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Real world observations suggest that social norms of cooperation can be effective in
overcoming social dilemmas such as the joint management of a common pool resource—but
also that they can be subject to slow erosion and sudden collapse. We show that these
patterns of erosion and collapse emerge endogenously in a model of a closed community
harvesting a renewable natural resource in which individual agents face the temptation to
overexploit the resource, while a cooperative harvesting norm spreads through the
community via interpersonal relations. We analyze under what circumstances small
changes in key parameters (including the size of the community, and the rate of
technological progress) trigger catastrophic transitions from relatively high levels of
cooperation to widespread norm violation—causing the social–ecological system to collapse.

& 2013 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

The history of mankind is one of gradual change in environmental quality and natural resource abundance, punctuated
with sudden collapses of populations, species, ecosystems, and sometimes even of entire civilizations [1,2]. The most
common example is the collapse of the human population on Easter Island following the depletion of forest resources [2,3].
To explain patterns of gradual change and sudden collapse the literature has focused on the existence of non-linear
relationships in the dynamics of renewable natural resources. Examples of natural systems characterized by non-linearities
are those that feature a minimum population size below which extinction is inevitable [4,5], but also those with complex
interactions between the various components of the ecological system as is the case in, for example, shallow lakes and semi-
arid ecosystems [6–8]. Strong non-linearities in the regeneration functions typically give rise to the prediction that
continued overharvesting of the resource results in a gradual demise of the resource until a threshold—or tipping point—is
reached, beyond which collapse is inevitable and subsequent system restoration is very costly, or even impossible [9].

In this paper we contribute to the literature on tipping points in social–ecological systems by analyzing how social
interactions between the users of a natural system affect its resilience. Building on [10–13] we use evolutionary game theory to
develop a model in which a finite number of community members have access to a commonly owned renewable resource. As is
Published by Elsevier Inc. All rights reserved.
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the case in the real world, we assume that the common property regime is such that community members are allowed to harvest
the resource, but that they are not allowed to hire non-community members to engage in resource harvesting too if their own
time constraint is binding [14]. Next, natural regeneration is captured by a standard logistic growth function, and community
members can decide to act cooperatively by limiting their extraction, or not. Agents are tempted to act non-cooperatively (also
referred to as defecting) because of the extra income this generates, but we also allow for the possibility that whenever a
cooperator and a defector meet, the cooperator may convince the defector of the social desirability of acting cooperatively. The
diffusion of social norms regarding harvesting is thus assumed to take place via interpersonal relations, with cooperation being
“contagious” [15–18]; see Ref. [19] for empirical evidence in the context of renewable resource use. This modeling approach is
consistent with the experimental evidence that verbal expressions of discontent can induce and sustain cooperation in social
dilemma situations [20], but the mechanism can also be interpreted as reflecting peer-to-peer sanctions or rewards [21–23].

Our paper generates tipping points without explicitly introducing (strong) non-linearities in the dynamics of either the
ecological system or the social–economic system. The resource's logistic growth function implies that the percentage rate of
resource regeneration increases linearly with resource scarcity, and the social–economic system is self-stabilizing as well.
If, for whatever reason, the number of cooperators increases, the social pressure on defectors rises, but the benefits of
defecting are larger too. Despite this apparent stability of its two components, the social–ecological system can still generate
positive feedbacks between them, giving rise to alternative stable equilibria. For some range of parameter values the “good
equilibrium” can be very resilient to exogenous shocks or external developments (such as population growth or
technological progress in harvesting), while the same exogenous changes cause the social–ecological system to collapse
if the parameters are close enough to a critical threshold. The positive feedbacks, giving rise to tipping points, emerge
because the property rights regime implies that each community member's harvesting time endowment is finite.
If an exogenous shock causes a decline in the resource stock, the socially optimal individual harvesting effort level
decreases. Cooperation thus requires agents to decrease their effort levels, and hence the temptation to defect increases
with resource scarcity. As a result, more cooperators decide to defect, putting even more pressure on the resource stock. This
leads to a spiral of depletion and defection, and eventually, the system flips to the “bad” equilibrium. The societal
consequences of such a flip can be substantial because the system exhibits hysteresis. Upon system collapse, moving back to
the “good equilibrium” can be difficult and costly—if it is feasible at all.

We thus show that collapse can be caused by interpersonal interactions and economic constraints, rather than by the presence
of inherently non-linear functional forms. In that sense, our model is related to models that generate tipping points in a general
equilibrium framework because of interactions between economic sectors, with increased harvesting in the resource sector
imposing a negative externality on another sector, resulting in even more intensive resource harvesting [24,25]. Our focus on the
social dynamics at the community level is especially relevant because of the role of social norms in community governance of
common pool resources such as fish, forests, or grazing lands [26–28]. Our paper identifies a mechanism why community
resource management can be successful in some situations and not in others, and is even relevant for resources whose
regeneration functions are not characterized by strong non-linearities. As such, the mechanism may have been one of the factors
that contributed to social–ecological collapses in the past [29,30]. But the insights obtained by this paper may also be relevant for
today's policy makers. If centralized enforcement is cheap and effective, community resource management is inefficient. But if the
monitoring and policing costs of formal regulation are high (for example when it regards resources that are geographically
remote), community management may be more efficient as long as the community's support for the social harvesting norms is
sufficiently large, and this paper provides insights for the government to start intervening to prevent collapse. In that sense the
paper also complements the literature in which a formal regulator aims to enforce property rights [31,32].

Our paper is, however, not the first in noting that coupled social–ecological systems can be inherently complex [33–35].
Iwasa et al. [36] analyze a system in which agents are more inclined to undertake pollution-mitigating activities when the
environmental quality is poor, and also when social pressure is high. In their model, alternative stable states occur when
social pressure increases strongly with the fraction of cooperators in the community. This framework has been extended to
incorporate non-linear resource dynamics as well, leading to even richer dynamics [37]. Taylor [25] develops a minimum
viable population model in which resource extraction has a negative effect on the profitability of a competing sector,
rendering extraction even more attractive. Our paper is complementary to this research in that we do not use any functional
forms that, by themselves, give rise to tipping points; in our model collapse can occur because of personal interactions, and
the fact that individuals' time endowments are not infinite.

The setup of the paper is as follows. In Section 2 we present the model, focusing on the mechanisms driving changes in
the size of the resource stock and on those affecting the number of cooperating individuals in the community. The analysis is
fairly complex, and hence we present the intuition behind the underlying mechanism in Section 3, providing the proofs as
well as a numerical robustness analysis in Section 4. Section 5 concludes.

2. The model

We assume that there are N41 agents in a community who have access to a commonly-owned natural resource. The
right to extract is exclusively associated with community membership; community members are not allowed to employ
outsiders to assist in harvesting [14]. The size of the resource stock at time t is denoted by XðtÞ: Each agent is endowed with a
fixed effort level ê which she can allocate to harvesting the common pool resource, or to an alternative economic activity.
The amount of effort agent i (i¼1…N) allocates to resource harvesting at time t is denoted by eiðtÞ. Assuming that the return
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to effort in the alternative economic activity is constant and equal tow, the income agent i derives from this activity at time t
is equal to wðê−eiðtÞÞ; with 0≤eiðtÞ≤ ê:

The relationship between an individual agent's harvesting effort eiðtÞ and the quantity of resource goods harvested hiðtÞ is
given by the Schaefer production function, hi(t)¼qX(t)ei(t), where q is a technology parameter. Assuming logistic growth,
denoting the intrinsic growth rate by r and rescaling resource units such that the carrying capacity is equal to unity, net
natural growth of the resource is equal to GðXðtÞÞ ¼ rXðtÞð1−XðtÞÞ; and hence resource growth is given by

dXðtÞ=dt ¼ rXðtÞð1−XðtÞÞ−qXðtÞ ∑
N

i ¼ 1
eiðtÞ: ð1Þ

Regarding harvesting revenues, we assume that resource goods can be sold at a time-invariant unit price P so that agent
i's sales revenues are PhiðtÞ ¼ PqXðtÞeiðtÞ: Harvesting gives rise to an intertemporal negative externality as excessive
extraction today reduces the size of the available resource stock tomorrow. This intertemporal consequence of today's
harvesting is sometimes referred to as the “Class I problem” [38]. “Class II problem” then refers to the problem caused by
instantaneous externalities, where an agent's income in a specific period negatively depends on the total effort put in by the
N–1 agents in the community in that same period—think of congestion or crowding. In this paper, we do not just account for
the intertemporal externality; we also introduce an instantaneous one (see below). We do so for two reasons. First, while
the intertemporal externality may be economically more severe in the real world than the instantaneous ones, the latter
may be important too [39–41]. Second, analyzing the consequences of an instantaneous externality on (myopic) agents'
propensity to cooperate, is much less complicated than in case of forward-looking agents trying to solve the intertemporal
externality, while the underlying mechanism that is explored here is essentially the same.

