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Abstract

Quiescent long-term somatic stem cells reside in plant and animal stem cell niches. Within the Arabidopsis root stem cell
population, the Quiescent Centre (QC), which contains slowly dividing cells, maintains surrounding short-term stem cells
and may act as a long-term reservoir for stem cells. The RETINOBLASTOMA-RELATED (RBR) protein cell-autonomously
reinforces mitotic quiescence in the QC. RBR interacts with the stem cell transcription factor SCARECROW (SCR) through an
LxCxE motif. Disruption of this interaction by point mutation in SCR or RBR promotes asymmetric divisions in the QC that
renew short-term stem cells. Analysis of the in vivo role of quiescence in the root stem cell niche reveals that slow cycling
within the QC is not needed for structural integrity of the niche but allows the growing root to cope with DNA damage.
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Introduction

The development of multicellular organisms depends on the

ability of stem cells to self-renew and to generate new cellular

progeny. Transcription factors play key roles in the maintenance

of the stem cell state. In embryonic stem cells, for example, stem

cell transcription factors repress lineage-specific differentiation

programs while maintaining cell proliferation [1,2]. In mammals,

stem cell quiescence occurs in multiple tissue contexts, where some

cells divide infrequently but can recover multiple lineages after

injury to the niche [3–5]. It has been proposed that quiescent cells

reside alongside active stem cells to ensure longevity and output of

stem cell compartments [6]. Although quiescence can be released,

for example, in murine hematopoietic stem cells by the silencing of

p21 [7] and Retinoblastoma (Rb) homologs [8], or by genetic

ablation of active stem cells in the gut [5], it has been difficult to

directly test how quiescent and active stem cells share labor within

compartments.

Stem cell niches in plants and animals display structural

similarities [9]. Active stem cells in the Arabidopsis root stem cell

niche, also called initials, surround infrequently dividing quiescent

centre (QC) cells (Figure S1A). The Arabidopsis QC is required to

maintain division and prevent differentiation in the surrounding

stem cells through non-cell-autonomous signaling [10,11]. The

central QC cells in Arabidopsis were initially identified as cells that

infrequently enter S-phase measured by 3H-thymidine incorpora-

tion [12]. Later studies identified the QC as an organizing centre

that signals to the surrounding stem cells to prevent differentiation

[13,14]. It has been proposed that the Arabidopsis QC also acts as

a reservoir to replace short-lived stem cells in the root [13–14].

However, more than half a century since the initial description of

the QC in maize roots [15], a thorough description of the division

of labor between initials and QC cells, and a further investigation

of the significance of QC quiescence, has been lacking.

In the Arabidopsis stem cell niche, two genetic pathways are

involved in stem cell specification. One is dependent on the plant

PLOS Biology | www.plosbiology.org 1 November 2013 | Volume 11 | Issue 11 | e1001724

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Wageningen University & Research Publications

https://core.ac.uk/display/29214483?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


hormone auxin and the PLETHORA (PLT) transcription factor

family [16]. The other involves protein movement and activation

of the heterodimeric transcriptional regulator SCARECROW-

SHORTROOT (SCR-SHR) [16–19]. In addition, reduction of

the RETINOBLASTOMA-RELATED protein (RBR), the single

Rb homolog, expands stem cell lineages in roots [20] and leaves

[21]. SCR-SHR and RBR interact, and the resulting genetic

network is biased by auxin and cell cycle progression in order to

specify asymmetric cell division in the ground tissue stem cell [22].

Here, we show in vivo that QC cells, in addition to their role as

niche organizer, replenish a distal stem cell pool. Intriguingly,

quiescence and asymmetric cell division in the QC are balanced

by RBR-SCR interactions, which also control asymmetric cell

division in ground tissue stem cells. We provide evidence that the

physiological function of quiescence is to control a trade-off

between genotoxic stress protection and replacement of short-term

stem cells.

Results

The QC Slowly Replenishes Columella Stem Cells
Previous clonal analyses revealed that in a WT root the QC

divides, although at a low rate, and that the QC could be a source

for all stem cells in the Arabidopsis root [23–25]. However, due to

the low QC division frequency, their exact frequency and division

pattern has not been determined.

We monitored entrance into S-phase using the nontoxic

nucleoside analog F-ara-EdU [26], which allowed normal root

growth for as long as 7 days after transfer (dat) (unpublished data).

Time course analysis of F-ara-EdU uptake showed different times

for entry into S-phase for each cell type (Figure 1A–D). In

addition, plants were germinated in F-ara-EdU for 5 d and then

transferred into nonlabeled growth medium. In such pulse-chase

experiments, loss of the label could be detected from the transit

amplifying area at 1 dat, but stem cells and QC could maintain

label after 3–7 d (Figure 1E–H). Quantification of the data

revealed that QC cells divide with half the frequency of the

surrounding stem cells and one-fourth the frequency of transit

amplifying cells (Figure 1I).

