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Chapter 1

LEARNING AND MEMORY FORMATION AMONG ANIMAL SPECIES
Learning can be defined as a process in which information on the environment is acquired 
and stored in the brain; memories are the neuronal representations of this stored 
information (Dukas, 1998a). Humans and animals alike have to cope with an ever-changing 
environment in the ultimate quest to survive and reproduce. The ability to learn and form 
memories is an indispensable trait that enables animal species to adapt to novel and 
changing environments throughout their lives (Dukas, 1998b). Animals can use learned 
information or skills to change and optimize their behaviour, which can improve their 
abilities to find food, mates or hosts (Papaj & Vet, 1990; Dukas, 2004; Raine & Chittka, 
2008). It is not surprising that the ability to learn has been observed in animals ranging 
from vertebrate species, such as ourselves, to relatively simple invertebrates. The cues 
and skills that species can learn are diverse: most bird species can learn complex songs 
and some species, for example jays, can remember the location of thousands of food caches 
(Clayton et al., 2003; Brenowitz & Beecher, 2005), bees learn the location of their hive, they 
can learn colours and odours of profitable flowers and how to handle these flowers (Menzel 
et al., 2006; Chittka & Raine, 2006), and the marine snail, Aplysia californica, can learn to 
withdraw its gill when lightly touched (Bailey & Kandel, 2008). 

Different types of learning can be distinguished, including habituation, sensitization, 
associative learning, spatial learning and social learning (Shettleworth, 2010). Associative 
learning is the form of learning that has been studied most intensively among distant 
animal phyla and it is the type of learning that I study in this thesis. Associative learning 
can be studied using two different conditioning approaches. (1) In classical (Pavlovian) 
conditioning, animals learn to associate a stimulus (the conditioned stimulus, CS) with 
a reinforcing stimulus (the unconditioned stimulus, US), e.g. a reward or a punishment. 
The animal will subsequently demonstrate an altered conditioned response towards the 
CS (Rescorla, 1988). An example of classical conditioning is the widely used odour-shock 
conditioning paradigm used to condition fruit flies, in which these animals learn that 
an odour predicts a noxious electric shock. The flies will subsequently avoid the odour 
associated with the electric shock (Tully & Quinn, 1985). (2) In operant conditioning, 
animals associate their own behaviour with a reinforcing stimulus (Brembs, 2003). An 
example is the heat box-paradigm for fruit flies in which the animal will learn to avoid a 
heated area in a chamber after walking onto it (Wüstmann et al., 1996). In both classical 
and operant conditioning procedures an animal will learn that specific cues or behaviours 
predict a reward or punishment and they will change their behaviour accordingly. 
Although there is variation in the skills or the type and complexity of information that 
different animal species can learn, there are many similarities in behavioural properties of 
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associative learning and subsequent memory formation (Dubnau, 2003). 

A large number of studies in the field of learning and memory have focussed on proximate 
factors that regulate these processes. The cellular mechanisms underlying associative 
memory formation have been studied intensively in a small number of model organisms, 
most importantly mice and rats (Chen & Tonegawa, 1997), fruit flies and honeybees 
(Margulies et al., 2005; Eisenhardt, 2006), and the marine snail Aplysia californica (Bailey 
& Kandel, 2008). These studies have revealed that genetic and neural pathways involved in 
memory formation are highly conserved among animal species (Dubnau & Tully, 1998). A 
learning experience results in the formation of distinctly different types of memories. These 
types can be distinguished on a temporal scale (e.g. short-term memory and long-term 
memory), but also on the basis of genetic and neural pathways involved (Davis, 2005). 
Especially research on memory formation in invertebrate species has been highly valuable 
to identify cellular pathways that underlie these processes, which was acknowledged by 
awarding the Nobel Prize in physiology or medicine to Eric Kandel in the year 2000 for 
his pioneering work on synaptic plasticity in Aplysia. Invertebrate species have a simpler 
neuronal network than vertebrate species, which facilitates studies on individual or small 
groups of neurons. In combination with pharmacological or genetic manipulation, this 
provides opportunities to identify neural and genetic pathways involved in learning and 
memory formation. Indeed, many mechanisms of learning and memory formation were 
first identified in invertebrate species, and were later found to be present in vertebrate 
species as well (Dubnau & Tully, 1998; Bailey & Kandel, 2008; Alberini, 2009). Currently, 
invertebrate species are considered important model species for neurodegenerative 
diseases, next to the more traditional mammalian model species (Price et al., 1998; Bilen & 
Bonini, 2005; Farooqui, 2007). 

Research on learning and memory formation has not only focussed on the mechanisms that 
underlie this trait; numerous studies have investigated evolutionary and ecological aspects 
of this behaviour (e.g. Vet et al., 1995; Dukas, 1998b; Kawecki, 2010; Shettleworth, 2010). 
Interestingly, a number of studies reveal subtle intra- and interspecific variation in learning 
and memory formation of animals (Brenowitz & Beecher, 2005; Papaj & Snell-Rood, 2007; 
Smid et al., 2007; Huigens et al., 2009; Ings et al., 2009). The characteristics of different types 
of memory are highly conserved, but there is variation in spatial expression of different 
memory types, e.g. long-term memory can form within a matter of hours in some species, 
but requires days in other species (Smid et al., 2007). The conditioning procedure required 
to induce formation of a specific type of memory is also variable between and within species, 
e.g. some species require more conditioning trials to form a long-term memory than other 
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species (Smid et al., 2007). Variation in memory dynamics has been hypothesized to be the 
result of species-specific differences in the ecology of animal species (e.g. Vet et al., 1995; 
Menzel, 1999), although the exact mechanisms that determine memory dynamics, both 
ultimate and proximate, remain to be elucidated (Kawecki, 2010). Variation in memory 
dynamics is discussed more in detail in chapter 2. In this thesis, I investigate inter-spe-
cific variation in the number of conditioning trials required to induce long-term memory 
formation. My aim is to elucidate both ecological factors that can explain species-spe-
cific differences in long-term memory formation, as well as the cellular mechanisms that 
underlie variation in this trait. I have studied variation in long-term memory formation in 
parasitic wasp species of the genus Nasonia.  