We follow [42–44] by modeling the instantaneous negative externality as a cost component in the agent's income. While
gross harvesting income is equal to PqXðtÞeiðtÞ; we assume that the community's harvesting activity may cause congestion,
the severity of which depends on the total amount of effort (E(t)) the community puts into resource harvesting, where
EðtÞ≡∑N

j ¼ 1ejðtÞ. Congestion may occur because the larger the aggregate harvesting effort, the longer agents have to search for
good spots, spend more money on fuel and transportation, etc. [42]. We follow Clark [44] by assuming that the congestion
costs per unit of e arising from a one unit increase in the community's aggregate effort (E) are equal to v, with v≥0.1 As he
writes (on p. 1126), in “this convenient formulation, effort ei is always measured in terms of its effect on the fish stock
ðhi ¼ qXeiÞ; but the cost of ei [positively] depends on the activities of other [agents]”. That means that total income earned by
agent i at time t is:2,3

yiðtÞ ¼ PqXðtÞeiðtÞ þwðê−eiðtÞÞ−vEðtÞeiðtÞ: ð2Þ

Using δ to denote the agents' discount rate, social welfare maximization requires maximizing the net present value of
community income, YðtÞ≡∑N

i ¼ 1yiðtÞ; as follows:

maxE
Z ∞

0
e−δt ½PqXðtÞEðtÞ þwðNê−EðtÞÞ−vE2ðtÞ�dt ð3Þ

subject to 0≤eiðtÞ≤ ê for all i, as well as (1). Hence, (3) allows us to capture both the intertemporal and the instantaneous
externalities.4 When we focus on just the Class II problem (the instantaneous one), we have δ-∞ (because agents are very
impatient, or simply because they are unaware of the intertemporal externality); the case of Class I but no Class II problem
can be analyzed by setting ∞4δ≥0 and v¼0.
1 Note that the crowding costs are assumed independent of the wage rate, implying that we focus on crowding resulting in increased expenditures on,
for example, fuel or nets. To facilitate analytical solutions, we set the wage rate equal to zero in Section 4.1. If congestion costs were assumed to exclusively
consist of forgone income from outside employment there would be no externality for that case. For consistency, we thus need to assume that there are
cost components other than foregone income. As the wage rate is assumed to be exogenous, making the congestion costs dependent on the wage rate
increases notational complexity without yielding additional insights. Therefore we chose to capture the congestion externality by a specific constant, v.

2 We model crowding as a cost component rather than via the production function (with crowding reducing harvesting productivity; cf. [41,45]) to
keep the model analytically tractable. The latter modeling approach would imply that the harvesting production function equals hiðtÞ ¼ ðqXðtÞ−v0EðtÞÞeiðtÞ,
and hence the dynamics of the resource stock (see (1)) would be specified as dXðtÞ=dt ¼ rXðtÞð1−XðtÞÞ−ðqXðtÞ−v0EðtÞÞEðtÞ. The severity of the crowding
externality would then not just affect profits but it would also shift the nullcline of the resource. This would complicate the analytical solution substantially
without yielding any new insights, and hence we decided to model the instantaneous externality via crowding costs rather than via decreased harvesting
productivity. What is essential for our model is that agents are tempted to defect because of differences in profits between acting cooperatively and
selfishly, and this is the case if one agent's effort decreases the returns other agents receive on their harvesting effort, but also if it increases the per-unit
harvesting costs of the other agents.

3 As stated before, we use the same specification as Clark [44], but a more general specification would be the following: yi ¼ kþ Phi−
cðhi ;w; E−i ;XÞ;where k is lump-sum income, Phi are the harvesting revenues associated with harvesting quantity hi and cðhi ;w; E−i ;XÞ are the total costs
incurred. What we need is that ∂c=∂hi40; ∂c=∂E−i40; ∂c=∂Xo0; and a specification that meets these requirements is cðw;hi ; E−i ;XÞ ¼ φðw; E−i;XÞhi
þϕðw; E−i;XÞh2i ; where φ¼ ðwþ vE−iÞ=ðqXÞ; ϕ¼ v=ðqXÞ2 : In fact, this cost function is the one associated with problem (2)—note that k is then equal to wê:
Applying Shephard's lemma, e¼ ∂cð�Þ=∂w, we have e¼ h=qX, and hence cðhi ;w; E−i ;XÞ allows us to retrieve the Schaefer production function postulated in
(1). Next, it also allows us to not only infer the extra costs of crowding for given quantity harvested (∂cð�Þ=∂E−i ¼−vei; cf (2)), but also the full marginal costs
of crowding (that is, taking into account that the agent may want to change the quantity harvested, hi , in response to changes in E−i). Maximizing
yi ¼ kþ Phi−cðhi ;w; E−i ;XÞ requires P ¼ ∂cðhi ;w; E−i ;XÞ=∂hi so that hn

i ¼ ðP−φÞ=ð2ϕÞ: Substituting hn

i into yi we have the maximized income function yn

i ¼wêþ
ðP−φÞ2=ð4ϕÞ; and the full marginal costs of crowing are equal to dyni =dE−i ¼−ððP−φÞ=2ϕÞðdφ=dE−iÞ ¼−ðqPX−w−vE−iÞ=2.

4 From here onwards we omit time arguments, unless omitting them may cause confusion.
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We assume that agents can choose between two types of behavior: to act cooperatively, or to “defect”. All agents are
aware of the social benefits of internalizing the (instantaneous and/or the intertemporal) negative externalities, and some of
them decide to act cooperatively. Those who do, are assumed to put in their fair share (i.e., 1/N) of the socially optimal
aggregate harvesting effort (that is, the one that solves (3) given the current size of X). Others, however, decide to act non-
cooperatively because of the higher income associated with defection. Each agent that defects is assumed to choose the
effort level that maximizes his private income level given the aggregate amount of effort put in by the N−1 other agents.5

Using superscripts C and D to respectively denote cooperators and defectors, the above assumptions imply that yD≥yC : The
prospect of having higher incomes is what tempts agents to start acting selfishly, and we assume that agents are more likely
to defect the larger is yD as compared to yC : More specifically we assume that the fraction of cooperators that decide to
defect at time t is equal to ðdC=dtÞ=C ¼ −βð1−ðyCðXÞ=yDðX;CÞÞÞ; where CðtÞ denotes the number of cooperators at time t, and
β is the percentage decrease in CðtÞ associated with a one unit decrease in yC=yD:6

Next, we assume that whenever a cooperator meets a defector, there is a probability μ that the former succeeds in
convincing the latter to act cooperatively. Assuming that social encounters occur randomly, the probability of a cooperator
meeting a defector can be modeled as a Poisson process. Using DðtÞ≡N−CðtÞ to denote the current number of defectors in the
community, the probability of an encounter taking place in time interval ðt; t þ ΔtÞ is equal to λCðtÞDðtÞΔt=N; where λ is the
Poisson parameter. Social pressure thus increases the number of cooperators by Cðt þ ΔtÞ−CðtÞ ¼ αCðtÞDðtÞΔt=N, where α≡λμ.
Using the continuous-time equivalent and combining the effects of social pressure and temptation, we have:7

dC=dt ¼ α

N
CðN−CÞ−βC 1−

yCðXÞ
yDðX;CÞ

� �
: ð4Þ

Eq. (4) thus captures what we label “contagious cooperation with the temptation to defect”, and relies essentially on
three assumptions. First, some agents are willing to uphold a social extraction norm (doing what is optimal for the group as
a whole), and try to impose social pressure on non-cooperators to also start adhering to the norm [20,46,47]. Second, the
propensity to (dis)obey a cooperative norm depends on the temptation to defect, but also on whether individuals have
recently been exposed to cooperatively-minded agents. There is a vast literature on the role of personal encounters in
spreading social norms (see for example [48–51]). Face-to-face communication is found to be very effective in inducing
cooperation in laboratory experiments, and much more so than alternative modes of communication [46]. Being confronted
with other people's behavior conveys information and induces people to update their “best mode of behavior” cf. [18,49].
Indeed, even subtle cues of peer pressure are often enough to induce rule-obeying behavior [48]. The idea of being watched
(even if this is induced by mere photographs of human eyes) tends to improve rule-compliance [52]. And if social inter-
actions are repetitive, the resulting behavior can become a social norm [50] which may subsequently be internalized [51].
The mechanisms by which cooperation spreads include moral persuasion, social pressure and feelings of guilt [20,47,53–56].8

Third, the probability of a cooperator meeting a defector follows a random Poisson process. This last assumption is
more likely to be met in some circumstances (e.g., when defectors can hide their harvests so that cooperators can only
indentify defectors “in the field”) but not in all—allowing for targeted encounters would be an interesting extension of
the model.

3. Gradual changes in cooperation and resource conservation, and sudden collapse

The analysis of why the social–ecological system (1)–(4) is characterized by alternative stable states is complicated.
Because of this, we first provide the intuition behind the mechanism in this section, and present all the proofs and
robustness checks in the next.

The mechanism giving rise to positive feedbacks and alternative stable states is as follows. To maintain cooperation,
social pressure should be sufficiently large, and the temptation to defect should be sufficiently small; see (4). The strength of
social pressure is a function of the number of cooperators: the larger is C, the larger the pressure on defectors to change their
behavior. The temptation to defect is also a function of the number of cooperators. For given X the temptation to defect
(weakly) increases with C because of the following. Solving (3), cooperators aim to maximize the (net present value of the)
total amount of resource rents accruing to the community. They take into account the (instantaneous and/or intertemporal)
negative externalities associated with their harvesting activities, and hence they put in less effort into harvesting than
5 Most evolutionary game theory models on cooperation and defection assume that effort levels chosen only depend on the behavioral mode chosen
(cooperation, or defection), but not on the size of the resource stock [10–13]. In other words, effort is either “high” or “low”, depending on whether an
individual is a cooperator or not. In our model, the allocation of effort is endogenous. This assumption is not just realistic, it also is crucial for explaining
under what circumstances a community is able to maintain cooperation, and when cooperation collapses.

