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     Voor mijn ouders..............

“Charles Darwin had a big idea, arguably the most powerful idea ever. 
And like all the best ideas it is beguilingly simple”

Richard Dawkins

“Nobody said it was easy” 

The scientist
Coldplay (2002)
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  1
While throughout the years reviews on resistance genes have appeared with 

regular intervals, these mostly had their main focus on fungal and bacterial 
resistance genes, primarily due to the large amount of data available. This chapter 
aims to present an overview on the state of the art on resistance genes against 
plant viruses, with emphasis on single dominant resistance genes. Prior to this, a 
brief introduction will be given on the versatile ways plants try to combat viruses to 
prevent the establishment of an infection.

The very basis of the fact that plant viruses cannot infect all plants is due to a 
mechanism called non-host resistance (NHR) (For an extensive review on this, see 
Uma et al. (2011)). NHR holds for all plant pathogens and is a generic, nonspecific 
resistance against pathogens which is divided into two main types, distinguished 
by the mechanism and mode of recognition (Mysore and Ryu, 2004). Type 1 is the 
most pre-dominant type of NHR and presents a basic defence mechanism that 
prevents pathogen invasion, e.g. thickening of the cell-wall, secondary metabolite 
production, etc. This type of resistance usually is symptomless. In contrast, type 2 
NHR is associated with induction of necrosis at the site of infection, and is induced 
when pathogens overcome type 1 resistance. Here, the pathogen is recognised 
through specific structures or proteins that are associated with the pathogen. The 
recognition of these structures/proteins, so called microbe associated molecular 
patterns (MAMPs) or PAMPS (Pathogen), takes place by pattern recognition 
receptors (PRRs) on plant plasma membranes. These PRRs recognise conserved 
structures of pathogens, like flaggelin from the flagella of bacteria or chitin from the 
cell wall of fungi, and induce a so called PAMP triggered immunity (PTI) response 
(Jones and Dangl, 2006).

Since plant viruses need to overcome the physical barrier of a cell wall, they 
enter their host cells either via mechanical inoculation or the infection is mediated 
by vectors like insects, nematodes or even fungi. Therefore, recognition by PRRs 
on the plasma membrane does not apply here. One of the first innate immune 
responses all plant viruses encounter when invading a host consists of antiviral 
RNA silencing (also called RNA interference (RNAi) and in the very early days post-
transcriptional gene silencing (PTSG)). RNA silencing is a host response triggered 
by double stranded (ds)RNA. These molecules thus act as a MAMP/PAMP and in 
which RNAi can be regarded as PTI. The main difference with pathogens such as 
fungi and bacteria is that recognition of viral MAMPs/PAMPs occur intracellularly 

Abstract

To establish a successful infection plant viruses have to overcome a defence system 
composed of several layers. This chapter will overview the various strategies 
plants employ to combat viral infections with main emphasis and a state of the art 
description on single dominant resistance (R)-genes against plant viruses and the 
corresponding avirulence (Avr)-genes identified so far. The most common models 
to explain the mode of action of dominant R-genes will be presented. Finally, the 
hypersensitive response (HR) and extreme resistance (ER), both often triggered after 
induction of dominant R-genes but not the cause for resistance, will be described. 
In light of the scope of this thesis, the functional and structural similarity of R-genes 
of plants to sensors of innate immunity from animal cell systems will briefly be 
described. 

I. Introduction

When looking around in nature, it is quite obvious to see that most plants are 
healthy and do not seem to suffer from any serious infection. This can only be true if 
plants, like all other organisms, have an advanced defence system. In past decades, 
scientists have shown that indeed plants have a unique and complex defence 
system that consists of several layers, which enables them to avoid, suppress or 
actively defend against pathogens from all kingdoms like fungi, bacteria, nematodes 
and viruses. Of all plant viruses known, only a few cause serious diseases and, if 
so, mostly limited to a very small number of crops. In general, most viruses have a 
limited (natural) host range and the number of so-called non-hosts exceeds those 
of hosts. In those plants that are hosts, viruses encounter different mechanisms of 
defence. Some plants act general against all viruses and this response is part of the 
innate immune system, while other plants are virus-specific hosts. In the latter case 
resistance genes of the host are involved that leads to necrosis at the site of virus 
entry upon activation, and prevents further infection of the entire host plant. In 
several cases resistance genes do not confer absolute resistance against a virus and 
low levels of virus replication can still be observed. In those cases the genes are also 
referred to as partial resistance genes or tolerance genes.
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(Ding and Voinnet, 2007). 

RNA silencing mainly consists of two major ‘branches’; the first one is that 
of small-interfering (si)RNAs, and one of the hallmarks for antiviral RNAi, and 
the second one is that of (host-gene encoded) micro (mi)RNAs involved in gene 
regulation. MicroRNAs and siRNAs share structural and functional similarities, but 
differ by their biogenesis pathways. Although dsDNA viruses have also been shown 
to encode miRNAs that are involved in the modulation of the hosts’ innate immune 
responses, these will not be discussed here (for an extensive description of RNAi, 
see reviews on this by Ding (2010) and Sharma et al. (2012)). The antiviral RNAi 
response is induced by viral double stranded (ds)RNA molecules that arise from 
replicative intermediates or secondary RNA folding structures. These structures 
are sensed by a host RNase type III-like enzyme called Dicer-like (DCL) protein and 
cleaved into short interfering (si)RNA of 21-24 nucleotides (nt) in size (Sharma et al., 
2012). The siRNAs generated are unwound and only one strand, the so-called guide-
strand, is uploaded into a functional protein complex termed RNA-induced silencing 
complex (RISC). This activated complex next surveils and subsequently degrades 
(viral) RNA target molecules with sequence complementarity to the guide-strand. 
Degradation of double stranded RNA is mediated by slicer, the core component of 
RISC, which is represented by a member of the Argonaut (AGO) family of proteins 
(Vaucheret, 2008; Sharma et al., 2012). After primary siRNAs have been generated, 
in plants an amplification of siRNAs follows, which is required to mount an RNAi 
response that is effective to combat virus infections locally and systemically. This 
amplification involves host RNA dependent RNA polymerases (RDRs) that are 
able to convert (aberrant) viral (m)RNAs into dsRNA in a siRNA-dependent and 
-independent manner (Csorba et al., 2009). Their subsequent processing by DCL 
leads to the generation of secondary siRNAs that correspond to sequences outside 
the primary target sequence, a process also called transitive silencing (Sijen et al., 
2001). The antiviral RNAi response acts against all RNA and DNA viruses (Incarbone 
and Dunoyer, 2013), but in general is a relatively slow process that does not lead to 
complete clearance of viral infections. 

Besides RNAi, viruses may also run into another layer of defence that involves 
resistance genes. These are triggered by and confer resistance to a specific virus 
only. The major class of these genes represent single dominant resistance genes 
(described further below), while others are recessive, tolerance or partial resistance 

genes. A very nice example of the latter case has recently been described with 
the cloning and characterisation of the Ty-1 resistance gene from tomato against 
Tomato yellow leaf curl geminivirus (TYLCV) (Verlaan et al., 2013). This gene encodes 
an RNA-dependent RNA polymerase (RdRp) that amplifies the RNAi signal, causing 
enhanced methylation of the viral DNA genome (siRNA directed DNA methylation: 
RdDM) and thereby leading to transcriptional silencing of geminivirus genes. 
Tomato plants containing Ty-1 do not show symptoms upon challenge with TYLCV, 
but low levels of virus can still be detected (Verlaan, PhD-thesis 2013).

Recessive resistance (Truniger and Aranda, 2009) so far has mainly been 
described for viruses, and relies on the observation that viruses require host factors 
(also called susceptibility factors) to enable an infection. The inability of interaction 
between such host factor and the virus leads to resistance. Since susceptibility 
factors are dominant, a resistance based on these requires all gene copies to be 
in the (resistant) recessive state. This explains why such resistance is generally 
termed recessive resistance. The majority of the recessive resistance genes known 
against plant viruses have been reported for potyviruses (Kang et al., 2005) and 
encode translation initiation factors of the 4E or 4G family (eIF4E/eIF4G) (Truniger 
and Aranda, 2009). The latter proteins need to interact with the cap-structure on 
(viral) transcripts, to allow for translation. Potyviral transcripts do not contain a cap 
structure, but provide a VPg (Virus-protein genome linked) to render their transcripts 
translatable in a cap-independent manner. Potyvirus infection leads to host shut off 
of cap-dependent transcripts, but only allow the cap-independent transcripts to be 
translated mediated by a subgroup of translation initiation factors; eIF(iso)4E/G. 
Viruses that encode their own cap-like structure (like potyviruses: VPg) require 
interaction with the translation initiation factors eIF4E/eIF4G for translation, this 
in turn induces a selection pressure on the host to escape the interaction between 
VPg and eIF4e, leading to recessive resistance. Recessive resistance towards other 
pathogens, such as fungi and bacteria have only limited been described and these 
susceptibility factors (S-gene) are proposed to provide a more durable resistance 
than dominant R-genes. However due to their functions they may cause pleiotropic 
effects when knocked out from the host genome (Gawehns et al., 2013).
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II. Dominant resistance

II.1 Effector-mediated triggering of single dominant resistance genes
Plant pathogens need to evade or suppress the PTI response in plants and do this by 
encoding effector proteins that can interfere with the recognition by PRRs, usually 
by binding to the substrate that PRRs would otherwise recognise. This process 
allows the pathogen to establish a successful infection, and is referred to as Effector 
Triggered Susceptibility (ETS) (Figure 1.1): a strategy that also applies to antiviral 
RNAi. One of the most common strategies plant viruses use to counteract RNAi 
is to encode RNA silencing suppressors (RSS), viral proteins that interfere with a 
specific part of the RNAi pathway and thereby reduce its effectiveness against 
plant viruses (Burgyan and Havelda, 2011). The majority of plant virus RSS proteins 
exert this activity through binding of small interfering (si)RNAs, or sometimes (also) 
long dsRNA, and thereby prevent their uploading into RISC and Dicer-cleavage, 
respectively (Lakatos et al., 2006). In recent years some RSS have also been 
discovered to inhibit the RNAi pathway in other ways, e.g. by binding directly to 
key-enzymes proteins like AGO1, the core component of RISC during the antiviral 
RNAi response (Zhang et al., 2006; Giner et al., 2010). Viral suppression of RNAi 
leads to a stage of effector triggered susceptibility (ETS) during which viruses are 
able to establish a successful infection.

Single dominant resistance (R) gene products (in)directly sense the presence of 
a specific pathogen by their effector, termed avirulence factors (Avr), as a counter 
defence against ETS, leading to a stage called Effector-Triggered Immunity (ETI) 
(Figure 1.1). Triggering of R-genes is generally associated with a (concomitant) 
induction of a programmed cell death response, as visualised by the rapid 
appearance of necrotic lesions (a hypersensitive response, HR) or in rare occasions 
extreme resistance (ER) during which no necrosis is observed at all. However, more 
and more evidence is presented, that there is an uncoupling of the resistance 
response from the programmed cell death response, although both can work in 
concert. Due to these responses, viruses (and other pathogens) are confined to the 
site of entry/invasion where infections are prevented. In contrast to the mostly slow 
onset of antiviral RNAi the R-gene response generally is rapid, within ~3/4 days. 
The major class of R-genes encode proteins that, irrespective of the pathogen they 
recognise, consist of three domains; 1) the Nucleotide Binding Domain (NBS) in the

Figure 1.1 Zig-zag-model. The arms race between pathogen and host as illustrated in the 

‘Zig-zag-model’ of Dangl and Jones (2006). Here, a modified version of that model shows 

the sequential responses as described in this chapter. MAMPs/PAMPs: Microbe/Pathogen 

associated molecular patterns, PTI: PAMP triggered immunity, ETS: Effector triggered 

susceptibility, ETI: Effector-triggered immunity, RB: resistance breaker.

centre of the protein, 2) a Leucine Rich Repeat (LRR) at the C-terminal end, and 3) a 
Coiled-coil (CC) or Toll and Interleukin-1 Receptor (TIR) domain at the N-terminal end 
of the resistance gene product (Moffett, 2009). The LRR determines the specificity of 
the target protein and is the most variable part of the protein, therefore considered 
to be under selection pressure to evolve for recognition of (new) target proteins. 
The NBS is composed of a conserved part that contains the Nucleotide Binding site 
(NB) and an ARC-domain, both required to bind and hydrolyse ATP. R-genes that 
contain an N-terminal TIR domain are only found in dicotyledonous plant species, 
and through this domain share homology to Toll-like receptor (TLR) proteins, that 
act as PRRs in the innate immunity response in animal systems. Those with a CC-
domain, which has no predicted structure at its N-terminus, are also termed non-
TIR group. All three domains are involved in an interaction with each other and 
change conformationally upon activation to subsequently induce the resistance 
response (Lukasik and Takken, 2009; Slootweg et al., 2010). 
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Only a few cases have been described in which the dominant R-gene product 

recognises an Avr-protein through direct interaction, one of which is a viral Avr-
protein (Jia et al., 2000; Deslandes et al., 2003; Dodds et al., 2006; Ueda et al., 2006; 
Cesari et al., 2013). In the majority of known R-genes recognition of the pathogen 
occurs indirectly and involves host proteins, which are considered guardees, decoys 
or baits, depending on the model, as further discussed below (II.3) (van der Biezen 
and Jones, 1998; Jones and Dangl, 2006; van der Hoorn and Kamoun, 2008; Collier 
and Moffett, 2009).

II.2 Cloned R-genes and their known Avr-determinants
While for fungi and bacteria many resistance genes have been cloned and 
characterised, resistance genes against plant viruses have received growing interest 
during the last two decades, but still only few have been cloned so far. Table S1.1 
gives an up-to-date summary of all R-genes against plant viruses, known or under 
investigation thus far. For some of these genes the viral Avr-determinant has been 
identified. From this large, extensive list of R-genes, only 22 have been cloned and 
characterised. Some R-genes have functional alleles in other plant species, often 
showing a similar Avr-recognition. The majority of the known R-gene products are 
of the CC-NB-LRR type, whereas only a small group belongs to the TIR-NB-LRR group 
(Table 1.1). 

Dominant R-genes against viruses have been described that do not belong to 
the NB-LRR type of genes, i.e. the RTM1, RTM2 and RTM3 resistance genes have 
been identified from A. thaliana, which prevent the systemic spread of several 
potyviruses. In those cases the virus is not able to upload into the phloem to 
systemically disseminate into the host. In addition, there is also no induction of HR 
or production of salicylic acid (SA), as commonly observed with NB-LRR mediated 
resistance responses (Cosson et al., 2012). No direct interaction occurs between the 
RTM proteins with the potyvirus CP (Avr) protein. Another type of R-gene is Tm-1, 
found in the wild tomato species S. hirsutum, encoding a protein that contains a 
TIM-barrel. This barrel binds the replication proteins of Tomato mosaic virus (ToMV) 
and thereby inhibits RNA replication (Ishibashi et al., 2007). Also here, no typical 
NB-LRR type-associated response, like HR, is induced. Many homologs of Tm-1 are 
found in other organisms like fungi, archae and bacteria, suggesting that this gene 

(originally) presents a more common household gene (Ishibashi et al., 2012). Both 
RTM and Tm-1 seem to play a role in the inhibition of a specific step required for 
successful infection by the virus. Whether these present a new class of dominant 
resistance genes remains to be determined.

From only a ⅓ of the total number of R-genes directed against plant viruses, the 
virus Avr-determinant is identified (Table 1.1 and S1.1). Interestingly, functionally 
quite different viral proteins act as Avr-determinants. Several R-genes belonging 
to the same locus (for instance the L-proteins in Capsicum spec. and Rx1 and Rx2 
from S. tuberosum) recognise the same Avr-protein from overlapping virus species, 
indicating that these conserved R-proteins are able to recognise similar structures 
but with an adapted spectrum. For several viruses, their corresponding R-genes 
have not been identified yet, but their single dominant nature is deduced from the 
observation that an HR is being triggered. In some of these cases, the viral gene 
responsible for the induction of resistance, as indirectly monitored by HR, has been 
identified.

As described before and clear from Table 1.1, many different viral proteins can 
act as Avr-determinants; whether it is the coat protein (e.g. L-locus from Capsicum 
against Tobamoviruses), the movement protein (e.g. Tm-2/Tm-22 from tomato 
against Tobamoviruses), the replicase protein (e.g. Tm-1 from tomato against Tobacco 
mosaic virus [TMV]) or the RNAi suppressor protein (e.g. HRT from A. thaliana 
against Turnip crinkle virus [TCV]), all potentially can act as elicitor of resistance 
(Meshi et al., 1989; Ishibashi et al., 2012; Moury and Verdin, 2012). Interestingly, 
for a majority of cases the ability to induce the resistance, as monitored by visual 
HR, could be uncoupled from the endogenous function of the viral protein, but 
exceptions exist.

While the function of a viral protein is not a selective criterium to act as Avr-
determinant, the ‘Zig-zag-model’ by Jones and Dangl (2006) (Figure 1.1) implies 
that ETI (R-gene mediated resistance) is a response to ETS and governed by effector 
molecules. If this also applies to plant viruses, all virus proteins acting as Avr would 
thus have to aid in overcoming PTI (initiating ETS). For viral proteins that act as RSS 
this might be easily explained as these directly interfere with the PTI response. For 
viral cell-to-cell movement proteins this seems less logical, but also here an example 
exists that can position these proteins in the ‘Zig-zag-model’; the movement protein 
of TMV was shown to stimulate the spread of small RNAs, thereby tempering 
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Table 1.1 Cloned antiviral R-genes and their corresponding Avr-determinants:

Plant host R-gene Cloned/type Recognises Virus genus AVR Reference

Arabidopsis thaliana 
Mouse ear cress

HRT Yes: CC-NB-LRR
[HR]

TCV [Turnip crinkle virus] Carmovirus CP 1, 2

RCY1 Yes: CC-NB-LRR
[HR]

CMV [Cucumber mosaic virus] Cucumovirus CP 3-6

RTM1
RTM2
RTM3

Yes: Jacalin-like
[prev. syst. mov.]

[RTM3 not cloned]

TEV [Tobacco etch virus]
PPV [Plum pox virus]
LMV [Lettuce mosaic virus]

Potyvirus CP
CP
CP

7-9

Brassica campestris
Field mustard

BcTuR3 Yes:
TIR-NBS-LRR

TuMV [Turnip mosaic virus] Potyvirus unknown 17, 18

Capsicum
  annuum
  frutescens
  chinense
  chacoense
Pepper

L-locus:
L1

L2

L3

L4

Yes 
All:

CC-NB-LRR

TMV [Tobacco mosaic virus] by L1234

ToMV [Tomato mosaic virus] by L1234

TMGMV [Tobacco mild green mosaic virus] by L1234

BPeMV [Bell pepper mottle virus] by L1234

PaMMV [Paprika mild mottle virus] by L234

ObPV [Obuda pepper virus] by L234

PMMoV [Pepper mild mottle virus] by L34

Tobamovirus CP (all) 25, 
31-34, 
43-45

Glycine max
Soybean

Rsv1
(locus)

Yes:
CC-NB-LRR

[ER/HR]

SMV [Soybean mosaic virus] Potyvirus P3+
HC-Pro

65-69

Nicotiana glutinosa
Tobacco

N Yes:
TIR-NB-LRR

[cell-cell mov.]

TMV [Tobacco mosaic virus] Tobamovirus p50 
[Helicase]

105-111

Phaseolus vulgaris 
Kidney bean

PvVTT1 Yes:
TIR-NB-LRR

[HR]

BDMV [Bean dwarf mosaic virus] Begomovirus BV1
(NSP)

134-139

PvCMR1
(RT4-4)

Yes:
TIR-NB-LRR

[syst. necrosis]

CMV [Cucumber mosaic virus] Cucumovirus 2a 156

Phaseolus vulgaris 
Kidney bean

I
(locus)

Yes:
TIR-NB-LRR

[ER/HR/phloem necr.]

BCMV [Bean common mosaic virus]
BNMV [Bean necrotic mosaic virus]
BICMV [Blackeye cowpea mosaic virus]
AzMV [Azuki mosaic virus]
CABMV [Cowpea aphid-borne mosaic virus]
PWV [Passionfruit woodiness virus]
SMV [Soybean mosaic virus]
ThPV [Thailand passiflora virus]
WMV [Watermelon mosaic virus]
ZYMV [Zucchini yellow mosaic virus]

Potyvirus unknown 127-133

Poncirus trifoliate
Trifoliate orange

Ctv
(locus)

Yes:
CC-NB-LRR

CTV [Citrus tristeza virus] Closterovirus unknown 158-160

Solanum hirsutum
Tomato

Tm-1 Yes:
TIM-barrel-like domain 

protein
[ER/Replication]

ToMV [Tomato mosaic virus] Tobamovirus Replicase
Helicase-
domain

169-174

Solanum peruvianum
Tomato

Sw5b Yes:
CC-NB-LRR [HR]

TSWV [Tomato spotted wilt virus]
and other tospoviruses

Tospovirus NSm 179-183

Tm-2 Yes:
CC-NB-LRR

[HR]

TMV [Tobacco mosaic virus]
ToMV [Tomato mosaic virus]
and other tobamoviruses

Tobamovirus 30kD MP. 171, 188, 189

Tm-22 Yes:
CC-NB-LRR

[HR]

ToMV [Tomato mosaic virus]
TMV [Tobacco mosaic virus]
and other tobamoviruses

Tobamovirus 30kD MP. 171, 190-193

Solanum tuberosum
Potato

Rx1 Yes:
CC-NB-LRR

[ER/HR]

PVX [Potato virus X]
and other potex viruses

Potexvirus CP 195, 198, 
199, 230-234

Rx2 Yes:
CC-NB-LRR

PVX [Potato virus X] Potexvirus CP 138, 232

Y-1 Yes:
TIR-NB-LRR.

PVY [Potato virus Y] Potyvirus unknown 237, 238

Vigna mungo
Black gram

CYR1 Yes:
CC-NB-LRR

MYMV [Mungbean yellow mosaic virus] Begomovirus CP 256, 257
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a pathogen without having any other role in the household machinery of the host. 
The ‘bait and switch model’ and the similar ‘mousetrap model’ have been more 
recently postulated and proposes that the R-gene product in an ‘OFF’ state forms 
a complex together with the guardee/decoy protein, that upon interaction of the
Avr-protein with the complex, subsequently causes it to conformationally switch 
(‘ON’) and activates a downstream signalling pathway leading to resistance (Collier 
and Moffett, 2009). 

The mechanism through which the resistance is induced still remains unclear. 
However, one described case of the R-gene from tobacco, the N-gene, has revealed 
some of the downstream ways of controlling virus replication and obtaining 
resistance. The N-gene encodes a TIR-NB-LRR protein and confers resistance 
against TMV and, upon transient co-expression with the p50 elicitor (helicase), an 
HR is induced in N. tabacum, a response that does not occur in N. benthamiana. 
Bhattacharjee et al. (2009) employed this observation in a series of experiments 
to dissect and assign downstream signalling of defence responses, related to the 
R-gene. The studies indicated that the N-gene based antiviral response leads to 
a translational arrest of viral transcripts by a process that involves Argonaute 4 
(AGO4). As a result, synthesis of viral proteins is inhibited, ultimately preventing 
virus accumulation and spread. Whether this mechanism is generic to all R-genes 
against plant-viruses remains to be investigated.

Two independent studies were published in 2012 that showed that the translation 
of R-genes is tightly controlled through the activity of miRNAs. One study showed 
the miR482/2118 superfamily negatively controlled the translation of NB-LRR 
proteins by targeting its P-loop motif (Shivaprasad et al., 2012), while Li et al. (2012) 
showed that other miRNA families controlled the translation of NB-LRR proteins as 
well, with the TIR-NB-LRR protein N as example. Interestingly, in the on-going ‘arms 
race’ between virus and host, a viral infection thus can supress the miRNA induced 
silencing of R-genes, leading to enhanced expression of the R-genes and induction 
of ETI. Additionally, the expression levels of R-genes have to be carefully regulated 
as high expression levels of R-genes can lead to auto-immunity (Xia et al., 2013).

the virulence of the virus during systemic infection (Vogler et al., 2008). For viral 
proteins with other functions (e.g. coat protein) their position as effector is more 
difficult to envision, unless another innate immune response is being counteracted.

II.3 Model of R-gene recognition
Although the mode of action of resistance genes still remains a matter of debate, 
one of the most commonly accepted models is the ‘guard hypothesis’ (van der 
Biezen and Jones, 1998; Jones and Dangl, 2006). In this model the resistance gene 
product guards a certain host protein, the ‘guardee’, and perceives alterations of 
this protein upon interaction with the Avr determinant through which a resistance 
response is initiated. It is possible that multiple R-genes guard the same guardee, 
possibly vice versa as well, which thereby broadens the resistance spectrum of (a 
limited number of) R-genes to a wide range of various pathogens; e.g. Rx1 and 
GPa2 both interact with the same guardee RanGAP2 (Tameling and Baulcombe, 
2007; Moffett, 2009). Unfortunately, this model does not explain how resistance 
breaking virus isolates maintain their virulence. For this reason, alternative models 
have been postulated. According to the ‘decoy model’ (van der Hoorn and Kamoun, 
2008), a (proteinaceous) decoy evolved to act as a molecular sensor to only detect 
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III. Downstream defence responses

Dominant R-genes trigger a hypersensitive response (HR) or an extreme response 
(ER) in case the reaction occurs in a single cell. Both involve a programmed cell death 
(PCD) response that rapidly kills infected cells and prevents systemic spread of the 
(virus) pathogen. An induced HR is quite characteristic and involves the activation 
and expression of salicylic acid (SA), jasmonic acid (JA), nitride oxide (NO), ethylene, 
reactive oxygen species (ROS) and Ca2+, and expression of Pathogenesis Related 
(PR)-genes. While each component has a specificity towards certain pathogens, 
only SA, ROS and Ca2+ seem to be effective against viruses (Loebenstein, 2009; Carr 
et al., 2010).

In the past, an HR was considered to be part of the resistance response, however, 
recent insights into R-protein downstream signalling indicate that programmed cell 
death (HR) and resistance are distinct physiological pathways (Bendahmane et al., 
1999; Bai et al., 2012). One of the best examples in support of this comes from 
studies on Rx-based resistance against PVX. The Rx-gene product is a CC-NB-LRR 
protein from potato that is triggered by the PVX structural CP protein. The Rx-protein 
localises in the cytoplasm while shuttling to and from the nucleus thereby triggering 
resistance (Slootweg et al., 2010). Although an HR is monitored, this response can 
be knocked out without Rx-mediated resistance against PVX (Bendahmane et al., 
1999), another example is the N-gene mediated resistance against TMV as described 
above in section II.3 (Bhattacharjee et al., 2009). Similar observations have been 
made by others (Cole et al., 2001; Cawly et al., 2005; Genger et al., 2008; Bulgarelli 
et al., 2010; Bai et al., 2012) and indicate that the actual resistance response is 
different from an HR, although both mostly are triggered and may act in concert to 
clear viral invasions. Whether both are triggered by a pathogens’ Avr determinant 
or whether HR is sequentially triggered following the R-gene response is not clear. 

While several interacting proteins have been identified that control R-protein 
activity in the absence of pathogens (RAR1, SGT1, WRKY1, TPR1), more recently 
it has been found that there are also proteins that modulate the strength of 
defence responses (RanGAP, EDS1-PAD4) (Wiermer et al., 2005; Sacco et al., 
2009). The benefit for the plant in a modulated fine-tuning of the ETI response 
to specific pathogens lies in improved effector sensing and minimizing the fitness 
costs involved with certain defence responses (free radical production, defence 

protein synthesis, cell death) (Padmanabhan and Dinesh-Kumar, 2010). While 
R-gene mediated defence is taking place locally at the site of entry, it is also able to 
induce defence signalling responses in distally located tissues, known as systemic 
acquired resistance (SAR) (Vlot et al., 2008). For both the N-gene in tobacco and Rx1 
in potato, SAR has been demonstrated (Delaney et al., 1994; Liu et al., 2010) and 
in both cases this response is mediated by the SA-dependent pathway as a mobile 
signal. SAR also prevents infection by other pathogens in the host by activating PR-
genes in the systemic tissue, which are used as a hallmark of SAR and were shown 
to have antimicrobial activity, although a direct inhibition on virus replication has 
not been shown (Durrant and Dong, 2004; Loebenstein, 2009; Carr et al., 2010).

IV. Functional and structural homology of plant- and animal-sensors of 
innate immunity

Viruses are pathogens to many different organisms and, irrespective of the host 
species they infect, often share similarities in genome organisation and functions 
of encoded proteins. A good example of this is exemplified by viruses from the 
Bunyaviridae family where all members infect animals with the exception of those 
from the Tospovirus genus (see V) that, besides infecting their thrips vector, are plant 
pathogenic and are postulated to have evolved from a common ancestor. Likewise, 
as a result of co-evolution driven by host-pathogen interactions, plants and animals 
show some similarities in their innate immune sensory systems. While in plants the 
aforementioned R-genes are important in mounting an ETI response, in animals two 
major classes are distinguished that (partially) share similarity to these R-genes, 
however both function as PRRs in the PTI response. The first major class present 
the ‘nucleotide-binding domain and leucine-rich repeat’-proteins (NLRs) and the 
second class is that of Toll like receptors (TLRs), which are all found to function as 
PRRs in the PTI response. Both are immune receptors aimed at detecting ‘foreign’ 
structures and activating downstream defence responses. The family of NLRs share 
the most homology, as evidenced when looking at R-genes from plants and NACHT-
LRR encoding genes from the animal kingdom (NAIP – CIITA - HET-E - TP1 domain) 
(Leipe et al., 2004; Takken et al., 2006; Maekawa et al., 2011). They both contain 
a nucleotide binding domain and a leucine rich repeat (Maekawa et al., 2011) 
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(Figure 1.2). Additionally, plant R-proteins also share homology at their N-termini 
with animal Toll-like receptors (TLRs), membrane-bound immune receptors that 
function as sensors in pathogen recognition across membranes.

The NLRs of both plant and animal kingdom share homology through the 
presence of the Leucine-rich repeats (LRR) in these proteins. As discussed in 
previous chapters, the most prevalent type of R-proteins in plants belonging to the 
NB-LRR protein structural class, from which the central nuclear binding domain 
(NBS) exhibits similarity to the nucleotide binding domain in several metazoan 
apoptosis regulating proteins: Apaf-1 from mammals and CED-4 from C. elegans. 
Due to the latter this domain is also often referred to as NB-ARC domain (from 
Apaf1 – R-protein - CED4) (van der Biezen and Jones, 1998; Takken et al., 2006). 
The N-terminal domain furthermore separates different classes of R-genes; TIR-
NB-LRRs harbour a Toll/Interleukin-1 Receptor domain with similarity to metazoan 
Toll-like receptors (TLR) (Burch-Smith et al., 2007). CC-NB-LRRs contain coiled coil 
domain forming the more irregular shaped intertwined alpha-helices (Lupas, 1997). 
Parallel to the discovery of many NB-LRR encoding R-genes in plants in the recent 
years, the search for homology to Apaf-1 and CED-4 resulted in the recognition 
of the NACHT-LRR protein family in vertebrates (Koonin and Aravind, 2000; Leipe 
et al., 2004). Animal NLRs activate caspase-1 leading to activation and release of 
the cytokine interleukin-1 beta (Case, 2011), which subsequently induces local and 
systemic immune reactions. Similar to plant NB-LRR proteins, NLRs were found to 
act as higher-order active complexes, e.g. NLRP1-3 and NLRC4 form a complex often 
termed the inflammasome. 

TLRs represent the best studied family of PRRs in mammals so far. They are 
transmembrane glycoprotein receptors with an extracellular PAMP-binding domain 
consisting of multiple leucine rich repeats (LRR) that fold into a ‘horseshoe’ structure. 
Additionally, it possesses intracellular signalling regions that have similarity to the 
intracellular domain of the Interleukin-I receptor ((IL-1R), which is referred to as 
Toll/IL-1R (TIR) domain that mediates downstream signalling upon activation 
of the receptor. TLRs initiate signal cascades involving the activation of nuclear 
factor kappa b (NF-κB), mitogen-activated protein kinase (MAPK) and interferon 
regulatory factors (IRFs). This subsequently leads to a concerted expression of 
interferons, cytokines and chemokines. Finally, inflammatory processes, cell cycle 
arrest and cell death are induced (Honda et al., 2005; Kaisho and Akira, 2006). 