THE STUDY SYSTEM
I have used parasitic wasp species of the genus Nasonia as my model system to study variation 
in long-term memory formation. These small (~ 2 mm in length) parasitic wasps lay their 
eggs inside the puparium of various fly species and offspring will typically develop and 
emerge within 2 to 3 weeks (Werren & Loehlin, 2009). The genus Nasonia (Hymenoptera: 
Pteromalidae) consists of 4 described species: N. vitripennis, N. longicornis, N. giraulti and 
N. oneida (Darling & Werren, 1990; Raychoudhury et al., 2010). Nasonia vitripennis was first 
described in 1836 and several aspects of its ecology, behaviour and physiology have been 
studied in detail. Genetic studies have been carried out since the 1950s (Whiting, 1967). 
This species parasitizes fly pupae of the families Sarcophagidae (flesh flies), Calliphoridae 
(blow flies) and Muscidae (house flies) occurring in a number of distinct habitats, including 
carcasses, bird nests and manure (Darling & Werren, 1990; Peters & Abraham, 2010). 
Nasonia vitripennis has a worldwide distribution, likely because of its association with 
human-associated flies (Werren & Loehlin, 2009). Nasonia longicornis and N. giraulti were 
first described in the 1990s. Both species occur only in Northern America, respectively in 
the west and the east, and they have a more restricted host range than N. vitripennis. Both 
preferentially parasitize Protocalliphora spp. (Diptera: Calliphoridae) in nature, which are 
blood-feeding blowflies that occur in bird nests (Darling & Werren, 1990). Nasonia oneida 
was described recently and is closely related to N. giraulti (Raychoudhury et al., 2010).

In recent years, the genus Nasonia has emerged as a model system with unique opportunities 
for genetic research (Werren & Loehlin, 2009). These species can be reared and handled 
easily in a laboratory, they can produce large numbers of offspring and they have a short 
generation time. In addition, Nasonia species have a haplodiploid mating system, similar to 
other hymenopteran species: females develop from fertilized eggs and are diploid, whereas 
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males develop from unfertilized eggs and are haploid. This makes males particularly suitable 
for studies on recessive traits (Werren & Loehlin, 2009). Infection with Wolbachia bacteria 
prevents interspecific hybridization in nature, but the four species can interbreed when 
they are cured from their infection (Breeuwer & Werren, 1990; Bordenstein et al., 2001). 
The unique opportunity to interbreed Nasonia species allows for introgression studies in 
which genes or specific traits are backcrossed from one species into the genetic background 
of another species (e.g. Desjardins et al., 2010; Loehlin & Werren, 2012). Furthermore, 
a number of genomics tools were developed for Nasonia, which include a sequenced and 
annotated genome, detailed genetic maps and microarrays (Werren et al., 2010; Desjardins 
et al., 2013). The combination of these characteristics makes Nasonia an excellent model 
genus for genetic research and the number of research groups that study these parasitoid 
species has increased in the last decade. The phenotypes studied are related to sex ratio, 
sex determination, sex pheromones and courtship behaviour (e.g. Beukeboom & van den 
Assem, 2001; Verhulst et al., 2010; Pannebakker et al., 2011; Niehuis et al., 2013), diapause 
induction (Paolucci et al., 2013), wing size (Loehlin et al., 2010b; Loehlin & Werren, 2012), 
development (Lynch et al., 2006), hybrid incompatibilities (Niehuis et al., 2008), and the 
effects of the gut microbiome on Nasonia fitness (Brucker & Bordenstein, 2013). Also 
learning and memory formation have been studied already in N. vitripennis (Oliai & King, 
2000; Baeder & King, 2004; Schurmann et al., 2009; Schurmann et al., 2012), providing 
information on how these wasps can be conditioned and on their memory dynamics. I 
argue that the Nasonia model system also provides excellent opportunities for studies on 
interspecific differences in learning and memory formation. Both ecological and genetic 
aspects of variation in learning and memory can be investigated in these species.

THESIS OUTLINE
Chapter 2 reviews oviposition learning in parasitic wasp species, which is a type of 
associative learning in which finding and parasitizing a host is the rewarding stimulus. 
There is substantial variation in memory formation among closely related species of 
parasitic wasps and I argue that parasitic wasps are excellent model organisms to study 
both ultimate and proximate factors involved in this variation.

I have studied variation in memory formation using parasitic wasp species of the genus 
Nasonia. High-throughput methods for olfactory conditioning and memory retention 
testing are necessary to study this behaviour and were developed for Nasonia species. These 
methods, which are described in Chapter 3, were successfully used to study learning and 
memory formation in Nasonia parasitic wasps and demonstrated interspecific differences 
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in memory retention among the species N. vitripennis, N. giraulti and N. longicornis. 

In Chapter 4, I address long-term memory formation in the species N. vitripennis and N. 
giraulti. The effects of conditioning procedure on memory retention, i.e. a single versus 
multiple conditioning trials, were investigated. Furthermore, I have characterized the 
dynamics of long-term memory formation by inhibiting the formation of this type of memory 
by using protein synthesis inhibitors and measuring the effects on memory retention. This 
characterization of long-term memory formation was essential for further experiments in 
which I aimed to elucidate ultimate and proximate factors that control memory formation.

The host is the rewarding stimulus in oviposition learning and variation in this reward has 
been hypothesized to be an important ecological factor that determines memory formation 
in parasitic wasps. In Chapter 5, I address the effects of different host species on memory 
retention both N. vitripennis and N. giraulti. The host species differed in their quality as a 
host in terms of numbers and size of offspring.

Chapter 6 addresses quantitative trait loci that are responsible for the inter-specific 
difference in memory formation between N. vitripennis and N. giraulti by backcrossing the 
memory phenotype of N. giraulti into the background of N. vitripennis. Genomic factors that 
are responsible for variation in long-term memory formation can be detected using this 
introgression approach, which is a unique feature of the Nasonia model system and a novel 
approach to study interspecific variation in memory formation. 

A second approach to study the genetic basis of long-term memory formation was used 
in Chapter 7. HiSeq sequencing of RNA from the brains of N. vitripennis and N. giraulti, 
collected before and after a learning experience, was used to study differential gene 
expression and identify differences between the two species. This approach allows for the 
identification of genes and pathways that are associated with long-term memory formation 
and the results are complementary to the introgression experiment that is described in the 
previous chapter.

