ (Figure 1). 

For peel 69 and for flesh 30 metabolites were annotated (Tables S1, S2). Of the annotated 

metabolites, 81 out of 99 were phenolic compounds belonging to the two groups of 

phenylpropanoids and polyphenols (Tables S1, S2). 
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Figure 1: Number of mQTL over the apple genome. The linkage groups are separated by vertical dotted lines. In this 
figure, markers are ordered and positioned equidistantly, thus ignoring their genetic distances. 
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Figure 2: Significant mQTL with range of log p values over the apple genome. An mQTL was considered as significant if its 
log p value was higher than 3.8. 
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The mQTL hotspot on LG16 is not caused by the co-localizing major locus 

for pH 
Maliepaard, Alston et al. (1998) previously mapped the pH of apple fruits on LG16 in the same 

segregating population. They observed monogenic inheritance for low versus high acidity and 

mapped the corresponding gene. We found that our current mQTL hotspot on LG16 was close to 

that gene (Figure 3). Remarkably, both parents had one dominant allele for low pH at the LG16 

mQTL hotspot. They denoted the locus as Ma for malic acid, being the major acid in apple, although 

they measured pH rather than malic acid itself (Maliepaard, Alston et al. 1998). As the pH might 

influence different enzymatic processes and biochemical reactions in plant cells, differences in the 

pH may possibly have caused the mQTL hotspot. We evaluated this hypothesis. Both at low and high 

pH, high levels of the metabolites were found (Figure 4). Apparently, the dominant allele for high 

acidity was in repulsion to the allele for high level of metabolite content in both parents. 

Consequently, the occurrence of the hotspot was not a side effect of major differences in the pH. 

 

Figure 3: Mapping of (+)-catechin, (-)-epicatechin, several procyanidins and pH (Ma) on linkage group 16. 
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Figure 4: A scatter plot showing the distribution of F1 progenies of ‘Prima’ x ‘Fiesta’ over the four genotype classes for 
low/high pH and low/high procyanidin dimer II content, whereby procyanidin dimer II represents the metabolites that 
share the strong mQTL on LG16. The trait pH co-localizes to this hotspot. The dominant allele for high metabolite level is 
denoted as M, and for low pH (high acidity; presumably high level of malic acid) as Ma. As the dominant alleles M and 
Ma are in repulsion phase in both parents, giving as alleles in the gametes Mma and mMa, the progeny segregates into 
three genotypes, lacking the genotype mm mama. The horizontal dashed line represents the 3: 1 clear segregation for 
the procyanidin dimer II that shows that the two classes (i.e. mm and Mm + MM) show the full dominance. 

Targeted mQTL mapping 
The genetics of these annotated metabolites was studied in more detail using MapQTL® 6.0. Similar 

to the MetaNetwork analysis, the hotspot with the highest number of mQTL was detected on LG16. 

Among the 69 annotated metabolites in the peel, 33 had an mQTL on LG16 (Figure 5A, Table S3). The 

majority of these metabolites represented procyanidins of various chain lengths, including the 

monomeric building blocks of procyanidins, the flavan-3-ols (+)-catechin and (-)-epicatechin. The 

same region of LG16 showed mQTs for quinic acid, phenolic esters, coumaroyl hexoside, kaempferol 

glycosides, and phloridzin. Interestingly, all these metabolites originate from the phenylpropanoid 

pathway (Figure 5). Most of the metabolites had only a single mQTL; however, a few metabolites 

were found to have some additional minor mQTL on other LGs (Figure 5). A restricted multiple QTL 

mapping (rMQM) analysis revealed in addition several minor mQTL (Tables S3, S4). 

For the 69 annotated metabolites in the peel tissue, mQTL were located on five different linkage 

groups (Figure 5A, Table S3). LG1 contained specific mQTL for quercetin glycosides. There is also an 

mQTL for Kaempferol glycosides on LG1. Glycosides of isorhamnetin had an mQTL on LG13. 

Chlorogenic acid showed an mQTL on LG17. A distinguished group of mQTL, mapped on LG8, was 

formed by alcohol glycosides such as octane-di-ol hexoside and phenylethanol glycoside (Table S3). 
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Figure 5: The phenylpropanoid pathway of phenolic compounds in two apple fruit tissues, peel (A) and flesh (B). The 
metabolites for which mQTL were found are presented in colored boxes. Colorless boxes show the metabolites that 
were not detected in our analysis or have no mQTL. Boxes with green color indicate mQTL of which the + alleles are in 
coupling phase. Boxes with yellow color show mQTL for metabolites other than on LG16A. The metabolites in the red 
box show a negative correlation with the metabolites in the green boxes, having an mQTL on LG16A. The linkage group 
(LG) where an mQTL was located is given. If different mQTL were present on different regions of a LG, these regions are 
distinguished with the letters A, B, C etc. The alleles ‘a’ and ‘b’ originate from the parent ‘Prima’, and the alleles ‘c’ and 
‘d’ originate from the parent ‘Fiesta’, thus following JoinMap codes for outcrossers. As many metabolites in the 
phenylpropanoid pathway were mapped, for the purpose of simplicity, metabolites that belong to a similar group of 
compounds are shown as a group (e.g. phenolic esters is a group of several metabolites). Gene names are abbreviated 
as: phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), 4-coumaroyl:CoA-ligase (4CL), chalcone 
isomerase (CHI), chalcone synthase (CHS), flavonone 3’ hydroxylase (F3’H), dihydroflavonol 4-reductase (DFR), 
hydroxycinnamoyl-CoA quinate/shikimate hydroxycinnamoyl transferase (HCT), leucoanthocyanidin 4-reductase (LAR), 
UDP-glycosyltransferase (UGT), flavonol synthase (FLS) and anthocyanidins synthase (ANS). 

A 

B 
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The genetic loci controlling metabolites content in the peel also appear to 

control these in the flesh although less significantly 
Like those in peel, mQTs in flesh were detected on the same five linkage groups. Most of the 

metabolites showing mQTL in the peel also showed mQTL in the flesh; however, the number of 

mQTL in the flesh was lower than in the peel (Figs. 1, 2). Like in peel, in flesh also kaempferol 

glycosides had an mQTL on LG1 and LG16. In contrast to peel, quercetin rhamnoside is the only 

quercetin glycoside which had a clear mQTL on LG8. As in the peel, several octane-di-ol glycosides 

also had mQTL on LG8 (Table S4). LG16 contained mQTs for procyanidins at the same genetic region 

as in the peel. In this genetic area on LG16, mQTL for phenolic esters, (+)-catechin, and (-)-

epicatechin were also found (Figure 5B). Chlorogenic acid, which had an mQTL in the peel on LG17, 

had a minor mQTL in the same genetic region in the flesh (Tables S4). Glucuronic acid which is not 

part of the phenylpropanoid pathway also has an mQTL on LG16 (Table S4).  

The levels of metabolites in the LG16 mQTL hotspot were controlled by a 

single, dominant locus present in both parents 
The different metabolites were found to have a clear 3:1 segregation and therefore could be 

mapped. Surprisingly these metabolites mapped on one locus on LG16. Tables S3 and S4 show the 

effects of different parental allele pairs at the LG16 hotspot on metabolite levels in the progeny, 

allowing the detection of dominant, recessive or additive genetic effects. For the hotspot of mQTL 

on LG16, both ‘Prima’ and ‘Fiesta’ had one dominant and one recessive allele each (Mm). The 

combination of the two dominant alleles in the progeny (MM) occasionally showed a further 

increase in the metabolites level, indicating an additive effect or incomplete dominance in these 

cases. 

As LG16 showed a cluster of many mQTL, we analyzed this particular hotspot in more detail. The 

metabolites (+)-catechin, (-)-epicatechin, two of the procyanidin dimers, and two procyanidin 

trimers gave one major mQTL per parent, showing two contrasting groups representing monogenic 

segregation. Figure 4 shows a typical example based on procyanidin dimer II, indicating a Mendelian 

3:1 segregation of Mm x Mm (χ3:1= 0.87; P>0.05), whereby the amount of this metabolite was 

apparently predominantly controlled by a single locus. Both parents were heterozygous and the Mm 

and MM offspring genotypes showed a similar average content for this metabolite, indicating full 

dominance both in peel and flesh (Figure 4). The effect of a single dominant allele was on average an 

increase of 0.62 compared to the recessive allele on the 10log scale (Figure 4). This resembles a 4.2-

fold increase on a linear scale.  

Procyanidins, phenolic esters, (+)-catechin, (-)-epicatechin, and kaempferol hexose rhamnose 

showed similar segregation patterns, apparently being controlled by the same dominant and 

recessive alleles of LG16 from both parents. Coumaroyl hexoside and quinic acid appeared to be 

controlled by the same locus, but in contrast to phenolic esters and other phenolic compounds, their 

level was negatively correlated to the other phenolic compounds that mapped at this hotspot 

(Tables S5, S6). 

Graphical genotyping of the mQTL hotspot on LG16 
The metabolites that segregated according to a 3:1 ratio and had only one mQTL behaved as 

monogenic traits, and could be mapped as genetic markers, which was true for (+)-catechin, (-)-
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epicatechin, two procyanidin dimers, and two procyanidin trimers. In case where the relative 

metabolite level of a progeny was high, it was not clear whether that genotype had inherited the 

dominant allele from the mother, the father, or from both. Only in case of a low metabolite level, it 

was evident that both the mother and the father provided the recessive allele. Therefore, as for all 

dominant markers that segregate in a 3:1 fashion, the marker information could only be used for 

25% of the progeny. In spite of this limitation, it was still worthwhile and helpful to locate the 

genetic window of the locus (Figure 6). 

For more-detailed mapping of this locus on LG16, additional SSR markers in the LG16 mQTL hotspot 

were mapped. Several of the new SSR loci mapped in the genetic window (Figure 6). The names and 

allelic sizes of these markers are given in Table S7. Graphical genotyping of the metabolite 

‘procyanidin dimer II’ revealed that the gene causing the mQTL hotspot on LG16 is located between 

the locus NH26a and the locus Ch05e04 in ‘Prima’, and between the locus Ch02a03 and locus 

Hi15a13 in ‘Fiesta’ (Figure 6). 

 

Figure 6: Genetic linkage maps of ‘Prima’ and ‘Fiesta’ and a physical map of the apple cv. ‘Golden Delicious’ for the mQTL 
hotspot region on LG16. Procyanidin dimer II was used as representative for the metabolites that mapped to the LG16 
mQTL hotspot. The mQTL regions were genetically mapped as monogenic traits by means of graphical genotyping in 
both parents and are indicated as horizontal green arrows. The structural gene leucoanthocyanidin reductase (LAR) of 
the phenylpropanoid pathway appeared to be present in this region, according to the putative genes in the whole 
genome sequence of cv. ‘Golden Delicious’. Seven putative transcription factor genes including MYB and bHLH were also 
detected in this region. The structural gene LAR and Transcription factor genes are presented in bold text. 
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The structural gene LAR and seven transcription factors are at the mQTL 

hotspot 
The results of the alignments of structural genes of A. thaliana against apple are shown in Table 2 

and also in Fig. 5 and 6. Using the apple genome sequence 

(http://genomics.research.iasma.it/gb2/gbrowse/apple/), only the structural gene LAR was found in the 

mQTL hotspot on LG16 among the fifteen different structural genes of the phenylpropanoid pathway 

(Fig. 5, 6). A closer look revealed that the published ‘Golden Delicious’ genome sequence had at this 

locus at least five LAR-like sequences in overlapping contigs. However, a sequence homology search 

using the EMBOSS software package revealed that these sequences were identical or highly 

homologous, and actually only two different genomics sequences were found. These two sequences 

probably represent the two alleles for the LAR gene. Apart from LAR, seven putative transcription 

factor genes were also identified in the genetic window of the mQTL hotspot on LG16 (Table 3). Two 

of these belong to MYB class and three to basic helix-loop-helix (bHLH) class, one to bZIP and one to 

AP2 class of transcription factor genes. 
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Table 2: Structural genes of the phenylpropanoid pathway in Arabidopsis and apple 

Gene Full name 
Arabidops
is locus 

Known apple sequence 
Homologues in 
Arabidopsis 

Genetic positions 
in apple 

At mQTL 
hotspot on 
LG16 

4CL 4-coumarate-CoA ligase At1g65060 
GO565912, GR882782, GO577298, 
GO568847, etc 12 3 (LG1,3,7) No 

ANR Anthocyanin reductase At1g61720 AY830130 1 3 (LG5) No 
ANS Anthocyanin synthase At4g22870 AF117269 5 4 (LG6) No 

C3H p-coumarate 3-hydroxylase At2g40890 TC28151 (http://compbio.dfci.harvard.edu/) 1 6 (LG8,15) 
No 

C4H 
Trans-cinnamate 4-
monooxygenase At2g30490 GO549874 1 2 (LG3,11) 

No 

CHI Chalcone isomerase At3g55120 X68978 3 9 (LG1,11,14) No 
CHS Chalcone synthase At4g34850 X68977 4 3 (LG2,5,7) No 
DFR Dihydroflavonol 4-reductase At5g42800 AF117268 2 2 (LG8,12) No 

F3’H 
 

Flavonoid 3'-monooxygenase 
 

At5g07990 
 

Apple_0223.261.C2.Contig645, 
Apple_0223.261.C1.Contig644 
(http://titan.biotec.uiuc.edu/cgi-

bin/ESTWebsite/estima_start?seqSet=apple) 1 
2 (LG6,14) 
 

 
No 

F3H Flavanone 3-hydroxylase At3g51240 AF117270 2 2 (LG2,5) No 

FLS Flavonol synthase At5g08640 AF119095 2 2 (LG0) No 

HCT 
Shikimate O-
hydroxycinnamoyltransferase At5g48930 

Apple_0223.2950.C2.Contig4990, 
Apple_0223.850.C1.Contig1757 1 3 (LG9,17) 

 
No 

LAR Leucoanthocyanidin reductase *AJ550154 AY830131, AY830132 0 5 (LG13,16) Yes 

PAL Phenyalanine ammonium lyase At2g37040 

Apple_0223.263.C1.Contig648, 
Apple_0223.215.C2.Contig537, 

Apple_0223.263.C2.Contig649 
4 
 

6 (LG1,4,8,12) 
 

 
No 

UGT 
UDP-dependent 
glycosyltransferase At5g17050 AF117267 3 6 (LG0,1,7,9) 

 
No 

* Not found in Arabidopsis but in Desmodium uncinatum. 
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Table 3: Transcription factor genes at the mQTL hotspot on LG16 

Putative 

gene 
Apple sequence Position on chromosome (bp) Size (kbp) 

MYB MDP0000375685 1361220-1362093 1.3 

MYB MDP0000703817 1440436-1442198 1.7 

bHLH MDP0000319726 1543934-1555640  11.7 

bHLH MDP0000154272 1881558-1884164 2.6 

bHLH MDP0000261293 1967365-1970040 2.6 

AP2 MDP0000939633 1475660-1476865 1.2 

bZIP MDP0000250967 1376596-1386527 9.9 

Discussion 

Locating genes that are responsible for variation in metabolite levels in the 

progeny 
Many genes, involved in the biosynthesis of phenylpropanoids and flavonoids in different plant 

species have been identified and appear to occur throughout the plant kingdom (Dixon and Steele 

1999; Winkel-Shirley 2001). In apple, most of the structural genes and several regulatory genes have 

been isolated (Kim, Lee et al. 2003; Takos, Ubi et al. 2006; Szankowski, Li et al. 2009). However, it is 

not yet clear which of these genes are critical for the variation in metabolite levels between tissues 

and genotypes. Genetic mapping of metabolites is a useful step to elucidate which genes are critical 

for this variation.  

By combining the metabolomic data with genetic linkage maps, we detected 488 mQTL in peel and 

254 mQTL in flesh, using the software MetaNetwork. To gain more insight into the biochemical 

pathways regulated by the detected mQTL, the centrotypes that showed highly probable mQTL were 

manually annotated using accurate mass, in-source MS/MS and UV/Vis-absorbance information. The 

annotation revealed several groups of metabolites in both peel and flesh, including phenylpropanoid 

esters and glycosides (such as coumaroyl-hexoside, chlorogenic acid and coumaroyl-quinic acid) and 

flavonoids (such as (+)-catechin, (-)-epicatechin, procyanidins, quercetin, and kaempferol glycosides) 

(Tables S1, S2). Except for the alcohol glycosides and glucuronic acid all of these metabolites 

originate from the phenylpropanoid and flavonoid biosynthetic pathway. This bias towards the 

phenylpropanoid pathway was at least partially caused by the sample preparation (aqueous-

methanol extracts) and the LC-MS system used (C18-reversed phase LC and ESI ionisation in negative 

mode (Moco, Bino et al. 2006)). Other apple fruit metabolites, such as apolar steroids and volatiles 

could not be detected with these parameter settings and thus did not show up in our approach. 

For many metabolites no mQTL was detected 
For about half the number of the metabolites no mQTL was detected. A reason may be complex 

genetic regulation of metabolites by several loci. This would hamper detection of these mQTL. 

Another reason can be strong environmental effects compared to genetic effects for some 

metabolites. A third reason can be that levels of metabolites can be just above noise level for some 

progenies and within the noise for other progenies. That would hamper detection of mQTL too. A 
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metabolite is regarded as being present, in case 10 or more progeny genotypes show that metabolite 

above the noise level. 

A flavonoid-mQTL hotspot is located on LG16 
From MetaNetwork analysis, an mQTL hotspot on LG16 was found for both the parents and both the 

peel and flesh tissues (Figs. 1, 2). In the genetic window of the mQTL hotspot we detected 271 

putative genes, using the published genome of apple (Velasco, Zharkikh et al. 2010). To find the 

putative underlying gene(s) causing this mQTL hotspot, the structural genes of the phenylpropanoid 

pathway were positioned on the chromosomes of apple, as shown in Fig. 5 and Table 2. In this case, 

the position of the structural genes was not determined by means of genetic mapping in a 

segregating population, but via the alignment of the known sequences of these structural genes in A. 

thaliana with the first draft whole genome sequence of the apple cv. ‘Golden Delicious’ (Velasco et 

al., 2010). Only the structural gene LAR was found in the mQTL hotspot on LG16. LAR catalyzes the 

conversion of leucocyanidins into the flavan-3-ols (+)-catechin and (-)-epicatechin, which are the 

building blocks of procyanidins (Fig. 5). Both the flavan-3-ols and the procyanidins showed an mQTL 

in this region. The LAR gene may explain the mQTL hotspot on LG16, as 23 procyanidins in peel and 

13 procyanidins in flesh were mapped to this locus, as well as the two flavan-3-ols (+)-catechin and (-

)-epicatechin in both tissues. This was also observed with the alleles involved: the level of flavan-3-ols 

was increased by the ‘a’ allele from ‘Prima’ and/or the ‘d’ allele from ‘Fiesta’ (Fig. 5). These same 

alleles also increased the level of procyanidins (Fig. 5, Tables S3, S4). 

A contra-indication for LAR being the responsible gene for the hotspot is the presence of mQTL at 

this locus for the chlorogenic acid and coumaroyl quinic acid (phenolic esters), phloridzin, and 

kaempferol glycosides. These metabolites are upstream of the substrate for LAR (Fig. 5). 

Furthermore, their levels were simultaneously increased with flavan-3-ols and procyanidins (Fig. 5). A 

possible explanation for this is the presence of a transcription factor gene that regulates the 

structural genes for these metabolites. In view of this, we searched for transcription factor genes at 

the mQTL hotspot and detected seven transcription factor genes here. Some of these transcription 

factor genes belong to the MYB and bHLH types of transcriptional regulators. One of these 

transcription factor genes may be responsible for the mQTL hotspot for the phenolic esters and 

kaempferol glycosides and possibly also for the mQTL hotspot for flavan-3-ols, procyanidins and 

coumaroyl hexoside. 

Coumaroyl hexoside was negatively correlated with procyanidins, 

indicating a key role for 4CL 
The level of coumaroyl hexoside (Fig. 5A) was negatively correlated with the level of flavan-3-ols and 

procyanidins (Table S5, S6) in the progeny, as indicated by a red color in Fig. 5A. This was also 

indicated by the alleles that increase the levels of coumaroyl hexoside: whereas the levels of flavan-

3-ols and procyanidins were elevated by presence of the marker alleles ‘a’ and ‘d’, the coumaroyl 

hexoside was elevated when these alleles were absent (Fig. 5A, Tables S3, S4). This may be explained 

by a strong sink effect for the production of flavan-3-ols and procyanidins, thus competing with 

coumaroyl hexoside for the substrate coumaric acid. This indicates that the enzyme 4CL is the critical 

factor. If this enzyme has a low activity, coumaroyl acid may accumulate, giving a stronger flow to the 

side branch that leads to coumaroyl hexoside. However, if 4CL would be more active, the 

downstream metabolites would be enhanced, at the cost of coumaric acid and coumaroyl hexoside. 
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Strikingly, the gene 4CL is not at the mQTL hotspot but on other chromosomes (Table 2). This may 

indicate a feedback mechanism from downstream genes or downstream metabolites to 4CL. 

Fig 5a shows also that quinic acid was negatively correlated with flavan-3-ols, procyanidins and 

fenolic esters. This may be a result of a sink effect again. High activity of 4CL may lead to high levels 

of coumaroyl CoA, and therewith to high levels of phenolic esters, but also to depletion of the other 

precursor of phenolic esters, i.e. quinic acid. 

Structural genes of the phenylpropanoid pathway in other studies 
Several structural genes for flavonoid biosynthesis have been described in apple. Takos, Ubi et al. 

(2006) described two LAR genes and an Anthocyanidin reductase (ANR) gene, detected in cDNA from 

the peel of the red apple cv. ‘Cripps Red’. They named the two LAR genes MdLAR1 and MdLAR2. 

BLAST results of the sequences of these genes from apple revealed that only MdLAR1 is present in 

the LG16 mQTL hotspot. The MdLAR2 is located on LG13. A major part of LG16 contains 

homoeologous sequences of LG13 due to whole genome duplication (Maliepaard, Alston et al. 1998; 

Velasco, Zharkikh et al. 2010). Park, Sugimoto et al. (2006) also identified LAR and ANR in apple fruits 

by statistically analyzing the expressed sequence tags (ESTs). ANR utilizes anthocyanidin and LAR use 

leucocyanidin as substrate. Both ANR and LAR participate in synthesis of flavan-3-ol monomers, 

whereas these monomers are the building blocks of procyanidin polymers (Xie, Sharma et al. 2003). 

In grape, ANR and LAR genes strongly influence procyanidin accumulation and composition during 

berry development (Bogs, Downey et al. 2005). 

