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In Caenorhabditis elegans, the recent 
advances in high-throughput quan-

titative analyses of natural genetic and 
phenotypic variation have led to a wealth 
of data on genotype phenotype relations. 
This data has resulted in the discovery 
of genes with major allelic effects and 
insights in the effect of natural genetic 
variation on a whole range of complex 
traits as well as how this variation is 
distributed across the genome. Regard-
less of the advances presented in specific 
studies, the majority of the data gener-
ated in these studies had yet to be made 
easily accessible, allowing for meta-anal-
ysis. Not only data in figures or tables 
but meta-data should be accessible for 
further investigation and comparison 
between studies. A platform was created 
where all the data, phenotypic measure-
ments, genotypes, and mappings can 
be stored, compared, and new linkages 
within and between published studies 
can be discovered. WormQTL focuses 
on quantitative genetics in Caenorhabdi-
tis and other nematode species, whereas 
WormQTLHD quantitatively links gene 
expression quantitative trait loci (eQTL) 
in C. elegans to gene–disease associations 
in humans.

The nematode worm C. elegans is 
widely known for its research in forward 
and reverse genetic approaches. Many 
mutants have been investigated for unrav-
eling genetic pathways together with 
RNAi screens. These studies have been 
invaluable for understanding the genet-
ics of many different traits ranging from 
apoptosis, development to lifespan, and 

behavior (www.wormbook.org). With 
regard to analyzing natural genetic varia-
tion, compared with other model species 
like Arabidopsis, mice, and yeast,1-3 the 
worm is lagging behind.4 Yet, the worm is 
catching up rapidly. Over the past decade 
the number of quantitative genetic papers 
has strongly increased and efforts have 
been made to explore genotype–pheno-
type relations.5-26 Quantitative genetics in 
C. elegans started in 1980s with a paper by 
Johnson and Wood27 on genetic variation 
and lifespan in a Bristol N2 and Bergerac 
cross. Currently, most studies have focused 
on recombinant inbred lines (RILs)6-12 or 
recombinant inbred advanced intercross 
line (RIAIL)14-19,21-24 populations derived 
from a cross between the most genetically 
diverse strains, Bristol N2 and Hawaii 
CB4856. Their genomes differ in about 
one single nucleotide polymorphism per 
873 base pairs.28 Independently from each 
other, the Kammenga lab and Kruglyak 
lab have developed populations by crossing 
these two divergent strains. The genetic 
variation between these lines, CB4856 
and N2, has provided the basis for a great 
number of studies.5-25 The CB4856 x N2 
RIL and RIAIL populations displays 
large genetic and phenotypic differences 
for different traits such as reproduction, 
growth,8,29 gene expression,10,11,13,21,25 cop-
ulatory plug formation,19 heat stress toler-
ance,12 and RNAi sensitivity.6,16,30 Next 
to CB4856 and N2, DR1350 x N2 RILs 
have been developed.31,32 For a more com-
plete review, we refer to reference 33.

In addition to the RILs, a genome-
wide introgression line (IL) population 
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Table 1. Data sets featured in WormQtL and WormQtLHD

Phenotypes Type of array
Sample  

size
Parental 
strains

References
PubMed 

link
Growing 

temperature
Stage Food Medium

Gene 
expression

Washington 
State 

University
2x40 rILs

CB4856;  
n2

Li et al. 2006; 
mapping 

determinants of 
gene expression 

plasticity by 
genetical genomics 

in C. elegans.

17196041
16 °C and 

24 °C

(72 h at 16 
and 40 h at 

24); L4
oP50

nGm 
Plate

Gene 
expression

affymatrix 
tiling array

60 rILs
CB4856;  

n2

Li et al. 2010; Global 
genetic robustness 
of the alternative 

splicing machinery 
in Caenorhabditis 

elegans.

