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Abstract  We study the practical production planning problem of a food producer facing a 
non-stationary erratic demand for a perishable product with a fixed life time. In meeting the 
uncertain demand, the food producer uses a FIFO issuing policy. The food producer aims at 
meeting a certain service level at lowest cost. Every production run a set-up cost is incurred. 
Moreover, the producer has to deal with unit production cost, unit holding cost and unit cost 
of waste. The production plan for a finite time horizon specifies in which periods to produce 
and how much. 
We formulate this single item – single echelon production planning problem as a stochastic 
programming model with a chance constraint. We show that an approximate solution can be 
provided by a MILP model. The generated plan simultaneously specifies the periods to 
produce and the corresponding order-up-to levels. The order-up-to level for each period is 
corrected for the expected waste by explicitly considering for every period the expected age-
distribution of the products in stock. The model assumes zero lead time and backlogging of 
shortages. The viability of the approach is illustrated by numerical experiments. Simulation 
shows that in 95.8% of the periods the service level requirements are met with an error 
tolerance of 1%.    
 
Keywords  Perishable product; Non-stationary stochastic demand; Service-level constraint; 
Periodic review. 
 
1  Introduction 
Food supply chains of processed fresh products generally include primary production 
(farmers), food processing industry, distribution centres of the producer or a retail 
organisation, retail stores and consumers (e.g. (van der Vorst et al., 2000)). In this paper we 
study the practical production/inventory control problem faced by a food producer. After 
processing fresh ingredients into a final product and packing the product, the producer prints 
a best-before-date on the package of the product. Products can be meat, dairy products, fresh 
fruit juices and produced fresh meals. If the product is stored and handled under the required 
conditions, the product is presumed to have a fixed lifetime; the best-before-date is 
determined by adding a fixed number of days to the production date. In practice, a food 
producer often faces a non-stationary stochastic demand for his products, caused by, for 
instance, promotional activities of the retail organisation, or weather conditions. The producer 
has to decide at any given period (e.g. a week) whether to produce or not, and if so, how 
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much to produce. This decision depends on the forecast of the demand, on the age-
distribution of the items in stock and is influenced by factors such as the setup cost of a 
production run and the perishability of the product.  
 
Food producers often have contracts with their customers, regarding delivery performance 
including service level and remaining shelf life. In order to meet these requirements and to 
determine production quantities, the producer has to balance product waste (as a result of too 
much inventory) and out-of-stock (as a result of too little inventory). Due to the perishability 
of the product, it is likely that the inventory of final products at the producer consists of items 
of different ages, that is, with different production dates. The producer sells the products to 
the customers (e.g. supermarkets) with a guaranteed remaining shelf life on the time of 
delivery. We define internal shelf life as the maximum time span between production and 
distribution. To guarantee a minimum remaining shelf life at the customer, one sets a 
maximum on the internal shelf life. For an internal shelf life of just 1 period, one can follow 
the order policy of the so-called Newsboy Problem (Silver et al., 1998) that produces every 
period with an order quantity that takes the perishability into account. When the internal shelf 
life is longer than 1 period, the order policy depends on the setup cost and holding cost and 
the aging of the products (Fries, 1975). When setup cost is relatively high, the optimal order 
policy for a product, disregarding perishability, may lead to a time between two production 
runs that exceeds the internal shelf life. In that case a part of the production quantity may 
become waste. Waste may lead to out-of-stock in the periods before a new production run is 
planned.  
 
Service level is a way to measure product availability. Chopra and Meindl (2010) define 
service level as the probability of not having a stock-out in a replenishment cycle. There are 
two reasons to study a service level approach. First, food producers often have contracts with 
their customers, regarding delivery performance including service level and remaining shelf 
life, as already mentioned. Second, stock-out penalty cost are difficult to quantify (Minner 
and Transchel, 2010). Requiring a certain service level and therefore a certain level of safety 
stock, can be seen as a cost component by having extra items in stock.   
 
The demand for products of a food producer is not only stochastic, but may also be non-
stationary. This leads to an irregular pattern of the decision when to produce, and how much. 
Periodic review (R, S) or (R, s, S) order policies with a fixed order-up-to level typically deal 
with a stationary stochastic demand. Using such a policy in case of non-stationary demand 
either leads to a very high production level to fulfil peaks in demand, causing waste when 
demand is low, or to a low production level causing out-of-stock when demand is very high 
(Tunc et al., 2011). Such a policy may also cause extra production runs, which will lead to 
higher costs. Therefore it is interesting to investigate order policies with time-dependent 
order-up-to levels and replenishment cycle lengths. Furthermore, uncertainty in demand leads 
to new production runs, while the inventory level is not zero yet. This gives items of different 
ages in stock. The age-distribution of the items in stock has to be monitored and should be 
considered in the issuing policy. A food producer has control over its issuing policy and often 
distributes its inventory according to First In First Out (FIFO). A fixed issuing policy, such as 
FIFO, is favoured in practise, because it is easy to use and keeps wastage due to outdating 
low.  
 
The practical problem discussed in this paper is the finite time horizon single-product − 
single-echelon production/inventory control problem for a perishable product with a fixed 
lifetime, under a service-level constraint. The product has a non-stationary stochastic 
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demand. The decision problem deals with a fixed setup cost for every production run and a 
FIFO issuing policy. We consider the age-distribution of the items in stock in a specific 
theoretical Stochastic Programming (SP) problem that deals with the service level as a chance 
constraint. The model uses zero lead time and in case of out-of-stock, demand is backlogged. 
The question addressed in this paper is whether it is possible to construct practical solutions 
using commercial solvers for business use rather than custom made solution procedures. We 
approach this question with a Mixed Integer Linear Programming (MILP) model that 
generates approximate solutions of the problem.  

 
The paper is structured as follows. In Section 2, a literature review on the problem is 
presented. Section 3 describes the SP problem. The waste compensating replenishment cycle 
policy is defined in Section 4. In Section 5, a deterministic MILP model for perishable 
products is formulated. In Section 6 we investigate how well the solutions of the MILP model 
fulfil the desired service levels using a sensitivity analysis combined with simulation runs. 
The paper ends with conclusions and topics for future research in Section 7. 
 
2  Literature review 
In order to construct a model for the practical problem under consideration, we review 
literature that deals with a combination of the key characteristics of the practical problem: 
perishability with a fixed lifetime, fixed setup or ordering cost, non-stationary demand, 
periodic review and a service-level constraint. 
 
