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An Examination with Mixed-Frequency Data  

 

(Preliminary draft) 

 

Abstract 

Is the relationship between energy and agricultural commodities an important factor in the 
increasing price variability of food commodities? Findings from the literature appear to be 
mixed and highly influenced by the data frequency used in those analysis. A recurrent task in 
time series applied work is to match up data at different frequencies, while macroeconomic 
variables are often found at monthly or quarterly observations, financial variables are sampled 
daily or even at higher frequencies. In order to match up time series at different frequencies a 
common procedure is to aggregate the higher frequency to fit in the low frequency, this has 
the potential of losing valuable information, and generating misspecification. We study 
whether the use of mixed frequency estimations with data for the 2006-2011 period helps to 
improve the out of sample performance of a model that explains grain prices as a function of 
energy prices, macroeconomic variables such as exchange rate, interest rate, and inflation. 
Preliminary results suggest that an improvement is feasible, however it is tenuous beyond two 
months horizons.  
 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Energy and Food Commodity Prices Linkage:  

An Examination with Mixed-Frequency Data  

 

Strong co-movements between energy and food commodity prices in recent years led to the 

notion that energy prices are one of the main contributing factors of the increasing food price 

variability. This relationship has been prompted by volatile fuel prices coupled with 

legislative mandates to increase biofuel production, particularly the U.S. Energy 

Independence and Security act of 2007 (Abbott, 2012). Other related and reinforcing factors 

are the rapid growth of developing countries, and macroeconomic factors such as monetary 

policy, and a weak U.S. dollar (Goodwin, 2012). 

As identified by Nazlioglu (2011) findings in the literature with regards to the 

significance and strength of the energy-agricultural link are mixed. Some papers support the 

neutrality hypothesis where no causation or even strong correlation is found between these 

sectors (e.g. Zhang and Reed, 2008; Lombardi et al., 2011; Reboredo, 2012). Meanwhile, 

other branch of the literature support the hypothesis of an increasing linkage where energy 

prices stimulates price variability and increasing demand of current biofuel feedstocks like 

corn, sugarcane, and soybeans (e.g. Campiche et al., 2007; Serra et al., 2011). Results are 

strongly influenced by modeling approaches. Equilibrium models may suffer from arbitrarily 

price elasticities, and difficulties to capture short run dynamics (Nazlioglu, 2011). While 

econometric models depend on time series characteristics such as asymmetry, seasonality, 

linearity, structural changes, and whether macroeconomic or inventory variables are 

accounted for. Other salient feature found in the literature is that differences in the frequency 

of the time series data (quarterly, monthly, weekly, daily, etc.) also influence the results of the 



energy-agriculture link. For instance, Zhang and Reed (2008) use monthly data rejecting the 

relationship, while other studies that use weekly data such as Frank and Garcia (2010) support 

it after the structural break of 2007. 

Most empirical time series models involve regressions that relate variables sampled at 

the same frequency. However, time series are often recorded, collected, or issued at different 

intervals. For instance, while most macroeconomic variables are reported at monthly or 

quarterly frequency (i.e. GDP), many other variables including prices or interest rates may 

have weekly, daily, or even higher frequencies. As a result, matching mixed and irregular 

sampling frequencies of available data is a common task in applied work that represents a 

challenge in economic analysis (Chiu et al., 2012). Solutions to the presence of mixed sample 

frequency include aggregation of the high frequency observation to match the low frequency 

data. The most common procedure involves taking a simple average, for instance if we have 

demand data at quarterly frequency, and monthly inventory estimates, then a simple average 

of the three monthly samples would enter into the regression. In the case we would like to 

match the low frequency to the high frequency a possible approach is to use interpolation, 

however this is rarely used. According to Foroni and Marcellino (2013) in pre-filtering the 

data so that left- and right hand variables are available at the same frequency, a lot of 

potentially useful information might be destroyed, and mis-specification is inserted in the 

model. Moreover, the distribution, stationarity, homoscedasticity, potential breaks, and 

regimes of time series (just to mention some of the most important characteristics), are 

strongly influenced by data frequency. Therefore, estimation results may differ even when 

using the same variables.   

Overcoming the potential problems of combining unbalanced frequency datasets has 

recently attracted attention in the macroeconomics and forecasting literature and is currently a 

fast growing area of research (Andreou et al., 2011; Kuzin et al., 2011; Armesto 2010; 



Clements and Galvão 2008;  Ghysels, Santa-Clara, and Valkanov 2006). Several alternatives 

to model mixed frequency data have been proposed, the most promising developments 

include the Mi(xed) Da(ta) S(ampling) MIDAS (Andreou, Ghysels, and Kourtellos (2011); 

Ghysels, Sinko, and Valkanov, (2007) and the mixed frequency vector autoregression (mixed 

frequency VAR) ((Kuzin, Marcellino, and Schumacher (2011); Ghysels (2012); Kuzin et al. 