In Chapter 8, I discuss the results of this thesis in the light of recent insights in the field of 
learning and memory formation and I describe future perspectives for studies on variation 
in memory formation in parasitic wasps.
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ABSTRACT
Although the neural and genetic pathways underlying learning and memory formation 
seem strikingly similar among species of distant animal phyla, several more subtle inter- 
and intraspecific differences become evident from studies on model organisms. The 
true significance of such variation can only be understood when integrating this with 
information on the ecological relevance. Here, we argue that parasitoid wasps provide an 
excellent opportunity for multi-disciplinary studies that integrate ultimate and proximate 
approaches. These insects display interspecific variation in learning rate and memory 
dynamics that reflects natural variation in a daunting foraging task that largely determines 
their fitness: finding the inconspicuous hosts to which they will assign their offspring to 
develop. We review bioassays used for oviposition learning, the ecological factors that are 
considered to underlie the observed differences in learning rate and memory dynamics, 
and the opportunities for convergence of ecology and neuroscience that are offered by using 
parasitoid wasps as model species. We advocate that variation in learning and memory 
traits has evolved to suit an insect's lifestyle within its ecological niche.
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INTRODUCTION
Parasitoid wasps lay their eggs in or onto other insects that eventually will be killed by the 
developing parasitoid larvae. There are parasitoids that develop in either eggs, larvae or 
pupae, generalists and specialists, gregarious (i.e. laying several eggs into one host) and 
solitary species; and there is a similar diversity in the ecology of their host insects and their 
respective food sources. Finding a host insect is a daunting task for all female parasitoids, 
because hosts are under strong selection to remain inconspicuous to their natural 
enemies, irrespective of whether the host is in the egg, larval or pupal stage. The use of 
indirect, chemical information is an important solution for parasitoid wasps to solve this 
detectability problem. For instance, parasitoids of dipteran hosts use odours of decaying 
substrates like mushrooms, fruits or carcasses to find host fly larvae, and parasitoids 
of herbivorous larvae use odours of the plant their host is feeding from. Alternatively, 
parasitoids can rely on information from other, more conspicuous host stages than the one 
under attack, such as egg parasitoids that use the pheromones of the adult host stage (Vet 
& Dicke, 1992). These odours are very complex blends, however, and minute differences 
between these blends may signal the presence of suitable hosts (Takabayashi et al., 2006). 
Dukas (1998a) proposed that generalist species may need to divide their attention over a 
wide variety of cues, which reduces searching efficiency owing to limited brain capacity 
for simultaneous processing of information. This may be a reason why so many insects 
are specialists, since these specialist species can focus on a more reduced set of stimuli 
compared with generalists (Bernays, 2001). Learning may provide a more flexible way of 
specialization. For instance, parasitoid wasps that experience the current presence of a 
certain host species, thereafter narrow their (olfactory) ‘search image’ by learning, as a 
form of temporal specialization (Ishii & Shimada, 2010). Although learning was considered 
as a trait that is more important for generalists that specialists, it has become clear that 
learning is also important as for specialist parasitoid wasps (Steidle & van Loon, 2003). 
Indeed, although female parasitoids have an innate preference for certain odours, in most 
investigated species associative learning optimizes their foraging efficiency (Turlings et 
al., 1993; Vet et al., 1995). 

Recent research unveiled remarkable natural variation in learning rate and in the 
dynamics of memory formation between closely related parasitoid wasp species (Geervliet 
et al., 1998b; Bleeker et al., 2006a; Tamo et al., 2006; Smid et al., 2007; van den Berg et al., 
2011). These studies suggested that this variation reflects adaptations to species-specific 
ecological constraints. The rich behavioural diversity among parasitoid wasp species offers 
a wealth of possibilities for a comparative approach to address both ultimate and proximate 
questions on the evolution of learning rate and memory formation. As we will argue in the 
last part of this paper, such a comparative approach creates unique opportunities for the 



12

Chapter 2

convergence of ecology and neuroscience. 

LEARNING IN PARASITOID WASPS
Finding suitable hosts is a difficult task for female parasitoid wasps, but inexperienced 
wasps by no means search randomly. They respond innately to stimuli that are derived from 
their hosts or that indicate suitable hosts (Turlings et al., 1993; Vet et al., 1995), comparable 
to innate colour preferences in pollinators (Riffell et al., 2008; Ings et al., 2009). Parasitoids 
can change their innate preferences for odour cues that guide them to patches with hosts 
after an oviposition experience. This allows female wasps to find hosts faster, thus probably 
increasing their lifetime foraging success (Papaj & Vet, 1990). This oviposition learning of 
long-range odour cues is the main focus of this review. 

In parasitoids, learning of odour cues has been studied most extensively (e.g. Vet 
et al., 1995; Smid et al., 2007), but parasitoids are also able to learn other cues such as 
colours, shapes, patterns and spatial information (e.g. Turlings et al., 1993; Wäckers & 
Lewis, 1999; van Nouhuys & Kaartinen, 2008). Parasitoid wasps also learn information 
about the availability of suitable hosts and use that information during subsequent visits 
to other patches. For parasitoids of dipteran larvae, it was found that the lower the quality 
of hosts in previously visited patches, the longer they search on patches with high-quality 
hosts (Thiel & Hoffmeister, 2009). Similarly, previous experience with unparasitized 
hosts reduces the acceptance of subsequently encountered hosts that already have been 
parasitized (Thiel & Hoffmeister, 2009). Addressing oviposition learning is highly relevant 
from an evolutionary ecological point of view, because the success of a female parasitoid to 
find and parasitize a host is directly linked to its Darwinian fitness (Papaj & Prokopy, 1989; 
Dukas & Duan, 2000). 