To assess the fate of the QC progeny, we used the BOB clonal

analysis system, which allowed us to follow genetically marked QC

cells and their progeny over time [27]. Briefly, clones generated by

this system express two different fluorescent proteins depending on

the recombination events, which allows for finer dissection of the

clones. We heat-shock-induced 32 QC clones and followed them

from 2 to 16 days after heat shock (daHS). Eighty-four percent (27

clones) of the QC clones (Figure 1J–L) divided during the

experiment, and the rootward daughter always contributed to

the columella (Figure 1M–O). We did not observe a contribution

of any QC clones to the vascular and ground tissues. Our data

indicate that, under physiological conditions, the QC undergoes

infrequent divisions to populate the columella region.

amiGO-Mediated Cell-Type-Specific RBR Knockdown and
Complementation

To relax quiescence in the stem cell niche, we developed a cell-

type-specific RBR silencing tool based on artificial microRNA

(amiRNA), termed artificial microRNA for Gene-silencing Over-

come (amiGO) (Figure 2A), which allows for cell autonomous

silencing and easy complementation (Text S1). When expressed

ubiquitously, amiGORBR caused supernumerary divisions in stem

cells, producing extra columella and Lateral Root Cap (LRC)

layers that increased over time (Figure 2B–D), and phenocopying

previously described roots with reduced RBR function [20,27].

amiRNA accumulation was correlated with a reduction in RBR

mRNA levels and decrease in protein levels (Figure 2E–G), and

the degradation of the target was spatially constrained when

amiRNA was driven from tissue-specific promoters (Figure 2H–J).

The phenotypes in the stem cell region were similar to those

observed upon clonal deletion of RBR [27], indicating that the

level of silencing was sufficient to deplete RBR function in these

cell types. Promoters from the ground-tissue- and QC-expressed

gene SCR and the QC-specific WOX5 gene (Figure S1B–C)

allowed us to investigate the role of RBR in specific cell types. In

pSCR::amiGORBR roots, extra periclinal cell divisions occurred in

the endodermis, consistent with the RBR role in this asymmetric

cell division (Figure 2M, arrowhead) [22], and QC cells divided,

while no extra LRC layers were produced (Figure 2K–M, n = 15).

pWOX5::amiGORBR roots displayed extra QC divisions, shown by

the presence of pWOX5::GFP marker in newly divided cells. In

addition, the number of cell layers in the columella increased

(Figure 2N, asterisks; n = 15). The LRC and ground tissue were not

affected, consistent with a cell-autonomous role for RBR in QC

maintenance.

WT plants had a maximum of two undifferentiated columella

layers, but p35S::amiGORBR roots displayed up to four layers as

revealed by starch granule staining. Quantification of the number

of columella and LRC layers revealed that the increase in

columella layers in p35S::amiGORBR roots was caused by extra

divisions in both QC and columella stem cells, with each of the

divisions creating one extra layer (Figure S3). These observations

indicated that the rootward daughters of QC divisions contributed

to the columella root cap.

To analyze the effect of RBR loss by a different strategy, we

next induced and followed QC clones that lost at least one

genomic copy of RBR. Homozygous BOB-RBR seedlings (rbr-3/

rbr-3;BOB-RBR+/+,WOX5::CRE:GR) [27] were germinated on

dexamethasone to induce RBR deletion clones in the QC. QC

clones were selected prior to QC division (Figure S5A–C), and

followed through division and differentiation. The rootward-most

cells (Figure S5D–I) acquired starch granules characteristic of

differentiated columella cells, demonstrating that QC cells with

reduced RBR activity, as in the WT, contribute to the columella.

Author Summary

In the plant Arabidposis thaliana, root meristems (in the
growing tip of the root) contain slowly dividing cells that
act as an organizing center for the root stem cells that
surround them. This centre is called the quiescent centre
(QC). In this study, we show that the slow rate of division in
the QC is regulated by the interaction between two
proteins: Retinoblastoma homolog (RBR) and SCARECROW
(SCR), a transcription factor that controls stem cell
maintenance. RBR and SCR regulate quiescence in the
QC by repressing an asymmetric cell division that
generates short-term stem cells. Here we genetically
manipulate the cells in the QC to alter their quiescence
by regulating the RBR/SCR interaction to demonstrate that
quiescence is not needed for the organizing capacity of
the QC but instead provides cells with a higher resistance
to genotoxic stress, allowing stem cells in the QC to
survive even if more rapidly cycling stem cells are
damaged. A role for mitotic quiescence has been reported
in animal stem cells, in which Rb has been implicated.
These findings indicate that it might serve a similar role in
plant stem cells.

A Protein Network for Protective Quiescence
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RBR Represses Asymmetric Cell Division in the QC
To address whether QC cell divisions were symmetric or

asymmetric, we first confirmed the expression of pWOX5::GFP

(ER fluorescence) and pSCR::SCR:YFP (nuclear fluorescence) in

the undivided QC of WT (Figure 3A). After a QC cell divided in

the pWOX5::amiGORBR background, both daughters expressed

pWOX5::GFP (Figure 3B). However, the rootward daughter lost

pWOX5::GFP signal over time (Figure S6A–C). pSCR::SCR:YFP

was more rapidly lost in the rootward daughter but retained in

the shootward daughter (Figure 3B), which, based on these

markers, retained QC fate. To determine the fate of the

rootward cell, we introgressed two columella markers,

pSMB::SMB:GFP and pACR4::ACR4:GFP, marking one differen-

tiated columella layer [28], and the plasma membrane of

columella stem cells and daughters [29], respectively

(Figure 3C–F). In pWOX5::amiGORBR roots, SMB-GFP was

expressed in the cell bellow the divided QC cell (Figure 3C–D),

and ACR4-GFP was expressed in the rootward daughter and

two additional layers of columella (Figure 3E–F), indicating

columella identity of the rootward cell. Time lapse analysis

of dividing QC cells from 4 to 8 dpg using a brighter

nuclear-localized pACR4::H2B:YFP reporter in the pWOX5::ami-

GORBR background confirmed the progressive acquisition of

pACR4 promoter activity in the rootward daughter of the

divided QC cell (Figure S6D–F). Together, our results reveal that

reduction of RBR activity triggers more frequent asymmetric cell

division (ACD) in the QC. This ACD generates one shootward

daughter cell with QC fate expressing SCR and WOX5 and a

rootward columella stem cell expressing ACR4.