In pear (Pyrus communis L.), a closely related species to apple, (Fischer, Gosch et al. 2007) isolated 

cDNAs for the prominent genes in flavonoids biosynthesis mentioned in Fig. 5 via homology with the 

apple sequences. They found high homology to apple in the DNA and cDNA. Substrate specificities of 

the recombinant enzymes expressed in yeast were determined for physiological and non-

physiological substrates and found to be in general agreement with the characteristic pear flavonoid 

metabolite pattern (Fischer, Gosch et al. 2007). In strawberry, another member of the rosaceous 

family, genes in the flavonoid pathway could be clearly classified into two groups according to their 

expression pattern; one having two transcription peaks at early and late stages (i.e., FaANR, FaANS, 

FaCHI, FaFHT and FaLAR), and the other showing an up-regulation trend with a single peak at the 

turning and/or ripening stage (i.e., FaDFR, FaFGT, FaFLS and FaMYB (Almeida, D'Amico et al. 2007). 

This shows that expression pattern for flavonoid genes can be different and fruit stage for the 

expression of certain flavonoid genes can be very critical. 

Transcription factor genes of the phenylpropanoid pathway in other studies 
Bogs, Jaffé et al. (2007) characterized a grapevine MYB transcription factor gene, VvMYBPA1. This 

regulatory gene was shown to be able to activate the LAR and ANR genes, and several other 

flavonoid pathway genes in grapevines (Bogs, Jaffé et al. 2007). Two other MYB genes, VvMYBPA2 

(Terrier, Torregrosa et al. 2009) and VvMYB5b (Deluc, Bogs et al. 2008) were also found to promote 

procyanidin biosynthesis in grapes. We compared VvMYBPA1, VvMYBPA2 and VvMYB5b with the 

MYB gene in the hotspot on LG16, but found no convincing homology. 

Three transcription factor genes from Arabidopsis that regulate procyanidin accumulation have been 

identified, i.e. the MYB transcription factor TRANSPARENT TESTA 2 (Nesi, Jond et al. 2001), the bHLH 

transcription factor TRANSPARENT TESTA 8 (Nesi, Debeaujon et al. 2000), and TRANSPARENT TESTA 
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GLABRA (AtTTG1; (Nesi, Debeaujon et al. 2000). For the latter gene, Brueggemann, Weisshaar et al. 

(2010) found a functional homologue in apple. Li, Flachowsky et al. (2007) reported the 

upregulatation of mRNA for several structural enzymes of the flavonoid pathway in apple by 

overexpressing the maize leaf color (Lc) transcription factor gene. A BLAST analysis was performed to 

identify putative homologues of these transcription factor genes on the apple genome, particularly in 

the mQTL hotspot on LG16. None of the above transcription factor genes showed close homologues 

at this locus, and thus these cannot explain the mQTL hotspot on LG16. 

Phenotypic buffering 
Fu, Keurentjes et al. (2009) analyzed a segregating A. thaliana population for variation in transcript, 

protein and metabolite abundance. They mapped QTL for 40,580 molecular and 139 phenotypic 

traits, and found six QTL hotspots with major, system-wide effects. For the far majority of the 

500,000 SNPs between the two parental lines, no or minor impact on the phenotype was detected. 

The authors interpreted this lack of dramatic changes by genetic variation as robustness of the 

system. The six hotspots are exceptions. These hotspots seem to correspond to a few molecular 

fragilities of an otherwise robust regulatory system (Fu et al., 2009). In another study, Keurentjes, Fu 

et al. (2006) have described these hotspots in more detail for metabolites. Their results show striking 

similarities with our results in apple, although the Arabidopsis population contained only up to two 

alleles per gene because of the homozygous parents, whereas in the apple population up to four 

alleles were present per gene. Although a series of genes are involved in the pathway of phenolic 

compounds, a large extent of quantitative variation in these compounds is explained by one locus 

only, i.e. the hotspot on LG16. 

Quercetin glycosides are not controlled by the flavonoid-mQTL hotspot on 

LG16 
Quercetin glycosides are commonly found in apple fruits (Van der Sluis, Dekker et al. 2001). Although 

quercetin glycosides are part of the phenylpropanoid and flavonoid biosynthetic pathways, they did 

not exhibit any significant mQTL on LG16 (Fig. 5). Instead, these compounds had mQTL on LG1 in 

peel. On LG1, the structural gene UGT is located, which is responsible for the glycosidation of 

quercetins. This UGT gene may be responsible for the mQTL on LG1 (Fig. 5). Takos, Ubi et al. (2006) 

identified and characterised an UGT gene in apple, using a functional genomics approach. As UGT 

genes consist of a large gene family, further studies would be needed to verify which UGT gene 

would be responsible for the glycosidation of quercetin. In flesh, quercetin glycosides showed an 

mQTL on LG8 (Fig. 5). 

Another quercetin derivative, i.e. isorhamnetin (a methoxylated form of quercetin) had a strong 

mQTL on LG13. Possibly, a gene for methoxylation is located on LG13 (Fig. 5). We observed that both 

quercetin metabolites (quercetin glycosides and isorhamnetin glycosides) were not depending on 

LG16, and we did not detect any free, unmodified quercetin in apple. Together, these observations 

suggest that the rate-limiting step in the formation of quercetin derivatives in apple is determined by 

the modifying enzymes (UGT, OMT), and that the flux of phenylpropanoid towards quercetin is 

adapted to the availability of modification opportunities. 
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Consequences of tight genetic linkage of the dominant alleles for high 

metabolites to the recessive alleles for pH 
Figs. 3 and 4 illustrate that in both parents the dominant alleles for high levels of metabolites are 

genetically tightly linked to the recessive alleles for high pH. This has consequences for apple 

breeding. In Northern Europe, apples with a low pH are usually preferred to high pH, and therefore 

should contain the dominant allele for low pH. As the dominant allele for low pH is in repulsion phase 

to the dominant allele for high metabolites, at least in the genotypes we investigated, the selection 

for the dominant low pH allele implies the selection for the recessive allele for low levels of the 

phenolic compounds. Therefore, progeny that are more acidic, have higher chances of having lower 

levels of procyanidins and other phenolic compounds. This can be solved by the selection of progeny 

that have one dominant allele for low pH from one parent and one dominant allele for high 

metabolite levels from the other parent. This is the MmMama group in Fig. 4. In the southern 

countries of Europe and in Asia, consumers usually prefer a higher pH. In that case, the desired 

absence of the dominant allele for pH is automatically combined with the presence of the dominant 

allele for high levels of metabolites. This is the MMmama group in Figure 4. For apple, it takes usually 

six to eight years after sowing to have fruits that can be evaluated for pH and metabolites. Selection 

of the desired progeny for these fruit traits is feasible already at a very young stage, using DNA from 

leaves of seedlings and DNA markers (Figure 3). 

Follow-up studies 
In subsequent studies, the expression profiles of the MdLAR1 candidate gene, other structural genes 

of the phenylpropanoid pathway, and the seven transcription factor genes found in the mQTL 

hotspot will be studied in progeny that have either low or high procyanidins levels. Final proof of 

their involvement needs complementation studies. Next, to increase the level of these beneficial 

metabolite(s), the most promising alleles may be inserted into existing, highly popular apple cultivars 

with low procyanidin levels, e.g. by means of a cisgenesis approach. Cisgenesis is defined as ‘the 

genetic modification of a recipient plant with natural gene(s) from a sexually compatible plant 

(Schouten, Krens et al. 2006; Schouten, Krens et al. 2006). Whatever the outcome of these follow-up 

studies, the knowledge obtained from the current study of the mQTL hotspot genes is already of use 

for the breeding of new cultivars with increased levels of these putatively beneficial metabolites 

through application in marker-assisted breeding. 
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Abstract 
Quantitative Trait Loci (QTL) mapping tools such as MapQTL and R/qtl allow easy and fast analysis of 
more than one trait at the same time. However, for experiments with large datasets, such as high-
throughput metabolite QTL (mQTL) analysis, these tools do not provide an easy-to-inspect summary 
of the results. The ability to have an overview of the distribution of the identified QTL becomes a key 
factor. MQ2 fills this need by providing a command line tool and a web application that summarizes 
and visualizes the results of multi-trait QTL analysis. MQ2 can use the output of commonly used QTL 
analysis tools, such as MapQTL and R/qtl, as input. MQ2can be used for free at: 
http://www.plantbreeding.wur.nl/mq2/ 

Keywords: multi-trait analysis, bioinformatics, high-throughput QTL analysis. 

Results 
Analysis of large datasets, such as high-throughput metabolomics experiments (Khan, Chibon et al. 

2012), transcriptomics experiments (Hammond, Mayes et al. 2011) and genetical genomics 

experiments (Jansen and Nap 2001) involve quantitative trait loci (QTL) analysis of a large number of 

traits. When such experiments are analyzed with MapQTL (Van Ooijen 2009), it becomes 

cumbersome to obtain an overview of QTL positions for all these traits, to discern if there are QTL 

hotspots (i.e. loci that affect many different traits, such as transcription factors) and if so, where 

there are located in the genome. In MapQTL v6.0, one would have to go through all the traits one by 

one and extract this information manually. MQ2 allows summarizing and visualizing the distribution 

of QTL from MapQTL (Van Ooijen 2009) analysis with a large number of traits. Using R/qtl (Broman, 

Wu et al. 2003) it is possible to obtain this overview more easily but some script writing is required. 

MQ2 is a tool for combining and visualizing QTL analyses of multiple traits, from the output of 

mapping software such as MapQTL and R/qtl. After reading the data files produced by the QTL 

mapping software, MQ2 returns a visual representation of the distribution of QTL on the genetic map, 

several comma separated text (CSV) files containing detailed information for each QTL and a 

MapChart (Voorrips 2002) compatible file to visualize the 2-LOD interval for each QTL on the genetic 

linkage map. Markers flanking the 2-LOD interval are extracted and exported as well. These csv and 

MapChart files allow the user to visualize the QTL information using their own preferred program. 

The workflow of MQ2 is divided into three steps. The first step is to retrieve all significant QTL by 

parsing the MapQTL (version 5 or 6) project directory or the provided CSV file or Excel document. The 

user has to provide the LOD threshold. MapQTL (Van Ooijen 2009) and R/qtl (Broman, Wu et al. 

2003) can calculate this LOD threshold using a permutation test. For each trait, MQ2 extracts only the 

strongest QTL per linkage group. The second step is to identify, for all the QTL extracted in the first 

step, the marker closest to the peak. The third step is to calculate the number of QTL for each marker 

on the map. 

MQ2 is available as a web-based tool and as a command line application. Both versions produce the 

csv and MapChart files mentioned above; the web application additionally produces a visualization of 

QTL hotspots. Both components can run on any computing platform where a Python interpreter is 

available (version 2.6 and above, http://www.python.org); this includes all versions of Microsoft 

Windows, GNU/Linux and Mac OS X. Both components are licensed under the GPLv3 or any later 
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version; the source code can be found on github at http://github.com/PBR/MQ2 and 

http://github.com/PBR/MQ2_Web. 

The command line application has a built-in plug-in system allowing supporting multiple input 

formats. The plug-in system is based on the straight.plugin 

(https://pypi.python.org/pypi/straight.plugin/) library. MQ2 supports MapQTL and CSV inputs by 

default using the standard python libraries. To support the reading of excel-compatible files, 

installation of the python-xlrd library (https://pypi.python.org/pypi/xlrd/) is required. 

The web application is implemented with the Flask framework (http://flask.pocoo.org/), providing a 

web-interface to the Python library. From the front page, the user can upload the MapQTL project 

directory, CSV file or Excel document compressed in a zip file. This will create a session which 

uniquely identifies this data set. The MQ2 session is valid for seven days after its last analysis, after 

which the data is removed from the system and the user will have to re-upload it. The user can 

access previous MQ2 sessions by re-entering the session identifier. 

Within a MQ2 session, the user can specify which MapQTL session or which sheet of the Excel 

document to use and which LOD threshold to consider as significant for a QTL. If the data have 

already been extracted for a given LOD threshold, the application will inform the user that this 

analysis has already been done. Otherwise, MQ2 will produce a result page with a visualization of the 

distribution of the QTL on the map, an overview of the parameters used and links to download the 

result files generated. The user can find the list of QTL associated with the selected marker by clicking 

on the visualization. The visualization of the distribution of QTL on the map is performed using the 

Flot javascript library (http://www.flotcharts.org) which supports Internet Explorer 7+, Chrome, 

Firefox 2+, Safari 3+ and Opera 9.5+.  

New users can explore MQ² via the example data and the example session provided on the front 

page. 

Usage 

Running MQ2 on MapQTL output 
For each project, MapQTL generates a “.mqp” file containing information about the project. Within 

the same folder, MapQTL generates a folder that contains all QTL mapping results. The results folder 

has the same name as the project and ends with the extension: “.mpd”. To prepare the QTL mapping 

data for MQ2, locate the “.mpd” folder associated with the MapQTL project and create a zip archive 

of this folder. Only the files with the extension “.mqo” are required, but the presence of other files 

does not affect the results. 

Run MQ2 on output from other QTL analysis software 
To run MQ2 on output from other software, for example R/qtl (Broman, Wu et al. 2003), the data 

needs to be provided either in a CSV file (using commas “,” as delimiters) or in an Excel document. 

The format of the input is very important for MQ2 to work and should be as follow: the first column 

contains the markers, the second column contains the linkage group and the third column contains 

the position of these markers on the linkage group. Each subsequent column contains the LOD value 
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for each trait. The first row of the document contains the headers (Markers, Linkage Group, position, 

Trait name1, Trait name2, etc; Figure 1). 

 

Figure 1: Screenshot of a spreadsheet showing how the data should be formatted in order to be submitted to 
MQ

2
. The first column contains the marker names, the second column contains the linkage groups, the third 

column contains the map positions on the linkage group (this column must be numeric). The following columns 
contain the LOD value calculated by the QTL mapping software for this trait at this position. The first row of the 
document contains the header and will be used to extract the trait names. 

The CSV or Excel document should be compressed into a zip archive before uploading via the web 

interface. Note that MQ2 can only analyze one CSV file or one Excel document at a time; however, 

the Excel document may contain multiple sheets. 

Running MQ2 via the web interface 
To run MQ2 via the web interface (Figure 2), upload the zip archive at the front page of the MQ2 

website. It will bring you to the MQ2 session page. From here, you can run new analyses by selecting 

either a MapQTL session or the name of the Excel sheet to analyze and providing the LOD threshold. 

For each analysis, links are provided to a results page (Figure 3.1) giving a visual overview of the 

distribution of QTL. The list of QTL associated with a given marker can be found by clicking on the 

visualization of the distribution present on the results page (Figure 3.2). 
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Figure 2: Workflow followed by the user when running the web application of MQ2. The first step is to upload the ZIP 
archive which creates the MQ2 session. The second step is to select a MapQTL session or an Excel sheet (depending on 
the input) and enter a LOD threshold and run the analysis. Finally the results can be visualized on the result page, where 
the output CSV file can also be downloaded and for each marker with QTL, the list of QTL associated can be retrieved by 
clicking on the visualization. 

Running MQ2 via the command line 
Alternatively, the command line version can be run directly using the either the zip archive, or the 

uncompressed MapQTL directory, CSV file or Excel document as input. A MapQTL session or Excel 

sheet name and the LOD threshold are also required. The command line utility can be called using 

the syntax: MQ2 --file path/to/input.zip --lod <YourLodThreshold> --

session <MapQTLSessionIdentifier> or for excel documents: MQ2 --file 

path/to/input.xls --lod <YourLodThreshold> --session 

<NameOfTheExcelSheet>. 

For example: 

MQ2 --zipfile path/to/Demoset.zip –lod 3 --session 2 

MQ2 --file path/to/Demoset.xls –lod 3 –-session=”Sheet1” 

The output files are generated in the current working directory. All available options are shown using 

the command: MQ2 --help. 
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Figure 3: Screenshot of the result page of the web application. The visualization displays for each marker in the genetic 
map the number of QTL associated (Fig 3.1). Each blue bar represents a markers and each light grey bar represents the 
limit of the designated linkage group. The QTL associated with a marker (Fig 3.2) can be accessed by clicking on one of 
the bars of the marker. Below the visualization are presented the parameters used for this analysis. At the bottom of the 
page are links to download each output file generated by MQ

2
. 
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Discussion 
MQ2 provides a simple overview of the distribution of the QTL over the genome from a high-

throughput QTL mapping analysis. Its main drawback is the assumption of one QTL per linkage group 

while extracting the QTL from the results. This assumption is the result of two factors. The first factor 

is the difficulty to determine the number of QTL in a linkage group from the LOD profile over that 

linkage group. Using the LOD information, it is difficult to distinguish what is a single QTL with a 

shoulder from two QTL profiles overlapping. This is also the reason why simple interval mapping 

analysis cannot determine if there are more than one QTL per linkage group and why more complex 

approaches such as MQM (Haley and Knott 1992) and restricted MQM have to be applied. It might 

be possible to model using the information from QTL mapping tool but that would be doing the work 

that QTL mapping tools already are doing and are acknowledged for. The second factor which 

influenced the decision of only considering one QTL per linkage group is that MQ2 is targeted for 

high-throughput QTL analysis where hundreds of traits are considered at once. MQ2 shows the global 

trend of the results, where most QTL are located and by assuming one QTL per linkage group it can 

do so reliably and fast (around a minute for more than 600 traits; data not shown). Once the global 

trend of the data is known, the biologists can go back to their QTL mapping tool to perform more in-

depth analysis of these specific traits or regions (such as performed by Khan, Chibon et al. (2012)). 

From a technical and licensing point of view, MQ2 is written fully in python using modules from the 

standard libraries and two external libraries which are compatible with python 3. Its source code is 

compatible with python 2.6 to python 3.3. The web interface uses the flask web framework which is 

being ported to python 3. Thus MQ2 will remain available and working for the coming years. In 

addition MQ2 is open-sourced and licensed under the GPL version 3 (or any later version) allowing 

anyone to improve it and redistribute it, its plugin system providing a way to extend it easily to 

support new QTL mapping tools. 

Conclusions 
MQ2 provides an interface to QTL mapping output allowing the visualization of multi-trait QTL 

mapping results in a fast and simple way, both for MapQTL projects and for other QTL mapping 

software provided their output is formatted as specified in a CSV file or an Excel document. 

The separation between the web application and the command line interface allows the user to run 

the tool using the web instance (http://www.plantbreeding.wur.nl/mq2/) or to run the tool locally 

from the command line. MQ2 can provide in a few seconds information on the distribution of the QTL 

along the map and potential QTL hotspots for a few hundred traits previously analyzed with a QTL 

mapping tool, making MQ2 well suited for the modern high-throughput QTL mapping of ~omics data. 
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Abstract 
Summary: Marker2sequence aims at mining quantitative trait loci (QTL) for candidate genes. For 

each gene, within the QTL region, marker2sequence uses data integration technology to integrate 

putative gene function with associated Gene Ontology terms, proteins, pathways and literature. As a 

typical QTL region easily contains several hundreds of genes, this gene list can then be further 

filtered using a keyword based query on the aggregated annotations. Marker2sequence will help 

breeders to identify potential candidate genes for their traits of interest. 

Availability: Marker2sequence is freely accessible at 

http://www.plantbreeding.wur.nl/BreeDB/marker2seq/. The source code can be obtained at 

https://github.com/PBR/Marker2Sequence 

Supplementary information: supplementary figures are available at Bioinformatics online. 

Introduction  
Quantitative Trait Loci (QTL) are regions on the genome statistically associated with a phenotype. 

Plant Breeders aim to introgress these regions from a donor parent to improve a cultivar (Zamir 

2001). However, a typical QTL region may contain over hundreds of genes, including genes negatively 

influencing the breeding goals. Complete genome sequences of many crop plants are becoming 

available, including the genome of important food crops such as tomato (Tomato genome 

consortium 2012) and potato (PGSC, Xu et al. 2011). The availability of structural and functional 

genome annotations makes it possible to investigate the QTL region for genes positively or negatively 

influencing the trait of interest. A tool that offers this functionality is GBrowse (Stein, Mungall et al. 

2002). However, exploring several hundreds of putative candidate genes with GBrowse will still be a 

lot of work, since limited information is available for each gene. 

Identification of putative candidate genes can be improved using data integration approaches. 

Biologically relevant knowledge about, for example, Gene Ontology (GO) (Ashburner, Ball et al. 

2000), protein functions or metabolic pathways, can be combined with expert knowledge about the 

trait under investigation. The basic principle of Semantic Web technology is to integrate different 

types of data from different sources using standardized ontologies (Berners-Lee, Hendler et al. 2001). 

Important resources such as UniProt (Nicole Redaschi and UniProt Consortium 2009) and GO have 

become available in a Resource Description Framework (RDF, http://www.w3.org/TR/rdf-primer/) 

format allowing data integration against these resources. 

Our research aims to develop a tool, called Marker2sequence (M2S), which plant breeders can use to 

identify the putative candidate gene for their QTL. We describe how M2S uses semantic data 

integration approaches to obtain available information for each gene model and combine this with a 

keyword based search function to mine for the appropriate candidate gene. M2S, by design, can 

work with any genome annotation, but we show the functionality of M2S the tomato genome 

annotation. 
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Design and implementation 
Marker2sequence (M2S) is a web-based tool, using Java EE 6 and the Struts framework (v1.3.10). It 

runs on a Glassfish (v3.1) application server. M2S rely on the availability of a genome annotation and 

reference genetic linkage map in RDF format. A utility, gff2RDF, has been developed to perform the 

conversion of the tomato, potato and Arabidopsis genome annotation and linkage maps to the RDF 

format. It is available at https://github.com/PBR/gff2RDF. This utility extracts for all genes their 

location, their human readable description, their associated GO term identifier, and their associated 

UniProt protein identifiers (Jain, Bairoch et al. 2009) from the annotation. For Tomato, the EXPEN 

2000 map was used as reference linkage map (Fulton, Van der Hoeven et al. 2002). The Jena library 

(Carroll, Dickinson et al. 2004) is used to build the RDF model and write it to disk. These graphs were 

loaded into a Virtuoso Open-source Edition (version 6.1.3) (Erling and Mikhailov 2007) triple store 

together with the Gene Ontology (version 2011_11_03) and UniProt (version 2011_10). Any triple 

store with a SPARQL end-point can be used with M2S. 

M2S can handle three types of inputs (Supplementary Figure 1). The first two inputs are: two markers 

flanking the QTL region, or a list of markers spanning the QTL region. These markers should have a 

physical position on the genome sequence or a position on the reference linkage map. The third 

input requires a genomic region using the format: Chr:start..stop. Either input leads to a summary 

page divided into three sections; The top section show the alignment of the reference genetic map 

with the genomic information, which help to identify problems in the genetic map or the assembly of 

the genome. The lower section consists of three tabs. The first tab contains a list of all genes in the 

specified region, with their location and human readable description. The second tab lists all the 

markers, within the region. The third tab shows the genetic map for the specified region. Each list can 

be exported into a spreadsheet-compatible format or a pdf. The gene list can be searched using a 

keyword via the box in the middle section. This search is performed using SPARQL 

(http://www.w3.org/TR/rdf-sparql-query/) on all available resources and returns any gene with a 

matching keyword in any of the queried databases. 

