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Abstract

The architecture of tomato inflorescence strongly affects flower production and subsequent crop yield. To understand the
genetic activities involved, insight into the underlying network of genes that initiate and control the sympodial growth in
the tomato is essential. In this paper, we show how the structure of this network can be derived from available data of the
expressions of the involved genes. Our approach starts from employing biological expert knowledge to select the most
probable gene candidates behind branching behavior. To find how these genes interact, we develop a stepwise procedure
for computational inference of the network structure. Our data consists of expression levels from primary shoot meristems,
measured at different developmental stages on three different genotypes of tomato. With the network inferred by our
algorithm, we can explain the dynamics corresponding to all three genotypes simultaneously, despite their apparent
dissimilarities. We also correctly predict the chronological order of expression peaks for the main hubs in the network. Based
on the inferred network, using optimal experimental design criteria, we are able to suggest an informative set of
experiments for further investigation of the mechanisms underlying branching behavior.
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Introduction

The branching behavior of a tomato (Solanum lycopersicum)

inflorescence is an important trait for tomato growers and

breeders. Depending on the breeding goal, one wants trusses that

show no branching at all, a very high level of branching, or just a

few branches. The trait is under genetic control and several genes

are known to be involved in determining the flowering and

structure of the inflorescence. Controlling the shape can therefore

be facilitated by proper genetic makeup. Several genes have been

identified to be involved in the branching of tomato inflorescence

[1,2]. According to the literature, the following seven genes are

essential: S (COMPOUND INFLORESCENCE), J (JOINT-

LESS), BL (BLIND), AN (ANANTHA), UF (UNIFLORA), FA

(FALSIFLORA), and TMF (TERMINATING FLOWER). Most

studies focus on a subset of these seven genes, and an overview of

how all these genes would fit in a network has not yet been

described. As input we use expression data recently published by

Park et al. [3]. In their work the genetic basis resulting in different

branching behavior of tomato inflorescence in three different

genotypes was investigated, namely in a wild-type cultivated

tomato, in a mutant, and in a wild species. As illustrated in the

paper of Park et al. [3] each of these show different degrees of

branching. Based on analysis of the expression data, using the so-

called digital differentiation index introduced in [4], they

concluded that a high level of branching is driven by the delayed

maturation of apical and lateral meristems. In the same spirit, we

employ expression data of three distinct tomato genotypes: S.

lycopersicum, s mutant, and Solanum peruvianum, measured at different

developmental stages in the primary shoot meristems.

Instead of a merely descriptive analysis, we use mathematical

modeling to infer the genetic network underlying the branching

phenomenon. In general, inferring a regulatory network from

given gene expression data is a difficult task. Numerous studies

have contributed to this subject in the past, but each of the

suggested methods seems to have superior performance only under

specific circumstances, whereas none of them is able to claim this

in general [5–10]. In this article, we are dealing with time series

data, which makes information theoretic inference approaches

[11] less appropriate. Moreover, our data consists of very limited

amount of time points, and therefore methods like dynamic

Bayesian networks [12] are not suitable. Rather, a method based

on ordinary differential equation (ODE) [13] can potentially

capture the dynamics of the developmental network in question

without being too detailed to lead to an underdetermined system

with a large number of parameters. Inference methods based on

systems of ODEs can be divided according to whether they do

direct inference using linear regression [14] or fit the network

parameters iteratively using optimization algorithms. Our ap-

proach belongs to the latter. Further, the inference methods can be

divided to approaches that estimate the network parameters and

the topology simultaneously by including a penalty term in the

objective function [15] and to those that estimate the parameters

systematically on different network models [16]. Our method

belongs to the latter group, that has the merit that one does not

have to come up with a threshold to decide when an parameter is
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small enough to imply that the corresponding interaction (network

edge) does not exist.