Asymmetric Division Repression by LxCxE-Motif–
Dependent SCR Interaction

Binding of mammalian Rb to LxCxE-motif–containing proteins

has been implicated in the maintenance of quiescence in animal

cells [30,31]. We therefore mutated RBR in residue 849

(RBRN849F), which has been implicated in the interactions

between Rb and LxCxE motif proteins in animals [32].

Accordingly, in a yeast two-hybrid assay, the RBRN849F mutant

lost the capacity to interact with the strong LxCxE-dependent

interactor Histone Acetyl-transferase 2 (HAT2), while it retained

the capacity to bind E2Fa, which does not contain LxCxE motif

Figure 1. WT QC cells divide infrequently and incorporate into the columella. (A–D) 5 dpg pSCR::SCR:GFP plants showing S-phase label
incorporation by F-ara-EdU for 1–4 dat. DAPI is shown in blue, F-ara-EdU staining is shown in red, and pSCR::SCR:GFP in green. (E–H) Pulse and chase
experiment, plants were grown for 5 dpg in F-ara-EdU nucleoside analog, then transferred for 0–4 d into nonsupplemented medium. Arrowheads
point to QC. (I) Quantification of entry in S-phase frequency for each cell type. QC, quiescent centre; CEI, cortex-endodermis initial; VSC, vascular stem
cell; CSC, columella stem cell; SCD, stem cell daughter. (J–O) Confocal images of root meristems with a single WT BOB clone at 2 (J to L) and 7 (M to O)
daHS. The 2 daHS single cell QC clone (arrow head in J) divided and its daughter cell incorporated to the columella region at 7 daHS (M). See also
Figure S2.
doi:10.1371/journal.pbio.1001724.g001
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(Figure S8). We fused this RBRN849F mutant and the WT RBR

cDNAs to the vYFP CDS, under the control of the WOX5

promoter (pWOX5::RBRN849F:vYFP, pWOX5::RBR:vYFP). Because

the amiGO system does not target cDNA variants lacking the 39-

UTR sequence, these constructs could be tested for complemen-

tation in the pWOX5::amiGORBR background.

Figure 2. The AmiGO concept for RBR silencing. The AmiGO strategy. TS, Target sequence (A). Root apical meristem (RAM) of WT (B),
35S:amiGORBR at 8 (C) and 12 (D) dpg seedlings. Validation of the amiGORBR RNA interference by RT-PCR detection of endogenous RBR transcripts (E)
and Western blot analyses for RBR protein levels (F). Mature amiGO-RBR synthesis detected by small-RNA Northern blot (G). The in planta action of
amiGO-RBR was revealed by introducing the sensor construct 35S::vYFP:amiGORBR-TS in WT (H) and in the pRCH1::amiGORBR (J) backgrounds.
Expression pattern of the pRCH1::GFP marker in the WT background (I) [54]. AmiGORBR expression driven by different promoters generates distinct
phenotypes in primary root meristems of 12 dpg seedlings. (K) p35S::amiGORBR causes overproliferation of QC, LRC (arrow heads), and CSC (asterisks)
as well as cell death in vascular and columella cells. (L) pRCH1::amiGORBR shows overproliferation of the QC and LRC and cell death and (M)
pSCR::amiGORBR shows extra periclinal divisions of the ground tissue (arrow heads) and extra division of the QC (asterisks), while (N)
pWOX5::amiGORBR;pWOX5::GFP shows QC divisions that cause an increase in columella layers (asterisks). See also Figures S3, S4, S5.
doi:10.1371/journal.pbio.1001724.g002
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pWOX5::amiGORBR;pWOX5::RBR-vYFP roots fully complement-

ed the QC division phenotype, assessed both by absence of QC

division (Figure 3G) and by number of columella layers (Figure 3K–

N and Table 1). pWOX5::RBRN849F:vYFP, however, failed to

complement the QC division phenotype of pWOX5::amiGORBR

(Figure 3H,N and Table 1), suggesting that the role of RBR in

controlling QC division is dependent on its capacity to bind LxCxE-

domain–containing proteins and not through E2F repression.

It has recently been shown that RBR represses SCR activity via

LxCxE binding to inhibit asymmetric cell division in the mature

endodermis tissue [22]. As SCR is involved in establishing and

maintaining QC identity, we analyzed the role of the RBR-SCR

interaction in QC division, by studying pSCR::SCRAxCxA:YFP; scr-4

mutants, where the RBR-SCR interaction is abolished [22].

Notably, pSCR::SCRAxCxA:YFP; scr-4 mutants displayed extra QC

divisions and one extra columella layer (Figure 3I–J,O), indicating

that the regulation of QC cell division by RBR is likely due to its

interaction with SCR.

In the endodermis, SCR and SHR activate CycD6;1 expression,

which in turn phosphorylates RBR and inhibits RBR-mediated

inactivation of the SHR-SCR complex [22]. However, CycD6;1

was very weakly expressed in the QC of pSCR::SCRAxCxA:YFP; scr-4

plants and pSCR::amiGORBR plants (Figure 4A,B). There was no

QC division in the pSCR::SCRAxCxA:YFP; scr-4, shr-2 background

(Figure 4C), demonstrating that, as in ground tissue, this division

depends on SHR. Together, these data indicate that QC division is

restrained by the SHR-SCR-RBR network.