20610403 24 °C (40 h) L4 oP50
nGm 
Plate

Gene 
expression

Washington 
State 

University
36x3 rILs

CB4856;  
n2

Vinuela and 
Snoek et al. 2010; 

Genome-wide 
gene expression 
regulation as a 

function of genotype 
and age in C. elegans.

20488933 24 °C
(40 h, 96 h, 
and 214 h) 

L4, adult, old
oP50

nGm 
Plate

Gene 
expression

agilent 
4x44k 

microarrays
208 rIaILs

CB4856;  
n2

rockman et al. 2010; 
Selection at linked 

sites shapes heritable 
phenotypic variation 

in C. elegans.

20947766 20 °C ya oP50
nGm 
Plate

Feeding curves 
rnai exposure

n/a
56 rILs * 12 

rnai
CB4856;  

n2

elvin and Snoek et 
al. 2011; a fitness 

assay for comparing 
rnai effects across 
multiple C. elegans 

genotypes.

22004469 20 °C
multi-

generational
n/a

Liquid 
S-medium

Life-history 
traits

n/a 80 rILs
CB4856;  

n2

Gutteling et al. 
2007; mapping 

phenotypic plasticity 
and genotype-
environment 

interactions affecting 
life-history traits 
in Caenorhabditis 

elegans.

16955112
12 °C and 

24 °C
egg, L4, ya oP50

nGm 
Plate

Lifespan and 
pharyngeal-

pumping
n/a 90 nILs

CB4856;  
n2

Doroszuk et al. 2009; 
a genome-wide 

library of CB4856/n2 
introgression lines 
of Caenorhabditis 

elegans.

19542186 20 °C
all; 

synchronised
oP50

nGm 
Plate

Lifespan, 
recovery and 
reproduction 

after 
heat-shock

n/a 58 rILs
CB4856;  

n2

rodriguez et al. 2012; 
Genetic variation 

for stress-response 
hormesis in C. 

elegans lifespan.

22613270
20 °C and 

35 °C 
heat-shock

L4 and adult oP50
nGm 
Plate

Gene 
expression

Washington 
State 
University

CB4856 
and n2

CB4856; 
n2

Vinuela and 
Snoek et al. 2012; 
aging Uncouples 
Heritability and 
expression-QtL 
in Caenorhabditis 
elegans.

22670229 24 °C
(40 h, 96 h, 
and 214 h) 
L4, adult, old

oP50
nGm  
Plate
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Phenotypes
Type of 

array
Sample  

size
Parental 
strains

References
PubMed 

link
Growing 

temperature
Stage Food Medium

Dauer 
formation

n/a

90 nILs 
and 20 
Wild-

Isolates

CB4856; 
n2

Green et al. 2013; 
Genetic mapping 

of variation in 
dauer larvae 

development in 
growing populations 

of Caenorhabditis 
elegans.

23715016 20 °C
multi-

generational
oP50

Dauer  
agar Plate

nemaDaPt
4 x 44K 
agilent 

aGIWUr

48 Wild-
Isolates

JU1511; 
JU1516; 
JU1522; 
JU1523; 
JU1545; 
JU1581; 
JU1582; 
JU1807; 
JU1937; 
JU1938; 
JU1939; 
JU1940; 
JU1941; 
JU1942; 
JU1943; 
JU1944; 
JU1945; 
JU1946; 
JU1947; 
JU1948; 
JU1949; 
JU1918; 
JU1919; 
JU1793; 
JU1920; 
JU1921; 
JU1922; 
JU1923; 
JU1924; 
JU1925; 
JU1926; 
JU1927; 
JU1928; 
JU1929; 
JU1930; 
JU1931; 
JU1932; 
JU1933; 
JU1934; 
JU1935; 
JU1936; 
JU314; 
JU396; 

Wn2001; 
Wn2002; 
Wn2003

Volkers and Snoek 
et al. 2013; Gene-
environment and 

protein degradation 
signatures 

characterize genomic 
and phenotypic 
diversity in wild 
Caenorhabditis 

elegans populations.