In humans, 10 TLRs have been identified of which TLR2, -3, -4, -7 and -8 are involved 
in sensing structural components of RNA viruses like double-stranded RNA, single-
strand RNA and viral glycoproteins (Bowie and Unterholzner, 2008). While most 
TLRs are involved in extracellular recognition of PAMPs, TLR3, -7 and -8 are primarily 
restricted to intracellular compartments (endoplasmic-reticulum (ER), endosomes 
etc.) where they sense structural components of viral RNA. Besides TLRs cytosolic 
retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs; RIG-I, MDA5 and LSP2) 
have been identified as sensors of RNA viruses and are involved in the very early 
response of some RNA viruses (Bowie and Unterholzner, 2008; Gerlier and Lyles, 
2011; Jensen and Thomsen, 2012).

Pathogen recognition in both animal and plant kingdoms involves the LRR domain, 
which binds the ligand in its horseshoe shape, often followed by activation of a 
signalling cascade through kinase phosphorylation. Structural similarities between 
animal TLR/NLR and plant NB-LRR proteins point to a convergent evolution of these 
defence-related pathways. However innate immunity in animals and plants differs 
substantially in their downstream defence response, with interleukin/interferon-
activated inflammatory responses combined with activating the adaptive immune 
system in mammalian systems and a resistance response (as explained before) 
often seen as a programmed cell death response in form of HR in plants.

V. Tomato spotted wilt virus

Tomato spotted wilt virus (TSWV) currently ranks 2nd on the list of scientifically/ 
economically most important plant viruses worldwide (Scholthof et al., 2011). TWSV 
is the representative of the Tospovirus genus within the family of arthropod-borne 
Bunyaviridae. Besides this genus, the family comprises the genera Orthobunya-, 
Hanta-, Nairo- and Phlebovirus, which all contain members that infect animals. 
Like all members of the Bunyaviridae family TSWV has a spherical morphology, 
contains a host-derived membrane (from either plant or insect vector) and has a 
diameter between 80 and 120 nm. Its genome consists of three segmented RNA 
molecules, of which the large (L)-segment is of negative polarity and encodes the 
RNA-dependent RNA polymerase (RdRp) (Figure 1.3). The medium (M)-segment 
contains an ambisense gene arrangement and encodes the movement protein 
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← Figure 1.2 Comparison between the structure of plant and animal NLRs. 

A. The structure of ‘Nucleotide binding and leucine rich repeat proteins’ (NLRs) from the 

animal and plant kingdom share highest homology, as all proteins belonging to this class 

have a C-terminal leucine rich repeat (LRR), a central nucleotide binding domain and a 

varying N-terminal domain (modified from Maekawa (2011)). Animal TLRs also contain an 

(extracellular) LRR domain and possess a TIR-domain, they do however, lack a nucleotide 

binding domain. CC: Coiled-coil, TIR: Toll-interleukin receptor, CARD: Caspase-activation and 

recruitment domain, PYR: Pyrin domain, BIR: Baculovirus inhibitor-of-apoptosis repeats, 

NB-ARC: Nucleotide binding and Apaf1-R protein-CED4 domain, NACHT: NAIP – CIITA - HET-E 

- TP1 domain. B. A model of NB-LRR R-protein recognising a specific Avr-protein through 

a guardee or decoy host protein. Upon interaction with the Avr-protein the R-protein 

conformationally changes and the ADP can be exchanged for ATP, leading to a second 

conformational change triggering downstream resistance (Modified from Lukasik (2009)). 

Whether the R-protein returns to its resting state is not known yet. G/D: Guardee/Decoy.

(NSm) on the viral strand and the precursor to the glycoproteins (Gn and Gc) on the 
viral complementary strand (Figure 1.3). The small (S)-segment encodes, in similar 
arrangement as the M-RNA, the RNA silencing suppressor (NSs) on the viral strand 
and the nucleocapsid protein (N) on the viral complementary strand (Figure 1.3) 
(Kormelink et al., 2011). All genomic RNA segments form a panhandle structure by 
interaction of their 5’ and 3’ inverted, complementary UTR sequences.

Like all segmented, negative-strand RNA viruses, bunyaviruses do not cap their 
own messengers, as a prerequisite for translation, but instead steal this structure 
from host cellular mRNAs by a process called cap-snatching (Duijsings et al., 1999). 
Viral transcripts do not contain a poly-A tail, like common eukaryotic mRNAs, but 
instead contain a predicted hairpin structure (HP) at their 3’-ends, suggested to be 
involved in transcription termination (van Knippenberg et al., 2005). Tospovirus cell-
to-cell movement is enabled by the non-structural NSm protein that facilitates the 
movement of viral ribonucleoproteins (RNPs) through plasmodesmata in a tubule-
guided manner (Kormelink et al., 1994; Storms et al., 1995, 1998). Further spread 
by virus loading into the phloem tissue allows systemic infection of the whole plant.

TSWV is transmitted by thrips in a propagative manner, meaning that the virus 
also replicates in the thrips vector (Wijkamp et al., 1993). TSWV has an extremely 
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Figure 1.3 Genomic organisation of Tomato spotted wilt virus. The three segments of 

TSWV are presented, of which the L-segment is of negative polarity and M- and S-RNA are 

ambisense. The viral sense strand is predominantly present in the virus particle, while the 

viral complementary strand is made upon replication. The predicted hairpin structures (HP) 

in the M and S-segment are indicated and assumed to act as bi-directional transcription 

terminator for the ambisense encoded genes; For the L-segment a putative, smaller hairpin 

is predicted in the 3’-untranslated region (UTR).

large host range, and infects over 1000 different plant species from more than 80 
different families, including dicots and monocots (Parrella et al., 2003). Among these 
are economically important crops like pepper (Capsicum spec.), tomato and potato 
(Solanum spec.). Natural sources of resistance in these crops have been found but 
for commercial breeding is limited to two dominant resistances against TSWV. In 
tomato (Solanum peruvianum), the Sw5 resistance gene has been identified, that 
encodes a CC-NB-LRR protein.  The Sw5-gene confers resistance to TSWV, but also 
to the closely related, but distinct tospoviruses Groundnut ringspot virus (GRSV) and 
Tomato chlorotic spot virus (TCSV) (Folkertsma et al., 1999; Brommonschenkel et 
al., 2000). The second dominant R-gene, Tsw (Jahn et al., 2000) has been described 
from pepper (Capsicum chinense), but is, in contrast to Sw5, specific against TSWV 
only. Both R-genes have been introgressed into commercial cultivars and are used 
in production fields. Meanwhile, resistance breaker isolates against each resistance 
gene have already been indentified and described (Moury et al., 1997; Roggero et 
al., 2002; Aramburu and Martí, 2003; Margaria et al., 2004; Sharman and Persley, 
2006) stressing the importance of a search for new resistance genes against 
tospoviruses and/or development of alternative resistance strategies.

Scope of the thesis

At the onset of the research as described in this thesis, Tsw-breaking tospoviruses 
were becoming a major problem in Capsicum annuum growing areas like Spain and 
South America, both production areas and important export markets for Dutch 
seed companies. At that time, also two contradicting papers had appeared that 
claimed either the TSWV N-gene (Lovato et al., 2008) or the NSs-gene (Margaria 
et al., 2007) as the avirulence gene triggering Tsw resistance from C. annuum. The 
major objective of this thesis was to unambiguously identify and characterise the 
viral protein triggering Tsw resistance, since knowledge on its identity would notably 
contribute to a further understanding of Tsw-mediated resistance, but also assist 
in improved marker-selected breeding and development of diagnostic markers for 
Tsw-breaking pathotypes.

To this end, both S-RNA encoded N- and NSs-genes, previously identified as 
Avr candidate genes from reassortant studies by Jahn et al. (2000), were cloned 
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and transiently expressed via agroinfiltration in Tsw+ C. annuum plants to monitor 
the induction of HR, indicative for the triggering of a single dominant resistance 
gene. This led to the identification of the Avr-determinant as described in Chapter 
2. In a next step the Avr-gene from the TSWV resistance-inducing (RI) isolate BR-01                                           
was subjected to alanine substitution analysis, deletion analysis, and domain 
swapping with corresponding domains from the TSWV resistance breaking (RB) 
isolates 160 and 171 to identify amino acids/domains required for Avr-activity 
as well as investigate this activity in view of its ‘primary’ function in the natural 
infection cycle (Chapter 3). During the mutational screen of the Avr-determinant 
indications were obtained for interactions with an important host protein involved 
in innate immunity. Using Co-IP efforts were made to demonstrate the actual 
interaction between the Avr and this host protein (Chapter 4). Besides the RI and 
RB isolates used in these studies, several other isolates were available that showed 
a temperature-dependent behaviour during their triggering of Tsw-mediated 
resistance. While under standard greenhouse conditions these isolates were 
able to trigger HR, they lost this ability at elevated temperatures (28 °C) at which 
temperature the RI isolates could still trigger Tsw resistance. In Chapter 5 these 
isolates have been analysed and characterised, their Avr-gene has been cloned to 
test i) its ability to trigger HR after transient expression, and ii) its primary function, 
both at standard greenhouse and elevated temperature conditions. Based on the 
results from Chapters 2, 3 and 5, it was clear that RB isolates were not generated 
just by a single amino acids mutation, although one amino acid residue seemed 
to be relatively important. Based on this mutation, an RT-PCR test was developed 
to investigate its potential to distinguish between RI and RB isolates to be used 
for detection of RB isolates in the field (Chapter 5). In Chapter 6, the results have 
been summarised and together with known information on TSWV assembled into a 
model to position the TSWV Avr-protein as an effector in the ‘Zig-zag-model’ (Dangl 
and Jones (2006) (Figure 1)) and –although speculative- to explain the possible 
mode of action of Tsw resistance. Finally, with respect to the TSWV Avr-protein, a 
brief comparison is made between the innate immune responses encountered by 
the plant-infecting versus the animal-infecting bunyaviruses.
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Table S1.1 Complete overview of dominant resistances known against plant viruses.

Plant host R-gene Cloned/type Recognises Virus genus AVR Reference

Arabidopsis thaliana 
Mouse ear cress

HRT Yes: CC-NB-LRR
[HR]

TCV [Turnip crinkle virus] Carmovirus CP 1, 2

RCY1 Yes: CC-NB-LRR
[HR]

CMV [Cucumber mosaic virus] Cucumovirus CP 3-6

RTM1
RTM2
RTM3

Yes: Jacalin-like
[prev. Syst. Mov.]

[RTM3 not cloned]

TEV [Tobacco etch virus]
PPV [Plum pox virus]
LMV [Lettuce mosaic virus]

Potyvirus CP
CP
CP

7-9

TuNI No [syst. HR] TuMV [Turnip mosaic virus] Potyvirus P3 10, 11

Beta vulgaris
Common beet

Bm No BtMV [Beet mosaic virus] Potyvirus unknown 12

Rz1
Rz2
Rz3

No [partial resistance] BNYVV [Beet necrotic yellow vein virus] Benyvirus unknown 13, 14

Brachypodium distachyon
Purple false brome

Bsr1 No
‘CC-NB-LRR’

BSMV [Barley stripe mosaic virus] Hordeivirus TGB1 (MP) 15, 16

Brassica campestris 
Field mustard

BcTuR3 Yes:
TIR-NB-LRR

TuMV [Turnip mosaic virus] Potyvirus unknown 17, 18

Unknown 
gene

No unknown 17

Brassica napus 
Rapeseed

TuRB01, 
TuRB01b,
TuRB02, 
TuRB03,
TuRB04, 
TuRB05

No [ER]
No

No [Partial Res.]
No [ER]
No [ER]
No [HR]

TuMV [Turnip mosaic virus] Potyvirus TuRB01: CI
TuRB01b: CI

Unknown
TuRB03: P3
TuRB04: P3
TuRB05: CI

19-22

Tum No TuMV [Turnip mosaic virus] Potyvirus Unknown 17

Monogenic No[ER] TuMV [Turnip mosaic virus] Potyvirus Unknown

Brassica rapa
Turnip

TuRB01b No [ER] TuMV [Turnip mosaic virus] Potyvirus CI 19, 22-24

Capsicum annuum
Pepper 

Pvr4
(locus)

No [ER] PVY [Potato virus Y]
PepMoV [Pepper mottle virus]
PepYMV [Pepper yellow mosaic virus]
PepSMV [Pepper severe mosaic virus]
ERV [Ecuadorian rocoto virus]
PTV [Peru tomato mosaic virus]

Potyvirus Nlb (RdRp) 25-30

L1 (locus)
L1a$ [temp 
insens.]
(locus)

Yes:
CC-NB-LRR

TMV [Tobacco mosaic virus]
ToMV [Tomato mosaic virus]
TMGMV [Tobacco mild green mosaic virus]
BPeMV [Bell pepper mottle virus]

Tobamovirus CP
CP
CP
CP

25, 31-34

Cmr1 No [blocks syst. Mov.] CMV [Cucumber mosaic virus] Cucumovirus Helicase (1a) 25, 30, 35-39

HK No [Incomp. Dom.] PaMMV [Paprika mild mottle virus] Tobamovirus Methyl 
transferase 40, 41

Capsicum chacoense 
Pepper 

L4

(locus)
Yes:

CC-NB-LRR
TMV [Tobacco mosaic virus]
ToMV [Tomato mosaic virus]
TMGMV [Tobacco mild green mosaic virus]
BPeMV [Bell pepper mottle virus]
PaMMV [Paprika mild mottle virus]
ObPV [Obuda pepper virus]
PMMoV [Pepper mild mottle virus]

Tobamovirus CP
CP
CP
CP
CP
CP
CP

25, 31, 32

Capsicum chinense 
Pepper

Tsw No [HR] TSWV [Tomato spotted wilt virus] Tospovirus NSs 42

L3

(locus)
Yes:

CC-NB-LRR
TMV [Tobacco mosaic virus]
ToMV [Tomato mosaic virus]
TMGMV [Tobacco mild green mosaic virus]
BPeMV [Bell pepper mottle virus]
PaMMV [Paprika mild mottle virus]
ObPV [Obuda pepper virus]
PMMoV [Pepper mild mottle virus]

Tobamovirus CP
CP
CP
CP
CP
CP
CP

31, 32,
43, 44

Pvr7 No PepMoV [Pepper mottle virus] Potyvirus Unknown 30
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Plant host R-gene Cloned/type Recognises Virus genus AVR Reference

Capsicum frutescens 
Pepper

L2

(locus)
Yes:

CC-NB-LRR
TMV [Tobacco mosaic virus]
ToMV [Tomato mosaic virus]
TMGMV [Tobacco mild green mosaic virus]
BPeMV [Bell pepper mottle virus]
PaMMV [Paprika mild mottle virus]
ObPV [Obuda pepper virus]

Tobamovirus CP
CP
CP
CP
CP
CP

25, 31, 32,
 44, 45

Chenopodium amaranticolor
Goosefoot

Unknown No CaMV [Cauliflower mosaic virus] Caulimovirus Gene VI 
product

46, 47

Cucurbita moschata 
Squash, Pumpkin

Cmv No CMV [Cucumber mosaic virus] Cucumovirus Unknown 48

Wmv No [No sympt.] MWMV [Watermelon mosaic virus] Potyvirus Unknown 48, 49

Zym No [No sympt] ZYMV [Zucchini yellow mosaic virus] Potyvirus Unknown 48, 50-53

Slc No SLCV [Squash leaf curl virus] Begomovirus RNAs 2 and 3 54-56

Cucumis melo
Melon

Mnr1,
Mnr2

No [cell to cell move.] MNSV [Melon necrotic spot virus] Carmovirus Unknown 57

Pvr1,
Pvr2

No
No

PRSV [Papaya ringspot virus] Potyvirus Unknown
Unknown

50

Monogenic
polygenic

No [poly: partial res] CMV [Cucumber mosaic virus] Cucumovirus Unknown
Unknown

58, 59

Zym No [No sympt] ZYMV [Zucchini yellow mosaic virus] Potyvirus CP 50-53

Wmr No MWMV [Watermelon mosaic virus] Potyvirus Unknown 50, 57, 60

Wmv-1,
Wmv-12

No MWMV [Watermelon mosaic virus] Potyvirus Unknown
Unknown

61

Cucumis sativus
Garden cucumber

Wmv1-1, 
Prsv-2

No [tol., no sympt, 
high titres]

PRSV [Papaya ringspot virus] Potyvirus Unknown
Unknown

62, 63

Dioscorea rotundata
White yam

Ymv-1
(locus)

No [resistance] YMV [Yam mosaic virus] Potyvirus Unknown 64

Glycine max
Soybean

Rsv1
(locus)

Yes:
CC-NB-LRR

[ER/HR]

SMV [Soybean mosaic virus] Potyvirus P3+
HC-Pro

65-69

Glycine max
Soybean
[cont.]

Rsv3
(sim Rsv1)

Rsv4
(not sim.)

No [ER/HR/stem-tip 
necrosis]

‘CC-NB-LRR’
No [broad resistance: 

delay repl + move.]

SMV [Soybean mosaic virus] Potyvirus CI

P3

68, 70-74

Rcv No [HR] CCMV [Cowpea chlorotic mottle virus] Bromovirus unknown 75

Rpv1,
Prmv

No
No

PeMoV [Peanut mottle virus] Potyvirus Unknown
unknown

76, 77

Rav1 No AMV [Alfalfa mosaic virus] Alfamovirus Unknown 78

Unknown No TSV [Tobacco streak virus] Ilarvirus Unknown 79, 80

Hordeum bulbosum 
Bulbous barley 

Rym14,
Rym16
Rym17

No BaYMV [Barley yellow mosaic virus] Bymovirus Unknown 81-85

Hordeum vulgare
Barley

Rrs-1 No [Replication] BSMV [Barley stripe mosaic virus] Hordeivirus unknown 86, 87

Ryd2/Yd2,
Ryd3

No [Yd2: tol.
Ryd3: resist.]

BYDV [Barley yellow dwarf virus] Luteovirus Unknown 88-97

Lactuca saligna
Willowleaf lettuce

Rsv,
Rsv2

No [syst. res.] CMV [Cucumber mosaic virus] Cucumovirus Unknown 98, 99

Lactuca sativa
Garden lettuce

Tu No TuMV [Turnip mosaic virus] Potyvirus Unknown 100, 101

Tvr1 No [partial resist.] LNSV [Lettuce necrotic stunt virus] Tombusvirus Unknown 102, 103

Nicotiana edwardsonii Unknown No CaMV [Cauliflower mosaic virus] Caulimovirus P6 104

Nicotiana glutinosa 
Tobacco

N Yes:
TIR-NB-LRR

[cell-cell mov.]

TMV [Tobacco mosaic virus] Tobamovirus p50 [Helicase] 105-111

Unknown No CMV [Cucumber mosaic virus] Cucumovirus 1a 112, 113

Nicotiana sylvestris
Wood tobacco

N’ No [HR]
‘NB-LRR’

TMV [Tobacco mosaic virus] Tobamovirus CP 114-116

Nicotiana tabacum
Common tobacco 

Unknown No CMV [Cucumber mosaic virus] Cucumovirus 1a 112, 113, 117
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Plant host R-gene Cloned/type Recognises Virus genus AVR Reference

Nicotiana tabacum
Common tobacco
[cont.]

Unknown No ToLCNDV [Tomato leaf curl New Delhi virus] Begomovirus NSP
(BV1)

118, 119

Unknown No [HR] PaLCuV [Papaya leaf curl virus]
CLCuKV [Cotton leaf curl Kokhran virus]

Begomovirus V2 120

Unknown No TAV [Tomato aspermy virus] Cucumovirus 2b 121, 122

Nicotiana spec. Polygenic No [HR] TBSV [Tomato bushy stunt virus]
CymRSV [Cymbidium ringspot virus]
CNV [Cucumber necrosis virus]

Tombusvirus P19/P22/P41
P19/P22
P20/P21

123, 124

Pisum sativum
Pea

En No PEMV [Pea enation mosaic virus] Enamovirus Unknown 125, 126

Phaseolus vulgaris 
Kidney bean

I
(locus)

Yes:
TIR-NB-LRR

[ER/HR/phloem necr.]

BCMV [Bean common mosaic virus]
BNMV [Bean necrotic mosaic virus]
BICMV [Blackeye cowpea mosaic virus]
AzMV [Azuki mosaic virus]
CABMV [Cowpea aphid-borne mosaic virus]
PWV [Passionfruit woodiness virus]
SMV [Soybean mosaic virus]
ThPV [Thailand passiflora virus]
WMV [Watermelon mosaic virus]
ZYMV [Zucchini yellow mosaic virus]

Potyvirus unknown 127-133

PvVTT1 Yes:
TIR-NB-LRR

[HR]

BDMV [Bean dwarf mosaic virus] Begomovirus BV1
(NSP)

134-139

Amv
Amv-2

No AMV [Alfalfa mosaic virus] Alfamovirus Unknown 140, 141

Bgp-1 No [Norm. pod form.] BGMV [Bean golden mosaic virus] Begomovirus Unknown 142

Bgp-2 No Unknown 143, 144

By,
By-2

No BYMV [Bean yellow mosaic virus] Potyvirus Unknown 145, 146

Bcm No BICMV [Blackeye cowpea mosaic virus] Potyvirus Unknown 140, 147

Phaseolus vulgaris 
Kidney bean
[cont.]

Monogenic No BBWV [Broad bean wilt virus] Fabavirus Unknown 148

Cam
Cam2

No CABMV [Cowpea aphid-borne mosaic virus] Potyvirus Unknown 149, 150

Pwv No [Syst. res.] PWV [Passion fruit woodiness virus] Potyvirus Unknown 151

Smv

Hss

No [Syst. res.]

No

SMV [Soybean mosaic virus] Potyvirus Unknown

Unknown

152, 153

Wmv

Hsw

No [syst. spread]

No [full resis.]

WMV [Watermelon mosaic virus] Potyvirus Unknown

Unknown

154, 155

PvCMR1
(RT4-4)

Yes:
TIR-NB-LRR

[syst. necrosis]

CMV [Cucumber mosaic virus] Cucumovirus 2a 156

Bct No BCTV [Beet curly top virus] Curtovirus Unknown 157

Azm1
Azm2

No AzMV [Azuki mosaic virus] Potyvirus Unknown 133

Poncirus trifoliate
Trifoliate orange

Ctv
(locus)

Yes:
CC-NB-LRR

CTV [Citrus tristeza virus] Closterovirus unknown 158-160

Rubus idaeus
Raspberry

Bu No RBDV [Raspberry bushy dwarf virus] Idaeovirus Unknown 161-164

2 genes No RcRSV [Raspberry ringspot virus] Nepovirus Unknown 165

2 genes No TBRV [Tomato black ring virus] Nepovirus Unknown 165

Saccharum spontaneum
Wild sugarcane

Monogenic No SCMV [Sugarcane mosaic virus] Potyvirus Unknown 17

Solanum chilense
Tomato

Ty-1
Ty-3

Yes:
RDR [Tol.]

TYLCV [Tomato yellow leaf curl virus] Begomovirus No 30, 166, 167

Solanum esculentum
Tomato

Unknown No ToLCNDV [Tomato leaf curl New Delhi virus] Begomovirus NSP 118, 119

Unknown No ToLCJV [Tomato leaf curl Java virus] V2 119

Solanum habrochaites
Tomato

Ty-2 No [Tol.] TYLCV [Tomato yellow leaf curl virus] Begomovirus Unknown 167
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Plant host R-gene Cloned/type Recognises Virus genus AVR Reference

Solanum hirsutum
Tomato

Monogenic No [Tol.] PTV [Peru tomato mosaic virus] Potyvirus Unknown 168

Tm-1 Yes:
TIM-barrel-like 
domain protein

[ER]
[Replication]

ToMV [Tomato mosaic virus] Tobamovirus Replicase:
Helicase-
domain

169-174

Solanum lycopersicum
Tomato

Am No [ER] AMV [Alfalfa mosaic virus] Alfamovirus Unknown 175

Unknown No [ER: immune] PVY [Potato virus Y ] Potyvirus Unknown 176, 177

Cmr No CMV [Cucumber mosaic virus] Cucumovirus Unknown 178

Solanum peruvianum
Tomato

Sw5b Yes:
CC-NB-LRR [HR]

TSWV [Tomato spotted wilt virus]
and other tospoviruses

Tospovirus NSm 179-183

Unknown No [ER] TYTV [Tomato yellow top virus] Luteovirus Unknown 184-187

Tm-2 Yes:
CC-NB-LRR

[HR]

TMV [Tobacco mosaic virus]
ToMV [Tomato mosaic virus]
and other tobamoviruses

Tobamovirus 30kD MP. 171, 188, 189

Tm-22 Yes:
CC-NB-LRR

[HR]

ToMV [Tomato mosaic virus]
TMV [Tobacco mosaic virus]
and other tobamoviruses

Tobamovirus 30kD MP. 171, 190-193

Solanum acaule
Potato

Rxacl No [ER] PVX [Potato virus X] Potexvirus Unknown 194-196

XI No [ER] PVX [Potato virus X] Potexvirus Unknown 194-196

Rxacl
n

(Xn = Nxacl)
No [HR] PVX [Potato virus X] Potexvirus Unknown 194-196

Solanum chacoense
Potato

Nychc No [HR] PVY [Potato virus Y]
PVA [Potato virus A]

Potyvirus Unknown 194, 195

Solanum demissum
Potato

Nydms
(= Ny)

No [ER] PVY [Potato virus Y]
PVA [Potato virus A]

Potyvirus Unknown 195-199

Rydms
a 

(Nadms=Na)
No [HR] PVA [Potato virus A] Unknown

Solanum etuberosum
Potato

Rlretb No PLRV [Potato leafroll virus] Polerovirus Unknown 196, 200-203

Solanum gourlayi
Potato

Gm No PVM [Potato virus M] Carlavirus Unknown 196, 204, 205

Solanum hougasii
Potato

Ryhou No [ER] PVY [Potato virus Y]
PVA [Potato virus A]

Potyvirus Unknown 195, 198, 199

Solanum megistracrolobum
Potato

Nm No [HR] PVM [Potato virus M] Carlavirus Unknown 196, 205-208

Rm No [HR] Unknown

Solanum sparsipilum
Potato

Ncspl No [HR] PVY [Potato virus Y] Potyvirus HcPro 196, 209

Nxtbr
spl No [HR] PVX [Potato virus X] Potexvirus Unknown 195, 196

Solanum stoloniferum
Potato

Rysto 
(Ry=R1)

No [ER]
‘NB-LRR’

PVA [Potato virus A] Potyvirus Unknown 30, 195, 196 
198, 199, 
210-213PVV [Potato virus V] Unknown

PVY [Potato virus Y] NlaPro

Rysto
na 

(=R2)
No [HR] PVA [Potato virus A] Potyvirus Unknown 195, 196, 214, 

215No [HR/ER] PVV [Potato virus V]

No [ER] PVY [Potato virus Y]

Rysto
rna

(= R3)
No [HR/ER] PVA [Potato virus A]

PVY [Potato virus Y]
Potyvirus Unknown 195, 196

Rysto
n1 

(Ryn = Nysto
1)

No [HR] PVY [Potato virus Y] Potyvirus Unknown 194-196

Rysto
n2

(R5= Nysto
2)

No [ER] PVY [Potato virus Y] Potyvirus Unknown 195, 196

Nasto
(R6= Rym)

No [HR] PVA [Potato virus A] Potyvirus Unknown 194-196

Ra (=Rasto) No [HR] PVA [Potato virus A] Potyvirus Unknown 196, 216

Solanum tuberosum
Potato

NaKE (=NaKEtbr) No [HR] PVA [Potato virus A] Potyvirus unknown 196, 217
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Plant host R-gene Cloned/type Recognises Virus genus AVR Reference

Solanum tuberosum
Potato
[cont.]

Natbr (=Na) No [HR] PVA [Potato virus A]
PVY [Potato virus Y]

Potyvirus Unknown 195, 196, 198, 
199, 218

Nb (=Nbtbr) No [HR] PVX [Potato virus X] Potexvirus 25K 195, 196,
 219, 220

Nctbr (=Nc) No [HR] PVY [Potato virus Y] Potyvirus HcPro 195, 196, 209, 
220

Ns No [HR] PVS [Potato virus S] Carlavirus Unknown 196, 204, 206, 
221-223

Nvtbr (=Nv) No [HR] PVV [Potato virus V] Potyvirus unknown 196, 198, 199, 
214, 224

Nx (=Nxtbr) No [HR] PVX [Potato virus X] Potexvirus CP 195, 196, 198, 
199, 225

Nyadg No [HR] PVY [Potato virus Y] Potyvirus Unknown 196, 226

Nytbr (=Ny) No [HR] PVY [Potato virus Y] Potyvirus HcPro 195, 196, 198, 
199, 209, 227

Ny-1 No [HR] PVY [Potato virus Y] Potyvirus Unknown 196, 228

Raadg No [ER]/[HR] PVA [Potato virus A] Potyvirus Unknown 196, 229

Rx1 Yes:
CC-NB-LRR

[ER/HR]

PVX [Potato virus X]
and other potex viruses

Potexvirus CP 195, 198, 199, 
230-234

Rx2 Yes:
CC-NB-LRR

PVX [Potato virus X] Potexvirus CP 138, 232

Ryadg No [No sympt/ER] PVY [Potato virus Y] Potyvirus Unknown 196, 198, 199 
235, 226

sstbr (=s) No [ER] PVS [Potato virus S] Carlavirus Unknown 196, 236

Y-1 Yes:
TIR-NB-LRR.

PVY [Potato virus Y] Potyvirus unknown 237, 238

Polygenic No [ER/HR] TRV [Tobacco rattle virus] Tobravirus MP [29K] 239

Sorghum bicolor
Sorghum

‘Krish’ No MDMV [Maize dwarf mosaic virus]
JGMV [Johnsongrass mosaic virus]
SCMV [Sugarcane mosaic virus]

Potyvirus Unknown 17, 240

Thinopyrum intermedium
Intermediate wheatgrass 

Bdv2
Bdv3
Bdv4

No [resistance] BYDV [Barley yellow dwarf virus] Luteovirus unknown 241-247

Wsm1 No WSMV [Wheat streak mosaic virus] Tritimovirus unknown 248-250

Triticum aestivum 
Common wheat

Bdv1 No [Tol.] BYDV [Barley yellow dwarf virus] Luteovirus unknown 247, 251

Wss1 No WSSMV [Wheat spindle streak mosaic virus] Bymovirus Unknown 252, 253

Sbm
[locus]

No SBWMV [Soil-borne wheat mosaic virus]
SBCMV [Soil-borne cereal mosaic virus]

Furovirus Unknown 254, 255

Vicia faba
Broad bean

Bym-1,
Bym-2

No BYMV [Bean yellow mosaic virus] Potyvirus Unknown 17

Vigna mungo
Black gram

CYR1 Yes:
CC-NB-LRR

MYMV [Mungbean yellow mosaic virus] Begomovirus CP 256, 257

Vigna unguiculata 
Cowpea

Monogenic No [ER] CCMV [Cowpea chlorotic mottle virus] Bromovirus Unknown 258, 259

Cry No [HR] CMV [Cucumber mosaic virus] Cucomovirus 2a polymerase 260-265

Monogenic No [partial Dom/ER] SBMV [Southern bean mosaic virus] Sobemovirus Unknown 266, 267

Monogenic No TRSV [Tobacco ringspot virus] Nepovirus Unknown 259, 268, 269

Monogenic No CABMV [Cowpea aphid-borne mosaic virus] Potyvirus Unknown 150,270, 271

Cpa No [ER] CPMV [Cowpea mosaic virus] Comovirus Protease, 
24K Pro

272, 273

Zea mays
Maize/corn

Mdm-1 
(Rdm-1)

No MDMV [Maize dwarf mosaic virus] Potyvirus Unknown 17, 274

Msv1 No [Tol./Partial Dom] MSV [Maize streak virus] Mastrevirus Unknown 275, 276

Scmv1 
Scmv2
Rscmv1
Rscmv2

No (all) SCMV [Sugarcane mosaic virus] Potyvirus Unknown
Unknown
Unknown
Unknown

243, 277-282
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Plant host R-gene Cloned/type Recognises Virus genus AVR Reference

Zea mays
Maize/corn
[cont.]