Nahmias (1982), Goyal and Giri (2001), Karaesmen et al. (2011) and Bakker et al. (2012) 
reviewed the literature on inventory models for perishable products with a fixed lifetime. 
Almost all papers surveyed assume stationary demand, i.e. demand in successive periods is 
an independent identically distributed random variable. Tekin et al. (2001) formulated an age-
based control policy with a continuous review for perishable products with a fixed lifetime, 
under service-level constraints. The aging starts after unpacking the batch for consumption. 
As long as the items are packed in stock, the lifetime is virtually infinite. In early works e.g. 
Nahmias (1975) and Fries (1975) observe that in general an optimal order policy for 
perishables with a fixed life time should take the ages of the products in stock into account. 
Even when all perishable items are of the same age, base stock polices are not optimal, as 
argued by Tekin et al. (2001) and Haijema et al. (2007). Broekmeulen and Van Donselaar 
(2009) suggest a replenishment policy for perishable products at a retailer, which takes the 
quantity and the age of the items in inventory into account. They assume negligible fixed 
ordering cost. The demand is assumed to be stochastic, with a weekly demand pattern per 
day, but stationary expected demand per week. They apply the same safety stock for each 
weekday. Haijema et al. (2007) developed an optimal policy for the periodic production and 
inventory of blood platelets. They combine two types of demand, each of which requires a 
different issuing policy. The demand distributions they consider have a weekly demand 
pattern per day, but are stationary across weeks. In Haijema et al. (2009) the approach is 
extended for non-stationary demand considering holidays and other events. Any fixed 
production cost is neglected. In Haijema (2011) fixed order cost are studied and a new class 
of order policies is presented. In none of these papers service-level constraints are included. 
Minner and Transchel (2010) present a numerical approach to determine replenishment 
quantities for perishable products in retail dynamically, using a weekly demand pattern. They 
consider service-level constraints varying for different intra-period time points and for 
different periods. Fixed ordering cost is assumed to be negligible.  
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In our investigation, the combination of non-stationary demand and a service level approach 
in inventory models was mainly found in literature about non-perishable products. Neale and 
Willems (2009) argue that non-stationary demand is very common nowadays. Therefore they 
developed a non-stationary supply chain inventory model, by formulating a single-stage 
inventory model that serves as a component of a multistage system, using service-level 
constraints to calculate safety stocks. The model is based on Graves and Willems (2000) and 
closely related to Graves and Willems (2008). Every stage has a base-stock policy with a 
review period of 1 time unit. The base-stock level is an order-up-to level to cover demand in 
upcoming periods. The safety stock is calculated as a function of demand over the preceding 
periods. In the multi-stage system Neale and Willems (2009) minimise the total holding cost 
of the safety stock in all stages and periods. They do not consider setup cost, which is an 
important cost component in practice. Bookbinder and Tan (1988) studied single-stage 
probabilistic lot-sizing problems, where they included setup cost, and service-level 
constraints. They developed a “static-dynamic” uncertainty model, splitting the problem in 
two stages. The first stage determines when to order, the second how much to order. Tarim 
and Kingsman (2004) considered the Bookbinder and Tan approach as a basis for the 
formulation of a mixed integer programming model for non-stationary stochastic demand for 
the simultaneous determination of the number and timing of the replenishment orders. In 
contrast to Bookbinder and Tan’s heuristic approach, Tarim and Kingsman’s approach 
provides an optimal solution. Several extensions of Tarim and Kingsman’s model exist. Rossi 
et al. (2011b) and Tarim et al. (2011) proposed efficient and complete special purpose 
algorithms. Tempelmeier (2007) used Tarim and Kingsman’s model as a basis to formulate 
different types of service-level constraints. Rossi et al. (2010) and Rossi et al. (2011a) 
incorporated a stochastic delivery lead time and developed both complete and fast heuristic 
approaches. Tempelmeier (2011) incorporated supplier capacity constraints. Pujawan and 
Silver (2008) proposed a novel and effective heuristic approach. However, to the best 
knowledge of the authors, no paper deals with all aspects of the practical planning problem 
under consideration: the combination of perishability with a fixed lifetime, fixed setup or 
ordering cost, non-stationary demand and a service level approach. In this paper we extend 
the model of Tarim and Kingsman towards a model that includes non-stationary stochastic 
demand for a perishable product under a FIFO issuing policy.  
 
3  Stochastic Programming model for a perishable product 
The problem of determining a production plan for a perishable product under non-stationary 
stochastic demand consists of deciding when to produce and how much to produce for a finite 
time horizon of T periods, such that the expected total costs are minimised. Periods can be 
hours, days, weeks or months, whatever is applicable in the practical situation. We adopt a 
minimum service-level criterion for meeting customer demand. Consider a single-product – 
single-echelon model where the product has a fixed maximum integer (internal) shelf life M  
≥ 2 periods.  A replenishment arrives instantaneously at the beginning of a period, i.e. lead 
time is zero. Demand dt is a non-stationary independent stochastic process with probability 
density function gt(·) and cumulative distribution function Gt(·). Demand is never negative; 
food cannot be returned due to food safety regulations.  
 
We consider a FIFO issuing policy in which the first produced items are issued first. Let the 
ages be indexed by b = 1,.., M. Variable Ibt denotes the inventory level of items with age b at 
the end of period t.  Items that are delivered at the beginning of period t have age b = 1 at the 
end of period t. Items of age M at the end of a period are not carried over to the next period, 
because they are out-dated; inventory IMt  of age M  at the end of period t is considered waste. 
Demand that cannot be fulfilled in one period is backlogged in the next period. Further costs 
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are a fixed setup cost k for every production run and a variable production cost c per item 
produced. We assume that k and c are independent of the production period, but the model 
can be generalised with a period-dependent setup cost and production cost. For items that are 
carried over from one period to the next, a holding cost h per item is incurred. There is a cost 
w per item of waste, on top of the unit production cost c. The case w > 0, describes a situation 
with additional cost to discard the wasted items. Situation w < 0 reflects that  the wasted 
items still have a salvage value of –w. All costs remain constant within the time horizon. For 
convenience and without loss of generality, the initial inventory level is set to zero. An 
overview of the used symbols is presented in Appendix A. The resulting problem can be 
formulated as a stochastic programming model:  
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The objective function (1) of the model minimises the expected total costs, comprising fixed 
setup cost for every production run, holding cost over every item in stock, unit production 
cost and cost of wasted items. The binary variable Yt takes value 1 if there is a production run 
in period t, and 0 otherwise. In Eq. (3), the inventory levels of all ages are balanced. Items of 
age M cannot be used in the next period, so period t starts with the inventory levels at the end 
of period t − 1 of ages b = 1,.., M − 1. The inventory at the end of period t equals the starting 
inventory increased by an amount Qt that is produced in period t minus the demand in period 
t. Service-level constraint (4) states that the inventory levels of all ages together at the end of 
period t should be nonnegative with probability α. This type of service level is known as α-
service level. Eq. (5) and (6) are the FIFO constraints. They make sure that demand is 
fulfilled first by the oldest items in stock and then successively by the younger items. 
Possible shortages only occur for the youngest items (Eq.(6)). Notice that adding up all 
equations of (5) and (6) results in Eq. (3). The starting inventory level of all ages is 0 (Eq. 
(7)), and the inventory levels of all ages in all other periods are nonnegative (Eq. (8)) except 
for the inventory level of age 1 in all periods, which can be negative when stock is too small 
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to fulfil demand (Eq. (9)). Compared to the model of (Bookbinder and Tan, 1988), the SP 
model also considers FIFO constraints (5) and (6), and included the age of the items to the 
variable for  the inventory level.   
 
4  The waste-compensating replenishment cycle policy 
The rest of this paper discusses solution strategies for the theoretical SP model that follow a 
“waste-compensating” replenishment cycle policy. This policy is structured as follows. At the 
beginning of the planning horizon, it simultaneously determines in which periods to produce, 
and the associated order-up-to levels which aim at fulfilling the prescribed service level. To 
determine the order-up-to level for period t, there are two aspects that should be taken into 
account. First, one should determine when the next production run will take place, say in 
period t + i + 1. That means that the production run of period t should cover demand and 
safety stocks of periods t to t + i, this is the basic order-up-to level. Second, there may be a 
need to increase the order-up-to level to compensate for (expected) waste throughout the 
replenishment cycle. Therefore, the inventory level at the end of period t – 1 and the age-
distribution of the inventory should be determined. If the inventory on hand that can be used 
in period t and (partly) later is unlikely to fulfil demand before it is out-dated, the basic order-
up-to level in period t should be increased by the expected amount of waste during periods t 
to t + i − 1. The production quantity is then determined as the increased order-up-to level 
minus the inventory on hand at the end of in period t. In case the inventory on hand exceeds 
the order-up-to level, the excess stock will be carried forward. We name this order policy 
“waste-compensating” replenishment cycle policy.    
 
5  Deterministic Mixed Integer Linear Programming approximation 
We show how a deterministic MILP model can generate a waste-compensating replenishment 
cycle policy as an approximate solution of the SP model for perishable products. Therefore, 
we first discuss in Sections 5.1 to 5.3 the following ingredients of the SP model: the objective 
function (1), the service-level constraint (4) and the FIFO constraints (5) and (6). In Section 
5.4, the complete model is presented.  
 