23957880 20 °C L4 oP50
nGm  
Plate

Gene 
expression

4 x 44K 
agilent 

aGIWUr

n2, 
CB4856 

and 6 wild-
isolates

n2; 
CB4856; 
JU1581; 
JU1921; 
JU1930; 
JU1932; 
JU1944; 

and 
JU1949

Snoek et al. 2014; a 
rapid and massive 
gene expression 

shift marking 
adolescent transition 

in C. elegans.

24468752 20 °C (48 h) L4
oP50 
and e. 

rhapontici

nGm  
Plate

Table 1. Data sets featured in WormQtL and WormQtLHD (continued)
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to study single locus effects has also been 
developed.5 The genome of an IL consists 
of the N2-recipient genome and a short, 
homozygous segment of the CB4856 
genome. In this way, the difference in the 
phenotype of the N2 strain and the IL can 
be precisely attributed to the introgressed 
CB4856 locus. Used in many stud-
ies to confirm and narrow down QTL, 
some studies take advantage of using the 
genome-wide set to discover new, mostly 
closely linked, QTLs.7,17

A number of mapping studies in RILs 
have investigated loci and polymorphic 
genes associated with variation in gene 
expression (coined “genetical genom-
ics”34), yielding expression Quantitative 
Trait Loci (eQTL). eQTL methods take 
advantage of natural genetic variation for 
identifying the loci that underlie variation 
in gene expression between genotypes, 
treating gene expression phenotypes as 
quantitative traits on a genome-wide scale. 
The polymorphic regulatory loci causal 
to gene expression differences between 
different genotypes are pinpointed by 
eQTL. So far, a handful of studies have 
been published on eQTL analyses in C. 
elegans.10,11,13,21,25,35 Compared with QTL 
mapping phenotypic traits, eQTL stud-
ies are data heavy and can hardly be pre-
sented in all their detail in a single paper.

Data Availability

Most of the (e)QTL data sets are avail-
able as separate supplementary data in a 

non-uniform format. Usually a genome-
wide overview of eQTLs is presented in 
a paper. To gain access to gene-specific 
eQTLs not originally presented, they 
have to be re-calculated using the original 
data. To do this, genotypic information 
is required as well as the gene expres-
sion measurements, not always available 
from the same study. Even with the data 
retrieved it is a daunting task to find if 
a gene or locus of choice has an eQTL, 
because (re-)calculation of eQTLs is a 
specialized task. If one would like to 
compare QTLs and eQTL from different 
studies, this time-consuming process has 
to be repeated for each trait, gene, and 
spot (in case of microarray studies) sev-
eral times.

This wealth of worm data, especially 
from eQTL studies,10,11,13,21,25 provides a 
treasure trove for the detection and func-
tional analysis of loci, alleles, and genes. 
We collected resources, like genotypes, 
phenotypes, and gene expression data 
sets, as well as the QTL and eQTL map-
ping results. In case QTLs or eQTLs were 
not originally available, we re-calculated 
them to share with the community. To 
facilitate the comparison between differ-
ent genes and studies, we have developed 
two database and analysis platforms, 
based on the MOLGENIS (MOLecular 
GENetics Information Systems) bio-
software.36,37 The MOLGENIS toolkit 
provides a simple model for generating 
versatile web platforms for many differ-
ent genomic, molecular, and phenotypic 
experiments.