Wsm1
Wsm2
Wsm3

No WSMV [Wheat streak mosaic virus]
MDMV [Maize dwarf mosaic virus]
SCMV [Sugarcane mosaic virus]
SrMV [Sorghum mosaic virus]
JGMV [Johnsongrass mosaic virus]

Tritimovirus
Potyvirus

Unknown 17, 283, 284
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Abstract

Due to contradictory reports, the avirulence (Avr) determinant that triggers Tsw-
gene based resistance in Capsicum annuum against the Tomato spotted wilt virus 
(TSWV), is still unresolved. Here, the N and NSs genes of resistance inducing (RI) 
and resistance breaking (RB) isolates were cloned and transiently expressed in 
resistant Capsicum plants to determine the identity of the Avr-protein. It is shown 
that the NSsRI protein triggers a hypersensitive response (HR) in Tsw containing 
Capsicum plants –and not on susceptible Capsicum- while no HR was discerned 
after expression of the NRI/RB protein, or when NSsRB was expressed. Whereas NSsRI 

was able to suppress silencing of a functional GFP construct during Agrobacterium 
tumefaciens transient assays on Nicotiana benthamiana, NSsRB had lost this capacity. 
The observation that RB isolates suppressed local GFP silencing during an infection 
indicated a recovery of RNA silencing suppressor (RSS) activity for the NSs protein, 
as none of the other TSWV proteins are shown to aid in this. The role of NSs as RNA 
silencing suppressor and Avr-determinant will be discussed in light of a putative 
interplay between RNAi and the natural Tsw resistance gene.

Introduction

The ‘Zig-zag-model’ (Jones and Dangl, 2006) is commonly accepted to illustrate 
the arms race between the plant immune system and plant pathogens. Within this 
model, the first line of defence is triggered by so-called microbial- or pathogen-
associated molecular patterns (MAMPs or PAMPs, respectively). These molecules 
are being recognised by pattern recognition receptors (PRRs) and lead to the (slow) 
onset of PAMP-triggered immunity (PTI) (Chisholm et al., 2006). Well known PAMPs 
are bacterial flagellin and fungal chitin (Nicaise et al., 2009). Pathogens encode 
virulence factors (effectors) that interfere with PTI, and thereby enable them to 
achieve a successful colonisation/infection. In a third phase, these same effectors 
are specifically recognised by a second branch of the plant immune system that 
involves protein products from resistance (R) genes, and is called effector-triggered 
immunity (ETI). This recognition generally leads to a rapid hypersensitive response 
(HR), and involves a programmed cell death (PCD) at the infection site.

Although plant viruses are obligate parasites and replicate intracellular, they too 
are subject to PTI. RNA silencing can be regarded as a PTI mechanism which enables 
plants and insects to clear viral infections (Ding and Voinnet, 2007). In this case 
viral double-stranded (ds) RNA molecules, either from replicative intermediates or 
folding structures, act as PAMP and their recognition leads to the induction of RNA 
silencing, also referred to as RNA interference (RNAi) (Ding and Voinnet, 2007). This 
defence mechanism involves dsRNA cleavage by an RNaseIII-like enzyme, called 
dicer-like (DCL) protein, into small short-interfering (si)RNA duplex molecules. One 
strand of this duplex molecule, the so-called guide-strand, is being uploaded into an 
RNA-induced silencing complex (RISC) which then starts to surveil and sense target 
(viral) RNA molecules with complementarity to the guide strand, leading to their 
degradation (Ding and Voinnet, 2007). Plant viruses have evolved different ways 
to counteract this antiviral defence mechanism. One of the most commonly used 
strategies is to encode RNA silencing suppressor (RSS) proteins (Díaz-Pendón and 
Ding, 2008). For many plant viruses RSS proteins have been identified and these 
have been shown to exert this function in diverse manners, e.g. some RSS sequester 
long or short dsRNAs and thereby prevent their cleavage by DCL or upload into RISC, 
respectively (Vargason et al., 2003; Lakatos et al., 2006; Alvarado and Scholthof, 
2009; Csorba et al., 2009; Giner et al., 2010; Schnettler et al., 2010). In some other 
cases, the RSS protein prevents maturation of the RISC complex or cleavage of RNA 
target sequences (Ding and Voinnet, 2007).

Due to the large economic impact of Tospovirus diseases, ranking second on the 
list of most important plant viruses worldwide (Scholthof et al., 2011), the search 
for natural resistance genes in breeding programs receives a growing interest. So far, 
only two single dominant resistance genes, Sw5b and Tsw, have been well described 
and are available for commercial resistance breeding against tospoviruses. Sw5b 
has been identified in Solanum peruvianum and provides high resistance levels 
to TSWV, Groundnut ringspot virus (GRSV) and Tomato chlorotic spot virus (TCSV) 
(Stevens et al., 1992; Boiteux and de B. Giordano, 1993). The Tsw gene (Black et 
al., 1991; Boiteux, 1995; Jahn et al., 2000) originates from Capsicum chinense 
‘PI’ accessions and meanwhile has been introgressed into C. annuum cultivars. 
Resistance is displayed by an HR, like with Sw5b, that prevents systemic spread of 
the virus and eventually leads to leaf abscission (Boiteux and de Avila, 1994). The 
resistance only holds to isolates belonging to the species TSWV, and not to GRSV, 
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TCSV or more distantly related tospoviruses (Boiteux and de Avila, 1994). Like in the 
case of Sw5b, resistance-breaking variants of Tsw have been identified (Boiteux and 
de B. Giordano, 1993; Roggero et al., 2002; Aramburu and Martí, 2003; Margaria et 
al., 2004).

The viral gene product that triggers the Tsw resistance has been mapped to the 
S RNA segment of TSWV (Jahn et al., 2000), pointing towards either N or NSs as the 
avirulence (Avr) gene. In recent years, two reports have been published by Lovato 
et al. (2008) and Margaria et al. (2007), which reported contradictory results on the 
identification of the Avr-gene, leaving the identity of the Avr-determinant unsolved.

Here, we have identified the NSs protein as the Avr-determinant of the Tsw-
based resistance, using a highly-translatable transient expression vector construct.

Results

Characterisation of different TSWV isolates
To identify the N or NSs gene as Avr-determinant of Tsw-gene based resistance, 
several TSWV RI and RB isolates were collected from different regions in Europe 
(Table 2.1). Prior to cloning and sequence analysis of the N and NSs genes, the 
TSWV isolates were verified for their phenotype on Tsw resistant Capsicum plants 
by mechanical inoculation on Capsicum species (C. annuum Tsw+, C. annuum Tsw- 
and C. chinense) and on N. benthamiana as a positive control. Resistant Capsicum 
plants inoculated with RI TSWV isolates Vir127 and Vir129 showed an HR 3-4 days 
post inoculation (dpi) (Figure 2.1) as necrotic lesions on the inoculated leaf. The 
small necrotic lesions appeared after 3 dpi (1-2 mm diameter) and expanded over 
time to large necrotic lesions (4-5 mm diameter) at ± 7 dpi, after which the whole 
leaf abscised. On these plants, no systemic symptoms (≥7 days) could be discerned, 
nor could the virus be detected by double antibody sandwich (DAS)-ELISA in these 
leaves. The resistance breaking isolates Vir160 and Vir171 did not induce HR 
on the resistant Capsicum plants (Figure 2.1) but gave clear systemic symptoms 
at 10-12 dpi, and detectable levels of virus presence by DAS-ELISA. Susceptible 
Capsicum plants, challenged with all four isolates, showed typical TSWV symptoms, 
including local and systemic leaf chlorosis, vein yellowing, mottling and overall 
plant stunting at 10-12 dpi. The presence of virus was confirmed by DAS-ELISA. 

These results confirmed the resistance inducing (RI) phenotype of isolates Vir127 
and Vir129, and resistance breaking (RB) phenotype of isolates Vir160 and Vir171.

Nucleotide sequence analysis of the N and NSs genes
To identify differences within the amino acid sequences of the N and NSs proteins 
of TSWV RI and RB isolates that could point towards the Avr candidate gene, these 
genes were cloned and their nucleotide sequence determined. The amino acid 
sequences deduced from the N and NSs genes were used in a multiple sequence 
alignment to identify differences between the RI and RB isolates. To exclude 
sequence divergence due to polymorphism, the TSWV reference isolate Br01 
was included in the alignments (de Avila et al., 1990). In both alignments several 
mutations were observed that only showed up in the sequences of the N (Figure 
2.2A) and NSs (Figure 2.2B) proteins of the RB isolates and not in the RI isolates. 
Although some of these mutations were conserved (boxed black), differences were 
found in both N and NSs amino acid sequence of the RB and RI isolates. These data 
did not provide support for one of the two genes as the candidate Avr-gene. 

Figure 2.1 Local symptoms on resistant C. annuum leaves at 5 dpi with different TSWV 

isolates. TSWV Vir127, Vir129, Vir160 and Vir171 (from left to right, respectively), were 

mechanically inoculated on resistant C. annuum leaves. Vir127 and Vir129 induce an HR 

(necrotic lesions), while Vir160 and Vir171 only induce chlorosis. Similar symptoms were 

observed with these isolates on C. chinense (not shown). Pictures were taken at 5 dpi.



Chapter 2     NSs is the Avr-determinant of Tsw-mediated resistance

42  D. de Ronde 2013  43

  2

Table 2.1 The TSWV isolates used in this study.

TSWV isolate Origin Location Collection date Phenotype

Vir127 Romania Unknown 1998 Resistance Inducing

Vir129 The Netherlands Wageningen University 2002 Resistance Inducing

Vir160 Spain Field Isolate Almeria 2006 Resistance Breaking

Vir171 Spain Field Isolate Almeria 2008 Resistance Breaking

Figure 2.2 Alignment of N (A) and NSs (B) amino acid sequence of TSWV RI and RB isolates. 

The N and NSs amino acid sequences of the TSWV isolates Vir127, Vir129, Vir160 and 

Vir171 were aligned with TSWV Br01 isolate included as a reference. Highlighted in bold 

are the differences in amino acid residues between the RI and RB isolates. Since both N 

and NSs amino acids show differences, no candidate Avr-protein could be determined. 

Expression of TSWV NSs protein by PVX-replicon in resistant Capsicum plants 
was unsuccessful in triggering HR
Avr-determinants of dominant resistance genes are commonly identified by 
(transient) expression of candidate genes and subsequent visual observation of a 
resistance response, i.e. induction of HR. Here a similar approach was applied to 
identify the TSWV protein Avr protein for Tsw resistance. To this end, the N and 
NSs genes of RI and RB isolates were expressed in Capsicum plants carrying the 
Tsw resistance gene using the PVX-expression vector pGR106. At 7 dpi, resistant 
Capsicum plants showed local necrosis with all PVX constructs, including the empty 

negative control (Figure 2.3). Furthermore, the systemic symptoms were equal in all 
plants tested, irrespective of the PVX construct used. Similar results were obtained 
when, instead of the PVX replicon, a TMV replicon was used to express the N and 
NSs genes (data not shown).

Figure 2.3 Systemic infection of Capsicum chinense by PVX recombinants. Recombinant 

PVX constructs carrying the NRI or the NSsRI gene, were inoculated on resistant Capsicum 

chinense plants using an empty PVX vector as a negative control. As visible in all three panels, 

at 7 dpi PVX induced necrosis is covering most of the locally infected leaves, irrespective of 

the gene insertion.

Transient expression of TSWV NSs protein triggers an HR in resistant Capsicum 
plants
Since the viral replicon system appeared unsuitable for the identification of the Avr-
gene, an Agrobacterium-based transient expression vector system was employed. 
At first various A. tumefaciens strains (1D1249, AGLO, AGL1, COR308, GV3101 and 
LBA4404) equipped with the highly translatable binary expression vector pEAQ-HT 
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were tested for transformation efficiency and symptom expression in Capsicum 
plants. For easy monitoring the vector contained a copy of the green fluorescence 
protein gene (GFP). All A. tumefaciens strains except 1D1249 induced necrosis 
starting from 5 dpi. Strain 1D1249 only showed mild chlorosis upon extended (>7 
dpi) incubation. Furthermore, the presence of helper plasmid pCH32 significantly 
increased transformation efficiency of Capsicum leaves. Subsequently, the N and 
NSs genes from the TSWV-RI [Vir129] and -RB [Vir171] isolates were cloned into 
pEAQ-HT and transformed into Agrobacterium 1D1249 (+ pCH32). With these 
constructs an Agrobacterium tumefaciens transient transformation assay (ATTA) 
was performed and protein expression was verified and confirmed by Western 
immunoblot analysis of infiltrated leaf samples (Figure 2.4). Transient expression 
of the NSs gene of the RI isolate induced a clear necrosis of the infiltrated area on 
Tsw containing Capsicum plants, visual from 3 dpi (Figure 2.5A and B). The NSs from 
the RB isolate, and the N derived from RI and RB isolates only caused mild chlorosis 
of the infiltrated area, similar to leaves infiltrated with the negative control (empty 
Agrobacterium 1D1249 + pCH32; data not shown). A similar chlorosis was observed 
for all constructs, including NSs from the RI isolate, on susceptible Capsicum plants 
(Figure 5A and B). These results were repeated and confirmed with the NSs from 
another RI isolate [Vir127] and another RB isolate [Vir160]. To exclude that the 
presence of the P19 (RNA silencing suppressor from Tombusvirus) protein from 
the pEAQ-HT vector interfered with HR induction, the Avr-protein activity of NSs 
was also tested after expression from a standard 35S promoting plasmid (pBin19), 
without the P19 protein. Also in this case an HR was clearly induced 3-5 dpi on the 
resistant Capsicum plants (data not shown).

NSsRB lost its function to trigger HR and its ability to act as RSS
Previously, it was shown that the TSWV NSs protein has RSS activity, and recently 
Schnettler et al. (2010) showed that this protein was able to exert this activity most 
likely by sequestering long dsRNA and short (si and mi)RNAs, thereby preventing 
cleavage by dicer and uploading into RISC, respectively. The finding that the NSs 
protein also triggers Tsw-induced HR raised the question whether NSs from the RB 
isolate still retained the capacity to suppress RNA silencing. To answer this question, 
the NSsRB was tested in a co-ATTA with a sense GFP-construct on N. benthamiana 

(Voinnet et al., 1999). As the pEAQ-HT expression vector contains P19, the NSs genes 
were re-cloned into the binary expression vector pK2GW7 (Karimi et al., 2002) using 
the Gateway technology and verified for protein expression by Western immunoblot 
analysis (data not shown). In co-ATTAs of the NSs genes from the RI and RB isolates 
and a sense GFP construct, silencing of GFP was suppressed by the NSsRI at 5 dpi as 
was indicated by an increase in fluorescence (Figure 2.6A). Leaves expressing the 
NSsRB from isolates Vir160 and Vir171 did not show increase in fluorescence and 
the protein apparently had lost the RSS capability (Figure 2.6A). RSS activity was 
also quantitatively estimated by measuring the number of fluorescent units from 
infiltrated leaves (Figure 2.6B). Controls consisted of untreated leaves and leaves 
co-infiltrated with GFP and the negative control Maltose Binding Protein (MBP) 
(Schnettler et al., 2010). The amount of fluorescence in leaves infiltrated with NSsRI 

was approximately 4 times higher than that recorded in leaves infiltrated with MBP 
(control) showing RSS activity of the NSsRI protein. In leaves infiltrated with NSsRB 

constructs fluorescence levels were similar to those in the MBP control, indicating 
that the NSs from both RB isolates had lost the RSS capacity (Figure 6B).

The resistance breaking viruses are able to suppress local silencing of GFP
As the NSsRB protein had lost its RSS activity, the question arose whether the RB 
viruses had a reduced fitness in comparison to RI viruses. To address this question, 
N. benthamiana plants were inoculated with two RI and two RB isolates of TSWV 
and systemically infected leaves were analysed by DAS-ELISA to determine the virus 
titres. In addition, an antigen coated plate (ACP)-ELISA was performed on the same 
leaf material to measure the amount of NSs protein. Surprisingly, no difference in 
virus and NSs titres was found between the different RI and RB isolates (Figure 2.7A 
and 2.7B), and next to the earlier observation that NSs from the RB virus was not able 
to suppress GFP silencing in a leaf patch assay raised the question whether during a 
natural infection the RB virus was still able either to counteract RNAi or evade from 
it in another way. To test this hypothesis, a local RNA silencing suppression assay 
was performed, but this time in the presence of a viral infection. During repeated 
experiments, the results consistently showed that, in contrast to the inability of the 
NSsRB protein to suppress GFP silencing under transient conditions, the TSWV RB 
isolates, like the RI isolates, were still able to suppress GFP silencing (Figure 2.7C). 
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The absence of a clear GFP silencing suppression in the presence of PVX (Figure 
2.7C), known to encode a weak RSS (P25), strengthened to indicate that TSWV (RB) 
virus somehow was still able to suppress RNA silencing.

Figure 2.4 Western immunoblot detection of N and NSs proteins expressed from pEAQ-HT 

in N. benthamiana. Infiltrated N. benthamiana leaves were collected at 5 dpi. A. Westernblot 

result of the pEAQ-NSs samples, NSsRI was diluted 10x in comparison to the NSsRB. The positive 

control here is the TSWV extract (Vir129) and the detection was performed with αNSs. B. 

Westernblot result of the pEAQ-N samples, where same amounts of sample were loaded in 

each lane. Also here, TSWV extract is used as a positive control, detection was done using 

αN. C. Western blot analysis of the NSsRB171 expressed from the pEAQ-vector, compared 

with the NSsRI from the pK2GW7-vector. Similar expression levels can be observed. As 

positive control, also here TSWV extract is used, detection here was performed with αNSs.

→ Figure 2.5 Symptoms on resistant and susceptible C. annuum leaves infiltrated with various 

pEAQ-HT constructs. The N and NSs genes derived from RI and RB isolates were transiently 

expressed in the resistant and susceptible Capsicum plants using the pEAQ-HT vector. A. 

Leaves were collected at 5 dpi from the resistant Capsicum leaves (upper row) and susceptible 

Capsicum leaves (bottom row). An HR was only observed with a NSsRI protein gene construct 

on the resistant Capsicum plants, but not on the susceptible plants. B. The leaves from panel 

A were destained to better visualise the necrotic area (HR). Clearly, only the entire infiltrated 

area of the NSsRI is completely necrotic, while in the other leaves some local wounding of 

the leaf epidermis (allowing easy infiltration of the Agrobacterium culture) can be seen.
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Figure 2.6 GFP silencing 

suppression assay in N. 

benthamiana leaves. A co-

infiltration of a GFP-expressing 

construct with pK2GW7-NSsRI 

(from Vir129) or NSsRB was 

performed on N. benthamiana 

and leaves were collected at 5 

dpi for GFP monitoring. 

A. Images of GFP fluorescence 

in infiltrated leaves, showing 

that NSsRI is able to suppress 

RNA silencing, as compared 

to the positive control P19, 

while both the NSsRB are not 

able to suppress the silencing, 

as compared to the negative 

control MBP. B. The number of 

fluorescent units measured in a 

leaf disc (1 cm2) collected from 

the agroinfiltrated leaf area. 

Error bars are calculated from an 

average of six measurements. 

This is in support of panel A.

Additional TSWV proteins do not compensate or rescue the loss of RSS 
activity from NSsRB

The observed difference in RSS activity of the NSsRB when expressed transiently 
versus the RB-virus, indicated that either the presence of additional TSWV 
proteins during a viral infection could potentially aid the NSsRB in its RSS activity or, 
alternatively, another viral protein possesses RSS activity. Previously, other TSWV 
proteins were already shown to not possess RSS activity (Takeda et al., 2002; Bucher 
et al., 2003), however, these studies did not include the large polymerase

Figure 2.7 ELISA measuring virus 

titres of different TSWV isolates 

and their ability to suppress GFP 

silencing. A. NSs titres of TSWV RI 

and RB isolates were measured by 

ACP-ELISA and are shown relative 

to the virus titres measured by 

DAS-ELISA. The average of four 

repetitions is shown, showing that 

there is no significant difference 

between these isolates. 

B. Western immunoblot detection 

of NSs in N. benthamiana, 

transiently expressed from 

pEAQ-HT or after virus infection. 

Transiently expressed NSs shows 

a difference in amount between 

the RI (from Vir129) and the RB, 

while in the virus setting similar 

amounts can be observed. 

Additionally, in both the transient 

setting and the viral setting the 

size difference between the RI 

and the RB can be observed. 

C. Local transient GFP expression 

was superimposed with a 

mechanical TSWV inoculation on 

the same leaf. Pictures were taken 

5 dpi, and show that all isolates 

are able to suppress local GFP 

silencing. As a negative control 

PVX was used, that does not show 

local suppression of GFP silencing. 
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(L: RdRp) protein. Therefore, a GFP silencing assay was performed in which the 
L-protein, expressed from a full-length translatable gene construct (unpublished 
data) in pK2GW7, or NSsRB protein in the presence of other TSWV proteins, 
were tested for their ability to suppress RNA silencing. Since the structural viral 
glycoproteins do not play a role in plants, as they are primarily required for vector 
transmission, these proteins were not included in this assay. Different combinations 
of TSWV proteins (N, NSm and L) were mixed with NSsRB, but none of the additional 
viral proteins aided in or (completely) restored the RSS activity of NSsRB to the level 
of NSsRI (Figure 2.8).

Discussion

Here we unambiguously show that the NSs protein of TSWV is the Avr-determinant 
of the Tsw-gene based resistance. While the NSs of TSWV resistance inducing 
(RI) isolates triggered an HR in resistant Capsicum 3-5 dpi, the NSs of resistance 
breaking (RB) isolates and the N protein of RI and RB isolates did not. Interestingly, 
loss of Avr-activity of the NSsRB coincided with a loss of RNA silencing suppressor 
(RSS) activity. Although plant virus RSS have been reported previously as Avr-
determinant (Li et al., 1999; Moffett, 2009), the present research shows for the first 
time that the Avr-corresponding gene from a natural occurring resistance breaking 
isolate has entirely lost both its Avr- and RSS activity. In the past a similar situation 
was reported for resistance breaking isolates of Tobacco mild green mosaic virus 
(TMGMV) against the Tm-1 resistance gene from tomato, but in those cases the 
isolates had not completely lost their ability to suppress RNA silencing (Ishibashi et 
al., 2011). These results not only indicate a putative link between the Tsw resistance 
mechanism and the RNAi pathway but also positions TSWV NSs as effector protein 
in the ‘Zig-zag-model’ (Jones and Dangl, 2006).

In two previous papers, the identification of the TSWV Avr-gene for Tsw-
based resistance has been addressed, with conflicting outcome. Margaria and 
co-workers (2007) suggested the NSs as the Avr-gene, while Lovato et al. (2008) 
identified the TSWV N gene as Avr-determinant. Margaria and co-workers based 
their conclusion merely on the exclusion of other TSWV proteins as candidate for 
the Avr-determinant, because attempts to provide the actual experimental proof, 

Figure 2.8 GFP silencing suppression assay using additional TSWV proteins in a co-ATTA with 

NSsRB. TSWV proteins N, NSm and L were co-expressed with NSsRB and GFP to identify a possible 

rescue of RSS activity from NSsRB. A. Panel of co-ATTA pictures showing GFP fluorescence 

after expression of different combinations of TSWV proteins. As positive and negative 

controls, NSsRI and MBP, respectively, were included. B. The GFP from the ATTA with single 

constructs and the pictures shown in panel A were quantified by spectrometry and shown as 

an average out of four replicates per sample, with standard deviations shown as error bars.
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i.e. show HR-induction by NSs, failed. Lovato and co-workers used a PVX-replicon 
in their assays to express the viral proteins, and as we showed here, such viral 
replicons induce necrotic lesions on Capsicum, which can be mistaken for an HR 
response. A third, more recent paper described a phylogenetic analysis of different 
TSWV isolates derived from Capsicum plants, in which the authors claim that some 
mutations observed in the NSs gene were positively selected by the Tsw-gene 
(Tentchev et al., 2011). Although the latter paper hints towards the NSs as being 
the Avr-determinant of Tsw-based resistance, no experimental proof was provided 
in support of this.

An additional interesting finding from our study was the observation that the 
NSs protein from the resistant breaking isolate lost its RSS activity. Considering 
that a loss of RSS activity affects a virus’ counter defence against RNAi and as a 
consequence would lead to a reduction in virus titres, it was surprising to see that 
for the RI and RB isolates similar virus titres were detected during an infection in 
N. benthamiana, concomitant with the presence of RNA silencing suppression 
activity as observed during the GFP silencing in a leaf patch assay. These data 
suggest that NSs RSS activity is somehow recovered during viral infection, as none 
of the other viral proteins are shown to aid in this. Since NSs expression levels 
from RB isolates during a natural infection were always higher when compared to 
transient NSsRB expression, but similar to those from RI isolates, the possibility that 
NSsRB still contains some residual RSS activity that is only observed upon enhanced 
expression levels (during virus infection) and not during lower expression levels 
(transient), cannot be entirely ruled out. However, as transient expression levels of 
NSsRB were consistently lower, as also observed with other non-functional viral RSS 
proteins (Díaz-Pendón and Ding, 2008; Schnettler et al., 2008), even from the high 
expression vector pEAQ-HT, this not only indicated that the protein was affected 
in its RSS functionality but also further hampered its transient expression to high 
levels to analyse for residual RSS activity. Additionally, other TSWV proteins do not 
seem to aid in the restoration of transient RSS activity of the NSsRB, including the 
previously untested L-protein (331 kDa), indicating that the NSsRB somehow is RSS 
active during virus infection. The observation that PVX did not give a clear GFP 
silencing suppression, while its suppressor of RNAi, P25, earlier showed transient 
RSS activity in this assay (Bayne et al., 2005), supported the idea that the observed 
RSS activity with TSWV (RB) virus is not just an artefact. 

To analyse whether the loss of RSS activity of the NSsRB proteins was due to loss 
of affinity for siRNAs, an electrophoretic mobility shift assay (EMSA) was performed 
on transiently expressed NSsRI and NSsRB from pEAQ, with N as negative control, 
which showed that NSsRI is able to shift siRNAs, while NSsRB cannot (Figure 2.9A). 
However, since the expression levels of NSsRB are much lower compared to NSsRI and 
the presence of P19 protein strongly competes for the majority of the siRNAs, the 
absence of a shift does not rule out that NSsRB might still possess some (residual) 
affinity to small RNAs. This was supported by the observation that EMSAs performed 
with virus extracts from TSWV-RI and –RB clearly showed a shift of siRNAs with both 
isolates (Figure 2.9B).

Figure 2.9 Electro mobility shift assay (EMSA) with siRNAs performed on TSWV extracts 

and transiently expressed N and NSs proteins. An EMSA was performed using leaf material 

transiently expressing the NSs constructs (A) and systemically infected leaf material of TSWV 

isolates (B) used in this study. A mobility shift in siRNAs upward in the gel reflects NSs binding of 

siRNAs. The additional shift lower in the gel is due to the P19 protein present in the construct. 
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Nowadays, RNA silencing is well accepted as a virus triggered immunity 
mechanism in plants and suppressed by viral RNA silencing suppressor proteins 
(RSS), which could alternatively be referred to as effectors. R-gene mediated 
immunity is a second line of defence that is triggered by effectors. The resulting 
arms race, nicely illustrated by the ‘Zig-zag-model’ (Jones and Dangl, 2006), thereby 
implies a link between RNAi and R-gene mediated immunity for viral pathogens 
with a key role for viral RSS as effectors but experimental evidence for this so far 
has been scarce. Only a few cases have been reported in which viral RSS are also 
reported as effectors (Avr-determinant), and these are limited to Tomato bushy 
stunt virus (TBSV) P19, Tomato aspermy virus (TAV) 2b, Potato virus X (PVX) 25K and 
Turnip crinkle virus (TCV) Coat protein (Oh et al., 1995; Scholthof et al., 1995; Li et 
al., 1999; Malcuit et al., 1999; Angel et al., 2011). Only for the Tav2b protein a clear 
link was found between the Avr and RSS activity (Li et al., 1999; Chen et al., 2008), 
but not for the TBSV P19 (Hsieh et al., 2009) and TCV CP (Choi et al., 2004).

Although the Tsw resistance gene has not been cloned yet, it has been shown 
to be a single dominant resistance gene (Jahn et al., 2000) and thus most likely of 
a common NB-LRR type. Whereas the TSWV NSs protein is not the first example of 
an RSS protein that also acts as Avr-determinant, it so far is the first virus of which 
natural resistance breaking isolates have been collected from the field and their 
respective NSs gene copy was shown to lack both RSS- and Avr activity. Even though 
their functional domains have not been mapped yet, these observations were 
confirmed for two different RB isolates which strengthens the idea that RSS and Avr 
activity within NSs are tightly linked, similar as for TAV 2b. Although these findings 
support the idea that the corresponding R-genes may be triggered by a functional 
(RSS) aspect of the Avr-determinant, the possibility that this only requires a minimal 
secondary structural feature cannot be excluded. However, solving this issue might 
be hampered by the difficulty to separate functions in – multifunctional - viral 
proteins and as a consequence only functional viral proteins may be recognised by 
R-gene products. Another example in support of this is the inability to obtain PVY 
NIaPro mutants that had lost protease activity but still retained the ability to trigger 
HR by the Ry-resistance gene (Mestre et al., 2000; 2003).

In past and current literature, examples have been described in which the 
necrotic response (cell death) induced by effector proteins and the resistance 
against the pathogen are physiological processes that can be separated 

(Bendahmane et al., 1999; Bai et al., 2012). Still and up till now, HR is generally 
accepted as a clear output of activated resistance, also in the case of a systemic 
HR (SHR) and the invasion of the pathogen is not entirely prevented. The latter is 
supported by studies on e.g. PVX and the Rx resistance gene, where insufficient 
or partial recognition of the Avr-determinant (CP) leads to a SHR (Farnham and 
Baulcombe, 2006; Tameling and Baulcombe, 2007), and other examples, like work 
of Dinesh-Kumar on the N gene from Tobacco against TMV (Dinesh-Kumar et al., 
2000) and the study of Plantago asiatica mosaic virus (PlAMV) in N. benthamiana 
(Komatsu et al., 2011). In our study we have clearly shown that NSsRI only induces 
necrosis on Tsw-containing plants and not on susceptible plants, which indicates 
that induction of HR is directly linked to the presence of the resistance gene and 
identifies NSs as Avr-determinant. Although Margaria et al. (2007) have reported 
on TSWV RB isolates that induce systemic HR, these observations are likely to be 
explained as a result of a partial recognition of the Avr-determinant as described 
above for PVX and Rx. The induction of HR is the dominant response, as a co-ATTA 
with NSsRI and either NSsRB160 or NSsRB171 from the pEAQ-vector on resistant Capsicum 
plants showed an HR (Figure 2.10).

Interestingly, on SDS-PAGE NSsRI was consistently running at a higher molecular 
weight compared to NSsRB160/171, and this was irrespective of transient or viral 
expression. A closer look at the aa-sequence of both did not give any indications 
for possible post-translational modifications in NSsRI that could cause for this. 
Predictive tools on several possible post translational modifications were used 
(Phosphorylation, Sumolation, Acetylation, [N/O]-Glycosylation, Ubiquitination) 
with NSsRI and NSsRB sequences as input, but none gave significant differences 
between the sequences, thus the reason for the migration difference remains 
unsolved so far.

Based on all data a model is presented (modified from Chisholm et al. (2006) 
and Moffett et al. (2009)) for the TSWV-Tsw pathosystem in which the dual role 
of NSs as suppressor of the innate (RNAi) immune system and Avr-determinant 
for Tsw-induced HR is presented (Figure 2.11). Whether the RSS function 
of NSs is coupled to Avr activity just because of an (overlapping) structural 
conformation, or truly functionally coincides with Avr activity will have to be 
solved by future analysis of additional RB isolates and NSs domain mapping 
studies. Although the mode of action of resistance genes still remains a matter 
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of debate, one of the most commonly accepted models is the guard-hypothesis 
(van der Biezen and Jones, 1998; Jones and Dangl, 2006). In this model, the resistance 
gene product is guarding a certain host protein, and is able to perceive alterations 
of its ‘guardee’ target upon interaction with the Avr-determinant, which leads to 
an induction of HR. Unfortunately, this model does not explain how resistance 
breaking virus isolates preserve their virulence, as present in our described case 
of TSWV. Besides the guard model, and to explain the preservation of virulence, 
other models were proposed, e.g. the decoy model (van der Hoorn and Kamoun, 
2008) or the more recently proposed broader resistance model, the bait and switch 
model (Collier and Moffett, 2009). Regardless of the model for Tsw resistance, the 
identification of possible host protein target(s) for NSs, whether guardee, decoy 
or bait, will become a next challenge and contribute to a further unravelling of 
resistance gene mechanisms.

Figure 2.10 Triggering of HR upon co-ATTA of NSsRI with NSsRB160/171 on resistant Capsicum 

plants. Leaves of resistant Capsicum annuum plants were infiltrated with the NSsRI, NSsRB160 

and NSsRB171 alone and in a co-ATTA setting. Pictures were taken at 5 dpi and show an HR in 

those leaves where NSsRI was expressed.