5.1  Objective function 
Consider the objective function (1). The holding cost is calculated as 
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where no holding cost is paid over negative inventory. The service level α is usually chosen 
to be large, i.e. the probability of out-of-stock 1– α is small. The approximation assumes that 
the occurrence and amount of shortage is small enough to be neglected in the calculation of 
the holding cost (Bookbinder and Tan, 1988). That gives the following objective function: 
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Eq. (13) is the objective function of the deterministic MILP model. Expressions for the 

expected values of 


M
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1

, Xbt, St and Qt as function of the expected demand dt  are 

straightforward. Expected values for the separate variables Ibt are more complicated as we 
will specify when considering the FIFO constraints. 
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5.2  Service-level constraint 
We start with a reformulation of the service-level constraint, by introducing a variable St 
denoting the order-up-to level or starting inventory level at the beginning of period t. St is 
defined by: 
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When no order is placed, the variable Qt = 0, and St is just the ending inventory level of 
period t − 1. When an order is placed, St is the order-up-to level. Now Eq. (3) can be rewritten 
as  
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Eq. (4) requires the inventory level at the end of every period to be nonnegative with a 
probability of service level α. Using Eq. (15), Eq. (4) can be rewritten as  
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Eq. (19) specifies that the safety stock at the end of period t, depends on the probability 
distribution of the demand of the previous periods, that the most recent order was meant to 
fulfil. The inventory level at the end of period t may consist of items of different ages, 
including items of age M that cannot be used in period t + 1. The required safety stock is 
known, given the period the order takes place. In this model, a finite planning horizon of T 
periods is considered. Therefore, )(1
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Eq. (22) specifies that if Ztj = 1, then the most recent order prior to period t was in period t - 
j+1, so Yt-j+1 = 1, and Yt-j+2 to Yt should all be 0. Otherwise, Ztj will be 0. Eq. (20) can be 
interpreted as the calculation of the safety stock needed to fulfil demand from periods t – j + 1 
to t, when there is an order in period t – j + 1. The safety stock, or the inventory level at the 
end of period t may consist of items of different ages, including items of age M, which can be 
used in period t, but not in period t + 1. These items are considered waste at the end of period 
t. Using expected values, Eq. (20) becomes 
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5.3  FIFO constraints 
Constraints (5) and (6) make sure that items are issued according to a FIFO policy.  To study 
the effect of constraints (5) and (6), consider M = 3, with different values for the index b. In 
this setting Eq. (5) implies equations (24) and (25), and Eq. (6) becomes Eq. (26): 

    0,max0,0,0maxmax 1,21,23 ttttt dIdII    Tt ,..,1  (24) 

  0,0,maxmax 1,21,12   tttt IdII  Tt ,..,1  (25) 

 0,max 1,21,11   ttttt IIdQI  Tt ,..,1  (26) 

To construct a deterministic MILP model, the expected values of these constraints are 
needed. Since the function max{·} is a convex function, Jensen Inequality (Mood et al., 1974) 
applies. In the deterministic model we use the following equalities to approximate the 
stochastic programming model. 

 0),()(max)( 1,23 ttt dEIEIE    Tt ,..,1  (27) 

  0,0),()(max)(max)( 1,21,12   tttt IEdEIEIE  Tt ,..,1  (28) 

 0),()()(max)()( 1,21,11   ttttt IEIEdEQEIE  Tt ,..,1  (29) 

According to Jensen Inequality the expected waste in Eq. (27) is underestimated and the 
expected inventory level of the freshest items in Eq. (29) is overestimated. Due to the nested 
function max{·} in Eq. (28), Jensen Inequality does not apply and the approximation could be 
an under- or overestimation.  
Consider Eq. (27). If 0)()( 1,2  tt dEIE then )()()( 31,2 ttt IEdEIE  . If 

0)()( 1,2  tt dEIE then 0)()( 1,2  tt IEdE . The value of 0)()( 1,2  tt IEdE  can be 

seen as the residual demand for the oldest items. This amount has to be fulfilled by fresher 
items as can be seen in Eq. (28). Let the auxiliary variable E(Xbt)  denote the residual demand 
for items of age b with 1,..,1  Mb  in period t. If E(Xbt) has a positive value, then fresher 
inventory is used to fulfil demand: 

0)()()( 1,22  ttt IEdEXE  (30) 

Using E(X2t) , Eq. (27) becomes 

tttt XIdI 231,2   (31) 

and Eq. (28) becomes 
 0),()(max)( 21,12 ttt XEIEIE     

or 

)()()()( 1221,1 tttt XEIEXEIE  . (32) 

Finally, Eq. (29) can be formulated as 
)()()( 11 ttt IEXEQE  , (33) 
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where E(I1t) ≥ 0, because the deterministic model assumes there are no out-of-stocks. More 
generally, Eq. (5) and (6) are equivalent to:  


































)()()(

)()()()(

:

)()()()(

)()()()(

)()()()(

11

1221,1

,3,2,21,3

,2,1,11,2

,11,1

ttt

tttt

tMtMtMtM

tMtMtMtM

tMMtttM

IEXEQE

XEIEXEIE

XEIEXEIE

XEIEXEIE

XEIEdEIE

   Tt ,..,1        (34) 

This set of equations handles the age-distribution of the items in stock. Adding up the 
equations of Eq. (34) results into Eq. (35). 










1

1
1,

1

)()()()(
M

b
tttb

M

b
bt dEQEIEIE  Tt ,..,1    (35) 

Eq. (35) is equivalent to Eq. (3) of the SP model. In Section 5.4, the complete set of FIFO 
constraints are written in Eq. (43) to (47). 
 
5.4  MILP model for Perishable products  
The complete deterministic MILP model that generates approximate solutions of the SP 
model is presented below.   

 




 








T

t

M

b
Mttbtt IwEQcEIEhkYTCE

1

1

1

)()()()(Min  (36) 

)()()(
1

tt

M

b
bt dESEIE 


 Tt ,..,1  (37) 

tt YQE M)(   Tt ,..,1  (38)  

M is a sufficiently large number, for instance 



T

t
tdE

1

)(M . Because of the perishability, 

one will never order in the first period up to period T, so this amount will also cover for the 
necessary safety stocks. 

)()()()(
1 1

1
,1 ttj

M

j

t

jtn
ntjtt dEZdEGSE 







  

 


   Tt ,..,1  (39) 

Eq. (39) is a reformulation of Eq. (23) using the variable E(St), instead of E(Ibt), to obtain the 
desired order-up-to levels to meet the α-service level requirement. 

1
1




M

j
tjZ  Tt ,..,1  (40) 




 
t

jtn
njttj YYZ

2
1  Tt ,..,1 ; Mj ,..,1  (41) 

)()()(
1

1
1, t

M

b
tbt QEIESE 




        Tt ,..,1  (42) 

Eq. (42) specifies the expected required production quantity. Waste is considered by leaving 
out items E(IM,t-1) , because they cannot be used in period t. Let the auxiliary variable E(Xbt)  

denote the residual demand for items of age b with 1,..,1  Mb  in period t. If E(Xbt) has a 
positive value, then fresher inventory is used to fulfil demand.

 
)()()()( ,11,1 tMMtttM XEIEdEIE     Tt ,..,1  (43) 
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)()()()( ,1,11, bttbtbtb XEIEXEIE    2,..,1;,..,1  MbTt  (44) 

)()()( 11 ttt IEXEQE   Tt ,..,1  (45) 

Eq. (43), (44) and (45) keep track of the age-distribution of the items in stock, under a FIFO-
issuing policy. Eq. (43) imposes the oldest inventory to be used first to fulfil demand. What is 
left over has the maximum shelf life and will become waste, or there will be a residual 
demand for the oldest items. In the latter case Eq. (44) is appropriate. The residual demand 
has to be fulfilled by items of intermediate ages, until the demand is fulfilled by the freshest 
items that are produced in the current period, according to Eq. (45).The right-hand-sides of 
equations (43) and (44) can each contain at most one variable with a positive value. The other 
variable needs to have a value of 0. Equations (46), and (47) impose that, using the binary 
variable  BXbt. 

)( btbt XEBX M  1,..,1;,..,1  MbTt  (46) 

)()1( ,1 tbbt IEBX M  1,..,1;,..,1  MbTt  (47) 

0)( 0 bIE  
Mb ,..,1  (48) 

0)(),(),( ttbt QESEIE  
MbTt ,..,1;,..,1    (49) 

0)( btXE  
1,..,1;,..,1  MbTt  (50) 

 1,0, tjt ZY  MjTt ,..,1;,..,1   (51) 

 1,0btBI   MbTt ,..,1;,..,1   (52) 

 1,0btBX  
1,..,1;,..,1  MbTt  (53) 

The starting inventory is zero (Eq.(48)). Eq. (49) to (53) are definition constraints. The 
required safety stocks are part of the inventory level. This model is an extension of the MILP 
model formulated by (Tarim and Kingsman, 2004), considering the age-distribution of the 
items in stock and the FIFO constraints. Their model provides an optimal solution for an SP 
model for non-perishables. Specifically, the addition of the FIFO constraints makes that the 
MILP model for perishable products generates approximate solutions for the SP model.  
 