The two developed web platforms 
comprise quantitative genetic data avail-
able for C. elegans, and in the future, 
other Caenorhabditis species. WormQTL 
(http://www.wormqtl.org)38 and 
WormQTLHD (HD for Human Disease 
[http://www.wormqtl-hd.org])39 are eas-
ily accessible and enable search, com-
parative analysis, and meta-analysis of all 
data on variation in C. elegans. Moreover, 
both web-portals provide a workbench 
of analysis tools for genotype–phenotype 
linkage and association mapping. Data 
can be uploaded by contacting one of the 
curators of WormQTL to ensure proper 
integration with the rest of the data. 
Results can be accessed and downloaded 
per data matrix or a specific selection via 
a public web user interface. Retrieved data 
are stored in simple tab-delimited text or 
Excel formats, ensuring easy local access. 
In WormQTLHD, the online user friendly 
tools can be used for revealing function-
ally coherent, evolutionary conserved gene 
networks, and for predicting novel gene-
to-gene associations and the functions of 
genes underlying the disease of interest. 
To further simplify the access to quantita-
tive genetic data, most genes in Wormbase 
(www.wormbase.org) have a link (which 
can be found in the “external link” sec-
tion), which takes the user to the gene-
specific WormQTL page upon clicking. 
Retrieving all the data for QTL mapping 
from all experiments stored in WormQTL 
(Table 1) or finding out if your favorite 
worm gene has an eQTL has never been 
this easy (Fig. 1).

Figure 1. Data exploration options in WormQtL. QtLs are genomic regions associated with phenotypic variation and provide the basis for studying the 
genetic architecture of traits and to detect potential phenotypic regulators. eQtL are loci associated with gene expression variation. WormQtL provides 
easy access to most of the (e)QtL studies published, by search, browse and plot functions.
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On WormQTLHuman Disease

C. elegans is an important model organ-
ism to study the genetics of human dis-
eases.40 To use the C. elegans eQTL data 
to the benefit of human disease research, 
WormQTLHD links C. elegans genetics to 
human gene–disease associations. These 
links are based on orthologous genes 
between C. elegans and humans and can 
be associated with different phenotypes. 
Taken from different gene expression 
profiling platforms and a diverse range of 
experiments, the database provides a num-
ber of analysis tools to search and mine 
C. elegans phenotypes, including gene 
expression for human–worm InParanoid 
orthologs.41 In this way, data stored in 
the databases on human disease genetics 
like GWAS central,42,43 GWAS Catalog,44 
and OMIM45 can be combined with data 
stored in WormQTL and WormBase. The 
results can be downloaded and visualized 
in a comprehensive and clear way, acces-
sible via a public web user interface.

WormQTLHD provides four tools to 
explore the database: “Disease2QTL,” 
“Region2disease,” “QTL2disease,” 
and “ComparePheno” (Fig. 2). 
“Disease2QTL” finds the C. elegans ortho-
logs of human genes associated to a spe-
cific disease and visualizes the eQTL(s) 
of these genes. This enables one to find a 
genetic variant in C. elegans of a human 
disease-associated gene or pinpoints the 
locus of a possible modifier of this dis-
ease. “Region2disease” provides all the 
C. elegans genes, their human orthologs, 

and disease associations in a user-speci-
fied genomic region, enabling fast candi-
date gene selection for QTLs found for 
C. elegans phenologs of human disease. 
“QTL2disease” enables one to select a 
phenotype of choice and show the genes 
underlying QTLs for that phenotype as 
in “Region2disease.” “ComparePheno” 
provides links between human diseases 
and classical worm phenotypes so “new” 
phenologs can be discovered and the 
genes/orthologs underlying both human 
and worm phenotypes. A more extensive 
explanation, help, tutorials, and case stud-
ies can be found on the WormQTLHD 
website and original paper.39

Outlook

On data
The quantity of data on natural varia-

tion in C. elegans has strongly increased as 
measuring and genotyping technologies 
have become less expensive and techni-
cally improved over the past few years. 
Moreover, in these recent years, many 
more labs have embraced and included 
natural variation in their research, thereby 
generating more valuable data. Most of 
this data will be integrated in WormQTL 
and WormQTLHD. The curators are com-
mitted to maintain data and software for 
years to come and invite the community 
to add and share new data and ideas. 
Curators will also contact authors to 
upload their data and authors can contact 
curators for assistance. Recently, almost 