Although generic methods have their theoretical appeal as such,

when biological prior information is available it is more practical

to utilize this information than to infer large amount of unknown

parameters ‘‘from scratch’’. In this paper we rely on literature-

based expert knowledge that allows us to generate an initial

network that contains the most likely interactions relevant for the

inflorescence branching behavior. We want to explore all networks

that are in some sense close to our initial network and test whether

they are capable to reproduce the data of all three different

genotypes. For this, we need two types of criteria: one for

comparing networks on their quality and another that determines

how to sample the network space. For the former criteria we use

the Akaike Final Prediction Error (AFPE) [17]. For the latter, we

have developed a procedure, the so-called thickening-thinning-

procedure, that provides a heuristic algorithm to navigate in the

space of asymmetric adjacency matrices that define the network

topology.

The resulting network is not only able to describe the observed

expression levels correctly, but can be used to predict how these

respond to perturbations. Our model predictions confirm the idea

that delayed maturation of meristems is involved in the extreme

branching of the s mutant. Importantly, our model allows to

investigate whether and how strongly this delay depends on the

strength of the various interactions in the network. In particular,

we find that only very few interactions seem to be responsible for

the clear delay between S. lycopersicum and s mutant. However, the

cause of the delay in maturation times between S. lycopersicum and

S. peruvianum seems to be less definitive and can be influenced by

several single gene perturbations. Finally, we perform perturbation

analysis to select the most influential genes and interactions, to

serve as a guideline in designing new experiments.

Methods

Determining the network model
We aim at inferring the genetic interactions underlying the

branching behavior of tomato inflorescence. For computational

modeling, it is useful to conceptualize these interactions in the

form of a network graph. The graph consists of nodes that

represent the status (expression level) of genes and arrows between

them indicate the direction and nature (activation/inhibition) of

interaction. We intermittently replace the word ‘‘arrow’’ with

‘‘edge’’.

In network inference we first need to decide how to describe the

dynamics of the network: the mathematical/computational

formulation of the processes of genetic interactions in time. How

to model a network depends among other things on the nature of

the available data. In our case, the point of departure is time series

data, where the expression levels of genes are measured at 5

different developmental stages in the shoot meristems [3]. When

studying systems (of the size as discussed here) in time, a natural

framework for modeling is to use ordinary differential equations

(ODE). In Appendix S1 we present the ODE model used

throughout this paper. Such a linear ODE model has often been

used to get an impression of possible interactions between genes of

interest [18–20]. It has the advantage that to each interaction,

precisely one parameter is attached. We use this model to ‘‘probe’’

for potential interactions between the nodes based on data, i.e.,

our prime interest is to determine whether an arrow exists and if

so, whether it corresponds to activation or inhibition.

Choosing the potential edges of the network
There is a reasonable amount of literature concerning the genes

that are involved in controlling and regulating the inflorescence

branching. Typically this information is deduced from the

phenotype of single, double, or even triple gene mutations, and

from various molecular gene expression studies [21–30]. Up to

now, the set of interactions between all these genes is poorly

understood. In the following we present a summary of all putative

interactions (i.e., edges between the genes/nodes). For almost none

of the gene-pairs is the interaction actually proven.

The BL (BLIND) and UF (UNIFLORA) genes (so-called

boundary genes) are involved in the inflorescence architecture

and have a role in the development or initiation of secondary

axillary meristems [31]. This is also suggested by the fact that bl

mutants have less flowers (originating from partially or completely

undeveloped, axillary meristems [22]). The expression patterns of

BL and UF are largely similar [32] implying a possible connection

between UF and BL. As these two genes are active very early in

the development, it seems reasonable to expect, that they do not

directly interact with genes such as AN (ANANTHA) or S, as these

are expressed later on and have a role in determining the fate of

the meristems to be formed.

The genes J (JOINTLESS), S (COMPOUND INFLORES-

CENCE), AN, and FA (FALSIFLORA) are all expressed at some

stage during the inflorescence development. The J-gene has an

important role in maintaining the inflorescence status, as mutation

of this gene always leads to vegetative growth [23]. Furthermore it

is present throughout the inflorescence meristems, but less so in

flowers [1,33]. The J-gene becomes expressed already very early

and there are indications that it can potentially interact with S, FA,

and AN [1,23], as well as with the even earlier genes UF or BL.