The details for each gene (Supplementary Figure 2) include information retrieved from the genome, 

the GO terms, the proteins (UniProt), pathways (UniPathway) and literature associated with these 

proteins. The GO terms are obtained from the genome annotation and, for tomato, from AFAWE 

(Jöcker, Hoffmann et al. 2008). This data integration aids the end-user to determine if this gene is a 

good candidate for the trait of interest.  

Example 
β-carotene content is a trait influencing the color of tomatoes (Lincoln and Porter 1950). Based on 

our QTL analysis, using data from the Solanum lycopersicum x Solanum galapagense LA0483 RIL 

population (Paran, Goldman et al. 1995), this compound has QTL on chromosome 3 (between TG130 

and TG74) and 6 (between TG253 and TG314). Marker2sequence identified 2003 genes on 

chromosome 3 and 988 genes chromosome 6. A query with the keyword: “beta-carotene”, returns 

the gene Solyc03g007960.1.1 on chromosome 3 and the gene Solyc06g074240.1.1 on chromosome 

6. Solyc03g007960.1.1 has the description “Carotene beta-hydroxylase”, is associated with the GO 

term for “carotene beta-ring hydroxylase activity”, the protein “Beta-carotene hydroxylase” and the 

pathway for “Carotenoid biosynthesis”. Solyc06g074240.1.1 is associated with the GO term for 

“carotenoid biosynthetic process”, the pathway for “Carotenoid biosynthesis” and more specifically 
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the part of “beta-carotene biosynthesis”. Information for each gene can be quickly mined using 

Marker2sequence and both genes are candidates for our trait of interest. 

Conclusions 
Marker2sequence provide plant breeders with a way to obtain all annotated gene models in a QTL 

region, to query, over multiple databases, within the QTL region of interest and an extensive 

summary for each gene model. Marker2sequence will help breeders to identify potential candidate 

genes for their traits of interest. 
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Abstract 
Transcription factors are proteins regulating gene expression by binding to the promoter regions of 

their target genes. In this study, 17 putative transcription factor binding sites have been identified by 

combining the unique genomic structure of selected introgression lines (IL) with gene expression 

measurements of these genotypes. Six genotypes (progeny) of an IL population and the mother 

(parent) of the cross have had their gene expression measured on an Affymetrix micro-array. By 

comparing the gene expression of the individual genotypes to the parent we were able to extract a 

list of genes differentially expressed in the six offspring plants. These differentially expressed genes 

are either located within the introgression segments (cis genes) or outside of the introgression 

segments (trans genes). The only genomic difference between the progeny plants and the parent are 

the introgression segments, leading to the question of regulation of the expression of the trans 

genes. The promoter regions of these differentially expressed trans genes have been analyzed for 

DNA motifs revealing 17 potential transcription factor binding sites. Twelve of these motifs resemble 

known transcription factor binding sites. 

Introduction 
In any given cell, at any given time, thousands of genes ensure the cell’s function. To perform this 

task, genes must be expressed at a certain time and in a certain amount. This regulation is ensured 

by the presence of a gene regulatory network involving genes and transcription factors (Macneil and 

Walhout 2011). Transcription factors are proteins involved in regulating expression of other genes by 

binding to short DNA motifs, called transcription factor binding sites, in the promoter region of their 

target genes (Chen and Rajewsky 2007). A single transcription factor may influence the expression of 

several genes in the genome thus providing a coordinated mechanism to control these genes (Lee 

and Young 2000). Identifying transcription factors as well as their binding sites is a first step in the 

understanding of the gene regulatory network of an organism. 

Different techniques allows predicting transcription factors in the genome, including sequence based 

(Robertson, Bilenky et al. 2006), and yeast one-hybrid assays (Barrasa, Vaglio et al. 2007). The results 

of these experiments are reported in literature and stored in databases such as EDGEdb (Barrasa, 

Vaglio et al. 2007), DBD (Wilson, Charoensawan et al. 2008), PlantTFDB (Zhang, Jin et al. 2011) and 

AnimalTFDB (Zhang, Chen et al. 2012). These resources only contain transcription factor information; 

they present the sequences, alignments and domains of these transcription factors. However, they 

do not provide any information regarding the genes regulated by these transcription factors nor the 

motifs to which they bind. Resources such as TRANSFAC (Wingender 2008) or JASPAR (Sandelin, 

Alkema et al. 2004) list transcription factors binding sites. They provide information about these 

short motifs that transcription factors recognize and bind to. Both TRANSFAC and JASPAR are not 

species specific resources. JASPAR only contains very few transcription factor binding sites from plant 

species (five TFBS of Arabidopsis thaliana, six TFBS of Zea mays, one TFBS of Hordeum vulgare, three 

TFBS of Pisum sativum, one TFBS of Petunia x hybrida, three TFBS of Antirrhinum majus and one 

motif of Triticum aestivum and Nicotiana sp.). 

To predict transcription factor binding sites, multiple approaches have been described: using 

phylogeny, one may search for conserved domain in the promoter region of orthologous genes 

(Gumucio, Shelton et al. 1996; Hardison, Oeltjen et al. 1997). Using gene expression information, one 
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may search for common motifs in the promoter sequences of the co-expressed genes, either relying 

on known common motifs or using statistical models. Several studies (Ho Sui, Mortimer et al. 2005; 

Hestand, van Galen et al. 2008; Essaghir, Toffalini et al. 2010) mention the difficulties to identify 

transcription factor binding sites in sets of co-expressed genes. To circumvent these difficulties, tools 

such as oPOSSUM (Ho Sui, Mortimer et al. 2005) or CORE_TF (Hestand, van Galen et al. 2008) rely on 

a list of pre-computed predictive regulatory elements and compare this list with the list of gene 

sequences submitted. These approaches are reported to return a lot of false positive and false 

negative results (Hestand, van Galen et al. 2008). One reason for these false results is the level of 

noise present in the gene expression data of higher organisms (Essaghir, Toffalini et al. 2010). Using 

gene expression information, one may find sets of co-expressed genes that seem to be co-regulated. 

Without prior information, transcription factor binding sites can be predicted using statistical models. 

These methods rely on the computation of a background distribution of the nucleotides on the 

genome. This background allows them to predict if a short nucleotide sequence is appearing more 

often in the sets of co-regulated genes than it does at the genome level. 

If oPOSSUM and CORE_TF rely on known TFBS to find motifs in a set of sequences, Multiple Em for 

Motif Elicitation (MEME) and RSAT are two examples of tools for de novo transcription factor binding 

sites prediction. MEME is one of the most widely used tool to identify motifs in related DNA or 

protein sequences (Bailey, Williams et al. 2006). Using statistical modeling, MEME is capable to 

detect recurring motifs in a set of DNA sequences. An extensive explanation of the MEME algorithm 

has been published by Bailey and Elkan (1994). Several tools have been built around MEME,for 

example, TOMTOM (Gupta, Stamatoyannopoulos et al. 2007) and GOMO (Buske, Boden et al. 2010). 

TOMTOM is a motif comparison tool allowing to search for matching motifs in known transcription 

factor binding site databases. It can be used to assess the novelty of the motif found. GOMO 

associates GO terms to provided DNA motifs. From the DNA motif provided, it scores the promoter 

region of each gene of the selected organism, ranks them by affinity with the motif and, using the GO 

terms associated with these genes, determines the GO terms associated with the motif. It can be 

used to estimate the biological processes in which the motif might be involved. The Regulatory 

Sequence Analysis Tools (RSAT) oligo-analysis (van Helden, Andre et al. 1998) is another de novo DNA 

motif prediction tool, originally designed for yeast sequences, it requires a fixed motif length and is 

known to return lots of false positive for genomes having mixtures of GC-rich and GC-poor promoter 

sequences. 

In introgression lines (IL), each individual has a genotype similar to the mother of the original cross 

except for some introgression parts that are from the father of the original cross. Therefore, in a 

similar environment, phenotypic differences between the individuals of the IL population and the 

mother are assumed to be due to the introgression segment of the father. The phenotypic 

differences can occur because of genes present in the introgression segment (cis) or by (cis) genes 

regulating expression of genes elsewhere on the genome (trans). For this study, we aim to identify 

these trans genes in the ILs. The expression of trans genes being different in a similar genomic 

background and similar environment, might be the result of the action of a regulatory element such 

as microRNA or transcription factors. If some of the trans genes are influenced by a transcription 

factor, looking for motifs in their promoter regions might reveal known or new transcription factor 

binding sites. 
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In marker assisted selection, breeders rely on molecular markers to have a representation of the 

genome and when crossing two organisms, these markers can be used to assess the success of 

introgression. Breeders should choose the markers as close as possible to the target gene, if possible 

on the gene itself (Hospital 2001). Targeting the genes responsible for a phenotype, termed 

candidate genes, implies knowing these genes but manually finding them among the hundreds or 

thousands of genes present in a QTL interval is a cumbersome work. Marker2sequence (Chibon, 

Schoof et al. 2012) is aiming at facilitating this process. For a given region of the genome it retrieves 

all the genes present, integrates the information known for each of them in different resources and 

provides a way to search these genes and their annotation in order to filter out the genes of interest, 

potential candidate genes. However, Marker2sequence does not have access to regulatory 

information. If a transcription factor is present in the given QTL interval, Marker2sequence is not able 

to include in the list of potential candidate genes for the observed trait the genes regulated by this 

transcription factor. Marker2sequence is thus restricted to the detection of cis genes. One way, to 

find genes regulated by a transcription factor, is to identify transcription factor binding site (TFBS) in 

promoter regions. There have been studies that searched for TFBS in promoter regions of co-

expressed genes (Vilo, Brazma et al. 1999; Long, Liu et al. 2004; Essaghir, Toffalini et al. 2010) but to 

our knowledge none used introgression lines with their particular genetic structure to enhance their 

predictions. 

When studying gene expression in introgression lines, the genes expressed can be trans genes 

(outside of an introgression) or cis genes (within an introgression). By comparing the gene expression 

between individuals from the introgression lines and the individual of the same genetic background 

and without introgressions (recurrent parent of the IL lines), trans genes differentially expressed can 

be identified. These genes thus behave differently on a similar genetic background, maybe due to the 

presence of transcription factors in the introgressions. The current study is on tomato and relies on 

six progeny lines, which does not allow searching for conserved motif across orthologous genes. The 

transcription factor binding sites resources available do not contain information regarding 

transcription factor binding sites in tomato. Searching for TFBS using known TFBS from available 

resources is thus possible but would not allow finding any tomato specific TFBS. The promoter 

sequences of tomato have a highly variable GC content, making RSAT not suitable to find TFBS. This 

study therefore searched for de novo TFBS using MEME in promoter sequences of trans genes 

differentially expressed. The outcome of this study could then be integrated within 

Marker2sequence allowing it to consider genes outside of the QTL interval regulated by genes 

present within the QTL interval when searching for candidate genes. 
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Materials and Methods 

Plant Materials 
This study was performed using Solanum lycopersicum cultivar Moneyberg (SL) and 6 lines (provided 

by KeyGene, the Netherlands, Figure 1) carrying a single introgression of the Solanum chmielewskii 

LA1840 (SC) in the background of Moneyberg (Prudent, Causse et al. 2009; Do, Prudent et al. 2010). 

From this population, six lines were selected for their expression profile in flavonoids and volatile 

compounds (Bovy et al. unpublished). Figure 1 gives a schematic overview of the six introgression 

fragments which cover different parts of the genome. 

 

Figure 1: Graphical representation of the introgression of S. chmielewskii (in blue) in the Moneyberg background (in 
green). These six genotypes are the genotypes that have been selected to be analyzed with the EuTOM3 micro-array. 

Gene expression analysis 
Gene expressions have been measured for six genotypes, in four replicates, of the S. chmielewskii 

population: TMK5U0580, TKM5U0057, TKM5U0595, TKM5U623, TKM5U637 and TKM6U0051. The 

measurement was done with a custom Affymetrix array: EUTom3, described and used by Karlova, 

van Haarst et al. (2013). The cultivar Moneyberg was also included in the analysis providing a 

reference of gene expression without any introgression from Solanum chmielewskii. 

Analysis of the gene expression differences 
The expression of each introgression line has been compared to the expression of SL using a Dunnett 

test (Dunnett 1955) which allows comparing a set of groups to a reference group. In this experiment, 

the groups were the six different individuals from the S. chmielewskii IL population and the reference 

group was the expression measurement from SL. This analysis returned a list of genes differentially 

expressed (p-value lower than 0.01) in the IL lines compared to Moneyberg, thus genes whose 

expression was solely influenced by the presence of the introgression segment from SC in the 

genome. 

Analysis of the promoter sequences 
Each differentially expressed gene identified using the Dunnett test was mapped onto the tomato 

genome (Tomato genome consortium 2012) SL2.40 using blast (Altschul, Gish et al. 1990). The genes 

mapping outside of the introgressions (trans genes) were then selected. For each gene, the promoter 

region was extracted in FASTA format using a custom made script. The promoter region was defined 

as the region from 600 base-pair upstream to 100 base-pair downstream from the gene start (Veerla 

and Hoglund 2006). Special care was taken to extract the sequence in the right orientation. 

Because promoter regions may contain repetitive elements which may introduce a bias compared to 

the background modeled, these regions should be masked before the DNA motif search is performed 

(Bailey, Williams et al. 2006). The sequences were masked using repeat masker (AFA, R et al. 1996-

2010). The “cross_match” search engine has been used as it is said to be the most sensitive engine, 
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the sensitivity has been left to default and the DNA source was set to Arabidopsis thaliana. All other 

options were left to their default settings as well. 

Benchmark of the DNA motif tool 
In order to evaluate the sensitivity of the results returned by MEME, three datasets of 100 promoters 

containing 10, 20 and 30 times a given motif were analyzed by MEME. Each dataset had 100 

promoters randomly selected from all the tomato promoters of the genome sequence. The motif 

inserted is: CCTTATAAGG. This motif was allowed up to two random mutations every time it was 

inserted in a promoter. 

Identification of DNA motifs 
DNA motifs were searched using the MEME tool (Bailey, Williams et al. 2006), version 4.9.0. MEME 

relies on a background model to assess the distribution of the nucleotides in the DNA; from this it is 

able to find DNA motifs which are significantly different from the background. For this study, to 

generate the background model, all the promoter sequences from the tomato genome sequence 

have been extracted with the only filter that these sequences should not contain; any unknown 

nucleotide (marked as “N”), here as well the gene orientation has been taken into account. The 

background model was then computed using the “fasta-get-markov” program provided with MEME 

with an order of Markov model of 4. 

The MEME analysis themselves have been run with the following settings, the motifs should have a 

length between 5 and 15 nucleotides, MEME should return the first 10 motifs found, the distribution 

model used was the default Zero Or One Per Sequence (ZOOPS). The maxsize parameter has been set 

to 1000000 to reserve enough memory to process the datasets. 

To assess its performance, two controls have been analyzed. In the first control, 200 promoter 

sequences randomly picked from the tomato genome have been run through MEME. In the second 

control, 200 promoter sequences were randomly picked from the tomato genome and a defined 

motif was inserted at a random position in the sequence. The motif inserted was ten nucleotides 

long and was allowed to have up to two nucleotides varying (position and variation being random). 

Finally, MEME was run on the promoter sequences of the genes found to be differentially expressed 

by the Dunnett test and cleaned by RepeatMasker. 

Identification of related transcription factor binding sites 
TOMTOM has been used on the significant motifs found by MEME to determine to likelihood of the 

motif to be a known transcription factor binding site. TOMTOM was run using the defaults settings, 

thus searched the motifs in the JASPAR (Sandelin, Alkema et al. 2004) and UniPROBE (Newburger and 

Bulyk 2009) databases. 

The number of significant hits returned by TOMTOM for each motif found is presented in the results 

section. 

Associating GO terms to motif 
GOMO has been used to try to assess if the motif found is actually related to transcription or 

translation. GOMO was run using the “Multiple species” category which gave access to the 
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“Arabidopsis thaliana (plant)” database. The significant threshold used was the default one, q-value 

lower or equal to 0.05. 

The main GO terms found to be associated with the significant motifs found by MEME are presented 

in the results section. 

Analysis of the genes having a potential transcription factor binding site 
Using Annotex (Chapter 5), the annotation of the genes found to share a potential transcription 

factor binding site has been retrieved and integrated to represent the most common GO terms, 

Pathway and Protein associated with these genes. The analysis has been performed using a custom-

made python program that retrieved the information for each gene from Annotex using the JSON 

export function and integrate it. 

Results 

Results of the gene expression analysis 
Six genotypes from the S. chmielewskii introgression line population and the mother of the original 

cross were analyzed for gene expression using the EUTOM3 Affymetrix micro-array (Figure 1). Using a 

Dunnett test, the different replicates were compared to the replicates of cv Moneyberg. The total 

number of differentially expressed genes was between 139 and 540, of which 81 to 482 were trans, 

depending on the introgression line (Table 1). 

Table 1: Table presenting for each genotypes, the markers flanking the main introgression, the number of genes found to 
be differentially expressed by the Dunnett tests (p-value < 0.01) and for these genes how many are located within the 
introgression and how many are located outside the introgression. The last row indicates how many known transcription 
factors are differently expressed in total and, between brackets, within the introgression (cis). 

 TKM5U0580 TKM5U0057 TKM5U0595 TKM5U623 TKM5U637 TKM6U0051 

Introgression 
(markers) 

Seq-rs6990, 
seq-rs7635 

Seq-rs9022, 
seq-rs7338 

Seq-rs7994, 
Seq-rs5154 

Seq-
rs4549, 
seq-rs4547 

Seq-
rs7089, 
seq-rs5387 

Seq-rs2904, 
seq-rs5505 

Genes 
differentially 
expressed 

139 191 220 249 278 504 

In an 
introgression: 
Cis Genes 

58 73 124 16 100 22 

Outside an 
introgression: 
Trans Genes 

81 118 96 233 178 482 

Transcription 
factor 
differentially 
expressed 
(cis TF) 

2 (2) 10 (4) 12 (5) 15 (2) 8 (4) 0 (0) 

The position of the genes found to be differentially expressed was compared to the position of the 

introgression segment on the genome. The number of cis and trans genes was counted (Table 1). 

Trans genes are genes outside the introgressions from S. chmielewskii, thus on a Moneyberg 

background but behave differentially compared to Moneyberg. Focusing on potential transcription 
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factors, we searched for transcription factor binding sites in the promoter regions of the trans genes 

differentially expressed. 

Results of the MEME benchmark 
In order to assess the sensitivity of MEME we created three datasets each of 100 random promoter 

extracted from the genome sequence and in which a motif were inserted in 10, 20 and 30 promoter 

sequences (Table 2). The motif was allowed up to two random point mutations for each insertion.  

Table 2: Table describing the results of the small benchmark of MEME performed on 100 random promoter sequences 
from the tomato genome in which a motif was inserted in 10, 20 or 30 sequences. The motif was allowed to have up to 
two point mutations for each insertion. The second column gives the number of significant motifs found in this dataset; 
the third column provides information on whether or not the inserted motif was found and if so where in the results. 

 Number of motifs significant Motif inserted 

10 motifs inserted 3 Not found 

20 motifs inserted 0 First result but not significant 

30 motifs inserted 2 The Most significant motif 

The motif could not be found in the dataset containing 10 motifs in 100 sequences, but could be 

found in the datasets containing 20 and 30 motifs. 

Results of the MEME analysis 
For each genotype, the promoter sequence of the trans genes differentially expressed has been 

extracted from the tomato genome sequence and sequence repeats were masked with 

RepeatMasker. MEME analysis identified in total 17 DNA motifs overrepresented in promoter 

sequences of the trans genes (Table 3). 

The results of the MEME analyses are presented in Table 3 and Supplementary Table 1. A more 

detailed description of these results will be given here, focusing on the genotypes TMK5U0580 and 

TKM5U0057 as an example. These two genotypes have been chosen as they have relatively small 

introgressions and a single motif was identified in the promoter region of their trans genes, and 

these motifs score differently in TOMTOM and GOMO. 

The genotype TMK5U0580 has 58 cis genes and 81 trans genes found differentially expressed by the 

Dunnett test. The genotype TKM5U0057 has 73 cis genes and 118 trans genes found differentially 

expressed by the Dunnett test. So TMK5U0580 has 81 genes potentially regulated by a regulatory 

element present in its introgression and TKM5U0057 has 118 genes potentially regulated by a 

regulatory element present in its introgression. These trans genes putatively contain novel 

transcription factors binding sites. 

MEME identified one significant motif in the promoter region of the 81 trans genes of line 

TKM5U0580. This motif is present in 36 of the 81 genes evaluated. TOMTOM did not find any similar 

transcription factor binding sites (with E-value < 1). GOMO associated, to this motif, five different GO 

terms, including “Transcription factor activity”. 

MEME found one significant motif in the promoter region of the 118 trans genes of TKM5U0057. This 

motif is present in 18 of the 118 genes considered. TOMTOM found 9 similar transcription factor 

binding sites (with E-value < 1). GOMO associated, to this motif, three different GO terms including 

“Transcription factor activity”. 
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TKM5U0580 has 36 genes with a common potential transcription factor binding site (Table 3). These 

36 genes are annotated with a total of 14 different GO terms, two different pathways and 58 

different proteins. TKM5U0057 has 18 genes with a common potential transcription factor binding 

site. These 18 genes are annotated with a total of five different GO terms and 23 different proteins. 

The annotation of the genes containing in their promoter the motifs found is presented in Table 4 

and Supplementary Table 2. 

Using RT-PCR, the expression of known transcription factors was measured (data not shown). The 

total number of cis and trans transcription factors differentially expressed was counted (Table 1). The 

introgression segment of TMK5U0580 contains two differentially expressed cis transcription factors, 

which may regulate the 81 trans genes found differentially expressed. TKM5U0057 has four 

differentially expressed cis transcription factors which may regulate the 118 trans genes differentially 

expressed.  

Table 3: Table summarizing the results of the motifs found by MEME analysis for each genotype. These motifs have been 
found in the trans genes found differentially expressed and thus eventually regulated by a shared transcription factor. 
The motifs were then annotated with TOMTOM and GOMO providing some information whether the motifs are similar 
to known motifs and whether they are related to transcription or translation processes. The line presenting the number 
of significant hits on TOMTOM includes the number of significant hits with the thresholds of E-value < 10 (default), E-
value < 5 and E-value < 1 (where the E-value is the expected number of false positives in the matches). 

