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Executive summary 

English name: Rice straw, Wheat straw 

Other names for rice straw: rijststro (NL), la paille de riz (F), paja de arroz (S) 

Other names for wheat straw: tarwestro (NL), la paille de blé (F), paja de trigo (S) 

Latin name:. Oryza Sativa (rice), Triticum Spp. (wheat) for example Triticum 

Aestivum, Triticum Durum 

Plant Family: Graminae. Herbaceous, non-woody stems 

Origin: China (Rice), Egypt (Wheat) 

Occurrence: Rice: tropics, sub-tropics, and Mediterranean climates. Wheat: 

moderate and Mediterranean climates. In Northern India and Pakistan, rice and 

wheat are grown in rotation 

Current uses: Rural energy, animal bedding, animal feed, building material, 

mushroom production 

Growth habit: Irrigation or rain-fed, depending on climate and location.  

Growth cycle: Annual plant; in certain tropical areas several harvests per year 

(rice) 

Agronomic practice: Rice straw and wheat straw are agricultural side products 

and can be collected after harvest of the main product, paddy rice/rough rice or 

wheat grain. Unlike rice husk and wheat bran (side streams from rice and wheat 

that are generated during the processing of rice and wheat grain), straw is 

generated at the field: straw is a primary biomass residue 

Yields: widely variable, depending on variety, soil, and climate conditions 

Biobased applications/conversion and quality aspects: rice straw and wheat 

straw are a lignocellulosic biomass. Relative to other agricultural by-products, it 

contains a high amount of inorganic components and ash. Straw is seen as a 

major feedstock for the biobased economy. Currently, combustion of straw is the 

most common application 

Costs: Rice straw is a low cost biomass. However, as most of rice straw is 

produced by smallholder farmers, collection costs and logistical costs may be high. 

Wheat straw is already collected and used for different purposes in many 

countries. Costs for wheat straw depend largely on local circumstances: in some 

regions a lot of straw is collected for specific purposes such as animal bedding. In 

other areas wheat straw has no applications and may be available at just over the 

cost of collection and logistics.  

Sustainability/Impacts: Use of rice straw may offset carbon, N2O, and fine dust 

emissions from field burning, a common disposal method for rice straw and wheat 

straw, with retention of minerals in the ash. Legislation to ban field burning leads 

to disposal problems in many countries. If straw has no or limited alternative uses 

it may be considered an iLUC free (it does not lead to indirect land use changes) 

biomass source. Thus avoiding much of the current problems associated with 

biofuels based on food crops or grown in competition with food crops.  

Outlook: Modernization of agriculture in many developing countries will lead to 

more rice straw being marketed as feedstock for the biobased economy. This is 

further motivated by increased efforts of governments to ban rice straw burning 

by farmers. In Europe, wheat straw (as well as other straw, like rapeseed or 

barley straw) are viewed as one of the primary feedstocks for the Biobased 

Economy given the volume of straw produced every year. 

 

 



1 Climate, geographical distribution, and characteristics of 

straw 

In this report, the term rice straw and wheat straw are used to describe the dry 

stalks of the cereal crops rice and wheat. The stalks remain following the removal 

of the grain during the grain harvesting process. Often the term “ straw” or “cereal 

straw” is also used in connection with rice and wheat straw, however these terms 

are more general and indicate residues from a much larger group of agricultural 

crops including barley, rye, rapeseed, sunflower, and sorghum. The focus of this 

report is rice straw and wheat straw. 

 

Table 1a: Cultivated agricultural area and rice production in different regions of the world, and 

estimate of rice straw production. Data based on FAO grain production data of 2009. Data are 

ranked by size of cropping area. 

  Area harvested Production Straw production 

 1000 ha kton of Rice/a kton of straw/a 

World 158,511 684,595 727,400 

Southern Asia 59,449 202,889 215,600 

South-Eastern 

Asia 

48,203 197,777 210,100 

Eastern Asia 32,999 216,630 230,200 

Western Africa 5,114 10,392 11,000 

South America 5,253 25,568 27,200 

Eastern Africa 3,147 6,701 7,100 

Northern America 1,256 9,972 10,600 

Middle Africa 691 663 700 

Northern Africa 590 5,593 6,000 

European Union 462 3,152 3,350 

Caribbean 456 1,246 1,300 

Southern Europe 418 2,906 3,100 

Central America 326 1,228 1,300 

Eastern Europe 225 1,183 1,250 

Central Asia 193 696 740 

Western Asia 153 927 990 

Western Europe 24 138 150 

Oceania 14 82 90 

Southern Africa 1 3 3 

    

 



Table 1b: Cultivated agricultural area and wheat production in different regions of the world, 

and estimate of wheat straw production. Data based on FAO grain production data of 2009. 

Data are ranked by size of cropping area. 

 

 
Area 

harvested 
Production Straw production 

  1000 ha kton of Wheat/a kton of straw/a 

World 224,389 686,795  583,776 

Europe 61,084 228,485 194,212 

Southern Asia 47,113 125,458 106,639 

Eastern Europe 42,387 114,626 97,432 

Northern America 29,830 87,213 74,131 

European Union 25,634 138,463 117,694 

Eastern Asia  24,828 116,365 98,910 

Central Asia 17,372 28,735 24,425 

Oceania 13842 
                

22,060  
18,751 

Western Asia 11853 30,029 25,525 

Western Europe 9140 69,001 58,651 

Northern Africa 7480 20,248 17,211 

South America 7436 18,592 15,803 

Southern Europe 5386 17,230 14,646 

Northern Europe 4171 27,628 23,484 

Eastern Africa 1882 
                  

3,220  
2,737 

Central America  835496 4126 3,507 

Southern Africa 666 1978 1,681 

South-Eastern Asia 105 183 156 

Western Africa 48 77 65 

Middle Africa 15 24 
                             

20  

 

 
Rice is primarily grown in tropical and sub-tropical climates, however some rice 

production occurs in Mediterranean climates. Wheat is primarily grown in 

moderate and Mediterranean climates. Depending on location, temperatures and 

availability of water, rice production is combined with wheat production (e.g. Rice-

wheat region in S. Asia) or other crops. In tropical climates and with ample water 

availability (e.g. Mekong Delta in S.E. Asia), more than one crop of rice can be 

grown per year. This also means that straw is generated more than once a year. 

In moderate climates, wheat is often grown in rotation with other crops, such as 

sugar beets. 

 

For rice, the main producers are located in Southern and South-Eastern Asia: 

China, India, Indonesia, Bangladesh, and Vietnam. For wheat, main producers are 

located in Southern Asia, Eastern Europe, Northern America and Eastern and 

Central Asia. For the European Union, wheat is by far the more dominant crop, 

compared to rice. 