(2011); Qian (2010); and Schorfheide and Song (2012)). MIDAS models are essentially 

extensions of augmented distributed lags, and offer a balance between the parsimony of 

simple time aggregations and the flexibility of space state models. Mixed frequency VAR 

models incorporate multiple time series, and with the use of structural model it offer a rich 

analysis environment. Both techniques look for a parsimonious model that reflects properly 

the dynamics of the data (Foroni and Marcellino, 2013).  

In this paper we focus our attention to the use of MIDAS as a way of evaluating 

whether the use of mixed frequency data improves the out of sample performance of a model 

of agricultural prices as a function of energy prices, and other macroeconomic components. 

Our approach follows the logical positivism of Bayesian methods, that states that a model is 

as good as its predictions (Geweke and Amisano, 2010).  The data used in this analysis is a 

subset of the one used in the standard VAR of Enders and Holt (2012). These data include an 

index of grain prices, an index of energy prices, exchange rates, interest rate, and inflation for 

the period 2006-2011  

Our study is also motivated by recent work in the commodity prices literature that 

identifies the importance of accounting for data frequency. In the context of the energy- 

agricultural link, Vacha et al. (2012) estimates correlations between biofuels and feedstock at 

different frequencies by using wavelets, finding that those correlations vary in time and across 

frequencies. Karali and Power (2013) decomposed realized commodity price volatility into its 

high- and low-frequency components, identifying the role of macroeconomic forces, and 



higher frequency news. However, to the best of our knowledge no study attempts the use of 

mixed frequencies.  We generate forecasts using different functional forms for the weighting 

scheme of the MIDAS regressions. Results suggest that improvement on short-term predictive 

ability of grain prices can be achieved by incorporating mixed frequency data. Further work is 

needed to develop frameworks that incorporate multiple time series such as the mixed 

frequency VAR. We leave this for future research. 

The Mi(xed) Da(ta) S(ampling) MIDAS Model 

As with most time series, variables related to the energy and agricultural markets exhibit 

mixed frequency. For instance, futures prices can be obtained at daily or weekly frequency, 

while, macroeconomic variables, or reports from agencies such as USDA are usually released 

monthly or quarterly. Findings from the literature suggest that data frequency influences the 

estimated results of the energy-agricultural markets relationship. Moreover, potential 

misspecification and loss of information exist when filtering the data to match either lower or 

higher common frequencies.  

MIDAS regressions estimate time series sampled at different frequencies by specifying 

conditional expectations as distributed lags of regressors recorded at higher frequencies 

According to Ghysels (2012b) MIDAS regressions can be viewed as a reduced form of a 

linear projection from a state space model. Therefore, it can be represented as an 

approximation of a Kalman filter where the full state space system of equation is not required. 

Although the Kalman filter provides a good tool to deal with aggregation or interpolation of 

mixed time frequencies it also exhibit disadvantages such as the “curse of dimensionality” 

since it produces a large amount of parameters. As a result, computational complexities and 

specification errors increase. On the other hand MIDAS regressions are easier to estimate and 

less prone to specification errors. Several surveys of econometric analysis of MIDAS 



regressions are worth mentioning.  (Andreou et al., 2011) and (Foroni and Marcellino, 2013)  

provide a comprehensive review of the model, while (Armesto et al., 2010) gives a brief 

introduction to the topic.  

MIDAS regressions are distributed lag models with variables sampled at different 

frequencies. In a general form the distributed lag model is: 

 𝑦!! = 𝛼 + 𝐵 𝐿   𝑥!! + 𝜀!! (1) 

where B(L) is a lag polynomial operator, and 𝑦!! and 𝑥!! are the dependent and independent 

variables sampled at time t, and for illustrative purposes let’s assume that it is quarterly 

frequency data (𝑞).  Suppose we are interested on estimating quarterly food price changes 𝑦!! 

as a function of monthly interest rates 𝑥!!. The conventional approach is to aggregate the 

monthly frequency data to quarterly frequency by computing a simple average 𝑥!! =

!
!