Especially for BL an interaction with J is quite likely, considering

the correlation of the expression levels of these genes in j mutants

in a study on the development of the abscission zone in the pedicel

[34]. AN is expressed only in floral buds and most likely only after

expression of J and S [35]. Both AN and FA are needed for floral

identity [24,25,35], as suggested by the fact that their mutants

show incompletely developed flowers. Therefore these genes are

the latest expressed genes during inflorescence/flower develop-

ment. We assume that they are not connected to the early genes

BL and UF. S mutants have highly branched inflorescence, but

normal flowers. This was interpreted in [35] as an extension of the

indeterminate state resulting in delayed transition to floral

meristem. Thus, S gene potentially interacts with other floral

decision genes as AN, J, TMF, and FA, but neither with UF nor

with BL. The TMF gene may interact with AN and FA but is not

likely to be connected to BL or UF, considering the different roles

in the development of the inflorescence. Representing all potential

edges in a graph, yields the network topology as shown in panel A

of Figure 1.

Modeling the genotypes
The s mutant contains a mutation which results in the S-gene

being less active than in the wild type [35]. It was first described

around 100 years ago as a highly branched variety. We implement

this in our computational model by using identical parameter sets

for S. lycopersicum and s mutant, with the following exception: the

influence of gene S upon other nodes in the network is mitigated

via a multiplicative factor av1 in the equations modeling the s

mutant. This a indicates the degree of loss in function of gene S

compared to the wild type. As explained in Appendix S1 in detail,

we require thus that our model parameters simultaneously predict

both genotypes, S. lycopersicum and s mutant, and that the apparent

differences in expression data between the cultivated wild type and

Tomato Inflorescence Gene Network
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its s mutant can be modeled with only one parameter a. As for the

wild species S. peruvianum, which is a more distant variety, we

expect that the regulatory network is the same in its structure and

mechanisms, that is, the interaction mechanisms (activation/

inhibition) are the same, but their interaction strengths may differ

from that of S. lycopersicum and s mutant. In terms of mathematical

network inference this means that we use the same system of

equations for S. peruvianum as we obtained for S. lycopersicum with

identical plus-minus signs but allow the parameter magnitudes to

deviate.

Inferring the network topology
The data to be fitted, i.e., the original expression levels for each

developmental stage and for each genotype are shown in Figure 2.

The main goal of network inference is to find the locations of the

actual edges, i.e., the pairs of genes that influence each other. In a

computational model, missing a necessary edge in the network will

result in a system of equations, whose solutions do not describe the

data sufficiently well. On the other hand, a redundant edge

(parameter) can be removed from the equations without decreas-

ing the quality of the fit. This insight forms the basis of the

inference algorithm explained underneath. For all the details

concerning the (pre-processing of) data and the system of

differential equations modeling the expression dynamics, we refer

the reader to Appendix S1.

Thickening-phase. We begin by fitting the initial network

(see panel A of Figure 1) to the data of wild type cultivated tomato

and mutant. This means that we employ optimization algorithms

to find optimal parameters for our model system so that the

solution curves follow the data as closely as possible. It is not to be

expected that we may fit the data well with this network, since it is

based on a-priori knowledge with uncertainties. So, we start

‘‘thickening’’ the network by adding necessary edges to improve

the fit. For this, we use a strategy to detect missing edges in the

network. In [36], it was shown that in case of small networks with,

say, less than 12 nodes, an effective way to pin down the missing

edges is to focus on the lack of fit for each gene (node). The idea is

that a bad fit for a certain gene often implies that this particular

gene is not yet connected to its actual regulator.