 



The biochemical composition of rice straw and wheat straw is characterized by a 

typical composition of an agricultural-based lignocellulosic residue: it contains on 

average 30 – 45% cellulose, 20 – 25% hemicellulose, 15 – 20 % lignin, as well as 

a number of minor organic compounds. Rice straw and wheat straw are poor in 

nitrogen, but relatively high in inorganic compounds, often referred to as ash. 

Table 2 presents an overview of characteristics of wheat straw and rice straw as 

they occur in the Phyllis database. 

 

Table 2. Fuel characteristics of wheat straw and rice straw (source: www.ecn.nl/phyllis) 

 
 
There are two particular challenges of wheat straw and rice straw with regard to 

applications for bioenergy purposes. The high carbon-to-nitrogen content (due to 

low amounts of nitrogen) of rice straw and wheat straw leads to a very low bio-

degradability in comparison to other agricultural residues. This is of particular 

interest when straw is used for anaerobic digestion to produce biogas. It means 

that in many cases, straw needs to be blended with other agricultural residues, in 

order to speed up the degradation of organic constituents contained in straw. 

 

Another challenge, in particular for thermal processes such as combustion and 

gasification, is the high ash content as well as the high inorganic composition of 

rice straw and wheat straw. For rice straw for instance, ash concentrations of 18 

to 20 weight-% (on dry matter basis) are not uncommon, whereas for wheat, 

typically 6 – 12 weight -% ash is contained in the biomass. In addition, high 

occurrences of potassium and chlorine in straw leads to a high tendency for ash 

slagging and fouling in combustion systems (refer to Chapter 5). 

 

 

 



2 Current uses and status as a biomass crop 

Since rice is largely produced in developing countries, a lot of current uses of rice 

straw are traditional, such as fuel for cooking (either directly or by producing 

briquettes which are produced by compressing the material), animal feed, animal 

bedding, anaerobic digestion to biogas and building materials such as roof 

thatching. In many cases, straw is left in piles for composting and returned to the 

field. In most of these cases, straw is used together with other agricultural 

residues generated at village level. There are few official statistics on actual rice 

straw utilization, and therefore quantitative estimates of current uses are difficult 

to make. Following is an overview of traditional uses for rice straw 

 

Fuel for cooking:  Mainly combustion of straw in stoves. In certain 

regions, straw is briquetted to produced fuel 

briquettes. Compared to other agricultural 

residues such as cotton stalks or rice husks, straw 

produces more smoke and is therefore less 

desired as fuel for cooking 

 

Building materials:  Straw is combined with mud to produce simple 

building blocks. In addition, straw is used for 

thatching of roofs. 

 

Animal production:  Straw use in animal bedding. Rice straw and 

wheat straw are used in animal feed. Rice straw is 

a very low quality roughage feed. 

 

Composting:  In combination with other agricultural residues 

including animal manure, straw is composted and 

returned to the field 

 

Incorporation:  Straw is returned to the field, usually by tillage. 

Incorporation of large amounts of fresh straw is 

either labor-intensive or requires suitable 

machinery for land preparation and may result in 

the build-up of disease problems.  

 

 

Modernization in rural areas leads to growing access to modern cooking and 

heating fuels, which means that in most regions, rice straw is no longer used as 

source of energy for cooking and heating. More modern uses of rice straw include 

using straw for fibres production, combustion for electricity generation, production 

of bio-fertilizer, and materials such as erosion-control mats. Still, in many cases 

rice straw is not used, and disposed of by open field burning. Estimates on how 

much rice straw is disposed of by field burning vary widely. For example, a study 

commissioned by NLAgency, assessed rice straw use and disposal in Vietnam, and 

concluded that whereas some straw is used for mushroom production, and 

bedding, 25 to 60% of rice straw is burnt depending on the region. In areas where 

rice harvesting has been mechanized (e.g., Thailand, China, and northern India), 

all the straw remains in the field and is rapidly burned in situ. 

 

Unlike for rice straw, there are many current uses of wheat straw. The study by 

IEEP (2012) listed the main conventional uses of straw in Europe, along with their 



alternatives (Table 3). Current uses of straw include soil improver, animal fodder 

supplement, frost prevention in horticulture (e.g. straw bedding in flower bulb 

production in open fields), ingredient for mushroom production substrate, 

traditional building materials, and energy. In Denmark, Spain and the United 

Kingdom as well as other countries, dedicated power plants have been installed 

that use wheat straw as primary fuel. In addition, wheat straw is co-fired in coal-

fired power plants. In most of these case, incentive schemes have led to the 

commercial utilization of wheat straw in the energy market. Wheat straw based 

pulping mills in Europe have been closed in the past decades (Spain, Denmark) 

due to heavy competition with wood based pulps and the more complex chemical 

recovery of the black liquors (containing silica).  

 

Even with the many existing uses for wheat straw, in many regions and countries 

around the world there is a surplus of wheat straw. Field burning of wheat straw to 

dispose of this surplus exists as well, although it is practiced less frequently 

compared to rice straw. 

 

Table 3 Main conventional uses of cereal straw (mainly wheat straw) in the EU 

(source; IEEP, 2012) 

 

 

Within Agricultural sector: Soil improver 

 
Animal fodder supplement 

 
Animal bedding 

 
Mushroom production (growth substrate) 

 
Frost prevention in horticulture 

 

Strawberries (preventing damage to the 
fruit) 

 
Compost industry 

Outside the agricultural sector: Thatching 

 

Traditional building materials, fibre boards, 
insulation material 

 

Energy (heat, power, fuels) 
 
 



3 Rice Straw and wheat straw management  

3.1 Crop description 

 

Rice and wheat are grown to produce rice grain and wheat grain. Rice grain, often 

referred to as paddy rice or rough rice is primarily used for human food (~90% or 

more), with the remainder used for animal feed and other uses. Most wheat (more 

than two thirds) produced in the world is used for human food, generally in the 

form of flour to produce bread. About 17% of global production is used for animal 

feed, although this varies from country to country (in Europe and North America, 

more wheat is used for feed). In recent years, more wheat and barley grain have 

been used for the production of bioethanol 

 

As rice straw and wheat straw are side products of the main cereals rice and 

wheat, we refer to other sources of information for a crop description of wheat and 

rice. For further information on rice and wheat production, a good reference is the 

Grain Knowledge bank which can be accessed at www.knowledgebank.irri.org 

 

The primary agricultural residues associated to rice and wheat are rice straw and 

wheat straw. Straw is a term used for all harvestable residues after wheat and 

barley grain have been collected by grain harvesting, and includes major parts of 

the stem, leaves, and spikelets. For off-field utilisation, straw is collected in packs 

or bales, which are produced by self-propelled baling machines. If straw is not 

collected but left in the field, it can be ploughed into the field or left as a mulch 

layer that covers the top soil. In some regions, straw is burned in the field for fast 

disposal purposes, a process which is referred to as open field burning. 