6 Even though agents are discrete entities, we treat C as a continuous variable in the analysis. Explicitly acknowledging agent numbers to be discrete
complicates the notation without affecting the essence of the results as long as the number of agents is sufficiently large (as assumed in this paper).

7 If α≤βðN−1Þ=ð2NÞ; the system's collapse results in C¼0—see Proposition 1 in Section 4.1 and Eq. (A6) in appendix A3. If C¼0, we have dC/dt¼0
independent of whatever policy the regulator may want to undertake (see (4)). This is neither plausible nor very interesting, and hence we assume that
α4βðN−1Þ=ð2NÞ:

8 Another mechanism often cited are punishments [23,57,58]. Although our model does not cover the option for costly punishment, it is
straightforward to see that both gradual change and sudden collapse can be generated by a model with costly punishment. All what we need for tipping
points to emerge is a countervailing force for defection.
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defectors (eC ≤eD). The larger C, the larger the available amount of resource rents, and hence the more tempting it is to
defect and appropriate these rents.

So, the temptation to defect depends on C, but it is a function of the size of the remaining stock as well. Perhaps
surprisingly, the smaller X, the larger is the temptation to defect. Cooperators take into account the negative harvesting
externalities and switch to interior effort levels at an earlier stage of resource depletion than defectors. Thus, eC=eD falls with
resource depletion, and so does yC=yD (because ∂y=∂e40 unless all rents have been dissipated). Hence, the temptation to
defect is larger the larger is C and the smaller is X.9

With these mechanisms in mind, we now address the question why the social–ecological system may experience periods
of gradual change, punctuated by sudden collapse. Suppose that, for a given set of parameters, the net social marginal
harvesting productivity is larger than the wage rate even if all agents harvest as much as they can (ei ¼ ê for all i¼1…N).
Then it is socially optimal for each agent to put in ê: This would be the case if the community is fairly small (small N), if the
outside wage rate is not too high (small w), if the rate of regeneration is fairly high (r large), etc. Let us use eðr; P; q;N; v;w; δÞ
to denote the critical time (or effort) endowment at which the socially optimal individual effort level (and hence eC) is
exactly equal to ê in steady state.10 That means that there is no social dilemma as long as ê ≤ eð�Þ : eC ¼ eD ¼ ê so that yC ¼ yD

(see (2)), and hence, in steady state, C¼N (cf. (4)).
So how do exogenous developments such as technical progress or population growth affect the critical effort endowment

eð�Þ for which eC ¼ ê? An increase in q or N amplifies the—effective—labor input in harvesting: ∂eð�Þ=∂qo011 and
∂eð�Þ=∂No0. The larger N or q, the lower the socially optimal individual effort level and hence the smaller the critical
effort endowment level for which a social dilemma materializes.

As long as the parameter set is such that êoeð�Þ we have full cooperation, and increases in N or q result in a gradual
decrease in the size of the resource stock, because (effective) labor input in harvesting increases. If exogenous developments
in N, q, or any other parameter cause eð�Þ to fall below ê; the social dilemma emerges and cooperators choose interior effort
levels. We then have eCoeD ¼ ê; and we also have yCoyD (cf. (2)). As long as ê−eð�Þ is positive but sufficiently close to zero,
the decrease in cooperation and resource conservation is small, because temptation to defect is small (as X is large) while
the probability of a defector meeting a cooperator, is high (as C is large).

However, we can identify a tipping point, ê2ðr; P; q;N; v;w; δ; α; βÞ; where the same gradual changes cause the social–
ecological system to collapse. For the system to be in steady state, we need dX/dt¼0 and dC/dt¼0 (cf. (1) and (4)). At ê2ð�Þ;
the steady state is stable, but the nullclines of X and C are just tangent. That means that any change in N, q, or any other
parameter can cause the equilibrium to disappear, triggering a spiral of defection and resource depletion. As before, changes
in N or q cause cooperators to reduce their harvesting effort levels, while defectors continue to allocate their entire time
endowment to harvesting. As a result yC=yD decreases, some cooperators defect, aggregate harvesting effort increases, and
the resource stock is reduced further. This induces cooperators to reduce their harvesting effort even more, thus resulting in
an even stronger decrease in the income ratio, and a spiral of defection and resource depletion unfolds. This positive
feedback mechanism gives rise to a rapid deterioration of both cooperation and the resource stock, and the negative spiral is
stopped only when (almost) all rents have been dissipated. That is, if the average net private return on harvesting effort is
equal to the wage rate (possibly zero), such that defectors are indifferent between putting an extra unit of effort into
harvesting, or not. Hence, if ê2ð�Þ falls below ê; the system moves from an equilibrium with reasonably high levels of
cooperation and resource conservation (the “good equilibrium”), to one characterized by little cooperation and near-
complete rent dissipation (the “bad equilibrium”).12

The typical pattern is depicted in Fig. 1. On the horizontal axis we plot ê=eð�Þ; which portrays the strength of the social
dilemma, and on the vertical axes C and X (in Panels A and B, respectively). We plot ê=eð�Þ rather than just ê to emphasize
that a change in any parameter can cause the number of equilibria to change—not just changes in ê itself. The straight lines
connect the system's stable steady states that emerge under various parameter constellations, while the dashed lines
indicate unstable steady states. There are two branches of stable equilibria (for both C and X), an upper and a lower branch.
An equilibrium located on the lower branch is characterized by very low levels of cooperation and with relatively small
resource stocks—all resource rents have been dissipated, and hence we refer to this equilibrium as the “bad equilibrium”.
The upper branch connects all the “good equilibria”—those characterized by relatively high levels of C and X.
9 We implicitly assume that all agents know the current resource stock and the socially optimal effort level is public knowledge. Furthermore, defectors
can infer the number of cooperators, for example by observing their own net returns to harvesting (from which they can derive the total amount of
harvesting effort put in by the rest of the community). These assumptions are fairly standard in economics but not necessarily very realistic. However, note
that our results hold as long as (a) for given X cooperators choose lower effort levels than defectors, and (b) the effort put in by cooperators falls if
X decreases. Both assumptions are likely to be met in the real world too. When people observe the size of the stock to fall, marginal productivity of
harvesting falls because of increased search costs, and hence it is obvious that it is in society's interest to allocate less effort to harvesting. Cooperators will
thus do so, but defectors try to appropriate (part of) the resource rents created by other community members acting cooperatively, and hence do not
reduce their effort at all, or reduce it by less than what the cooperators do.

10 Note that this means that e is a function of all system parameters except α and β. As long as eC ¼ ê there is no temptation to defect, and hence the
probability of a cooperator convincing a defector to become cooperative, is immaterial too.

11 At least for q4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2rv=P

p
; see Appendix A3.

12 Note that, unlike e, ê2 is a function of α and β—as well as of all other system parameters ðr; P; q;N; v;w; δÞ: The larger the steady-state number of
cooperators, the larger the defectors' optimal amount of effort, and hence the more likely it is that a given time endowment ê is binding. Hence, the
probability of a defector facing a binding time constraint is smaller the larger is α and the smaller is β (cf. (4) and also (A12) in Appendix A3).
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Because we plot the ratio ê=eð�Þ on the horizontal axis, a move to the right can be the result of an exogenous increase in ê;
but it may also be the result of an exogenous increase in for example N or q. If ê=eð�Þo1, the social dilemma is absent and
we have eC ¼ ê and hence C¼N. Any increases in ê, N, q, etc. just result in a gradual decrease in the size of the resource stock
—the system is always in the good equilibrium; see Panels A and B in Fig. 1. If ê=eð�Þ41; a social dilemma materializes,
because eCo ê becomes socially optimal while it is privately optimal to continue putting in ê (that is, eD ¼ ê). Cooperation
then decreases as the temptation to defect increases, but the resource stock itself does not fall by much. This is because
cooperators compensate for the extra effort put in by the new defectors by choosing lower effort levels themselves, thus
limiting the increase in aggregate harvesting effort. As long as ê is below a second threshold level (or tipping point),
ê1ðr; P; q;N; v;w; δ; α; βÞ; there is just one stable equilibrium, the good one. If ê4 ê2ð�Þ there is also just one equilibrium—the
bad one. If ê1ð�Þo êo ê2ð�Þ the system is in either the bad or the good equilibrium, depending on the history of parameter
changes—the system is located on the upper (lower) branch if the system approaches ê2ð�Þ from below (above).

Starting from a situation in which êo ê2ð�Þ; small changes in q, N or any other parameter result in small changes in C and
X as the system moves along the upper branch of stable equilibria—until ê¼ ê2ð�Þ:When the system moves beyond ê¼ ê2ð�Þ;
the same small changes result in the social–ecological system collapsing to the bad equilibrium. Upon collapse the social–
ecological system is in the locally stable bad equilibrium, and the system can only flip back to the good one if effective labor
time becomes scarce again (that is, if q, N etc. fall such that ê=e decreases toward unity). For the system to flip back to the
good equilibrium on the upper branch it is insufficient to restore êo ê2ð�Þ. Only if ê falls below the second tipping point,
ê1ð�Þ; defectors are sufficiently constrained in their harvesting efforts that they are unable to appropriate all the extra rents
accruing from additional cooperation. Cooperation increases, the resource is exploited less intensively, and the stock
recovers. That means that the difference between yC and yD decreases, while the subsequent increase in the number of
cooperators causes the social pressure on defectors to increase too. As a result, a positive spiral of cooperation and resource
restoration pushes the system back to the good equilibrium on the upper branches of Fig. 1.
4. Analysis

Having provided the intuition why the system is characterized by a positive feedback, we now proceed as follows.
In Section 4.1 we analyze the case where (i) agents are assumed to be aware of the instantaneous externality (the Class II
problem) but not of the intertemporal one (the Class I problem), and (ii) there is no outside employment opportunity. That
means that we assume v40; w¼ 0 and δ-∞: These assumptions enable us to present the full analytical solution, and the
results correspond perfectly with Fig. 1 presented above.