6  Numerical illustration of the MILP model 
In Section 6.1, we illustrate the waste-compensating replenishment cycle policy of the model 
with a numerical example. The chosen parameter values are extreme to demonstrate the 
behaviour of the model. In Section 6.2, we relax the FIFO constraints for the same numerical 
example, to show that FIFO is not necessarily an optimal issuing policy. In Section 7, where 
the results of the MILP model are presented, the parameter values are chosen closer to 
practice.   
 
6.1  Replenishment cycle policy with FIFO issuance 
A numerical example illustrates the waste-compensating replenishment cycle policy of the 
model for a product with a fixed (internal) shelf life of 3 periods. We assume that the demand 
in each period is normally distributed, with a Coefficient of Variation (CV) of 0.333. Demand 
forecasts E(dt) are given in Table 1. The fixed setup cost is set to k = 3000, the unit 
production cost to c = 2 and the holding cost to h = 1. The cost of waste or markdown of the 
product w is 4. We use a service level of α = 95%.  
 
Table 1  Forecasts and standard deviations of demand with a constant CV = 0.333  

Period t 1 2 3 4 5 6 7 8 9 10 11 12

E(dt) 1900 950 40 80 30 150 800 950 1100 350 150 700
St.dev.(dt) 632.7 316.4 13.32 26.64 9.99 49.95 266.4 316.4 366.3 116.6 49.95 233.1
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The safety stocks in Eq. (39) to meet a 95% service level are given in Table 2. For example, 
the safety stock at the end of period t = 3 is 521 (highlighted in Table 2) when the most recent 
order prior to period 3 was in period t – j+1 = 3 – 2 + 1 = 2, for j = 2 periods.  
 
Table 2  Safety stocks when the most recent order prior to period t was in period t – j+1: ordering for j periods 

j       t 1 2 3 4 5 6 7 8 9 10 11 12 

1 1041 521 22 44 17 83 439 521 603 192 83 384 

2   1164 521 49 47 84 446 681 797 633 209 393 

3     1164 523 52 95 447 686 909 819 638 437 

 
The optimisation provides the policy given in Table 3. Orders occur in periods 1, 2, 4, 7, 9, 
10 and 12, seven times. The order-up-to level of period 2 is equal to 1511. This is the amount 
to fulfil demand of periods 2 and 3 and the safety stock at t = 3 and  j = 2 according to Table 
2. The actual amount ordered is equal to the order-up-to level minus the inventory at the end 
of period 1. To fulfil demand in period 2, the one-period-old items of period 1 are used. After 
fulfilling demand there are still 91 items left. These 91 items are two periods old at the end of 
period 2. The fresh produced items are not used. They are one period old at the end of period 
2. In period 3 the demand for 40 items is fulfilled from the 91 two-periods-old items of period 
2, resulting in 51 items of waste at the end of period 3. In period 4 a new production run takes 
place, to fulfil demand of periods 4, 5 and 6 and the safety stock for these periods. So 80 + 30 
+ 150 + 95 = 355 items are required, and one would expect an order-up-to level of 355. 
Instead, E(S4) = 745 in Table 3. Note that the demand of period 4 is fulfilled by the two-
periods-old items of period 3. Afterwards, there are 390 items waste, which cannot be used in 
periods 5 and 6. The order-up-to level of period 4 is corrected for the amount of waste: 355 + 
390 = 745, so the order-up-to level is waste-compensating. As illustrated, the MILP model 
determines order-up-to levels by taking into account the expected age-distribution of the 
inventory rather than only the actual inventory level.  
 
Table 3  Order policy and model output for the example problem, CV = 0.333 

t 1 2 3 4 5 6 7 8 9 10 11 12 

E(St) 2941 1511 561 745 275 245 2431 1631 1703 709 359 1084 
E(Qt) 2941 470 0 275 0 0 2431 0 1022 106 0 978 
E(dt) 1900 950 40 80 30 150 800 950 1100 350 150 700 
ΣbE(Ibt) 1041 561 521 665 245 95 1631 681 603 359 209 384 

E(I1t)  1041 470 0 275 0 0 1631 0 603 106 0 384 
E(I2t) 0 91 470 0 245 0 0 681 0 253 106 0 
E(wastet) 0 0 51 390 0 95 0 0 0 0 103 0 
 
 
6.2  Relaxation of FIFO 
In the practical decision problem a FIFO issuing policy is used. A different approach to 
determine a production plan is to use no predetermined issuing policy. Therefore, FIFO 
constraints (43) to (47) are replaced by the inventory balance constraints (54) to (56).  







 

M

b
tbtt

M

b
tb IEQEdEIE

1
,

1

1
1, )()()()(        Tt ,..,1                                         (54) 

)()( ,11, tbtb IEIE     1,..,1;,..,1  MbTt                (55) 

)()( ,1 tt IEQE    Tt ,..,1                                        (56) 
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Application of these constraints to the numerical example of Section 6.1, results into the 
policy shown in Table 4. Notice that in period 2, 390 fresh items are used, while older items 
are still available. Due to the relaxation of the FIFO constraints, the expected total costs of 
this production plan are reduced to 45968 compared to those of the FIFO production plan of 
46358. For this specific instance, the amount of waste is the same, but the timing is different, 
resulting in lower holding cost. This example shows that, although FIFO seems intuitively the 
logical issuing rule to provide low costs, it is not necessarily the optimal way to issue the 
items. 
 
Table 4  Order policy and model output for the example problem, CV = 0.333, no issuing policy 

t 1 2 3 4 5 6 7 8 9 10 11 12 

E(St) 2941 1511 561 355 275 245 2431 1631 1703 709 359 1084 
E(Qt) 2941 470 0 275 0 0 2431 0 1022 106 0 978 
E(dt) 1900 950 40 80 30 150 800 950 1100 350 150 700 
ΣbE(Ibt) 1041 561 521 275 245 95 1631 681 603 359 209 384 

E(I1t)  1041 80 0 275 0 0 1631 0 603 106 0 384 
E(I2t) 0 481 80 0 245 0 0 681 0 253 106 0 
E(wastet) 0 0 441 0 0 95 0 0 0 0 103 0 

 
7  Results of the MILP model 
This section, we  investigate the behaviour of the model for different parameter values and 
different demand patterns. Section 7.1 describes the design of experiments. In Section 7.2, we 
show by Monte Carlo simulation to what extend the MILP policies meet the service level 
requirements. In Section 7.3, we study the influence of the service level, the cost of waste and 
the coefficient of variation for different values of the setup cost and different demand 
patterns, on expected total costs, percentage of waste and the production plan. 
 
7.1  Design of experiments 
The model is tested with a shelf life of M = 3, initially assuming a demand pattern that is 
erratic due to promotions in weeks 1, 2, 4, 5, 8 and 9, as depicted in Fig. 1. Table 5 reports 
the design of experiments: in total 84 experiments are done. Systematically we vary fixed 
setup cost k (1500, 500 and 2000), cost of waste w (-0.5, 0 and 0.5), α-service levels (90%, 
95% and 98%), and the CV (0.1, 0.25 and 0.333). The underlined values are our base 
parameter values. The other cost values are constant: unit production cost c = 2 and unit 
holding cost h = 0.5. Note, negative cost of waste means the product has a salvage value, 
which is usually much less than the unit production cost c, zero cost of waste means that only 
the unit production cost are lost in case of waste, and positive cost of waste means that there 
is a cost to discard the wasted items.    
 