Materials and Methods

Virus and Plant material
Four different virus isolates of TSWV were included in this study, i.e. Vir127 
[Romania, 1998], Vir129 [The Netherlands; WUR, 2002], Vir160 [Spain; Almeria, 
2006] and Vir171 [Spain; Almeria, 2008] (Table 1). Virus isolates were maintained 

on Nicotiana benthamiana by serial passaging (maximal 5 times) using mechanical 
inoculation (de Avila et al., 1993) and stocked as frozen leaves at -80 °C. To confirm 
the phenotypes of the isolates, two genotypes of C. annuum were used: HK0004, 
a TSWV susceptible cultivar (Tsw-), and YF0009, a TSWV resistant cultivar (Tsw+). 
C. chinense PI 152225 was included as the original Tsw source host. All plants were 
grown and maintained under greenhouse conditions (24 °C with a 16h light/8h dark 
regime).

Figure 2.11 Illustration of the Zig-zag-model for the TSWV pathosystem and the Tsw 

resistance. Representation of the arms race between TSWV and plants containing the 

Tsw resistance gene (modified from Moffett (2009) and Chisholm (2006)) in which 

the roles of NSs as RSS and Avr-protein are indicated. The left panel shows the stage 

of PAMP-triggered immunity (PTI), represented by the RNAi response against plant 

virus infection. The middle panel depicts the stage of a successful infection during 

which a functional viral RNAi suppressor protein, in casu TSWV NSs, blocks the RNA 

silencing pathway (preventing cleavage of dsRNA by DCL and uploading of siRNAs 

into RISC). The right panel represents the stage of effector-triggered-immunity (ETI) 

during which the NSs is recognised as Avr-determinant and triggers Tsw-induced HR.
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Amplification and sequence verification of N and NSs genes
Total RNA was isolated from (infected) leaves using Trizol (Invitrogen). From the total 
RNA, 0.5 µg was used as a template for first strand cDNA synthesis and subsequent 
polymerase chain reaction (PCR) amplification of the N and NSs genes using the 
following primer sets at an annealing temperature of 55 °C:

N-Fw (5’-dGGC GGC CGC ATG TCT AAG GTT AAG-3’) and 
N-Rv (5’-dCCG TCG ACT CAA GCA AGT TCT GC-3’), 
NSs-Fw (5’-dGGC GGC CGC ATG TCT TCA AGT GTT-3’) and 
NSs-Rv (5’-dCCG TCG ACT TAT TTT GAT CCT GAA-3’).
For feasible cloning, all forward (Fw) primers additionally contained a NotI 

restriction site, and the reverse (Rv) primers a SalI restriction site, both at the 5’-end 
(highlighted in bold). PCR amplification was performed using Phusion high-fidelity 
Taq polymerase according to the manufacturers’ procedures (Finnzymes). Amplified 
DNA products were resolved on a 1% agarose gel and fragments corresponding in 
size to the N and NSs genes were gel-purified and subsequently cloned into pJET 
vector (Thermo Scientific). Positive clones were selected and verified by sequence 
analysis. Nucleotide and amino acid sequences from the N and NSs genes of the 
TSWV isolates in this study were analysed by multiple sequence alignment using 
the ClustalW algorithm. Alignments were edited using the BioEdit program (Hall, 
1999). The sequence of TSWV BR01 (Genbank accession D00645) was included as 
reference isolate.

Cloning procedures
To express the N and NSs genes from a PVX replicon, the corresponding genes were 
excised by NotI and SalI from pJET plasmid and subsequently cloned into NotI/SalI 
digested pGR106 (Lu et al., 2003). Positive clones were selected and transformed 
into Agrobacterium strain GV3101 (Holsters et al., 1980) containing helper plasmid 
pSoup (Hellens et al., 2000). An ATTA was performed and the PVX replicon was 
expressed. Expression of N and NSs from the PVX replicon was verified by SDS-
PAGE and Western immunoblot analysis of N. benthamiana leaf samples collected 
from local and systemic leaves, 5 dpi and 7 dpi, infiltrated with Agrobacterium 
containing the PVX replicon constructs. Systemic infected leaves of N. benthamiana 
that scored positive for N and NSs expression were used as an inoculum source for 
challenging Capsicum plants. For transient expression of TSWV N and NSs, the highly 

translatable pEAQ-HT vector system was used (Sainsbury et al., 2009). To this end, 
coding sequences for N and NSs were re-cloned by NotI excision from pJET vector 
constructs into NotI digested pEntr11-ccdB (from which the ccdB gene was removed 
by EcoRI digestion). Positive clones were selected and verified by sequence analysis 
and subsequently used for transfer of the N/NSs gene inserts via an LR-reaction into 
a Gateway (Invitrogen) compatible pEAQ-HT-pDest1 destination vector (Sainsbury 
et al., 2009). Obtained clones were transformed into A. tumefaciens 1D1249 cells, 
containing helper plasmid pCH32. An ATTA was performed to express the transgenes 
and the expression was verified by Western immunoblot analysis of leaf samples 
infiltrated and collected at 5 dpi. Leaves were destained in ethanol and acetic acid 
solution (3:1 v/v) for 5-6 days to visualise the necrotic tissue after induction of the 
HR.

Agrobacterium Transient Transformation Assay (ATTA)
The ATTA assay was performed according to the protocol of Bucher et al. (2003), 
with slight modifications. In brief: Agrobacterium tumefaciens was grown overnight 
at 28 °C in LB3 medium containing proper antibiotic selection pressure. From this 
culture, 600 µl was freshly inoculated into 3 ml induction medium and grown 
overnight. Strain A. tumefaciens 1D1249 (Wroblewski et al., 2005) with helper 
plasmid pCH32 (Hamilton et al., 1996) was grown under 1.25 µg/ml tetracycline 
selection pressure, while A. tumefaciens LBA4044 (Ooms et al., 1982) was grown 
under 20 µg/ml rifampicin selection pressure. Additional strains used during this 
study were COR308 (Hamilton et al., 1996) selected with 2 µg/ml tetracycline, 
AGL0 and AGL1 (Lazo et al., 1991) selected with 20 µg/ml rifampicin and 100 µg/ml 
carbenicillin, respectively.

Serological detection of virus and proteins
TSWV virus was detected, and titres determined by dotblot and enzyme-linked 
immunosorbent assay (ELISA) analysis, respectively. Dotblot analysis was performed 
on leaf samples from systemically infected N. benthamiana leaves (7 dpi) ground in 
PBS-Tween (0.05 % v/v) and spotted on nitrocellulose in a dilution series of 0, 5, 
25 and 125 times. The filter was blocked with 2 % ELK + PBS-Tween (0.05 % v/v), 
washed with 0.25 % ELK + PBS-Tween and subsequently incubated with antiserum 
against TSWV (de Avila et al., 1993). Antigen-antibody complexes were detected 
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with goat anti-rabbit IgG conjugated to alkaline phosphatase (Dako) NBT/BCIP as 
a substrate (Roche). Virus titres were analysed by ELISA using antiserum against 
TSWV. ELISA was performed on systemically infected leaf extracts from Capsicum 
species (10 dpi) and N. benthamiana plants (7 dpi) in PBS-Tween buffer (1:3 w/v) 
in a double-antibody-sandwich (DAS) format according to de Avila et al. (1993). 
Absorbance values were measured at 405 nm using the Fluorstar plate reader (BMG 
Labtech) 30 and 50 minutes after addition of the substrate. Antigen-coated plate 
(ACP-)ELISA was used to measure the NSs titres using the αNSs as a primary antibody. 
ACP-ELISA was performed similar to DAS-ELISA, except that the plates were coated 
with extracts from systemically infected leaves ground in 2x coating buffer (1 L: 3.18 
g Na2CO3 + 5.86 g NaHCO3). Expression of TSWV N and NSs proteins was analysed by 
SDS-PAGE and subsequent Western immunoblot analysis using polyclonal antisera 
against TSWV N and NSs as previously described (de Avila et al., 1993).

GFP silencing suppression assay
Leaves were agroinfiltrated with a functional GFP construct (Tsien, 1998) as 
described above, with a final O.D.600nm 0.5 per construct. A construct expressing 
MBP was used as a negative control (Schnettler et al., 2010). Infiltrated leaves 
were monitored for GFP expression at 5 and 10 dpi using a hand UV-lamp. For 
quantification of GFP fluorescence, leaf discs with a diameter of 1 cm were taken 
from the infiltrated leaf area and the number of fluorescent units was measured 
using the Fluorstar Optima (BMG Labtech). Suppression of local RNA silencing by 
virus infection was analysed after agroinfiltration of a functional GFP construct and 
subsequent mechanical inoculation of the same leaf area with each of the TSWV 
isolates and PVX, as described earlier. The results were observed 5 dpi.

Electrophoretic mobility shift assays (EMSA)
The affinity of NSs for siRNA duplex molecules was analysed according to Schnettler 
et al. (2010). In brief: 0.6 grams of systemically infected leaf or local inoculated leaf 
was ground in liquid nitrogen and suspended in 1.5 ml binding buffer (20 mM Tris-
HCl [pH 7.5], 5 mM MgCl2, 50 mM KCl, 1 mM DTT). Radio-labelled siRNAs (0.5 µM) 
were incubated with ± 2 µg total protein amount derived from virus-infected or local 
inoculated leaf extracts per 20 µl reaction and incubated for 20 minutes at room 
temperature in binding buffer. As negative controls, siRNAs alone or incubated with 

healthy plant extracts, were included. Complexes were resolved on 0.5x TBE native 
8% PAGE gel. After electrophoresis, gels were vacuum dried at 80 °C for 30 minutes 
and exposed o/n to a phosphor screen and scanned (Molecular Dynamics Typhoon 
Phosphor imager, Amersham Biosciences).
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Abstract

Recently, TSWV NSs protein has unambiguously been identified as Avr-determinant 
for Tsw-based resistance. The observation that NSs from two natural resistance 
breaking isolates had lost RNA silencing suppressor activity and avirulence 
suggested a link between both functions. To test this, a large set of NSs mutants 
was generated by alanine substitutions in NSs from resistance-inducing wild type 
isolate (NSsRI), amino acid reversions in NSs from resistance-breaking isolates 
(NSsRB), domain deletions and – swapping. Testing these mutants for their ability to 
suppress GFP silencing and trigger Tsw-mediated HR revealed that both functions 
can be separated. Changes in the N-terminal domain revealed to be detrimental for 
both activities and indicated the importance of this domain, additionally supported 
by domain swapping between NSsRI and NSsRB. Swapping domains between the 
closely related Tospovirus GRSV NSs and TSWV NSsRI showed that Avr-functionality 
cannot simply be transferred between species. Whereas deletion of the C-terminal 
domain converted NSs completely dysfunctional, only few single amino acid 
mutations in the C-terminus affected both functions. Mutation of a GW/WG motif 
(position 17/18) rendered NSs completely dysfunctional for RSS and Avr-activity 
and indicated a putative interaction between NSs and AGO1 and its importance in 
TSWV virulence and viral counter defence against RNAi.

Introduction

RNA silencing (also named RNA interference, RNAi) is part of the innate immune 
response in plants against viral invasion. It is triggered by viral double stranded 
(ds)RNA, derived from secondary folding structures or replicative intermediates, 
that is being cleaved in the cytoplasm by a host Dicer-like (DCL)-protein into small 
interfering (si)RNAs of 21-24 nucleotides in length (Ding and Voinnet, 2007). Upon 
unwinding of siRNAs, one of the strands (guide strand) is being uploaded in the RNA 
induced silencing complex (RISC), while the other strand is destroyed. Activated 
RISC surveils the cytoplasm for the presence of complementary (viral) RNA target 
molecules, and degrades these using the Argonaute (AGO) slicing activity. Viruses 
evade or suppress this pathway to achieve a successful infection in the plant 

host. The most widespread known way of doing this is by encoding RNA silencing 
suppressors (RSSs), proteins that interfere at various steps in the RNA silencing 
pathway (Díaz-Pendón and Ding, 2008). Many plant RNA viruses code for an RSS 
that exert its function by sequestering long dsRNA or siRNAs and thereby prevent 
their cleavage by DCL and their uploading into RISC, respectively. Although other 
modes of interference (at the level of AGO1, DCL and RdR) are also reported (Zhang 
et al., 2006; Giner et al., 2010; Incarbone and Dunoyer, 2013), all prevent viral RNA 
target molecules from becoming degraded by the RISC complex. For Tomato spotted 
wilt virus (TSWV), representative of the plant-infecting bunyaviruses (Kormelink et 
al., 2011), the NSs protein has been identified as RSS (Takeda et al., 2002; Bucher 
et al., 2003) and most likely exerts this activity by sequestering long dsRNA and 
small short interfering-(si)RNAs (Schnettler et al., 2010). Besides its RSS activity, 
NSs enhances translation of viral transcripts, which appears most strongly in the 
additional presence of the viral nucleoprotein (N). It is postulated that NSs is able to 
do this as a kind of functional equivalence of a poly(A) tail binding protein (PABP), 
by binding to the dsRNA hairpin structure predicted from the 3’-untranslated region 
of viral transcripts and encoded by the intergenic region of the ambisense RNA 
elements (Geerts-Dimitriadou et al., 2012).

TSWV is also prone to a second line of defence in plants that is based on dominant 
resistance (R-)genes, and is also referred to as Effector-Triggered Immunity (ETI) 
(Jones and Dangl, 2006). During this defence mechanism, a host R-gene product 
(in-) directly perceives the virus by one of its (effector) proteins, which activates a 
programmed cell death response visualised by a Hypersensitive Response (HR). The 
resistance model explaining indirect recognition of avirulence (Avr) proteins is often 
referred to as the ‘guard-model’ or ‘decoy-model’, in which the R-gene product 
guards a host factor (functional or decoy) that upon interaction with the Avr-protein 
triggers the R-gene mediated resistance (Moffett, 2009). Two dominant R-genes 
are available for commercial breeding against TSWV, namely the SW5b-gene from 
tomato and the Tsw-gene from pepper. Whilst in the past conflicting papers have 
appeared on the identification of the Avr-gene from TSWV upon recognition by 
the Tsw-gene product causing an HR in pepper (Margaria et al., 2007; Lovato et 
al., 2008), recently, we unambiguously identified NSs as the Avr-determinant for 
Tsw-based resistance (Chapter 2). Analysis of two natural resistance breaking field 
isolates and characterisation of their NSs proteins, showed that for these isolates 



Chapter 3     Importance of the N-terminal domain of TSWV for Avr- and RSS-activity

66  D. de Ronde 2013  67

  3

the NSs protein lacked both RSS and Avr-activity which indicated a putative link 
between both activities (Chapter 2).

Here, we have generated and tested a large set of NSs mutants for their ability to 
suppress GFP silencing and trigger Tsw-mediated HR. The results indicate that both 
functions can be individually disrupted, although the N-terminal part of NSs seems 
to hold the most important sequences for both functions. 

Results

Generation of NSs mutants
To test whether the RSS activity and elicitation of Tsw-mediated HR were indeed 
tightly linked, and furthermore identify the role of certain (conserved) amino 
acids (aa), motifs and domains in NSs for either one of those functions, a large NSs 
mutant screen was performed. To this end, three series of mutants were generated 
and tested for their ability to 1) suppress GFP silencing in a leaf patch assay on 
Nicotiana benthamiana and 2) elicit Tsw-mediated HR on Capsicum annuum (Tsw+). 
Therefore, the NSs sequence obtained from a TSWV resistance inducing (RI) isolate 
(Vir127) and a resistance breaking (RB) isolate (Vir160) and referred to as NSsRI and 
NSsRB, respectively (Chapter 2), was used to generate mutants from.

The earlier identified affinity of NSs to long- and small dsRNA implied an 
important role for RNA binding domains in RSS activity (Schnettler et al., 2010). 
For this reason, the first set of mutants was generated from NSsRI in which amino 
acids from within 3 predicted RNA binding domains (Figure 3.1A), according to 
BindN (Wang and Brown, 2006), were substituted for alanines, as described in the 
Materials and Methods, resulting in mutants designated S48A, S48A/R51A, K53A/
G57A, R211A and KKK452/K457A (Table 3.1). 

A second set of mutants was generated from NSsRI based on multiple sequence 
alignment of different Tospovirus NSs sequences (Figure 3.1A). Amino acid (aa) 
residues within conserved domains were selected and substituted for alanines 
to test the importance of these domains for RSS and Avr-activity. The resulting 
mutants were denoted: S29A/Y30A, S74A/Q75A, Q113A/G114A, G160A/S161A, 
Y197A/S198A, N288A/S289A, N355A/N356A, P373A, L396A/S397A and S411A/
Y412A (Table 3.1). 

To identify the aa residue(s) within NSsRI that are important for the appearance of 
resistance breaking isolates, a third set of mutants was generated in which single aa 
residues within NSsRB160, unique and different from the NSsRI sequence (Chapter 2), 
were reverted into aa from the NSsRI isolate (Figure 3.1B). The constructs obtained, 
denoted P48S, T79I, T260V, D384N, N386S, D384N/N386S and P438S, were tested 
for a gain of RSS and/or Avr-function. Additionally, the corresponding aa residues 
within the NSsRI sequence were substituted for alanines resulting in mutants and 
denoted: S48A, I79A, V260A, N384A, S386A, N384A/S386A and S438A (Table 3.1). 
The latter were tested for a loss of RSS and/or Avr-activity.

In addition to these three sets of mutants a fourth mutant was constructed in 
which a GW/WG motif in the N-terminal domain of NSs was substituted for alanines, 
and denoted W17A/G18A. The GW/WG motif has recently been reported to be 
involved in the interaction of several RSS proteins with AGO1, the slicer component 
from the RISC complex (Giner et al., 2010).

All NSs mutants generated (Table 3.1) were confirmed by sequence analysis, and 
their translatability verified by SDS-PAGE and western immunoblot analysis of N. 
benthamiana leaves agroinfiltrated with these constructs. NSs constructs that lost 
their ability to supress RNA silencing showed very low expression with the pK2GW7 
vector, while the same constructs expressed through pEAQ-HT were well detectable 
and of similar levels as RSS active NSs (Figure 3.S1).

Essential amino acid sequences for Avr-activity primarily map to the 
N-terminus
To test the ability of NSsRI mutants and NSsRB160 revertants to trigger an HR, constructs 
were cloned into pEAQ-HT and subsequently transiently expressed via infiltration of 
Agrobacterium tumefaciens 1D1249 (containing helper plasmid pCH32) on resistant 
C. annuum plants (Chapter 2). Plants were monitored for the appearance of HR at 5 
days post agroinfiltration (dpa). The NSs mutants were expressed from vector pEAQ-
HT to compensate (via the additional expression of the RNA silencing suppressor 
P19) for low expression levels in case the NSs mutants were non-functional for 
RSS activity. Whereas infiltration with pEAQ-HT-NSsRI (control), but not with pEAQ-
HT-N (Nucleocapsid protein of TSWV) or the pEAQ-HT-NSsRB160, lead to a clear HR 
after 5 days, quite a number of NSsRI-mutants lost their ability to trigger the HR 
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Table 3.1 NSs mutants designed in this study and ordered according to amino acid 

numbering from the amino-terminal end and tested on their functionality; 

Minus (-): No or loss of activity. Plus (+): activity (gained). Plus/minus (+/-): Partial activity.

# Mutant Mutant target HR-induction RSS-activity
1 NSsRI-W17A/G18A Putative AGO1 interaction domain - -
2 NSsRI-S29A/Y30A Conserved NSs domain - -
3 NSsRI-S48A Predicted RNA binding domain - +/-
4 NSsRI-S48A/R51A Predicted RNA binding domain - -
5 NSsRI-K53A/G57A Predicted RNA binding domain - +
6 NSsRI-S74A/Q75A Conserved NSs domain - +
7 NSsRI-I79A RB mutation - -
8 NSsRI-Q113A/G114A Conserved NSs domain - -
9 NSsRI-G160A/S161A Conserved NSs domain + +

10 NSsRI-Y197A/S198A Conserved NSs domain - +/-
11 NSsRI-R211A Predicted RNA binding domain + -
12 NSsRI-V260A RB mutation - +
13 NSsRI-N288A/S289A Conserved NSs domain - +
14 NSsRI-N355A/N356A Conserved NSs domain - -
15 NSsRI-P373A RB mutation + +
16 NSsRI-N384A RB mutation + +
17 NSsRI-S386A RB mutation + +
18 NSsRI-N384A/S386A RB mutation - +
19 NSsRI-L396A/S397A Conserved NSs domain - +/-
20 NSsRI-S411A/Y412A Conserved NSs domain - +
21 NSsRI-S438A RB mutation + +
22 NSsRI-KKK452AAA/K457A Predicted RNA binding domain - +
23 NSsRB160-P48S Reversion mutation - -
24 NSsRB160-T79I Reversion mutation - -
25 NSsRB160-T260V Reversion mutation - -
26 NSsRB160-D384N Reversion mutation - -
27 NSsRB160-N386S Reversion mutation - -
28 NSsRB160-D384N/N386S Reversion mutation - -
29 NSsRB160-P438S Reversion mutation - -

(Figure 3.2 and 3.3, Table 3.1). A further look showed that all mutations in the 
N-terminal domain (aa 1-133) led to a loss of the ability to elicit HR, while only half 
of the other mutants in the remaining internal or C-terminal domain led to such loss. 
These results indicated the importance of the N-terminal domain of NSs function 
for Avr-activity. Mutant N384A/S386A had lost the ability to trigger HR while the 
individual single mutants N384A and S386A were still functional. Furthermore, and 
interestingly, mutation of the WG-motif also led to a loss of Avr-activity, indicating 
its putative biological relevance. From all NSsRB160-single aa reversion mutants 
generated, none had regained the ability to trigger HR. As control, all mutant NSs 
constructs were additionally tested on susceptible Capsicum plants, and none 
showed to trigger an aspecific necrotic response (Figure 3.4).

Essential sequences for RSS activity overlap with those for Avr-activity
To test NSs mutants (NSsRI alanine substitutions and NSsRB160-revertants) for their 
ability to suppress RNA silencing, constructs were cloned in pK2GW7 and by means 
of A. tumefaciens LBA4404 (Chapter 2) co-infiltrated with a functional GFP construct 
in N. benthamiana. At five dpa, levels of GFP expression were monitored visually 
by UV-light, and fluorescence units were quantified by spectrometry. Whereas 
agroinfiltration of only GFP showed clear levels of silencing, which was suppressed 
in the additional presence of NSsRI, a variety of GFP silencing suppression levels 
were observed when the NSsRI mutants were co-infiltrated (Figure 3.2, Table 3.1). 
Similar to the results from the mutant screen on HR-induction/elicitation, loss of 
RSS activity was mainly found with mutations that resided in the N-terminal domain, 
while only fewer mutations in the remainder part of NSs had such effect. Mutations 
made in the first two predicted RNA binding domains (aa 48 and aa 211) showed 
a negative effect on RSS-function, while those made in the third predicted RNA 
binding domain (aa 452) did not show any effect on RSS functioning. Some NSsRI-
mutants, i.e. S48A, Y197A/S198A and L396A/S397A, only partially lost their RSS-
activity, while the double mutant S48A/R51A had completely lost its RSS-activity. 
Mutation of the WG-motif, besides Avr-activity, also abrogated the RSS activity 
of NSs. Furthermore, as with the HR-induction assay, none of the single NSsRB160 

reversion mutants re-gained RSS activity. 
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Figure 3.1 Multiple sequence alignment of different TSWV NSs proteins with GRSV NSs 

and an alignment with other tospoviral NSs sequences. A. The NSs amino acid sequences 

from different tospoviruses, belonging to the American clade, were aligned to identify 

conserved and diverse regions within the NSs protein. Conserved amino acids highlighted 

in black were selected for alanine substitutions. Black horizontal bars represent predicted 

RNA binding domains. TSWV: Tomato spotted wilt virus, GRSV: Groundnut ringspot virus, 

CSNV: Chrysanthemum stem necrosis virus, ZLCV: Zucchini lethal chlorosis virus and INSV: 

Impatiens necrotic spot virus. B. A multiple sequence alignment of TSWV NSsRI and TSWV 

NSsRB from isolates 160 and 171 is shown and differences are highlighted. The NSs from a   

(←) closely related but distinct Tospovirus GRSV is included. Predicted (three) RNA binding 

domains (black bars), a WG/GW-motif (grey bar) and a hydrophobicity plot are indicated.

Elicitation of HR and RSS-activity of NSs-chimera and additional mutants
The results from the NSsRB160 revertants indicated that a single nucleotide reversion 
was apparently not sufficient to restore either one or both of the RSS and Avr-
activities. Interestingly, a further look at the N-terminal aa sequences of NSsRB from 
the 160 and 171 resistance breaker isolates in comparison to NSsRI (Figure 3.1B) 
showed that the NSsRB171 only deviated from the NSsRI at one position namely aa 
79 (T79). Considering the importance of the N-terminal domain for both RSS and 
Avr-activity, we analysed next whether T79 represented one of the key aa-residues 
for the generation of the TSWV RB phenotype/isolates. To this end, T79 in NSsRB171 

was reverted into isoleucine (T79I) and after cloning into the appropriate vectors 
subsequently tested for HR-induction and RSS-activity. Interestingly, the NSsRB171-
T79I mutant gained RSS activity again (Figure 3.5), but not the ability to elicit HR. 
To analyse whether reversion of two aa in the N terminal domain of NSsRB160, and 
deviating from NSsRI, restored full functionality of RSS and Avr-activity, the double 
mutant P48S/T79I was generated. In contrast to the results with the single reversion 
mutant NSsRB171-T79I, which shared a similar N terminal domain as the double 
reversion mutant NSsRB160-P48S/T79I, the latter mutant showed a gain of function 
for both activities (Figure 3.5).

To further substantiate the importance of the N-terminus of NSs in both activities, 
additional NSs chimera were made. To this end, the first 133 aa (N-terminal domain) 
or the remainder part of NSs (referred to as C-terminal domain) were swapped 
between the NSsRI and the NSsRB160 or NSsRB171, leading to the construction of four 
NSs-chimera (Figure 3.6). All NSs chimera constructs were tested for their ability 
to suppress GFP silencing in a leaf patch assay and elicit a Tsw-gene based HR. 
The results showed that NSs chimera containing the N-terminal domain of NSsRI 

and theremainder C-terminal part of NSsRB (160 or 171) regained RSS- and Avr 
functionality again (Figure 3.5).

Adversely, NSs chimera containing the N-terminal domain of NSsRB and the 
remainder C-terminal part of NSsRI showed no Avr-activity. Interestingly, residual/
low levels of RSS activity were observed with chimera containing the N terminal
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← Figure 3.2 HR and RSS activity of NSs mutants. NSs mutants as listed in Table 1, were tested 

for their Avr-activity by triggering of HR (necrosis) on Tsw+ Capsicum plants. The presence 

of RSS activity was analysed in a GFP-silencing leaf patch assay on N. benthamiana. A. Visual 

monitoring of the Avr-activity from all the mutants tested and ordered from upper left to right 

bottom, according to the mutations positioned in NSs from N-terminal to C-terminal end. B. 

Suppression of GFP silencing by the NSs mutants used and presented in the order as in panel 

A. The presence of Avr-activity and (full/intermediate/loss) of RSS activity is summarised and 

presented in Table 2. C. The GFP units obtained in the RSS-assay were quantified by fluorescence 

spectrometry. Measurements of leaf discs (Ø 1cm) of each infiltration were repeated at least 

three times and the average amount is shown with the standard deviations as error bars.

Figure 3.3 Graphical overview of the NSs mutant analysis. The outcome of Avr and RSS 

functionality from the NSsRI mutants are depicted in a schematical drawing including the 

predicted secondary NSs structure (α-helix in white boxes and β-sheets in black boxes), the 

hydrophobicity plot on top of the figure and predicted RNA binding domains are shown as 

horizontal black bars.

domain of NSsRB171, but not with the corresponding domain from NSsRB160. Since 
only few mutations in the C-terminus of the NSsRI led to a loss of either RSS or 
Avr-activity, a C-terminal deletion mutant of NSsRI was made in which the last 97 
aa of the NSsRI coding region were deleted and two stop codons were introduced. 
Analysis of this construct, referred to as NSsRI-ΔC, showed that both RSS and Avr-
activity were abolished and indicating that the C-terminus of NSs is required to 
retain a functional protein.
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Figure 3.4 Agroinfiltration of NSs mutants on susceptible Capsicum plants. All NSs 

mutants generated in this study (listed in tables 1 and 3) were, as control, agroinfiltrated 

in susceptible Capsicum plants to analyse their phenotype and to confirm the 

induction of Tsw-mediated HR triggering in Tsw+ Capsicum plants (Figures 2 and 5). 

Agroinfiltrated leaves are presented from all mutants tested and ordered from upper 

left to right bottom according to the mutations positioned in NSs from N-terminal to 

C-terminal end, followed by the reversion- and chimera/deletion mutants, respectively.

Inability of transferring the Avr-activity to a closely related but virulent 
Tospovirus species
The observation that the N terminus (133 aa) of NSsRI seemed most essential for 
RSS and Avr-activity tempted us to analyse whether avirulence could be transferred 
from a TSWV-RI isolate to Groundnut ringspot virus (GRSV). The latter represents 
a distinct Tospovirus species that is not able to elicit Tsw-mediated HR but whose 
NSs shares high sequence similarity to TSWV NSs (89%). To this end, and in analogy 

to the approach as described above, the first 133 aa of GRSV NSs was exchanged 
with the corresponding part of NSsRI of TSWV, and vice versa. All NSs chimera 
generated (Table 3.2) were confirmed by sequence analysis, and verified for their 
translatability as earlier described (data not shown). During a GFP-silencing assay on 
N. benthamiana, the chimera with the N-terminal domain of the TSWV NSs showed 
the ability to suppress RNA silencing to the same level as the complete NSsRI, but 
the chimera carrying the N-terminal domain of the GRSV NSs partially had lost RSS 
activity (intermediate RSS activity). However, when both chimera were tested for 
avirulence, neither chimera was able to elicit Tsw mediated HR. 

Figure 3.5 HR-induction and RSS-activity of the NSs domain swapping chimera. Leaves in 

the upper row show the results of the HR assay of the NSs chimera tested, similar to panel 

A in Figure 2. Leaves in the bottom row show the results of the GFP silencing suppression 

assay of mutants as shown in panel B of figure 2. The presence of Avr-activity and (full/

intermediate/loss) RSS activity of the mutants is summarised and presented in Table 3.
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Figure 3.6 Schematical presentation of additional NSs chimera and the NSsRI-ΔC mutant 

construct. A. Presentation of four NSs chimera in which the first 133 aa between the NSsRI and 

the NSsRB160 and NSsRB171 were swapped. B. Presentation of NSs-ΔC, an NSsRI deletion mutant 

from which the last 95 amino acids on the C-terminal end were deleted. C. Presentation of NSs 

chimera made from GRSV NSs and TSWV NSsRI, similarly as with the constructs in panel A, in 

which the first 133 amino acids between the NSsGRSV and NSsRI from TSWV have been swapped.

Table 3.2 Additional NSs mutants and chimera made and tested on their functionality; 

Minus (-): No or loss of activity. Plus (+): activity (gained). Plus/minus (+/-): Partial activity.

# Mutant Mutant target HR-induction RSS-activity

30 NSsRB171-T79I Reversion mutation - +
31 NSsRB160-P48S/T79I Reversion mutation + +
32 NSsRI-N-term/NSsRB160-C-term Replacement N-term + +
33 NSsRI-N-term/NSsRB171-C-term Replacement N-term + +
34 NSsRB160-N-term/NSsRI-C-term Replacement N-term - -
35 NSsRB171-N-term/NSsRI-C-term Replacement N-term - +/-
36 NSsRI-ΔC-term C-terminal deletion - -
37 NSsTSWV-N-term/NSsGRSV-C-term Replacement N-term - +
38 NSsGRSV-N-term/NSsTSWV-C-term Replacement N-term - +/-

Discussion

In this study a mutant screen was performed on the NSs protein of TSWV to identify 
and map essential domains required for RSS and Avr-activity and investigate their 
potential tight functional linkage. The results have strongly indicated the importance 
of the N-terminal domain of NSs for both functions since mutations introduced in the 
first 133 aa of NSsRI most often led to a functional loss of both RSS and Avr-activity, 
while this was observed only occasionally and to a lesser extent with mutations in 
the remaining C-terminal part of the protein. A few mutants were affected only in 
the RSS- or Avr-activity. This observation dismissed the idea of a tight functional 
linkage. This was further supported by data from another study (Margaria et al., 
2007) in which the NSs protein of some resistance breaking isolates, although only 
partially characterised, still seemed to exhibit RSS activity.