Induction of SHR activated CycD6;1 expression in the ground

tissue but not in the QC (Figure 4D). Auxin, either endogenously

produced in the QC and ground tissue layer (Figure 4E) or

exogenously applied (Figure 4F), was also not able to induce

CycD6;1 expression in the QC at levels comparable to the ground

tissue, nor could we detect more QC divisions upon increased

auxin activity. Thus, a QC factor normally inhibits CycD6;1

transcription by the SHR-SCR circuit, and the QC division is not

dependent on high CycD6;1 activity.

As our data showed a correlation between QC division rates

and the number of columella layers, we analyzed the columella in

mutants for RBR-SCR network components. Higher SCR-SHR

activity led to extra layers (Figure 3Q), whereas lack of activity led

to fewer layers in scr-4 and shr-2 mutant backgrounds (Figure 3R–

T). Together, our data indicate that division of the QC is regulated

Figure 3. RBR silencing induces asymmetric cell division of the QC. Expression patterns of cell-fate markers in stem cell niche of WT (A, C, and
E) and pWOX5:amiGORBR (B, D, and F) 5 dpg seedlings. Marker genotypes: cytoplasmic pWOX5:GFP and nuclear pSCR:SCR:YFP (A and B),
pSMB::SMB:GFP (C and D), cytoplasmic pWOX5:GFP; nuclear pSCR:SCR:YFP and membrane pACR4:ACR4:GFP (E and F). Arrows in (D) indicate shift in SMB
expression, and arrows in (E) and (F) point to plasma membrane-localized ACR4-GFP expression. Full rescue of the QC division in pWOX5:amiGORBR
complemented with pWOX5:RBR:YFP and scr-4 complemented with pSCR::SCR:YFP (G, I) and no rescue by LxCxE mutant pWOX5:RBRN849F-YFP or
pSCR::SCRAxCxA:YFP (H, J). Root phenotype of 12 dpg seedlings of Col-0 WT (K), pWOX5::amiGORBR (L), pWOX5::amiGORBR;pWOX5::RBR:vYFP (M),
pWOX5::amiGORBR;pRBR::RBRN849A:vYFP (N), and pSCR::SCRAxCxA:YFP, scr-4 (O). Asterisks depict the columellla layers rootwards from the layer in contact
with the QC and excluding the detaching distal layers. Production of extra columella stem cell in pSCR::SCRAxCxA:YFP, scr-4 as shown with ACR4-GFP
marker (P). Number of columella stem cell layers by lugol staining in pSCR::SCRAxCxA:YFP, scr-4 (Q), Col-0 WT (R), scr-4 (S), and pSCR::SCRAxCxA:YFP shr-2
scr-4 plants (T). See also Figure S6.
doi:10.1371/journal.pbio.1001724.g003
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by components of the network that regulates ground tissue stem

cell ACD with the exception of CycD6;1. In the QC context, this

network variant is used to regulate replenishment of the columella

stem cell pool.

QC Division Interferes with Recovery Upon Injury to the
Niche

To address the significance of quiescence, we analyzed the effect

of a faster dividing QC in root development. Root growth rates of

pWOX5::amiGORBR plants that have continuously dividing QC cells

are similar to those of WT at 10 and 25 dpg (unpublished data).

Moreover, there were no evident effects on stem cell niche activity

and organization in 25 dpg pWOX5::amiGORBR or pSCR::SCRAxC-

xA:YFP; scr-4 roots (Figure 5A–C). These observations demonstrate

that quiescence of the organizing cells is not strictly necessary for

function or structural integrity of the niche over this time span, and

that the shootward daughter after ACD retains full QC function in

its continued ability to maintain the stem cell niche.

Replication stress is known to induce division in quiescent stem

cells [33,34]. We tested whether, in analogy, the induction of QC

division might be induced by the ribonucleotide reductase inhibitor

hydroxyurea (HU), which is known to delay S phase entry [35–37].

Indeed, treatment with 1 mM HU significantly increased the

frequency of QC division in Col-0, but did not further increase

QC division in pWOX5::amiGORBR and in pSCR::SCRAxCxA:YFP; scr-

4 plants. (Figure 5D). We concluded that replication stress enhances

QC divisions through the SCR-RBR pathway.

HU causes cell death at higher concentrations [38,39]. In

addition, columella and vascular tissue stem cells in Arabidopsis

roots, but not QC cells, undergo cell death after treatments with

drugs that induce DNA damage [40]. In line with classical ideas on

the function of mammalian stem cell quiescence, we hypothesized

that the reduced mitotic activity of QC cells might enable them to

escape cell death and thus ensure the permanence of the

organizing centre in the long term and, as a consequence, the

maintenance of the root stem cell niche. Therefore we asked

whether actively dividing QC cells in pWOX5::amiGORBR roots

respond as sensitively as short-term stem cells to DNA damage.

We first analyzed the response of WT, pWOX5::amiGORBR and

SCR::SCRAxCxA:YFP; scr-4 roots when grown in the presence of the

DNA-damaging agent Zeocin. In line with previous observations

[40], WT roots accumulate propidium iodide (PI) as a sign of cell

death in the vasculature and columella stem cells (Figure S7A) after

14 hours postzeocin (hpz), and none of the plants analyzed showed

QC death (n = 27). However, in 63% (21/33) of pWOX5::ami-

GORBR roots, at least one of the QC cells accumulated PI, in

addition to vascular cells and columella stem cells (Figure 5G).

We next pulsed plants with Zeocin to analyze the effects of cell

death on the proliferative capacity and growth potential of the

roots. At 24 hpz, WT roots with intact QC decreased growth

(Figure 5E–F). Importantly, pWOX5::amiGORBR roots with similar

stem cell loss but additional QC cell death revealed an exaggerated

root growth reduction as shown by the proximity of the root

differentiation zone to the meristem and the induction of root hair

formation and elongation near the root tip (Figure S7G–H),

indicating cell division arrest and progressive differentiation.