3.2 Rice straw management for biomass 

 

The method of grain harvest that precedes straw collection, affects to a large 

extent how and how much straw is generated in the field. 

 

There are two main grain harvesting methods that have an effect on straw 

generation in the field. In the first system, the crop is cut by manual labor and 

placed in bundles on the surface. The bundles are then placed in a heap in the 

corner of the field. Threshing (removing the grain from the rest of the crop 

including the stalks) is done by a stationary thresher/cleaner system that is 

brought to the field. These threshing machines are often custom-made and locally 

built. As a result of the threshing operation, straw is located in a heap near the 

outlet of the thresher. This harvesting system is particularly common in rice-

growing areas in developing countries with limited agricultural mechanization. In 

the manual grain harvesting system, straw may be collected at a central location, 

where it is packed in bales. 

 

The second system includes cutting and threshing of rice or wheat crop in one 

operation by a self-propelled combine-harvester (Figure 1). The combine-

harvester cuts the crop while it moves through the field, threshes the crop, and 

places the straw sideways or behind the threshing mechanisms. As a result of the 

combine harvesting, straw is left in a windrow behind the combine, and windrows 

are spread throughout the field. After natural drying, the straw can be picked up 

by a mechanical baler, which compresses the straw in packs or bales. Some 

combine harvesters are equipped with cutting mechanisms for the straw, in order 

http://www.knowledgebank.irri.org/


to speed up degradation of straw in the field. In areas where straw is collected for 

other uses, these cutters are generally not used.  

 

The main techniques for collecting straw in the field consists of baling straw in 

small rectangular, large rectangular, or round bales (Figure 2). Besides the 

difference in dimensions and weight of the straw bales, the packing density of 

straw differs. For small bales, typical packing densities are 80 – 100 kg /m3, on a 

dry matter basis. For larger bales, densities may go up to 150 kg/m3, or higher. 

Further information on the logistics of straw collection is included in Chapter 4. 

 

Figure 1. Combine harvesting of rice in Egypt (source: Wageningen UR-FBR) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 2. Baling rice straw in Egypt (source: Wageningen UR-FBR) 

 

3.3 Rice straw and wheat straw yields 

  

Straw yields vary widely among countries and regions. In many cases, estimates 

of straw yield are made based on the grain production (ton grain per ha), which 

are taken from agricultural production statistics, and that can be converted to 

straw yield by applying a straw: grain ratio. Typical value for straw: grain ratios 

for rice vary from 0.7 to 1.5, which means that for every ton of rice grain, 700 to 

1500 kg of rice straw is produced. For wheat straw: grain ratios are typically lower 

than for rice. The resulting straw yield should be seen as a theoretical estimate of 

straw that could be collected, however actual straw yields are generally lower as 

there are technical and climatological limits (e.g. straw collection machinery, field 

specific factors, rainfall) that limit the amount of straw that can be extracted from 

the field in a specific situation. Besides technical limits, there are also economical 

limits to collection of straw, as many additional operations are necessary to collect 

straw which may not in all cases be economically feasible. 

To some extent, a farmer can influence the amount of straw that can be extracted 

from the field, by: proper crop management (e.g. reduced lodging of the crop), 

trafficking patterns during grain harvest (reduce flattening of straw to the field 

surface), adjusting grain harvest method (selecting cutting height of the crop), 

and choosing crop varieties with a certain straw to grain ratio. Anecdotal evidence 

from the Netherlands indicates that when the selling price of wheat straw is 

higher, farmers will choose wheat varieties that generate more straw per ha of 

land.  

 

Factors that restrict the amount of straw that can be collected from year to year, 

include:  

- Annual variations in straw production, resulting sometimes in shortages in 

some years depending on weather conditions. In addition, storage of straw 

in winter periods may be difficult at times, and leads to straw losse. 



- Straw yield varies highly among regions and countries. In Northern Europe, 

wheat productivity is much higher (typically 7.5 ton grain/ha) resulting in 

high straw yields, compared to Southern Europe where wheat yields are 3 

ton/ha  

- Modern grain harvesting systems (combines) cut the crop higher leading to 

lower collectable straw production, and 

- Cereal breeding is directed towards production of short stems varieties (to 

prevent lodging) , which in turn leads to lower straw production 

3.4 Estimates of the potential availability of straw 

 

The availability of a primary by-product such a straw can be defined by a simple 

formula:  Availability = P - T1 - T2 - T3 - T4 

 

Where P is the amount of straw present. As explained in 3.3 this is variable but 

can generally be estimated.  

T1 are  conventional competitive uses (i.e. feed, bedding, fibre uses,  etc.).  

T2 are  new competitive uses that may be relevant in the near future.  

T3 is the amount of straw that has to be left behind to conserve soil quality. 

T4 is the amount of biomass that is not financially feasible to remove (biomass 

density ton/ha may be too low to make collection financially feasible) 

 

In particular for the EU, there are quite a number of studies that have estimated 

the potential of straw for energy conversion. In general, estimates among these 

studies vary widely, given different assumptions, scenarios, and time frames used 

in the study. IEEP (1212) quotes unpublished studies by two German institutes 

that give a technical potential of straw in the range of 50 and 110 million tonnes of 

straw (dry matter) per year in the 27 Member states. The Biomass Futures 

project, which is the most recent large European research project to calculate 

bioenergy potentials, has identified a similar straw potential of 127 million tonnes 

for the EU-27 in 2020 (note: straw here refers to straw from barley, wheat, rye, 

oats and other cereals combined). Often, some element of competing uses of 

straw (i.e. non-energy use of straw) are taken into account in the calculations, 

which lead to different results. There are also different approaches in relation to 

the restrictions of straw collection for sustainability considerations (see next 

paragraph). 

3.5 Sustainable straw extraction 

 

“How much straw can be extracted in a sustainable way?” is a common question 

that is frequently discussed when estimated the availability of straw. Maintaining 

soil fertility is a primary factor in assessing sustainability of agricultural residue 

utilization. Maintenance of soil fertility generally deals with the question how much 

agricultural residue can be sustainably removed without long-term negative effects 

on agricultural productivity of the land. As stipulated by Kim and Dale (2004), the 

fraction of agricultural residues collectable for biofuel, or other purposes, is not 

easily quantified because it depends on local climate, crop rotation, existing soil 

fertility, slope of the land, and farming practices which are all very location 

specific. The impact of the removal rate of other agricultural residue on long-term 

soil fertility is a topic of many research projects, and general recommendations 

are difficult to find. 