 TKM5U0580 TKM5U0057 TKM5U0595 TKM5U623 TKM5U637 TKM6U0051 

Significant 
motifs 

1 1 1 4 6 4 

E-value of 
these motifs 

1.3 e-9 3.5 e-13 1.5 e-9 2.3e-45 
1.3e-10 
4.4e-4 
2.4e-8 

8.5e-16 
1.1e-6 
8.9e-4 
5.1e-8 
1.1e-4 
1.2e-3 

1.2e-79 
9.2e-30 
1.4e-9 
7.3e-7 

Number of 
promoter 
sequences 
with the 
motifs 

36 18 28 104 
18 
21 
44 

72 
10 
22 
26 
16 
15 

133 
95 
29 
22 

Number of 
significant 
hits on 
TOMTOM 
with the 
threshold: 
E-value <10 
E-value < 5 
E-value < 1 

4 / 1 / 0 33 / 27 / 9 23 / 16 / 8 21 / 14 / 9 
29 / 21 / 8 
36 / 23 / 3 
5 / 2 / 1 

16 / 11 / 4 
11 / 6 / 3 
16 /9 / 5 
8 / 5 / 3 
30 / 25 / 14 
4 / 1 / 1 

26 / 22 / 16 
7 /2 / 0 
19 / 11 / 1 
22 / 15 / 6 

Transcription 
or 
Translation 
related GO 
found in 
GOMO 
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Table 4: The annotation of the genes having a common potential transcription factor binding site for the genotypes 
TKM5U0580 and TKM5U0057. It presents the list of GO terms, pathways and proteins associated with these genes and 
their frequency. The 36 genes of TKM5U0580 are thus associated with 58 different proteins and two of these 36 genes 
are associated with “Uncharacterized mitochondrial protein AtMg01410”. (The information for all motifs in all genotypes 
can be found in Supplementary Table 2) 

TKM5U0580 (36 genes) TKM5U0057 (18 genes) 

GO terms 

Ribosome 1/14 RNA processing 2/5 
oxidation-reduction process 1/14 regulation of transcription, 

DNA-dependent 
1/5 

zinc ion binding 1/14 RNA binding 1/5 
ATP binding 1/14 DNA binding 1/5 
receptor activity 1/14   
cell redox homeostasis 1/14   
intrinsic to membrane 1/14   
DNA binding 1/14   
enzyme regulator activity 1/14   
heme binding 1/14   
Membrane 1/14   
proton-transporting ATP synthase 

complex, catalytic core F(1) 

1/14   

Mitochondrion 1/14   
copper ion binding 1/14   

Pathways 

Pigment biosynthesis; 

anthocyanin biosynthesis 

1/2   

Protein modification; protein 

ubiquitination 

1/2   

Proteins 

Uncharacterized mitochondrial 

protein AtMg01410 

2/58 Putative CCA tRNA 

nucleotidyltransferase 1 
2/23 

Uncharacterized mitochondrial 

protein AtMg01110 

2/58 Putative CCA tRNA 

nucleotidyltransferase 2 
2/23 

Uncharacterized 8.8 kDa protein 

in rps12-tRNA-Val intergenic 

region 

1/58 CCA-adding enzyme 2/23 

ATP synthase gamma chain 1, 

chloroplastic 

1/58 Probable poly(A) polymerase 2/23 

Flavonoid 3',5'-hydroxylase 1/58 CCA tRNA nucleotidyltransferase, 

mitochondrial 
2/23 

NADH-ubiquinone oxidoreductase 

chain 2 

1/58 F-box protein At3g07870 1/23 

Disease resistance protein 

At4g27190 

1/58 Ethylene-responsive 

transcription factor ERF008 
1/23 

ATP synthase gamma chain 2, 

chloroplastic 

1/58 Ethylene-responsive 

transcription factor ERF018 
1/23 

TMV resistance protein N 1/58 Ethylene-responsive 

transcription factor RAP2-9 
1/23 

RING-H2 finger protein ATL51 1/58 CCA tRNA nucleotidyltransferase 

1, mitochondrial 
1/23 
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Discussion 
The aim of this experiment was to analyze the promoter regions of trans genes differentially 

expressed for potential transcription factor binding sites. In a “classic” transcriptomics experiment, 

gene expression is measured in different genotypes or conditions and genes differentially expressed 

are then extracted and analyzed with regards to the conditions or phenotypes (Figure 2 a). In this 

experiment the workflow differed after the genes differentially expressed have been retrieved. The 

position of these genes has then been assessed on the tomato genome sequence and each gene 

differentially expressed has been classified either as cis genes (located within an introgression 

region) or as trans genes (located outside of an introgression region). The trans genes behave 

differentially while in a similar genomic background and might thus be under the influence of a 

regulatory element located within the introgressions. They have thus been further analyzed for DNA 

motifs, potential transcription factor binding sites, in their promoter region (Figure 2 b). 

 

Figure 2: Schematic representation of the workflow followed in (a) a “classic” transcriptomics experiment used to find 
out which genes are differentially expressed between different genotypes or condition and (b) the current experiment 
where the differentially expressed genes have been mapped onto the genome sequence, determined whether they are 
cis or trans genes and the trans genes considered for a DNA motif search. 

The presence or absence of the DNA motifs splits the promoters into different groups. A functional 

analysis of these groups would provide insight in the presence of regulatory elements within the 

introgression segment that regulates the expression of genes outside the introgression and whether 

these regulatory elements influence a complete pathway or biological process. TMK5U0580 and 
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TKM5U0057 have both had a single potential transcription factor binding site found. The current 

level of annotation of the tomato genome does not allow drawing any firm conclusions from the 

integrated data. However, from the list of GO terms associated to these genes in both genotypes, 

there is a clear link to DNA binding and translation regulation, but overall, the annotation is too 

incomplete at this stage to speculate which processes these genes belong to and thus which 

processes are regulated by regulatory elements present in the introgressions. 

From our benchmark, we concluded that MEME considers the nucleotides composing the motif as 

well as the number of occurrences of a motif to assess its significance. From our benchmark it 

appears that a motif should be present at least in 20% of the promoters to be found, but depending 

on the set of sequences analyzed it might require a higher frequency to be found significant. This 

implies that MEME might miss motifs which occur in a low frequency. Grouping promoters before 

performing the motif search might circumvent this, for example, by creating sub-sets of similar 

promoters it might increase the frequency of motifs involved in a small process which are otherwise 

lost in the larger sets. The promoters could be split using the genome annotation (the GO terms or 

pathways associated with the genes), however, the genome annotation might not be sufficient to 

perform this clustering as we have seen it is not yet sufficient to provide information regarding the 

biological processes a gene set, sharing a DNA motif, is involved in. Another approach for the 

clustering would be to build the cluster based on gene expression but this would require more gene 

expression analysis and according to Yeung, Medvedovic et al. (2004) this is strongly dependent on 

the number of micro-arrays used for the clustering. In our case we only had four replicates per 

genotype which is not sufficient to perform a good clustering based on the gene expression; Yeung, 

Medvedovic et al. (2004) mentions the optimal is around 50 to 100 (on yeast). In their study, van 

Helden, Andre et al. (1998) split the promoters into different clusters sequence based. This last 

approach might help creating smaller sets of promoters to run MEME on, but the length of the 

sequence considered might also just render the clustering inefficient.  

Tompa, Li et al. (2005) assessed the prediction of MEME and 12 other DNA motif prediction tools. 

From this benchmark one can conclude that the sensitivity of MEME on the negative control varies 

between 0.98 and 0.99, meaning that MEME tends to find one to two motifs in sequence that do not 

contain any known motif. This implies that there are likely false positive motifs in our results. One of 

the conclusions of the study of Tompa, Li et al. (2005), is that these 13 transcription factor binding 

site prediction tools seem to be complementary to each other in their approaches and they 

recommended using MEME with Weeder (Pavesi, Mereghetti et al. 2004). However, Weeder seems 

not to be maintained anymore, the last release available appears to be from 2009 while MEME is still 

maintained; the version 4.9.0 has been released in October 2012 and updated in January 2013. It 

would be interesting to re-perform their benchmark and see how current tools (e.g.: MEME, RSAT) 

perform, which due to time constraints we have not been able to do for this chapter. 

From the results of the TOMTOM analysis on each of the 17 putative identified transcription factor 

binding sites, it can be estimated that 12 of the motifs were already identified in other species, three 

motifs are found similar to only one known transcription factor binding site, and thus eventually less 

common. The remaining two motifs are the motifs found in TKM5U0580 and the second motif found 

in TKM6U0051. The motif found in TKM5U0580 has an E-value of 1.3e-9 and is associated by GOMO 

with the GO term “Transcription factor Activity”, however it is the only motif found for this genotype. 

The second motif found in TKM6U0051 has an E-value of 9.2e-30 and is not associated with any 
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transcription related GO terms, on the other hand, it is one of four motifs found. According to the 

sensitivity of MEME found on negative control data sets (Tompa, Li et al. 2005), these motifs might 

be false positives or tomato specific motifs and thus would be valid candidates to investigate further. 

Only one motif was found in TKM5U0057 and TKM5U0595 however, the results from TOMTOM 

associate both motifs with nine and eight known transcription factor. These two motifs combined 

with the first motifs found in TKM5U623 and TKM6U0051 would be good motifs to confirm in the lab 

in order to assess the quality of the results produced by MEME as these four motifs have low E-value 

(especially the last two), are found by TOMTOM in a high number of known transcription factor 

binding sites and are all associated via GOMO to the GO term “Transcription factor activity”. These 

four motifs should be confirmed in the lab as they combine all the criteria to be involved in 

transcription regulation. 

Some motifs, such as the second motif found for TKM5U0637, are similar to known transcription 

factor binding sites according to TOMTOM (three in this case), however, GOMO does not associate 

any transcription factor related GO term. TOMTOM is ran against the JASPAR and UniPROBE 

databases which are not species specific while GOMO is ran against sequences from the Arabidopsis 

thaliana genome. This may explain these results; these motifs are similar to known transcription 

factor binding sites but have not been identified in Arabidopsis thaliana. 

Including transcription factor expression data measured by RT-PCR (data not shown), provides a list 

of transcription factors differentially expressed and potentially regulating the genes found in the 

present study (Table 1). The total number of transcription factors found differentially expressed 

varies from 15 in TKM5U623 which has 274 genes differentially expressed in total to 0 in TKM6U0051 

which has 504 genes differentially expressed. This implies that TKM6U0051 although having the 

largest introgression segment (Figure 1) has no transcription factors differentially expressed on the 

array. This reflects that either the micro-array did not contain probes for all known transcription 

factors or that some transcription factors of tomato are still unknown. The tomato genome 

annotation lists a number of transcription factors, some of which might be missing on the array. 

Alternatively, the expression of trans genes might also be the result of other regulatory mechanisms 

such as microRNA. 

In this analysis, we only focused on potential transcription factor binding sites while for the gene 

expression analysis mRNA is transformed into cDNA which is placed on the micro-array. This implies 

that some level of post-transcriptional regulation might already have happened and regulatory 

elements such as microRNA should also be considered. MicroRNAs are small (19 to 25 nucleotide) 

(Lee, Kim et al. 2004), non-coding, single stranded pieces of RNA binding to specific messenger RNA 

and preventing their translation into proteins (Mack 2007). Several articles have been published in 

which microRNAs in tomato have been investigated (Yin, Li et al. 2008; Zuo, Zhu et al. 2012; Karlova, 

van Haarst et al. 2013), combining information about the localization of these microRNA genes with 

the list of genes differentially expressed would allow finding microRNA genes outside of the 

introgressions and potentially regulated by genes within the introgressions or microRNA within the 

introgression and regulating genes outside of the introgression. Other regulatory systems such as 

DNA methylation influence the expression of genes as well (Saze, Tsugane et al. 2012). These genes 

will not appear as differentially expressed in this experiment as their expression is repressed pre-
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transcriptionally and as such no mRNA is created, transformed into cDNA and present on the micro-

array. 

The use of introgression lines allowed us to investigate the interaction between the genes present in 

this integration and the other genes of the genomes. However, only a portion of the genome was 

covered by the introgressions. Being able to re-run this analysis on a larger set of genotypes, each 

having a small introgression segment would help finding more potential transcription factor binding 

sites. Reducing the introgression segment would help reducing the list of potential transcription 

factors influencing the genes outside of the introgression. Finally, being able to study these IL at 

different growth stages, i.e.: having replicates of each genotype at different growth stages could 

provide insight in the gene regulatory network over time, for example during fruit ripening. 

Combining introgression lines with gene expression data also means that a small subset of the data 

generated is used for transcription factor binding sites. With this experiment we showed that it is 

possible to search for transcription factor binding sites by combining gene expression and genomic 

structure but we believe that this should not be the first goal of the experiment while other 

techniques such as chip-chip or chip-seq exist and provide much more information regarding the 

gene regulatory network of an organism. 

Conclusion 
In this study we identified 17 different DNA motifs in the promoter regions of trans genes of a set of 

six introgression lines. 12 of these motifs are similar to known transcription factors, four of these 

seem to be well-known and could be used to assess the validity of the results. Using the tomato 

genome annotation, version SL2.40, it was not possible to assess the processes in which the genes 

differentially expressed might be involved. Further experiments and improvement of the genome 

annotation should help in this aspect. The potential transcription factor binding sites will need to be 

confirmed in the lab by further experimentation. If the relation between transcription factor and 

transcription factor binding sites can be found, it would allow expanding the gene regulatory network 

information on tomato, information which might then be integrated into Marker2sequence (Chibon, 

Schoof et al. 2012) and used to give additional insight into potential candidate genes regulating a 

QTL. 
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Supplementary Table 1: Summary of the output of the MEME analysis. It presents for each genotype, the significant motifs (E-value < 0.05) found with their e-value and their number of 
sites as well as the number of significant hits found for this motif on TOMTOM ( E-value < 10 (default) / E-value < 5 / E-value < 1, where the E-value is the expected number of false 
positives in the matches) and the significant GO terms associated with GOMO. The TOMTOM hits provide information on the number of known transcription factor to which this motif is 
sequence-wise close. The different E-value are used to provide information on how reliable these hits to known transcription factor are, the lower the e-value, the lower the number of 
false positive returned. GOMO is used to provide information on what type of GO term could be associated to this DNA motif using the Arabidopsis thaliana sequence as reference. The 
combination of TOMTOM and GOMO provides information regarding the novelty of the motif and the probability that this motif is involved in transcription regulation. 

Genotype Significant motif found Text motif E-value Number of 
sites 

Number of 
significant hit 
on TOMTOM 

Significant GO term 
associated with GOMO 

TKM5U0580 

  

[GTC][TC]C[TC]C[CTG
][TA][TG][CG]TCC 

1.3e-009 36 4 / 1 / 0 Transcription factor Activity 
Nucleus 
Chloroplast 
Microtubule motor activity 
Protein binding 

TKM5U0057 

 

[CG][TC]C[GCA]C[CA]
[CA][CT]C[CG][ACT]C
[TGC]C[TG] 

3.5e-013 18 33 / 27 / 9 Chloroplast 
Transcription factor activity 
Microtubule motor activity 

TKM5U0595 

 

[CA][CT]C[CT]C[ATC][
TC][TA]TCC[CT]C[TA]
C  

1.5E-009 28 23 / 16 / 8 Transcription factor activity 
Chloroplast 
Regulation of transcription 
Nucleus 
Leaf development 

TKM5U0623 

 

C[CT]C[TC][TCA][TAC
][CAT][CT][CT][CT]C[
TA][CT][TC]C  

2.3e-045 104 21 / 14 / 9 Transcription factor activity 
Nucleus 
Chloroplast 
Plasma membrane 
Leaf development 
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[GC]G[GT][GA][GA]T[

TG]GGG[TG]T[GC]GG  

1.3e-010 18 29 / 21 / 8 - 

 

 

C[TAG]CCG[CG][CA][
GT][CA]C[CGA][AG][
CG][CA][AC] 

4.4e-004 21 36 / 23 / 3 Chloroplast envelope 
Chloroplast stroma 
Mitochondrial inner membrane 
Chloroplast thylakoid membrane 
Translation 

 

 
 

C[TC]C[CT][AT][CG][T
C]T[CT][TA][TC]C 

2.4e-008 44 5 / 2 / 1 ATP binding 
Chloroplast envelope 
Carotenoid biosynthetic process 
Chloroplast stroma 

TKM5U0637 

 

C[CT]C[TAC][ATC][CT
][TA][CT]C[CT]CC  

8.5e-016 72 16 / 11 / 4 Transcription factor activity 
Nucleus 
Chloroplast envelope 
Microtubule motor activity 
Chloroplast stroma 

 

 

[GA][GC]A[GC][AG][
GC]TG[GC]CGA[GT][C
T][GT] 

1.1e-006 10 11 / 6 / 3 Chloroplast 
Mitochondrion 

 

 

G[GT][GT]T[TG][GTC]
G[GC]G[TG][TC][AGT
]GGG 

8.9e-004 22 16 / 9 / 5 - 
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[GC]C[ACG]G[AC][TA

][GT][CA]TGC[AT][GC

][CG][TGC] 

5.1e-008 26 8 / 5 /3 Mitochondrion 
Structural constituent of ribosome 
Translation 
Ribosome 
Chloroplast thylakoid membrane 

 

 
 

G[CA]CACGTGTC 1.1 e-004 16 30 / 25 / 14 Chlorophyll binding 
Chloroplast thylakoid membrane 
Plastoglobule 
Response to abscisic acid stimulus 
Monooxygenase activity 

 

 

T[CT]TC[TA][CA][CGA

TA]CT[CT][TCA]CT[CT

][CG] 

1.2 e-003 15 4 / 1 / 1 

Transcription factor activity 
Nucleus 
Plasma membrane 
Protein serine/threonine kinase 
activity 
Protein binding 

TKM6U0051 

  

C[CT]CC[TA][CT][CT][

CTA]C[TC][TC][CT][CT

][CT]C  

1.2 e-079 133 26 / 22 / 16 Transcription factor activity 
Nucleus 
Microtubule motor activity 
Chloroplast thylakoid membrane 
Chloroplast envelope 

 

  

[TC]TCT[CT][TC][AT]T
[TC]TTCT[TC]C 

9.2 e-030 95 7 / 2 / 0 Chloroplast 
Plasma membrane 
Nucleus 
Transmembrane receptor protein 
tyrosine kinase signaling pathway 
Protein serine/threonine kinase 
activity 
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G[GTACA][CG][AGT]C
CG[GA][CT]G[AG]C 

1.4 e-009 29 19 / 11 / 1 Mitochondrion 
Chloroplast 
Nucleotide binding 

 

  

GTGG[TG][TG][GT][G

T]G[GT]G[GC][TAG]G

G 

7.3 e-007 22 22 / 15 / 6 Chloroplast 
Mitochondrion 

 

  



Identification of transcription factor binding sites in tomato 

79 
 

Supplementary Table 2: The annotation of the genes having a common potential transcription factor binding. It presents the list of GO terms, pathways and proteins associated with these 
genes and their frequency. 

 TKM5U0580 (36 genes) TKM5U0057 (18 genes) TKM5U0595 (28 genes)  

G
O
 
T
e
r
m
s
 

Ribosome (CC) 1/14 RNA processing (BP) 2/5 ATP binding 1/6   
oxidation-reduction process 

(BP) 

1/14 regulation of 

transcription, DNA-

dependent (BP) 

1/5 transcription repressor activity 1/6   

zinc ion binding (MF) 1/14 RNA binding (MF) 1/5 protein binding 1/6   
ATP binding (MF) 1/14 DNA binding (MF) 1/5 regulation of transcription, DNA-

dependent 
1/6   

receptor activity (MF) 1/14   DNA binding 1/6   
cell redox homeostasis (BP) 1/14   Exocyst 1/6   
intrinsic to membrane (CC) 1/14       
DNA binding (MF) 1/14       
enzyme regulator activity 

(MF) 

1/14       

heme binding (MF) 1/14       

P
at

h
w

ay
s Pigment biosynthesis; 

anthocyanin biosynthesis 

1/2       

Protein modification; protein 

ubiquitination 

1/2       

P
r
o
t
e
i
n
s
 

Uncharacterized mitochondrial 

protein AtMg01410 

2/58 Putative CCA tRNA 

nucleotidyltransferase 

1 

2/23 B3 domain-containing 

transcription factor NGA3 
1/16   

Uncharacterized mitochondrial 

protein AtMg01110 

2/58 Putative CCA tRNA 

nucleotidyltransferase 

2 

2/23 AP2/ERF and B3 domain-

containing transcription 

factor ARF14 

1/16   

Uncharacterized 8.8 kDa 

protein in rps12-tRNA-Val 

intergenic region 

1/58 CCA-adding enzyme 2/23 97 kDa heat shock protein 1/16   

ATP synthase gamma chain 1, 

chloroplastic 

1/58 CCA tRNA 

nucleotidyltransferase

, mitochondrial  

2/23 AP2/ERF and B3 domain-

containing transcription 

factor RAV1 

1/16   

Flavonoid 3',5'-hydroxylase 1/58 Probable poly(A) 

polymerase 
2/23 F-box protein At3g07870 1/16   

NADH-ubiquinone 

oxidoreductase chain 2 

1/58 F-box protein 

At3g07870 
1/23 B3 domain-containing 

protein Os02g0764100 
1/16   

Disease resistance protein 

At4g27190 

1/58 Ethylene-responsive 

transcription factor 

ERF008 

1/23 AP2/ERF and B3 domain-

containing protein 

Os05g0549800 

1/16   

ATP synthase gamma chain 2, 

chloroplastic 

1/58 Ethylene-responsive 

transcription factor 

ERF018 

1/23 Heat shock protein 105 

kDa 
1/16   

TMV resistance protein N 1/58 Ethylene-responsive 

transcription factor 

RAP2-9 

1/23 Putative AP2/ERF and B3 

domain-containing protein 

Os01g0140700 

1/16   



Chapter 5 

80 
 

RING-H2 finger protein ATL51 1/58 CCA tRNA 

nucleotidyltransferase 

1, mitochondrial 

1/23 AP2/ERF and B3 domain-

containing protein 

Os01g0141000 

1/16   
 TKM5U623 Motif 1 (104 genes) TKM5U623 Motif 2 (18 genes) TKM5U623 Motif 3 (21 genes) TKM5U623 Motif 4 (21 genes) 

G
O

 T
er

m
s 

protein binding 3/29 oxidation-reduction process 1/3 cytoplasm 2/8 ribosome 2/11 

oxidoreductase activity 2/29 protein phosphorylation 1/3 oxidation-reduction 

process 
1/8 RS domain binding 1/11 

calcium ion binding 2/29 nucleus 1/3 protein binding 1/8 adenylosuccinate synthase 

activity 
1/11 

integral to membrane 2/29   adenylosuccinate synthase 

activity 
1/8 cytoplasm 1/11 

lipid metabolic process 2/29   DNA binding 1/8 phosphatidylethanolamine 

binding 
1/11 

nucleus 1/29   asparagine-tRNA ligase 

activity 
1/8 signal transduction 1/11 

intracellular transport 1/29   integral to membrane 1/8 nucleic acid binding 1/11 

signal transduction 1/29     calcium ion binding 1/11 

phosphatidylethanolamine binding 1/29     AMP-activated protein kinase 

activity 
1/11 

DNA binding 1/29     integral to membrane 1/11 

P
at

h
w

ay
s 

Secondary metabolite biosynthesis; 
flavonoid biosynthesis. 