Oviposition learning

In nature, a parasitoid first has to localize the microhabitat that probably contains hosts 
by using long-range odours (long-distance search, in most cases flight) and subsequently 
it has to localize the host within this microhabitat. It is only during this local search that 
the parasitoid encounters host-derived cues, such as faeces, silk, saliva and plant damage. 
These host cues provide direct information on host presence and suitability and initiate 
the actual oviposition behaviour; the ovipositor is inserted in the host and eggs are laid. 
In laboratory set-ups, oviposition-learning bioassays are used to study parasitoid learning 
and memory formation in ecologically relevant simulations of the natural situation. In most 
oviposition learning bioassays, researchers immediately bring the parasitoid in contact 
with host-derived cues, thereby bypassing the parasitoid's long- and short- distance 
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searching behaviour. In those cases, in which a conditioned stimulus (CS) (an odour) is 
directly followed by a reward, the conditioning procedure can be considered as a form of 
classical (Pavlovian) conditioning, where an association is formed between the odour and 
the oviposition reward. The unconditioned stimulus (US) in oviposition learning consists 
of two main components, i.e. contact with the host traces and the oviposition in the host, 
whereas complex natural odour blends are usually employed as CS (see Supplementary 
Information for further description of cues involved in oviposition learning). After 
oviposition, the wasp is gently removed, thus ending the conditioning trial. 

Different set-ups are used for testing memory retention in parasitoids; all are 
olfactometers in which a wasp can fly or walk towards the learned odour (Geervliet et 
al., 1998b; Collatz et al., 2006; Huigens et al., 2009). In a two-choice odour preference test, 
wasps can choose between the learned odour and a reference odour. Memory retention is 
calculated for groups of wasps and considered to be present if there is a shift in preference: 
i.e. when the percentage of trained wasps choosing the ‘learned’ odour is increased 
compared with naive wasps. The strength of the innate responses to each of these odours 
has to be carefully considered to avoid masking of memory retention (Vet et al., 1990). 

VARIATION IN LEARNING RATE AND MEMORY DYNAMICS
In parasitoid wasps, we encounter interesting variation in learning between closely related 
species and we argue that learning rate (defined here as the number of trials required for 
long-term memory (LTM)) and memory dynamics are functional traits involved in the 
optimization of the foraging task, and shaped by the balance between costs and benefits 
of these traits. 

First of all, learning has several ecological costs. For instance, it would be costly for a 
parasitoid to change a valuable innate preference after a single oviposition experience on 
a plant species on which its hosts rarely occur. To prevent such maladaptive associations, 
animals usually require repeated learning experiences, spaced in time, before they form 
long-lasting memories but there are also animals that have a high learning rate, i.e. that 
learn instantly after only one learning experience (Collatz et al., 2006; Smid et al., 2007; 
Krashes & Waddell, 2008; Huigens et al., 2009). Second, and as a consequence of the 
previous, learning takes time. During the learning process animals behave suboptimally, 
which infers a cost to the individual (Laverty & Plowright, 1988). Furthermore, there are 
costs in terms of energy for maintenance and signalling in the nervous system (Laughlin, 
2001) and for memory formation itself (Mery & Kawecki, 2003; Mery & Kawecki, 2005; 
Burger et al., 2008). The sum of all these different costs explains why every insect does not 
learn instantly: the possible benefits of a high learning rate may just not outweigh the costs. 
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Parasitoid wasps, with their range of interspecific variation in learning rate and memory 
dynamics, can be instrumental in elucidating which ecological factors are important in this 
context. 

Innate and learned behaviour

It is important to consider how learning changes innate behaviour. Vet et al. (1990) proposed 
that learning affects innate responses depending on their strength or evolutionary 
importance: strong innate responses are less affected by experience than weak innate 
responses, and the ranking of the importance of cues that evoke these responses may 
be altered by experience. In this concept, stimuli can become more or less important 
after experience. This process is regarded as a shift in preference. For instance, Cotesia 
glomerata, a parasitoid of cabbage white caterpillars, has a low innate preference for 
odours of nasturtium, a less common food plant of its hosts (Geervliet et al., 1998b). One 
or multiple ovipositions in hosts on nasturtium will, however, increase the preference 
towards nasturtium, resulting in a higher percentage of wasps that choose nasturtium over 
the innately preferred cabbage in a two-choice bioassay. The innate preference for cabbage 
odours returns after 4 days, however (Geervliet et al., 1998a). Innate responses can also be 
highly persistent. Leptopilina fimbriata, a specialist of fly larvae in decaying plant substrates 
can learn to respond to other substrates, such as fermenting fruits. In the presence of its 
innately preferred substrate, the majority of the wasps still choose the innately preferred 
substrate, however. Only when testing these wasps on the learned substrate, it becomes 
clear that their response to this substrate has increased (Poolman Simons et al., 1992). 
Thus, innate responses and learned responses should not be considered as two separate 
traits, but as two dynamically interacting components of insect behaviour. 

Memory dynamics

Learning rate cannot be considered separate from memory dynamics. The impact of 
learning is determined by the way the learned information is stored in memory, whereas 
the type and number of conditioning events determine what type of memory will be formed. 
To study this aspect, it is essential to discriminate between different forms of memory, 
since these forms vary in terms of energy consumption, stability and duration. 

Eisenhardt (2006) reviewed memory types in the honeybee, whereas a comparable 
classification exists for the fruit fly, Drosophila melanogaster (Margulies et al., 2005); 
both classifications are based on highly similar mechanisms (Stough et al., 2006), but the 
used terminology is somewhat different. First, there is early short-term memory (eSTM 
or working memory) and late STM (lSTM). These types of memory can be disrupted with 
anaesthesia, such as a brief exposure to a cold shock in insects, and are known as forms of 
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anaesthesia-sensitive memory (ASM) (Erber, 1976; Xia et al., 1999). ASM lasts, depending on 
the investigated species, for several minutes up to a few hours (Erber, 1976; Xia et al., 1999; 
van den Berg et al., 2011). During the ASM phase, the formation of long-lasting memory 
types starts, a process called memory consolidation (Margulies et al., 2005). Two main 
forms of consolidated memory can be distinguished based on their sensitivity to protein 
synthesis inhibitors. LTM requires protein synthesis and can consequently be disrupted 
by feeding insects a protein synthesis inhibitor. The other type, called mid-term memory 
in honeybees, is resistant to cold shock but not dependent on protein synthesis, hence it 
is a form of anaesthesia-resistant memory (ARM). ARM is based on changes in existing 
proteins, in contrast with LTM consolidation (Tully & Quinn, 1985). ARM and LTM may 
occur in parallel, and the process of their consolidation may last for hours to days (Smid et 
al., 2007). ARM is less stable and durable than LTM, but it does not require protein synthesis, 
and is, therefore, regarded as ‘cheaper’ memory than LTM; flies that consolidated ARM 
lived longer than those consolidating LTM (Mery & Kawecki, 2005). The type of memory 
that is consolidated depends on both the number of conditioning trials and the intertrial 
interval. In aversive conditioning of the fruit fly, single trainings or 10 trainings given 
without intertrial interval (massed conditioning) induced only ARM formation; LTM was 
typically formed only after 10 spaced trainings (Tully et al., 1994). Studies with bees have 
shown that conditioning procedures with an intertrial interval of 10 min are sufficient to 
be regarded as a spaced training protocol (Menzel et al., 2001). 