The importance of the N-terminal domain for both functions was further 
strengthened by additional domain swaps between NSsRI and NSsRB, in which the 
RSS/Avr-activity of the NSsRI/RB chimera could be restored when provided with the 
N-terminal part of NSsRI. In addition, only mutants of NSsRB160-171 containing a reversion 
in the N-terminal domain, but not in the C-terminal part, were (partially) restored in 
RSS and/or Avr-activity. Although the mutant screen indicated a lower importance 
of the C-terminal domain of TSWV NSs for both functions, deletion of this part 
(mutant NSsRI-ΔC) rendered NSs non-functional. This suggests that the C-terminal 
domain likely plays a structural role, rather than possessing domains required for 
the tested functions. Furthermore, a chimeric GRSV NSs containing the N-terminal 
domain of TSWV NSsRI, could not be provided Avr functionality but retained its 
RSS activity, which strengthens the requirement for the C-terminal domain of NSs 
for proper functioning, likely in structural folding. Mutation of the WG-motif in 
the N-terminus of NSs and concomitant loss of RSS and Avr-activity pointed to its 
biological relevance, likely for interaction with AGO1 as earlier demonstrated with 
Sweet potato mild mottle virus P1 protein (Giner et al., 2010). From all amino acid 
(aa) mutations in the NSs protein analysed, the residue at position 79 also seems to 
play a key role, as mutant NSsRI-I79A lost both activities, while reversion mutants of 
the resistance breakers, i.e. NSsRB171-T79I and NSsRB160-P48S/T79I, both had gained 
RSS ability and the latter in addition Avr-activity. Clearly, aa residue 79 is directly 
involved in RSS activity, but affects Avr-activity as well.
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Of the known viral Avr-proteins, only a small number of cases have been reported 
in which the viral Avr also had RSS activity. These are limited to Tomato bushy stunt 
virus (TBSV) P19, Tomato aspermy virus (TAV) 2b, Potato virus X (PVX) 25K, Turnip 
crinkle virus CP and Potato virus Y (PVY) Hc-Pro (Oh et al., 1995; Scholthof et al., 
1995; Li et al., 1999; Malcuit et al., 1999; Angel et al., 2011; Tian and Valkonen, 
2013). Although for most of these cases the corresponding resistance genes have not 
been cloned yet (TBSV, PVX, TAV and PVY), they are single dominant and therefore 
likely of the NBS-LRR type. The most well-known viral Avr and RSS R-gene model is 
the one from Turnip crinkle virus (TCV). Like TSWV NSs, the TCV CP protein binds 
dsRNA and prevents systemic silencing (Qu et al., 2003). The TCV coat protein (CP) 
is the Avr-determinant of the HRT resistance gene in Arabidopsis thaliana, where 
HRT is an NBS-LRR type resistance gene (Ren et al., 2000). For TCV CP, mutants were 
made that lost the ability to induce HR, but remained RSS active, suggesting that 
the suppressor and resistance-elicitor functions are not tightly linked, most likely 
because these reside in different domains, which tempted the authors to propose 
that TCV CP interferes with multiple host basal defence pathways (Choi et al., 2004; 
Jeong et al., 2008). Similar findings were obtained for TBSV, where P19 mutants 
that lost siRNA binding properties were still able to trigger an effective resistance 
response (HR) in N. tabacum (Hsieh et al., 2009). Recently, the TAV 2b crystal 
structure was elucidated and two separate studies showed the importance of the 
same arginine residue at position 28 from TAV 2b in binding of siRNAs and thus for 
RSS activity (Chen et al., 2008) and Avr-activity (Li et al., 1999), indicating that RSS 
and Avr-activity in case of TAV 2b are tightly linked. Most of these studies support 
the idea that triggering of the corresponding R-genes does not require a functional 
RSS aspect of the Avr-determinant, like in case of TSWV NSs, but rather a (minimal 
secondary) structural feature that is shared by both, and in case of TSWV NSs could 
be the N-terminal domain. Support for this also comes from another recent study 
on the Cucumber mosaic virus (CMV), where the replicase function of 2a could be 
uncoupled from its ability to trigger an HR on Cowpea leaves (unknown R-gene) 
(Hu et al., 2012). However, for some viruses solving this issue might be hampered 
by the difficulty to separate functions in – multifunctional - viral proteins and as a 
consequence only functional viral RSS proteins may be recognised by R-proteins, 
which could explain the observations made on TAV 2b.

Recently TSWV NSs has been shown to bind small RNAs (mi/si), and long 
dsRNA, and this characteristic has been proposed as the mode by which this 
protein interferes in (suppressing) RNA silencing (Schnettler et al., 2010). Alanine 
substitutions in three predicted RNA binding domains showed that only two of 
these led to a loss in RSS-activity. The third one around aa452, in which even four 
lysines were substituted, did not lead to a loss of RSS activity and suggested that 
this sequence was not required. In contrast, a similar sequence with predicted 
RNA binding capacity was earlier shown to be involved in small RNA binding by the 
Tenuivirus Rice hoja blanca virus (RHBV) NS3 and its mutation leading to a loss of 
RSS activity (Hemmes et al., 2009). Whether the predicted RNA binding domains 
genuinely are involved in binding small and/or large dsRNA, so far has not been 
solved. In light of this, it is important to point out that attempts have been made 
to perform electrophoretic mobility shift assays (EMSA) using transiently expressed 
NSs, but mostly only weak shifts were observed when using NSsRI, while no shift was 
observed using NSsRB (data not shown). Considering that NSsRI was well detectable 
on Western immunoblots, but the amount of NSsRB, and of most mutant NSs 
proteins, was at least 10 fold lower, already indicated that the absence of a shift 
could also be due to low expression levels, and the outcome of the EMSA analysis 
would thus not be conclusive at all.

The same predicted RNA binding domains are also present in other closely related 
Tospovirus sequences (Figure 3.1A), and indicate that these could be a conserved 
and shared feature throughout the genus. Among all the NSs mutants analysed, 
one (R211A) had lost RSS activity, but was still able to trigger HR. Considering 
that the R211A mutant expressed from pEAQ-HT is still able to trigger HR, while 
its expression is 10x lower when compared to NSsRI from pEAQ-HT, indicates that 
induction of HR apparently requires only low amounts of the Avr-protein.

The crystal structure of the TSWV NSs protein or other Tospovirus NSs proteins 
has not been elucidated and therefore the 3D-structure of the NSs protein is still 
unknown. This clearly hampers the predictability of the outcome of the mutations 
in the NSs protein sequence and we cannot rule out that a loss of function due 
to some mutations resulted from an effect on the structure of the protein, rather 
than disrupting a functional domain. Elucidating the structure of NSs might also give 
clues as to how and why mutation of the WG motif affects the NSs functioning as 
Avr.
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Recently, a publication appeared on the biochemical function of NSs from 
Groundnut bud necrosis virus (GBNV), a distinct Tospovirus (Lokesh et al., 2010). It 
was shown that GBNV NSs contains RNA stimulated NTPase activity and dATPase 
activity, which was supported by the presence of two Walker motifs (A and B) in the 
NSs amino acid sequence. In addition, the NSs showed 5’ RNA/DNA phosphatase 
activity. Although the Walker domains do not show up in the TSWV NSs sequence, 
the presence of similar biochemical functions for this protein cannot be excluded 
nor their involvement in the RSS/Avr-activity of the NSs protein. Unfortunately, the 
NSs mutants made in the GBNV study were not tested for their biological relevance, 
e.g. RNAi suppressor activity.

In another, more recent study (Geerts-Dimitriadou et al., 2012) TSWV NSs 
has been shown to enhance translation of viral transcripts. It is clear from all this 
that NSs represents a multifunctional protein, as observed with many other viral 
proteins (Díaz-Pendón and Ding, 2008; Hu et al., 2012). Whether any of these 
functions overlap or somehow crosstalk/interplay with RSS/Avr-activity remains to 
be analysed. 

In conclusion, here we have performed a first mutant screen of TSWV NSs that 
provides a first glimpse on the topology of NSs in relation to its roles as RSS and 
Avr-determinant, which shows that the most essential sequences required for both 
functions map to the N-terminal part of the protein and closely overlap, although 
both functions can be separated. While the mode of action of dominant resistance 
genes, to which Tsw classifies, still remains a matter of debate, one of the most 
commonly accepted models is the guard-hypothesis (van der Biezen and Jones, 
1998; Jones and Dangl, 2006). In this model, the resistance gene product is guarding 
a certain host protein, and is able to perceive alterations of its ‘guardee’ target by 
interaction with the Avr-determinant, which leads to an induction of HR. Whether 
AGO1 indeed interacts with NSs, and presents a candidate protein for the guardee 
will be an hypothesis to be tested in the near future.

Materials and Methods

Plant material
Two genotypes of Capsicum annuum were used for the HR-induction assay: 
HK0004, a TSWV-susceptible cultivar (Tsw-), and YF0009, a TSWV-resistant cultivar 
(Tsw+). Additionally, Nicotiana benthamiana plants were used for the RNA silencing 
suppression assay. All plants were grown and maintained under glasshouse 
conditions (24 °C with a 16 h light/8 h dark regime).

Multiple sequence alignment
The obtained sequences were aligned using the CLUSTALW algorithm. Sequences 
of NSsRI, NSsRB160 and NSsRB171 were previously described (Chapter 2). Sequences 
of NSs derived from other tospoviruses were retrieved from Genbank; TSWV-
NSs: Genbank accession number D00645, ZLCV-NSs: accession number JN572104, 
GRSV-NSs: accession number JN571117, INSV-NSs: accession number GU112504, 
CNSV-NSs: accession number AB600873. Alignments were edited using the BioEdit 
program (Hall, 1999).

PCR-mutagenesis and subcloning of constructs
NSs mutants were made by PCR-mutagenesis, using primers to introduce the 
mutation on a gateway-compatible entry vector pEntr11, carrying either the NSsRI, 
the NSsRB160 or the NSsRB171 sequence. Chimera mutants were made by amplifying 
fragments by PCR with introduced restriction sites for subsequent restriction 
and ligation into the appropriate backbone sequence. Plasmids obtained were 
sequence verified and subsequently cloned by Gateway cloning in their destination 
vectors pK2GW7 (Karimi et al., 2002) for the GFP-silencing suppression assay, and 
into pEAQ-HT (Sainsbury et al., 2009) for the Avr-assay. The obtained binary vectors 
were transformed into Agrobacterium 1D1249 + pCH32 (pEAQ-HT) and LBA4404 
(pK2GW7) (Ooms et al., 1982; Hamilton et al., 1996; Wroblewski et al., 2005).

Agrobacterium Transient Transformation Assay (ATTA)
The ATTA assay was performed according to Bucher et al. (2003), with slight 
modifications. In brief: Agrobacteria were grown overnight at 28 °C in LB3 medium 
containing proper antibiotic selection pressure. From this culture, 600 µl was freshly 
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inoculated into 3 ml induction medium and grown overnight. Plants were watered 
in excess 1 hour before the infiltration, using a needleless syringe, was performed. 
Strain A. tumefaciens 1D1249 with helper plasmid pCH32 was grown under 1.25 
µg/ml tetracycline selection pressure, while A. tumefaciens LBA4044 was grown 
under 20 µg/ml rifampicin selection pressure. 

Serological detection of NSs proteins
Expression of the different mutants of the TSWV NSs protein was analysed by SDS-
PAGE and Western immunoblot analysis using polyclonal antisera against TSWV NSs 
as previously described (Kormelink et al., 1991).

HR-induction assay and GFP silencing suppression assay
For the HR-induction, ATTAs (see above) were performed of the pEAQ-NSs mutant 
constructs on resistant Capsicum plants (+Tsw) and susceptible Capsicum plants 
(-Tsw), and plants scored for the presence or absence of HR. As positive control 
NSsRI was included and as negative controls NSsRB160 and the nucleocapsid (N) 
protein of TSWV, respectively (Chapter 2). The GFP silencing assay was performed 
by agroinfiltration of Nicotiana benthamiana leaves with a functional GFP construct 
(Tsien, 1998) mixed with one of the NSs constructs, as described above in the 
ATTA section, using a final O.D.600nm 0.25 per construct. A construct expressing the 
Maltose binding protein (MBP) was used as a negative control (Schnettler et al., 
2010). Infiltrated leaves were monitored for GFP expression at 5 dpa using a hand-
held UV-lamp. For quantification of GFP fluorescence, leaf discs with a diameter of 
1 cm were taken from the infiltrated leaf area and the number of fluorescent units 
was measured using a Fluorstar Optima (BMG Labtech).
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Figure 3.S1 Westernblot analysis of chimeric-NSs expressed from pEAQ-HT and pK2GW7. 

NSs chimera constructs made between NSsRI and NSsRB160/171 were expressed in N. 

benthamiana and samples were made using Trizol for westernblot analysis as described in 

chapter 2, with αNSs as antiserum. Constructs tested were expressed from the pEAQ-HT 

vector (A) and from pK2GW7 (B).
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Abstract

The NSs protein of Tomato spotted wilt virus (TSWV) represents the suppressor 
of RNAi (RSS) and is able to sequester small interfering (si)RNA and long double 
stranded (ds)RNA. A recent mutant study performed on the NSs protein has shown 
that alanine substitutions of a GW/WG-motif disrupted its RSS activity (Chapter 3). 
This motif has earlier been demonstrated in other RSS-proteins to enable binding 
to AGO1, the core component of the RNA induced silencing complex (RISC) and 
essential for the RSS activity of viral proteins containing this motif. In this study, the 
putative interaction of the TSWV NSs protein and AGO1 was examined in Nicotiana 
benthamiana leaf material agroinfiltrated with binary constructs of the NSs gene 
and a FLAG-tagged AGO1 construct. Using a co-immunoprecipitation approach, 
NSs showed to co-immunoprecipitate with AGO1, although the reciprocal assay 
remained inconclusive.

Introduction

In plants, a basic defence mechanism against virus infections exists, which is based 
on small RNAs and is often referred to as RNA interference (RNAi), or RNA silencing. 
This mechanism is triggered by the generation of double stranded (ds)RNA structures 
that arise during replication or result from secondary viral RNA structures (Agius et 
al., 2012). The dsRNA is recognised by a host Dicer-like (DCL) protein that cleaves 
it into small interfering (si-) RNAs of 21-24 nt long (Ding and Voinnet, 2007). The 
siRNA duplex molecules are subsequently unwound, one strand being destroyed, 
while the other so-called guide strand is uploaded in a protein complex called RNA-
induced silencing complex (RISC). The complex uses the guide strand as a template 
to surveil for the presence of target sequences with complementarity to the guide 
strand. Once these (viral) RNA target molecules are found, they are cleaved by the 
Argonaute protein (AGO) of RISC, leading to their degradation. In plants, the siRNA 
signal is amplified by host RNA dependent RNA polymerases (RdRs), a process in 
which siRNAs are used as a primer to convert single stranded RNA target molecules 
into dsRNA. Their processing ultimately leads to the generation of secondary siRNAs, 
and to the spreading of the siRNA signal to neighbouring sequences of the initial 

dsRNA source, also referred to as transitive silencing (Sijen et al., 2001). Besides 
priming by siRNAs, host RdRp can additionally convert RNA target molecules into 
dsRNA in an unprimed manner (Agius et al., 2012).

Viruses inhibit the RNAi machinery to establish a successful infection, and the 
most common way in doing this is by encoding RNA silencing suppressor proteins 
(RSS) (Díaz-Pendón and Ding, 2008). These proteins exert RSS activity in various 
ways, e.g. by sequestering long dsRNA and thereby prevent their cleavage by DCL, 
or sequestering of siRNAs and prevent their uploading into RISC (Lakatos et al., 
2006). Another way of inhibiting RNAi is by association of RSS to one of the main 
enzymatic key players in the pathway. Although in plants no RSS proteins directly 
associating with DCL proteins have been described, in insects the B2 protein of 
an Alphanodavirus (Wuhan nodavirus) binds and blocks DCL-2 activity (Qi et al., 
2012). More recently, several RSS from different plant viruses have been shown to 
interact with AGO1 and inhibit its activity, like P1 from Sweet potato mild mottle 
virus (SPMMV), P38 from Turnip crinkle virus (TCV) and 2b from Cucumber mosaic 
virus (CMV: fny-strain) (Zhang et al., 2006; Azevedo et al., 2010; Giner et al., 2010). 
Alternatively, P0 from Polerovirus possesses a F-box motif which is involved in 
targeting AGO1 for degradation (Baumberger et al., 2007), as does the P25 from 
Potato virus X (PVX), but whether this involves a direct or indirect interaction is not 
exactly known yet (Chiu et al., 2010). While it is still unclear how 2b from CMVfny 
binds to AGO1, both SPMMV-P1 and TCV-P38 bind via a GW/WG motifs in their 
sequence, earlier found in host proteins and required for their association to AGO1 
(Azevedo et al., 2010; Giner et al., 2010). 

The Tomato spotted wilt virus (TSWV) encodes an NSs protein that is active as 
an RSS by binding long dsRNA and siRNAs (Takeda et al., 2002; Bucher et al., 2003; 
Schnettler et al., 2010). A recent alanine substitution analysis of NSs has shown the 
importance of the N-terminal domain for RSS and triggering the Tsw-gene based 
resistance in Capsicum annuum (Avr). A loss of RSS activity was not only observed 
after targeting predicted RNA binding domains but also of a GW/WG motif found 
at amino acid position 17-18, which indicated its putative biological relevance 
(Chapter 3). In this study, co-immunoprecipitation studies were employed using 
tagged proteins to confirm a putative interaction between TSWV-NSs and AGO1. 
First indications for this interaction have been obtained after immunoprecipitation 
of AGO1, but future complementing assays are needed for confirmation.
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Results

RNA silencing suppression assay
Constructs used in this study are summarised in table 4.1. Prior to their use in co-
immunoprecipitation, the RNA silencing suppressor activity of the RSS proteins 
used in this study was confirmed. To this end RSS encoding- binary gene constructs 
were agroinfiltrated together with a functional GFP construct in N. benthamiana 
plants. At 5 days post-infiltration (dpi), plants were visually monitored for GFP 
expression to assess for RSS activity relative to Maltose binding protein (MBP) and 
P1mut (a mutant of P1 that had lost RSS activity) as negative controls. While GFP was 
silenced in the presence of MBP and P1mut, silencing showed clear suppression in 
the presence of P19, NSsRI and His-tagged NSsRI (N-terminal His-fusion) (Figure 4.1). 
CMVfny-2b and P1wt also suppressed silencing of GFP, but to a lesser degree compared 
to P19 and NSs (Figure 4.1). These results confirmed the functionality of the RSS 
gene constructs for their use in the following experiments.

Time course of transient protein expression
To identify the most optimal time point for harvesting leaf samples, infiltrated with 
various gene constructs and to be used for (co-)immunoprecipitation analysis, 
a time course experiment on protein expression was performed. Earlier, NSs 
constructs were observed to express well at 5 dpi (Chapter 2), but for pBA-6Myc-
AGO1 and pBA-CMVfny-2b-3HA constructs this was not well reported (Zhang et al., 
2006; Giner et al., 2010). Therefore, leaves were infiltrated with these constructs 
and sampled at 3, 4, 5, 6, and 7 days post infiltration (dpi). As negative control, a leaf 
sample agroinoculated with a MBP construct was included. Samples were prepared 
using Trizol (Materials and Methods) and subsequently resolved on SDS-PAGE, 
followed by Western immunoblot to analyse protein quantities (Figure 4.2A and 
B). While myc-AGO1 was present in leaves harvested at all time points (~150 kDa), 
expression seemed highest at 5 dpi. For 2b-HA (~20 kDa) expression was relatively 
high at all dpi samples tested. Based on these results, leaf samples were collected 5 
dpi to be used in following experiments.

Table 4.1 Constructs used in this study including their tags. 
Constructs used (incl. promoter) Tag
35S::NSs1 No tag

35S::His-NSs N-terminal 6xHis-tag

35S::2b-HA2 C-terminal 3xHA-tag

35S::HA-P1wt3 N-terminal HA-tag

35S::HA-P1mut3 N-terminal HA-tag

35S::Myc-AGO12 N-terminal 6xMyc-tag

35S::FLAG-AGO14 N-terminal FLAG-tag

35S::MBP1 No tag
1(Chapter 2). 2(Zhang et al., 2006). 3(Giner et al., 2010). 4(Baumberger et al., 2007).

Figure 4.1 RNA silencing suppression activity of constructs used in this study. Constructs 

used in this study were verified for their ability to suppress RNA silencing of a GFP construct, 

images were taken at 5 dpi using a UV-lamp. MBP: Maltose binding protein, TBSV: Tomato 

bushy stunt virus, TSWV: Tomato spotted wilt virus, CMV: Cucumber mosaic virus, SPMMV: 

Sweet potato mild mottle virus. 

Immunoprecipitation assays
The feasibility of a protocol employing Fe-beads for (co-)immunoprecipitation was 
first tested on the nucleocapsid (N) protein of Tomato spotted wilt virus (TSWV). 
Using beads coated with antibodies against N (de Avila et al., 1990), this protein was 
specifically pulled down from infected leaf samples (data not shown), demonstrating 
the usefulness of the approach.

In a next step, the occurrence of in planta interactions, between Myc-AGO1 
with CMVfny-2b-HA and NSs were analysed. Firstly, Fe-beads were coated with rat-αHA 
and tested to see whether CMVfny-2b was specifically pulled down from leaf extracts 
collected 5 days post agroininfiltration with pBA-CMVfny-2b-3HA. While 2b-HA was 
well detected in input leaf extracts (Figure 4.2C, Lane 6), a band of expected size 
and co-migrating with 2b-HA from the positive sample (Trizol isolated 2b-HA) was 
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  4Figure 4.2 Time series and IP of ATTA expressed Myc-AGO1 and CMVfny-2b-HA. A. Westernblot 

analysis of ATTA samples of Myc-AGO1 harvested at different days post infiltration (dpi) 

and detected by αMyc. B. Westernblot analysis of ATTA samples of CMVfny-2b-HA harvested 

at different days post infiltration (dpi), detected by αHA. In both cases the –C (negative 

control) was a leaf extract from an ATTA sample expressing MBP. C. An immunoprecipitation 

using Fe-beads was performed on ATTA samples from CMVfny-2b-HA and MBP using rat-αHA 

antibody for detection. 1; Elution after IP of MBP with αN. 2; Elution after IP of 2b-HA with 

αHA. 3; Elution after IP of MBP with αHa. 4; Elution after IP of 2b-HA with αN. 5; Input 

MBP. 6; Input 2b-HA. Positive control here (+C) for the westernblot analysis is Trizol isolated 

2b-HA from ATTA. D. Beads were blocked after coating with the HA-antibody, then used 

for immunoprecipitation using Fe-beads on ATTA samples from CMVfny-2b-HA using rat-αHA 

antibody for detection (similar to A). 1; Input 2b-HA. 2; Supernatant after IP with empty Fe-

beads. 3; Elution after IP of with empty Fe-beads. 4; Supernatant after IP with αN. 5; Elution 

after IP with αN. 6; Supernatant after IP with rat-αHA. 7; Elution after IP with αHA. Positive 

control here (+C) for the westernblot analysis is Trizol isolated 2b-HA from ATTA.

detected in the elution sample after IP (Figure 4.2C, lane 2). However, a protein band 
of similar size and intensity was obtained after an IP with beads carrying antibodies 
against the N-protein of TSWV and suggested some aspecificity in 2b-HA binding. 
To reduce and overcome a possible aspecific binding to the beads, an additional 
blocking step with milk powder was added during the coating protocol of the beads. 
Although using these beads the aspecific binding to beads this time was reduced, 
unfortunately, hardly any 2b-HA was observed in the elution sample collected after 
IP (Figure 4.2D, lane 7). 

Since the strategy using Fe-beads appeared unsuccessful, an alternative protocol 
using protein-G Dynabeads was employed (Materials and Methods). Again, its 
applicability was first tested on a TSWV infected N. benthamiana sample using 
beads coated with αN directed against the N protein of TSWV. As a negative control, 
antibodies against VP2 of Chicken anaemia virus (CAV) were used (rabbit-αVP2). 
The results showed that N was specifically and efficiently immunoprecipitated from 
infected leaf samples when beads were coated using αN, but hardly with αVP2 
(data not shown).

In a next step, this approach was used to immunoprecipitate His-, Myc- or HA-
tagged NSs, AGO1 and 2b, respectively, to verify the specificity of the antibodies. 
When using αHis during an IP on leaf material containing transiently expressed His-
NSs (input and IP-samples), a large smear was observed during detection of His-
NSs using αNSs, but the elution sample clearly showed a large enrichment for NSs 
as deduced from the removal of Rubisco (Figure 4.3A, lane 3). Hardly any His-NSs 
was detected when the IP was performed using αMyc (Figure 4.3A, lane 5). In an 
analogous way, the specific precipitation of 2b-HA was tested using αHA on extracts 
of leaves infiltrated with a binary CMVfny-2b-HA construct, and using αMyc as a negative 
control. While 2b-HA clearly could be detected in the positive control (Trizol isolated 
2b-HA), only a weak smear was detected in the input sample, likely due to low 
expression levels of the protein (Figure 4.3B, lane 1). Analysis of the IP-elute using 
αHA revealed the presence of two strong bands of which the lower one co-migrated 
with 2b-HA from the positive control. However, both bands also showed up at similar 
ratios when αMyc-AGO1 was applied during the IP, and indicated that the bands 
most likely presented the light (~25K) and heavy chains (~55K) of immunoglobulins. 
During IP analysis of extracts from leaves infiltrated with Myc-AGO1 constructs, 
the absence of a clear positive signal from the positive control and input samples 
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already indicated its low expression levels (Figure 4.3C, lanes 1 and C+). In contrast, 
a strong (smearing) signal was observed in the elution sample using αMyc, and 
indicated that an IP using the αMyc antibodies seemed to successfully enrich for 
AGO1 (Figure 4.3C, lane 3). Unexpectedly, the Myc-AGO1 protein (smearing) signals 
also showed up when using αHis, though less strong when compared to αMyc, 
likely due to an aspecific cross-reaction (Figure 4.3C, lane 5). The use of αHA, in 
contrast, hardly or not gave any signals after IP (Figure 4.3C, lane 7). Altogether, 
the results indicated that some of the antibodies used gave unwanted/undesired 
cross-reactions and therefore had to be used with caution in follow up experiments.

Co-immunoprecipitation assays
Having selected the protein-G Dynabeads as IP strategy and verified the ability 
of antibodies to precipitate His-, HA- and Myc-tagged proteins and their cross-
reactions, extracts from agroinfiltrated leaves with a tagged-AGO1 construct in 
combination with various tagged RSS protein gene constructs were subjected to a 
Co-IP analysis.

A Co-IP on plant extracts from a co-ATTA expressing Myc-AGO1 and His-NSs 
was performed, using different antisera. The presence of the His-NSs protein in the 
elution sample after IP with αHis showed an effective IP (Figure 4.4A, lane 7), but 
when analysed with αMyc, did not show the presence of a distinct band of AGO1-
size (Figure 4.4B, lane 7). Instead, an increased smear was observed, similarly as in 
the AGO1 IP-control, and pointed to the possible presence of AGO1. The reciprocal 
Co-IP using αMyc to precipitate AGO1, and next analysed using αNSs, showed 
the presence of a (thin) band after elution and of expected NSs size, suggesting a 
successful Co-IP (Figure 4.4A, lane 5). 

As a positive control for the Co-IP experiment a binary construct of 
CMVfny-2b-HA was co-infiltrated with Myc-AGO1 and immunoprecipitated using 
different antisera. Unfortunately, the Co-IPs using either αHA or αMyc as primary 
antibody and subsequently analysed for the presence of the Co-IP target protein 
were not successful (Figure S4.1, panel A and B). This was likely due to low expression 
levels of both proteins, as neither could be well detected in the input or positive 
control sample. The bands that did show up after detection with αHA, again most 
likely presented the light (~25K) and heavy chains (~55K) of immunoglobulins. 

Since CMVfny-2b-HA did not express well under the conditions applied, the P1 
wildtype (P1wt) RRS gene construct from Sweet potato mild mottle virus (SPMMV), 
earlier shown to interact with AGO1, was used as positive control for the Co-IP 
(kindly supplied by Giner et al. (2010)). A mutant P1 (P1mut), containing 3 disrupted 
GW-motifs and unable to interact with AGO1 was used as negative control. Due 
to relatively low expression levels of the Myc-AGO1 construct, also here another 
AGO1 construct was used (described by Baumberger and colleagues (2007)), but 
this time containing a FLAG-tag at its N-terminal end. The expression of P1wt and 
FLAG-AGO1 was confirmed, although P1mut was not detectable on westernblot. The 
latter was likely due to mutation of the WG-motifs and subsequent abolishment 
of its RSS activity (Figure 4.1), rendering this protein unable to suppress its own 
silencing. A Co-IP experiment was performed on ATTA samples of FLAG-AGO1 with 
P1wt, but rendered a strong signal at the height of P1 (Figure S4.1, panel C and D) 
that was also observed in the negative IP control.

Anti-FLAG affinity gel purification of FLAG-AGO1
To further substantiate the Co-IP results and compensate for the low levels of AGO1 
expression, an affinity gel purification using anti-FLAG was performed. An IP using 
FLAG-beads on FLAG-AGO1 expressing plant tissue was successfully performed 
and a Co-IP procedure on Co-ATTA expressed FLAG-AGO1 + His-NSs using these 
beads did co-purify His-NSs. However, His-NSs was also detected in a similar co-IP 
setup when FLAG-AGO1 was not co-infiltrated (Figure 4.5), indicating that the co-
purification was likely aspecific.

Discussion

Nowadays it is commonly known that viral RNA silencing suppressors (RSS) interfere 
in the RNAi machinery at various and sometimes multiple steps. A more recently 
identified interference mechanism is by direct binding of RSS proteins to AGO1, 
the core component of RISC, and thereby inhibiting its slicer activity (Zhang et al., 
2006; Giner et al., 2010). Alanine substitution of residues W17/G18 present in the 
TSWV NSs RSS protein, previously identified as a motif required for binding of host
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Figure 4.3 IP using protein G-beads on Myc-AGO1, CMVfny-2b-HA and His-NSs. IPs were done 

on ATTA samples expressing AGO1, CMV-2b and NSs by the corresponding tags. A. His-NSs 

was expressed by ATTA and IPs using different antisera were performed, detected by αNSs. 

1; His-NSs input for IP. 2; supernatant after IP with αHis. 3; Elution after IP with αHis. 4; 

supernatant after IP with αMyc. 5; Elution after IP with αMyc. Positive control here (+C) for 

the westernblot analysis was Trizol isolated His-NSs. B. CMVfny-2b-HA was expressed by ATTA 

and IPs were done using different antisera, here detected with αHA. 1; 2b-HA input for IP. 2; 

supernatant after IP with αHA. 3; Elution after IP with αHA. 4; supernatant after IP with 

αMyc. 5; Elution after IP with αMyc. Positive control here (+C) for the westernblot analysis  

(←) was Trizol isolated CMVfny-2b-HA. C. AGO1-Myc was expressed by ATTA and IPs were done 

using different antisera, here detected with αMyc. 1; Myc-AGO1 input for IP. 2; Supernatant 

after IP with αMyc. 3; Elution after IP with αMyc. 4; Supernatant after IP with αHis. 5; Elution 

after IP with αHis. 6; Supernatant after IP with αHA. 7; Elution after IP with αHa. Positive 

control here (+C) for the westernblot analysis was Trizol isolated Myc-AGO1.