The assumptions of agents being myopic and fully dependent on the resource are analytically convenient but maybe not
always equally realistic. Therefore, we relax the assumption of no external labor market in Section 4.2. Analytically solving
the case of w40 is cumbersome, and hence we rely on numerical methods (together with a robustness analysis testing
whether the mechanism is the same for all possible drivers of change—population growth, technical progress, etc.).
In Section 4.3 we drop the assumption of agents being ignorant of the intertemporal externality (that is, we then assume δ ≥ 0).
4.1. Cooperation and collapse when agents are myopic and dependent on the resource

In this subsection we assume that community members are aware of the instantaneous crowding externality (the Class II
problem) but that they do not take the intertemporal externality (the Class I problem) into account—because they are not
fully informed about the dynamics of resource regeneration, or simply because they are myopic. Letting δ-∞ in (3),
the relevant benchmark for cooperation is the aggregate effort level ~E that maximizes the community's instantaneous
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aggregate income while taking into account the Class II problem:

~EðXÞ ¼max
E

fPqXE þwðNê−EÞ−vE2j0≤E≤Nêg: ð5Þ

Following Bischi et al. [59], we assume that cooperators always put in their fair share of the aggregate effort,
eCðXÞ ¼ ~EðXÞ=N. Solving (5) and dividing by N, we have

eCðXÞ ¼
ê if X≥ wþ 2vNê

� �
=ðPqÞ;

PXq−w
2vN if w=ðPqÞ≤Xo wþ 2vNê

� �
=ðPqÞ;

0 if 0≤Xow=ðPqÞ:

8>><
>>: ð6Þ

Defectors choose ei ð0≤ei ≤ êÞ to maximize individual income, as given in (2). Using E−i≡∑
j≠i
ej to denote the total amount of

effort put in by the N−1 other agents, a defector's best response (BR) function is

eBRðX; E−iÞ ¼min
PXq−w

2v
−
1
2
E−i; ê

� �
: ð7Þ

Noting that E−i ¼ CeC þ D−1ð ÞeBR and using (6), the equilibrium effort of defectors is

eDðX;CÞ ¼
ê if X≥ w

Pq þ 2vNðN−Cþ1Þê
Pqð2N−CÞ ;

ðPXq−wÞð2N−CÞ
2vNðN−Cþ1Þ if w

Pq ≤Xo w
Pq þ 2vNðN−Cþ1Þê

Pqð2N−CÞ ;

0 if 0≤Xo w
Pq :

8>>><
>>>:

ð8Þ

Note that the optimal harvesting effort of defectors depends on both X and C (cf. (8)) while the socially optimal effort
level chosen by the cooperators is just a function of X (cf. (6)).

Having derived the effort levels of cooperators and defectors, we now analyze under what circumstances the social–
ecological system is characterized by alternative stable states. To maintain analytical tractability we set w¼0 in the rest of
this subsection—but see Section 4.2 for the case where w40. Setting w¼0 is mathematically convenient because it
substantially facilitates the analysis of the social dynamics as embodied in Eq. (4).13 Note that despite the fact that we
assume δ-∞, the transition from the “good” to the “bad” state is still very costly to society. Aggregate welfare under full
cooperation is equal to YC ¼ q2P2X2=ð4vÞ, while the Nash equilibrium welfare level (that is, setting C¼0) is
YNash ¼ q2P2X2N=vðN þ 1Þ2: Taking the ratio of the two, we find that YNash=YC ¼ 4N=ðN þ 1Þ2, and this ratio is quite close
to zero even when N is fairly small. So even when agents are myopic, the transition from the good state to the bad state
constitutes a severe welfare loss.

Let us now derive the steady states of the social–ecological system. In steady state we have dX/dt¼0 and dC/dt¼0
(cf. (1) and (4)), and the (relative) levels of effort chosen by cooperators and defectors crucially affect both the location and
slope of these two nullclines. Hence we first state the following Lemma:

Lemma 1. Effort levels of cooperators and defectors in (C,X) space if w¼0 and δ-∞

In (C, X) space we can identify three regions (denoted R1, R2 and R3) that differ in the effort levels chosen by the
cooperators and defectors:

If X≥
2vNê
Pq

; we have eCðXÞ ¼ eDðX;CÞ ¼ ê; ð9:R1Þ

If
2vNðN−C þ 1Þê

Pqð2N−CÞ ≤Xo 2vNê
Pq

; we have eCðXÞoeDðX;CÞ ¼ ê; and ∂eC=∂X40; ð9:R2Þ

If Xo 2vNðN−C þ 1Þê
Pqð2N−CÞ ; we have eCðXÞoeDðX;CÞo ê; with

eC

eD
¼ N−C þ 1

2N−C
≡ηðCÞ and ∂eC=∂X ¼ ηðCÞ∂eD=∂X40: ð9:R3Þ

Proof. This follows immediately from inserting w¼0 into (6) and (8) and noting that ηðCÞ ¼ ðN−C þ 1Þ=ð2N−CÞo1 for all
N41. &

In region 1 (R1) the resource is sufficiently abundant so that there is no social dilemma (yet). In R2 defectors still allocate
all their available effort to harvesting, but cooperators choose interior effort levels—and the latter type's effort level is
smaller, the lower the remaining resource stock. In R3 both types choose interior effort levels (with eCoeDo ê). The three
regions are crucial when drawing the phase planes of the system; see Fig. 2A and B. The two boundaries between the three
regions are depicted using thin, uninterrupted lines. The horizontal one is the boundary between R1 and R2 ðX ¼ 2vNê=PqÞ,
and the downward-sloping concave line is the boundary between R2 and R3 ðX ¼ ð2vNðN−C þ 1ÞêÞ=ðPqð2N−CÞÞÞ.
13 The temptation to defect is a (decreasing) function of yC=yD: Substituting eC and eD into (2) and taking the ratio, we have yC=yD ¼
ððPqX−w−vEÞeC þwêÞ=ððPqX−w−vEÞeD þwêÞ, and hence yC=yD ¼ eC=eD if w¼0, where eC and eD are identified in (6) and (8).
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The nullclines of C and X are also depicted in Fig. 2A and B, and their locations and slopes are derived in Lemmas 2 and 3
below. Before doing that, two things should be noted about regions R1–R3. First, because defectors choose interior effort
levels in R3, we can conclude that (almost) all resource rents are dissipated in this region—if not, it would pay for selfish
agents to put in extra effort.14 This implies that the community's aggregate income decreases when the system moves from
R1 to R3: the smaller the resource stock, the lower is aggregate income, and the higher is the need for cooperation. Second,
the income ratio yC=yD decreases when the system moves from R1 to R3. The instantaneous net marginal benefits of
harvesting ðPqX−vE; cf. (2)) are the same for all agents, and hence yC=yD ¼ eC=eD. From (9.R1) to (9.R3) we infer that yC=yD is
equal to unity in R1, that it decreases when the stock is being depleted in R2, and that it reaches its minimum (and remains
constant) as soon as the system is in R3. Hence, while the need for cooperation increases when the system moves down
from R1 via R2 to R3, the temptation to defect increases too. Having identified the three regions, let us now have a closer
look at the dC/dt¼0 isocline; see also Fig. 2A.

Lemma 2. The dynamics of cooperation and defection if w¼0 and δ-∞

Lemma 2.1. In (C, X) space, the nullcline of the number of cooperators, denoted as CðXÞjdC=dt ¼ 0; consists of three segments:
�

yi ¼
In R1, CðXÞjdC=dt ¼ 0 ¼N,

�
 In R2, CðXÞjdC=dt ¼ 0 ¼ κðXÞoN with dκ=dX40 and d2κ=dX2 ¼ 0,

�
 In R3, CðXÞjdC=dt ¼ 0 ¼ κ⪡N.
Lemma 2.2. ∀ X≥0; dCðXÞ=dêjdC=dt ¼ 0 ≤ 0 with the inequality being strict in R2.

Lemma 2.3. For given X, dC/dt4(o) 0 if Co ð4 ÞCðXÞjdC=dt ¼ 0.

Proof. See Appendix A1. □

Lemma 2.1 indicates that the dC/dt¼0 isocline consists of three segments. In R1 and R3 this nullcline is vertical in (C,X)
space, while it is an upward-sloping linear function in R2; see also Fig. 2A. The intuition is straightforward. Lemma 1 implies
that the temptation to defect in R2 is high when X is small, and hence the equilibrium number of cooperators is smaller the
lower is X. The nullcline of cooperation is vertical at C¼N in R1 because the temptation to defect is zero, while it is vertical in
R3 because here eC=eD is a function of C but not of X; see (9.R3).

Next, Lemma 2.2 states that the larger is the effort endowment ê, the more the dC/dt¼0 isocline is located to the left in
(C X) space in R2. The larger is ê, the less constrained defectors are in their harvesting activities, the larger the temptation to
defect and hence the smaller the equilibrium number of cooperators that can be sustained at any X.