Menzel (1999) explained the adaptive value of these different memory types by 
correlating them to the different use of memory during foraging decisions of a honeybee. In 
this view, eSTM (in the range of seconds, see Raine & Chittka, 2007 and references therein) 
is used for intra-patch decisions such as whether to stay or leave a patch of similar flowers, 
whereas lSTM (in the range of minutes up to 1 h (Eisenhardt, 2006; Menzel, 1999) is used 
to store information from different patches of flowers that can either be more or less 
rewarding. Memory-inhibiting genes (see Genes involved in learning and memory) could 
prevent early memories from being consolidated unless several learning trials, stored in 
lSTM provide the required ‘spaced training’. After a return visit to the hive, memory of 
the previous foraging bout can be retrieved from ARM, or memory of previous days can be 
retrieved from LTM, and used to evaluate the quality of subsequent flower patches. Thus, 
the temporal dynamics of the different memory types serve a specific role in time- and 
event-specific behaviour of the honeybee. Likewise, the evolution of learning and memory 
of parasitoid wasps may also be driven by resource distribution. 

The dynamics of time- and event-specific learning experience can be expected to 
vary immensely between species that forage for instance on solitarily versus gregariously 
feeding hosts, and between specialist and generalist parasitoid species. Wasps that are 
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foraging for solitarily feeding hosts, for instance, experience many single conditioning 
trials spaced in time. By contrast, wasps foraging for gregariously feeding hosts may lay 
half of their eggs when finding a single patch with many hosts, which represents only one, 
massed-conditioning cycle. Hence, variation can be expected in memory dynamics between 
closely related species that differ in this ecological aspect. It is clear that the timing of a 
memory test must be carefully determined and the type of memory that is formed should 
be known for proper interpretation; information stored in STM has a different function 
than information stored in LTM. 

Ecological factors determining variation in learning rate and memory dynamics

Several factors can be proposed as causes of variation in learning rate and memory 
dynamics. Here, we first describe different factors in the context of memory dynamics, and 
then give examples of how a combination of factors can result in different learning and 
memory dynamics. 

Stephens (1993) argued that variability of the environment can determine the value 
of an innate response, and therefore its susceptibility to be altered by learning. In the case 
of a parasitoid wasp that experiences the temporal contingency of a cue with an oviposition 
reward, the variability determines whether that cue reliably predicts subsequent 
oviposition opportunities. If the variability in that cue is high within a generation, learning 
can be adaptive but memory must be stored in forms that can be changed easily, so in STM 
or ARM, not in LTM, because of the risk of learning irrelevant information. In that case, 
the reliability of a single experience is low; hence information can be only stored as LTM 
after several repeated conformational experiences. If variability changes slowly over the 
season, but is stable within a generation, reliability of learned information is high. This 
could result in a high learning rate: a single experience would be reliable and can then 
result in LTM formation. However, if between-generation variability is low, the value of 
innate responses is high, resulting in a strong innate response and a low learning rate. 
For instance, if hosts can always be found on the same host plants throughout the year, 
the value of innate preferences is higher than under more variable conditions (Vet et al., 
1990; Vet & Dicke, 1992; Stephens, 1993). Indeed, both in parasitoids and in bumblebees 
it was found that strong innate preferences are less likely to be changed after experience 
(Poolman Simons et al., 1992; Ings et al., 2009). 

The reward value is an important factor that influences learning; stronger rewards 
increase learning rate (Rescorla, 1988). In the case of oviposition learning in parasitoid 
wasps, the reward value may also vary considerably. First, hosts can occur solitarily or 
in clusters; obviously, a cluster of host eggs or larvae will be a much larger reward for a 
parasitoid wasp. Second, the quality of a host influences the reward value, a larger host 
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species may, for example, allow for the deposition of more eggs and may result in better 
quality offspring (Brodeur et al., 1998). Some host species may have reduced immune 
responses compared with other species, resulting in increased survival of the parasitoid's 
larvae (Thiel & Hoffmeister, 2009). Third, if hosts have been parasitized already by 
another parasitoid, their value as a reward can be experienced as lower than the value of 
unparasitized hosts (Thiel & Hoffmeister, 2009). In fact, the value of a reward also depends 
on the reliability of the learned cue (see above), but if the reward value is high, a less reliable 
cue may still be valuable to remember. 

Roitberg et al. (1993) proposed that the number of lifetime learning experiences 
may influence the value of learning. Indeed, an animal that has only few lifetime learning 
experiences has less opportunity to spend several experiences to optimize its behaviour, 
thus slow learning may not be feasible in such a case. This may result in absence of learning 
ability (Potting et al., 1997), but also in a high learning rate (Dukas, 1998b). 

Learning and memory dynamics in parasitoid wasps

Research on a number of species of the genera Cotesia, Leptopilina and Trichogramma is 
described here more in detail, to assess the differential effects of ecological factors on 
learning rate and memory dynamics. 

Genus Cotesia
 Four species of the genus Cotesia, each with a very different ecology, have been investigated 
extensively with regard to learning and memory formation. Cotesia marginiventris is 
a highly generalistic species that parasitizes larvae of many lepidopteran species on a 
number of plant species (Turlings et al., 1989). The availability of different host species 
changes over time and learning may allow C. marginiventris to search for the currently 
most abundant host species (Turlings et al., 1993; Tamo et al., 2006). By contrast, Cotesia 
flavipes, does not shift its preference after a host encounter (Potting et al., 1997). This 
species parasitizes several species of stemborer larvae that typically occur in large fields of 
perennial grasses. This is an example of a highly constant and predictable environment in 
which innate preferences would suffice (Stephens, 1993). Furthermore, the average number 
of oviposition experiences is low, because the gregarious C. flavipes female attacks its host 
larvae by entering the stemborer tunnel, causing a high mortality rate of the parasitoid 
owing to the chance of being crushed between the host and the wall of the tunnel. Learning 
may, therefore, be of little use in this situation (Potting et al., 1997). 