 

The amount of straw that needs to be incorporated into the soil to maintain soil 

quality will depend on crop yields, soil type (texture), and on the climate. If crop 



yields are high more straw can be removed as root turnover and stubble already 

provide enough organic matter to the soil.  

 

In Figure 3 the results are shown of 5 straw management options on soil organic 

carbon for a relatively low yield system in Ukraine as modelled with the Century 

model (Parton, 1996) within the AgNL sponsored “Pellets for Power” project. The 

results shown in the figure are for wheat straw on a Haplic Chernozem under 

Ukrainian environmental conditions. First the model was initialised for natural 

steppe grassland until soil carbon was at equilibrium status. Afterwards a 

conversion to cropland was simulated for a period of 150 years assuming the 

average traditional management. This was simulated as a five year rotating period 

of two years ploughing of straw into the soil, two years burning of straw and one 

year removal of straw. After this period a change in crop and land management 

was simulated for several management options (see Figure 3). 

As it takes a long period to reach equilibrium in the soil carbon stocks under the 

relatively dry and cold conditions in Ukraine, the default management still shows a 

decline in soil carbon stock due to the conversion of natural grassland (high C 

stock) to cropland (lower C stock). The only management option which actually 

increases the amount of C in the soil is the simulation in which each year all straw 

is ploughed into the soil at the end of the growing season. The other options show 

a decrease in the soil carbon, with the highest losses for the option of 100% straw 

removal and ploughing. 

  

Figure 3: The change in soil carbon content for wheat straw in Ukraine (for a Haplic 

Chernozem) modeled for 5 straw management options using the Century model (Ref: Lesschen 

et al., 2012). 

 
 

The variability of regional specific extraction rates is also highlighted by other 

institutes (DBFZ and Oeko-Institut), who reviewed a range of straw availability 

studies. The sustainable straw extraction rates ranged from 25 and 75 %. They 

conclude that sustainability issues have not been considered in a consistent way 

across the different studies. 

Evidence gathered from a number of national experts in different parts of the EU 

suggests a smaller range of 25 to 30 % after competing uses are taken into 

account. These figures are supported by slightly higher, but consistent figures, 

from other reports. For example the European Environment Agency (EEA) 



estimates between 33-37 per cent to be available Europe wide within a range of 

sustainability scenarios. 

 

As stated by IEEP (2012) in many studies, researchers assume an average rate of 

‘sustainable straw extraction’, whereas in fact this figure is highly variable at the 

regional and sub-regional level and determines the extent to which residues can 

be extracted in a sustainable way.  

Sustainable availability of straw is difficult to assess because the factors that 

determine the availability vary or are difficult to determine; The amount of straw 

present will vary but can be increased by choosing varieties with a high straw to 

grain ratio. The demand from competing uses will vary. The amount of straw that 

needs to be left for maintaining soil quality is difficult to determine. 

 

Keeping the above in mind we can state that overall straw availability (for energy) 

has been found to be between 25 and 75%. Many studies that claim to take all 

factors into consideration conclude 25 to 35 % of the straw may be available for 

energy uses.  

3.6 Straw disposal: field burning 

 

Compared to other types of straw (e.g. wheat straw, corn stover), rice straw 

management can be distinguished by its most common disposal technique: open 

field burning. Field burning of straw is often the most cost-effective technique for 

rice farmers to quickly dispose of straw. While some nutrients (e.g. potassium) are 

largely contained in the field, a lot of carbon and nitrogen are released and not 

returned to the field. Although there are no official statistics, estimates indicate 

that up to 80% of rice straw is burnt by farmers in certain regions. Furthermore, 

there are also differences in practices of straw burning (e.g. pile burning, burning 

of straw that is evenly spread over the field). There are a number of studies 

evaluating the environmental impact of straw burning. Table 3 provides an 

example of such a study; it presents the estimated greenhouse gas emissions and 

other air pollutants (NOx, CO, fine dust) from the burning of rice straw in Egypt, 

where rice is produced at a very high productivity (more than 8 tons /ha). In total, 

rice straw burning is shown to release 11 tons of CO2-equivalent per ha of land, in 

addition to a large amount of NOx (a precursor to photochemical smog) and PM2.5 

(fine dust). 

 

The current practice of straw burning is mainly caused by the need of a short 

turnover time between rice and following crops. With the rice being harvested in 

or near the end of the rainy season, the next crop (often rice, wheat or other 

crops) will have the highest yields when this crop can be established as early in 

the autumn period as possible, thereby benefiting from higher temperatures and 

longer days. Removal of straw, or processing it in such a way that it does not act 

as a physical barrier makes it much easier to prepare a seedbed for the following 

crop. There are various options for incorporating the straw into the field (as 

alternative for burning) but these options generally require mechanization, water, 

and additional fertilizer in order for rice straw to quickly decompose in the field. In 

addition, the degradation of straw in the field may also lead to significant 

emissions of greenhouse gases, such as methane. 

 

 

 

 

 



Table 3. Estimated emissions of greenhouse gases and other air pollutants as a result of field 

burning of rice straw in Egypt (Bakker et al, 2010; unpublished data).  

Pollutant  Emission factor                        Emissions Emissions in CO2 Eq. 

 g/kg straw, dry 
weight 

kg pollutant/ha ton CO2eq/ha 

CO2 1460.00 9344.0 9.34 

CH4 0.74 4.7 0.10 

N2O 0.79 5.1 1.57 

CO  72.40 463.4  

NOX 3.52 22.5  

SO2 0.15 0.9  

PM2.5 (fine particulate 

matter) 
12.95 82.9  

    

Total  9354 11 

 



4 Harvest and logistics  

The main techniques for collecting straw in the field consists of baling straw in 

small rectangular, large rectangular, or round bales (refer to previous chapter). 

From the time of collection of straw, which is done by custom baling operations, a 

number of logistical operations are required to deliver straw in packs or bales to 

the conversion site. For many of these operations, specialized machinery is 

available for straw collection and transport. 