For the base parameter values we tested also a variant of the erratic demand pattern, with 
different mean demands per period but with the same overall mean and standard deviation  
(experiment 82). In the erratic variant a clustering of promotions can be observed in weeks 3 
and 10. In experiments 83 and 84, the effect of the two other demand patterns depicted in Fig. 
1 are studied: a highly erratic demand pattern and a stationary demand pattern. The total 
expected demand is 7200 for all patterns.  
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Fig. 1  Demand patterns  
 
Table 5  Design of Experiments 
Scenario Demand k w α-service (%) CV 

Base Erratic 1500 0 95 0.25 

1 – 9 Erratic 1500 -0.5, 0, 0.5 90, 95, 98 0.10 

*10 – 18 Erratic 1500 -0.5, 0, 0.5 90, 95, 98 0.25 

19 – 27 Erratic 1500 -0.5, 0, 0.5 90, 95, 98 0.33 

28 – 36 Erratic 500 -0.5, 0, 0.5 90, 95, 98 0.10 

37 – 45 Erratic 500 -0.5, 0, 0.5 90, 95, 98 0.25 

46 – 54 Erratic 500 -0.5, 0, 0.5 90, 95, 98 0.33 

55 – 63 Erratic 2000 -0.5, 0, 0.5 90, 95, 98 0.10 

64 – 72 Erratic 2000 -0.5, 0, 0.5 90, 95, 98 0.25 

73 – 81 Erratic 2000 -0.5, 0, 0.5 90, 95, 98 0.33 

82 Err Variant 1500 0 95 0.25 

83 Highly Err  1500 0 95 0.25 

84 Stationary 1500 0 95 0.25 
* including the base case 
 
7.2  Quality of the MILP model approach  
The MILP model provides approximate solutions in terms of the service level. We investigate 
how well the MILP solutions approximate the service level requirements. The solutions 
corresponding to the experiments listed in Table 5 were evaluated by simulating the 
inventory system using the same (pseudo) random number series of 5000 runs, what implies 
that the costs are within 0.1% of the true costs with 95% confidence. Each simulation run 
starts with no inventory in stock and lasts T = 12 periods. For every period t the α-service 
level is computed by calculating the fraction of runs in which the inventory at the end of 
period t is nonnegative. The resulting α-service levels are presented for the base case in the 
next-to-last row of Table 6. 
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Table 6  Base case: MILP production plan and simulation results of measured service level and fill rate 
 T 1 2 3 4 5 6 7 8 9 10 11 12
E(St) 1129 1550 600 2350 1450 650 1874 1224 1271 1333 1033 883
E(Qt) 1129 1221 0 1950 0 0 1874 0 847 962 0 0
E(dt) 800 950 200 900 800 150 650 800 900 300 150 600
ΣbE(Ibt) 329 600 400 1450 650 500 1224 424 371 1033 883 283
E(I1t)  329 600 0 1450 0 0 1224 0 371 962 0 0
E(I2t) 0 0 400 0 650 0 0 424 0 71 883 0
E(wastet) 0 0 0 0 0 500 0 0 0 0 0 283
α-service level 94.9 99.5 95.4 100 98.6 95.3 100 95.1 94.8 100 100 89.0
fill rate  100 100 97.8 100 99.8 96.0 100 99.4 99.5 100 100 98.2
 
For the base case, the MILP order policy prescribes to order in periods 1, 2, 4, 7, 9 and 10. 
We observe that the α-service level of 95% is met in 9 periods. In periods 1 and 9, the service 
level is almost met: the difference may not be significant from a statistical point of view and 
is acceptable from a practical point of view. In period 12 the service level is only 89.0%, this 
may be well accepted in practice as production plans are usually updated every week.  
Reasons for not meeting the service level in period 12 are the combination of ordering in 
period 10,  a low demand in periods 10 and 11 and a higher demand in period 12. In period 
10 there is an expected starting inventory of 371. If the total demand of periods 10 and 11 is 
less than the starting inventory, there will be waste at the end of period 11 and if the demand 
in period 12 is above the expected demand, there will be out-of-stock. However, consider the 
fill rate, which measures how well demand is met and consequently, how much shortage 
takes place. One can observe from the  measurements that in period 12, the fill rate is 98.2%, 
so there was limited shortage.   
There are two main reasons why service levels are not always met. First, the real inventory 
levels are fluctuating around the expected values, while the model is compensating for the 
expected waste. As explained in Section 5.3, the expected waste in the MILP model is 
underestimated, while the expected inventory level of the freshest items is overestimated. 
Second, the combination of demand pattern and parameter values may result in inconvenient 
production moments. In some cases, the  replenishment cycle consists of multiple periods. 
When the expected demand increases and the starting inventory level is relatively high or 
consists of items of different ages, the service level requirement might not be met. 
In Appendix B, the service levels for all periods of every experiment is listed.  The last 
column reports the Sum of Squared Errors of the α-service level: SSE(α) = t (max{0, α –
realised service level in period t})2. A service level above the requirements is considered as 
good, so this is not considered an error. The lower the SSE(α), the better the service levels are 
met. For a quick overview of the quality of the MILP approximation, we also report in 
Appendix C the SSE(α) for every experiment.  
In the experiments, the setup cost of k = 500 gives, for a CV of 0.25 and 0.33, service levels 
close to the requirements. There are production runs in 9 of the 12 periods: only when 
demand is low, a production run is skipped. For a CV of 0.10, there are less production runs, 
resulting in no production in period 12, where the demand is high. The service level in period 
12 is 80.4%. A setup cost of k = 2000 gives in most instances an order policy of ordering in 
period 1, 4, 7 and 10. Considering the maximum shelf life, this is the minimum amount of 
production runs that is needed. That means that the inventory level before production starts is 
0. There is no waste during the replenishment cycle due to inventory on hand. The service 
levels are close to the requirements with this order policy.    
In the experiments, the setup cost of k = 1500 gives mixed results with respect to meeting the 
service level requirements, they are reasonable, with some ups and downs. The order policies 
prescribe more than the minimum amount of 4 production runs and less than 9, which results 
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in a considerable amount of older items in stock. Table 7 shows the experiment with highly 
erratic demand and the base parameter values. In period 9 the service level is 73.0%. The last 
production run before this period takes place  in period 7, when there was a relatively high 
inventory level followed by relatively small amounts of demand. When the realised waste in 
period 8 is more than expected, the chance of out-of-stock in period 9 is higher than allowed 
by the service level requirement.      
 
Table 7  Highly Erratic demand: MILP production plan and simulation results of measured service level and fill 
rate    
 t 1 2 3 4 5 6 7 8 9 10 11 12
E(St) 1764 1404 674 3131 1416 2498 1104 522 376 1150 746 526
E(Qt) 1764 0 0 3131 0 1742 376 0 0 1150 0 0
E(dt) 360 730 315 1715 660 1770 582 14 130 404 220 300
ΣbE(Ibt) 1404 674 359 1416 756 728 522 508 246 746 526 226
E(I1t)  1404 0 0 1416 0 728 376 0 0 746 0 0
E(I2t) 0 674 0 0 756 0 146 376 0 0 526 0
E(wastet) 0 0 359 0 0 0 0 132 246 0 0 226
α-service level 100 99.9 95.1 99.9 95.6 95.2 100 100 73.0 100 100 94.6
fill rate  100 100 98.7 100 98.7 99.6 100 100 77.6 100 100 98.97
 
Over all the performed experiments, in 26.9% of the periods the service level requirement is 
not met. However, in 22.7% of the periods the realised service level is within 1% lower than 
the required service level. The MILP approximation provides a practical solution to the SP 
problem. As production plans are updated frequently, not meeting the service level in the last 
period(s) is less relevant. The performance of the MILP solutions with respect to the required 
service level becomes more complicated when there are many items (of different ages) in 
stock. The simulation determines the order quantity as the order-up-to level of the MILP 
model minus the on-hand inventory level of ages one and two. The results show that in the 
application of the model, it is important to investigate the need of considering the age-
distribution of the items in stock for the determination of the order quantity. 
 
7.3  Sensitivity analysis 
Appendix C shows the results of the MILP model for the experiments listed in Table 5. For 
every experiment we report the expected total costs, the total expected production quantity, 
waste as a percentage of the total expected production quantity and the order policy denoting 
the periods in which there is a production run. The SSE(α) gives an indication of the quality 
of the MILP approximation with respect to meeting the service level requirements, as 
explained in Section 7.2.     
 