Figure 4.4 Co-IP using protein G-beads on Myc-AGO1 and His-NSs. A. A Co-ATTA was 

performed with His-NSs and Myc-AGO1, detected here with αNSs. 1; input Co-ATTA for 

IP. 2; Supernatant after IP with αHA. 3; Elution after IP with αHA. 4; Supernatant after IP 

with αMyc. 5; Elution after IP with αMyc. 6; Supernatant after IP with αHis. 7; Elution after 

IP with αHis. Positive control here (+C) for the westernblot analysis was Trizol isolated co-

ATTA sample of His-NSs and Myc-AGO1. B. Same Co-ATTA sample as in panel A, but now 

detected with αMyc. 1; input Co-ATTA for IP. 2; Supernatant after IP with αHA. 3; Elution 

after IP with αHA. 4; Supernatant after IP with αMyc. 5; Elution after IP with αMyc. 6; 

Supernatant after IP with αHis. 7; Elution after IP with αHis. Positive control here (+C) for 

the westernblot analysis was Trizol isolated co-ATTA sample of His-NSs and Myc-AGO1.

proteins and viral RSS to AGO1 (Zhang et al., 2006; Giner et al., 2010), recently has 
demonstrated the biological relevance of this motif for NSs RSS activity (Chapter 
3). Using Co-immunoprecipitation, we have provided here the first preliminary 
indications that AGO1 and NSs do interact, but results from complementary assays 
are needed to further support this observation.
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Previously, TSWV NSs was shown to exhibit affinity to siRNAs, long dsRNAs and 
miRNAs (Schnettler et al., 2010), a feature common to the majority of viral RSS 
proteins (Lakatos et al., 2006). In contrast, only a minority has been to shown to act 
differently, or act in multiple ways, e.g. by means of direct or indirect interaction 
with one of the RNAi enzymatic key players or affecting their expression levels/
degradation. A number of viral RSS interact with AGO1, and include SPMMV-P1, 
TCV-P38, CMVfny-2b, PVX-P25 and the P0 of Polero- and Enamovirus, but of which 
only the first two do this by means of a WG/GW motif. For the other cases it 
remains unknown how the binding is established (Zhang et al., 2006; Baumberger 
et al., 2007; Azevedo et al., 2010; Chiu et al., 2010; Giner et al., 2010; Fusaro et 
al., 2012). Interestingly, from all these, P0 from Polero- and Enamovirus and P25 
from PVX destabilise AGO1 ultimately leading to its degradation (Baumberger et 
al., 2007; Chiu et al., 2010; Fusaro et al., 2012). Valleray and colleagues (2010) 
described another mode of action to inhibit AGO1, which involved the action of 
the miRNA pathway. They showed that the silencing suppressor from a number of 
different viruses, i.e. Cymbidum ringspot virus, Tobacco mosaic virus and Potato 
virus X, were able to reduce AGO1 protein levels by specifically stimulating miR168 
and not other (unrelated) miRNAs, causing translational arrest of AGO1 mRNA. The 
latter was supported by detection of increasing levels of AGO1 mRNA concomitant 
with decreasing levels of AGO1 protein synthesis. Whether TSWV NSs interacts 
with AGO1, to prevent its functionality or trigger its degradation similar to Polero-/
Enamovirus P0 and PVX, and/or (additionally) stimulates miR168 expression 
to silence AGO1, similar to Tombusvirus P19 and other viral RSSs, remains to be 
investigated.

Considering the biological relevance of the GW/WG motif in TSWV NSs it is 
noted that P1 from Sweet potato feathery mottle virus (SPFMV), closely related to 
P1 of SPMMV, does not exhibit RSS activity but like TSWV NSs contains a single 
GW/WG site. However, when two additional GW/WG domains were introduced to 
resemble SPMMV-P1, the protein acquired RSS activity (Szabo et al., 2012). Besides 
SPMMV-P1, also TCV-P38 minimally requires two of these domains to be a functional 
RSS (Azevedo et al., 2010; Giner et al., 2010). Although alanine substitution of the 
GW/WG motif turned TSWV NSs into a dysfunctional RSS, confirmation of a genuine 
AGO1 interaction will be interesting to indicate whether a single domain suffices 
to support interaction. NSs is a strong RSS, and about similar compared to one of 

the strongest RSS known, i.e. P19 from a Tombusvirus (Figure 4.1). Whether the 
strong RSS activity of NSs is caused by its ability to interfere at various stages of the 
RNA silencing pathway, besides its affinity to small and long dsRNAs, remains to be 
investigated.

The data presented on the interaction of AGO1 and NSs remain inconclusive, 
mainly because of the low expression levels of some of our constructs, specifically 
the AGO1 constructs, used in the Co-IP experiments. This also accounts for the 
positive control samples for the Co-IP study, namely CMVfny-2b-HA and SPMMV-P1wt. In 
addition, the cross reactions of immuno-globulins (IgG) used in this study to perform 
the (Co-)IP with the heavy chain of IgG (±55 kDa) and the light chain of IgG (±25 kDa), 
at times also hampered the analysis since the NSs protein (±55 kDa) respectively the 
CMVfny-2b (±20 kDa) more or less co-migrated at exactly similar positions. Data from 
alternative strategies will have to be provided to proof the genuine existence of 
NSs-AGO1 interactions, e.g. by Yeast-two hybrid screen or bimolecular fluorescence 
complementation (BiFC).

Figure 4.5 FLAG affinity gel precipitation of FLAG-AGO1+NSs. FLAG-affinity beads 

were used to perform Co-IP experiments on co-ATTA expressed FLAG-AGO1+NSs. A. Co-

IP results using the FLAG-affinity beads of different (Co-)ATTA expressed constructs, 

detected here with αNSs. 1; supernatant after IP on MBP. 2; supernatant after IP on 

AGO1+MBP. 3; supernatant after IP on NSs. 4; supernatant after IP on AGO1+NSs. 5. Elution 

after IP on MBP. 6; Elution after IP on AGO1+MBP. 7; Elution after IP on NSs. 8; Elution 

after IP on AGO1+NSs. B. Same samples as in panel A, but now detected with αFLAG.
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Material and Methods

Constructs and bacteria
The constructs pK2GW7-MBP, pK2GW7-NSsRI, pBin-GFP have been previously 
described (Chapter 2). The construct pK2GW7-His-NSs was made by quick change 
PCR on the gateway compatible entry vector pEntr11-NSsRI introducing a 6x His-
tag at the N-terminal side of the NSs gene and subsequent recombination into 
the pK2GW7 vector (Karimi et al., 2002). The pBA-6Myc-AGO1 construct and the 
pBA-CMVfny-2b-3HA were described in Zhang et al. (2006). The other construct 
containing the Ago1-gene was the pBin-FLAG-AGO1 construct from Baumberger 
and co-workers (2007). The constructs encoding the P1 gene were the pBin-HA-P1wt 
and pBin-HA-P1mut, which were described in Giner et al. (2010). All constructs were 
driven by the 35S promoter from the Cauliflower mosaic virus (CaMV). Constructs 
were transformed to Agrobacterium tumefaciens LBA4404 strain (Ooms et al., 
1982). 

Agrobacterium tumefaciens transient transformation assay (ATTA)
The ATTA assay was performed according to Bucher et al. (2003), with slight 
modifications as described in Chapter 2. In brief: Agrobacteria were grown overnight 
at 28 °C in LB3 medium containing proper antibiotic selection pressure. From this 
culture, 600 µl was freshly inoculated into 3 ml induction medium and grown 
overnight. Nicotiana benthamiana plants were watered in excess 1 hour before 
the infiltration, which was done using a needleless syringe. Strain A. tumefaciens 
LBA4044 was grown under 20 µg/ml rifampicin selection pressure. 

RNA silencing suppression assay
The RNA silencing suppression assay was performed by agroinfiltration of Nicotiana 
benthamiana leaves with a functional GFP construct (Tsien, 1998) as described 
above, using a final O.D. at 600nm of 0.25 per construct. A construct expressing the 
Maltose binding protein was used as a negative control (Schnettler et al., 2010). 
Infiltrated leaves were monitored for GFP expression at 5 dpa using a hand-held 
UV-lamp.

Serological detection of expressed proteins
Expression of the different constructs were analysed by SDS-PAGE and subsequent 
Western immunoblot analysis using specific antisera against the constructs tested 
as previously described (Kormelink et al., 1991). Most constructs tested were run 
on a 15 % gel, while the detection of the AGO1 protein ran on a 10 % gel. For the 
detection of the Myc-AGO1 construct a rabbit-αMyc antibody was used, while for 
the detection of the FLAG-AGO1 construct rabbit-αFLAG was used. The constructs 
CMVfny-2b-HA and both HA-P1 constructs were detected with rat-αHA, and finally the 
His-NSs construct was detected by mouse-αHis. 

Immunoprecipitation
Two protocols were used to perform the (Co-)immunoprecipitation (IP) studies. At 
first, the protocol using iron (Fe-)beads was used. These were made by mixing 2.7 
gr. FeSO4·7H2O in 10 ml of dH2O with 5.7 gr. FeCL3·6H2O in 10 ml of dH2O and adding 
123 ml of concentrated ammonia. Sample was heated to 80 °C for 20 minutes after 
which the sample was centrifuged for 3 minutes at 3300 rpm and finally washed 
5 times with dH2O. The pellet was dissolved in 200 ml TE pH 8.0. The beads were 
coated with the appropriate antibody by mixing 25 µg of antibody to 1 ml of Fe-
beads in a 1x coating buffer and incubated for 2 hours at Room temperature (RT). 
The plant sample was prepared by grinding the infiltrated leaf at 5 dpi in PBS-Tween 
(9 ml per gram leaf) using a mortar on ice. The sample was then centrifuged (5 min 
at 5000 rpm) and supernatant was added to the beads; 1 ml of sample with 100 µl 
beads, which were mixed and incubated for 3 hours at 4 °C. The supernatant was 
removed in a next step and the beads were washed with PBS-Tween, transferred 
to a clean tube and washed again. The pellet was resuspended in 100 µl stripbuffer 
(0.05M Tris pH6.8, 2 % SDS and 10 mM β-mercaptoethanol) and was heated to 53 °C 
(on vortex). The supernatant was transferred to a clean tube and used for SDS-PAGE 
and Westernblot analysis, after adding 35 µl 50 % glycerol with bromophenolblue, 
heated to 95 °C for 5 minutes.

The second (Co-)IP protocol made use of the protein-G Dynabeads. This protein 
is able to bind to specific immuno-globulins (IgG) that were used in this study. In 
this protocol, the ATTA samples were ground in liquid nitrogen and pre-cooled lysis 
buffer was added (5 ml/gr leaf). The sample was centrifuged twice (first; 15 min 
at 5000 rpm, second; 15 min 13000 rpm), and 5 ml of supernatant was used per 
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IP reaction. The sample was pre-cleared by adding 10 µl/ml protein-G Dynabeads 
for 20 minutes at 4 °C. The supernatant was transferred to a new tube and the 
appropriate antibody was added (10 µg/ml) and was incubated for 1-2 hours at 4 
°C. Subsequently, the Dynabeads were added (75 µl/ml) and incubated o/n at 4 °C. 
The last steps are as described above for the first IP protocol, but washing was done 
with lysis buffer. To optimise detection Trizol purification was performed on these 
beads.

The third immunoprecipitation protocol that was performed used the FLAG-
affinity gel-beads (Sigma-Aldrich). FLAG-AGO1 and NSs were expressed in a co-ATTA 
setting, and leaf samples were taken at 5 dpi. Leaves were ground in a 3x Volume 
extraction-buffer (50 mM Tris, pH 8.0 + 1.5 % Pvp + 30 % Glycerol + 0.01 M DTT + 
protein inhibiter cocktail) and passed through miracloth to remove plant debris; 
samples from here onwards were kept at 4 °C. Samples were incubated and rotated 
for 15 minutes before centrifugation for 10 minutes at 10K rpm. The supernatant 
was transferred to a new tube and the samples were precleared by adding 0.1 
gr of (empty) beads (in extraction buffer). Samples were incubated and rotated 
again for 10 minutes and subsequently centrifuged for 5 minutes at 10K rpm. The 
supernatant was passed through a 0.45 µm filter and put in a new tube. The FLAG-
beads (washed 3x with extraction buffer and 1x with 1 % Elk in TBS) were added 
to the sample and incubated (rotated) for 2 hours. Samples were centrifuged for 
30 seconds at 10K rpm and the pellet was washed 5x with extraction buffer and 2x 
with TBS. A 4x denaturation solution was added to the beads, heated to 95 °C for 
5 minutes and subsequently spin down for 1 minute at 10K rpm. The supernatant 
was transferred to a new tube and used to load on a SDS-PAGE gel and subsequent 
western blotting procedure.
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Figure S4.1 Westernblot analysis of different Co-IP analysis. A. A Co-IP was performed on 

Co-ATTA expressed CMVfny-2b-HA + Myc-AGO1, detected here with αMyc. 1; input Co-ATTA. 2; 

Supernatant after IP with αN. 3; Elution after IP with αN. 4; Supernatant after IP with αHA. 

5; Elution after IP with αHA. 6; Supernatant after IP with αMyc. 7; Elution after IP with αMyc. 

Positive control here (+C) for the westernblot analysis was Trizol isolated co-ATTA sample 

of CMVfny-2b + AGO1. B. Same Co-ATTA sample as in panel A, but now detected with αHA. 

Positive control here (+C) for the westernblot analysis was Trizol isolated co-ATTA sample of 

CMVfny-2b and AGO1. C. Co-IP experiment were performed using αFLAG beads on co-ATTA 

expressed FLAG-AGO1 with either P1wt or P1mut, detected with αHA. 1; MBP. 2; supernatant 

after Co-IP of FLAG-AGO1 + P1mut. 3; Elution after Co-IP of FLAG-AGO1+ P1mut. 4; supernatant 

after Co-IP of FLAG-AGO1 + P1wt. 5; Elution after Co-IP of FLAG-AGO1 + P1wt. D. Co-IP 

experiment were performed using αFLAG beads on co-ATTA expressed FLAG-AGO1 with 

either His-NSs or NSs, detected with αNSs. 1; supernatant after Co-IP of FLAG-AGO1 + NSs. 

2; Elution after Co-IP of FLAG-AGO1 + NSs. 3; supernatant after Co-IP of FLAG-AGO1 + His-

NSs. 4; Elution after Co-IP of FLAG-AGO1 + His-NSs.
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Identification and characterisation of a new 

class of temperature-dependent Tomato 

spotted wilt virus resistance breaking 

isolates of Tsw-based resistance and the 

development of a diagnostic tool

This chapter will be submitted in a slightly modified version as:

“Identification and characterisation of a new class of temperature-dependent 
Tomato spotted wilt virus resistance breakers isolates of Tsw-based resistance”. 
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Abstract

The single dominant Tsw resistance (R-)gene from Capsicum chinense against 
the Tomato spotted wilt virus (TSWV) has been described as being temperature 
sensitive; at 32 °C the resistance does not hold against resistance inducing isolates. 
Here, we have described a new class of temperature-sensitive TSWV isolates that 
depending on the temperature either induce (at T <28 °C) or break (at T ≥ 28 °C) 
Tsw-mediated resistance. The NSs genes from these isolates were cloned and 
upon transient expression analysed for RNA silencing suppressor (RSS) activity or 
the ability to induce Tsw-mediated HR. In contrast to the virus-setting some NSs 
proteins surprisingly did not induce Tsw-mediated HR when transiently expressed at 
standard temperatures (22 °C). Concomitantly, varying degrees of RSS activity were 
observed among the NSs proteins from this class of resistance breakers. Attempts 
expressing and testing the NSs proteins for functionality at an elevated temperature 
using Agrobacterium remained unsuccessful. Multiple sequence alignment of the 
NSs genes from TSWV resistance inducing (RI) and resistance breaker (RB) isolates 
revealed the importance of two amino acid residues in RNA silencing suppression 
and avirulence, features that were lost from several TSWV RB isolates analysed. 
One amino acid residue was found to be critical for both functions tested. To detect 
the presence of this altered codon sequence in NSs genes, and thereby identify and 
distinguish TSWV RB isolates from RI isolates, a primer set was designed and tested 
using RT-PCR on a small collection of TSWV RI and RB isolates. Although RB isolates 
were detected and distinguished from RI isolates, some RB isolates escaped from 
detection.

Introduction

Tomato spotted wilt virus (TSWV) is the type species of the Tospovirus genus, 
and represents the plant infecting members within the family of arthropod-born 
Bunyaviridae. In mammals, the animal-infecting bunyaviruses encounter interferon-
induced innate immune responses and an adaptive immune response that eventually 
leads to their clearance from the host. In plants, tospoviruses encounter an immune 
system that also involves two main layers. The first one involves the (relatively 

slow) onset of antiviral RNA silencing (RNA interference, RNAi), and a second 
layer of effector-triggered immunity (ETI), mediated by single dominant resistance 
(R)-genes. While RNA silencing acts against all plant viruses, R-genes generally 
confer resistance to specific virus species only. R-genes encode NBS-LRR proteins 
that directly or indirectly perceive a specific viral protein, named avirulence (Avr) 
determinant or effector, and upon recognition triggers a hypersensitive response 
(HR). The latter is basically a programmed cell death response (PCD; necrosis) and 
easily visualised by the formation of necrotic lesions on leaves at the site of virus 
entry (Moffett, 2009).

TSWV currently ranks second on the list of economically most important 
plant viruses worldwide (Scholthof et al., 2011). So far, only two single dominant 
resistance genes are available for commercial resistance breeding against this virus, 
i.e. Sw-5 from tomato and Tsw from Capsicum (Brommonschenkel et al., 2000; Jahn 
et al., 2000). The Sw5b gene has been cloned and encodes a CC-NB-LRR protein 
that just recently was shown to be triggered by the TSWV cell-to-cell movement 
protein (NSm) (Spassova et al., 2001; Hallwasser et al., Submitted for publication). 
The Tsw gene has not been cloned, but has been shown to be single dominant and 
therefore likely of the NBS-LRR type. Recently, the NSs RNA silencing suppressor 
(RSS) protein was identified as the Avr-determinant (Chapter 2). Triggering of Tsw-
based resistance in Capsicum requires a functional RNA silencing suppressor (RSS), 
since NSs from natural resistance breaker isolates of TSWV lost avirulence and RSS-
activity. However, a more recent NSs mutant screen has shown that both functions 
can be separated (Chapter 3).

Dominant resistance proteins against different plant pathogens display 
temperature sensitivity and do not provide resistance above a certain temperature. 
This threshold temperature differs between R-proteins (Zhu et al., 2010). For 
instance, the N resistance gene product from tobacco only provides resistance 
against Tobacco mosaic virus (TMV) at temperatures below 28 °C, while Rx1 from 
potato still provides resistance up to 30 °C (Wang et al., 2009). Basal defence 
genes of dominant resistance by the class of TIR-NB-LRR, EDS1 and PAD4 are also 
indirectly affected by temperature. Regulators of these are down regulated at 28 °C 
in comparison to 22 °C, and so is the defence related hormone salicylic acid (SA), 
involved with systemic required resistance (Wang et al., 2009).
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The Tsw resistance gene is no longer able to provide resistance at a temperature 
of 32 °C or higher (Moury et al., 1998). In contrast, the antiviral RNAi pathway seems 
to be up-regulated at elevated temperatures (Zhang et al., 2012). While some plant 
viruses are less fit at elevated temperatures, an increase in the rate of infection and 
higher virus titres are observed for TSWV (Soler et al., 1998).

In relation to the Tsw R-gene, most TSWV isolates are either classified as a typical 
wild type, also called resistance-inducer (RI), or resistance-breaker (RB) isolate. 
However, virus challenging assays on Tsw+ Capsicum lines have revealed the existence 
of a third class of isolates that has not been described and well characterised yet, 
but whose ability to trigger HR (or not) deviates from members belonging to the 
first two classes. Here, we typified these TSWV isolates as temperature-dependent 
resistance breaker isolates of Tsw-based resistance. Members of this group are able 
to break resistance at 28 °C, a condition at which Tsw is still functional, but require 
de novo Avr protein synthesis at temperature conditions below 28 °C to induce HR.

Results

Phenotyping TSWV isolates in relation to Tsw-based resistance
TSWV isolates tested for their ability to induce or break Tsw-mediated resistance and 
included in this study are listed in Table 5.1. Under standard greenhouse conditions 
(22 °C) some of these isolates did not trigger an HR, but caused a systemic infection 
of resistant Capsicum, as observed with Vir131, Vir169, p272 and Ve427 (Figure 
5.1A). Other isolates clearly induced an HR (necrotic lesions) at these conditions, 
as shown for isolates Br01, Vir128, Vir130, Vir164, It98 and p166 (Figure 5.1A). 
TSWV isolate p166 exhibited a rather unique phenotype as this virus was able to 
cause a systemic HR, although this was not consistently observed. After symptoms 
were recorded (Figure 5.1A), systemically infected/top leaves were collected and 
used to determine virus titres by DAS-ELISA. While top leaves from Tsw+ plants 
were completely free from virus in case local HR was observed, TSWV isolates were 
consistently detected in top leaves that showed a systemic infection (Figure 5.2). 

Table 5.1 Description of TSWV isolates tested in this study. RI: resistance inducer. AbsRB: 

Absolute resistance breaker. TempRB: Temperature dependent resistance breaker.
Virus isolate Phenotype Location origin Year
Br01 RI Brazil 1996

Vir171 AbsRB Almeria (Spain) 2008

Vir128 TempRB Spain 2000

Vir130 TempRB Netherlands 2002/2003

Vir131 AbsRB Spain 2002/2003

Vir164 TempRB Netherlands 2005

Vir169 AbsRB Spain 2006

It98 TempRB Italy 1998

p272* AbsRB Albenga (Italian Riviera) 2002

p166* TempRB Albenga (Italian Riviera) 1998

Ve427* AbsRB Almeria (Spain) 2003

 *From Margaria (2007)

Temperature-dependent phenotype of a subset of TSWV isolates
Isolates Vir128, Vir130 and Vir164 used in this study were collected from cultivations 
of TSWV resistant Capsicum plants but, unexpectedly, triggered an HR on resistant 
plants at greenhouse conditions. Since field conditions might have differed from 
our greenhouse conditions, the possible effect of temperature on the resistance 
response was further analysed. To this end, Tsw+ Capsicum plants were challenged 
with all virus isolates and incubated at different temperatures (23, 25, 28, 30 and 
32 °C). The resistance inducing (RI) reference isolate Br01 was included as positive 
control for Tsw-mediated HR (Chapter 2). While some isolates consistently revealed a 
resistance-breaker phenotype regardless of the temperature tested (Vir131, Vir169, 
p272, Ve427, Vir171 and Br01) other isolates surprisingly showed a resistance-
breaker phenotype only at elevated temperatures (≥28 °C) (Figure 5.1B and Table 
5.2). The observation that Br01 was still able to trigger an HR at the temperatures 
tested, confirmed the functionality of the Tsw resistance gene (Figure 5.1B).
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← Figure 5.1 Symptoms induced on Capsicum after challenging with different TSWV 

isolates at different temperatures. A. Capsicum chinense (Tsw+) plants infected with 

different TSWV isolates and incubated at 22 °C. Pictures were taken at 12 dpi. B. Similar to 

panel A, Capsicum chinense plants infected with TSWV isolates, but now incubated at 28 °C. 

Pictures were taken at 12 dpi.

Table 5.2 The ability of each of the three identified phenotypes to infect the resistant 

(Tsw+) Capsicum plant at different temperatures. RI: resistance inducer. AbsRB: 

Absolute resistance breaker. TempRB: Temperature dependent resistance breaker.
Temperature (in °C) 23 25 28 30 32

RI

TempRB

AbsRB

These analyses indicated that the resistance-breaker phenotype of this distinct 
class of TSWV isolates involved a temperature sensitive feature of these viruses, 
and from now onwards referred to as temperature-dependent resistance breakers 
(TempRB). TSWV isolates that systemically infected Tsw+ resistant Capsicum plants, 
regardless of temperature used, hence were renamed as Absolute resistance breaker 
(AbsRB). As expected, at 32 °C Tsw-resistance was no longer functional and all virus 
isolates rendered a systemic infection of Tsw+ Capsicum (Moury et al., 1998). 

Triggering of HR by TSWV TempRB isolates requires de novo synthesis of NSs 
To further investigate the temperature dependency of TSWV-TempRB isolates, 
experiments were performed in which plants were challenged with these viruses at 
high temperature conditions (32 °C) and later on replaced to a lower temperature 
(22 °C). Resistant Capsicum plants challenged with a resistant inducing isolate of 
TSWV (Br01) and incubated at the elevated temperature of 32 °C, at which the

Resistant

Susceptible
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Tsw-R-gene (product) normally is inactive became systemically infected. In addition, 
local HR was still induced (Figure 5.3A), but this was apparently insufficient to 
prevent the virus from systemically infecting the host. At 12 days post infection 
(dpi), plants showed clear symptoms of systemic infection. At this point, plants were 
replaced from 32 °C to greenhouse conditions (22 °C) and monitored for several 
days. While initially no response was observed during the first few hours after 
replacement, a severe necrosis emerged in the days following in the top leaves of 
the plants (Figure 5.3A). The systemically infected leaves became necrotic and after 
5 days the plants were completely dead and the remainder of the plant tilted over 
due to stem necrosis (Figure 5.3A).

Figure 5.2 TSWV titres on susceptible C. annuum plants show similar values. Susceptible C. 

annuum plants (Tsw-) were infected with all TSWV isolates described in this study and virus 

titres were measured by DAS-ELISA using αN antiserum. Values were measured after 50 

minutes post substrate addition. The error bars represent standard deviations of 3 repetitions.

A similar experiment was performed using TSWV TempRB isolates, including 
AbsRB and RI isolates as control, but this time resistant Capsicum plants were 
challenged with the virus at 28 °C, a temperature at which the Tsw resistance gene 
was still functional. Except for those plants challenged with the Br01 RI isolate (HR-
induction), all TempRB and AbsRB isolates (Vir128, Vir130, It98, Vir171) caused a 
systemic infection of Tsw+ Capsicum plants. At 12 dpi, plants were replaced to a 
lower temperature greenhouse condition (22 °C) and monitored for another two 
weeks (Figure 5.3B). During the first few days after replacement no changes were 
observed at all, in contrast to the first temperature shift experiment (32 °C to 
22 °C) with the TSWV RI isolate. However, at 9 days post replacement, necrosis 
was observed at the top of the plants. In the next following days, this completely 
killed the top meristem, and no new young leaves emerged from these plants 
(Figure 5.3B). Systemically infected leaves below the top meristem, remained 
seemingly unchanged throughout this time. 

Figure 5.3 Effect of temperature shift after systemic infection of resistant Capsicum plants. A. 

Capsicum annuum plants infected with a TSWV-RI isolate at 32 °C, were replaced after systemic 

infection at 12 dpi, to 22 °C. HR was induced on the local leaves and finally led to leaf abscission. 

Pictures were taken at several stages during the experiment, as indicated. B. Capsicum annuum 

plants infected with TSWV-TempRB Vir128 (and RI/AbsRB as controls) at 28 °C, were showing 

a systemic infection at 12 dpi, and were transferred to 22 °C. Pictures were taken on each day.
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Not all TSWV TempRB NSs proteins induce Tsw-mediated HR upon transient 
expression 
NSs genes amplified from TSWV TempRB and AbsRB isolates were cloned into the 
highly translatable plant expression vector pEAQ-HT earlier used for induction 
of Tsw-mediated HR (Chapter 2), and after transformation into Agrobacterium 
tumefaciens 1D1249 cells, agro-infiltrated in Nicotiana benthamiana to verify 
translatability of the constructs. All constructs showed expression of the NSs 
protein of expected size (data not shown), and next were infiltrated on Capsicum 
Tsw+ plants at standard temperature greenhouse conditions (22 °C), to analyse their 
ability to trigger HR at 5 dpi. Surprisingly, NSs constructs made from Vir128, Vir130, 
Vir164 and p166, designated NSs128, NSs130, NSs164 and NSsp166, respectively, did not 
trigger HR while their corresponding virus isolates, like the positive control TSWV 
RI (Br01), did (Figure 5.4A and Table 5.3). On the other hand, the NSs from AbsRB 
isolate Vir169 (NSs169) unexpectedly triggered an HR (Figure 5.4A and Table 5.3), 
while the corresponding virus did not. These results were consistently obtained 
during several repetitions of the experiment.

Table 5.3 Summarizing overview on scores for avirulence (Avr) and RSS-activity of the NSs 

proteins tested at greenhouse conditions (22 °C). 

Minus (-): No or loss of activity. Plus (+): activity (gained). Plus/minus (+/-): Partial activity.

Phenotype virus NSs construct AVR-activity RSS activity
RI NSsRI + +
AbsRB NSs171 - -
TempRB NSs128 - +
TempRB NSs130 - +/-
AbsRB NSs131 - +
TempRB NSs164 - +
AbsRB NSs169 + -
TempRB NSsIt98 + +/-
AbsRB NSsp272 - +
TempRB NSsp166 - -
AbsRB NSsVe427 - +

Not all TSWV TempRB NSs proteins suppress RNA silencing upon transient 
expression
To verify whether NSs from the various TSWV isolates was able to suppress RNA 
silencing, the NSs genes were cloned in the expression vector pK2GW7 and 
transformed to Agrobacterium tumefaciens LBA4404, as described in chapter 2. 
Nicotiana benthamiana plants were co-infiltrated with Agrobacterium carrying the 
NSs construct and Agrobacterium carrying a functional GFP construct (Chapter 2), 
in a 1:1 ratio. At 5 dpi, the plants were monitored for GFP expression by a hand-
held UV-lamp and fluorescent units were measured by spectrometry (Figure 5.4C). 
Similar to the outcome of the AVR-assays, some of the results were unexpected 
(Figure 5.3B and table 5.3). NSs from the AbsRB Vir169 (NSs169) had lost the ability 
to suppress RNA silencing, like those from resistance breakers reported earlier 
(Chapter 2), while the NSs from AbsRB Vir131 (NSs131) surprisingly still maintained 
RSS activity. From the group of TempRB isolates, the NSs proteins from isolates 
Vir128 and Vir164 (NSs128 and NSs164) still showed RSS activity. On the other hand, 
NSs130 and NSsIt98 from the respective isolates had only partially lost their RSS activity 
while NSsp166 completely was non-functional on this point (Figure 5.4B and table 
5.3). Interestingly, all virus isolates from this study showed to possess RSS activity 
(data not shown).

Functional analysis of NSs proteins from TempRB-isolates at elevated 
temperatures
To analyse the TempRB NSs proteins for RSS activity and their ability to induce Tsw-
mediated HR at 28 °C, experiments as describe above were repeated but this time 
performed at 28 °C. NSs gene constructs from the RI (NSsRI) and AbsRB (NSsRB171) 
isolates and Maltose binding protein (MBP) were included as positive and negative 
controls. Five days post agroinfiltration, plants were monitored for the presence 
of HR and suppression of GFP silencing. However, at 28 °C no HR was observed 
on Capsicum Tsw+ using the positive control NSsRI (Figure 5.5A). Even during 
experiments in which plants were first agroinfiltrated at 22 °C and kept for 8, 16 
and 24 hours before being moved to 28 °C, no HR was observed with NSsRI (data 
not shown). 
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Figure 5.4 Avr- and RSS 

activity of cloned NSs 

constructs. 

A. Avirulence of 

different NSs expressing 

constructs on resistant 

Capsicum plants, as 

visualised by Tsw-

mediated HR induction. 

B. Suppression of GFP 

silencing by various NSs 

constructs as indicated. 

C. Quantification of GFP 

fluorescence measured 

from the leaves shown in 

panel B. Each construct 

was repeated four times, 

indicated as standard 

deviations.

Similar, negative results were obtained when NSsRI was tested for its ability to 
suppress GFP silencing in N. benthamiana at 28 °C. At 5 dpi, only very low levels of 
GFP were observed for the positive control NSsRI, relative to the negative control MBP 
(Figure 5B). All attempts to improve the outcome by applying different temperature 
conditions during the agroinfiltrations also failed here (Figure 5.5C). Leaves co-
infiltrated with GFP and NSsRI and incubated for 5 days at lower temperature (22 °C) 
before being transferred to elevated temperatures remained fluorescent for at least 
5 days more (data not shown), suggesting that GFP itself remained stable. These 
data altogether indicated that the transient transformation using Agrobacterium, 
rather than expression of the transgene, seemed to be the cause of failure. The 
application of other Agrobacterium strains (Chapter 2) for agroinfiltration, did not 
solve this problem.

Earlier the use of a viral, PVX-replicon hampered the identification of the Avr-
determinant (Chapter 2). However, NSs has meanwhile been identified as Avr-
determinant and, in addition, the Tobacco rattle virus (TRV) induces less symptoms 
on Capsicum compared to PVX. Therefore, and as an alternative to agroinfiltration, 
TempRB NSs genes were cloned and expressed from a TRV-replicon in the Capsicum 
host to test their ability to induce the resistance response at different temperatures. 
The NSs genes that were tested in the HR- and RSS assay above, and available 
in pEntr11-vector (Materials and Methods), were transferred to a TRV gateway 
compatible vector. TRV clones were PCR selected but upon sequence analysis 
shown to lack the NSs genes. Currently, attempts are being made to clone the NSs 
genes in TRV, to test for their RSS and Avr-activity at elevated temperatures.