Finally, Lemma 2.3 states that the nullcline of C is an attractor. For any given X, the larger is C, the larger the temptation to
defect (because E is smaller), and the smaller the number of defectors becoming cooperators (as there are relatively few
defectors). Hence, for a given X the strength of social pressure is larger (smaller) than the temptation to defect if C is small
(large).

Let us now derive the dX/dt¼0 isocline, which we denote by XðCÞjdX=dt ¼ 0:

Lemma 3. The dynamics of the resource stock if w¼0 and δ-∞

Lemma 3.1. If ê≤ rPq=N
2rvþPq2 ≡e; XðCÞjdX=dt ¼ 0 ¼ ψ42vNê=ðPqÞ:
14 Indeed, for all w≥0 and using (6) and (8) we have E≈ðPqX−wÞ=v in R3 because ðN−CÞ=ðN−C þ 1Þ≈1: Inserting this into (2) we have
ðPqX−w−vðPqX−wÞ=vÞei þwê¼wê for all i¼1…N.
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Lemma 3.2. If ê4e; XðCÞjdX=dt ¼ 0 does not exist in R1 and hence consists of just two segments:
�

inte
In R2, XðCÞjdX=dt ¼ 0 ¼ ψðCÞo2vNê=ðPqÞ for all C, with dψ=dC40; d2ψ=dC2o0,

�
 In R3, XðCÞjdX=dt ¼ 0≈ψ oo2vNê=ðPqÞ.
Lemma 3.3. If ê4e; dXðCÞ=dêjdX=dt ¼ 0≤0.

Lemma 3.4. For any C, dX/dt4(o) 0 for all Xoð4 ÞXðCÞjdX=dt ¼ 0:

Proof. See Appendix A2. □

Lemma 3.1 states that if ê≤eð�Þ—see Section 3—the steady state must be located in R1: the total amount of effort available
ðNêÞ is too small for the community to be able to draw down the resource stock to a level below the one where harvesting
becomes a social dilemma. The case of ê4eð�Þ (as described in Lemma 3.2) is more interesting, and is depicted in Fig. 2B.
In that case, the equilibria are located in R2 or even R3, and never in R1. That means that the nullcline of X then consists of
two segments, one in each region. In R2 it is upward-sloping (and concave). The larger is C, the lower is E, and hence the
larger the resource stock that can be sustained in equilibrium. However, in R3 the X nullcline is (almost) horizontal because
here all agents choose interior harvesting effort levels: if one defector decides to start acting cooperatively, the decrease in E
is negligible because all other defectors increase their effort levels in response.

Regarding the location of dX/dt¼0, Lemma 3.3 states that it is located farther to the South in (C,X) space the larger is ê.
The larger the effort endowment, the less agents are constrained in their harvesting, and hence (for every C and keeping
everything else constant) the smaller the equilibrium size of the resource stock. And regarding the dynamics of resource
regeneration, Lemma 3.4 states that the nullcline of X is an attractor. For any C, the lower is X, the smaller the aggregate
quantity harvested (because of lower aggregate effort, and because of lower marginal productivity of effort), and the higher
percentage resource growth rate; cf. (1). That means that for given C, regeneration is larger (smaller) than the quantity
harvested if X is small (large).

Having derived the shape and location of the two nullclines, we can determine the number of steady states of the system.
Visual inspection of Fig. 2 suggests that the nullclines can intersect once, twice or three times. Proposition 1 proves the
existence of alternative stable equilibria.

Proposition 1. For any set of parameters ðr; P; q;N; v; α; βÞ, three critical effort levels can be identified, eð�Þ, ê1ð�Þ; and ê2ð�Þ
(with eð�Þo ê1ð�Þo ê2ð�Þ), for which the following holds:

Proposition 1.1. The social–ecological system has just one non-trivial, globally stable steady state (C,X) for each
ê∉ ê1ð�Þ; ê2ð�Þ

	 

, where
�
 ðC;XÞ ¼ ðN; ðr−êNqÞ=rÞ≡ðC1;X1Þ if ê≤eð�Þ,

�
 ðC;XÞ ¼ ðC2;X2Þ if eð�Þo êo ê1ð�Þ, where C2oC1 and X2oX1; and
�
 ðC;XÞ ¼ ðC3;X3Þ if ê4 ê2ð�Þ, where C3oC2 and X3oX2:
Proposition 1.2. The social–ecological system is characterized by three non-trivial steady states (two stable ones and one
unstable steady state) if ê∈〈ê1ð�Þ; ê2ð�Þ〉;

Proof. See Appendix A3. □

Depending on the values of ê, r, P, q, N, α, β and v, there may be one or two stable steady states (and zero or one unstable
ones). For simplicity, let us vary just ê and keep all other parameters constant, so that eð�Þ; ê1ð�Þ and ê2ð�Þ remain constant
too. If ê≤eð�Þ there is no social dilemma (see Lemma 3.1) so that C¼N in steady state, and the resource stock is drawn down
to the level where resource regeneration is equal to the maximum quantity the community can harvest.15

The analysis is more interesting when the community faces a social dilemma. Fig. 3 shows the nullclines for the different
qualitative cases of ê4eð�Þ: Lemmas 2.2 and 3.3 imply that the higher is ê (for a given set of parameters), the more the
nullcline of the social system (dC/dt¼0) is located to the North-West and the more the nullcline of the resource stock (dX/
dt¼0) is located to the South-East. If eð�Þo êo ê1ð�Þ, the nullclines intersect once in R2 giving rise to just one equilibrium
(C2,X2); see Fig. 3A.

An increase in ê beyond ê1ð�Þ causes alternative stable states to emerge in the range ê1ð�Þo êo ê2ð�Þ; see Fig. 3B.16

As stated in Proposition 1.2, there are then three equilibria, two of which are located in R2 (denoted (C2,X2) and (C2B,X2B)),
and one in R3, (C3,X3). Of these, (C2,X2) and (C3,X3) are locally stable, while (C2B,X2B) is unstable. When ê increases in the
range ê1ð�Þo êo ê2ð�Þ, the nullclines shift as indicated by Lemmas 2.2. and 3.3, (C2,X2) and (C2B,X2B) move toward each other,
15 Just substitute ∑N
i ¼ 1ei ¼Nê into (1), set dX/dt¼0, and solve.

16 Indeed, ê1ð�Þ is a fold bifurcation at which the “bad equilibrium” (C3,X3) is located on the boundary between R2 and R3, where cooperators choose
rior effort levels but where the defectors' effort constraint is weakly binding; see Eq. (A7) in Appendix A3.



Region 1

Region 3

dX/dt=0
dC/dt=0 Region 2

Region 1

Region 2

Region 3

dX/dt=0

dC/dt=0

(C3,X3)

dX/dt=0

dC/dt=0

Region 1

Region 2

Region 3

Number of Cooperators (C )

Number of Cooperators (C )

Number of Cooperators (C )

R
es

ou
rc

e 
le

ve
l (
X
)

R
es

ou
rc

e 
le

ve
l (
X
)

R
es

ou
rc

e 
le

ve
l (
X
)

(C2,X2)

(C3,X3)
(C2B, X2B)

(C2,X2)
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coincide (when ê¼ ê2ð�ÞÞ, and then disappear (when ê4 ê2ð�Þ), implying that (C3,X3) is the only remaining equilibrium—as
depicted in Fig. 3C.17, 18

Fig. 3 reveals the exact mechanics giving rise to the bifurcation diagrams presented in Fig. 1.19 For êoeð�Þ there is no
social dilemma and just one stable equilibrium, (C1,X1), located in R1. The system is located on the upper branches of Panels
17 This implies that ê2ð�Þ is a fold bifurcation at which two nullclines are tangent in R2 (implying that the cooperators choose interior effort levels
whereas the effort constraint of defectors is strictly binding); see Eq. (A12) in Appendix A3.

18 The relevance of the time constraint (relative to the rest of the system's parameters) is immediately clear from Lemma 1 and Proposition 1. If agents
have unlimited amounts of effort at their disposal, the effort levels chosen are, by definition, interior, and then Lemma 1 indicates that the system is always
in R3. In Fig. 2 R1 and R2 are no longer relevant, and the isoclines in R3 just intersect just once—see also Proposition 1 and Appendix A3. With unlimited
time endowments (that is, if agents can hire outside labor), the system is de facto open access, and hence the bad equilibrium is its unique steady state.