𝑥!!
!
!!!  and proceed with regression at equation (1). Other possibility would be to include 

the high frequency data as explanatory variables as seen in equation (2). However, parameter 

proliferation makes this alternative unappealing (Andreou et al., 2011) 

 𝑦!! = 𝛼 + 𝐵 𝐿!   𝑥!!,! + 𝜀!! (2) 

The alternative offered by MIDAS is to incorporate a functional form to the aggregation 

scheme, allowing a parsimonious representation based on a data driven linear projection of 

the high frequency data onto the lower frequency dependent variable, represented by 

polynomial 𝑊 𝜃 =    𝑤!(𝜃)!
! 𝑥!!,!  !!, as seen in equation (3) (Ghysels, 2012b). 

 𝑦!! = 𝛼 + 𝐵 𝐿 𝑊(𝜃)  𝑥!!,! + 𝜀!! (3) 

The weighting function 𝑊 𝜃  can have any kind of functional form, its objective it to provide 

flexibility while maintaining parsimony (Armesto et al., 2010). Various functional forms of 

suggested in the literature meet that goal, in our empirical estimation we use some of the most 



popular alternatives in the literature including the Exponential Almon Lag, the Beta lag, and 

the unrestricted MIDAS model.  

Ghysels et al. (2007) proposed the used of the Exponential Almon Lag, its name comes from 

its resemblance with the smooth polynomial Almon lag functions used to reduce 

multicollinearity in the distributed lag literature (Foroni and Marcellino, 2013). This function 

is expressed as: 

 
𝑤! 𝜃! =

exp  (𝜃!𝑘 +⋯+ 𝜃!𝑘!)
exp  (𝜃!𝑘 +⋯+ 𝜃!𝑘!)!

!!!
 

(4) 

Foroni and Marcellino (2013) argue that this function is quite flexible and can take various 

shapes with only a few parameters.  

Another possible parameterization is based in the Beta function, therefore is known as Beta 

Lag. The Beta distribution provides as well a function that is flexible and only requires two 

parameters. It is expressed as follows: 

 
𝑤! 𝜃!,𝜃! =

f k
K , θ!, θ!

f k
K , θ!, θ!

!
!!!

 
(5) 

where 𝑓 𝑖,𝜃!,𝜃! = !!!!! !!! !!!!  !(!!!!!))

! !! !(!!)
 , and 𝛤 𝜃!  is the gamma function. 

 We also consider the Unrestricted MIDAS which was proposed by Foroni et al. (2011). This 

weighting scheme does not depend on the functional form of the distributed lag polynomials 

but is derived from a linear dynamic framework. The model is based on a linear lag 

polynomial as follows: 

 𝐵(𝐿)𝑤! 𝜃 = 𝛿! 𝐿 𝑥! +⋯+ 𝛿! 𝐿 𝑥! + 𝜖!" (6) 

Where 𝛿(𝐿)   =    (𝛿!,! +   𝛿!,!𝐿 +⋯+ 𝛿!,!𝐿.  In this study we will evaluate the out of sample 

performance of our data using the alternative MIDAS procedures. 



Data and Modeling Approach 

Our data corresponds to a subsample of the dataset used by Enders and Holt (2012) for their 

unrestricted VAR. We do our analysis for the period 2006-2011 that has been identified as the 

period of strong links between energy and agricultural commodities. Data start in September 

2006 (following the identification of this period by Frank and Garcia, (2010)), and finishes in 

February 2011.  

The dataset is includes a grain price index, constructed by the World Bank, as a weighted 

average of monthly world prices of corn and sorghum (40.8 percent), rice (30.2-percent), 

wheat (25.3-percent), and barley (3.7-percent). Similarly the energy price index also 

constructed by the World Bank, is a composite of monthly world prices for coal (4.7- 

percent), crude oil (84.6-percent), and natural gas (10.8-percent). The nominal exchange rate 

is obtained from the Federal Reserve, and is the broad exchange trade-weighted exchange 

rate, which is a weighted average of the foreign exchange values of the U.S. dollar against the 

currencies of a large group of major U.S. trading partners. The interest rate is the three-month 

Treasury bill secondary market, both exchange rates and interest rates are sampled at weekly 

frequency. Finally, the inflation rate is constructed as: 𝑖𝑛𝑓𝑙 = 400 ∗ ( !!"!!
!!"!!!!

− 1), where 

𝐶𝐶𝑃𝐼! is the core consumer price index, that is, the CPI adjusted by deleting prices for food 

and energy, this variable is calculated monthly. 