To measure the (lack of) fit we use as goodness of fit measure the

relative root mean square of the error (RMSE) between data and

fit. That is, we measure the difference between data and fit relative

to the data values. This means that we do not only fit the highest

expression levels well meanwhile ignoring the lower values, but

strive to fit each expression data on equal terms. The smaller the

RMSE, the better the fit.

To begin with the thickening algorithm, we choose the two

nodes, with the largest errors in fit. We connect these two nodes

and perform a new fitting. In case the fit is not immediately

improved, we systematically try out all edges starting from/ending

to these two nodes and choose the edge that reduces the RMSE

most.

By repeating this scheme over and over again, we would end up

with a fully connected network. To avoid over-fitting, we need a

stopping criterion for thickening. For this we apply the Akaike

Final Prediction-error Criterion (AFPE) [17,37]:

AFPE~
1zp=N

1{p=N

1

N

XN

t~1

1

2
RMSEð Þ2, ð1Þ

where p is the number of parameters (edges) and N is the number

of measurements. Only if the value of AFPE does not increase, we

add edges to improve the fit. We remark that, unlike the standard

Akaike information criterion (AIC), AFPE takes the number of

measurements into account and penalizes the number of

parameters less severely. The AFPE is based on solid theory and

has the advantage that, in our experience, it leads to a results that

better agree with the visual perception of a ‘‘good fit’’. After the

thickening phase, we start eliminating redundant edges by a

thinning procedure.

Thinning-phase. In the thinning procedure we compute the

sensitivity of the RMSE (goodness of fit) with respect to small

perturbations in each parameter. If the RMSE hardly changes

while we manipulate the values of a parameter (edge), then this

edge is not likely to be relevant in the current configuration. The

parameter with lowest sensitivity, i.e., the parameter that has

practically no effect on the goodness of fit is then deleted from the

parameter set. This implies that we delete a network edge and

make the network thinner. Again, as a stopping criterion, we use

the AFPE criterion introduced above. In case the AFPE criterion

for the reduced network is lower than for the original one, we

replace the initial network with the reduced network. Note that we

are not primarily interested in the parameter values themselves.

Rather we want to know their signs, i.e., whether the regulatory

action is promotion or inhibition. Therefore, a classical parameter

uncertainty analysis is not directly relevant here.

Figure 1. Initial and final networks. The network in panel A shows the set of potential edges to start with. The arrows indicate the direction of
interaction. Note that in panel A the arrows may represent activation or inhibition. To avoid cluttering, we have not plotted the arrows for self-
regulations, but we do allow them in our model. The final network in panel B was obtained using the network inference procedure that we propose
in this paper. In panel C the genes associated with each node are listed.
doi:10.1371/journal.pone.0089689.g001
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Results and Discussion

Necessary and redundant edges
In this section, we discuss the results obtained by applying the

thickening-and-thinning procedure, described in the previous

section. With the initial network topology (see Figure 1 A), we

obtained an insufficient fit, where especially the RMSE for the

expression data of UF and BL was relatively large. Therefore, we

started thickening the network. As node UF and node BL are

already doubly connected to each other, adding an edge between

the two was ruled out. Therefore, we systematically connected all

remaining nodes one by one first to UF and then to BL, while

recording the AFPE values for each fit. Only after adding two new

edges to the network: SRUF and SRBL the RMSE dropped to

50% of the original, reducing immediately also the AFPE value.

At this point, we applied thinning. As a result arrows: BLRUF,

ANRTMF, ANRFA, SRFA and SRAN turned out to be

redundant and were removed. Then we again switched to the

thickening phase. Starting again from the nodes with highest

RMSE, we systematically add one edge and discard it in case the

AFPE increases. In the end we tried every possible edge that is not

yet in the network, but in all cases AFPE increased implying that

the fit cannot be improved. The AFPE values corresponding to

each addition of an edge is shown in Figure 3.