At 72 hpz, WT roots showed a disorganized, but still active,

meristem, while pWOX5::amiGORBR roots underwent rapid

differentiation of the transit-amplifying cells followed by differen-

tiation of the root meristem (Figure S7E–F), which is reflected in

the reduction of primary root growth (Figure 5H).

Together, these data indicate that division of the QC is induced

to replenish columella cells and restrained to create a differential

stress response within the long-term stem cells that allows the root

to cope with DNA stress.

Discussion

Here we demonstrate that reduction of RBR levels leads to

asymmetric cell divisions in the central QC cells of the stem cell

niche, thus regenerating short-term stem cells. In addition, our

Table 1. Quantification of columella cell layers in
pWOX5::amiGO-RBR lines complemented with RBRWT and
RBRN849F variants (minimum n = 9).

Background
Columella Layers
(12 dpg)

pWOX5::amiGORBR 7.260.3

pWOX5::amiGORBR/pWOX5::RBR-vYFP 5.260.5

pWOX5::amiGORBR/pWOX5::RBRN849F-vYFP 6.660.3

Wild-type Col0 4.760.4

doi:10.1371/journal.pbio.1001724.t001

Figure 4. A modified RBR-SCR network in the QC. (A) pCycD6::GUS:GFP expression in QC of pSCR::SCRAxCxA:YFP, scr-4 background. (B) Down-
regulation of RBR in the pSCR domain in pSCR::amiGORBR fails to induce pCycD6 transcription in the QC. (C) pSCR::SCRAxCxA:YFP does not recover QC
division in scr-4, shr-2 background. (D) pCycD6::GUS:GFP expression upon SHR induction in pSHR::SHR:GR, shr-2 background only in ground tissue and
not in QC cells. (E) pCycD6::GUS:GFP expression in pSCR::IAAH line, treated with IAAM; note induction in endodermis but not in QC. (F) Auxin
accumulation does not induce CycD6 transcription in the QC.
doi:10.1371/journal.pbio.1001724.g004

A Protein Network for Protective Quiescence

PLOS Biology | www.plosbiology.org 6 November 2013 | Volume 11 | Issue 11 | e1001724



A Protein Network for Protective Quiescence

PLOS Biology | www.plosbiology.org 7 November 2013 | Volume 11 | Issue 11 | e1001724



data indicate that RBR acts in a cell-autonomous manner to

maintain near-quiescence within the QC.

The QC was initially identified as a group of cells with a

relatively low mitotic activity at the position where different cell

files that form the root converge. Subsequently the QC has been

shown to form the structural and functional core of the root

meristem in diverse plant species [41]. In Arabidopsis, laser

ablation of the QC leads to differentiation of surrounding stem

cells [13]. This maintenance function cell-autonomously requires

SCR [18]. However, the Arabidopsis QC can perform infrequent

divisions, which become more abundant at elevated temperature

[23]. These divisions are promoted by the plant hormones

ethylene and brassinolide, and do not interfere with stem cell

maintenance [24,42]. Our results fit with these observations, since

extra ACDs caused by the silencing of RBR in the QC do not

affect maintenance of the stem cell niche and QC gene expression

patterns.

It was previously proposed that QC divisions facilitate

replacement of the stem cell pool, and therefore that the QC

can be a source of stem cells of all lineages in the Arabidopsis root

meristem [23,42]. In contrast, our results show that after RBR

silencing in the QC under normal growth conditions, using either

the amiGO or BOB systems, QC divisions only produce columella

stem cells. These observations suggest that the shared embryonic

lineage of QC and columella may bias QC cells to acquire, upon

SCR-mediated asymmetric cell division, columella fate rather than

ground tissue fate. Upon stem cell niche injury, however,

positional and hormonal cues are dominant over lineage cues in

respecifying QC and stem cells from actively dividing cells [14,43].

It is surprising to note that the SHR-SCR network, hitherto strictly

correlated with ground tissue (cortex and endodermis) cell fates,

controls two asymmetric cell divisions resulting in different cell

identities, demonstrating that this pathway can be deployed for

ACDs giving rise to different cell fates. We can at this point not

exclude that, alternatively, the SCR-RBR complex represses a QC

cell division specified by other factors.

It is thought that the quiescence of stem cells in animals is

pivotal to ensure tissue maintenance and to protect the stem cell

pool from exhaustion under diverse stresses (reviewed in [44]). In

mammalian cells, cell cycle exit (also referred to as quiescence) is a

key step during differentiation. Rb mutants disrupted in LxCxE

binding in mammalian cells exhibit defects in quiescence, both

during differentiation of myocytes mediated through HDAC1 [32]

and during stress-induced senescence mediated by chromatin

remodeling proteins such as RBP1, Sin3, CtBP, HDAC1,

HDAC2, and RbAp46, [45]. Our results suggest that interaction

of Rb with LxCxE-containing proteins may represent an

evolutionarily conserved mechanism for modulating quiescence.

Under natural growth conditions the plant root niche faces

multiple biotic and abiotic stresses. Several of these stresses have

been shown to affect stem cell niche maintenance [46,47].