Plots for these four monthly series, 2006-2011, are presented in Figure 1. The grain index and 

the energy index exhibit strong variability, and some co-movements are identified during 

certain periods. They share a strong increase from 2007 until mid 2008, followed by a sharp 

decrease. However, after 2009 some differences are found, the grain index exhibits a positive 

trend after the financial crisis of 2009, meanwhile the energy index shows a relatively flat 

price index from 2009 until 2011, followed by a sharp increase. Exchange rates show a 



negative trend until the financial crisis followed by a strong increase in 2009, and showing a 

negative trend since then. The interest rate declined during the first part of the period and 

became close to zero since at least 2009. 

After plotting the data we tested the stationarity of the series by performing an ADF test. As 

seen in table 1, grain price index, energy price index and exchange rates are integrated of 

order 1, I(1). Therefore we perform a transformation on those variables by taking the first 

difference. 

Using these data we evaluate the out of sample performance of the monthly grain index return 

as a function of monthly energy index return, weekly exchange rate, weekly interest rates and 

monthly inflation. We generate recursive forecast that use as a initial trading period 

observations from September 2006 until January 2008, afterwards each observation at t is 

added to the training period in order to predict observation t+1.  

We calculate the root mean square error of the predictions at horizons h=1 month, h=2 

months, h=3 months, and h=6 months ahead. We evaluate the performance of different 

functional forms used in MIDAS such as the Exponential almon polynomial, Beta, MIDAS U, 

and a simple time averaging to forecast the monthly grain returns. 

Preliminary Results and Conclusions 

We generate our calculations with modified versions of the scripts in the mixed frequency 

toolbox in MATLAB of Ghysels (2012b), that estimate MIDAS regressions and generates out 

of sample root mean square error. In our case the out of sample period corresponds to 

observations from February 2008 until February 2011 for a total of 37 observations. Results 

from Table 2 suggest that including mixed frequency data improves prediction ability at least 

in the short run. The results of alternative MIDAS schemes outperform the simple average at 



h=1 and h=2. However for h=3 and h=6 there is almost no difference between simple average 

and U-MIDAS, and by h=6 the Beta calibration produces inferior forecasts in terms of RMSE. 

As a result, we claim that the use of mixed frequency data can improve the estimation and 

prediction of the agricultural commodities explained by energy and macroeconomic factors. 

As a summary, mixed results from the literature evaluating the energy-agricultural prices link 

suggest that is still not clear whether this relationship has strongly influenced food commodity 

prices. Results appear to be influenced by modeling, and the account of control variables, 

structural changes. Another aspect influencing results, in particular for econometric models, is 

the issue of data frequency, results from using weekly or daily data may not concur with the 

results of using monthly or quarterly data, furthermore misspecification and loss of 

information is introduce by aggregating or interpolating the data. Several recent papers such 

as Vacha et al., (2012) and Karali and Power (2013) identify the importance of different 

frequencies in the economic modeling of commodities. However, the use of mixed frequency 

data in this context has not been explored. We make use of recent advances in econometric 

estimation that can help to overcome the potential shortcomings of either too simple time 

aggregation or too complicated space state models by finding a parsimonious and efficient 

middle point offered by mixed frequency data models, in particular the Mi(xed) Da(ta) 

S(ampling) MIDAS model. Results show that different functional forms of the MIDAS 

weighting schemes improve the predictive performance of the series compared to a simple 

average time aggregation, but this is only noteworthy for short-term horizons. Test of 

predictive accuracy including Mariano-Diebold are currently being developed. 

Further work will be oriented to the development of structural VAR models with mixed 

frequency, which can incorporate multiple equation modeling and offer a more 

comprehensive analysis of the influence of mixed frequency in the measurement of the 

relationship between agricultural and energy markets. 
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Table 1 

Augmented Dickey-Fuller Tests 

 

 

 

 

 

    
5% 

Variable Deterministic Number of Test Critical  
 Term Lags (AIC) Statistic Value 
Grain Price trend 2 -3.14 -3.45 
Energy Price trend 9 -2.02 -3.45 
Exchange Rate trend 4 -2.91 -3.45 
Int Rate trend 19 -4.30 -3.45 

     Grain returns constant 2 -3.11 -2.89 
Energy Returns constant 1 -3.38 -2.89 
Exch. rates Ret. constant 6 -3.51 -2.89 



 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Out of sample Root Mean Square errors of  

Weighting Scheme RMSE h=1 RMSE h=2 RMSE h=3 RMSE h=4 
Exponential Almon 4.01 5.71 6.91 10.94 

Beta 3.78 5.64 7.04 11.24 
U-MIDAS 3.88 5.62 6.93 10.88 

Simple Average 4.21 5.81 7.14 11.21 

 
 

 

 

 

 

 

 

 



 

Figure 1 

 