The final fit has thus 2 additional edges and 5 removed edges

compared to the original configuration. For the evolution of the

AFPE, throughout the thickening and thinning steps, see Figure 4,

panel C. Note that throughout the thickening-thinning procedure,

we have simultaneously fitted both data, wild type and mutant,

which have rather different dynamics, using the same set of

parameters with only the special parameter a accounting for the

differences. The value of a steadily converged to around 0.5,

indicating that the influence of the S-gene is 50% weaker in the

mutant compared to the wild type. Note that we use global non-

constrained optimization without any fixed initial points. Never-

theless the signs of the parameters remained consistent throughout

the iteration. For a box-plot of the remaininig optimal parameters

during the thinning phase see Figure 4, panel A. As a result, we

obtained the minimal network in panel B of Figure 1 that is able to

describe the data well. This network contains as many edges as is

needed to fit the data, but removing any of them will result in a

very poor fit. The algorithm not only unravels which interactions

are necessary, but also whether it is a promoting or inhibiting one.

Predicting the wild species
Using the network inferred via the thickening-thinning proce-

dure explained above, we arrived at a network model that fits both

mutant and wild type data. The next question was then whether

this network can also predict the data of the more distant variety of

tomato, S. peruvianum. And if so, are the optimal parameter values

significantly different. By fitting the data of S. peruvianum with the

model inferred on the data of S. lycopersicum and s mutant we

obtained a remarkably good fit. The obtained fits for all three

genotypes are given in Figure 5. The parameter values typically

varied between 50% to 300% of those from wild type and mutant.

Only the parameters m35 and m43 were significantly smaller,

corresponding to edges SRJ and JRFA in the optimal network for

S. peruvianum.

Figure 2. Original data. Expression levels in a.u. for the three genotypes used in this paper as a function of time. At days 10,13,15,16 and 17 data
are available. Also standard deviations are given.
doi:10.1371/journal.pone.0089689.g002

Figure 3. Final prediction errors. The AFPE values obtained during
the second thickening phase. The leftmost red star corresponds to the
AFPE value of the network after the initial thinning phase. Next to this,
are the sorted AFPE-values shown together with the corresponding
candidate-edge added to the network for parameter estimation. Since
adding any edge, not already present in this network, resulted in larger
AFPE than without the addition, further thickening is impossible and we
stop the iteration.
doi:10.1371/journal.pone.0089689.g003

Tomato Inflorescence Gene Network
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Time delays in expression peaks
Park et al. [3] propose that the difference in branching

patterns of cultivated tomato, s mutant, and wild species S.

peruvianum, is due to delayed maturation of meristems. To study

this we only need to observe when the expressions of the genes

responsible for maturation show a peak in the model prediction.

Hence, based on this assumption we can investigate the timings

of maturation, presumably influencing the branching behavior,

in different tomato variants. To do so, we used the network

inferred and given in Figure 1 B and compared the dynamics

predicted in each of the three model variants. Indeed, we found

the same order of maturation as proposed by Park et al. [3]

(Figure 6). In particular, the early genes UF and BL as well as

the central hub in the network, S, peak in the following order:

first S. lycopersicum, then S. peruvianum, and finally s mutant. This

is in agreement with the maturation order of apical meristems in

those species. As can be seen in Figure 2, the original data do

not contain such ordering between the peaks, indicating that

this behavior emerges from the network model and not directly

from the data.

To investigate this further, we performed perturbation

analysis to see whether it is possible to change the parameter

values and maintain a reasonable fit, so that the order in

peaking is altered. First we compared the genotypes S.

lycopersicum and s mutant and observed that except for the

parameter indicating the regulation JRAN, it is not possible to

perturb the parameters to the extent that the expression levels of

UF, BL and J would peak earlier in s mutant without totally

ruining the fit. On the other hand, when comparing the

cultivated tomato with the wild species, several parameters,

namely SRTMF, FARAN, FARS, JRFA, UFRJ, SRBL,

UFRBL and SRUF could be perturbed so that it results in the

alignment/altering of the peak order. This indicates that the

later peaking of the most influential genes in s mutant compared

to the S. lycopersicum is a consistent feature of the network. The

details of this analysis are given in Appendix S1.