Additionally, environmental challenges such as hypoxia,

temperature, or ozone stress can cause DNA damage, leading

to cell death [48]. Similar pathways control cell cycle progression

and the cell cycle window where cell differentiation and apoptosis

can be initiated, and they seem to converge on RB function in

mammalian cells during early G1 [49]. DNA stress caused by

hydroxyurea or 5-fluorouracil induces division and differentiation

in hematopoietic stem cells, leading to a premature loss of the

stem cell niche. Exhaustion of the stem cell niche also occurs after

loss of p21, which inhibits cyclin/cdk complexes that inactivate

Rb, suggesting that Rb-related pathways also control quiescence

and DNA damage. Loss of p21 leads to cell death upon treatment

with hydroxyurea. In plants, where there is no p21, RBR

inactivation leads to QC division, and the same thing happens

upon hydroxyurea treatment. However, in plants the pathways

do not seem to be additive as in mammalian cells, because

hydroxyurea treatment of pWOX5::amiGORBR has no effect in

QC division frequency. This suggests that the same pathway that

activates QC division by hydroxyurea treatment is regulated by

the RB-SCR network.

Intriguingly, Arabidopsis columella and vascular tissue stem

cells are more sensitive than the QC to zeocin-induced DNA

damage [40]. In a similar way, stem cell niches in epithelia contain

two stem cell populations, of which the slow dividing population is

able to replenish multiple lineages after injury [5]. Our data

indicate that RBR-dependent quiescence of the QC plays a crucial

physiological role in the maintenance of the niche, and maintains

the QC cells as a stem cell reservoir. Quiescence does not need to

be absolute in order to protect cells from DNA damage, but rather

modest changes in cell cycle frequency are sufficient to bestow

protection. Accordingly, shoot apical meristems of plants do not

contain distinct QCs but rather a central zone undergoing slower

cycling rates. While it is clear that activation of the QC division

potential in the root can be triggered by stem cell damage, for

example, by laser ablation [14] or stress signals [42], future work

should reveal how exactly plants control the balance between

protective quiescence and replacement of short-term stem cells.

Figure 5. Dividing QC cells are more sensitive to DNA damage. (A–C) Root stem cell niches at 25 dpg in WT Col 0 (A), pWOX5::amiGORBR (B),
and pSCR::SCRAxCxA:YFP, scr-4 (C) plants. (D) Quantification of QC division frequency upon hydroxyurea treatment. Roots were analyzed for QC
divisions after treatment with replication stress inducer HU. Statistical significance (p,0.05) using student’s t test for treatments (*) and genotypes
(**). (E–G) Effect of zeocin treatment in root growth. Primary root growth after genotoxic stress is impaired in pWOX5::amiGORBR and
pSCR::SCRAxCxA:YFP, scr-4 (E–F) proportionally to the number of dead QC (G); blue column shows number of WT plants analyzed for cell death and red
shows pWOX5::amiGORBR. Quantification of root growth after zeocin treatments (H) in WT (blue squares), pWOX5::amiGORBR (red triangles), and
pSCR::SCRAxCxA:YFP, scr-4 (green circles). Student’s t tests indicate statistical significance (p,0.05) of all differences between genotypes at 48 and 72 h.
See also Figure S7 and Tables 2 and 3.
doi:10.1371/journal.pbio.1001724.g005

Table 2. Quantification of QC division frequency upon 1 mM
Hydroxyurea treatment in Col-0, pWOX5:amiGORBR, and
pSCR::SCRAxCxA:vYFP, scr-4 (n = 20).

Background HU Treatment Frequency of QC Division

Col-0 0 h 0.1860.03

24 h 0.4360.12

48 h 0.6260.07

pWOX5::amiGORBR 0 h 0.4760.16

24 h 0.5960.04

48 h 0.6260.05

pSCR::SCRAxCxA:YFP scr-4 0 h 0.6560.07

24 h 0.7860.06

48 h 0.7660.22

doi:10.1371/journal.pbio.1001724.t002
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Materials and Methods

Plant Growth Conditions
Seeds were fume sterilized in a sealed container with 100 ml

bleach supplemented by 3 ml of 37% hydrochloric acid for 2–5 h,

then suspended in 0.1% agarose, and plated on a growth medium

consisting of half-strength Murashige Skoog salts, 1% sucrose,

0.8% plant agar, MES (pH 5.8), 50 mg/ml ampicillin, and 1–

5 mM dexamethasone (optional for CRE:GR induced clones),

stratified for 2 d in 4uC dark room, and grown vertically in long

day conditions (16 h light followed by 8 h of dark). For HS

induction, plates with 2–3 days postgermination (dpg) seedlings

were placed in a 37uC incubator for 1 h and analyzed 2 d later.

Cloning of the amiRBR Precursor
The 21 mer amiGORBR (59-UACAGAUGCUAUAACU-

GAGGA-39) and amiGORBR* (59-UACUCAGUUAU ACCAU-

CUGUA-39) were cloned into Arabidopsis endogenous miR319a

precursor via overlapping PCR. The final precursor for ami-

GORBR was amplifying using modified AttB1 and AttB2 primers

and the PCR product was recombined by a BP Single Gateway

reaction (Invitrogen) in a pGEM-T easy 221 vector for further use

in Multisite Gateway Cloning (Invitrogen). The amiGORBR is

antisense to the 21 nt sequence located at 39UTR of RBR mRNA

(59-UCUUCAGUUAUAG CAUCUGUA-39).

AmiGO-RBR Northern Blot
We loaded 20 mg of the small RNA-enriched fraction per lane,

and 59-end-labeled oligonucleotide complementary to the mature

amiGORBR was used as probe. The experiment was performed

as described [50].