Cotesia glomerata and Cotesia rubecula are closely related parasitoid species of cabbage 
white caterpillars (Pieris spp.) that differ not only in learning rate, but also in memory 
dynamics (Smid et al., 2007). Cotesia glomerata formed LTM after a single conditioning 
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trial, whereas C. rubecula needed three trials spaced in time before it formed LTM; massed 
experiences did not cause such an LTM, as has also been shown in fruit flies (Margulies et 
al., 2005). After both single and multiple conditioning trials, C. glomerata consolidated LTM 
within 4 h, as determined from the maximum effect achieved from application of a protein 
synthesis inhibitor. By contrast, a single oviposition or three massed ovipositions resulted 
in ARM formation in C. rubecula, which lasted 8 h but had waned after 24 h (van den Berg et 
al., 2011). Three spaced ovipositions did result in LTM consolidation, but this process was 
completed only after 3 days in C. rubecula, suggesting that ARM was present in parallel. 
These results suggest that both learning and memory formation in C. rubecula occur slower 
than in C. glomerata (Smid et al., 2007; van den Berg et al., 2011). There are a number of 
reasons why this slow learning and memory consolidation may be adaptive for C. rubecula, 
but not for C. glomerata. Cotesia rubecula is a solitary parasitoid and a specialist on the 
solitary caterpillar Pieris rapae. Cotesia glomerata, on the other hand is a gregarious species 
and its preferred host, Pieris brassicae is a gregariously feeding caterpillar. First, the value 
of the reward may differ for the two species. The fact that P. brassicae occurs in clusters 
means that finding these hosts provide a larger rewarding value compared with finding 
a single P. rapae caterpillar. The second factor relates to the distribution of caterpillars 
over plant species. Pieris brassicae lays clusters of eggs on dense stands of similar plants. 
By contrast, P. rapae randomly distributes single eggs over different host plant species 
and travels rather long distances between two oviposition events (Root & Kareiva, 1984). 
The association between the plant odour and host presence is, therefore, expected to be 
less reliable for C. rubecula. The third factor that differs is the lifetime number of learning 
experiences, which is low in C. glomerata compared with C. rubecula. Pieris brassicae 
caterpillars occur in groups on a single leaf, allowing C. glomerata to deposit hundreds of 
eggs at once, which is a large part of its lifetime fecundity, in what is in fact one (massed) 
conditioning trial. In C. rubecula, on the other hand, each oviposition constitutes a single 
learning trial. The lower lifetime number of learning experiences allows C. glomerata to 
consolidate LTM after a single encounter with P. brassicae, whereas such instant learning 
would be costly for C. rubecula. Both the lower learning rate and slow consolidation of 
memory allow C. rubecula wasps to assess the reliability of the information over a longer 
time window. 

Genus Trichogramma
Wasps of the genus Trichogramma are minute egg parasitoids of lepidopteran eggs. These 
gregarious parasitoids have a limited control over flight direction and may instead 
hitch-hike on female butterflies to the site where they lay their eggs. Two closely related 
Trichogramma species, Trichogramma brassicae and Trichogramma evanescens, exploit        
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species-specific anti-aphrodisiac pheromones of two of their hosts, the gregarious P. 
brassicae, and the solitary P. rapae. These pheromones are transferred from male butterflies 
to females during mating to render them less attractive to conspecific males (Andersson et 
al., 2003). When T. brassicae detects an anti-aphrodisiac, it innately mounts on a mated (and 
thus egg-laying) female butterfly and hitch-hikes to a plant where the wasp parasitizes 
the butterfly's freshly laid eggs (Fatouros et al., 2005; Huigens et al., 2010). Trichogramma 
evanescens exploits the anti-aphrodisiacs in a similar way, but only after learning. A single 
operant conditioning trial, where approaching and mounting of a mated female P. brassicae 
butterfly upon the odour stimulus is followed by oviposition in a butterfly egg, induces LTM 
formation within 24 h (Huigens et al., 2009). Trichogramma evanescens is expected to have 
a wider range of host species than T. brassicae (Huigens et al., 2009; Huigens et al., 2010), 
and although it innately climbs onto butterflies, it does not discriminate between mated 
female, virgin female and male Pieris butterflies. LTM formation after one successful ride, 
especially on a gregarious, mated female P. brassicae butterfly, is adaptive for T. evanescens 
as a few limited opportunities to hitch-hike with such females should be enough to lay all 
the eggs a female wasp produces during her short lifespan (Doyon & Boivin, 2005). This is 
similar to the situation for C. glomerata. 
 

Genus Leptopilina
Species of the genus Leptopilina parasitize Drosophila larvae, which they find by probing 
in very different substrates such as fermenting fruits, decaying mushrooms or decaying 
plant material. Some species of Leptopilina are generalist species that attack multiple 
drosophilid species in several habitats, whereas other species have a more restricted 
host and/or substrate range. Poolman Simons et al. (1992) compared the generalist 
Leptopilina heterotoma and the specialist Leptopilina boulardi parasitoids and showed that 
both species shifted their preference towards a learned odour after a single oviposition 
experience. Other studies have found that a preference shift was maintained up to 3 days in 
L. heterotoma (Vet & Schoonman, 1988) and approximately 1–2 days in L. boulardi (Poolman 
Simons et al., 1992; Kaiser et al., 2009). An important difference between L. heterotoma and 
L. boulardi that affects their foraging behaviour is observed in innate preferences, as L. 
boulardi responded invariably strongly to innately preferred apple substrate, regardless 
of previous experiences, whereas the response of L. heterotoma depended on previous 
experience in all cases tested (Vet & Schoonman, 1988; Poolman Simons et al., 1992). This 
result highlights the importance of addressing learning as well as innate behaviour to 
understand foraging behaviour of a parasitoid wasp. Interesting questions that remain are 
whether differences in memory dynamics exist and how different training regimes affect 
these memory dynamics. Species of the genus Leptopilina are well suited to investigate 
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such questions using a comparative approach. 