19 Indeed, Fig. 1 is the numerical solution to the analytical results obtained in Section 4.1 using ê¼0.71, N¼100, P¼50,000, q¼0.01, v¼1, r¼0.8, α¼0.1
and β¼0.2.
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A and B in Fig. 1, with C1¼N. If eð�Þo êo ê1ð�Þ, Fig. 3A applies, and there is a unique equilibrium: (C2,X2) in the North-East of
R2 (implying C2oN). In Fig. 1A and B this equilibrium is located on the upper branches. If ê4 ê2ð�Þ Fig. 3C applies, (C3,X3) in
R3 is the unique equilibrium (implying that X3 is very close to the Nash equilibrium steady state stock), and it is located on
the lower branches of Panels A and B in Fig. 1. And path-dependency emerges in the system because of the fact that there
are two stable equilibria in case ê1ð�Þo êo ê2ð�Þ; see Fig. 3B. Whether the system is in equilibrium (C2,X2) or rather in (C3,X3),
depends onwhether the system approaches the threshold from a situation inwhich êo ê2ð�Þ; or rather ê4 ê2ð�Þ: In the first case,
the system is in the good equilibrium (C2,X2)—on the upper branches in Fig. 1—until it collapses when exogenous changes
move the system beyond tipping point ê2ð�Þ, when the positive feedback identified in Section 3 brings the system down to
the bad equilibrium (C3,X3).20 Having passed ê2ð�Þ, reversion of the exogenous changes does not automatically move the
system back to the good equilibrium (C2,X2) because (C3,X3) is stable. The jump back to (C2,X2) only occurs if parameters
change so much that (C3,X3) disappears (which happens when (C3,X3) hits the boundary between R2 and R3—that is, when
ê¼ ê1ð�Þ); compare Fig. 3C and A.21

4.2. Collapse triggered by various external changes if w40 and δ-∞

In this subsection we relax the assumption of w¼0, and we also explore whether the system's properties are dependent
on the underlying causes of change—increases in time endowments, technical progress, population growth, etc. With w40
we need to resort to a numerical analysis, but we show that the presence of labor markets leads to results that are
qualitatively very similar to those obtained in Sections 3 and 4.1; see Fig. 4.

Fig. 4A and B shows the internal equilibria of C and X for different values of the effort endowment ê if w40 and δ-∞.
As stated before, Fig. 1 plots the case of w¼0 and δ-∞, and comparing Fig. 1A and B to Fig. 4A and B reveals that with w40
the social–ecological system behaves in qualitatively the same way as with w¼0 as analyzed in Sections 3 and 4.1. A positive
feedback emerges because a reduction in the size of the resource stock induces cooperators to spend less time harvesting,
and the subsequent decrease in the income ratio yC=yD causes the number of cooperators to decrease. In turn, the social
pressure to act cooperatively falls, the number of cooperators falls, and then the resource stock falls even more—triggering
even more defection.

The main novel insight obtained from this analysis using w40 is that cooperation increases if ê−ê2ð�Þ continues to
increase after collapse; see Fig. 4A. This (small) increase in cooperation materializes because limê-∞yC=yD ¼ 1 if w40.
If ê4 ê2; the social–ecological system is in the bad equilibrium (where all agents choose interior effort levels), and hence
increases in ê or decreases in ê2ð�Þ only increase the amount of money earned at the external labor markets, where the same
wage rate applies to cooperators and defectors alike. Hence, the larger ê−ê2ð�Þ, the larger the income share of wages earned
at the external labor market, and hence the closer the income ratio yC=yD is to unity. That means that the increase in
cooperation following environmental collapse should not be interpreted as a sign that the system is moving back to a better
equilibrium. Similarly, if the system has collapsed, the regulator should not be concerned about the fact that policies aimed
at reducing ê−ê2ð�Þ below zero (for example by decreasing q or by subsidizing outside employment) actually results in a
decrease in cooperation—reducing ê−ê2ð�Þ reduces the wage share in total income and hence yC=yD increases, so that it
becomes more tempting to defect. As was the case in Fig. 1, the system only flips back to the good equilibrium if ê falls below
ê1ð�Þ.

Having established that qualitatively the same patterns emerge for w40 as for w¼0 (with δ-∞), we probe further into
the robustness of our results and interpretations by numerically solving the system when changing the various key
parameters, and then especially q, N, v and α. Fig. 4C–F indicates that increases in the harvesting technology parameter (q)
and in the size of the population (N) yield qualitatively similar patterns as when ê increases—not surprisingly, the only
difference is that X continues to fall when q increases (Fig. 4D). Next, if the instantaneous externality becomes more severe
(that is, if v is larger), the steady-state resource stock tends to be larger (Fig. 4H) while the equilibrium number of
cooperators tends to be smaller (Fig. 4G). The larger is v, the higher the need for cooperation, but also the more costly it is to
cooperate. So the increase in X in Fig. 4H does not occur because of an increase in C, but in spite of a decrease thereof.22
20 Note that because v40 collapse does not result in the complete depletion of the resource. We have X340 because all rents have disappeared before
the resource is depleted. However, the fall to the bad equilibrium still constitutes a crisis, as defined by Taylor [25]: “a dramatic, unexpected, and [largely]
irreversible worsening of the environment leading to significant welfare losses”. Even if erosion of social capital does not necessarily lead to complete
resource depletion, the welfare consequences can still be dramatic for some or even all stakeholders involved [60]. For cases in which the model does result
in complete exhaustion of the stock, see Section 4.3.

21 In Fig. 1, the tipping points ê1ð�Þ and ê2ð�Þ are quite close, and this is of course the result of the parameters chosen. The parameters allow us to
represent all possible situations a community may experience (given N, q, etc.), from the case in which it does not yet experience a social dilemma to the
case where all rents have disappeared. However, even though ê1ð�Þ and ê2ð�Þ are close, this does not mean that the circumstances under which collapse
happens is very limited. If technology (or any other driver of change in the system) moves the system beyond ê2ð�Þ, it flips to the bad equilibrium. The fact
that the range [ê1ð�Þ;ê2ð�Þ] is quite small, only means that relatively small changes in technology etc. are needed to restore the system back to its good
equilibrium.

22 Interestingly, the welfare effects of higher crowding costs v are ambiguous. While an increase in v always decreases welfare in regions 1 and 3,
it may increase welfare in region 2. The presence of crowding costs reduces aggregate effort, and hence higher v always attenuate the stock externality (the
Class I problem). We find that in region 2 the welfare increases resulting from the reduced intertemporal externality can dominate the welfare costs
associated with larger instantaneous crowding costs, but only for intermediate levels of v. Hence, our results are similar to those established empirically in
Ref. [61] in case of the shrimp fishery in North Carolina.
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Fig. 4. Bifurcation diagrams showing internal equilibria of the number of cooperators C and the resource stock X for w¼0.1. Stable equilibria are connected
by solid lines, unstable equilibria are connected by dashed lines, and dots denote the tipping points.

A. Richter et al. / Journal of Environmental Economics and Management 66 (2013) 141–158152
The consequences of changes in α, the social pressure parameter, are presented in Fig. 4I and J. These figures show that for
low initial levels of α, increases in the strength of persuasion do not have much impact on either C or X—until α reaches a
tipping point. After crossing this threshold the system jumps to a much higher level of both cooperation and resource
conservation, and the system is also quite robust against possible weakening of social pressure. If α has increased sufficiently
for the system to flip to the good equilibrium, α can fall substantially before the system flips back to the bad equilibrium.
Again, this is a direct result of the system exhibiting alternative stable states.

Exogenous developments in the system parameters all give rise to the same dynamics as do changes in ê itself—see
Section 4.1. All qualitative results obtained analytically assuming w¼0 carry over to the case of w40 (with δ-∞), and also
the policy implications remain unchanged. If X is observed to stabilize at an intermediately high level this is no guarantee
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that the system is resilient against shocks. And if the system has collapsed, restoring the system to the good equilibrium
requires changing the system parameters such that ê⪡ê2ð�Þ.

4.3. Ecosystem collapses when agents are aware of both the Class I and II problems (δ≥0)

Let us now consider the case where the community members are aware of both the instantaneous and intertemporal
externality. We first derive the optimal harvesting effort of each cooperator, and then derive the best-response function of
defectors.

Cooperators put in their fair share of the socially optimal aggregate harvesting effort, taking into account the two types of
externalities. Hence, they solve (3) where δ ≥ 0: Let us use ~~z to denote the socially optimal steady state level of variable z
when agents take into account both Class I and Class II problems of resource harvesting. It is fairly straightforward to
determine ~~X ð�Þ, ~~Eð�Þ and ~~e

Cð�Þ ¼ ~~Eð�Þ=N (see Appendix A4).
The best response function of a defector is stated in Proposition 2.

Proposition 2. Each defector takes into account the instantaneous externality vE−i caused by the effort decisions of all
community members, but ignores both the instantaneous and intertemporal consequences of his actions on the income (or
welfare) of others. Hence, the best response function of defectors is still given by (7).

Proof. See Appendix A5. □

It is relatively straightforward to derive the socially optimal steady state in the presence of both intertemporal and
instantaneous externalities, and it is also straightforward to derive the best-response function of defectors to any action
chosen by the cooperators. But it is very difficult to derive the socially optimal trajectories toward ~~X ð�Þ because the presence
of the crowding externality implies that the optimal approach path is not the most rapid one. Besides, it is also not very
likely that communities in the real world are able to derive the optimal trajectories, and therefore we assume that
cooperators adopt a simple stock-dependent harvest strategy [64,65] by using a linear feedback control rule:
eC ¼maxfaþ bX;0g.23 Fig. 5 presents the numerical results.

The bifurcation diagrams presented in Fig. 5 are qualitatively identical to those in Figs. 1 and 4.24 Indeed, the underlying
mechanism is the same: the instantaneous income earned by defectors are always at least as high as those earned by
cooperators, socially optimal harvesting decreases with stock size, and the time constraint ceases to be binding for defectors
at a stock size that is lower than the stock size at which cooperators start choosing interior effort levels.

The main difference is that maintaining cooperation is even more difficult than in the case in which agents are unaware
of the intertemporal (or Class I) externality. Compared to the case of agents being myopic, the cooperators reduce their effort
levels even more for every X because they now take both externalities into account. That means that for given C the income
ratio yC=yD is even lower, and hence (i) collapse occurs sooner (i.e., all else equal, at lower levels of ê, q, N, etc.), and (ii) the
number of cooperators in the bad equilibrium is even smaller. This may explain why communities are better able at
overcoming the crowding externality than at solving the intertemporal one [66,67].