 

Prior to baling straw, the following field operations may be included in order to 

collect straw: 

- Raking/Windrowing: placing the straw in neat rows in the field, in order to 

facilitate the baling operation 

- Cutting: depending on the length of stalks that are remain standing in the field, 

an additional cutting operation is done to further increase the amount of straw 

that can be picked up by baling 

 

After baling straw, the following operation are required: 

- roadsiding: in this operation, straw bales are picked up from the field, and 

placed at the side of the field where they can be stacked and picked up for 

transport 

- stacking: in this operation the individual bales are stacked to facilitate pickup 

for transport 

- transport to storage facility: this operation depends on the distance to the 

storage facility. Where straw is stored decentrally (in or near the farm), the 

transport is normally done on simple flat-bed trailers drawn by tractors. For small 

bales, specific machinery is available that combines roadsiding, stacking and 

(local) transport. 

 

After storage: baled straw is further transported on special trucks to the 

conversion facility. Alternately, baled straw is converted into pellets. Straw pellets 

have a much higher density compared to baled straw, are easier to store and 

handle both during transport and application. However producing pellets from 

straw comes at considerable cost. 

 

In cases where the rice or wheat harvest is preceded or followed by considerable 

rainfall, the composition of straw will change, in particular with regard to the 

inorganic composition. This field leaching or natural leaching leads to release of 

potassium and chlorine, which are troublesome elements when straw is used in 

thermal energy applications (see also next chapter). 

 

The costs for collection and transport of straw are site- and region-specific, and 

depend on the productivity of the agricultural residue (ton of residue per ha of 

land) and how much of the residue is removed from any particular field or 

location. For example, costs for acquiring 300,000 tons of wheat straw in Southern 

Europe from a 90 km collection radius were estimated at 40 €/ton straw, which 

includes 6 €/ton as payment to the farmer, 18 €/ton for baling, and 12 €/ton for 

transport to the conversion facility (JRC, 2008).  

 

 



5 Straw applications  

5.1 Straw for electricity and heat 

 

There are three main reasons for producing energy and heat from straw: (1) there 

is a market demand for electricity, and often for heat, (2) substantial energy 

production from agricultural wastes can be accomplished when they are converted 

to energy, and (3) substantial environmental savings can be provided by avoiding 

landfilling or open field burning of straw, in particular for rice straw. 

 

The tremendous increase in energy demand of the past 50 year is largely filled by 

fossil, non-renewable, energy sources such as coal, natural gas, and oil. It is well 

known that 80% or more of the world’s energy demands today comes from non-

renewable resources, which clearly indicates the issue of sustainability of our 

energy supply. Many developing countries have transferred from being a net oil 

exporter to an oil importer in a short amount of time. Besides increases in energy 

production and consumption, the production of food crops has also increase over 

the past decades. According to the International Rice Research Institute (IRRI) , 

the yearly increase in rice production amounts to 1.5% increase per year, on 

average. More grain production also means a higher production of by-products, 

such as rice straw. This provides an important opportunity for using the waste for 

beneficial purposes. 

 

There are four main technologies available to produce electricity and heat from 

rice straw. Energy can be produced either directly, by combustion, or indirectly, by 

producing an intermediate energy carrier like biogas, which later can be converted 

to electricity or heat. In addition, two important technologies that are developed 

are in development are gasification and pyrolysis. The main conversion energy 

technologies are summarised in the paragraphs below. Not included in this 

overview are biofuels used for transportation: these will be dealt with in separate 

paragraph. 

5.1.1 Combustion 

Combustion is the most well-known conversion method, and the technology 

generally consists of a boiler coupled to heat exchanger, and a steam turbine with 

electricity generator. Options for rice straw combustion are dedicated systems, 

and co-combustion, where the straw is combustion together with coal or other 

fuels (co-firing).  

 

As noted earlier, there are specific and important challenges related to rice straw 

combustion, these are mainly related to the high ash content (up to 20%), and 

the ash composition. Due to its chemical composition, at higher temperatures 

inorganic components in rice straw react with each other, leading to problems in 

boiler systems. Quality of rice straw is therefore a major issue. Many boiler 

operators have found that they could not accept rice straw as fuel, whereas they 

are successfully use other biomass fuels, such as woods. Finally, a separate 

bottleneck is the need to densify or compress the straw prior to combustion, for 

both economic (logistics) and technical reasons. 

 

Biomass-fuelled power plants at smaller scale (5 – 15MWe) are well established, 

while for larger systems the transportation distances to bring the straw to one 

combustion facility may become a problem. In addition, an outlet for straw ash 

needs to be identified 



 

There are a number of solutions for ash-related problems of rice straw and wheat 

straw combustion:  
- Rice straw and wheat straw can be combined with other fuels that are 

lower in ash, alkali and chlorine 
- boiler systems can be designed with lower operating temperatures, 

thereby reducing ash agglomeration problems 
- troublesome components, such as K and Cl, can be removed prior to 

combustion in a process known as leaching, which can be accomplished 
either by natural means (rainfall) or by washing the straw prior to 
combustion 

 

Some of these solution have been successfully tried with rice straw. In general, 

these solutions also lead to higher costs for straw utilization, which often makes 

the use uncompetitive (refer to Chapter 6). 

5.1.2 Anaerobic Digestion 

 

Anaerobic digestion is a well-proven technology for various agricultural wastes, 

including straw. The technology can be characterized by low maintenance costs, 

and the technology is not complicated. Also, it can be implemented at relatively 

small scale, which translates in short transportation distance from the field to the 

facility. 

 

There are two main applications for the end-product Biogas. Direct use of biogas 

can be done when gas is used for cooking and heating. Indirect use of Biogas 

involves feeding the gas into an engine that is equipped with an electricity 

generator. In some cases, biogas is used for lighting as well. 

 

Often, rice straw and wheat straw are digested together with other biomass types, 

including Animal manure, or other organic wastes. Biogas technologies that only 

use straw, are still in development. Therefore, the major drawback of this 

technology that besides straw, there is a need to have other raw materials 

available to effectively turn rice straw into biogas. There are also pretreatment 

technologies available that lead to an increase biodegradability of the straw. These 

pretreatment techniques are often too costly to be used in combination with 

biogas production, but are an important step in the production of biofuels from 

straw (refer to 5.2). 

5.1.3 Pyrolysis and Gasification 

 

Pyrolysis is done at lower temperatures and yields two fractions: bio-oil and bio-

char. Gasification yields only a gas, but the composition is quite different 

compared to biogas. The produced gas can be used, however it needs cleaning of 

impurities. These technologies have shown great promise, and have a potentially 

higher energy conversion efficiency, but they have so far not been implemented at 

large scale. In Denmark, a system was developed whereby straw is first gasified, 

and the gas is then converted to electricity in a different boiler. 