all of the SNPs between N2 and CB4856 
have been published along with the SNPs 
in 40 other wild isolates.46 Over 630 000 
unique SNPs and over 220 000 unique 
INDELS are reported showing the high 
abundance of genetic variation between 
wild-isolates. Other studies also report 
high-density genetic differences between 
wild-isolates.47,48 Moreover, Volkers et al. 
also shows variation in many different 
phenotypes, including gene expression, 
between multiple different wild strains 
as well as N2 and CB4856. These efforts 
pave the way toward a widely available 
and usable resource for studies on natu-
ral genetic variation in C. elegans. This 
likely includes research on gene–environ-
ment interactions since C. elegans has been 
intensively used to study the effects of dif-
ferent stressors next to ambient environ-
mental conditions.49-53

The recently introduced Wiki on 
genetics and evolution of Caenorhabditis 
species (http://evolution.wormbase.org) 
illustrates that there are more worm pop-
ulation resources present than currently 
featured in WormQTL or WormQTLHD. 
The Wiki not only summarizes C. ele-
gans studies on variation in specific phe-
notypes, but also resources beyond the 
two most frequently used strains N2 and 
CB4856. Most of these populations are 
available or will be upon publication.54-56 
As the Wiki has just started, the list of 
available or populations under construc-
tion is likely to grow rapidly. Even so it 
will be a challenge to link the data gen-
erated between different population let 

Figure 2. tools of WormQtLHD for combining human–disease and C. elegans genetics. one can select for disease or phenotype and search for associated 
loci (Disease2QtL). Select worm genomic regions and search for associated diseases (region2disease), or interrogate the database for specific probes 
and thresholds (QtL2disease). Finally, worm phenotypes can be compared with human disease phenotypes (ComparePheno).
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alone the complex task of making quan-
titative genetics comparable between spe-
cies. At the same time, our knowledge of 
the C. elegans N2 genome also increases. 
Many different genomic binding sites are 
available via the modENCODE proj-
ect.57 These binding-sites, as well as other 
genomic data, are very useful to evaluate 
the likeliness of causality for a genetic 
polymorphism underlying a QTL.

Upcoming experiments
Within the next few years a steady flow 

of new data are expected to come out by 
different groups. Data will appear on high-
throughput phenotyping of large, geneti-
cally diverse populations, including N2 
x CB4856 RIAILs (Erik Andersen pers. 
comm.), mapping of loci associated with 
bacterial feeding (Hinrich Schulenburg 
pers. comm.), spindle formation (Daniel 
Needleman and Reza Farhadifar pers. 
comm.), genomic incompatibility (Simon 
Harvey, pers. comm.), behavioral assays 
(Bart Braeckman pers. comm.), and 
more. The curators of WormQTL or 
WormQTLHD will keep in touch with 
authors and assist them with uploading 
their data. As a number of labs are work-
ing on or have developed high-throughput 
assays for RNAi,6 proteomics, phenotyp-
ing, epi-genetics, metabolomics, and other 
levels of variation, layered, and interacting 
sets of data become available. Already 
a challenge to study one by one, explor-
ing them together in a structured acces-
sible environment becomes a necessity for 
efficient and discovery focused exploring 
of large data sets where WormQTL and 
WormQTLHD can be very helpful.

On tools
As stated in our previous papers, we 

constantly keep developing and updating 
visualization tools, QTL mapping tools, 
and candidate gene selection tools. These 
can be tools to test for functional enrich-
ment of genes sharing an eQTL, finding 
SNPs on a specified locus, or the integra-
tion of R/QTL.36 We are currently work-
ing on a new version of MOLGENIS, and 
thus, WormQTL to make data explora-
tion more interactive and “clickable.” 
A genome browser type environment is 
being created to link information such as 
SNPs and other polymorphisms to QTLs 
and eQTLs. By focusing on community 
data accessibility we hope to strengthen 

the foundations of worm quantitative 
genetics.
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