Summary of the sensitivity analysis: insights 
Table 8 shows a summary of the sensitivity analysis. The effect of varying the α-service level 
or the CV on the expected total costs follows the intuition: the higher the service level or the 
CV, the higher the expected total costs E(TC). However, in the experiments, the effect on the 
total expected order quantity E(Q) and the percentage of waste is not unidirectional, because 
the number of production runs as well as the timing of production runs may change. More 
production runs lead to a lower total expected order quantity and less waste. A higher cost of 
waste or a lower setup cost may increase the number of production runs.   
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Table 8  Summary of the sensitivity analysis 
Vary: Observed effect on:  
 E(TC) Total E(Q) % Waste # production runs 
α-service level ↑ ↑ ↑ or ↓ ↑ or ↓ ↑ or = 
CV ↑ ↑ ↑ or ↓ ↑ or ↓ ↑ or = 
Cost of waste ↑ ↑ or = ↓ or = ↓ or = ↑ or = 
Setup cost ↓ ↓ ↓ or = ↓ or = ↑ or = 

 
Influence of α-service level and cost of waste  
In Fig. 2 the influence of the α-service level and the cost of waste on the number of 
production runs en percentage of waste is depicted. In the base case an increase in service 
level from 95% to 98% leads to a 2.5% increase of the expected total costs and a decrease of 
percentage of waste from 9.8% to 4.8%, due to a change in the production plan, from 6 to 7 
production runs. A decrease in service level from 95% to 90% leads to a 3.2% decrease of the 
expected total costs and the percentage of waste increases up to 12.3%. When the cost of 
waste is -0.5, an increase in service level results in higher order-up-to levels but not in a 
different timing or a different number of production runs. Consequently, the percentage of 
waste increases. When the cost of waste is increased to 0.5, an increase in service level from 
90% to 95% leads to a change in production plan and the percentage of waste decreases. A 
further increase in service level from 95% to 98% results only in higher order-up-to levels but 
not in a different timing or a different number of production runs. Consequently, the 
percentage of waste increases. Clearly, the model can be used to manage the amount of 
waste, while maintaining a certain service level. For example, increasing the cost of waste 
from 0 to 0.5 reduces waste from 9.8% to 3.8% of the total expected production quantity. 

 
Fig. 2  The case of erratic demand and CV = 0.25: influence of  service level on number of production runs and 
percentage of waste; influence of the cost of waste on percentage of waste at different service levels. The 
numbers on top of the bars denote the number of production runs 
 
Influence of setup cost 
Motivated by the practical problem, the setup cost in the base case is k = 1500. Varying the 
other parameter values we observe frequent changes in the order policies. A decrease of setup 
cost to 500 results in more frequent production runs and low percentages of waste in all 27 
experiments considered. In some experiments with w=-0.5 or w=0 the expected waste is 
reduced to 0. For experiments at which the expected waste is zero, increasing the cost of 
waste does not change the production plan. An increase of the setup cost to 2000 shows order 
policies with a minimum number of production runs.   
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Comparing the consequence of demand patterns 
The base case parameter values have also been applied to other demand patterns. The 
solutions of the MILP model are in line with the production plans for the erratic demand 
pattern. The order policy for the stationary demand is a regular production plan, with 
production in every other period.  
 
8  Conclusions 
We studied the practical production planning problem of a food producer facing a non-
stationary erratic demand for a perishable product with a fixed life time, under a service-level 
constraint. The case includes a fixed setup cost for every production run, zero lead time and a 
First In First Out issuing policy. In case of out-of-stock, demand is backlogged. A theoretical 
Stochastic Programming model for this problem has been presented, that considers the age-
distribution of the items in stock. The question is how to generate a waste-compensating 
replenishment cycle policy by applying commercial MILP solvers. Therefore, an MILP 
model has been formulated to generate approximate solutions. A solution provides a plan 
specifying simultaneously the periods to produce and the corresponding order-up-to-levels. 
To meet a certain α-service level, the model considers and corrects for the expected age-
distribution of the items in stock. The  model can be solved in a fraction of a second. This 
makes it interesting for practical application.  
 
The MILP solutions provide approximations of the required service level. Simulation shows 
that in 95.8% of the periods the service level requirements are met, with an error tolerance of 
1%. The performance of the MILP model with respect to service level requires attention 
when there are many items of different ages in stock. In the application of the model, it is 
important to investigate the need of considering the age-distribution of the items in stock for 
the determination of the order quantity. 
 
Currently we are investigating the applicability of this model in a food company under a 
rolling horizon setting and a fixed lead time. The company faces an erratic stochastic demand 
and has service levels to meet to its customers. Future research aims to adapt the model using 
fill rates instead of service levels, and to incorporate lost sales instead of backlogging. 
Another interesting option would be to investigate the incorporation of a decision variable to 
get rid of excessive inventory before it becomes waste, to reduce holding cost. Also a model 
for multiple products, taking production capacities into account, is an interesting extension 
for practice. Finally, the model can be modified to accommodate a Last In First Out issuing 
policy, or even a mixed FIFO/LIFO policy, to be able to use the model in a situation (e.g. 
retail) in which the customer selects the items from the shelf.   
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Appendix A 
 
Table A.1  Used symbols, where applicable: E(·) = expected value of… 
SP MILP  
T T maximum number of periods of the finite time horizon 
t t index denoting the period 
M M fixed maximum (internal) shelf life 
b b index denoting the age of the item 
k k fixed setup cost for every production run  
c c variable production cost per item produced 
h h holding cost per item, for items that are carried over from one 

period to the next 
w w disposal cost per item of waste 
α α service level 
 M big number 
dt E(dt) non-stationary stochastic demand   
gt(·) gt(·) probability density function of demand dt 
Gt(·) Gt(·) cumulative distribution function of demand dt 
Ibt E(Ibt) the inventory level of items with age b at the end of period t 
IMt E(IMt) inventory  of age M  at the end of period t is considered waste 
Qt E(Qt) production quantity in period t 
St E(St) the order-up-to level or starting inventory level at the beginning of 

period t 
E(TC) E(TC) expected total costs over the time horizon 
Yt Yt binary variable takes the value of 1 if there is a production run in 

period t, and 0 otherwise 
 Ztj binary variable takes the value of 1 if the most recent order prior to 

period t was in period t - j+1, and 0 otherwise 
 E(Xbt) auxiliary variable denotes the residual demand for items of age b 

with 1,..,1  Mb  in period t 
 BXbt binary variable takes the value of 1 if E(Xbt) > 0, and 0 otherwise 
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Appendix B   
Table B.1  Results of the simulation: service levels for periods 1 to 12. 

 
 

No.\ t           1 2 3 4 5 6 7 8 9 10 11 12 Alpha SSE(α)

1 100.00 99.82 89.84 100.00 99.44 90.68 100.00 100.00 89.38 100.00 100.00 90.10 90 0.4

2 100.00 99.82 89.84 100.00 99.44 90.68 100.00 100.00 89.38 100.00 100.00 90.10 90 0.4

3 100.00 99.82 89.84 100.00 99.44 90.68 100.00 90.02 100.00 89.50 100.00 77.98 90 144.8

4 100.00 99.94 94.74 100.00 99.76 95.36 100.00 100.00 94.88 100.00 100.00 95.18 95 0.1

5 100.00 99.94 94.74 100.00 99.76 95.36 100.00 100.00 94.88 100.00 100.00 95.18 95 0.1

6 100.00 99.94 94.74 100.00 99.76 95.36 100.00 95.08 100.00 94.60 100.00 80.42 95 212.8

7 100.00 100.00 97.94 100.00 99.96 98.06 100.00 100.00 98.18 100.00 100.00 98.06 98 0.0

8 100.00 100.00 97.94 100.00 99.96 98.06 100.00 98.16 100.00 97.84 100.00 87.44 98 111.5

9 100.00 100.00 97.94 100.00 99.96 98.06 100.00 98.16 100.00 97.84 100.00 87.44 98 111.5

10 100.00 97.28 89.76 100.00 96.48 90.62 100.00 89.94 89.52 100.00 100.00 85.40 90 21.5

11 100.00 97.28 89.76 100.00 96.48 90.62 100.00 89.94 89.52 100.00 100.00 85.40 90 21.5

12 90.20 98.54 90.70 100.00 96.46 90.60 100.00 89.94 89.52 100.00 100.00 85.40 90 21.4

13 100.00 98.92 94.78 100.00 98.64 95.36 100.00 95.06 94.78 100.00 100.00 89.00 95 36.1

14 94.86 99.54 95.42 100.00 98.62 95.32 100.00 95.06 94.78 100.00 100.00 89.00 95 36.1

15 94.86 99.54 95.42 95.56 99.22 94.86 100.00 94.86 94.78 100.00 100.00 88.88 95 37.6

16 100.00 99.72 97.94 100.00 99.46 98.06 100.00 98.16 97.88 100.00 100.00 92.10 98 34.8

17 98.10 99.80 98.44 98.28 99.80 97.98 100.00 97.94 97.88 100.00 100.00 91.78 98 38.7

18 98.10 99.80 98.44 98.28 99.80 97.98 100.00 97.94 97.88 100.00 100.00 91.78 98 38.7

19 100.00 96.26 89.76 100.00 95.64 90.64 100.00 89.96 89.58 100.00 100.00 81.36 90 74.9

20 90.20 97.88 90.66 100.00 95.56 90.28 100.00 89.96 89.58 100.00 100.00 81.36 90 74.8