Finally, note that while the collapse of the social–ecological system did not result in the total demise of the resource,
setting w¼v¼0 in the intertemporal problem the resource is fully exhausted if the system falls to its bad equilibrium. While
23 We assume cooperators adopt adaptive management (so that ao0 and b40) aimed at steering the system toward the optimal steady state.
Furthermore, a and b are set such that each cooperator invests ~~e

C ð�Þ when X ¼ ~~X ð�Þ: Our results carry over to the more realistic case where the optimal
steady state is not exactly known by cooperators.

24 Parameter values are δ¼ 0:05; a¼−0:3; b¼ 1:2: All other parameters are as before.
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the static externality (or a positive wage rate) makes it uneconomical to actually deplete the resource, the intertemporal one
does not: as long as the instantaneous benefits of harvesting are positive, defectors continue to extract, and even the last
unit will be harvested if the social system collapses.
5. Conclusions

We developed a model of renewable resource use in which agents can decide to act cooperatively with respect to
resource harvesting or behave selfishly. Adherence to social harvesting norms can spread through the community because
of interpersonal relationships between cooperators and defectors (because the former try to convince the latter of the social
desirability of acting cooperatively), but community members also always face the temptation to act non-cooperatively—
because of the higher income. The resulting social–ecological system is characterized by alternative stable states, so that
small changes in key parameters (such as population growth and technological progress) can trigger catastrophic transitions
from relatively high levels of cooperation to widespread norm violation—causing the demise of the resource. Our setup is
unique in that tipping points emerge even though both the ecological and the social–economic systems, by themselves, are
inherently stable.

Positive feedback relationships occur in our model because of the fact that, in closed communities, the amount of labor a
community member can allocate to resource harvesting is necessarily finite because the property right system usually does
not allow members to hire external labor. If the resource becomes scarcer, for example due to unfavorable climatic
conditions, the cooperators in the community decrease their harvesting effort while defectors continue to allocate all their
available time to harvesting—if the net private marginal benefits of harvesting are strictly positive. A decrease in the size of
the resource thus increases the relative attractiveness of defecting, and makes cooperation even more costly. Fewer
cooperators are unable to maintain sufficient social pressure, thus triggering even stronger defection and resource
depletion. Thus, a positive feedback between the resource stock and the number of cooperators emerges endogenously—
possibly resulting in the collapse of the social–ecological system.

Our model is purely theoretical in nature but it does yield some important policy implications. Our model shows that
social–ecological systems can suddenly collapse, even if there are no non-linearities in the resource dynamics themselves.
Many drivers can potentially cause a regime shift, including technological change and population growth, so it is important
to monitor the system closely. Although the moment at which the system collapses depends on the time preferences society
holds, the catastrophic transition inevitably happens at some point—as long as technological progress and population
growth are unbounded. The associated welfare losses are higher the more patient society is, but they can still be substantial
even if the community members are perfectly myopic. And the costs of collapse are even higher because the system is
characterized by hysteresis. Upon collapse, it is not sufficient to reverse the small exogenous change that caused the system
to collapse. More draconic measures are needed to generate a spiral of increasing cooperation and resource regeneration—
possibly at very high cost.
Appendix A1. Proof of Lemma 2
Proof of Lemma 2.1:. From (4) we have dC=dt ⪌ 0 if αðN−CÞ=N ⪌ βð1−ðyC=yDÞÞ: Because w¼0, we have yC=yD ¼ eC=eD;
see (2). Using (6) and (8) and setting w¼0, we have ðeC ; eDÞ ¼ ðê; êÞ if X≥2vNê=Pq; ðeC ; eDÞ ¼ ðPqX=2vN; êÞ if ð2vNðN−C þ
1ÞêÞ=ðPqð2N−CÞÞoXoð2vNê=PqÞ; and ðeC ; eDÞ ¼ ðPqX=2vN; ðð2N−CÞ=ðN−C þ 1ÞÞðPqX=2vNÞÞ if 0≤X≤ð2vNðN−C þ 1ÞêÞ=
ðPqð2N−CÞÞ:

Inserting yC=yD ¼ eC=eD into (4) and setting dC/dt¼0, we have

CðXÞjdC=dt ¼ 0 ¼

N if X≥ 2vNê
Pq ;

ð2vðα−βÞNêþβPqXÞ
2vêα ≡κðXÞoN if 2vNðN−Cþ1Þê

Pqð2N−CÞ ≤ Xo 2vNê
Pq ;

3
2N−

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 þ 4βN

α ðN−1Þ
q

≡κoκðXÞ if 0 ≤ Xo 2vNðN−Cþ1Þê
Pqð2N−CÞ :

8>>>><
>>>>:

ðA1Þ
Proof of Lemma 2.2:. This can trivially be inferred from (A1).

Proof of Lemma 2.3:. Defining V≡αðN−CÞ=N−βð1−eCðXÞ=eDðC;XÞÞ and using (8), we have dV=dCo0 for all X. Therefore, for
any X, dC=dt ⪌ 0 if C ⪌ CðXÞjdC=dt ¼ 0. ■
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Appendix A2. Proof of Lemma 3

Inserting (6) and (8) into (1) and setting w¼0, we have

dX=dt
X

¼

rð1−XÞ−qNê if X≥ 2vNê
Pq ;

rð1−XÞ−q CPqX
2vN þ ðN−CÞê

� �
if 2vNðN−Cþ1Þê

Pqð2N−CÞ ≤ Xo 2vNê
Pq ;

rð1−XÞ−Pq2XZðCÞ=v if 0 ≤ Xo 2vNðN−Cþ1Þê
Pqð2N−CÞ :

8>>>><
>>>>:

ðA2Þ

where ZðCÞ ¼ ðN−C þ C=ð2NÞÞ=ðN−C þ 1Þ≈1.

Proof of Lemma 3.1. Combining X ≥ 2vNê=ðPqÞ and dX=dt ¼ ½rð1−XÞ−qNê�X ¼ 0, we have XðCÞjdX=dt ¼ 0 ¼ ðr−NqêÞ=r≡ψ if and
only if ê≤ðrPq=NÞ=ð2rvþ Pq2Þ≡e:

Proof of Lemma 3.2. If ê4eð�Þ, a corollary of Lemma 3.1 is that dX=dto0 for all X≥2vNê=ðPqÞ: Using (A2) we have

XðCÞjdX=dt ¼ 0 ¼

does not exist if X≥ 2vNê
Pq ;

2vN½r−qêðN−CÞ�
2rvNþPq2C ≡ψðCÞ if 2vNðN−Cþ1Þê

Pqð2N−CÞ ≤ Xo 2vNê
Pq ;

vr
Pq2ZðCÞþvr if 0≤Xo 2vNðN−Cþ1Þê

Pqð2N−CÞ :

8>>><
>>>:

ðA3Þ

The nullcline is concave in R2 for ê4e because ∂XðCÞjdX=dt ¼ 0=∂C40; ∂2XðCÞjdX=dt ¼ 0=∂C
2o0: And because ZðCÞ≈1 the

nullcline is (almost) horizontal in R3, with XðCÞjdX=dt ¼ 0≈vr=ðPq2 þ vrÞ≡ψ .

Proof of Lemma 3.3:. From (A3) we have dXðCÞjdX=dt ¼ 0=dê≤0 in R2, and dXðCÞjdX=dt ¼ 0

dê ¼ 0 in R3.

Proof of Lemma 3.4:. Defining W≡rð1−XÞ−qðCeCðXÞ þ ðN−CÞeDðC;XÞÞ and using (6) and (8), we have dW=dXo0 for all C.
Therefore, for any C, dX=dt ⪌ 0 for all X ⪌ XðCÞjdX=dt ¼ 0:□

Appendix A3. Proof of Proposition 1
(i)
 For X≥2vNê=ðPqÞ we have eC ¼ eD ¼ ê; see (6) and (8). Using (A1) and (A2) we have

ðC1;X1Þ ¼ ðN; ðr−êNqÞ=rÞ; ðA4Þ
and this is an equilibrium in R1 if and only if X1 ¼ ðr−êNqÞ=r≥2vNê=ðPqÞ. Solving for ê, ðC1;X1Þ is an equilibrium if and
only if ê≤ðrPq=NÞ=ð2rvþ Pq2Þ≡e:
(ii)
 For Xo2vNðN−C þ 1Þê=ðPqð2N−CÞÞ we have, from (A1) and (A3) respectively, CðXÞjdC=dt ¼ 0 ¼ ð3=2ÞN−ð1=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 þ 4βNðN−1Þ=α

q
and XðCÞjdX=dt ¼ 0 ¼ vr=ðPq2ZðCÞ þ vrÞ. Combining, we have

X3 ¼
2rv

ffiffiffiffi
N

p
ð

ffiffiffiffi
N

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αN þ 4βðN−1Þ

p
þ ffiffiffi

α
p ð2−NÞÞ

ð2rNvþ Pq2ð2N−1ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αN þ 4βðN−1Þ

p
−

ffiffiffi
α

p ffiffiffiffi
N

p
ð2rvðN−2Þ þ Pq2ð2N−3ÞÞ

; ðA5Þ

C3 ¼
3
2
N−

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 þ 4β

α
ðN2−NÞ

r
40; ðA6Þ

and this is an equilibrium if X3 ≤ð2vNðN−C3 þ 1ÞêÞ=ðPqð2N−C3ÞÞ. Solving, ðC3;X3Þ is an equilibrium in R3 iff