Using a comparative approach to study learning rate and memory dynamics
Although many studies have focused on learning and memory in parasitoid wasps, only 
few of these have used a comparative approach. The above mentioned studies on wasps 
of the genera Cotesia, Leptopilina and Trichogramma have provided valuable insights into 
the range of variation and the ecological factors that probably contribute to the observed 
differences. Below we describe some additional comparative studies in this context. Tamo 
et al. (2006) have studied effects of single trial conditioning in three generalist parasitoid 
species, Cotesia marginiventris, Campoletis sonorensis and Microplitis rufiventris, and showed 
that the effect of conditioning was different for the three species. While C. marginiventris 
showed a preference shift towards the learned odour, M. rufiventris increased its innate 
preference and C. sonorensis did not show any change in its preference. This shows that 
host range by itself does not satisfactorily explain differences in learning rate in this case 
(Steidle & van Loon, 2003; Tamo et al., 2006). Two species of pteromalid wasps, Nasonia 
vitripennis (Schurmann et al., 2009) and Lariophagus distinguendus (Collatz et al., 2006) 
were analysed for their memory dynamics by using either an inhibitor of ARM or LTM. In L. 
distinguendus, LTM was formed after single trial conditioning, comparable to C. glomerata. 
In N. vitripennis, however, memory formed after a single trial waned between 4–6 days 
and was therefore assumed not to be LTM. Instead, this memory could be inhibited by 
a blocker of intermediate memory forms (presumably ARM). Such a difference can be 
explained by differences in distribution patterns of their respective hosts. Lariophagus 
distinguendus parasitizes stored grain beetles, which occur in large patches, so similar to 
the situation for C. glomerata. Nasonia vitripennis is a parasitoid of fly pupae that can be 
found predominantly in bird nests in low densities (mostly between 1 and 10), which would 
favour ARM-like memory rather than LTM after a single experience. This is an interesting 
finding, also because N. vitripennis has become a new model species for which genomics 
tools have been developed (see Future perspectives). Future experiments may reveal a 
more complete overview of memory dynamics of this species. 

In order to properly compare learning rate and memory dynamics of different 
parasitoids wasp species, it is important to understand how different conditioning set-ups 
and test procedures can affect a parasitoid's response. Generally speaking, it will be most 
feasible to compare species that can be assayed with very similar methods, because this 
will reduce the likelihood that the conditioning itself, instead of the ecological factors 
under investigation, will influence observed differences. 
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Intraspecific variation in learning and memory
Besides species-specific differences, intraspecific variation in learning can also be 
expected. For instance, some bumblebee (Bombus terrestris) populations from geograph-
ically different locations had a stronger and more persistent innate preference for blue 
flowers than others, and had a lower learning rate (Ings et al., 2009). Colonies obtained 
from a commercial supplier differed in learning rate, and those with a lower learning rate 
were less efficient in foraging for nectar (Raine & Chittka, 2008). This shows that innate 
preferences differ profoundly between populations of the same species, and that these 
differences affect learning rate that may have influence on efficiency of nectar collection. 
Thus, at population level, specific adaptations to ecological differences are likely to be 
common as well as at species level. Similar studies can be performed with parasitoid wasp 
species that have, for instance, different hosts in geographically different populations. 
Two populations of L. heterotoma, were compared, one of which coexists with its superior 
competitor L. boulardi. This population, therefore, has a limited time window for successful 
parasitation, resulting in a higher innate response level than the other population. However, 
no differences in learning were found in this study (Kaiser et al., 2009). 

Another way to unravel the effects of different ecological factors on learning traits 
is to perform artificial selection experiments. This approach can be used to test specific 
predictions raised by species comparisons. For instance, Smid et al. (2007) hypothesized 
that C. glomerata does not form ARM after a single learning trial, but only LTM. An artificial 
selection experiment with this parasitoid species, aimed to decrease learning rate, resulted 
in a low learning rate line in less than 10 generations (van den Berg et al., 2011). Wasps of 
this low learning-rate line formed normal LTM after spaced conditioning, but formed only 
ASM after single trial conditioning, instead of LTM, which is formed in unselected wasps. 
This showed that C. glomerata does not form ARM instead of LTM when selection pressure 
is used against a high learning rate. Apparently, single-trial LTM formation is ‘hard-wired’ 
in this species, when it is rewarded with P. brassicae. Experiments to assess costs of having 
a high or low learning rate are a logical next step when such selection lines are established. 
In Drosophila, it was shown that learning has both operating costs as well as constitutive 
costs: flies from a high learning line had a reduced larval competitive ability (Mery & 
Kawecki, 2003) and a reduced longevity (Burger et al., 2008). 

OPPORTUNITIES FOR CONVERGENCE OF ECOLOGY AND NEUROSCIENCES
Ecologists have eagerly exploited parasitoid wasps to investigate the adaptive value of 
variation in learning rate and memory dynamics, providing insights on the ecological 
relevance of these differences. However, to fully understand learning and memory, a 
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multi-disciplinary approach is needed in which ecological and evolutionary studies are 
combined with mechanistic studies. The vast amount of neuroscientific knowledge of 
a few well-established insect model species, mainly fruit flies and honeybees, provides 
valuable reference information and promising candidate neurons and genes to investigate 
mechanisms underlying learning and memory formation (Davis, 2005; Eisenhardt, 2006). 

Neural pathways involved in learning and memory

When insects learn odours, these odours are detected by olfactory receptor neurons and 
the resulting information is processed in the insect brain. Differences in perception or 
neurological processing of the odour cues may play a role in the observed differences in 
learning rate. An analysis of antennal responses to individual odour components emitted 
by cabbage plants showed that C. glomerata and C. rubecula have a comparable olfactory 
receptive range (Smid et al., 2002) and also the morphology of their antennal sensilla is 
similar (Bleeker et al., 2004). Furthermore, a three-dimensional analysis of the glomeruli in 
the antennal lobe (AL), which is the first brain structure in the olfactory pathway, showed 
that the glomerular organization is similar for both species (Smid et al., 2003). These first 
results suggest that the perception and processing of odours in these species are comparable 
but more research is necessary to compare different species and include higher integrative 
centers, like the mushroom bodies (MB) and the lateral horn (LH) (Davis, 2005). 