 

Related to rice straw is the combustion of rice husk or rice hulls, which is often 

more successful compare to combustion of rice straw. There are three reasons for 

this: (1) rice husk is already collected in one site (at the rice mill); (2) its 

composition is somewhat more benign than rice straw, especially in regard to 

alkali and chlorine, and (3) rice husk ash is a marketable product, depending on 

operating conditions. There are many commercially operated, small scale rice husk 

furnaces, gasifiers, and pyrolysis units. In addition, industrial scale rice husk 



utilization can be found throughout the rice growing areas of the world, including 

the USA, Thailand, China, etc. 

 

Following is a short summary of examples of experiences with rice straw 

conversion to energy. 

 

Example 1: Rice straw power production in China (source: Gadde et al, 2008) 

There are various biomass power projects in Jiangsu Province. The typical size of 

the straw-fired power plants is 12 – 25 MW electricity, per power plant. In all 

cases, the fuel consists of 50 – 60% of rice straw, and the remainder is made up 

of other types of agricultural waste. Most facilities source their raw material from 

an area with a radius of 25 to 50 km radius around the power plants. The main 

concern of the power plant operators is the cost of the raw material, as this quote 

suggested “It is assumed that collection and transportation charges will increase 

every year because of increasing labor and transport costs.” (Gadde, 2008) 

 

Example 2: Biomass power production in California (source: Jenkins et al, 2000) 

In California, rice is produced as a mono-crop, and straw becomes available after 

the grain harvest in August-September. Since the 1990’s, legislation passed by 

the State of California has led to a mandatory phase-out of field burning of rice 

straw. Currently, the primary disposal method is in-field recycling/incorporation by 

farmers. In California, there are at least 10 medium-sized facilities to produce 

electricity from biomass. However up to now, these facilities have largely used 

other types of agricultural waste, and not rice straw, due to the anticipated 

problems with firing straw fuels with high ash and chlorine content (see also 

5.1.1). There are however some other uses of rice straw in California, including 

the use of rice straw for erosion control. For instance, the State of California uses 

rice straw to avoid erosion of embankments of public roads.  

5.1.4 Conclusions 

 

Many technologies are available for producing electricity and heat from rice straw 

and wheat straw. However, up to now the potential of rice straw has not been 

realized. This is in contrast with energy production from rice husk, which in 

general is quite successful. Major challenges that are encountered with straw 

include 

- Technological challenges, mainly related to the chemical compositions of rice 

straw, 

- Organizational challenges: mainly related to the logistics of straw collection 

- Economic challenges: mainly related to the cost of straw conversion, versus 

revenues.  

 

Even with these important challenges, substantial environmental savings can be 

achieved, if rice straw conversion to energy leads to avoidance of field burning. 

 

5.2 Straw for production of biofuels for transportation 

 

Biofuels are commonly defined as transportation fuels that are derived from 

biomass. The most prominent examples are bioethanol, which is used as 

replacement for gasoline (petrol), and biodiesel, which can replace normal diesel 

fuels. In many countries throughout the world, legislation for mandatory use of 

biofuels in the transportation sector has been implemented that leads to higher 

demand for biofuels. Currently, there is large scale production of biofuels in Brazil, 

the U.S.A., China, and a number of European countries. Current raw materials 



used for biofuels include: Sugarcane, Maize, Wheat, Barley, Sugar beet for 

bioethanol production, and Rapeseed, Sunflower, and Palm oil for biodiesel 

production. The use of these raw materials also leads to discussion on whether it 

is desirable to use agricultural feedstocks that are also used for food production, 

into fuel (i.e. Food vs Fuel debate). Furthermore, questions are raised in regard to 

the environmental sustainability of current biofuel production. 

 

Currently, the transportation sector in many countries is for more than 80% 

dependent on oil imports. One of the main drivers for biofuels therefore is to 

reduce the dependency on imported oil. Another very important driver for biofuels, 

is the reduction of greenhouse gas emissions in the transportation sector. Also, 

biofuel production may lead to new economic impulses for agriculture and agri-

industry, and it may add value to by-products, in case by-products or wastes are 

used to produce biofuels. The main biofuels currently used in the world are 

bioethanol (or alcohol), and biodiesel. In the world, bioethanol production by far 

exceeds the biodiesel production. The main producers are Brazil, and the United 

States. 

5.2.1 Using rice straw and wheat straw to produce Biofuels 

 

Converting straw to biofuels is often characterized as “2nd Generation” or 

“Advanced” biofuel. Most advanced biofuel production technologies today are 

focused towards converting lignocellulosic biomass into transportation fuels. One 

of the main drivers for transportation biofuels is to reduce the dependency on 

imported oil. Another very important driver for biofuels, is the reduction of 

greenhouse gas emissions in the transportation sector. Also, biofuel production 

may lead to new economic impulses for agriculture and agri-industry, and it may 

add value to by-products, in case by-products or wastes are used to produce 

biofuels.  

 

The main biofuels currently used in the world are bio-ethanol (or alcohol), and 

biodiesel. In the world, bioethanol production by far exceeds the biodiesel 

production. The main producers are Brazil, and the United States. Lignocellulosic 

biomass refers to plant biomass that is composed of cellulose and hemicellulose, 

which are natural polymers of carbohydrates, and lignin. Cellulose and 

hemicellulose are tightly bound to the lignin, by hydrogen and covalent bonds. 

Lignocellulose comes in many different types, such as wood residues, crop 

residues from agriculture, industrial residues from agro-food processing 

operations, and dedicated energy crops (e.g. switchgrass). Rice straw and wheat 

straw are major examples of lignocellulosic biomass that is available throughout 

the world. However, the technologies for producing biofuels from raw materials 

such as rice straw are still in development, as current production costs are not yet 

competitive with current biofuel production. 

 

 There are two main methods of producing biofuel from lignocellulose: the 

thermochemical method, and the biochemical method. For both these pathways, 

technologies are in various stages of development.  

 

The thermochemical pathway, often referred to as Biomass to Liquids or BTL is in 

development. Essentially, from the raw material a synthetic gas is produced, 

which is further processed into a synthetic liquid, Fischer Tropsch liquid, that can 

be used in petrol or diesel engines. the transportation sector in many countries is 

for more than 80% dependent on oil imports.  

 



A simple schematic of the biochemical pathway is shown in Figure 6. The process 
consists of a pre-treatment step, a hydrolysis step, and a fermentation step, 
followed by distillation and dehydration. In this process, lignin is discharged as a 

by-product and can be used to generate electricity to supply the process with 
energy, or to export to the electricity grid.  

 

Figure 6. Simple block scheme of production of lignocellulosic biomass conversion to ethanol. 