RT-PCR Analysis
Total RNA of Col-0, p35S::amiGORBR (Col-0), pRB::gRB:GFP

(Col-0), and p35S::amiGORBR;pRB::gRB:GFP seedlings at 5 dpg

were obtained using Spectrum Plant total RNA Kit (Sigma). The

cDNA was synthesized from 1 mg total RNA using odT18VN

primer (Biolegio) and RevertAid M-MuLV reverse transcriptase

(Biolegio). For the PCR reaction, a 2 ml cDNA sample was used to

amplify in a total volume of 20 ml. The relative expression levels of

RBR and RB:GFP mRNAs were determined by using primers

(Biolegio): RBR FW (59-GATCAAAGATGGATGCTC-39) and

RBR RV (59-TACAGATGCTATAACTGAAGA-39) for RBR;

RBR FW (59-GATCAAAGATGGATGCTC-39) and GFP RV

(59-GAATTGGGACAACTCCAG-39) for RB:GFP. ACTIN1 ex-

pression was determined as an internal control using primers Actin

FW (59-GCCGATGAAGCTC AATCCAAA-39) and Actin RV

(59-GGTCACGACCAGCAAGATCAA-39).

Western Blot Analysis of RBR Expression Levels
For analysis of protein expression in planta, plants were grown

for 12 d under long day conditions, and 0.5 g of roots were

grinded and extracted in Extraction Buffer (100 mM Tris-HCl PH

7.5, 150 mM NaCl, 0.5% Nonidet P-40, 1 mM phenylmethylsul-

fonyl fluoride [PMSF], 26 Protease inhibitor cocktail, 100 mM

MG132). Equal amounts of protein extracts were loaded in a gel

and transfered to a Hybond-ECL membrane (GE Healthcare) and

inmunodetected with anti-RB antibody (provided by Dr. L. Bako)

1/7,500 and goat-anti-chicken 1/20,000 (ab97131 Abcam) and

developed with Amersham Western Blotting Detection Reagent

(GE Healthcare).

Destination Clones and Plant Transformation
Constructs and plant lines used are listed in Table S1. All

different constructs using the amiGORBR expression (p35S::ami-

GORBR, pRCH1::amiGORBR, pSCR::amiGORBR, and pWOX5::ami-

GORBR) were generated using Multisite Gateway technology

(Invitrogen). CaMV 35S-driven amiGORBR construct was

generated using a pGII229 binary vector, while other promoter-

specific versions were recombined into a pGII226 binary vector.

To generate an amiGORBR sensor line, a version of Venus YFP

(vYFP) containing the amiGORBR target sequence at its 39 was first

obtained by nested PCR and recombined into a pGEM-T easy 221

entry vector. The vYFPamiRBRtarget fragment was then recombined

into a pB7m34GW binary vector under the CaMV 35S promoter.

Transformation was performed on Columbia ecotype Col-0 and

transgenic pWOX5::amiGORBR (Col-0) plants according to the floral

dip method [51]. The description of all constructs and lines

generated for this study is listed in Text S1 and Table S1.

Phenotype Analysis and Microscopy
Whole-mount visualization of roots and starch granule staining

were previously described [52]. Starch granules in the columella

root cap were stained with 1% lugol solution for 30 s before the

visualization. Confocal laser scanning microscopy (CLSM) images

were performed on a Leica SP2 inverted laser-scanning microscope.

Analysis of BOB clones was performed as described [27].

RBR Clonal Deletion Experiments
Construction and use of the BOB deletion system is described in

Wachsmann et al. 2011 [27]. Seedlings harboring red or cyan

Table 3. Quantification of root length upon zeocin treatment in Col0, pWOX5:amiGORBR, and pSCR::SCRAxCxA:vYFP, scr-4.

Background Average Root Length Standard Deviation Student t test n

WT-24 hpz 10.6 0.9 45

WT-48 hpz 13.9 1.2 45

WT-72 hpz 15.8 1.3 45

pWOX5:amiGO-24 hpz 11.0 0.8 0.165158982 20

pWOX5:amiGO-48 hpz 12.0 1.2 1.06026E-07 20

pWOX5:amiGO-72 hpz 12.3 1.2 6.64334E-15 20

pSCR::SCRAxCxA:YFP-24 hpz 10.7 1.1 0.854187792 27

pSCR::SCRAxCxA:YFP-48 hpz 12.9 1.3 0.00150098 27

pSCR::SCRAxCxA:YFP-72 hpz 13.4 1.2 3.27424E-11 27

doi:10.1371/journal.pbio.1001724.t003
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clones were preselected under Leica MZ16F fluorescence stereo-

scope and further analyzed by confocal microscopy. To excite and

collect red, cyan, and yellow fluorescences in a Leica SP2 confocal

microscope, we performed sequential scanning as follows: the

CyPetER and the vYFPNLS were excited together using 458 and

514 nm laser, respectively, and emission was collected at 465–

506 nm for the CyPetER and 523–566 nm for the vYFPNLS.

Propidium iodide, which marks cell walls (3 mg/ml, final

concentration), and TagRFPER were visualized by exciting at

488 nm and 543 nm, respectively, and emission collected at 502–

522 and 561–633 nm.

Yeast Two-Hybrid Assay
Interactions between RBR and HAT were analyzed by yeast

two-hybrid using the ProQuest Two Hybrid System (Invitrogen

Life Technologies). RBRwt, RBRN849F, E2Fa, and HAT

sequences were cloned in pDONR221 and recombined into

pDEST32 BD (former two) and pDEST22 AD (latter two). Yeast

two-hybrid analysis was performed by duplicate as previously

described [22].

Drug Treatment
MS plates containing 0.5% phytagel were supplemented with

20 mg/ml zeocin (Duchefa Z0186). Plants were grown after

transference for a minimum of 14 and a maximum of 24 h.