2/5   Purine metabolism; AMP 

biosynthesis via de novo 

pathway; AMP from IMP: 

step ½ 

1/1 Purine metabolism; AMP 

biosynthesis via de novo 

pathway; AMP from IMP: step ½ 

1/1 

Alkaloid biosynthesis; 

vindoline biosynthesis; 

vindoline from tabersonine: 

step 5/6 

1/5       

Pigment biosynthesis; 

anthocyanin biosynthesis 

1/5       

Alkaloid biosynthesis; 

scopolamine biosynthesis 

1/5       

P
r
o
t
e
i
n
s
 

1-aminocyclopropane-1-

carboxylate oxidase homolog 3 

2/134 Growth-regulating factor 2 1/17 Transcriptional activator Myb 1/27 Adenylosuccinate synthetase 
 

1/55 

1-aminocyclopropane-1-

carboxylate oxidase homolog 1 

2/134 LRR receptor-like 
serine/threonine-protein kinase 
RCH1 

1/17 Oleosin Bn-V 1/27 Calcineurin B-like protein 2 1/55 

Feruloyl CoA ortho-

hydroxylase 1 

2/134 Probable phospholipid 
hydroperoxide glutathione 
peroxidase 6, mitochondrial * 
(1/17) 
Glutathione peroxidase 1 

1/17 Myb-related protein B 1/27 Pre-mRNA-splicing factor SF2 1/55 

Feruloyl CoA ortho-

hydroxylase 2 

2/134 Probable LRR receptor-like 
serine/threonine-protein kinase 
At1g34110 

1/17 Myb-related protein A 1/27 CBL-interacting protein kinase 10 1/55 

Naringenin,2-oxoglutarate 3- 2/134 Probable glutathione peroxidase 1/17 Adenylosuccinate synthetase  1/27 CBL-interacting serine/threonine-protein 1/55 



Identification of transcription factor binding sites in tomato 

81 
 

dioxygenase 8 2, chloroplastic kinase 19 
Flavanone 3-dioxygenase 2/134 Glutathione peroxidase 1/17 Oleosin Bn-III 1/27 Oleosin Bn-V 1/55 
Thalianol synthase 1/134 Probable phospholipid 

hydroperoxide glutathione 
peroxidase 

1/17 Catalase 1/27 UPF0098 protein PYRAB11530 1/55 

GDSL esterase/lipase 

At3g14820 

1/134 Probable LRR receptor-like 
serine/threonine-protein kinase 
At4g26540 

1/17 Adenylosuccinate synthetase isozyme 
1 

1/27 Serine/arginine-rich splicing factor 1A 1/55 

2'-deoxymugineic-acid 2'-

dioxygenase 

1/134 Leucine-rich repeat receptor-like 
tyrosine-protein kinase 
At2g41820 

1/17 Oleosin Zm-I 1/27 UPF0098 protein 
CPn_0877/CP_0992/CPj0877/CpB0906 

1/55 

Calcineurin B-like protein 2 1/134 LRR receptor-like 
serine/threonine-protein kinase 
GSO1 

1/17 BRI1 kinase inhibitor 1 1/27 60S ribosomal protein L4 1/55 
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 TKM5U637 Motif 1 (72 genes) TKM5U637 Motif 2 (10 genes) TKM5U637 Motif 3 (22 genes) TKM5U637 Motif 4 (26 genes) 
G
O
 
T
e
r
m
s
 

RNA binding 2/13   regulation of 

transcription, DNA-

dependent 

1/3 embryo development 2/3 

RNA processing 2/13   ATP binding 1/3 integral to membrane 1/3 
integral to membrane 2/13   serine-type endopeptidase 

inhibitor activity 
1/3   

regulation of transcription, 

DNA-dependent 

1/13       

zinc ion binding 1/13       

retrograde transport, 

endosome to Golgi 

1/13       

lipid metabolic process 1/13       
membrane 1/13       
serine-type endopeptidase 

inhibitor activity 

1/13       

binding 1/13       

P
at

h
w

ay
s Protein modification; protein 

ubiquitination 

2/3       

Lipid metabolism; fatty acid 

biosynthesis 

1/3       

P
r
o
t
e
i
n
s
 

CCA tRNA nucleotidyltransferase, 
mitochondrial 

2/72 Late embryogenesis 

abundant protein D-29 
1/1 ABSCISIC ACID-INSENSITIVE 

5-like protein 2 
1/17 Protein LE25 1/4 

CCA-adding enzyme 2/72   ABSCISIC ACID-INSENSITIVE 

5-like protein 3 
1/17 11 kDa late embryogenesis 

abundant protein 
1/4 

Probable poly(A) polymerase 2/72   ABSCISIC ACID-INSENSITIVE 

5-like protein 1 
1/17 Late embryogenesis abundant 

protein D-113 
1/4 

Putative CCA tRNA nucleotidyltransferase 
1 

2/72   ABSCISIC ACID-INSENSITIVE 

5-like protein 6 
1/17 18 kDa seed maturation protein 1/4 

Putative CCA tRNA nucleotidyltransferase 
2 

2/72   ABSCISIC ACID-INSENSITIVE 

5-like protein 7 
1/17   

ABSCISIC ACID-INSENSITIVE 5-like protein 2 1/72   ABSCISIC ACID-INSENSITIVE 

5-like protein 4 
1/17   

ABSCISIC ACID-INSENSITIVE 5-like protein 3 1/72   
ABSCISIC ACID-INSENSITIVE 

5-like protein 5 
1/17   

ABSCISIC ACID-INSENSITIVE 5-like protein 1 1/72   ABSCISIC ACID-INSENSITIVE 

5-like protein 8 
1/17   

ABSCISIC ACID-INSENSITIVE 5-like protein 6 1/72   DEAD-box ATP-dependent 

RNA helicase 34 
1/17   

ABSCISIC ACID-INSENSITIVE 5-like protein 7 1/72   K(+) efflux antiporter 3, 

chloroplastic    * (1/17) 

Eukaryotic initiation 

factor 4A-III 

1/17   
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 TKM5U637 Motif 5 (72 genes) TKM5U637 Motif 6 (10 genes)   
G

O
 T

er
m

s 

lipid metabolic process@en                             1/4 intracellular 1/2     
transferase activity, 

transferring hexosyl groups 
1/4 nitrogen compound 

metabolic process 
1/2     

integral to membrane 1/4       
transferase activity, 

transferring glycosyl groups 
1/4       

P
at

h
w

ay

s 

Glycan biosynthesis; glycogen 

biosynthesis 
1/1       

        

P
r
o
t
e
i
n
s
 

Galactinol synthase 1/6 Glutamine synthetase 

cytosolic isozyme 1-1 
1/11     

Galactinol synthase 1 1/6 Glutamine synthetase 

cytosolic isozyme 
1/11     

Uncharacterized protein R707 1/6 Glutamine synthetase 

nodule isozyme 
1/11     

Late embryogenesis abundant 

protein D-29 

1/6 Glutamine synthetase 

N-1 
1/11     

Glycogenin-1 1/6 Putative poly [ADP-

ribose] polymerase 3 
1/11     

Glycogenin-2 1/6 Glutamine synthetase 

root isozyme 1 
1/11     

  Glutamine synthetase 

cytosolic isozyme 1 
1/11     

  Glutamine synthetase 

cytosolic isozyme 2 
1/11     

  Glutamine synthetase 1/11     
  Poly [ADP-ribose] 

polymerase 3 
1/11     
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 TKM6U0051 Motif 1 (133 genes) TKM6U0051 Motif 2 (95 genes) TKM6U0051 Motif 3 (29 genes) TKM6U0051 Motif 4 (22 genes) 
G

O
 T

er
m

s 

binding 4/30 protein binding  3/30 oxidation-reduction 

process 

1/6 transferase activity, 

transferring acyl groups other 

than amino-acyl groups 

1/1 

protein binding 3/30 metabolic process 2/30 inorganic phosphate 

transmembrane transporter 

activity 

1/6   

protein phosphorylation 3/30 xyloglucan:xyloglucosy

l transferase activity 
1/30 zinc ion binding 1/6   

oxygen binding 2/30 carbohydrate metabolic 

process 
1/30 transferase activity, 

transferring acyl groups 

other than amino-acyl 

groups 

1/6   

heme binding 2/30 nucleus 1/30 catalytic activity 1/6   
zinc ion binding 2/30 endopeptidase 

inhibitor activity 
1/30 integral to membrane 1/6   

kinase activity 2/30 metal ion transport 1/30     
oxidation-reduction process 1/30 kinase activity 1/30     
cell redox homeostasis 1/30 alpha-amylase 

inhibitor activity 
1/30     

heat shock protein binding 1/30 transmembrane receptor 

protein kinase 

activity 

1/30     

P
at

h
w

ay
s 

Protein modification; protein 

ubiquitination 
4/7 Secondary metabolite 

biosynthesis; dhurrin 

biosynthesis; dhurrin 

from L-tyrosine: step 

3/3 

1/4 Amino-acid biosynthesis; 

L-isoleucine 

biosynthesis; L-

isoleucine from 2-

oxobutanoate: step 2/4 

1/3   

Amino-acid biosynthesis; L-

isoleucine biosynthesis; L-

isoleucine from 2-

oxobutanoate: step 2/4 

1/7 Amino-acid 

biosynthesis; L-

tyrosine biosynthesis; 

L-tyrosine from L-

arogenate (NADP(+) 

route): step 1/1 

1/4 Amino-acid biosynthesis; 

L-valine biosynthesis; L-

valine from pyruvate: 

step 2/4 

1/3   

Amino-acid biosynthesis; L-

valine biosynthesis; L-valine 

from pyruvate: step 2/4 

1/7 Pigment biosynthesis; 

anthocyanin 

biosynthesis 

1/4 Protein modification; 

protein ubiquitination 
1/3   

Pigment biosynthesis; 

anthocyanin biosynthesis 

1/7 Protein modification; 

protein ubiquitination 
1/4     

P
r
o
t
e
i
n
s
 

Mitochondria fission 1 

protein 

2/162 Pentatricopeptide 

repeat-containing 

protein At3g63370 

1/171 E3 ubiquitin-protein 

ligase AIP2 
1/33 Thylakoid lumenal protein 

At1g03610, chloroplastic 
1/1 

Cytochrome P450 86B1 2/162 Scarecrow-like protein 

34 
1/171 RING finger protein 126-B 1/33   

Cytochrome P450 94A1 2/162 Scarecrow-like protein 

33 
1/171 RING finger protein 126-A 1/33   

Cytochrome P450 94A2 2/162 Scarecrow-like protein 

30 
1/171 Scarecrow-like protein 34 1/33   
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Cytochrome P450 52A6 2/162 Scarecrow-like protein 

31 
1/171 Protein SAMHD1 homolog 1/33   

Cytochrome P450 52A5 2/162 Cytochrome P450 86B1 1/171 Scarecrow-like protein 33 1/33   
Cytochrome P450 704C1 2/162 Serine/threonine-

protein kinase BRI1-

like 2 

1/171 Scarecrow-like protein 30 1/33   

Probable LRR receptor-like 

serine/threonine-protein 

kinase At1g56140 

2/162 U-box domain-

containing protein 27 
1/171 Scarecrow-like protein 31 1/33   

Cytochrome P450 86A1 2/162 Serine/threonine-

protein kinase 

BCK1/SLK1/SSP31 

1/171 Scarecrow-like protein 21 1/33   

Cytochrome P450 86A2 2/162 U-box domain-

containing protein 25 
1/171 RING finger protein 126 1/33   
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Abstract 
The number of sequenced and annotated genomes has increased drastically over the last few years 

as well as the number of online resources providing information about genes, proteins or pathways. 

As more and more databases are created, cross-references between them become more and more 

important as well. These cross-references may indicate that two elements from two different 

databases are in fact the same, or that two elements from two different databases are related 

biologically or functionally. As a result, the time spent by a researcher to decipher which genes are 

involved in a certain pathway and/or related to a specific biological process has increased 

dramatically. Tools such as Marker2sequence allow exploration of a specified region of the genome 

to find genes related to a specific process or pathway. However, they do not allow a genome-wide 

search for all genes fitting specified criteria (such as genes related to a specific GO term or protein). 

Annotex offers this functionality by integrating four public resources, namely: UniProt, GO, Rhea and 

ChEBI with the genome annotations of potato and tomato. Annotex allows querying any biological 

entity or annotation (gene, protein, pathway, GO term, publications, biochemical reaction, 

metabolite) from almost any biological entity or annotation (gene, protein, pathway, GO term, 

metabolite). By integrating these different resources, Annotex also shows the current state of data 

and resources with regards to data integration. 

Annotex is freely available at: http://www.plantbreeding.wur.nl/BreeDB/annotex/ 

Introduction 
Every year, the number of biological databases available on the Web is increasing. The journal 

Nucleic Acid Research (NAR) publishes a yearly issue dedicated to databases. In its latest issue, NAR 

announced 1512 biological databases, 132 more than in 2012 (Fernández-Suárez and Galperin 2013). 

We can distinguish two distinct classes of databases. The first type of databases contains biological 

information such as genes (Maglott, Ostell et al. 2005; Flicek, Ahmed et al. 2013), proteins (The 

UniProt Consortium 2013), metabolites (Wishart, Tzur et al. 2007; Matos de, Alcantara et al. 2010), 

or biochemical reactions (Kanehisa and Goto 2000; Caspi, Altman et al. 2010; Alcantara, Axelsen et al. 

2012). Biological evidences link together elements from different databases. For example, genes 

encode for proteins. The link between, for example, a gene and its corresponding protein is called 

cross-reference in database terms. The second set of databases contains information about biological 

concepts. These ontologies are a sort of dictionaries, used to define concepts and relations between 

them (Gruber 1993). One example is the Gene Ontology (Ashburner, Ball et al. 2000) which is used as 

the central place to define concepts related to cellular location, biological processes and molecular 

functions. Genes and proteins are annotated using the GO terms, to provide insight in their location 

and their action. Ontologies are built as a hierarchical tree where each term verifies and specifies its 

parents. For example, the GO term GO:0006952 “Defense response” is a child of the GO term 

GO:0006950 “Response to stress”. So the GO term GO:0006952 is a more specific classification of 

response to stress (Figure 1). This means that the lower down the tree one goes, the more specific 

the terms are. It also allows annotating genes and proteins with generic terms when not enough 

information allows attributing them to more specific ones. It also means that when searching for the 

genes associated with a GO term, one may want to search for the gene associated with this GO term 
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but also the genes associated with all the children of this GO term as they all verify the condition of 

their parent. 

 

Figure 1: Representation of the Gene Ontology tree for the GO term GO:0006950. This term has two parents and 26 
children which themselves may have children. In total, the GO term GO:0006950 is a parent for 495 GO terms. On the 
right side of each GO term the number of genes (from UniProtKB, MGI, RGD, TAIR and SGN, etc) associated with this GO 
term or one of its children is presented.. On the left side of the GO term is presented the type of relation between the 
term and its parent, here two types are present: “I” for an “is a” relationship and “R” for a “regulates” relationship. It can 
be read as “GO:0080134 regulates GO:0006950”. (Source: http://amigo.geneontology.org/cgi-
bin/amigo/term_details?term=GO:0006950) 

Next generation sequencing has made sequencing a genome much quicker and cheaper (Mardis 

2011; Kircher 2012). As a result, the number of genomes sequenced is rapidly increasing, including a 

number of important crop species and feed animals. Examples include rice (Goff, Ricke et al. 2002; 

Yu, Hu et al. 2002), grapevine (Jaillon, Aury et al. 2007), maize (Schnable, Ware et al. 2009), apple 

(Velasco, Zharkikh et al. 2010), potato (PGSC, Xu et al. 2011), tomato (Tomato genome consortium 

2012), chicken (Chicken genome consortium 2004), swine (Groenen, Archibald et al. 2012), cow 

(Sequencing, Consortium et al. 2009) and sheep (Archibald, Cockett et al. 2010). Each of these 

genomes has been annotated with, (putative) genes models, regulatory elements, and 

polymorphisms. Genes may be annotated with cross-references to proteins, protein domains and 

gene ontology (GO) terms. The quality of this annotation is becoming a key factor in their 
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exploitation: “the value of the genome is only as good as its annotation” (Stein 2001) as the link it 

provides is a source of information when gathering information about a gene. A better annotation 

implies better links for each gene and a more accurate representation of the function of the gene in 

the organism. 

Several tools exist to browse and query a genome annotation. The first example is GBrowse (Stein, 

Mungall et al. 2002; Donlin 2009). GBrowse allows browsing of genome sequencing data with its 

associated annotations. It allows zooming into specific regions and allows searching the annotations. 

However, searching in GBrowse is only limited to annotations loaded in the GBrowse database and 

not all the other data associated to the stored information via cross-references. The second example 

is Marker2sequence (M2S) (Chibon, Schoof et al. 2012), which offers functionality to query genome 

annotations for all genes in a specified region (e.g. a quantitative trait locus). M2S allows only 

searching the genome annotations, and also includes linked data, associated via cross-references in 

the search. However, M2S only allows searching delimited genome regions. The third example is 

Ondex (Köhler, Baumbach et al. 2006). Ondex offers a way to integrate and visualize different 

resources (GO, TAIR, KEGG SGD, UniProt). However, Ondex relies on visualizing the relationships in 

the data in a graph. The interpretation of such a graph becomes very complex when large datasets, 

such as genome annotation, are loaded. None of these tools is able to, for example, easily 

interrogate the relationship between a gene and a metabolite. 

As there are many databases available online, biologists and breeders are facing the challenge to 

know which relevant information is available where, and how to use it. One solution would be to 

access all this information from a central place. This central place would provide the information 

either by a local copy of the different databases (so called data-warehouse) or by being able to 

integrate the information from the different databases on the fly. For the latter option, the different 

resources need to be interoperable. One solution to achieve this is using semantic web technology. 

The semantic web technology is designed to uniquely identify each concept and element and map 

(link) them (Berners-Lee, Hendler et al. 2001). Using this technology it would be easy to uniquely 

identify a biological element, explicit that this element is also present in other resources and provide 

complementary information by linking to other databases with an explicit relation. For example, this 

technology could be used to identify a gene present in the NCBI Entrez database, explicit that this 

gene is also described in the EMBL database and that it encodes for a known protein described in 

UniProt. Several major database providers, such as EBI and the Swiss Bioinformatics Institute, have 

seen the potential of the semantic web and do provide their resources, such as RHEA, Uniprot, GO in 

a semantic web compatible format. 

Researchers have expressed the need to, for example, easily interrogate the relationship between a 

gene and a metabolite. In a more generalized schema, a researcher might want to ask any question 

starting from one entity and obtain all results about another entity (Figure 2). This, together with the 

availability of several of the major databases in semantic format, has led to the development of 

Annotex as an easy to use tool for asking such questions.  
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Figure 2: Scheme representing the data integration performed by Annotex. The green boxes represent the different data 
sources and the red ovals represent the type of information they provide. The plain lines represent direct integration 
between the databases, while the dashed lines represent indirect integration. Indirect mapping is used here to describe a 
situation where the databases are using two different identifiers to represent the same concept/entity. The green arrows 
represent the type of information that can be provided as input, while the red arrows represent the type of information 
that can be asked as output. These arrows show how the system allows querying any type of information from almost 
any input. 

Materials and methods 
Annotex integrates protein information from UniProt (Feb 2013), biochemical compounds from 

ChEBI (version of February, 13 2013), biochemical reactions from Rhea (version of February, 13 

2013), gene ontology from GO (version of February, 12 2013) and genome annotations of tomato 

(version 2.3) (Tomato genome consortium 2012) and potato (PGSC, Xu et al. 2011) (Figure 2). 

Annotex integrates the genome annotations of potato and tomato but can be expanded to support 

any genome, provided that the genome annotation is available in the right format. Both potato and 

tomato genome annotations have been converted to a RDF representation using the gff2RDF tool 

(http://github.com/PBR/gff2RDF, (Chibon, Schoof et al. 2012)) which uses the URI provided by 

UniProt and GO to link the annotation to these resources. 

The databases (Rhea, ChEBI and UniProt) and genome annotations have been uploaded to a Virtuoso 

Open-Source Edition (version 6.1) (Erling and Mikhailov 2007) and Annotex performs the integration 

via SPARQL (Prud'hommeaux and Seaborne 2008) queries. The web interface was implemented in 

Java as part of the BreeDB framework (http://www.wageningenur.nl/en/show/BreeDB.htm). 

Results 
Annotex provides a flexible interface which allows linking any type of data to retrieve any other type 

of data and thus exploring the genome annotations integrated within the network of knowledge built 

from other resources. 

Annotex follows a two-step approach. When a user chooses an organism, enters an input, specifies 

its type and selects the desired type of output (Figure 3), Annotex searches for elements of the 
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specified type containing the specified input in their name or identifier (depending on the type of the 

input). If only one result is found, Annotex directly moves to the result page. If several results are 

found, the user is given the choice to disambiguate the input among the different possibilities (see 

first example in the examples section below). Once the user has disambiguated the input, Annotex 

shows the result page. 

 

Figure 3: Screenshot of the input box for Annotex. In the box, the user can specify the species to query (Tomato or 
Potato), the type of input given, the input itself (being an identifier or a name) and specify which type of output to 
retrieve. The available input types are: Gene, Protein, Metabolite, GO, GO and child, Pathway. The available output types 
are: Gene, Protein, Metabolite, GO, Pathway, Reaction, Article. 

Annotex is implemented as a web application with an input page, which is divided into two parts. The 

upper part contains an introduction to Annotex with a scheme outlining how the data is integrated 

and what type of information is available (Figure 2). The lower part contains the input box itself 

(Figure 3). This input box asks for four different inputs. The first parameter is a selection box listing 

the organisms available. The second parameter is another selection box listing the types of the 

information entered by the user as third parameter. The types available are: Gene, Protein, 

Metabolite, GO, GO and children, and Pathway. The third parameter is a text field in which an 

identifier from one of the integrated databases can be inserted (i.e.: the tomato gene identifier: 

Solyc06g074240 or the UniProt protein identifier Q38933), or a keyword (i.e.: molecule or GO term 

“beta-carotene”). The fourth and last parameter is a selection box specifying the type of output 

desired. The different outputs possible are: Gene, Protein, Metabolite, GO, Pathway, Reaction and 

Article. Biochemical reactions are difficult to represent in a string of characters, therefore, they are 

not supported as input type for Annotex. 

By offering the input types “GO and children” and “GO” Annotex provides a way to retrieve all the 

genes, proteins, metabolites, articles which are associated with the specified GO term and all its 

children or with the specified GO term only. 