 
 

 

 
Pre-treatment is necessary to break open the lignocellulosic structures and to 
facilitate the separation of the main carbohydrate fractions hemicellulose and 
cellulose from lignin, in order to make these better accessible for hydrolysis, the 
next step in the process. Pre-treatment is considered by many as the most costly 
step in lignocellulosic biomass conversion to ethanol. A variety of pre-treatment 

methods have been studied and some have been developed at pilot scale or 
demonstration scale. Current pre-treatment methods include: steam explosion, 
liquid hot water or dilute acid -, lime-, and ammonia pre-treatments. Hydrolysis is 
the process to convert the carbohydrate polymers cellulose and hemicellulose into 
fermentable sugars. Hydrolysis can be performed either chemically in a process 
involving the use of concentrated acids, or enzymatically by using enzymes. Most 

pathways developed today are based on enzymatic hydrolysis, by using cellulose-
degrading enzymes that are specifically developed for this purpose. Fermentation 

is the main process used to convert fermentable sugars, produced from the 
previous hydrolysis step, into ethanol. While in principal, the fermentation process 
is largely similar to that in the current ethanol production facilities, a major 
fraction of sugars produced from lignocellulosic are pentoses (5-carbon sugars 
such as xylose), which are difficult to ferment with standard industrial 

microorganisms. Therefore, a second important challenge in the conversion of 
lignocellulosic biomass to ethanol is the optimization of ethanol-fermenting 
microorganisms that can convert all biomass-derived sugars, including xylose and 
arabinose. Furthermore, the efficient integration of various unit operations into 
one efficient facility is challenging. In some processes, the hydrolysis and 
fermentation steps are combined into one process which is often referred to as 
simultaneous saccharification and fermentation or SSF. 

5.2.2 Ethanol from straw: developments 

 

There are several companies around the world that are developing biofuel 

production technologies based on lignocellulosic feedstocks, including straw. 

Examples are Abengoa (Spain and USA), Iogen (Canada), Dong Energy/Inbicon 

(Denmark) and M&G/Chemtex (Italy) that are developing bioethanol production 
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methods based on straw. In general, there are large capital investments 

associated with these types of industrial developments. In 2013, two larger 

demonstration plants are expected to operate on lignocellulosic biomass, to 

produce ethanol. After successful conclusion of the demonstration phase, it is 

expected that full industrial scale facilities for the production of ethanol from straw 

will be built. In the Netherlands, several parties are involved in Research and 

Development related to biofuel production as well. Most of the research is done in 

public-private partnerships, with active support by the Dutch and European 

government. An example of such a project was the bioethanol/lactic acid research 

program which was funded by the Dutch Ministry of Economic affairs through the 

EET (economy, ecology, technology) grant program. Production costs of bioethanol 

produced from straw were estimated at around half a euro per litre, although in a 

commercial business model (which includes a commercial rate of return) that price 

would increase to about 0.75 €/L (Reith et al, 2007). Important improvements 

have been realized in recent years in particular by innovations in Industrial 

Biotechnology (development and improvement of enzymes and microorganisms) 

and Process technology. The outlook for coming years is that further transfer of 

technology to the industry will be accomplished.  

 

In summary, the technology for conversion of lignocellulose, including rice straw 

and wheat straw, is applicable to a broad range of raw materials, and a broad 

range of fuels and products. 

 

 



6 Economics of using straw 

The cost of using straw for energy purposes have been subject to a number of 

studies. Many studies include the cost of collection and transport of straw to the 

factory gate, but do not incorporate additional costs or benefits to the farmer, or 

additional conversion costs related to the use of straw in energy installation (e.g. 

higher ash disposal costs-rice and wheat straw contain more ash than most other 

biomass fuels). One of the few studies that does estimate costs factors along the 

entire straw production-to-conversion chain, is a study by Jenkins et al. (2000) 

who estimated the commercial use of rice straw in combustion power plant in 

California. The economic impacts of straw are classified as follows: 

 

- Costs or benefits to the farmer: these are related to avoided costs for straw 

incorporation, costs for (additional) nutrient replacement, and timeliness cost (i.e. 

cost associated to potential delays in other farming operations due to straw 

collection) 

 

- Straw acquisitions and logistics costs: these are direct costs of straw collection 

and handling, and payments to the farmer 

 

- Power plant costs: includes a range of additional costs to the power plant 

operator related to straw conversion, including fuel handling, changes to plant 

performance (in comparison with at standard biomass fuel, like wood), changes in 

availability and emissions, but also credits due to incentives geared at increasing 

the use of agricultural residues that are otherwise disposed of by open field 

burning. 

 

In the analysis for rice straw, total costs for rice straw combustion (where straw is 

fired in a 20:80 blend with wood) amount to $ 52.8 ton fuel (equivalent to 69.4 

$/MWh electricity), which includes $ 26.9 ton for straw harvesting and handling, 

$7.8 for transportation (up to 32 km transport distance), $3.8 ton for straw 

storage, and $10ton for power plant handling and processing. These costs are 

significantly higher compared to the costs of running the power plant on wood fuel 

alone. However, if an incentive scheme is adopted for using straw or other 

agricultural residues, costs can potentially be reduced, generating cost to levels at 

or below current costs for wood alone. 

 

 



7 Sustainability 

Given the recent implementation of sustainability criteria as defined in the 

Renewable Energy Directive (RED, 2009), it is important to assess whether straw-

to-energy chains could comply with greenhouse gas reduction schemes in the EU. 

This is both relevant for straw generated inside the EU, as well as agricultural 

biomass from non-EU sources. As an example of such an assessment, a case 

study for rice straw production in Egypt is presented here. In recent years, 

Egyptian agriculture has undergone a tremendous growth, leading to a growing 

export of agricultural produce. However, much of the agricultural residues in Egypt 

are not used economically, and their disposal often leads to environmental 

pollution. Probably the most prominent example of this is rice straw, of which 

nearly 3 Million tons is burned annually in the field every year, creating economic 

waste as well as air pollution and smog formation. The resulting, well-known 

“Black Cloud” is a yearly health problem covering a.o. Cairo and other urbanised 

areas in the Egyptian Delta.  

 

Based on a business case with five pellet plants operating in three major rice 

producing regions in the Nile Delta, the greenhouse gas emissions occurring in all 

operations of the biomass-to-energy chain were quantified (Poppens and Bakker, 

2010). By using straw residues for the production of pellets and transporting these 

for use in electricity plants, significant overall emission reductions could be 

achieved compared to the current practice of field burning. Furthermore, expected 

emission reductions were calculated in comparison with the use of fossil fuels. The 

calculations performed were based on the methodology used by the European 

Commission, as documented in the Renewable Energy Directive (2009) and the 

Dutch NTA 8080 standard for bio-energy chains. Results were analysed for 

compliance with these standards’ minimum requirements for greenhouse gas 

emission reductions.  