21 90.20 97.88 90.66 90.52 96.78 89.82 100.00 88.92 89.52 100.00 100.00 81.04 90 81.7

22 94.88 99.06 95.42 100.00 98.04 95.06 100.00 95.06 94.82 100.00 100.00 88.36 95 44.1

23 94.88 99.06 95.42 95.56 98.64 94.84 100.00 93.98 94.80 100.00 100.00 87.58 95 56.2

24 94.88 99.06 95.42 95.56 98.64 94.84 100.00 93.98 94.80 100.00 100.00 87.58 95 56.2

25 98.10 99.74 98.44 98.30 99.72 97.98 100.00 97.32 97.88 100.00 100.00 94.88 98 10.2

26 98.10 99.74 98.44 98.30 99.72 97.98 100.00 97.32 97.88 100.00 100.00 94.88 98 10.2

27 98.10 99.74 98.44 98.30 99.72 97.98 100.00 97.32 97.88 100.00 100.00 94.88 98 10.2

28 90.22 99.98 90.76 90.70 99.90 89.90 100.00 90.02 100.00 99.76 89.58 90.44 90 0.2

29 90.22 99.98 90.76 90.70 99.90 89.90 100.00 90.02 100.00 89.50 100.00 77.98 90 144.7

30 90.22 99.98 90.76 90.70 99.90 89.90 100.00 90.02 100.00 89.50 100.00 77.98 90 144.7

31 94.88 99.98 95.42 95.72 99.96 94.86 100.00 95.08 100.00 94.60 100.00 80.42 95 212.8

32 94.88 99.98 95.42 95.72 99.96 94.86 100.00 95.08 100.00 94.60 100.00 80.42 95 212.8

33 94.88 99.98 95.42 95.72 99.96 94.86 100.00 95.08 100.00 94.60 100.00 80.42 95 212.8

34 98.20 100.00 98.44 98.28 100.00 98.06 100.00 98.16 97.88 100.00 97.82 98.20 98 0.0

35 98.20 100.00 98.44 98.28 100.00 98.06 100.00 98.16 97.88 100.00 97.82 98.20 98 0.0

36 98.20 100.00 98.44 98.28 100.00 98.06 100.00 98.16 97.88 100.00 97.82 98.20 98 0.0

37 90.20 98.54 90.70 90.60 97.92 89.78 100.00 89.68 89.52 99.96 90.58 90.56 90 0.4

38 90.20 98.54 90.70 90.60 97.92 89.78 100.00 89.68 89.52 99.96 90.58 90.56 90 0.4

39 90.20 98.54 90.70 90.60 97.92 89.78 100.00 89.68 89.52 99.96 90.58 90.56 90 0.4

40 94.86 99.54 95.42 95.56 99.22 94.86 94.80 94.96 94.78 99.98 95.48 95.52 95 0.1

41 94.86 99.54 95.42 95.56 99.22 94.86 94.80 94.96 94.78 99.98 95.48 95.52 95 0.1

42 94.86 99.54 95.42 95.56 99.22 94.86 94.80 94.96 94.78 99.98 95.48 95.52 95 0.1
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No.\ t           1 2 3 4 5 6 7 8 9 10 11 12 Alpha SSE(α)

43 98.10 99.80 98.44 98.28 99.80 97.98 97.70 97.84 97.88 100.00 98.26 98.14 98 0.1

44 98.10 99.80 98.44 98.28 99.80 97.98 97.70 97.84 97.88 100.00 98.26 98.14 98 0.1

45 98.10 99.80 98.44 98.28 99.80 97.98 97.70 97.84 97.88 100.00 98.26 98.14 98 0.1

46 90.20 97.88 90.66 90.52 96.78 89.82 90.00 89.34 89.46 99.80 91.62 90.44 90 0.8

47 90.20 97.88 90.66 90.52 96.78 89.82 90.00 89.34 89.46 99.80 91.62 90.44 90 0.8

48 90.20 97.88 90.66 90.52 96.78 89.82 90.00 89.34 89.46 99.80 91.62 90.44 90 0.8

49 94.88 99.06 95.42 95.56 98.64 94.84 94.80 94.96 94.78 99.98 96.08 95.52 95 0.1

50 94.88 99.06 95.42 95.56 98.64 94.84 94.80 94.96 94.78 99.98 96.08 95.52 95 0.1

51 94.88 99.06 95.42 95.56 98.64 94.84 94.80 94.96 94.78 99.98 96.08 95.52 95 0.1

52 98.10 99.74 98.44 98.30 99.72 97.98 97.68 97.86 97.88 100.00 98.60 98.12 98 0.1

53 98.10 99.74 98.44 98.30 99.72 97.98 97.68 97.86 97.88 100.00 98.60 98.12 98 0.1

54 98.10 99.74 98.44 98.30 99.72 97.98 97.68 97.86 97.88 100.00 98.60 98.12 98 0.1

55 100.00 99.82 89.84 100.00 99.44 90.68 100.00 100.00 89.38 100.00 100.00 90.10 90 0.4

56 100.00 99.82 89.84 100.00 99.44 90.68 100.00 100.00 89.38 100.00 100.00 90.10 90 0.4

57 100.00 99.82 89.84 100.00 99.44 90.68 100.00 100.00 89.38 100.00 100.00 90.10 90 0.4

58 100.00 99.94 94.74 100.00 99.76 95.36 100.00 100.00 94.88 100.00 100.00 95.18 95 0.1

59 100.00 99.94 94.74 100.00 99.76 95.36 100.00 100.00 94.88 100.00 100.00 95.18 95 0.1

60 100.00 99.94 94.74 100.00 99.76 95.36 100.00 100.00 94.88 100.00 100.00 95.18 95 0.1

61 100.00 100.00 97.94 100.00 99.96 98.06 100.00 100.00 98.18 100.00 100.00 98.06 98 0.0

62 100.00 100.00 97.94 100.00 99.96 98.06 100.00 100.00 98.18 100.00 100.00 98.06 98 0.0

63 100.00 100.00 97.94 100.00 99.96 98.06 100.00 100.00 98.18 100.00 100.00 98.06 98 0.0

64 100.00 97.28 89.76 100.00 96.48 90.62 100.00 100.00 89.28 100.00 100.00 89.98 90 0.6

65 100.00 97.28 89.76 100.00 96.48 90.62 100.00 100.00 89.28 100.00 100.00 89.98 90 0.6

66 100.00 97.28 89.76 100.00 96.48 90.62 100.00 100.00 89.28 100.00 100.00 89.98 90 0.6

67 100.00 98.92 94.78 100.00 98.64 95.36 100.00 100.00 94.82 100.00 100.00 95.04 95 0.1

68 100.00 98.92 94.78 100.00 98.64 95.36 100.00 100.00 94.82 100.00 100.00 95.04 95 0.1

69 100.00 98.92 94.78 100.00 98.64 95.36 100.00 95.06 94.78 100.00 100.00 89.00 95 36.1

70 100.00 99.72 97.94 100.00 99.46 98.06 100.00 100.00 98.12 100.00 100.00 97.98 98 0.0

71 100.00 99.72 97.94 100.00 99.46 98.06 100.00 98.16 97.88 100.00 100.00 92.10 98 34.8

72 98.10 99.80 98.44 98.28 99.80 97.98 100.00 97.94 97.88 100.00 100.00 91.78 98 38.7

73 100.00 96.26 89.76 100.00 95.64 90.64 100.00 100.00 89.26 100.00 100.00 89.92 90 0.6

74 100.00 96.26 89.76 100.00 95.64 90.64 100.00 89.96 89.58 100.00 100.00 81.36 90 74.9

75 100.00 96.26 89.76 100.00 95.64 90.64 100.00 89.96 89.58 100.00 100.00 81.36 90 74.9

76 100.00 98.42 94.74 100.00 98.10 95.32 100.00 100.00 94.82 100.00 100.00 95.08 95 0.1

77 100.00 98.42 94.74 100.00 98.10 95.32 100.00 95.06 94.82 100.00 100.00 88.36 95 44.2

78 94.88 99.06 95.42 95.56 98.64 94.84 100.00 93.98 94.80 100.00 100.00 87.58 95 56.2

79 100.00 99.66 97.94 100.00 99.34 98.06 100.00 100.00 98.12 100.00 100.00 97.98 98 0.0

80 98.10 99.74 98.44 98.30 99.72 97.98 100.00 97.32 97.88 100.00 100.00 94.88 98 10.2

81 98.10 99.74 98.44 98.30 99.72 97.98 100.00 97.32 97.88 100.00 100.00 94.88 98 10.2

EV 100.00 94.72 99.92 95.20 100.00 77.16 100.00 100.00 94.04 100.00 99.98 94.54 95 319.5

HE 100.00 99.92 95.14 99.94 95.60 95.22 100.00 100.00 72.98 100.00 100.00 94.64 95 485.0

ST 100.00 94.80 100.00 94.88 100.00 94.46 100.00 94.86 100.00 94.06 100.00 94.26 95 1.8
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Appendix C   
Table C.1  Results of the MILP model with a total demand of 7200 over 12 periods. The base case is marked 
grey. 
 