The result page of Annotex provides a link to the specific page of each result on their provider (i.e.: 

UniProt for proteins, ChEBI for metabolites). In addition the result page offers the possibility to 

download the output either as CSV or JSON. CSV can be opened in any spreadsheet program and is a 

format familiar to the biologists while JSON is a computer-friendly format familiar to 

bioinformaticians. 

The amount of information integrated from UniProt is so large that searching for all the proteins 

having the specified keyword in their names is too slow to be integrated on a website. The only way 

to use Annotex with a protein as input is, therefore, by providing to Annotex the UniProt identifier of 

this protein. 
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Examples 
Annotex can answer a number of questions such as 1) find all genes involved in a pathway or 2) find 

genes related to a specific compound or 3) retrieve all publications related to a gene or 4) retrieving 

the GO term associated with a gene or a protein. In this section, two use-cases for Annotex will be 

discussed. 

Example 1: Beta-carotene in tomato 

Beta-carotene is an important compound in tomato. Besides its health beneficial properties (Lincoln 

and Porter 1950), it is also the compound responsible for the red color of the fruit (Ray, Moureau et 

al. 1992; Gady, Vriezen et al. 2012). This compound has therefore a dual interest for tomato breeders 

from a sales and marketing point of view. 

Previously, Quantitative Trait Analysis (QTL) studies have identified loci for beta-carotene content in 

tomato on chromosome 2, 3 and 6. For the QTL located on chromosome 3 and 6 (Paran, Goldman et 

al. 1995), the functional genes underlying the QTL are known: Solyc03g007960.1.1 on chromosome 3 

(Galpaz, Ronen et al. 2006) and Solyc06g074240.1.1 on chromosome 6 (Kilambi, Kumar et al. 2013). 

For the search for “Gene” from the “Metabolite” “beta-carotene” in the tomato organism, Annotex 

finds six different compounds having the words “beta-carotene” in their name (Figure 4), it will thus 

ask for disambiguation of the term “beta-carotene”. The compound of interest presently, is the 

compound with the ChEBI identifier 17579 for which the name is simply “beta-carotene”. For this 

specific compound, Annotex returns seven genes on the tomato genome (Figure 5). Of these seven 

genes, one is on chromosome three, one is on chromosome four, two are on chromosome six, one is 

on chromosome eight, one is on chromosome ten and the last one is on chromosome 12. It should 

be noted that the gene found on chromosome three is the known candidate gene (Galpaz, Ronen et 

al. 2006). Additionally, of the two genes on chromosome six, Solyc06g074240.1.1 is the gene 

responsible for the presence of the QTL on this chromosome as well. Of the other four genes, three 

(on chromosome four, ten and twelve) are linked, via their proteins, to the article of Bonk et al. 

(1997) which studied four enzymes of the carotenoid pathway in vitro. The genes on chromosomes 

ten and twelve are related to the publication of Guzman et al. (2010) who studied carotenoids in 

Capsicum spp. (pepper). The gene on chromosome four is involved in retinol metabolism which is 

relying on beta-carotene. It is also related, according to the literature found via Annotex, with rice 

(Yu, Wang et al. 2005) and (Ohyanagi, Tanaka et al. 2006), sorghum (Paterson, Bowers et al. 2009) 

and is involved in the biosynthesis of carlactone, a strigolactone-like plant hormone (Alder, Jamil et 

al. 2012) and of neoxanthin (product of the degradation of beta-carotene) in potato (Al-Babili, 

Hugueney et al. 2000). 
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Figure 4: List of compounds found by Annotex in ChEBI having “beta-carotene” in their name. This is how the 
disambiguation page looks. By clicking on the link on the left column, the user specifies which of these compounds is of 
interest. 

 

 

 

Figure 5: List of all the genes found by Annotex to be related to the ChEBI compound “17579” (beta-carotene). Each gene 
identifier on the left column is a link to a page presenting more information about the gene. This list can be downloaded 
in CSV or JSON format for further processing. 
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Using Annotex, seven genes could be found related to beta-carotene in the tomato genome 

annotation. Of these seven genes, three were expected from the QTL mapping analysis and four 

were found on other chromosomes where no QTL were found using this population and marker 

combination. For biologists Annotex offers thus a way to find genes related to a specific trait or 

metabolic process while for breeders it brings potential new genes which might be of interest as 

potential candidate genes to validate and, eventually, introgress. It might also show important 

associations that had not been considered before, such as genes involved in the production of other 

compounds relying on the one in the search term. 

Example 2: Intersect or differentiate different genes based on multiple criteria in potato 

Potato is the third food crop in terms of food consumption world-wide (Visser, Bachem et al. 2009). 

Between 1845 and 1852, the pathogen Phytophthora infestans impacted so much the Irish potato 

production that approximately 1 million people died of starvation and more than 1 million people 

immigrated. Still today P. infestans is the major disease in potato worldwide. Breeding for resistance 

in Solanum tuberosum is therefore an important economic goal. Phytophthora infestans is not the 

only pathogen of potato whose interactions are studied. Other diseases caused by bacteria (such as 

Erwinia carotovora (Reiter, Pfeifer et al. 2002) or Ralstonia solanacearum (Esposito, Ovchinnikova et 

al. 2008)) and fungi (McArthur and Knowles 1992; McArthur and Knowles 1993) are also of 

importance and thus studied. 

Annotex can be queried to retrieve the list of genes associated with a GO term. When searching with 

Annotex for genes related to the GO term “response to stress” (GO:0006950) or one of its children, 

714 potato genes are returned. Of these 467 genes are associated with “defense response” 

(GO:0006952) or one of its children. Among the children of “defense response” are “defense 

response to fungus” (GO:0050832) and “defense response to bacterium” (GO:0042742). Using Excel 

or any programming language, different lists corresponding to different GO terms can be integrated 

and the intersection between all these lists can be retrieved. In this way, one can find that three 

genes (PGSC0003DMG400008096, PGSC0003DMG400019435, PGSC0003DMG400019437) share the 

common annotation of being related to “defense to fungus” and “defense to bacterium”. These 

three genes are therefore very interesting candidates to study when considering genes in potato 

involved in diverse resistance mechanisms. 

Annotex can also be used to evaluate the differences between two lists. “Defense response” or its 

children shows relationships to 467 genes; however, “defense response” alone is related to 431 

genes itself, leaving 36 genes related to one of its children. Using Annotex, we can see to which child 

of “defense response” these 36 genes are related. First, retrieve the list of the 467 genes related to 

“defense response” and its children. Retrieve the list of 431 genes related to “defense response” 

itself. Then, using Excel or a programming language, analyze the difference between these two lists. 

Finally, for each gene on this list, query Annotex to retrieve the GO terms they relate to. In this way, 

it appeared that “innate immune response” (GO:0045087) relates to 33 of the 36 genes. The other 

three genes are the ones mentioned above that are related to “defense response to fungus” 

(GO:0050832) and “defense response to bacterium” (GO:0042742). 
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By these two examples, two different workflows relying on the data integrated by Annotex have 

been shown (Figure 6). The first workflow searches for the biochemical reactions involving the 

metabolite beta-carotene, then the proteins involved in these biochemical reactions and finally 

returns the genes related to these proteins according to the genome annotation (Figure 6a). The 

second workflow has two different ways. Using the genome annotation it can return the list of genes 

related to a specific GO term and using the Gene Ontology and the genome annotation it can retrieve 

the children of a GO term and the list of genes associated with at least one of these children 

(Figure 6b). 

 

 

Figure 6: Workflow followed in the examples. Example 1 (part A) starts from a defined metabolite (beta-carotene), 
searches for all biochemical reactions involving this compound using Rhea, extract the proteins involved in these 
reactions and using the genome annotation, retrieve the list of genes related to these proteins. Example 2 (part B) uses 
the genome annotation to retrieve the list of genes associated with a single GO terms, or using the Gene Ontology, 
retrieves the children of the GO terms and uses the genome annotation to retrieve the list of genes associated with at 
least one of these GO terms. 
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Discussion 
Annotex is a unique tool showing how data integration can be used to filter out genes of interest 

using their relations to information provided outside of the genome annotation.  

Except the genome annotations, all the resources integrated by Annotex are not species-specific, 

which allows to return information of interest which might not have been the primary search target 

of the user. In this case, Arabidopsis thaliana being a model organism for plants, the user might have 

looked for this type of literature but the annotation of the gene Solyc04g028390.1.1 also links to two 

articles from human biology (Freimuth, Raftogianis et al. 2000; Allali-Hassani, Pan et al. 2007) where 

it is said that in humans sulfotransferase enzymes are involved in the metabolism of drugs and 

hormones, functions that might be related in plants as Varin, DeLuca et al. (1992) concluded that 

there might be an evolutionary link for sulfotransferases between plant and animal. Links to 

literature outside of the field of study might in this case provide insight into the function of this 

protein. 

Annotex offers the possibility to download the output of a search in CSV or JSON, allowing biologists 

to approach a question from different angles. Biologists and breeders can retrieve the list of entities 

matching the provided criteria and look at the intersection or difference between these lists using a 

spreadsheet program, R (R Core team 2013), Galaxy (Goecks, Nekrutenko et al. 2010) or the 

VirtualPlant platform (Katari, Nowicki et al. 2010). Bioinformaticians can query Annotex for a number 

of criteria and return the intersection of these different criteria using any programming language and 

the JSON export function. Future plans include expanding the current user interface of Annotex to 

allow anyone to build such queries. The user should be able to provide a list of criteria to match or 

not match and retrieve the output desired. 

However, the results of Annotex are limited by the current state of interoperability and the content 

of the resources used. 

Biased resources 

In the second example, we have shown that “Defense response” or its children shows relationships 

to 467 genes; however, “defense response” alone is related to 431 genes itself, leaving 36 genes 

related to one of its children. We therefore went to the level above, “Response to stress” and using a 

custom script, we queried the genes associated with each of the 504 children of “Response to stress” 

in potato (Figure 7). 

In potato, the 504 child GO terms of “response to stress” are related to 689 different genes. The 

distribution of these 689 genes over the 504 GO terms is completely unbalanced (Figure 7). This 

shows a flaw in the potato genome annotation: there is a clear disequilibrium for defense response 

and DNA repair mechanisms (six of the 13 GO terms are related to DNA repair) in the annotation. 

This bias could result from either a lack of knowledge (no biological evidences) or a lack of availability 

of this knowledge (there are biological evidences but, for example, “hidden” in the literature) which 

is thus not included in the genome annotation pipeline. Improving the genome annotation, using 

collaborative tools such as Orcae (Sterck, Billiau et al. 2012) or relying on known experiments and 

data to iteratively improve the genome annotation would benefit Annotex and improve its results. 

However, having new resources to improve the content of existing resources only makes the 

situation of the spreading of the information worse: the original information is in one place, the 

improved information in another. 
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Figure 7: Of all the 504 children of the GO term “response to stress” only 13 are related to at least one gene in the potato 
genome annotation. This graph shows the distribution of the 689 potato genes related to these 13 GO terms. 

Spreading of the information 

Many resources provide pathway information: UniPathway (Morgat, Coissac et al. 2012), KEGG 

(Kanehisa and Goto 2000), MetaCyc (Caspi, Altman et al. 2010), Solcyc (Pujar, Caspi et al. 2009), 

WikiPathway (Kelder, van Iersel et al. 2012). All the resources have their own specificities and access 

rules. UniPathway, Solcyc and WikiPathway can be freely downloaded while KEGG and MetaCyc are 

only available under upon registration (paid for KEGG). SolCyc is species specific, WikiPathway 

provide pathways information per species, MetaCyc and KEGG provide generic pathways as well as 

species specific and UniPathway provides only generic pathways. 

Incomplete resources 

Rhea, the database used to map biochemical compounds to proteins via the chemical reactions in 

which they are involved is not well covering the plant reactions and thus provides limited mapping. 

For example, compounds such as flavonoid (ChEBI:47916) or phenylalanine (ChEBI:28044) are 

present in ChEBI but are not linked to any reactions in Rhea. In fact, for flavonoid, Annotex proposes 

nine different compounds for disambiguation, containing “flavonoid” in their name. From these nine 

compounds, none is found associated with a biochemical reaction in Rhea. For phenylalanine, of the 

23 compounds containing “phenylalanine” proposed for disambiguation by Annotex, only two are 

linked to biochemical reactions, proteins and genes: L-phenylalanine zwitterion (ChEBI:58095) and D-

phenylalanine zwitterion (ChEBI:57981). Other compounds such as quercetin, (Femia, Caderni et al. 

2003), isobutylthiazole (Baldwin, Scott et al. 1998) or methylbutanol (Baldwin, Scott et al. 1998), 
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have been studied in tomato but are not present at all in ChEBI. Table 1 summarizes for 

24 compounds known and studied in tomato if they are present in ChEBI and Rhea. 15 of these 

compounds were found in ChEBI but only 6 in Rhea, showing the lack of integration of plant 

metabolites in ChEBI and the lack of biochemical reactions involving these compounds in Rhea. 

Table 1: Table presenting for a list of compounds known in tomato whether they are found in ChEBI and in Rhea. Of 
these 24 compounds, 15 were found in ChEBI and 6 in Rhea. 

 Present in ChEBI Present in Rhea 
Benzyl alcohol   ChEBI: 17987  

Citric acid   ChEBI: 30769  

Eugenol   ChEBI: 4917  

Flavonoid   ChEBI:47916  

Fructose   ChEBI: 28757  

Glucose   ChEBI: 37624  

Glutamic acid   ChEBI: 18237  

Guaiacol   ChEBI: 28591  

Hexanal   
Hexanol   
Isobutylthiazole   

Isobutylthiazole   
Isoleucine   ChEBI: 24898  

Leucine   ChEBI: 25017  

Malic acid   ChEBI: 6650  

Methyl salycilate   ChEBI: 31832  

Methylbutanal    3-methylbutanal ChEBI: 16638  

Methylbutanol   

Methylbutanol   
Phenylacetaldehyde   ChEBI: 16424  

Phenylalanine   ChEBI: 28044  

Phenylethanol   
Quercetin   

Sucrose   ChEBI: 17992  

Adding a more plant oriented resource such as SolCyc (Pujar, Caspi et al. 2009) to link chemical 

compounds to proteins would improve the mapping from biological compounds to proteins. SolCyc 

contains in its latest version 1613 biochemical reactions all identified in tomato. However, the latest 

version of SolCyc only has 18 cross-references to ChEBI and two to UniProt, revealing another 

problem in some resources, the lack of cross-references. Another problem of this resource is the 

cross-references used on proteins. SolCyc uses references to SGN Unigene as cross-references for 

proteins. Meaning that to obtain more information about the protein, one has to retrieve 

information about the unigene, find its equivalent on the tomato genome annotation and find the 

corresponding proteins related to this gene. 

The spread of the information across multiple resources is likely correlated with the incompleteness 

of some of these resources, the more spread the resources are, the more spread the data is and 

therefore the higher the risk of incompleteness. To solve this problem, the plant community needs to 

agree on a central database to store its information in. The community should work on adding the 

metabolites into ChEBI, adding the biochemical reactions into Rhea or a pathway database with the 

appropriate cross-references to ChEBI for the metabolites and UniProt for the enzymes. While this 
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centralization of the information is clearly needed, the community should work on improving existing 

solutions so that they become a central entity rather than trying to develop yet another one which 

would spread the information a little more. 

Conclusions 
Annotex performs data integration relying on semantic web technology and the cross-reference 

across the resources integrated. Simply providing an input and the desired type of information to 

retrieve, one can browse the network of information that is built around a genome annotation while 

not being limited to genome annotations. Annotex also allows finding genes that might be of interest 

and that might not have been picked up by simply looking at their gene description. Finally, Annotex, 

by providing the possibility to export its output, allows approaching a question from different angles, 

reducing the amount of data to handle by filtering out part of it using known information. The 

examples have shown that Annotex can already be used to retrieve useful information; however, the 

resources it is using could clearly be improved, either by integrating new, complementary resources 

or by working with the resource providers to include more plant related information. The plant 

community needs to work together to build central places of information across the plant genomes. 
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Biology is facing an enormous data explosion at different levels because of the different high 

throughput technologies commonly known under the name ~omics technologies. Metabolite analysis 

using GCMS (James and Martin 1952) and LCMS (Arpino 1989) have been improved (Hsieh and 

Korfmacher 2006) and nowadays return few hundreds clustered peaks (Khan, Chibon et al. 2012) 

corresponding to as many metabolites detected. Micro-array technologies have evolved from few 

hundred to several hundred thousands of genes analyzed in a single experiment (Augenlicht and 

Kobrin 1982; Augenlicht, Wahrman et al. 1987). The latest generation of Sanger sequencers are able 

to produce up to 96 sequences of 400 to 900 base pairs (~85.000 base pairs per run) while new 

sequencing technologies such as 454 are able to generate five hundred millions bases in a few hours 

(Pettersson, Lundeberg et al. 2009) allowing to sequence a complete genome in a single run 

(Margulies, Egholm et al. 2005). Plant phenotyping is also changing. Historically, phenotyping has 

been done by breeders who are trained and gained experience in targeting traits of interest for the 

breeding goals. Nowadays, biotechnologies are rising to provide automatic phenotyping platforms 

(Iyer-Pascuzzi, Symonova et al. 2010). Sozzani and Benfey (2011) provide a review of different 

phenotpying platforms able to record different phenotypes (i.e.: leaves, roots or height) (PHENOPSIS 

(Granier, Aguirrezabal et al. 2006), PHENODYN (Sadok, Naudin et al. 2007) or GERMINATOR (Joosen, 

Kodde et al. 2010)) and software (LeafAnalyser (Weight, Parnham et al. 2008) or RootTrace (French, 

Ubeda-Tomas et al. 2009)) to analyze them. These technologies are already available to biologists 

and breeders and are still being improved, potentially increasing the number of observations 

returned. Being able to handle this tsunami of data is becoming a pressing challenge where 

bioinformatics plays a key role. In parallel to the increase of data generated in a single experiment, 

the number of resources providing information about genes, proteins, metabolites or pathways for 

one or multiple species is also increasing (Chapter 1 Figure 2). The amount and spreading of the 

information available leave biologists and breeders with the increasing challenge of finding and 

integrating information for their research. Genomes are being sequenced and annotated. When 

investigating a QTL interval the list of genes present in this interval can be retrieved and the genome 

annotation provides for each of these genes relations to proteins, GO terms and/or protein domains, 

each available from different resources. 

This thesis is focused on the development of three bioinformatics tools to assist scientists and 

breeders in the interpretation of their research data, namely MQ2, Marker2sequence and Annotex 

(Figure 1). Large-scale QTL mapping analysis where few hundred metabolites were measured can be 

analyzed in a single experiment. This leads to the discovery of a specific region of the genome related 

to the expression of a large number of metabolites. Further analysis of the metabolites associated to 

this region as well as the genes present revealed the presence of a transcription factor binding site 

regulating the expression of the phenylpropanoid biosynthesis pathway (Chapter 2). This experiment 

showed the need for a good methodology to summarize QTL results when hundreds of traits are 

analyzed. This has led to the development of MQ2 (Chapter 3). MQ2 provides visualization for large-

scale QTL mapping experiments, showing co-localization and eventually QTL hot spots. The second 

tool developed within this thesis is centered on the filtering of the genes in the QTL interval with the 

aim to identify candidate genes. Marker2sequence was designed to integrate information (name, 

description, related GO term and proteins) about each gene present in a specified genomic region 

(for example, the QTL interval) and offer a way to filter out potential gene(s) of interest based on 

their annotation (Chapter 4). In Chapter 2, we concluded that a transcription factor in the QTL 

interval could influence the expression of our trait(s) of interest (demonstrated by Kloosterman, 
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Anithakumari et al. (2012)). Marker2sequence (Chapter 3) only searches for annotations for putative 

candidate genes within the QTL interval. In order to include putative candidates, information about, 

for example, transcription factors and the genes they regulate need to be incorporated. Since 

transcription factors, and their binding sites, are poorly annotated in tomato, we combined the 

genomic structure of six selected genotypes from an Introgression Line population with gene 

expression information and found 17 potential transcription factor binding sites in tomato (Chapter 

5). If confirmed and linked to transcription factors this would be the beginning of the construction of 

the gene regulatory network of tomato which could then be integrated into Marker2sequence 

allowing it to include genes outside of the QTL interval (trans) but regulated by genes (i.e.: 

transcription factor) within the QTL interval (cis). However, Marker2sequence is focused on the 

provided QTL interval in relation with a phenotype. When breeding for a specific phenotype or 

investigating a biological process several genes may be involved and knowing which genes provide 

additional information on the genomic regions that are involved in this process is crucial. This 

realization led to the development of a third tool, namely Annotex (Chapter 6). Annotex allows 

finding genes related to a certain pathway, GO term, protein or metabolite using cross-references 

from the different resources it integrates. These cross-references can indicate either that two 

elements in two different resources with two different identifiers are, in fact, the same biological 

entity or are related (at a biological level). 

 

Figure 1: Overview of the bioinformatics tools developed in this thesis (dark red boxes). The developed tools rely on the 
input provided by the user (green arrows), which were results of different analysis tools (light red boxes). The blue 
arrows present the possible outcome of the tools. The spotted green arrow represents information which could be and 
should be integrated into Marker2sequence but is not at this point. The orange boxes are different resources integrated 
using the semantic web technologies and used by Marker2sequence and Annotex. 

Visualizing High-throughput QTL mapping with MQ2 
QTL mapping on the output of micro-array data can return thousands of eQTL (expression QTL) 

(Kloosterman, Anithakumari et al. 2012). QTL mapping on the output of metabolite expression 
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analysis (such as LCMS) can return hundreds of mQTL (metabolite QTL) (Khan, Chibon et al. 2012). 

Current QTL mapping software can perform such large scale QTL mapping analysis, however, none of 

them provides a summary of the distribution of the identified QTL. With R/qtl (Broman, Wu et al. 

2003) some knowledge of R programming is required to generate such a figure. QTL cartographer 

(Basten, Weir et al. 2004) requires some knowledge of gnuplot (http://www.gnuplot.info/) as well as 

some data formatting. MapQTL provides visualization of the output but only for one trait at a time. 

With none of these tools, there is an easy way to visualize the co-localization of the QTL. 

MQ2 was developed to fill in this need. It aims at parsing the output from MapQTL, R/qtl and QTL 

cartographer and presents a visual overview of the distribution of the QTL along the genetic map. 

Using MQ2, biologists and breeders can easily identify co-localizing QTL and identify potential QTL 

hot-spots. This is important as these QTL hot-spots may reveal the presence of regulatory elements 

such as transcription factors (Khan, Chibon et al. 2012; Kloosterman, Anithakumari et al. 2012). 