NSs proteins from TSWV RI, AbsRB and TempRB isolates are highly homologues
As earlier described (Chapter 2 and 3), no amino acid(s) were identified that gave 
a 100% correlation with the initial (Abs)RB phenotype. Furthermore, the NSs 
genes from the two RB isolates, analysed in chapter 2, lacked both Avr- and RSS 
activity. Besides the identification of a new class of TempRB isolates, however, 
new RB isolates have been characterised from which the NSs still contained one or 
the other function. To identify potential SNPs involved in the generation of TSWV 
Abs- and TempRB isolates the amino acid sequence of the cloned NSs genes was 
determined and aligned to those of the TSWV RI and AbsRB isolates from chapter 2.
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Figure 5.5 Effect of temperature on transformation efficiency of Agrobacterium 

tumefaciens. A. Expression of two control constructs on resistant Capsicum leaves incubated 

at 22 °C and 28 °C. Pictures were taken at 5 dpi. B. Expression of two control constructs with 

a functional GFP on N. benthamiana incubated at 22 °C and 28 °C. Pictures were taken at 5 

dpi. C. Expression of NSsRI together with a functional GFP construct, incubated either 0, 8, 

16, 24 and 48 hours at 22 °C before being transferred to 28 °C. Pictures were taken at 5 dpi.

Additional TSWV-NSs sequences were retrieved from Genbank randomly and taken 
along in the alignment to observe whether certain mutations would be present 
in these sequences as well. For the majority of their corresponding virus isolates, 
the phenotype in relation to Tsw-mediated resistance has not been reported. 
In addition, NSs sequences were included from virus isolates that were earlier 
described by Margaria and colleagues (2007) and that were phenotyped for their 
ability to induce or break Tsw-mediated resistance. The NSs amino acid sequences 
were ordered according to the presence or absence of Avr-activity. Amino acids 
previously identified to be of importance in light of the evolvement of TSWV RB 

isolates (Chapter 3) were highlighted. As expected, a high level of identity between 
the NSs sequences was observed, with only a few single nucleotide polymorphisms 
between the isolates (Figure 5.6). From the new RB isolates that were classified 
here as AbsRB, none of the transiently expressed NSs lacked both Avr- and RSS- 
activity, like the two AbsRB-NSs’ described in chapter 2, but instead rather retained 
one or both functions. One NSs protein (NSs169), derived from an AbsRB-isolate, 
contained a change at amino acid position 79 from isoleucine (I) to threonine (T), as 
earlier observed for RB isolates described in chapter 2, which appears to correspond 
to RSS-activity (Figure 5.6). Only one exception existed, i.e. the NSs gene from 
TSWV RB-isolate 166, which still contained I79, but was RSS inactive. From those 
AbsRB isolates of which NSs still exhibited Avr and/or RSS activity (NSsVe427, NSsp272, 
NSs169 and NSs131), all show (different) mutations in the N-terminal domain of their 
corresponding NSs and also throughout the rest of the sequence, but no essential 
common amino acids could be identified that was shared by all and distinct from 
NSsRI (Figure 5.6).

For the TempRB NSs proteins (NSsIt98, NSs128, NSs130, NSsp166 and NSs164), the same 
holds true as for the AbsRB-NSs proteins; mutations throughout the sequence were 
found, of which many are not shared by all. This class of isolates contained NSs 
proteins that exhibited (partial) RSS activity (NSsIt98, NSs130, NSs128 and NSs164). From 
these, NSs130 showed mutations in the N-terminal part of the protein, while NSsIt98 
showed mutations in the C-terminal part. In contrast to this, only NSsp166 is inactive 
as RSS; this protein showed mutations in the C-terminal end. With the exception of 
NSsIt98, all NSs proteins of this class of isolates are Avr-active. 

Data from the ClustalW multiple sequence alignment was used as input for the 
assembly of a phylogenetic tree (Figure 5.7). Interestingly, all isolates analysed 
ended up in three clades of which each one seemed to correspond to a phenotype. 
The first one contained the majority of the (randomly selected) NSs amino acid 
sequences from Genbank. The second clade contained NSs127, NSs129 and NSsBr01 

together with another RI Br20, and reflected an Avr+ out-group. Those NSs-proteins 
from all other RB and AbsRB isolates, including few from RI, clustered in a third 
clade. The latter one could be distinguished in two sub-clades that corresponded 
to the geographical origin of the isolates, i.e. Spain or Italy (Figure 5.7)(Margaria et 
al., 2007).
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Towards a diagnostic tool for detection of RB-isolates
The amino acid at position 79 showed to be important for RSS-activity, and was 
shared by three AbsRB-NSs proteins, while this residue also appeared quite 
important for both RSS and Avr-activity, deduced from the NSs mutagenesis study 
described in Chapter 3. Therefore, primers were designed that aimed to distinguish 
(most) (Abs)RB isolates from RI isolates based on the detection of this SNP. Although 
such primer set would likely not detect all (Abs)RB isolates, a relative high positive 
score on well characterised (Abs)RB isolates would indicate its potential use in 
future diagnostics, i.e. for early (RT-PCR) detection of (harmful) RB isolates. Primers 
were designed in such way as to allow proper annealing and subsequent extension 
of the ‘forward’ primer only in the presence of a T (threonine) encoding ACC coding 
for aa position 79, and indicative for an RB isolate, but not in the presence of an I 
(isoleucine) encoding ATC codon (RI isolate). The reverse primer was designed 300 
nt downstream and complementary to a conserved stretch of sequence present 
in both (Abs)RB and RI isolates. Initial tests with the primers during a PCR on 
purified DNA plasmids containing NSsRI and NSsRB genes, showed that these could 
discriminate the RI from the RB isolates (data not shown). To test the usefulness of 
these primers, N. benthamiana plants were infected with a selection of different 
TSWV RI and (Abs)RB isolates and RNA extracted from systemically infected leaves 
for RT-PCR analysis. Whereas the primers were able to amplify a fragment of 
expected size for a number of RB (Abs and Temp) isolates (55 % of the samples 
testes), none of the RI isolates gave a positive RT-PCR result (Figure 5.8). However, 
a few RB isolates escaped from detection and did not render a positive PCR signal 
of expected size.

Discussion

Here, we have identified and characterised a new, second type of resistance breaker 
of Tsw, besides the earlier described absolute resistance breaker (AbsRB; Chapter 2), 
that exhibits a temperature-dependent resistance breaking (TempRB) phenotype. 
Isolates that match this phenotype trigger an HR at temperatures below 28 °C, 
but above are able to systemically infect Tsw+ Capsicum plants. Intriguingly, upon 
transient expression of their NSs proteins the ability to elicit the Tsw-mediated HR 

on Capsicum does not always correspond to the phenotype of the corresponding 
virus isolates. Surprisingly, the NSs169 derived from an AbsRB transiently triggers 
Tsw-mediated HR, while from the TempRB NSs clones, only NSsIt98 triggers the 
resistance. The ability to (transiently) suppress RNA silencing also shows quite some 
variability; while the NSs169 from an AbsRB isolate lacks RSS activity, like two other 
previously described AbsRB-NSs clones (Chapter 2), a few other AbsRB derived NSs 
clones exhibit RSS activity (NSs131, NSsP272 and NSsVe427). The TempRB-NSs clones all 
show either full RSS activity (NSs128 and NSs164) or partial RSS activity (NSsIt98, NSs130 
and NSsP166). So far, attempts to further analyse the NSs proteins on RSS and Avr 
activities at elevated temperatures (28 °C) have failed due to technical problems 
of the expression system. Based on the importance of I79 for development of 
RB isolates (Chapter 2 and 3) and supported by the extended alignment studies 
described in this chapter, an RT-PCR detection tool has been developed that targets 
the altered codon from (Abs)RB isolates. Although the tool has not given false 
positives when applied on RI isolates from infected leaf material, it rendered a 
positive score on 55% of RB isolates.

Virus challenge of Capsicum Tsw+ with TSWV RI at 32 °C followed by a shift to 
22 °C nicely has shown that at the elevated temperature the R-gene is at an ‘OFF’ 
mode and not able to prevent a systemic infection. A shift to the lower temperature 
turns the R-gene ‘ON’ and enables its gene product to perceive the Avr protein 
(NSsRI), from an established TSWV-RI infection at the elevated temperature. As a 
consequence, an HR is observed in all (systemic) leaves where the virus is present. 
A similar TSWV-RI challenging experiment performed at 28 °C quickly reveals an 
HR, indicative that at this temperature the R-gene is ‘ON’ and able to perceive the 
Avr, unless plants are challenged with TSWV TempRB isolates. This clearly suggests 
that the NSs from the latter are not perceived, likely due to altered protein-folding 
allowing an escape of TSWV TempRB. A shift to the lower temperature does not 
induce an HR in the infected leaves as rapidly with TSWV RI. Instead, necrosis is 
observed in the top meristem after 9 days, a time that the virus normally takes 
to systemically infect meristematic tissues. These results clearly suggest that 
Tsw-mediated resistance is only triggered by de novo NSs synthesis from TSWV 
TempRB isolates at lower temperatures. NSs already synthesised at higher 
temperatures (28 °C) either is not able to refold into a functional Avr (irreversible), 
or is prevented from doing so due to it being part of a larger protein complex. 
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← Figure 5.6 Multiple amino acid sequence alignment of NSs. All NSs amino acid 

sequences used in this study were analysed in a multiple amino acid sequence alignment. 

NSs proteins positively tested for the ability to induce Tsw-mediated HR were ordered on 

top of the alignment (indicated by Avr+), followed by those lacking this ability (indicated 

Avr-). In addition, the presence (+), absence (-) or intermediate (±) RSS activity of 

each tested NSs construct is indicated. The phenotype of NSs (RI or RB) from the virus 

isolates as described by Margaria and co-workers (2007), is shown in square brackets.

Unravelling the crystal structure of NSsRI and NSs(Temp)RB could provide further 
insight into this. The NSs from TempRB isolates exhibits a temperature-dependent 
behaviour in a viral setting, although this could not be tested in a transient setting 
yet. So far, temperature sensitivity has not been reported for Tospovirus NSs 
proteins. A study on the NSs of Rift Valley fever virus (RVFV) has shown that its 
NSs expression is not temperature sensitive (Vaughn et al., 2010). Instead, the L 
and M segments of RVFV may carry temperature sensitive mutations (Vialat et 
al., 1997). Temperature sensitive mutants have been described for various other 
viruses as well, in which many different processes during viral replication are 
affected and in general mostly lead to lower virus titres at the non-permissive 
conditions. Examples are; the assembly of the replicase complex by the p33 and 
p92 proteins of Cucumber necrosis virus (CNV) (Pathak et al., 2013), polyprotein 
processing by the nsp5 protein of the Murine hepatitis virus (Stobart et al., 2012), 
virus core assembly of mammalian reoviruses (Lemay and Bisaillon, 2012) and DNA 
replication and encapsidation of the tsm5 mutant of Murine cytomegalovirus (Al-Ali 
et al., 2012). Therefore, the effect of temperature sensitivity of NSs is not entirely 
unique, however further studies are needed to identify the mutations involved in 
temperature sensitivity and to gain further understanding.

The multiple sequence alignment that was performed on NSs sequences did not 
provide clear evidence to support certain amino acids to be essential for either 
RSS-activity or the ability to induce the Tsw-mediated HR. However, the codon at 
position 79 appeared to be of high importance and correlated to RSS- and AVR-
activity (Chapter 3). Cases on virus resistance are reported in which only 1 or 2 
mutations within the Avr-sequence suffice to break the resistance (Bendahmane et 
al., 1995; Moffett, 2009). 
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Figure 5.7 Phylogeny of NSs from TSWV RI, RB and AbsRB isolates. A phylogenetic 

tree was created with Mega5.1 software (Tamura et al., 2011) and using data from the 

multiple sequence alignment of ClustalW as input. The tree was constructed using the 

Neighbour joining method and based on bootstrap analysis (500 replicates) with midpoint 

rooting. Numbers at the branches indicate the percentage of times that branch of the 

tree was constructed in the same way. Only values above 50% are depicted in the tree.

Figure 5.8 RT-PCR detection of TSWV RB isolates. A cDNA library produced from an RT-PCR on 

total RNA extracts from systemically infected leaves of N. benthamiana with various TSWV RI 

and (Abs)RB isolates were tested using primers ‘79-Fw’ and ‘79-Rv’. Samples of NSs130, NSs160, 

NSs164, NSsp166, NSs169 and NSs171 are from (Abs/Temp)RB isolates while NSs127 and NSsBr01 

are from RI isolates. A DNA size marker is included at the left hand side of the gel-picture.

A recent bioinformatics study on NSs sequences derived from TSWV infections 
in resistant Capsicum fields has shown that the Tsw-resistance gene positively 
selected for certain amino acids in the TSWV NSs sequence (Tentchev et al., 2011). 
In two out of three different algorithms used to analyse NSs sequences, the amino 
acid residue at position 79 has been identified as a positive target for selection. 
Together with experimental data from Chapter 3, this strengthened the importance 
of I79 in triggering Tsw-gene mediated defence (and concomitant RNA silencing 
suppression). The study of Tentchev and colleagues (2011) furthermore proposed 
that the appearance of a resistance breaking phenotype is likely the result of multiple 
independent evolutionary events. This is supported by our studies, in which I79 was 
not the only and single amino acid that defined resistance breaking phenotypes. 
In those (Abs)RB isolates that still contained I79, the phenotype was caused by (a 
combination) of other important residues, although these are not found at the 
position of other important residues identified by Tentchev and co-workers (2011).

Phylogenetic analysis of the TSWV RB isolates analysed here clustered all Avr- 
NSs proteins into one part of the tree, while the Avr+ ones clustered together in 



Chapter 5     Characterisation of additonal TSWV isolates and diagnostic tool 

124  D. de Ronde 2013  125

  5

another part of the tree. Interestingly, the Avr- NSs proteins subdivided based on 
geography, into an Italian branch and a Spanish branch. Although TSWV isolate 
Vir130 has been isolated in the Netherlands, it clustered in the Spanish branch, 
likely due to the possibility that it originates from Spain as well. Most of the random 
Genbank NSs sequences cluster as an out-group and distinct from all characterised 
NSs sequences from this study, suggesting that the latter evolved under the selection 
pressure of the Tsw-resistance gene. However, no clear differentiation between the 
AbsRB isolates and TempRB isolates is observed from the phylogenetic analysis. 

It is well known that temperature plays a modulating part in all aspects of plant 
life cycle. Temperature sensitivity has been described for at least a few dominant 
R-genes of different plant pathogens (de Jong et al., 2002; Wang et al., 2009; Zhu 
et al., 2010), and confirmed here for the Tsw resistance protein. Studies performed 
on the temperature sensitive R-gene N from Tobacco, providing resistance against 
Tobacco mosaic virus (TMV), showed that mutations in the R-gene sequence provides 
some levels of temperature insensitivity, indicating that in this case the R-protein 
itself is the critical temperature sensitive part of the resistance mechanism and not 
the downstream signalling pathway. This is supported by the observation that the 
N-protein is also exhibiting temperature sensitivity when transferred to another 
host (tomato) (Zhu et al., 2010). In addition, the R-protein no longer moves from the 
cytoplasm to the nucleus to signal the downstream resistance pathway at elevated 
temperatures, which is required for the induction of resistance and programmed 
cell death (Slootweg et al., 2010; Zhu et al., 2010). The authors hypothesised that 
a conformational shift of the R-protein from ‘OFF’ to ‘ON’ status is inhibited at 
high temperatures, and nuclear localisation probably takes place during the ‘ON’ 
status (Zhu et al., 2010). Besides the temperature sensitivity of R-proteins, other 
defence related mechanisms are also temperature dependent. The genes EDS1 and 
PAD4, associated with the R-gene class of TIR-NB-LRR, are down regulated in their 
expression upon increase of temperature (Zhu et al., 2010). Also, the plant hormone 
Salicylic acid (SA), involved in systemic acquired resistance (SAR), is affected by 
temperature (Wang et al., 2009).

Agrobacterium does not transform well at elevated temperatures (Baron et 
al., 2001), because several Vir-proteins required for an efficient transformation of 
transgenes by the type IV secretion machinery are unstable at elevated temperatures 
(Baron et al., 2001). For this reason, two additional wild Agrobacterium strains, able 

to form tumours at 28 °C, have been used in this study: Ach5 and Chry5 (Baron et 
al., 2001). However, when these strains were transformed with a functional GFP 
and NSsRI, these strains did not transform the plants tested (data not shown). 
Furthermore, several cases have been reported in which 35S-promotor driven 
expression appeared temperature sensitive as well and reduces at elevated 
temperatures (Wang et al., 2009). Both reasons could have caused failure of 
expression of the transgenes at 28 °C in neither N. benthamiana nor C. annuum. 
Although temperature seems to have a modulating effect on many biological 
processes, not all defence related pathways in plants are down regulated upon 
temperature increase. The antiviral RNA interference pathway in plants is up 
regulated at elevated temperatures, most likely through the modulation of DCL and 
RDR6 (Szittya and Burgyan, 2001; Qu et al., 2005; Zhang et al., 2012). The miRNA 
pathway, on the other hand, does not seem to be influenced by temperature (Szittya 
and Burgyan, 2001). 

The identification of a temperature dependent resistance breaking isolates 
raises questions about the evolution and generation of resistance breaking 
isolates. Although speculative, it is very well possible that temperature adaptation 
generated the first resistance breaking isolates (TempRB), which later evolved into 
temperature independent breaker isolates (AbsRB), as the collected resistance 
breaking isolates from this study are all derived from subtropical regions, where 
high temperatures are more regular. Whether or not AbsRB isolates evolved from 
TempRB, knowledge about all these isolates and their evolvement will contribute 
to insight on the durability of the Tsw-gene based resistance. The availability of a 
diagnostic tool aids to (partially) detect the presence of resistant breaker isolates 
in an early stage of infection and will be of great benefit to growers that cultivate 
resistant Capsicum plants.

Materials and methods

Virus and plant material
Eleven different virus isolates of TSWV were used this study, i.e. Br01, Vir171, Vir128, 
Vir130, Vir131, Vir164, Vir169, It98, p272, p166 and Ve427 (Table 5.1). These last 
three isolates were described in the paper of Margaria and colleagues (2007). Virus 
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isolates were maintained on Nicotiana benthamiana by serial passaging (maximum 
of five times) using mechanical inoculation (de Avila et al., 1993) and systemically 
infected leaves were stocked and frozen at -80 °C. The plants used in this study 
were two genotypes of Capsicum annuum: HK0004, a TSWV-susceptible cultivar               
(Tsw-), and YF0009, a TSWV-resistant cultivar (Tsw+). N. benthamiana was used 
as the host for the RNA silencing suppression assay. All plants were grown and 
maintained either under greenhouse conditions (24 °C with a 16 h light/8 h dark 
regime) or at 28 °C (16 h light/8 h dark regime) or at 32 °C (16 h light/8 h dark 
regime).

Amplification and sequence verification of NSs genes
Total RNA was isolated from (systemically infected) leaves using Trizol (Invitrogen). 
From the total RNA, 0.5 μg was used as a template for first-strand cDNA 
synthesis and subsequent polymerase chain reaction (PCR) amplification of 
the NSs gene, employing the following primer sets at an annealing temperature 
of 55 °C: NSs-Fw (5’-d CCGTCGACATGTCTTCAAGTGTT-3’) and NSs-Rv (5’-d 
GGCGGCCGCTTATTTTGATCCTGAA-3’). For feasible cloning, the forward (Fw) 
primer contained a SalI restriction site, and the reverse (Rv) primer contained a 
NotI restriction site, both at the 5’ end (highlighted in italics). PCR amplification 
was performed using Phusion high-fidelity Taq polymerase, according to the 
manufacturer’s procedures (Finnzymes; Thermo Scientific). Amplified DNA products 
were resolved on a 1% agarose gel and fragments corresponding in size to the NSs 
gene were gel purified and subsequently cloned into pJet-vector (Thermo Scientific). 
Positive clones were selected and verified by sequence analysis. 

Cloning of NSs in destination vectors
For transient expression of TSWV NSs, the highly translatable pEAQ-HT vector system 
was used (Sainsbury et al., 2009). To this end, coding sequences for NSs were re-
cloned by SalI/NotI excision from the pJet vector constructs into SalI/NotI-digested 
pEntr11-ccdB (from which the ccdB gene was removed by EcoRI digestion). Positive 
clones were selected and verified by sequence analysis, and subsequently used 
for transfer of the NSs gene insert via an LR reaction into a Gateway (Invitrogen)-
compatible pEAQ-HT-pDest1 destination vector (Sainsbury et al., 2009) for the 
HR-induction assay and into the Gateway compatible pK2GW7 destination vector 

(Karimi et al., 2002) for the RNA silencing suppression assay. The clones obtained 
were transformed into A. tumefaciens 1D1249 cells (pEAQ-HT), containing helper 
plasmid pCH32 (Hamilton et al., 1996), and into the A. tumefaciens LBA4404 cells 
(pK2GW7). An ATTA was performed to express the transgenes and the expression 
was verified by Western immunoblot analysis of leaf samples infiltrated on N. 
benthamiana leaves and collected at 5 dpi. The entry vector carrying the NSs 
genes were also used in an LR reaction to clone the genes into the TRV expression 
system (Liu et al., 2002), which were subsequently transformed into A. tumefaciens 
LBA4404 cells.

Agrobacterium transient transformation assay (ATTA) 
ATTA was performed according to the protocol of Bucher et al. (2003), with slight 
modifications. In brief, A. tumefaciens was grown overnight at 28 °C in LB3 medium 
containing appropriate antibiotic selection pressure. From this culture, 600 μL were 
freshly inoculated into 3 mL of induction medium and grown overnight. Strain A. 
tumefaciens 1D1249 (Wroblewski et al., 2005) with helper plasmid pCH32 (Hamilton 
et al., 1996) was grown under 1.25 μg/mL tetracycline selection pressure, whereas 
A. tumefaciens LBA4044 (Ooms et al., 1982) was grown under 20 μg/mL rifampicin 
selection pressure. Additional strains used during this study were COR308 (Hamilton 
et al., 1996), selected with 2 μg/mL tetracycline, and AGLO and AGL1 (Lazo et al., 
1991), selected with 20 μg/mL rifampicin and 100 μg/mL carbenicillin, respectively.

Serological detection of virus and proteins
TSWV virus was detected and titres were determined by ELISA analysis. ELISA was 
performed on systemically infected leaf extracts from Capsicum species (10 dpi) 
and N. benthamiana plants (7 dpi) in PBS-Tween buffer (1:3, w/v) in a DAS format, 
according to de Avila et al. (1993).

HR-induction assay
To test the cloned NSs constructs for their ability to elicit the Tsw-mediated HR 
response, an ATTA was performed with A. tumefaciens carrying the pEAQ-HT vector 
containing the NSs gene. A suspension with a final optical density at 600 nm of 1.0 
was infiltrated in the leaves of the Capsicum plants using a needleless syringe. The 
results were observed at 5 dpi, with the TSWV NSs derived from the resistance 
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inducing isolate (NSsRI) as a positive control and the TSWV NSs from the resistance 
breaking isolate (NSsRB171) as a negative control (Chapter 2).

GFP silencing suppression assay
N. benthamiana leaves were agroinfiltrated with a functional GFP construct (Tsien, 
1998) as described above, with a final optical density at 600 nm (OD600 nm) of 0.5 per 
construct. A construct expressing MBP was used as a negative control (Schnettler et 
al., 2010), while the TSWV NSs from the Resistance inducing isolate (NSsRI) was used 
as positive control (Chapter 2). Infiltrated leaves were monitored for GFP expression 
at 5 using a hand-held UV lamp. For the quantification of GFP fluorescence, leaf discs 
with a diameter of 1 cm were taken from the infiltrated leaf area and the number of 
fluorescence units was measured using a Fluorstar Optima (BMG Labtech).

TRV-infections
An ATTA was performed on N. benthamiana with A. tumefaciens carrying the TRV-
replicon containing the NSs or PDS genes (Liu et al., 2002). The local and systemic 
infected material was used at 6 dpi to mechanically inoculate the resistant Capsicum 
plants using carborundum powder. The challenged plants were incubated at 22 °C 
and 28 °C and were observed daily for two weeks.

Multiple sequence alignment
The sequences of the NSs clones that were obtained were aligned using the 
CLUSTALW algorithm. The NSs sequences described by Margaria and colleagues 
(2007) in relation to Tsw-mediated resistance (NSs Br20-RI, NSs Ve430-RI, NSs 
170-RI, NSs p105-RI and -RB) were included, together with a set of random NSs 
sequences, derived from Genbank: Br20-RI-NSs: accession number DQ915948, 
Ve430-RI-NSs: accession number DQ376184, p170-RI-NSs: accession number 
DQ431237, p105-RI-NSs: accession number DQ376178, p105-RB-NSs: accession 
number DQ915946, Bulgaria-NSs: Genbank accession number P26003, M-NSs: 
accession number AY870391, T-NSs: accession number AY870392, LAS2-NSs: 
accession number FR692831, NC-1-NSs: accession number AY744476, P100-NSs: 
accession number FR692840, RRTFT-NSs: accession number FR693030, S006-
NSs: accession number FR693032, YN-NSs: accession number JF960235, P267-
NSs: accession number DQ376180, P330-NSs: accession number HE600702. 

Alignments of NSs were edited using the BioEdit program (Hall, 1999).

Phylogeny
The NSs sequences were used to create a phylogenetic tree using the Mega5.1 
software, in which the Neighbour joining method was used to create the tree. Tree 
was constructed with the P-distance model and was bootstrapped 500 times, of 
which the values in the tree represents the number of times (in %) that branch of 
the tree was reconstructed in the same way, only values above 50 % are depicted 
in the tree.

RNA isolation, RT-PCR and subsequent PCR-screen
TSWV isolates used in this study were challenged on Nicotiana benthamiana plants 
and at 10 days post infection (dpi), systemically infected leaf material was collected 
and RNA was extracted using Trizol (Invitrogen). From the total RNA, 0.5 μg was 
used as a template for first-strand cDNA synthesis using a reverse primer designed 
on the 3’-end of the NSs gene: NSs-Rv 5’-dTTATTTTGATCCTGAAGCATACGC-3’. The 
quality of the cDNA template was initially checked by performing a PCR using NSs-
start and –stop primers: NSs-Fw 5’-dATGTCTTCAAGTGTTTATGAGTCG-3; NSs-Rv 
5’-dTTATTTTGATCCTGAAGCATACGC-3’. The PCR-screen was performed by using the 
following designed primers: Screening-residue-79-Fw 5’-dTCTCAGCATGTGTATAC-3’ 
and Screening-residue-79-Rv 5’-dGAACATTCACTTTGCCT3’. An annealing 
temperature of 59 °C was used to get the most optimal result. The amplified DNA 
was loaded on a 1 % agarose gel to visualize the product size.
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The work presented in this thesis aimed at the identification of the TSWV Avr 
determinant that triggers the single dominant Tsw resistance (R) gene. Conflicting 
papers on this issue had appeared (Margaria et al., 2007; Lovato et al., 2008), 
leaving the issue unsettled. The identification of the Avr gene would allow its 
characterisation in view of R-gene triggering and its viral function(s), but also would 
assist in development of diagnostic markers to monitor resistance breaking (RB) 
isolates and detect the presence of yet undiscovered new Tsw-breaking pathotypes.

The results obtained during this research unambiguously identified TSWV-NSs 
as Avr-determinant of Tsw-mediated resistance. This protein was earlier identified 
as viral RNA silencing suppressor (Takeda et al., 2002; Bucher et al., 2003) and 
the absence of this functionality in NSs from TSWV RB isolates suggested a tight 
link between both. However, a large NSs mutant screen indicated that these two 
functions could be uncoupled and furthermore indicated a putative interaction with 
AGO1 via a GW/WG motif in the N-terminal part of NSs. Based on these results 
combined with information reported in literature, a model is proposed to position 
NSs in the ‘Zig-zag-model’ of Dangl and Jones (2006), indicating the multifunctional 
modes by which NSs is able to counteract and modulate host defence responses 
(Figure 6.1). 

According to this model the first response of the host as an attempt to clear 
viral invasion consists of RNA silencing that is triggered by viral dsRNA molecules. 
The latter may originate from dsRNA replicative intermediates or secondary RNA 
folding structures of the viral RNA. After processing of these into siRNAs by the 
RNAi machinery the siRNAs, after being uploaded into RISC, assist in the sensing 
and subsequent degradation of viral RNA target molecules by AGO1, the core 
component of RISC. The TSWV NSs protein is able to bind long dsRNA as well as 
small (si- and mi-) RNAs and thereby prevents their cleavage by DCL and uploading 
into RISC, respectively (Schnettler et al., 2010). In view of this observation, it is most 
likely that NSs initially binds and protects the dsRNA hairpin structure within the 
3‘- untranslated regions (UTRs) of the M- and S-RNA derived subgenomic mRNA 
molecules (van Knippenberg et al., 2005) to prevent these from cleavage by DCL. 
This is in agreement with the observation that siRNAs were found to originate from 
most of the S-RNA sequence of Tomato yellow ring virus (TYRV) Tospovirus, with the 
exception of the hairpin encoding intergenic region from where hardly siRNAs were 
found (Hassani-Mehraban, PhD thesis 2008). Further support for NSs binding to the

Figure 6.1 Model of NSs-functioning in its role as RSS and Avr-determinant. The model 

depicts TSWV-NSs as RSS; through its affinity to bind long dsRNA; thereby blocking 

the cleavage by DCL, its affinity for siRNAs; blocking their upload into RISC. Also, 

the putative interaction with AGO1 (RISC) directly is shown (dashed-inhibition line), 

which acts as a guardee in this model, triggering Tsw-mediated resistance leading to 

downstream HR. Additionally, the affinity of NSs for miRNAs is shown, blocking their 

upload into RISC, possibly inhibiting AGO-mediated translational arrest of Tsw-mRNA, 

leading to enhanced expression of the R-gene. DCL: Dicer-like protein, dsRNA: double 

stranded RNA, HR: Hypersensitive response, miRNAs: microRNAs, mRNA: messenger 

RNA, RDR: RNA dependent RNA polymerase, RISC: RNA-induced silencing complex, RNP: 

Ribonucleocapsid protein, siRNA: small interfering RNA, TSWV: Tomato spotted wilt virus.

predicted hairpin structure has been obtained from in vivo reporter translation 
studies, in which NSs was shown to enhance translation of a luciferase reporter 
gene containing the hairpin structure encoding 3’ UTR (Geerts-Dimitriadou et al., 
2012). Binding of NSs to the predicted hairpin thus may serve two purposes, the 
first one is to protect viral mRNAs from degradation and the second one is to act as 
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a functional analogue of poly-A-tail binding protein (PABP) and stimulate translation 
of the viral mRNAs. Short-interfering RNAs that are generated from viral mRNAs will 
also be sequestered by NSs to prevent their uploading into RISC and reduce their 
involvement in secondary siRNA amplification (and transitive silencing).

In light of its affinity to (short and long) dsRNA, NSs may also be able to bind to 
the panhandle structure, which is formed by complementarity of the 3’ and 5’ UTRs 
of each segment. This is being supported by the observation that purified RNPs, in 
comparison to purified virus particles, were enriched for NSs (van Knippenberg, PhD 
thesis 2005). The presence of NSs at the genomic RNA panhandle structure would 
not only prevent it from becoming recognised by the DCL, but possibly could also 
mask recognition of its 5’ terminal-end. TSWV genomic RNAs contain a 5’-ppp that in 
mammals, as shown with several animal-infecting RNA viruses (e.g. Influenza A virus 
(FLUAV), Vesicular stomatitis virus (VSV), Rift Valley fever virus (RVFV) (Rehwinkel 
and Reis e Sousa, 2013)) is recognised as a PAMP by RIG-I, a cytosolic NLR receptor. 
Activation of RIG-I leads to a downstream signalling and interferon production to 
mount an antiviral immune response (Bowie and Unterholzner, 2008). In contrast 
to this observation, it has been shown that several negative strand RNA viruses 
(e.g. Hantaan virus (HTNV), Crimean-Congo hemorrhagic fever virus (CCHFV), Borna 
disease virus (BDV)), including some members of the Bunyaviridae family, actively 
remove part of the 5’-ppp group, leaving a mono-phosphate group behind that can 
no longer be bound by RIG-I, thereby escaping recognition (Habjan et al., 2008). 