Plants were analyzed using PI-staining and CLSM. For primary

root growth analyses after zeocin, data shown are the results of two

biological duplicates, with a minimum of 20 seedlings per line in

each duplicate.

F-ara-EdU treatment was performed in MS plates containing

0.5% phytagel and supplemented with 2 mM F-ara-EdU, which

was synthesized as described [26]. Incorporation treatments were

performed by transfering 4 dpg seedlings to F-ara-EdU–containing

plates and growing the plants for further 1–4 dat. Pulse and chase

experiments were performed by germinating the seeds in F-ara-

EdU–containing plates for 5 dpg and then transferring them into

MS plates for further 1–4 dat. Plants were then fixed in 1%

formaldehyde, 0.1% Triton X-100 in PBS, and Click-iT EdU

staining kit (C10338, Invitrogen) was used for signal development

before image analysis by confocal microscopy as previously

described [53].

Hydroxyurea (HU) treatment was performed in MS-agar plates

supplemented with 1 mM HU (SIGMA, H-8627). We treated

4 dpg seedlings for 24 and 48 h, and the root apical meristem of

treated plants was analyzed by confocal imaging. QC divisions

were scored as QC cells with a newly formed cell wall. Frequency

analysis was performed from 20 roots in duplicate experiments.

Statistical differences between treatments, as well as between

genotypes, were assessed using pairwise student’s t tests.

Supporting Information

Figure S1 Root meristem in Arabidopsis thaliana.
Different cell types in the root apical meristem of Arabidopsis

thaliana. Quiescent center, QC; Columella Stem Cell, CSC;

Columella differentiated, Col; Lateral Root Cap, LRC; Epidermis,

Epi; Cortex, Cor; Endodermis, En; Vasculature, Vasc. Cortex and

Endodermis comprise the ground tissue (green); the columella

tissue is represented in orange, and QC cells are yellow. (A) SCR

expression domain, in QC, ground tissue stem cells and

endodermis (B), and WOX5 expression domain in QC (C).

(TIF)

Figure S2 QC incorporates F-ara-EdU at longer times
than surrounding stem cells. Left images show red (F-ara-EdU)

and blue (DAPI staining) channels; right pictures show overlayed

green (pSCR::SCR:GFP) channel. Arrowhead shows QC region that

is stained by pSCR::SCR:GFP. Note that all green nuclei have no F-

ara-EdU signal at 1–3 dat, but they show signal at 4 dat. Root

meristem shown (A–B) 1 dat, (C–D) 2 dat, (E–F) 3 dat, and (G–H) 4

dat.

(TIF)

Figure S3 RBR down-regulation induces divisions in the
QC and CSCs, leading to extra columella layers. (A) In

roots of 6 dpg WT seedlings, a single, or a dividing, CSC (blue

colored) is present between the QC (green) and the first columella

layer with starch granules (arrowhead). (B) In roots of 6 dpg

p35s::amiGO-RBR seedlings, three layers of nondifferentiated

columella cells (blue) are present between the QC (green) and

the first columella layer with starch granules (arrowhead). (C) In

roots of 8 dpg p35s::amiGO-RBR seedlings, divisions of the QC are

observed (green) together with extra proliferation of nondifer-

entiated collumela cells (blue) above first columella layer with

starch granules (arrowhead).

(TIF)

Figure S4 amiGO RBR lines can be complemented by
constructs lacking the ami-complementary region.
12 dpg p35S::amiGORBR (A), complemented with pWOX5::RBR:

vYFP (B) or pRBR::RBR:vYFP (C), show partial (B) and total (C)

complementation of the p35S::amiGORBR phenotype (A).

(TIF)

Figure S5 RBR-depleted QC divides and daughters
differentiate as mature Columella. CLSM images of a

single root tip recorded at 2 (A–C), 4 (D–F), and 8 (G–I) dpg rbr/

rbr;BOB-RBR+/+;pWOX5::CRE:GR germinated on Dex-containing

medium. A single QC cell (A and C, TagRFPER marked clone)

missing one or two RBR copies divides (D and F) and ultimately

gives rise to differentiated columella cell marked by starch granules

(G to I, three cells enclosed by a dashed line).

(TIF)

Figure S6 WOX5 and ACR4 marker accumulation
before and after QC division. pWOX5::GFP expression (A

to C) and pACR4::H2B:YFP (D to F) was monitored and recorded

from day 4 until day 8 postgermination in dividing QCs of

pWOX5::amiGO-RBR roots. Asterisks indicate shootward daughters

and arrowheads point to rootward daughters.

(TIF)

Figure S7 Zeocin effects in the root stem cell niche.
5 dpg seedlings from Col0 and pWOX5::amiGO backgrounds

were transferred to medium with or without Zeocin (40 mM) for

14 h (hpz), analyzed, then transferred back to MS medium

(hptMS), and monitored at 24 to 72 hptMS CLSM images of root

meristems of Col-0 WT (A, B, and G), pWOX5::amiGORBR (C, D,

and H), and pSCR::SCRAxCxA:YFP, scr-4 (E and F).

(TIF)

Figure S8 RBRN849F fails to interact with LxCxE-con-
taining proteins. Yeast two-hybrid analysis showing interaction

between RBR and HAT2, RBRN849F and E2Fa, and disruption of

interaction between RBRN849F and HAT2.

(TIF)

Table S1 List of plant constructs generated in this
study. Plant material used in the study and resistance and

reference information.

(DOCX)
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Text S1 Supplementary information. Construction and

testing of the AMIGO gene silencing system and supplemental

references.

(DOC)
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