 

The rice straw production chain consists of the following chain operations: Traders 

buy straw from contractors and farmers; baled straw is stored decentrally; baled 

straw is transported to pellet plants where pelletization occurs; Pellets are then 

transported by truck to the Egyptian port of Alexandria; straw pellets are then 

shipped in medium-sized carriers to Rotterdam; and finally, pellets are co-fired in 

coal-fired power plants. Table 4 presents the calculated CO2 emissions along the 

chain. The results suggests that Egyptian rice straw use for co-firing in Dutch 

electricity plants may indeed meet the requirements for net emission savings set 

by the RED and NTA 8080 standards. With 79,94 percent of savings, the biomass 

chain operations stay clear of the minimum emission savings of 70%. This result 

may hold promise for future biomass based business development in Egypt, and 

the possibility of certifying biomass operations against international sustainability 

standards for improved market access.  

 

 

 

 
 

 

 

 

 

 

 



Table 4: Greenhouse gas emissions and emission reductions as a result of using rice straw 

pellets for co-firing 

 

CO2 –equivalent emissions and savings                                                                                             

Operation                                                             

Factor 

   T CO2-e/year gCo2-e/MJpellet 

electricity 

Rice straw baling EEC 18572 2.14 

Rice straw supply  ETD-1 29913 3.44 

Rice straw pelletizing (including milling and 

conveyer belt transport to silo) 
EP 104659 12.05 

Pellet transport to Alexandria ETD-2 125109 14.40 

Pellet shipment to Rotterdam ETD-3 71048 8.18 

Total CO2 equivalent bio-chain emissions EB  349301 40.22 

Fossil fuel comparator EF  200 

Net GHG emission savings (EF-EB)/EF  79,89 % 

 

However, any results should be treated with some caution. Any slight change of 

one or more important calculation variables may have a big impact on the final 

result. This is the case, for example, for the emission factor of coal-fired electricity 

plants.  

7.1 Indirect effects 

 

The indirect effect of using biomass for non-food uses has in recent years become 

a concern, mainly when speaking about first generation biofuels which are 

produced from crops that can also be used for food. This may lead to increased 

food prices and decreased food security. It may also lead to indirect land use 

change (iLUC) as more land is needed for agriculture, which may lead to 

conversion of forests and grasslands which generally leads to significant 

greenhouse gas (GHG) emissions (Searchinger 2008). This can actually completely 

undo the GHG benefits of using biomass instead of fossil fuels.  

As stated by Fritsche et al (2010) the iLUC risks are low or close to zero for 

bioenergy and biofuel feedstocks which do not require land for their production.  

Thus, iLUC can be avoided by preferred use of such feedstocks. Crop residues,  

like straw, are generally not in competition with other uses due to their low-to-

zero economic value. Still, there are exceptions, when straw has competing uses. 

As is generally the case in The Netherlands (Koppejan et al., 2010). As discussed 

in chapter 3, uses include improvement of soil organic carbon, existing fiber 

applications and animal bedding. In those cases, indirect effects could occur from 

displacing those uses, with potential impacts on GHG emissions. A methodology to 

assess this is under development (Ecofys et al. 2012).  

 

Another emission factor worthy of further exploration in the context of Egypt is the 

emission savings from carbon capture and replacement (Eccr). Here too, lack of a 

reliable methodology is the reason this factor was not included in the study. 

Current practices in Egypt, of large-scale rice straw burning and rotting on the 

fields, produce enormous amounts of GHG. Use of rice straw for energy purposes 

would help avoid these emissions, even more so through substitution of fossil fuels 

in electricity plants. It is highly recommended that more research funding goes 

into development of methodologies, for more accurate and reliable estimations of 

biomass related GHG emissions and other effects on sustainability. This is crucial 



for assessing the real importance of biomass-to-energy operations, as an 

instrument to reduce global GHG emissions, protect the environment and help 

alleviate poverty.  

 

Finally, the quality of (straw) pellets was not included in the Egypt study. 

Anticipated ash-related problems with straw (high in ash; high in chlorine and 

potassium) may have a significant impact on the economic value of rice straw as 

fuel for combustion, as was also described in Chapter 5. It is likely that conversion 

costs for straw are much higher compared costs for using current solid biofuels 

(wood chips, etc). Also, it should be understood that only a limited amount of 

straw can be used in co-firing in coal-fired powerplants, without pretreatment of 

straw that removes some of the minerals that lead to ash-related slagging and 

fouling. 

 

 



8 Conclusions 

The following is a SWOT assessment of various aspects of rice straw and wheat 

straw, when used as a feedstock for the biobased economy, as discussed in this 

report. 

 

Strengths 

 Rice straw and Wheat straw are available in many countries around the world 

 Rice straw and wheat straw are the most abundant agricultural residues in the world 

(next to residues from maize production, and sugar cane) 

 Straw is a “Non-food” feedstock: it does not play a large role in current food or 

animal feed markets 

 Straw exhibits a high cellulose content 

 In general terms, there is a positive environmental impact of using straw, especially 

when straw collection and use replaces open field burning 

 

Weaknesses 

 There are high Costs associated to collection, handling, and transport of straw 

 Straw has a high carbon to nitrogen ratio, and low degradability  

 The high ash concentration makes straw less attractive compared to clean wood and 

biomass grasses, as fuel 

 The ash composition of straw, make straw less favorable compared to wood or 

biomass grasses (in particular for thermal conversion) 

 Nutrients are extracted from the field when straw is collected on annual basis, these 

need to be replenished 

 In many countries the supply chain of straw is very fragmented (especially in 

developing countries with small farm sizes) 

 

Opportunities 

 Increased grain production in the world leads to more straw being produced 

 Increased legislative efforts to ban open field burning of straw will make straw 

available for the biobased economy 

 Development and implementation of technologies for 2nd generation biofuels may 

lead to a higher demand for straw 

 Limiting 1st  generation biofuels in favor of 2nd  generation biofuels may increase 

demand for straw as a feedstock 

 Straw is an underutilized by-product which means that it offers an opportunity to 

produce biofuels without concerns for competition for food and indirect land use 

changes  

 

Threats 

 Other non-energy uses of straw compete with straw use for biobased economy 

 Implementation of Sustainability criteria might lead to lower extraction rates 
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