In this respect, it is interesting to note that the NSs from Groundnut bud necrosis 
virus (GBNV), another distinct Tospovirus, possesses NTPase, dATPase and 5’ RNA/
DNA phosphatase activity (Lokesh et al., 2010). The catalytic Walker motifs (A and 
B) observed in GBNV are indicative for these activities. However, these motifs are 
not present in TSWV-NSs. Besides a removal of the 5’-ppp from genomic RNAs, the 
phosphatase activity of NSs could also be involved in the removal of phosphate 
groups from small siRNAs, thereby inactivating these for further processing and 
uploading into RISC (Zamore, 2004; Lokesh et al., 2010).

In addition to the affinity of NSs for RNA molecules, NSs may likely exert RSS 
activity at the level of proteins as well (i.e. targeting key-enzymes in the RNAi 
machinery). The observed loss of RSS and Avr-activity after mutation of a GW/WG 
motif in NSs, in other viral proteins shown to be required for binding to AGO1, 
strongly supports the biological relevance of this motif. Whether binding of NSs to 

the core component AGO1 prevents uploading of siRNAs and/or further maturation 
of RISC, as described for CMV-2b and SPMMV-P1 (Zhang et al., 2006; Giner et al., 
2010), or triggers its degradation, as shown for P0 from Polerovirus and Enamovirus 
and PVX-P25 (Baumberger et al., 2007; Chiu et al., 2010; Fusaro et al., 2012), 
remains to be further investigated. Interestingly, the GW/WG-motif is only found 
in the NSs sequence of members within the American Tospovirus clade, but not in 
those belonging to the Eurasian clade.

Studies have shown that R-genes are under translational control of miRNAs 
families (Li et al., 2012; Shivaprasad et al., 2012). TSWV NSs has affinity for miRNAs, 
suggesting that during a TSWV infection, NSs could relieve the translational arrest of 
miRNAs on R-gene translation, leading to enhanced R-gene product and subsequent 
HR and resistance upon Avr-recognition. Additionally, a recent study on R-genes 
showed that enhanced R-gene expression can lead to auto-immunity (Xia et al., 
2013).

From the animal-infecting bunyaviruses, members of the Phlebovirus and 
Orthobunyavirus genus also encode an NSs protein from the S-RNA. In mammals, 
the NSs proteins from the orthobunyaviruses Bunyamwera virus (BUNV) and La 
Crosse virus (LACV) and the Phlebovirus Rift valley fever virus (RVFV) are shown 
inhibit the type I IFN response by blocking RNA polymerase II transcription in order 
to shut off the antiviral defence genes, although they do this in different ways 
(Weber et al., 2002; Billecocq et al., 2004; Thomas et al., 2004; Hollidge et al., 
2011). The RVFV NSs additionally induces specific degradation of dsRNA-dependent 
protein kinase (PKR; (Habjan et al., 2009)), a process that occurs independently 
from the NSs-mediated blocking of host gene transcription (Kalveram et al., 2011). 
Recently, several hantaviruses were also reported to contain an open reading frame 
(ORF), like the orthobunyaviruses, and overlapping the N-gene that encodes an NSs 
protein with weak IFN antagonistic properties (Jääskeläinen et al., 2007). A closer 
look at NSs from the animal infecting bunyaviruses did not reveal the presence 
of a GW/WG-motif, although studies from viruses infecting members of different 
kingdoms showed that interaction with AGO proteins not necessarily requires 
a GW/WG-motif (e.g. Cucumber mosaic virus (CMV) 2b-protein, Noravirus VP1-
protein and Cricket paralysis virus (CrPV) 1A-protein (Zhang et al., 2006; van Mierlo 
et al., 2012)). Since all bunyaviruses are arthropod borne, with the exception of 
hantaviruses, and replicate in the insect vector, they all encounter antiviral RNAi. 
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For this reason, bunyaviruses, irrespective of plant- or animal infecting, likely 
suppress antiviral RNAi in insects as well. However, studies performed on the 
insect vectors of bunyaviruses showed that while infected none suffered a fitness 
penalty, in contrast to the animal/plant host. Recent work done on RVFV in three 
different insects cell lines showed that these are capable of mounting a potent RNAi 
response against the virus, leading to a persistent infection (Léger et al., 2013), 
while another study on this virus in whole mosquitoes showed an important role of 
both non-structural proteins NSs and NSm (Crabtree et al., 2012). In addition, the 
requirement of Bunyawera (BUNV) NSs for a successful infection in both mosquito 
cell lines and whole mosquitoes was also recently confirmed (Szemiel et al., 2012). 
On this point it is interesting to note that contradicting reports on the RSS activity 
of La Crosse virus (LACV) NSs in insect cells have appeared (Soldan et al., 2005; 
Blakqori et al., 2007). Future studies are needed to resolve the mode of action by 
which animal- and plant-infecting bunyavirus NSs proteins suppress innate immune 
signalling pathways in their shared insect vectors. 

TSWV resistance breaking isolates 
Besides TSWV RI and RB isolates a third class of so called temperature-dependent 
resistant breakers (TempRB) has been identified and characterised to a limited 
extent (Chapter 5). Although these viruses triggered Tsw-mediated HR in Capsicum 
at standard temperature conditions, transient expression of their NSs proteins 
surprisingly did not induce Tsw-mediated HR. Similarly, varying degrees of RSS 
activity were observed between these proteins. A temperature shift assay using 
TSWV isolates indicated that de novo synthesised NSs triggers the resistance, rather 
than available NSs. This implied that protein folding could play a role, and mature 
NSs already folded/involved in a complex is hindered and not able to properly 
(re-)fold into a functional structure. In terms of the resistance model proposed 
it could be imagined that NSs from the TempRB resistance breaker isolates still 
interacts with AGO1, due to the presence of the GW/WG motif, but due to a 
subtle change in its folding structure somehow is unable to release or revert in a 
functional format to induce Tsw-mediated resistance. In support for this folding-
based hypothesis is the observation that RSS and avirulence within NSs are not 
functionally linked (Chapter 3), but likely have overlapping structural requirements.

As such, NSs affected in RSS activity may exhibit an (partially) altered Avr-phenotype.
The thrips transmissibility of all resistance breaker isolates used in this study 

have not been analysed. However, considering that these isolates have been 
collected from the (Capsicum) field, indicates that these isolates can be successfully 
acquired and spread by thrips. It is not unlikely that the resistance, combined with 
thrips transmissibility, may have contributed to the evolvement and selection of 
TSWV resistance breaker isolates without losing their fitness to infect the host. After 
all, if the mutations required to overcome the resistance would lead to a reduced 
fitness, such isolates would rapidly be outcompeted by other (wild type/RI) isolates. 
All RB isolates used in this study were shown to be similarly fit as the resistance 
inducer isolate (under non R-gene conditions; Chapters 2 and 5). It remains to be 
investigated whether, and if so, how these (resistance breaking) isolates counteract 
antiviral innate immune responses (amongst others RNAi) in their thrips vector.

To prevent mayor crop loss due to resistance breaking viruses it is of critical 
importance to identify the presence of resistance breaking viruses at an early 
stage. With the knowledge obtained from the RI and (Temp)RB isolates analysed 
in this study a diagnostic RT-PCR tool was developed based on amino acid residues 
identified to be of importance in light of resistance breaking. Although this tool did 
not score positive on any of the TSWV RI-isolates, a few RB isolates still escaped 
from detection. This requires not only further improvement on the quality of the 
diagnostic tool, but also if there is a genetic basis of the temperature-dependent 
behaviour of RB-isolates or not. 

Outlook
The data collected in this thesis described the role of the TSWV NSs protein in 
triggering Tsw-mediated HR and the suppression of RNAi. The antiviral response in 
plants against viruses consist of RNAi and R-gene mediated defence and although 
the two mechanisms seem to be separate layers of response, evidence linking the 
two pathways have been described (Bhattacharjee et al., 2009; Li et al., 2012). In 
future work the multi-functionality of NSs need to remain the focus of research, 
identifying additional roles of NSs in either the suppression of defence or its role in 
(enhanced viral) translation, as suggested by Geerts-Dimitriadou (2012). Also, the 
role of NSs in its vector will be of interest, as studies on the function of NSs during 
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the infection in its thrips-vector have hardly been performed. As all bunyaviruses 
are spread by arthropods and all are able to systemically infect their vector, it will 
be interesting to find out if NSs from all these viruses (plant- and animal-infecting) 
counteract the innate immune response in a similar way, which could be anticipated 
due to a common ancestor. This will be one of the challenging questions to resolve 
for the future.
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List of abbreviations

Aa:    Amino acids
AbsRB:    Absolute resistance breaker
AGO-protein:   Argonaut protein
ARC:    Apaf1 – R-protein – CED4
ATP:    Adenosine triphosphate
ATTA:    Agrobacterium transient transformation assay
Avr-determinant:  Avirulence determinant
BDV:    Borna disease virus
BiFC:    Bimolecular fluorescence complementation
BIR:    Baculovirus inhibitor-of-apoptosis repeat
bp:    base-pairs 
BUNV:    Bunyamwera virus
C-terminus:   Carboxyl-terminus
CaMV:    Cauliflower mosaic virus
CARD:    Caspase-activation and recruitment domain
CAV:    Chicken anaemia virus
CC:    Coiled-coil
CCHFV:    Crimean-Congo hemorrhagic fever virus
CMV:    Cucumber mosaic virus
CNV:    Cucumber necrosis virus
Co-IP:    Co-immunoprecipitation
CymRSV:   Cymbidium ringspot virus
DCL-protein:   Dicer-like protein
DNA:    Deoxyrobonucleic acid
dpa:    days-post agroinfiltration
dpi:    days-post infection
dsDNA:    double stranded DNA
dsRNA:   double stranded RNA
e.g.:    exempli gratia (Latin for ‘for example’)
eIF:    eukaryotic translation initiation factor
ELISA:    Enzyme-linked immunosorbent assay

EMSA:    Electrophoretic mobility shift assay
ER:    Extreme resistance
et al.:    et alii (Latin for ‘and others’)
ETI:    Effector-triggered immunity
ETS:    Effector triggered susceptibility
FLIM:    Fluorescence-lifetime imaging microscopy
FLUAV:    Influenza A virus
FRET:    Förster resonance energy transfer
Fw:    Forward
G/D:    Guardee/Decoy
GBNV:    Groundnut bud necrosis virus
GFP:    Green fluorescent protein
GRSV:    Groundnut ringspot virus
HR:    Hypersensitive response
HTNV:    Hantaan virus
i.e.:    id est (Latin for ‘that is’)
JA:    Jasmonic acid
LACV:    La Cross virus
LRR:    Leucine rich repeat
MAMPs:   Microbe associated molecular patterns
MAPK:    Mitogen-activated protein kinase
MBP:    Maltose binding protein
MHV:    Murine hepatitis virus
miRNA:   micro-RNA
mRNA:    messenger-RNA
N-protein:   nucleocapsid protein
N-terminus:   amino-terminus
NACHT:   NAIP – CIITA - HET-E - TP1 domain
NB:    nucleotide binding domain
NF-κB:    nuclear factor kappa B
NHR:    Non-host resistance
NLR:    Nucleotide binding and leucine rich repeat proteins
NO:    Nitride oxide
NSm-protein:   Non-structural protein from medium segment
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NSs-protein:   Non-structural protein from small segment
nt:    nucleotides 
O.D.600nm:  Optical density at 600 nm
PABP:    Poly(A)-tail binding protein
PAMPs:    Pathogen associated molecular patterns
PCD:    Programmed cell death
PlAMV:    Plantago asiatica mosaic virus
PR-genes:   pathogenesis related genes
PRR:    Pattern recognition receptors
PTGS:    Post transcriptional gene silencing
PTI:    PAMP triggered immunity
PVX:    Potato virus X
PVY:    Potato virus Y
PYR:    Pyrin domain
R-genes:   Resistance genes
RB:    Resistance breaker
RdDM:    RNA directed DNA methylation
RDR:    RNA dependent RNA polymerase
RHBV:    Rice hoja blanca virus
RI:    Resistance inducer
RIG-I:    retinoic acid-inducible gene I
RISC:    RNA-induced silencing complex
RLRs:    RIG-I like receptors
RNA:    Ribonucleic acid
RNAi:    RNA interference
RNPs:    Ribonucleocapsid proteins
ROS:    reactive oxygen species
RSS:    RNA silencing suppressor
RT-PCR:   Reverse transcriptase – polymerase chain reaction
Rv:    Reverse
RVFV:    Rift Valley fever virus
S-gene:    Susceptibility gene
SA:    Salicylic acid
SAR:    Systemic acquired resistance

SDS-PAGE:   Sodium dodecyl sulfate –polyacrylamide gel electrophoresis
SHR:    Systemic HR
siRNA:    small interfering-RNA
SPFMV:   Sweet potato feathery mottle virus
SPMMV:   Sweet potato mild mottle virus
TAV:    Tomato aspermy virus
TBSV:    Tomato bushy stunt virus
TCSV:    Tomato chlorotic spot virus
TCV:    Turnip crinkle virus
TempRB:   Temperature dependent resistance breaker
TIR:    Toll and interleukin-1 receptor
TLR:    Toll-like receptors
TMGMV:   Tobacco mild green mosaic virus
TMV:    Tobacco mosaic virus
TRV:    Tobacco rattle virus
TSWV:    Tomato spotted wilt virus
TYLCV:    Tomato yellow leaf curl virus
TYRV:    Tomato yellow ring virus
UTR:    Untranslated region
UV:    Ultraviolet light
VPg:    Virus-protein genome-linked
VSV:    Versicular stomatitis virus
Y2H:    Yeast Two-hybrid

http://en.wikipedia.org/wiki/Sodium_dodecyl_sulfate
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English Summary

Resistance in Capsicum against the Tomato spotted wilt virus (TSWV), type species of 
the Tospovirus genus within the Bunyaviridae family, employs the single dominant 
resistance gene Tsw. This resistance has meanwhile been broken by resistance 
breaking (RB) TSWV isolates and is causing increasing problems in many different 
(Capsicum cultivating) countries. The research described here aimed to identify 
and characterise the viral protein triggering Tsw resistance and provide further 
insight into the mechanism of Tsw-mediated resistance. Knowledge gained from 
the genetic and phenotypic characterisation of Tsw-resistance breaking isolates was 
used to develop diagnostic markers for detection of Tsw-breaking pathotypes in 
field cultivations. 

The NSs RNA silencing suppressor (RSS) protein was identified as the avirulence 
determinant of Tsw-mediated resistance (Chapter 2). While the NSs protein from 
the TSWV resistance inducer (RI) isolate was active as RNA silencing suppressor and 
avirulence determinant, the NSs protein from two different TSWV RB isolates lacked 
both functions as evidenced from transient assays. Surprisingly, the corresponding 
resistance breaking virus isolates still exhibited RNAi suppressor activity. None of 
the other viral proteins were able to aid in the transient recovery of RSS activity. 
Electrophoretic mobility shift assays (EMSAs) using plant extracts containing 
transiently expressed NSs proteins showed a shift of siRNAs with NSsRI, indicative 
for binding, but not with NSsRB. In agreement with the local leaf RSS assays using a 
virus infection, plant extracts of virus infected leaves were able to shift the siRNAs, 
showing recovery of the RSS activity during virus infection.

The linkage of RNAi suppression and avirulence in NSs was further investigated 
by mutational analysis (Chapter 3). A large set of NSs mutants was generated using 
alanine substitutions of authentic TSWV NSs amino acids and was tested for their 
ability to trigger Tsw-mediated HR and ability to suppress RNAi. These assays showed 
that the N-terminal domain of NSs carried most important residues involved with 
both activities. However, single mutations could be introduced that disrupted one 
function, while maintaining the other one and vice versa indicating that RSS activity 
and avirulence were not functionally linked. Swapping of domains between NSsRI 
and NSsRB not only confirmed the importance of the N-terminal domain but also 
the specificity within the TSWV species, since domain swaps between NSsRI and NSs 
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from GRSV, a related but distinct Tospovirus, could not transfer the Avr phenotype 
to GRSV. Mutation of a GW/WG-motif in the N terminal region of NSsRI lead to a 
loss of both functions and indicated that this motif, known to be involved in AGO1 
interaction of other viral RSS, was of biological relevance for TSWV NSs.

The putative interaction of AGO1 and NSs was investigated by using different 
approaches to co-immuno precipitate (Co-IP) on transiently co-expressed tagged-
AGO1 and (His-)NSs (Chapter 4). Initial indications for such interaction were 
obtained, however further support for this putative interaction will have to come 
from complementary experiments, e.g. Yeast-2-hybrid (Y2H), FRET-FLIM or BiFC. 

Several additional TSWV isolates were analysed that besides the known resistance 
inducing- and resistance breaking-phenotype showed a temperature-dependent 
phenotype (Chapter 5). Isolates classified to this type exhibited an RI phenotype at 
standard greenhouse conditions (~22 °C) while at elevated temperatures (≥28 °C), 
but still below temperatures that inactivated the R-gene product (≥31 °C), were able 
to break the resistance. Virus challenging assays at various conditions indicated that 
induction of Tsw resistance at a lower temperature by these so called temperature 
dependent resistance breaking isolates (TempRB) involved de novo synthesis of the 
avirulence protein, i.e. NSs, and that protein folding might play a role. NSs proteins 
cloned and expressed from this additional new set of TSWV resistance inducing, 
resistance breaking and temperature dependent resistance breaking isolates 
revealed variable results regardless of their corresponding virus phenotype, when 
tested for their ability to induce Tsw-mediated HR and suppress RNAi at normal 
greenhouse conditions (22 °C). However, similar assays to analyse their activity 
at the elevated temperature (28 °C) failed when using Agrobacterium mediated 
transient assays. So far, the mechanism of temperature dependency has not been 
clarified yet and needs further investigation. Using the information obtained, a 
diagnostic tool was developed to screen for the potential presence of resistance 
breaking isolates of TSWV using reverse transcription-polymerase chain reaction 
amplification (RT-PCR). A primer set was designed targeting an important codon 
at aa position 79 and showed to be able to distinguish RB-isolates from RI-isolates. 
However, a few RB-isolates still escaped from detection indicating the limited and 
conditional use of this tool. 

In summary, NSs has been identified as Avr-determinant of Tsw-mediated 
resistance, but this function is not tightly linked to its RNAi suppressor-activity. 

Preliminary data indicate a putative interaction between AGO1 and NSs. Besides 
the typical RI and RB phenotypes, a third phenotypic class of TSWV isolates has 
been identified that exhibits a temperature dependency on triggering Tsw-
mediated resistance and possibly involves an altered protein folding of NSs. A 
diagnostic tool has been developed to detect resistance breaking isolates in the 
field based on RT-PCR, but this tool still allows for escapes of RB isolates. The results 
on NSs are discussed in light of its role as effector within the ‘Zig-zag-model’ of 
plant host defence responses. Finally, TSWV NSs is briefly discussed and compared 
to the animal-infecting (NSs) paralogs of the Bunyaviridae family, also in light of 
functional and structural homologies between the sensors of innate immunity in 
plant (R-genes) and animal (NLRs/TLRs) cell systems.
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Samenvatting

Resistentie in Capsicum annuum (Paprika) tegen het tomatenbronsvlekkenvirus 
[Engels: Tomato spotted wilt virus (TSWV)] verloopt via het dominante gen Tsw. 
Deze resistentie is inmiddels doorbroken door verschillende TSWV-isolaten en 
die veroorzaken ernstige schade aan paprika planten in de hele wereld. Het 
onderzoek dat hier is uitgevoerd beschrijft het virale activator-eiwit, dat de 
resistentie aanschakelt, en verschaft nieuwe inzichten in het mechanisme van Tsw-
resistentie. De opgedane genetische en fenotypische kennis van verschillende Tsw-
doorbrekende TSWV-isolaten is gebruikt voor de ontwikkeling van een diagnostische 
toets om doorbrekende isolaten in het veld te kunnen identificeren.

De basale afweer in planten tegen virussen verloopt via RNAi (RNA-interferentie) 
en in het verleden was reeds aangetoond dat het NSs-eiwit van TSWV die afweer 
remt door o.a. binding van kleine RNA moleculen. In de huidige studie is aangetoond 
dat TSWV-NSs de activator van Tsw-resistentie is (avirulentie-factor, Hoofdstuk 2). 
Lokale expressie van NSs-eiwitten in planten van een resistentie-inducerend TSWV-
isolaat liet actieve remming van RNAi en activering van resistentie zien, terwijl de 
NSs eiwitten van twee verschillende resistentie-doorbrekende TSWV-isolaten beide 
activiteiten niet bezaten. Daarentegen waren de resistentie-doorbrekende TSWV-
isolaten zelf wel actief als remmer van RNAi. Van geen van de andere virale eiwitten 
is aangetoond dat ze konden bijdragen aan de RNAi-remmings activiteit van NSs 
uit de resistentie-doorbrekende TSWV isolaten. Een ‘Electrophoretic mobility shift 
assay (EMSA)’ is uitgevoerd welke liet zien dat in de plant lokaal aangemaakte 
NSs eiwit van de resistentie-inducerende TSWV-isolaten nog in staat is tot het 
binden van siRNA (‘short-interfering RNA’), terwijl de NSs eiwitten van resistentie-
doorbrekende isolaten dit niet bleken te kunnen. Daarentegen, en verassenderwijs, 
waren diezelfde NSs eiwitten na aanmaak tijdens een reguliere infectie met de 
resistentie-doorbrekende isolaten wel in staat tot het binden van siRNAs, hetgeen 
hun RNAi-remmer-activiteit verklaart.

Een mutatie-analyse van NSs werd uitgevoerd om te onderzoeken of er een 
koppeling bestaat tussen de RNAi-remmings-activiteit en de activering van Tsw-
resistentie (Hoofdstuk 3). Er werd een grote hoeveelheid NSs-mutanten gemaakt, 
welke zijn getoetst op de mogelijkheid tot het activeren van Tsw-resistentie 
in paprika en het remmen van de RNAi response. Deze experimenten hebben 
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laten zien dat het amino-terminale deel van het NSs-eiwit betrokken is bij beide 
functies. Omdat het mogelijk was om één functie uit te schakelen terwijl de andere 
functie intact bleef, en vice versa, kon worden aangetoond dat de twee functies 
niet functioneel gekoppeld zijn. Ook de uitwisseling van domeinen van een NSs 
uit een resistentie-inducerend TSWV-isolaat met domeinen van een NSs uit een 
resistentie-doorbrekend isolaat liet zien dat het amino-terminale deel van het NSs-
eiwit belangrijk is voor beide functies. Daarnaast liet de uitwisseling van domeinen 
tussen verschillende soorten virussen binnen het genus Tospovirus zien dat de 
activiteit niet kan worden overgedragen aan een NSs van een ander Tospovirus. 
Mutatie van een specifiek domein (WG/GW) in het amino-terminale deel van TSWV 
NSs liet zien dat dit domein mogelijk een rol speelt in de interactie met het AGO1-
eiwit, zoals ook voor andere RNAi remmers is aangetoond.

De mogelijke interactie tussen TSWV NSs en AGO1 werd verder onderzocht door 
middel van immunoprecipitatie-studies, gebruikmakende van antilichamen tegen 
specifieke eiwitten (Hoofdstuk 4). Er zijn indicaties gevonden voor een mogelijke 
interactie, maar toepassing van andere technieken zal moeten uitwijzen of deze 
interactie inderdaad plaatsvindt.

Additionele TSWV-isolaten zijn geanalyseerd, welke een temperatuurs-
afhankelijkheid lieten zien met betrekking tot het activeren van Tsw-resistentie 
(Hoofdstuk 5). Deze groep TSWV-isolaten gedroegen zich als resistentie-inducerende 
isolaten bij standaard kastemperaturen (22 °C), maar hadden het fenotype van een 
doorbrekend isolaat bij hogere temperaturen (28 °C), waarbij de Tsw-resistentie nog 
steeds actief was (≤31 °C). Virus infecties bij verschillende temperaturen lieten zien 
dat de resistentie bij kastemperaturen geactiveerd kon worden door de novo (nieuw 
geproduceerd) NSs-eiwit, en dat de vouwing van het NSs eiwit een essentiële rol speelt 
in de herkenning. Gekloneerde en getoetste NSs uit de verschillende TSWV isolaten 
lieten variabele resultaten zien met betrekking tot de RNAi-remmingsactiviteit en 
de activering van Tsw-resistentie. De activiteit van de verschillende NSs-eiwitten 
bij een hogere temperatuur (28 °C) kon niet worden getoetst vanwege technische 
beperkingen van het expressie-systeem. Het onderliggende mechanisme van de 
temperatuurgevoeligheid is nog niet opgehelderd en behoeft verder onderzoek. 
Met behulp van de verkregen informatie van de verschillende gekloneerde TSWV-
NSs-genen is een diagnostische toets ontwikkeld om resistentie-doorbrekende 
isolaten te kunnen identificeren in het veld door middel van RT-PCR. Een specifieke 

set van primers (korte DNA-sequenties) werd ontwikkeld, welke een essentiële 
sequentie in het NSs-gen kon detecteren, en waarmee de resistentie-doorbrekende 
isolaten onderscheiden konden worden van de resistentie-inducerende isolaten. 
Sommige resistentie-doorbrekende isolaten werden echter (nog) niet opgepikt.

Samenvattend, TSWV-NSs is geïdentificeerd als avirulentie factor van Tsw-
resistentie en lijkt te zijn ontkoppeld van de RNAi-remmings-functie van TSWV-NSs. 
De eerste aanwijzingen zijn gevonden dat NSs en AGO1 een interactie met elkaar 
aangaan. Naast de resistentie-inducerende en de resistentie-doorbrekende isolaten 
is er een derde fenotype geïdentificeerd, dat afhankelijk is van de temperatuur 
om de resistentie te doorbreken, mogelijk door een andere eiwitvouwing. Een 
diagnostische toets is ontwikkeld die het mogelijk maakt om in het veld resistentie-
doorbrekende isolaten te kunnen identificeren. TSWV-NSs kan als een ‘effector’-
eiwit worden geplaatst in het ‘Zig-zag-model’ dat de wapenwedloop tussen 
gastheer en pathogeen beschrijft. Tenslotte werd TSWV NSs vergeleken met andere 
leden van de virusfamilie Bunyaviridae, die ook een NSs eiwit coderen, en werden  
vergelijkingen getrokken tussen het dierlijke immuunsysteem en de antivirale 
afweer in planten.
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Dankwoord

Meer dan 4 jaar lang proberen je een weg te banen door het ruige landschap dat 
wetenschap heet doe je niet alleen. Zeer zeker niet! Dankzij de steun van familie, 
vrienden en collega’s werden het werk en privé een stuk aangenamer. Daar wil ik 
een aantal mensen voor bedanken.

Allereerst, Richard. Onze samenwerking was vanaf het begin al goed, maar werd 
behoorlijk geïntensiveerd zo naar het einde toe, met veel overleg en sturing van 
jouw kant. Met een mateloos enthousiasme en een oneindig (lijkende) hoeveelheid 
kennis in dat grote brein, wist je altijd wel raad als ik er even niet uit kwam. Naast 
het wetenschappelijke aspect, heb je me alle ruimte en tijd gegeven toen het fysiek 
iets minder met me ging, en dat was prettig. Bedankt voor alles, dit boekje is ook 
zeker mede tot stand gekomen door jouw inzet! Hopelijk vind je in de toekomst nog 
genoeg mensen (en geld) om alle ideeën die je hebt uit te voeren, want dat zijn er 
nog al wat. Wellicht kruisen onze paden zich nog wel een keer.

Rob. Al vier maanden na mijn start onder jouw leiding kwam je ons te ontvallen. 
Dat was een behoorlijke klap, maar we zijn doorgegaan. In die vier maanden heb je 
wel een blijvende indruk gemaakt. Je werd en wordt gemist.

Just. Toen Rob overleed, stond onze wereld even op z’n kop, maar jij hebt je 
schouders eronder gezet en ons er doorheen getrokken. Dat was nodig en dat 
heb je fantastisch gedaan. Vanaf dat moment was je veel meer betrokken bij mijn 
project en heb je, zeker naar het einde toe, met een heldere visie, een belangrijke 
bijdrage geleverd. Bedankt daarvoor.

Patrick. We begonnen samen in hetzelfde STW-project, jij als post-doc, ik als AIO, 
en we hebben ruim vier jaar samen gewerkt. Het was prettig om met jou samen 
aan een gemeenschappelijk doel te werken. Helaas hebben we niet alle vruchten 
kunnen plukken, maar toch mooie resultaten gehaald en dat is mede door jouw input 
geweest. Als kers op de taart sta je naast me als paranimf tijdens de verdediging. 
Bedankt voor de samenwerking en ik hoop dat je snel een leuke nieuwe uitdagende 
baan kunt vinden.

Dick L. De man met de gouden handen. Alles, alles wat ik je gaf om te doen in 
het lab lukte. Zelfs als ik, gek van frustratie, maar aan jou vroeg om een construct 
te maken, lukte het je. Gelukkig lukte het  meeste wat ik zelf wilde doen wél, maar 
zonder jouw inzet had ik nooit zoveel data kunnen verzamelen. Zeker in de laatste 
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jaren heb je ontzettend veel werk voor mij verzet en daar ben ik je zeer dankbaar 
voor. Met je droge humor en je tomeloze inzet en energie ben je een voorbeeld 
voor iedereen in het lab. Ze komen niet voor niets allemaal bij jou voor hulp. Nog 
een paar jaar en dan mag je van je pensioen genieten, maar het lab zal je missen. 
Bedankt!

Jan. Als onderdeel van de STW-groep was je er altijd bij. Bedankt voor je input 
tijdens werkbesprekingen en project meetings. Jouw frisse blik op de zaak was af 
en toe wel nodig. 

Ook de overige stafleden van Virologie wil ik graag bedanken; Gorben, bedankt 
voor je tips and tricks m.b.t. de mutanten creatie en de ontspanning tijdens borrels 
en feestjes. Monique, ook bedankt voor je hulp door de jaren heen. Nu sta jij aan 
het roer van Virologie en ik hoop dat Virologie de diverse, unieke groep blijft die het 
altijd is geweest. Succes beiden!

De samenwerking met de heren van Monsanto (voorheen De Ruiter Seeds) 
was altijd aangenaam en daarbij wil ik graag Rolf Folkertsma en Pieter van Poppel 
bedanken voor hun input, en de fijne samenwerking. Ook Ton Allersma bedankt 
voor de samenwerking, voor de levering van de zaden (soms op korte termijn) en 
de virus isolaten die we hebben gebruikt in een aantal studies.

I also need to acknowledge the students I got to supervise in the last years. 
Without them I would not have so much data. Adrien, Lan, Su, Jikke, Aranka 
and Bart. Adrien, you were my first student and we had to set-up a system of 
generating mutants, which worked really well. Thanks for all the help and good 
luck in Strasbourg. I hope we stay in touch! Also Su, thanks for that pile of work you 
performed; really a lot of the data from chapter 3 is your work. Our work together 
with Adrien’s was recently published as well! Thanks, both of you! Good luck in the 
future! Aranka, ondanks dat je teleurgesteld was dat het maar niet lukte met die 
Co-IPs heb je wel ontzettend veel gedaan. Ik maak me dan ook geen zorgen voor je 
toekomst. Succes met je stage en het vinden van een uitdagende baan!

Ik wil ook alle mede-AIOs, post-docs en analisten bedanken voor de fijne 
tijd in het lab en daarbuiten. De Arbo-groep; Stefan, Corinne, Mia en Jelke, een 
gezellige club mensen die wel van een feestje op z’n tijd houden, en daardoor 
mij de hoognodige ontspanning bezorgde. Thanks! De baculo-dames, Stineke en 
Vera. Vera, bedankt voor je hulp op het laatst met de phylogenie en de gezellige 
tijd op de kamer. Stineke, met wie ik op dezelfde dag binnen kwam lopen op het 

oude Viro op de Binnenhaven! Onze trip naar Cambridge was superleuk en de 
laatste maanden op de kamer was altijd gezellig; zeker vanwege jouw gevoel voor 
humor lag ik regelmatig in een deuk! Succes met het afronden van je proefschrift 
en de toekomst in Engeland! Paulus, als mede-plantenviroloog hebben we vaak 
wetenschappelijke zaken besproken, wat altijd wel nuttig was, en daarnaast kende 
we ook veel ontspanning met vogels kijken, muziek luisteren en blèren in het lab. 
Succes met je laatste loodjes van je proefschrift, en bedankt dat je naast me komt 
te staan als mijn paranimf bij de verdediging van mijn proefschrift. Marcio, we 
also started at the same day at virology and because our topics were so closely 
related, a collaboration wasn’t surprising. Thanks for the experiments that you 
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