Conclusions

We have employed a system of linear ODEs to reconstruct the

network underlying the branching behavior of tomato inflores-

cence. As often is the case, the real difficulty lies in the extremely

large number of possible network topologies. Combined with the

fact that optimization of parameters in ODE systems is rather time

consuming, an exhaustive search can easily become intractable.

The central question is then how to navigate through the massive

Figure 4. Box-plots of estimated parameters. In panel A is a box-plot of the distribution of the successive optimal parameters during the
thinning procedure. The values have consistent signs and narrow range. In panel B are the distributions of successive optimizations using the inferred
network structure, starting from different random initial guesses with the Matlab routine lsqnonlin, showing again a narrow range of deviation. In
panel C we see the evolution of the AFPE-value during the thickening-thinning procedure. We stopped before the last step, where AFPE increases
slightly.
doi:10.1371/journal.pone.0089689.g004

Figure 5. Final fits for all three genotypes. For ease of comparison, we plotted here a subset of the reproduced curves at the same scale using
expression levels divided by the standard deviation. Fitting first the data of S. lycopersicum, s mutant (calibration) and subsequently with the network
obtained fitting the data of S. lycopersicum (validation).
doi:10.1371/journal.pone.0089689.g005

Tomato Inflorescence Gene Network

PLOS ONE | www.plosone.org 5 April 2014 | Volume 9 | Issue 4 | e89689



space of all possible network graphs. To overcome this problem,

we developed a procedure called the thickening-thinning algo-

rithm. With this algorithm we first guarantee that our network can

reproduce the data and subsequently we make sure that the

network does not contain redundant edges that are not necessary

to fit the data.

We used the data for S. lycopersicum and its s mutant to

reconstruct the underlying network topology. Next we showed

that the same network topology is also able to fit the data for S.

peruvianum quite well. This strongly suggests that we have

discovered the correct topology. This conclusion is further

underpinned by the observation that it also leads to correct

predictions of maturation peaks of the influential genes UF,

BL, and S. That is, these genes clearly first peak for S.

lycopersicum, then for S. peruvianum and as last for the s mutant.

This chronological order is in line with the results of Park et al.

(2012) who concluded that the delayed maturation (compared

to S. lycopersicum) of both the apical and lateral meristems is

causing the extreme branching in s mutant and that for the S.

peruvianum this delay was present also but only in the apical

meristems.

Using the inferred network we could test the consistency of this

peaking order via perturbation analysis and found that the delay

between the wild type cultivated tomato and s mutant is

consistent and cannot be easily altered via up-/down-regulations,

whereas the delay between wild type cultivated tomato and wild

species is much more susceptible to perturbations.

Finally, using a well-established measure of information content

in optimal experimental design [38] we were able to select the

most important parameters that point towards those genes that

give largest effects upon perturbation.

Supporting Information

Appendix S1 Supplementary information on the data,
the ODE model and perturbation analyses.
(PDF)

Figure S1 In this figure the effect of perturbing each
network parameter on the peaking time of gene S is
illustrated. In panel A, S. lycopersicum and mutant are compared.

In panel B S. lycopersicum and S. peruvianum are compared. In both

panels A and B white squares mean: no change in the

chronological order by the parameter perturbation. Gray squares

indicate that both expression peaks take place within the same

hour. Black square means the peaking times of two genotypes have

changed in chronological order. In panel C and D the general

sensitivity of the fit to parameter perturbations is shown for

comparison. A black square means that the residual has grown 100

fold compared to the original residual with the optimal

parameters.

(TIFF)

Table S1 The Fisher information values in this table are scaled

through dividing by the largest value on the diagonal of the Fisher

matrix given by formula (2). These results were obtained using the

set of parameters that yielded the best fit to the data for both S.

lycopersicum and s mutant. We observe that the parameter with

highest FIM is m53, describing the interaction J?S.

(PDF)
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