ê≥
βrPq

αNðrvþ Pq2Þ þ βð2rNvþ Pq2ð2N−1ÞÞ− ffiffiffi
α

p ffiffiffiffi
N

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αN þ 4βðN−1Þ

p
ðrvþ Pq2Þ

≡ê1: ðA7Þ
(iii)
 For ð2vNðN−C þ 1Þê=Pqð2N−CÞÞ≤Xo ð2vNê=PqÞ;we have CðXÞjdC=dt ¼ 0 ¼ ð2vðα−βÞNêþ βPqXÞ=2vêα (see (A1)) and
XðCÞjdX=dt ¼ 0 ¼ 2vN½r−qêðN−CÞ�=ð2rvN þ Pq2CÞ (see (A3)). Combining and defining Q≡Pq2 þ 2rv; we have

X2 ¼

ffiffiffî
e

p ffiffiffiffi
N

p
v

ffiffiffi
α

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αêNð4r2v2 þ 4rPvq2 þ P2q4Þ þ 4βPq2ðrPq−êNQ Þ

q
−

ffiffiffî
e

p ffiffiffiffi
N

p
ðαQ−2βPq2Þ

� �
βP2q3

; ðA8Þ

C2 ¼
ffiffiffiffi
N

p
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αêNð4r2v2 þ 4rPvq2 þ P2q4Þ þ 4βPq2ðrPq−êNQ Þ

q
þ ffiffiffi

α
p ffiffiffî

e
p ffiffiffiffi

N
p

ðPq2−2rvÞÞ
2

ffiffiffi
α

p ffiffiffî
e

p
Pq2

; ðA9Þ
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X2B ¼ −

ffiffiffî
e

p ffiffiffiffi
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vð ffiffiffi

α
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αêNð4r2v2 þ 4rPvq2 þ P2q4Þ þ 4βPq2ðrPq−êNQ Þ
q

þ
ffiffiffî
e

p ffiffiffiffi
N

p
ðαQ−2βPq2ÞÞ

βP2q3
; ðA10Þ

C2B ¼ −

ffiffiffiffi
N

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αêNð4r2v2 þ 4rPvq2 þ P2q4Þ þ 4βPq2ðrPq−êNQ Þ

q
þ ffiffiffi

α
p ffiffiffî

e
p ffiffiffiffi

N
p

ð2rv−Pq2Þ
� �

2
ffiffiffi
α

p ffiffiffî
e

p
Pq2

: ðA11Þ

We have X2 ¼ X2B;C2 ¼ C2B (and hence just one equilibrium in R2) iff

ê¼ 4βrP2q3

Nð4βPq2ð2rvþ Pq2Þ−αð4rvðrvþ Pq2Þ þ P2q4ÞÞ
≡ê2: ðA12Þ

If ê4 ê2 (A8)–(A11) do not have real roots; in that case there are no equilibria in R2. If êo ê1 we have 2vN N−C2Bþ1ð Þê
Pq 2N−C2Bð Þ 4X2B;

and then ðC2;X2Þ is the only equilibrium in R2. If ê1o êo ê2 there are two equilibria ððC2;X2Þ and ðC2B;X2BÞÞ in R2.

(iv)
 Combining (i)–(iii), if ê≤e the system's equilibrium is ðC1;X1Þ as defined in (A4), if eo êo ê1 there is just one equilibrium

(ðC2;X2Þ as defined in (A8) and (A9)), if ê4 ê2 there is just one equilibrium (ðC3;X3Þ as defined in (A5) and (A6)), and if
ê1o êo ê2 there are three equilibria ððC2;X2Þ, ðC2B;X2BÞ and ðC3;X3Þ as defined in (A5) and (A6) and (A8)–(A11)).□
Appendix A4. The socially optimal steady state in the presence of both externalities

Writing down the current value Hamiltonian of (3), taking the appropriate first derivates, setting all time derivatives
equal to zero and solving, the socially optimal steady state levels of E and X (denoted by ~~E and ~~X Þ are implicitly determined
by the following two equations:

δ−r¼ Pq2 ~~X ~~E

Pq ~~X−w−2v ~~E
−2r ~~X−q ~~E ðA13Þ

~~E ¼ rð1− ~~X Þ=q; ðA14Þ
and where, in the optimum, each cooperator sets ~~e

C ¼ ~~E=N: ~~X and ~~E are then equal to

~~X ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2Q2−2δrðP2q4−Pq2ð3qwþ 4rvÞ−2rvðqwþ 2rvÞÞ þ r2ðQ þ qwÞ2

q
−δQ þ rðQ þ qwÞ

4rðPq2 þ rvÞ ðA15Þ

~~E ¼−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2Q2−2δrðP2q4−Pq2ð3qwþ 4rvÞ−2rvðqwþ 2rvÞÞ þ r2ðQ þ qwÞ2

q
−δQ−rð3Pq2−qwþ 2rvÞ

4qðPq2 þ rvÞ ðA16Þ

where Q≡Pq2 þ 2rv.

Appendix A5. Proof of Proposition 2

We follow the literature on dynamic games; see for example Ref. [62] and Dockner et al. [[63], pp. 333–335]. We show
that even though defectors are forward-looking, in our model they do not place any value on increased harvesting
opportunities in the next period nor in any future period because they know that any unit of resource they do not harvest,
others will harvest it. By analogy that means that in the presence of both intertemporal and crowding externalities they do
not take into account the consequences of their behavior on their future returns, and therefore their best-response function
is the same in the intertemporal model as in the myopic model.

Suppose that there is just a dynamic externality, and no crowding externality, and for simplicity assume also that w¼0.
The maximization problem faced by each of the N–C defectors is the following:

max
Z ∞

t
e−δsPqXeids subject to _X ¼ GðXÞ−qX½CeC þ ðN−C−1ÞeD þ ei�: ðA17Þ

Because we ignore the crowding externality, the current value Hamiltonian of the defector's optimization problem is
H¼ PqXei þ λ½GðXÞ−qX½CeC þ ðN−C−1ÞeD þ ei��, and is thus linear in control variable ei. That means that we have a bang–bang
solution (or most rapid approach path) for defectors. We focus on the behavior of defectors and generalize the effort levels
chosen by cooperators by eC ¼ eCðXÞ, with ∂eCðXÞ=∂X≥0:25
5 Absent crowding, the Hamiltonian of cooperators is also linear in effort, and hence the socially optimal solution is eC ¼ e for all X4 ~~X ; 0o ~~e
Co ê if

; and zero otherwise.
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The question is whether there is a steady state X� that satisfies �X40. If �X40 is a steady state, we have
_X ¼ Gð �X Þ−q �X ½CeCð �X Þ þ ðN−CÞeDð �X ;CÞ� ¼ 0, or eDð �X ;CÞ ¼ ðGð �X Þ−q �XCeCð �X ÞÞ=ðN−CÞq �X .26 Because the defector's Hamiltonian is
linear in his effort level, �X is a steady state if the following strategy is an equilibrium strategy:

eDð �X ;CÞ ¼
ê if X4 �X ;
1

N−C
Gð �X Þ−CeC ð �X Þ

q �X

h i
if X ¼ �X ;

0 if 0≤Xo �X :

8>><
>>: ðA18Þ

It is easy to show that this is not an equilibrium strategy (implying that �X is not a steady state). Given the above
strategies, we can rewrite the resource dynamics (for all Xo ~~X) as follows:

_X ¼ GðXÞ−qX½CeCðXÞ−ðN−C−1ÞeDðX;CÞ�−qXei ¼ Q ðX;CÞ−qXei ¼Q ðX;CÞ−hi; ðA19Þ
where Q ðX;CÞ is the “residual regeneration function” that agent i faces. A steady state is now implicitly defined by
hi ¼ qXei ¼ Q ðX;CÞ: Let us now calculate h¼Q ðX;CÞ for all levels of X≤ �X :

hi ¼Q ðX;CÞ ¼ Gð �X Þ−qXeCðXÞ−qXðN−C−1ÞeDð �X Þ if X ¼ �X ;

GðXÞ−qXeCðXÞ if 0oXo �X :

(
ðA20Þ

Clearly, (A18) is not an equilibrium strategy and ð �X ; eDð �X ;CÞÞ is not an equilibrium, because if agent i reduces the stock by
an infinitesimally small amount below �X , (A18) indicates that all (N–C–1) other defectors choose a zero effort level, and
hence (A20) shows that agent i can harvest infinitesimally less than Gð �X Þ−CeCð �X Þ for now and forever (with, possibly,
eCð �X Þ ¼ 0 if cooperators follow the socially optimal path) rather than just Gð �X Þ−CeCð �X Þ−qXðN−C−1ÞeDð �X Þ for now and
forever. That means that harvesting zero is not optimal for all other defectors, (A18) cannot hold and ð �X ; eDð �X ÞÞ is not an
equilibrium. And this holds for any �X40 so that X¼0 is the only steady state.

Absent any crowding externalities, the best-response function of defectors is thus to always put in maximum effort into
harvesting until the stock is fully depleted. With crowding externalities, it is also always privately optimal to harvest until all
rents have been dissipated—and defectors only choose interior effort levels if the crowding externality makes putting in
e¼ ê unprofitable—as is the case when agents are myopic.
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