In Chapter 2, an LCMS analysis was described on peel and flesh samples of individuals from an apple 

population. The metabolite expression levels have then been correlated with marker scores 

measured on this population leading to the detection of mQTL for peel and flesh separately. The 

mQTL found provide an insight in the genetic basis for the diversity of metabolite expressions. Apple 

is a source for various health beneficial compounds (Khan, Chibon et al. 2012) and understanding the 

genetic basis of the expression of these compounds can help breeding for these compounds and to 

develop new, healthier apple varieties. In this analysis, 669 mQTL were identified, 488 in peel and 

181 in flesh respectively. This first QTL mapping analysis was performed with MetaNetwork (Fu, 

Swertz et al. 2007). MetaNetwork is an R library designed to make high-throughput QTL mapping 

easy and provide a correlation network of the traits analyzed. However, when using it on our data set 

we faced some problems: MetaNetwork had to be adjusted to work with our datasets containing 

zeros and missing values; as only a compiled R package had been released, we spent some time 

extracting the source code and rebuild the package on a newer version of R to use it (since the 

sources have been made available on github). Finally, we have not been able to use the correlation 

network as this part of the analysis never worked due to the size of our dataset. Overall, 

MetaNetwork did cost more time than MapQTL would have, which has been used for the fine 

mapping of a subset of the traits. Running the few hundreds metabolites in MapQTL would have 

taken a few minutes, gathering the information by hand to obtain a representation of the co-

localization of the QTL was the tedious part which is now solved by MQ2. 

Next steps for MQ2 
MQ2 strong point is in providing a distribution of the QTL along the genetic map. However, this 

visualization could be enhanced, for example, by including the significance of the identified QTL. In 

such a visualization, categories showing how many QTL have a LOD value between the LOD threshold 

provided and the LOD threshold plus two, or plus four or above LOD threshold plus five, similarly to 

the Figure 2 of Chapter 2. Categorizing the QTL per significance will help finding positions with highly 

significant QTL. A concentration of highly significant QTL may reveal the presence of an important 

genomic region containing genes strongly correlated with the expression of the traits. 

MQ2 fills a need for the visualization of large-scale QTL mapping results. It helps identification of QTL 

co-localization and finding potential QTL hot-spots which can lead to the discovery of regulatory 

elements. However, if MQ2 currently fills a need, QTL mapping tools should include such visualization 
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by default, the next version of MapQTL should include facilities to help large-scale QTL mapping. 

R/qtl should provide facilities to analyze all traits of a dataset and visualize the results. 

Marker2sequence: From QTL to candidate genes 
Once a genomic region has been linked to a phenotype via the presence of a QTL, the next question 

might be which gene putatively affects the trait under investigation. In daily practice, breeders 

introgress regions containing QTL into elite breeding germplasm. A larger QTL interval means a 

higher number of genes in which the one (or more) gene(s) which are responsible for the expression 

of the phenotype are “hidden”. For a breeder, a larger region to introgress also means a higher risk 

of linkage drag (introduction of genes negatively influencing the desired phenotype). Fine mapping 

approaches, in which the size of the mapping population is increased to increase the recombination 

and reduce the QTL interval is often used (Yang, Zhang et al. 2012). Increasing the mapping 

population is, however, a tedious task. By relying on known information about the QTL interval 

Marker2sequence aids in the identification of gene(s) potentially related to the trait of interest. For a 

given genomic region, Marker2sequence extracts the list of all genes in the region relying on the 

genome annotation and aggregates for all these genes the information known about them using the 

cross-references present in the genome annotation. 

Genome exploration tools 
Marker2sequence is not the only tool to explore a specific region of the genome. GBrowse (Stein, 

Mungall et al. 2002; Donlin 2009) is a visualization tool for genomic data. It provides a way to browse 

genome annotations, localize them and compare them to each other and eventually place additional 

elements such as genetic markers or gene expression information for the genes on these sequences. 

GBrowse allows zooming in or out of a region, searching the genome information for keywords. 

However, this search is limited to the element (gene, markers) name and description. The advantage 

of GBrowse is that it provides a much better visualization of a genome region than 

Marker2sequence. The added feature of Marker2sequence is that it allows downloading this list of 

genes, accessing additional information for each of these genes and filtering out genes of interest by 

searching through the cross-references of their annotation, from the databases with which it is 

integrated. This expanded search of Marker2sequence allows searching a genomic region for genes 

related to a pathway or a protein or a GO term. Marker2sequence will filter out genes if the keyword 

searched is present in their name or related GO term, protein, pathway or publications. This search is 

more appropriate when searching a list of genes for genes involved in a specific phenotype. 

Ondex (Köhler, Baumbach et al. 2006) is another tool for data integration and visualization, it can 

integrate data from different resources (such as UniProt, GO, KEGG, SGD) but offers a graph-based 

visualization which clutters when confronted with large datasets. In addition, in the case of QTL 

intervals, the graph is composed of a multitude of sub-graphs centered on a gene with sometimes 

links between the sub-graphs when genes share a common annotation (i.e.: GO term or protein). 

This type of visualization is not ideal for a QTL region. If a large part of the genes in the set are 

related, this visualization would provide information on the main process, GO and proteins shared 

between these genes, but in a QTL interval, out of hundreds or thousands of genes, only few are 

related to the trait of interest and might thus be related in their annotation. Ondex is therefore not 

suitable as a visualization and exploration tool for QTL. Marker2sequence provides only a 

visualization of the alignment of the genetic map with the genome sequence if the input provided 
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relies on a genetic map. The network of information retrieved for each gene in the region is not 

presented. The list of genes present in the genome region is given in a table. For each gene, a 

dedicated page presents information about the gene: description, location, chromosome, the 

associated GO term and proteins with their name and linked to the UniProt page, the pathways of 

these proteins, linked to their UniPathway page and the publications of these proteins, linked to 

PubMed. This information is provided as text which can be downloaded and has no problem of 

scaling when the amount of information increases. 

Gene filtering via data integration 
Marker2sequence provides a user-friendly interface to dive into a specific genomic region. It 

retrieves the list of all genes in this region and allows searching through this list, which in the case of 

a QTL can include hundreds to thousands genes, using a keyword-based search system. This search 

system filters out genes containing the exact keyword provided. The search is case insensitive but is 

an exact-match search, meaning a search for “caroten” might return more results than a search for 

“carotenoid” as the first search will match genes related to the “carotenoid biosynthesis” pathways 

as well as genes related to the GO term GO:0006629 “lipid metabolic process” which contains 

“carotenes” in its description. This is a limitation of the current search engine and should be 

considered when filtering the gene list with Marker2sequence. To improve the search, a future 

version will want to look into stemming. Stemming is the process of reducing the query word to its 

root (Porter October, 2001), for example: “testing” would become “test” and “carotene” would 

become “caroten”. By reducing the length of the word, we reduce its specificity and eventually 

increase the number of potential matches of the keyword. 

Marker2sequence should be able to filter out, from a list, genes related to a trait. If the trait is a 

biological element such as a metabolite (ie: beta-carotene) or a protein, it will likely be sufficiently 

described in the genome annotations or in the elements integrated by the cross-references of the 

genome annotation that Marker2sequence can find and return genes whose annotation mention it. 

More abstract traits, such as “Plant height” or “yield” or “fruit color”, are not mentioned in the 

annotation (proteins, GO terms, pathway), and thus cannot be found by Marker2sequence. This is 

one of the biggest shortcomings of the current search function which restrict Marker2sequence to be 

a filtering tool using keyword search rather than a predictive tool. In order to be able to search for 

genes related to “Plant height” one has to have previous knowledge of the processes involved and 

should know, a-priori, what the possible annotations of genes involved in such process are. For 

example, potato flesh color is related to the expression of the carotenoid pathway (Brown, Edwards 

et al. 1993). If someone investigates a QTL for flesh color in Marker2sequence and searches the QTL 

interval for “flesh color” there will not be any gene returned, however, if the same interval is 

searched for “carotenoid” the genes related to the “carotenoid biosynthesis” pathway will be 

returned and these genes are involved in flesh color. Being able to search the gene list for genes 

related to a trait is one of the major up-coming tasks of Marker2sequence. The first step to achieve 

this is to develop ontologies precisely defining the traits and that the whole community agrees upon. 

Linking traits to genes and vice-versa 
Projects, such as cropontology (http://www.cropontology.org) (Shrestha, Matteis et al. 2012), 

Solanaceae Phenotype (SP) ontology (Menda, Buels et al. 2008) and the plant ontology consortium 

(The Plant Ontology Consortium 2002) aim at providing crop-related ontologies to the breeding 

community. Platforms such as the OBO Foundry (Smith, Ashburner et al. 2007) provide a central 
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place where the community can gather, discuss and reach a consensus on the best way to build, 

extend or complete existing ontologies. Currently, cropontology provides 29 ontologies including 22 

ontologies related to phenotypes and traits. As of June 25th 2013, these 29 ontologies contain a total 

of 11,237 terms of which 2,690 terms (23%) have at least one cross-reference. The front page of the 

project lists the 18 contributors that have created the 29 ontologies, but in total 77 persons have 

registered to create or update the ontologies. Cropontology is a unique project dedicated to plant 

science, providing a platform for the community to build, maintain and expand their ontologies. 

Consortia such as the SUNRISE consortium (http://www.sunrise-project.fr/) or Virtual Lab of Plant 

Breeding (http://www.vlpb.nl/) are already working on integrating these ontologies in their data 

management systems giving to their data a clear and defined semantic and allowing better 

communication and better integration of the resources between the partners of the consortium. 

Once the ontologies have been built, the second step will be to integrate them with current genome 

annotation, in the same way that the gene ontology is currently integrated. The integration of these 

ontologies into genome annotation is a key element as it will allow making the ontologies more 

broadly known which will generate discussions and debates within the community which in return 

will lead to improved ontologies. The integration into the existing genome annotation should happen 

in two steps. The first step is to manually annotate genes known to be related to given traits. For 

example “beta-carotene hydroxylase” (bch) is known to be involved in flesh color (Brown, Kim et al. 

2006), and has been mapped on the Y locus (Thorup, Tanyolac et al. 2000; Wolters, Uitdewilligen et 

al. 2010) on chromosome 3 (Bonierbale, Plaisted et al. 1988). This gene could therefore be linked to 

the trait: SP:0000188 “tuber flesh color” from the Solanaceae phenotype ontology. By expanding the 

genome annotations, the value of these ontologies will grow, and researchers will become 

enthusiastic to start using and improving these ontologies. In a second step, this process could be 

automated. Using, scientific literature as source of information the relationships between, for 

example, phenotypes and genes, could extract by standard text-mining tools (Korbel, Doerks et al. 

2005). Nanopublications (Mons, van Haagen et al. 2011) can be an approach to represent these 

relationships. Nanopublications correspond to small assertions published as such, in form of triples 

(subject verb complement) containing the assertion itself (gene X is regulated by the transcription 

factor Y) and provenance information (typically the article from which these assertions are extracted) 

and supporting information (would provide some general information on when or where this 

assertion was found, for example, in which organism). These assertions can be anything and thus 

could include assertions about the relation between a gene and a trait. Nanopublications are based 

on semantic web technologies, meaning that in order to make the assertion: “gene bch is related to 

flesh color”, the gene bch should be defined with a unique identifier, for example gene identifier 

from the genome annotation. The relation “is related to” should also be defined in an ontology, 

“skos:related” (http://www.w3.org/2009/08/skos-reference/skos.html#related) is a generic term 

that could be used as predicate in this case, a more specific term could also be used but it will have 

to be defined in an ontology and will vary from case to case depending on the relation between the 

gene and the trait. Manual annotation of the genome by linking genes with terms from different 

ontologies can be turned into a nanopublication, which than becomes a publication, reference-able, 

and thus provide credits to the person that created the statement. The resulting nanopublication 

would indicate that bch is related to tuber flesh color, provide the source and the supporting 

information and publish it as such. Eventually, this should lead to resolving cross-references between 

clearly defined biological trait ontology concepts, such as “plant height” or “fruit sugar content” with 
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entities, such as genes or metabolites. An added value of a well-defined ontology is that it could then 

be re-used by tools such as Marker2sequence to find the genes related to a specified trait of the trait 

ontology. The current free-text search functionality can then be upgraded into an ontology based 

search functionality. Nanopublications can then be cited, incentivizing researcher to participate in 

the process. An application could be built to provide an infrastructure to manually annotate gene 

with terms from ontologies. This application could be including gamification where users earn points 

by annotating the genome with ontology terms and the top participants are then displayed in the 

leaderboard. This leads to competitions between the participants who play the game, the 

leaderboard could also be set to display the top 10 institutes assisting in improving the annotations. 

With such a system, users provide for themselves a number of citable assertions and enhance 

genome annotations. This idea of gamification is described for genome annotations but could work 

just as well for any other entities (i.e.: proteins, pathways), however a tight integration with the data 

providers would be needed in order to avoid further spreading of the information. 

Crowd-sourcing is the idea of outsourcing a task to a crowd of people, Wikipedia is the classic 

example where anyone can become involved in building an encyclopedia. Dai, Tian et al. (2013) 

discussed that the limitations to crowd-sourcing in biology is the lack of participation from the 

community. They have developed an extension for MediaWiki to reward the participation of the 

members of the community. Our approach, by using gamification, rewards each contributor and 

institute for their involvement and by using nanopublications, lets each participant create 

nanopublications which are associated with them and that are citable to by their peer, just like any 

scientific publication. 

Both the nanopublications project and the cropontology project are community based projects 

supported by pharmacology consortia. One of the challenges is to gather a community of 

contributors, developing the resource. The Gene Ontology project has been able to develop a 

community by developing a core group of members that fund staff to work on GO. This core group 

serves as mentor to the associates which can contribute to the ontology via a member of the core 

group. This model, although not being truly following the open-source model, has the benefit of 

motivating institutes to join the core group and thus finance staff to work on the project as it will 

help the institute to steer the project toward areas of its own interest. For example, if such a model 

was applied to the cropontology project, it would become a consortium with core members and 

associates, and then being a core member would allow steering the development of ontologies 

toward areas of interest, for example improving the Solanaceae traits ontology rather than the Musa 

anatomy ontology. As associate, you may propose improvement to the Musa anatomy ontology but 

as it will have to go through a core member it might be harder to have your changes accepted. An 

alternative is to adopt a model closer to the open-source model where one group, institute or expert 

is in charge of one or several ontologies and anyone can contribute to them to improve them. 

Changes are proposed to the person in charge which will accept or decline them after discussion. 

This model has the advantage of being simpler; however, it is harder to secure funding for the person 

in charge of the ontology. Institutes would contribute to the ontology until it satisfies their needs and 

securing funding afterwards is more problematic. 

The semantic web in Marker2sequence 
Marker2sequence relies on semantic web technologies to integrate the data previously aggregated 

into a single triple store (semantic web database). The advantage of semantic-web technologies is 
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that they are designed for data integration. Each concept conveys a clear semantic defined in a 

specific ontology. However, in the current implementation of Marker2sequence, it evades one of the 

main objectives of the semantic-web, namely: on the fly data integration. There are multiple reasons 

for this: The first reason is that when Marker2sequence was developed, the SPARQL 1.1 

specifications, allowing querying multiple triple store in a single query, had not been published and 

were therefore not implemented in the different programming libraries and triple store. The SPARL 

1.0 specifications allow querying the different triple-store separately, integrate the information in a 

graph and re-query it to extract the relevant parts. This approach is too time consuming for a web-

based tool and was therefore not implemented. Another reason to build our own triple store was 

that at the time of the implementation of Marker2sequence, no SPARQL endpoint was available to 

query the UniProt database, however, UNIPROT was available in the semantic web compatible 

format. Nowadays this SPARQL end-point for UniProt exists, the SPARQL 1.1 specifications have been 

released and libraries and triple-store have adjusted or are adjusting to them. Marker2sequence 

could therefore be adjusted to retrieve its information from UniProt directly rather than using the 

local graph, allowing it to access the most up to date information. However, the cost in time to 

perform a SPARQL query against a remote SPARQL endpoint remains high and may vary according to 

the load of the server which is a drawback for a web application. On the other hand, 

Marker2sequence relies directly on the ontologies from UniProt for its data integration, thus, 

switching to the UniProt SPARQL endpoint to retrieve part of our information would require a rewrite 

of the SPARQL queries but not of the whole application. 

The gene regulatory network expands the gene list from a QTL analysis 
The gene regulatory network is the network of interactions at the gene level which regulates 

positively or negatively the expression of genes. In Chapter 4, gene expression information has been 

combined with the genomic structure of introgression line (IL) genotypes and information from the 

genome annotation to predict potential transcription factor binding sites (TFBS). 17 potentials TFBS 

have been predicted. These TFBS need to be validated in the lab. The S. chmielewskii population used 

in that experiment has also been analyzed for transcription factor expression using RT-PCR. The 

expression of the transcription factor could be integrated provided a list of transcription factors 

potentially regulating the transcription factor binding could be found (Chapter 4). Correlating the 

transcription factors to their target would allow building the gene regulatory network of tomato. This 

information could then be integrated into Marker2sequence allowing it to expand the list of 

potential candidate genes to the genes outside the QTL interval but regulated by genes (transcription 

factor) within the QTL interval, thus enabling Marker2sequence to consider regulatory genes such as 

transcription factors as candidate genes. Protein-protein interaction (PPI) is built-in in 

Marker2sequence using data from the IntAct database (Kerrien, Aranda et al. 2012). However, we 

have not activated the PPI due to speed issues for a web application. This speed issue could be 

circumvented by leaving the option to the user to include the PPI information to his search (although 

limited by the time out of the server), or having the possibility to make Marker2sequence 

asynchronous by letting the user provide an email to which the results would be sent once the 

analysis finished. With PPI support activated, Marker2sequence will include into the list of genes 

within a QTL region, genes that are outside the region but interact with genes inside the region at the 

protein level. Integrating regulatory network information into Marker2sequence has thus been 

started. PPI network is present but needs some optimization before being activated and gene 
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regulatory network information have been started but needs to be validated in the lab and expended 

as Chapter 4 only covers a small set of transcription factors. 

Improving Marker2sequence 
For a future better performance of Marker2sequence several new features should be included: 

(1) improve the keyword search by including a stemming library (while still give the option to not use 

it); (2) work on annotating genes, proteins and pathways with terms from the trait ontologies, then 

add next to the keyword search the possibility to find genes from a trait defined in a trait ontology; 

(3) as seen in Chapter 2, regulatory elements can influence greatly the output of a QTL mapping 

experiment, it is therefore important to include regulatory network information in 

Marker2sequence, enabling it to return genes regulating biological elements involved in the 

expression of the trait of interest. Finally, (4) Marker2sequence has been designed as a web 

application to be integrated into the BreeDB framework. As its filtering algorithm becomes more 

complex it might be worthwhile investigating turning it into a desktop application of an asynchronous 

web-service (which would allow keeping some integration with BreeDB). This would also allow 

making use of SPARQL 1.1 and querying directly, for example, the UniProt SPARQL. This will also 

ensure that we are always using the latest available information. 

Genome-wide filtering: Annotex 
Marker2sequence offers a way to filter genes from a specific gene set using their annotation. 

However, this gene set can only be as long as one chromosome. This allows identification of genes 

related to a trait in a specific chromosome; however, Marker2sequence cannot answer such question 

on a whole-genome scale. Annotex offers this functionality by directly allowing searching the entire 

genome annotation for genes related to a specific entity (GO term, protein, pathway, and 

metabolite). Annotex integrates UniProt, GO, ChEBI, Rhea and the genome annotations of tomato 

and potato. From our tests we concluded that if ChEBI contains a number of metabolites present in 

plants, Rhea lacks the chemical reactions in which there are involved. The cross-references between 

metabolites and proteins in Annotex are affected by which database is used. Annotex queries the 

UniPathway database (Morgat, Coissac et al. 2012), as this database is made available in a semantic 

web format by the UniProt consortium, however, this resource contains the annotation of the 

pathways rather than their chemical reactions and thus cannot be used to map metabolites to 

pathways. Other pathway resources such as SolCyc (Pujar, Caspi et al. 2009) could be included in 

Annotex, but they require a good coverage of cross-references with ChEBI and Rhea, which is lacking 

at the moment (only 18 cross-references to ChEBI and two to UniProt in the last version of LycoCyc). 

WikiPathways (Pico, Kelder et al. 2008; Kelder, van Iersel et al. 2012) is another resource for pathway 

information, however, there are currently very few pathways supported for plants. In fact, as of June 

2013, only three plant species have pathways in this resource: Arabidopsis thaliana (14 pathways), 

Oryza sativa (14 pathways) and Zea mays (11 pathways). Solanum lycopersicum, Glycine max, 

Populus trichocarpa and Vitis vinifera are on the list of species, but the pathway information has not 

yet been made available. Once available, there will be a clear incentive to assess the feasibility to 

include WikiPathways in Annotex as well. We can conclude that the current pathway resources 

contain cross-references but vary from species to species. Expending the cross-references on the 

existing resources would allow easier integration of these different resources. Thus questions such 
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as, in which pathway is this compound involved or what are the genes associated to this particular 

biochemical reaction would become easier to answer. 

Improving Annotex 
Annotex as a proof-of-concept tool is already easy-to-use. However, to improve Annotex, there are a 

several critical points to address. These points mainly cover the data and the cross-references 

between the data. My recommendations for improving the data, and therefore Annotex, are: (1) 

work with the community to improve the coverage of plant metabolites in ChEBI. ChEBI is well 

known and species a-specific, making it well suited to be expanded with plant metabolites. (2) Either 

improve the coverage of plant pathways in Rhea or work with the community to find a central place 

for plant specific pathways and use cross-references to major databases (ChEBI, UniProt) for the 

compounds involved in the reactions; (3) similarly to Marker2sequence, work in getting genes, 

proteins, pathway and metabolites annotated with terms from trait ontologies; (4) as regulatory 

network information is added (being at the gene or protein level), and Annotex includes finding 

genes involved with a trait via the trait ontology, it might be necessary to reconsider the current 

web-application approach for either a desktop application or an asynchronous web-service. 

Future perspectives 
The major bottlenecks that were hampering this research are: (1) the spread of plant resources over 

multiple databases with no consensus on a central one. The multiplicity of the pathway resources is a 

clear example of a situation that should be avoided. (2) For Annotex and Marker2sequence the 

unavailability of information regarding the gene regulatory network of tomato. A number of 

transcription factors are known, the actions of some of these have been published (Bemer, Karlova et 

al. 2012) but there is no central place providing this information in a clear and meaningful way. (3) 

The only ontology that has been widely acknowledged and is widely used is the Gene Ontology. 

Many resources use it and many publications rely on it, either to improve it (Khodiyar, Hill et al. 

2011), improve the annotation of certain genes or proteins using it (Amthauer and Tsatsoulis 2010), 

build upon it (Renfro, McIntosh et al. 2012) or use it as a component in the analysis of the results of 

an experiment (Mohammadi, Saraee et al. 2011). However popular the gene ontology is, it does not 

provide any information about the phenotype influenced by the gene or the protein it annotates. (4) 

The major databases have built a powerful network of cross-references; however, more specialized 

resources tend to not be able (because of time and workload) to include their resources in the larger 

network of information, while it is critical to use these resources for data integration. 