 

Erratic demand pattern

CV = 0.10 CV = 0.25 CV = 0.33

k=1500 E(TC)

Total 
E(Q)

% 
Waste Order Policy SSE(α) E(TC)

Total 
E(Q)

% 
Waste Order Policy SSE(α) E(TC)

Total 
E(Q)

% 
Waste Order Policy SSE(α)

Service level 90%

w=-0.5 1 25057 7783 7.5 1.4.7.10 0.4 10 27210.5 8214 12.3 1.4.7.9.10 21.5 19 28172.5 8538 15.7 1.4.7.9.10 74.9

w=0 2 25349 7783 7.5 1.4.7.10 0.4 11 27717.5 8214 12.3 1.4.7.9.10 21.5 20 28748 8005 10.1 1.2.4.7.9.10 74.8

w=0.5 3 25583 7598 4.2 1.4.7.9.11 144.8 12 28176 7810 7.8 1.2.4.7.9.10 21.4 21 28912 7491 3.9 1.2.4.5.7.9.10 81.7

Service level 95%

w=-0.5 4 25467 7947 9.4 1.4.7.10 0.1 13 28062 8501 15.3 1.4.7.9.10 36.1 22 29335.5 8272 13.0 1.2.4.7.9.10 44.1

w=0 5 25841 7947 9.4 1.4.7.10 0.1 14 28648 7983 9.8 1.2.4.7.9.10 36.1 23 29606 7613 5.4 1.2.4.5.7.9.10 56.2

w=0.5 6 26050 7716 5.4 1.4.7.9.11 212.8 15 28835 7483 3.8 1.2.4.5.7.9.10 37.6 24 29812.5 7613 5.4 1.2.4.5.7.9.10 56.2

Service level 98%

w=-0.5 7 25932 8133 11.5 1.4.7.10 0.0 16 29045 8836 18.5 1.4.7.9.10 34.8 25 30429.5 7827 8.0 1.2.4.5.7.9.10 10.2

w=0 8 26383 7882 7.0 1.4.7.9.11 111.5 17 29357 7566 4.8 1.2.4.5.7.9.10 38.7 26 30743 7827 8.0 1.2.4.5.7.9.10 10.2

w=0.5 9 26660 7882 7.0 1.4.7.9.11 111.5 18 29540 7566 4.8 1.2.4.5.7.9.10 38.7 27 31056.5 7827 8.0 1.2.4.5.7.9.10 10.2

k=500 E(TC)

Total 
E(Q)

% 
Waste Order Policy SSE(α) E(TC)

Total 
E(Q)

% 
Waste Order Policy SSE(α) E(TC)

Total 
E(Q)

% 
Waste Order Policy SSE(α)

Service level 90%

w=-0.5 28 19750 7401 1.7 1.2.4.5.7.9.12 0.2 37 20962 7393 0.0 1.2.4.5.7.9.10.12 0.4 46 21540.5 7454 0.0 1.2.4.5.7.8.9.10.12 0.8

w=0 29 19759 7280 0.0 1.2.4.5.7.9.11 144.7 38 20962 7393 0.0 1.2.4.5.7.9.10.12 0.4 47 21540.5 7454 0.0 1.2.4.5.7.8.9.10.12 0.8

w=0.5 30 19759 7280 0.0 1.2.4.5.7.9.11 144.7 39 20962 7393 0.0 1.2.4.5.7.9.10.12 0.4 48 21540.5 7454 0.0 1.2.4.5.7.8.9.10.12 0.8

Service level 95%

w=-0.5 31 20003 7309 0.1 1.2.4.5.7.9.11 212.8 40 21474.5 7447 0.0 1.2.4.5.7.8.9.10.12 0.1 49 22257.5 7565 0.5 1.2.4.5.7.8.9.10.12 0.1

w=0 32 20007 7309 0.1 1.2.4.5.7.9.11 212.8 41 21474.5 7447 0.0 1.2.4.5.7.8.9.10.12 0.1 50 22277 7565 0.5 1.2.4.5.7.8.9.10.12 0.1

w=0.5 33 20010 7309 0.1 1.2.4.5.7.9.11 212.8 42 21474.5 7447 0.0 1.2.4.5.7.8.9.10.12 0.1 51 22296.5 7565 0.5 1.2.4.5.7.8.9.10.12 0.1

Service level 98%

w=-0.5 34 20276 7324 0.0 1.2.4.5.7.9.10.12 0.0 43 22066.5 7522 0.2 1.2.4.5.7.8.9.10.12 0.1 52 23142 7768 2.1 1.2.4.5.7.8.9.10.12 0.1

w=0 35 20276 7324 0.0 1.2.4.5.7.9.10.12 0.0 44 22073 7522 0.2 1.2.4.5.7.8.9.10.12 0.1 53 23222.5 7768 2.1 1.2.4.5.7.8.9.10.12 0.1

w=0.5 36 20276 7324 0.0 1.2.4.5.7.9.10.12 0.0 45 22079.5 7522 0.2 1.2.4.5.7.8.9.10.12 0.1 54 23303 7768 2.1 1.2.4.5.7.8.9.10.12 0.1

k=2000 E(TC)
Total 
E(Q)

% 
Waste Order Policy SSE(α) E(TC)

Total 
E(Q)

% 
Waste Order Policy SSE(α) E(TC)

Total 
E(Q)

% 
Waste Order Policy SSE(α)

Service level 90%

w=-0.5 55 27057 7783 7.5 1.4.7.10 0.4 64 29232.5 8653 16.8 1.4.7.10 0.6 73 30392.5 9117 21.0 1.4.7.10 0.6

w=0 56 27349 7783 7.5 1.4.7.10 0.4 65 29959 8653 16.8 1.4.7.10 0.6 74 31341.5 8538 15.7 1.4.7.9.10 74.9

w=0.5 57 27641 7783 7.5 1.4.7.10 0.4 66 30685.5 8653 16.8 1.4.7.10 0.6 75 32010.5 8538 15.7 1.4.7.9.10 74.9

Service level 95%

w=-0.5 58 27468 7947 9.4 1.4.7.10 0.1 67 30260 9064 20.6 1.4.7.10 0.1 76 31747.5 9659 25.5 1.4.7.10 0.1

w=0 59 27841 7947 9.4 1.4.7.10 0.1 68 31192 9064 20.6 1.4.7.10 0.1 77 32750 8955 19.6 1.4.7.9.10 44.2

w=0.5 60 28215 7947 9.4 1.4.7.10 0.1 69 31863 8501 15.3 1.4.7.9.10 36.1 78 33312.5 7613 5.4 1.2.4.5.7.9.10 56.2

Service level 98%

w=-0.5 61 27933 8133 11.5 1.4.7.10 0.0 70 31415 9526 24.4 1.4.7.10 0.0 79 33275 10270 29.9 1.4.7.10 0.0

w=0 62 28399 8133 11.5 1.4.7.10 0.0 71 32363 8836 18.5 1.4.7.9.10 34.8 80 34243 7827 8.0 1.2.4.5.7.9.10 10.2

w=0.5 63 28866 8133 11.5 1.4.7.10 0.0 72 33040 7566 4.8 1.2.4.5.7.9.10 38.7 81 34556.5 7827 8.0 1.2.4.5.7.9.10 10.2

k=1500 w=0 Service level 95%

E(TC)

Total 
E(Q)

% 
Waste Order Policy SSE(α)

EV 27719.5 8093 11.0 1.3.5.7.10 319.5

HE 27400 8163 11.8 1.4.6.7.10 485.0

ST 27992 7549 0.0 1.3.5.7.9.11 1.8