As most of these bottlenecks are more generic than just the work presented in this thesis, future 

research could try to tackle them. This could be achieved in the following ways: (1) The lack of 

integration of other ontologies in genome annotation could be tackled by the idea presented earlier 

of a community based effort to annotate manually genes of interest with their corresponding terms 

in the trait ontology but also eventually the plant ontology and in fact any ontologies available. 

Integrating nanopublications and game theory, this system would reward each contributor by 

providing him/her with a number of reference-able assertions and would display the top contributors 

and institute, creating both a rewarding and challenging environment. (2) As more genes and 

proteins are annotated with terms from other ontologies manually, we will be able to start building 

tools to automate this annotation. Proteins involved in the same pathway are probably involved in 

the expression of the same phenotype. Using similar algorithms as the ones used to automatically 
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annotate genes with terms from the Gene Ontology, we could annotate genes and proteins with 

terms from other ontologies. (3) Resources such as SolCyc should be able to be cross-referenced to 

ChEBI by simply searching for an exact match in the molecule name from SolCyc present in ChEBI. 

Molecules that are not part of ChEBI could then be added, improving the coverage of plant 

metabolites in this resource. Similar work could be done for the proteins with the additional filter 

that the protein of UniProt matching the name should also match the organism (e.g.: tomato or 

potato as shown in our case). Improving the cross-references in SolCyc would allow easier integration 

of this resource in the broader network of knowledge. 

Conclusions 

 

Figure 2: Global representation of the work performed in this thesis (in the grey box) with regards to its environment 
(outside the box). The dark red boxes are the three bioinformatics tools developed for plant biologists and plant 
breeders within this thesis. The green arrows represent the input the tools use, while the blue arrows represent the 
“output” they produce. The light red boxes are examples of tools, not developed within the context of this thesis, which 
can be used to generate the appropriate inputs. The spotted green arrows represent inputs that are not used at the 
moment but which should be considered to improve the tools. 

This thesis has resulted in the development of three tools (Figure 2) for plant biologists and plant 

breeders, allowing them to visualize the results of high-throughput QTL mapping analysis, search a 

specific region of the genome for candidate genes or search the complete genome annotation for 

genes related to a certain biological element. These three tools offer new possibilities to deal and 

face the tsunami of data that new biotechnologies generate. The original goal of this thesis was to 

develop candidate gene prediction tool(s) but we created a tool to filter out potential genes of 

interest using known information about them. The prediction of candidate genes relies on the 

integration of more data than just the genome annotation and the proteins. Regulatory mechanisms 
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have to be taken into account as shown in Chapter 1. These mechanisms may be at the 

transcriptomics, proteomics or metabolomics level, and each has to be considered. The lack of 

integration of trait ontologies also prevents a direct prediction of genes involved with the trait as 

there is no direct association between the concept of the trait (“fruit color” or “plant height”) and 

biological elements (genes, proteins, pathways). These new hypotheses need to be investigated and 

provide ample starting points for new (PhD) research projects, both from a bioinformatics 

perspective and from a biological perspective. 
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Over the last decade, the amount of data generated by a single run of a NGS sequencer outperforms 

days of work done with Sanger sequencing. Metabolomics, proteomics and transcriptomics 

technologies have also involved producing more and more information at an ever faster rate. In 

addition, the number of databases available to biologists and breeders is increasing every year. The 

challenge for them becomes two-fold, namely: to cope with the increased amount of data produced 

by these new technologies and to cope with the distribution of the information across the Web. An 

example of a study with a lot of ~omics data is described in Chapter 2, where more than 600 peaks 

have been measured using liquid chromatography mass-spectrometry (LCMS) in peel and flesh of a 

segregating F1 apple population. In total, 669 mQTL were identified in this study. The amount of 

mQTL identified is vast and almost overwhelming. Extracting meaningful information from such an 

experiment requires appropriate data filtering and data visualization techniques. The visualization of 

the distribution of the mQTL on the genetic map led to the discovery of QTL hotspots on linkage 

group: 1, 8, 13 and 16. The mQTL hotspot on linkage group 16 was further investigated and mainly 

contained compounds involved in the phenylpropanoid pathway. The apple genome sequence and 

its annotation were used to gain insight in genes potentially regulating this QTL hotspot. This led to 

the identification of the structural gene leucoanthocyanidin reductase (LAR1) as well as seven genes 

encoding transcription factors as putative candidates regulating the phenylpropanoid pathway, and 

thus candidates for the biosynthesis of health beneficial compounds. However, this study also 

indicated bottlenecks in the availability of biologist-friendly tools to visualize large-scale QTL mapping 

results and smart ways to mine genes underlying QTL intervals. 

In this thesis, we provide bioinformatics solutions to allow exploration of regions of interest on the 

genome more efficiently. In Chapter 3, we describe MQ2, a tool to visualize results of large-scale QTL 

mapping experiments. It allows biologists and breeders to use their favorite QTL mapping tool such 

as MapQTL or R/qtl and visualize the distribution of these QTL among the genetic map used in the 

analysis with MQ2. MQ2 provides the distribution of the QTL over the markers of the genetic map for 

a few hundreds traits. MQ2 is accessible online via its web interface but can also be used locally via its 

command line interface. In Chapter 4, we describe Marker2sequence (M2S), a tool to filter out genes 

of interest from all the genes underlying a QTL. M2S returns the list of genes for a specific genome 

interval and provides a search function to filter out genes related to the provided keyword(s) by their 

annotation. Genome annotations often contain cross-references to resources such as the Gene 

Ontology (GO), or proteins of the UniProt database. Via these annotations, additional information 

can be gathered about each gene. By integrating information from different resources and offering a 

way to mine the list of genes present in a QTL interval, M2S provides a way to reduce a list of 

hundreds of genes to possibly tens or less of genes potentially related to the trait of interest. Using 

semantic web technologies M2S integrates multiple resources and has the flexibility to extend this 

integration to more resources as they become available to these technologies. 

Besides the importance of efficient bioinformatics tools to analyze and visualize data, the work in 

Chapter 2 also revealed the importance of regulatory elements controlling key genes of pathways. 

The limitation of M2S is that it only considers genes within the interval. In genome annotations, 

transcription factors are not linked to the trait (keyword) and to the gene it controls, and these 

relationships will therefore not be considered. By integrating information about the gene regulatory 

network of the organism into Marker2sequence, it should be able to integrate in its list of genes, 

genes outside of the QTL interval but regulated by elements present within the QTL interval. In 

tomato, the genome annotation already lists a number of transcription factors, however, it does not 
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provide any information about their target. In Chapter 5, we describe how we combined 

transcriptomics information with six genotypes from an Introgression Line (IL) population to find 

genes differentially expressed while being in a similar genomic background (i.e.: outside of any 

introgression segments) as the reference genotype (with no introgression). These genes may be 

differentially expressed as a result of a regulatory element present in an introgression. The promoter 

regions of these genes have been analyzed for DNA motifs, and putative transcription factor binding 

sites have been found. 

The approaches taken in M2S (Chaper 4) are focused on a specific region of the genome, namely the 

QTL interval. In Chapter 6, we generalized this approach to develop Annotex. Annotex provides a 

simple way to browse the cross-references existing between biological databases (ChEBI, Rhea, 

UniProt, GO) and genome annotations. The main concept of Annotex being, that from any type of 

data present in the databases, one can navigate the cross-references to retrieve the desired type of 

information. 

This thesis has resulted in the production of three tools that biologists and breeders can use to speed 

up their research and build new hypothesis on. This thesis also revealed the state of bioinformatics 

with regards to data integration. It also reveals the need for integration into annotations (for 

example, genome annotations, protein annotations, and pathway annotations) of more ontologies 

than just the Gene Ontology (GO) currently used. Multiple platforms are arising to build these new 

ontologies but the process of integrating them into existing resources remains to be done. It also 

confirms the state of the data in plants where multiples resources may contain overlapping. Finally, 

this thesis also shows what can be achieved when the data is made inter-operable which should be 

an incentive to the community to work together and build inter-operable, non-overlapping 

resources, creating a bioinformatics Web for plant research. 
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In de afgelopen tien jaar, is de hoeveelheid data die in één run door een next generation sequencer 

gegenereerd wordt vele malen groter dan wat mogelijk was met behulp van Sanger sequensen. 

Metabolomics, proteomics en transcriptomics technologieën zijn ook verder ontwikkeld en 

genereren meer en meer data. Bovendien neemt het aantal beschikbare databanken, beschikbaar 

voor biologen en veredelaars, elk jaar toe. De uitdaging voor de mens wordt tweeledig, namelijk: om 

te gaan met de hoeveelheid data die gegenereerd wordt door deze nieuwe technologieën en om te 

gaan met het groeiend aantal plekken op het internet waar informatie beschikbaar is. Een voorbeeld 

van een studie met veel ~omics data is beschreven in Hoofdstuk 2, waar meer dan 600 pieken 

gemeten zijn met vloeistof chromatografie massaspectrometrie (LC-MS) in de schil en het 

vruchtvlees van individuen van een splitsende F1 appel-populatie. In totaal werden in deze studie 

voor 669 metabolieten kwantitatieve trait loci (mQTL) geïdentificeerd. Het aantal mQTL is 

overweldigend en het extraheren van zinvolle informatie uit een dergelijk experiment vereist 

geschikte technieken voor data filtering en data visualisatie. Het visualiseren van de verdeling van 

mQTL op de genetische kaart leidde tot het identificeren van QTL hotspots op de koppelingsgroepen 

1, 8, 13 en 16. De mQTL hotspot op koppelingsgroep 16 werd verder onderzocht en bevatte vooral 

verbindingen die betrokken zijn bij de fenylpropanoïde metabolische route. De genoomsequentie 

van appel en de bijbehorende annotatie zijn gebruikt om inzicht te krijgen in genen die mogelijk 

betrokken zijn bij regulatie van deze QTL hotspot. Dit heeft geleid tot de identificatie van het 

structurele gen leucoanthocyanidin reductase (LAR1) en zeven genen die coderen voor mogelijke 

transscriptiefactoren als kandidaat genen voor regulatie van de fenylpropanoïde metabolische route, 

en dus als kandidaten voor de biosynthese van gezondheidsbevorderende verbindingen. Echter, deze 

studie toont ook aan dat er een knelpunt is in de beschikbaarheid van bioloog-vriendelijke 

hulpmiddelen voor de visualisatie van resultaten van grootschalige QTL mapping resultaten en dat 

het ontbreekt aan slimme manieren om genen in een QTL interval te onderzoeken. 

In dit proefschrift beschrijven we oplossingen vanuit de bio-informatica voor het efficiënter 

onderzoeken van interessante regio’s op het genoom. In hoofdstuk 3 beschrijven we MQ2, een 

hulpmiddel om de resultaten van grootschalige QTL mapping experimenten te visualiseren. Biologen 

en veredelaars kunnen hun favoriete QTL mapping software, zoals MapQTL of R/qtl gebruiken om 

hun data te analyseren en vervolgens MQ2 gebruiken om de verdeling van de QTL t.o.v. een 

genetische kaart te visualiseren. MQ2 kan met gemak gegevens van vele honderden QTL visualiseren 

en is zowel beschikbaar als een web-applicatie en als een commandline-applicatie. In hoofdstuk 4 

beschrijven we Marker to Sequence (M2S), een hulpmiddel voor het filteren van mogelijke 

kandidaatgenen in een QTL interval. M2S geeft een lijst met genen weer voor het gedefinieerde 

genoom-interval en biedt zoekmogelijkheden aan om te filteren op genen die een opgegeven 

trefwoord in hun annotatie hebben. Genoom-annotaties bevatten vaak verwijzingen naar andere 

bronnen, zoals Gene Ontology-gegevens (GO) of eiwitgegevens in de UniProt databank. Via deze 

verwijzingen kunnen extra gegevens verzameld worden over elk gen. Door het integreren van 

informatie uit verschillende bronnen met behulp van semantisch web-technologieën, wordt het 

zoeken met trefwoorden efficiënter. Ook kunnen door het gebruik van semantisch web-technologie 

gemakkelijk nieuwe gegevensbronnen toegevoegd worden aan het systeem. M2S biedt de 

mogelijkheid om een lijst van honderden genen te verkleinen tot tientallen mogelijke kandidaat 

genen gerelateerd aan het kenmerk waarnaar gekeken wordt. 

Naast het belang van efficiënte bio-informatica-tools voor het analyseren en visualiseren van data 

laat de studie in hoofdstuk 2 ook zien wat het belang is van regulatie van sleutelgenen in een 
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metabolische route. De beperking van M2S is dat het alleen genen in een QTL-interval analyseert. In 

genoom-annotaties worden transcriptiefactoren niet gekoppeld aan een eigenschap en aan een gen 

of de genen die worden gereguleerd. Deze relaties worden daarom niet geëvalueerd in M2S. Door 

het integreren van informatie over een genregulatie netwerk in M2S moet het mogelijk zijn om via 

genen, die buiten het QTL interval liggen, de onderliggende regulerende genen te identificeren, die in 

het QTL-interval tot expressie komen. Hoewel de genoom-annotatie van tomaat een lijst met 

transcriptiefactoren bevat, ontbreekt informatie over welke genen door deze transcriptiefactoren 

gereguleerd kunnen worden. In hoofdstuk 5 beschrijven we hoe data van een genexpressie-

experiment met zes introgressielijnen gebruikt worden om genen op te sporen die tot expressie 

komen, terwijl de genoomlocatie(s) buiten het introgressie segment liggen. Deze expressie wordt 

hiervoor vergeleken met het referentie-genotype (dat deze introgressies niet bevat). De hypothese is 

dat deze genen differentieel tot expressie komen vanwege regulatie door genen (bijvoorbeeld 

transcriptiefactoren) die in het introgressie-segment liggen. De promotorregio’s van deze genen zijn 

geanalyseerd op het bovengemiddeld voorkomen van DNA-motieven, die wij aanmerken als 

mogelijke binding sites voor transcriptiefactoren. 

De aanpak gekozen in M2S (hoofdstuk 4) is gericht op een specifieke regio van het genoom, namelijk 

het QTL-interval. In hoofdstuk 6 beschrijven we een generalisatie van deze aanpak en de 

ontwikkeling van Annotex. Annotex biedt een simpele manier om wederzijdse referenties tussen 

biologische databanken (ChEBI, Rhea, UniProt, GO) en genoom-annotaties te verkennen. Het 

belangrijkste concept van Annotex is dat het mogelijk is om van elk type data (bijvoorbeeld gen of 

eiwit) informatie te krijgen over elk andere type (bijvoorbeeld metabolische route of literatuur). 

Dit proefschrift heeft geresulteerd in de ontwikkeling van drie methodes die biologen en veredelaars 

kunnen gebruiken om hun onderzoek te versnellen en te helpen bij het formuleren van nieuwe 

onderzoeksvragen. Dit proefschrift laat ook de stand van zaken zien met betrekking tot data-

integratie en de noodzaak van integratie van meer data (bijvoorbeeld eiwit-annotatie en 

metabolische routes) dan alleen Gene Ontology in de genoom-sequentie. Er zijn verscheidene 

platforms ontstaan die nieuwe ontologieën bouwen, maar het gebruik hiervan in bestaande 

databanken is een punt van aandacht. Ook bevatten meerdere databanken (deels) dezelfde 

informatie. Tot slot laat dit proefschrift zien wat bereikt kan worden wanneer data inter-operabel 

wordt gemaakt, wat een stimulans moet zijn voor het verder bouwen van een inter-operabel web 

van bio-informatica-tools voor plantenonderzoek. 
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Au cours de la dernière décade, la quantité de données générées par une simple analyse de 

séquenceur de nouvelle génération remplace des jours de travail avec les séquenceurs Sanger. Les 

analyses métaboliques, protéomiques et transcriptomiques ont aussi évoluées pour générer de plus 

en plus de données à un rythme de plus en plus soutenu. De plus, le nombre de base de données 

disponibles pour les biologistes et sélectionneurs augmente chaque année. Le défi devient alors 

double : arriver à gérer la quantité de données produites par ces nouvelles technologies et la 

distribution de l’information à travers le web. Un exemple d’expérience avec de grande quantité de 

données ~omiques est présente dans le chapitre 2, où plus de 600 pics ont été mesuré par LCMS 

dans la pulpe et la peau d’une population F1 de pomme. Au total, 669 mQTL ont été identifiés dans 

cette expérience, nombre trop important pour être traités manuellement. Extraire des informations 

utiles de telles expériences requière analyse et visualisation. La visualisation de la distribution des 

mQTL sur la carte génétique a mené à la découverte de points de concentration de QTLs sur les 

groupes de liaisons 1, 8, 13 et 16. Le point de concentration de QTL sur le groupe de liaison 16 a été 

analysé de manière plus poussé et contient principalement des composés lié à la voix métabolique 

des phénylpropanoides. Le génome de la pomme et son annotation ont été utilisés pour comprendre 

l’action des gènes associés à ce point de concentration. Cette analyse a mené à la découverte du 

gène « Leucoanthocyanidin reductase » (LAR1) ainsi que sept gènes encodant pour des facteurs de 

transcription, potentiel gène candidat à la régulation de la voix métabolique des phénylpropanoides 

et donc gène candidat pour la synthèse de composé bénéfique pour la santé. Cette étude a 

cependant aussi mis en avant le manque d’outils permettant à des biologistes de visualiser les 

résultats d’analyse QTL à grande échelle et permettant d’explorer les gènes associé à des QTLs. 

Dans cette thèse, nous présentons des outils de bioinformatique permettant une exploration efficace 

de régions du génome d’intérêt. Dans le chapitre 3, nous présentons MQ2, un outil pour la 

visualisation des résultats d’analyse QTL à grande échelle. Il permet à des biologistes ou des 

sélectionneurs d’utiliser leur outil d’analyse QTL préféré tel que MapQTL ou R/qtl et en utilisant MQ2, 

de visualiser la distribution des QTL sur la carte génétique utilisé lors de l’analyse. MQ2 peut 

présenter la distribution des QTLs sur les marqueurs de la carte génétique pour quelques centaines 

de caractères. MQ2 est disponible en ligne mais peut aussi être installé sur l’ordinateur de 

l’utilisateur et alors être utilisé par la ligne de commande. Dans le chapitre 4, nous présentons 

Marker2sequence (M2S), un outil permettant d’extraire des gènes d’intérêt depuis la liste de tous les 

gènes associé à un QTL. M2S donne accès à la liste de tous les gènes d’une région spécifique d’un 

génome et fournit une fonction de recherche permettant d’extraire les gènes contenant dans leur 

annotation le mot clé spécifié par l’utilisateur. L’annotation d’un génome contient souvent des 

références à d’autres ressources telles que l’ontologie des gènes « Gene Ontology » (GO) ou des 

protéines de la base de données UniProt. Des informations supplémentaires sur chaque gène du 

génome peuvent ainsi être rassemblées par ces références. En intégrant les informations de 

différentes ressources et en offrant une façon de les chercher, M2S permet de réduire une liste 

contenant quelques centaines de gènes, à éventuellement une liste de quelques gènes 

potentiellement lié au caractère étudié. M2S réalise l’intégration des données depuis différentes 

ressources en se basant sur les technologies du web sémantique. Cela offre une flexibilité 

permettant d’étendre l’intégration à de nouvelles ressources au fur et à mesure qu’elles s’ouvrent à 

ces technologies. 

En plus de révéler l’importance d’outils de bioinformatique pour l’analyse et la visualisation des 

données, l’étude en chapitre 2 a aussi révélé l’importance des éléments régulant l’expression des 
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gènes d’une voix métabolique. Une des limites d’utilisation de M2S vient du fait que M2S ne 

considère que les gènes présents dans l’intervalle spécifié. Dans l’annotation des génomes, les 

facteurs de transcriptions ne sont pas liés avec les caractères (mot clé) dont ils régulent l’expression, 

ces régulations ne sont donc pas prises en compte par M2S. En intégrant des informations sur les 

réseaux de régulations des gènes d’un organisme dans Marker2sequence, il devrait alors être 

capable d’intégrer dans la liste de gènes considérés, gènes hors de l’intervalle QTL mais régulés par 

des gènes présents dans le dit intervalle. Pour la tomate, l’annotation du génome liste déjà un certain 

nombre de facteurs de transcription, cependant, elle ne fournit pas d’information sur leur cibles. 

Dans le chapitre 5, nous avons combiné des mesures d’expression génique de six génotypes d’une 

lignée d’introgression pour trouver des gènes ayant une expression différente entre différents 

génotypes tout en étant dans une section du génome identique (c’est-à-dire, hors intégration) par 

rapport au génotype de référence (qui n’a aucune intégration). Ces gènes s’expriment peut-être 

différemment par la présence d’éléments régulateurs dans les intégrations du génome. Les 

promoteurs de ces gènes ont été analysés et 17 motifs, potentiels sites d’attache pour les facteurs de 

transcription, ont été trouvés. 

L’approche prise avec M2S (chapitre 4) se concentre sur une région spécifique du génome, 

l’intervalle du QTL. Dans le chapitre 6, nous avons généralisé cette approche en développant 

Annotex. Annotex fournit une interface simple pour parcourir les références existantes entre 

différentes bases de données biologiques (ChEBI, Rhea, UniProt et GO) et l’annotation d’un génome. 

L’idée principale d’Annotex étant qu’à partir de n’importe quel type de données (gènes, protéines, 

etc.) présentes dans une des bases de données, l’utilisateur peut parcourir les références pour 

extraire des données d’un type désiré (gènes, protéines, voix métabolique, bibliographie, etc.). 

Cette thèse a produit trois outils de bioinformatique que biologistes et sélectionneurs peuvent 

utiliser pour accélérer leurs recherches et créer de nouvelles hypothèses de recherche. Cette thèse a 

aussi révélé l’état de la bioinformatique en général par rapport à l’interopérabilité des bases de 

données. Cela a montré le besoin pour l’intégration dans les annotations (par exemple, les 

annotations de génomes, de protéines ou de voix métaboliques) de nouvelles ontologies, en plus de 

l’ontologie des gènes (GO) déjà utilisé. Plusieurs plateformes émergent pour aider à la création de 

ces ontologies, mais l’intégration de celles-ci dans les ressources existantes reste à faire. Cette thèse 

a aussi démontré l’état des bases de données biologiques pour les plantes, où plusieurs bases de 

données ont des informations qui se recouvrent. Enfin, cette thèse a montré ce qui pourra être fait 

quand ces ressources seront interopérables ce qui est une invitation pour la communauté 

scientifique à travailler en commun pour construire des ressources interopérable, qui ne se 

recouvrent pas et ainsi créer un réseau bioinformatique pour la biologie des plantes. 
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