Another possibility that may explain differences in memory dynamics of parasitoid 
wasps is the perception of the US. During oviposition, host traces and host haemolymph 
are perceived by the antennae and the ovipositor (Takasu & Lewis, 2003; van Lenteren 
et al., 2007). It is currently unknown how this information is transmitted to the brain. 
In honeybees and fruit flies, octopaminergic neurons were found to transmit rewarding 
stimuli in the brain, which is distinctly different from the dopaminergic pathway that 
transmits information on aversive stimuli (Schwaerzel et al., 2003). In honeybees, a 
sucrose reward is detected by receptor neurons on the mouthparts, which activate the 
VUMmx1 neuron. This neuron innervates the AL, MB and LH, which are, therefore, all 
putative locations for the convergence of the US and CS (Hammer, 1993). It is expected 
that neurons with similar properties transmit the host reward signals in the parasitoid's 
brain and differences in response characteristics or in the density of axonal endings, from 
which octopamine is released, may underlie the observed species-specific differences in 
learning rate and memory dynamics. Several octopaminergic neurons have already been 
identified in C. glomerata and C. rubecula (Bleeker et al., 2006b) and it would be interesting 
to investigate which neurons transmit which reward signals and whether differences in 
this pathway can be correlated to differences in memory dynamics. 
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Genes involved in learning and memory

The genetic pathways that are involved in memory formation are highly conserved, even 
for organisms ranging from insects to mammals (Dubnau, 2003). Research on model 
insects has resulted in a long list of genes that are involved in memory formation (e.g. 
Davis, 2005). One of the most extensively studied pathways involved in learning is the 
cAMP-dependent signalling pathway (Margulies et al., 2005; Eisenhardt, 2006). The CREB 
(cAMP responsive element binding protein) gene is a transcription factor in this pathway, 
which plays a decisive role in the initiation of LTM formation (Yin et al., 1994; Abel et al., 
1998). Several different isoforms resulting from alternative splicing of CREB transcripts 
are known, which can act as either transcriptional activator or suppressor (Yin et al., 
1995). It was shown that high expression levels of CREB-suppressor isoforms inhibit LTM 
formation in a variety of species (Yin et al., 1994; Bartsch et al., 1998). This resulted in the 
hypothesis that the balance between CREB activators and inhibitors acts as a molecular 
switch, determining the number of spaced training events that is required for LTM 
formation (Yin et al., 1995; Perazzona et al., 2004; van den Berg et al., 2010). Nine different 
CREB transcripts were identified in C. glomerata and C. rubecula, predicting putative CREB 
activator and suppressor isoforms, which are identical in both species. A first study on 
CREB expression in naive wasps of these two species showed the relative abundance of 
each of the transcripts, which was similar for the most abundant transcripts (van den Berg 
et al., 2010). 

So far, the CREB gene, which is a promising candidate gene for differences in learning 
rate, has been the only gene investigated in parasitoids in this context. The candidate gene 
approach (Fitzpatrick et al., 2005) can be used to study other genes that may be involved in 
differences in learning and memory dynamics. 

Future perspectives

Some exciting new developments contribute to the potential of parasitoid wasps as model 
organisms for multi-disciplinary studies. Three species of the genus Nasonia have recently 
been sequenced and annotated (Werren et al., 2010) and molecular research on other 
parasitoid species can benefit greatly from this genome sequence information. Furthermore, 
several molecular tools and resources, such as microarrays and expression array data, are 
available for these species and it is possible to interbreed the different Nasonia species, 
allowing backcrossing of loci of one species into the genetic background of another species. 
This allows for identification of quantitative trait loci (Loehlin et al., 2010a). 

Other new tools that will probably accelerate neuroscientific research in parasitoid 
wasps are RNAi and next-generation sequencing. RNAi makes it possible to use a direct 
genetic approach in non-model organisms (Belles, 2010). It can be used to reduce the 
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expression of a specific gene and to subsequently investigate the direct effect of this gene on 
the behaviour of the insect or on the expression of other genes. Next-generation sequencing 
provides a genomics approach for non-model organisms (Gibbons et al., 2009). It will 
provide information on expression levels of all genes and will allow a better understanding 
of the genetic networks that cause interspecific variation in memory dynamics. 

Research on parasitoid wasps can provide a wealth of information on both the 
ecological relevance and the neural and genetic mechanisms underlying variation 
in learning and memory formation. Such multi-disciplinary research is necessary to 
understand the mechanisms that underlie naturally occurring variation, but it will also 
elucidate the true significance of neural or genetic variation. Both ecologists and neuro-
scientists can greatly benefit from a convergence of their fields. Considering the conserved 
genetic pathways that are involved in learning and memory formation (Dubnau, 2003), this 
integration may not only further the field of insect behaviour, but may also simultaneously 
enhance our understanding of learning and memory in higher animals. 
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SUPPLEMENTARY INFORMATION
Important cues in oviposition learning

The unconditioned stimulus (US) in oviposition learning consists of two main components, 
i.e. contact with the host traces and the oviposition in the host. The host traces (faeces, 
silk, salivary, feeding damage) have three different functions which can be described 
analogous to the description of the proboscis extension reflex in the honeybee (Hammer & 
Menzel, 1995). First of all, there is a releasing function; the host traces initiate oviposition 
behaviour (van Alphen & Vet, 1986). Secondly, detection of host traces causes arousal and 
sensitization, which has also been termed priming (Turlings et al., 1993), a function denoted 
as the modulatory function in PER conditioning (Hammer & Menzel, 1995). This character-
istic can be described as a general increase in the responsiveness of wasps to stimuli and is 
considered non-associative learning (Takasu & Lewis, 2003). The modulatory function of 
host cues is essential to “prepare” the wasp for learning; when all host cues were washed 
away, no increased responsiveness to odours occurred in C. glomerata (Bleeker et al., 
2006a). Thirdly, contact with host traces can have a reinforcing function, a wasp could form 
memory when it encounters host traces only (Lewis & Martin, 1990; Vet & Groenewold, 
1990; Takasu & Lewis, 2003), without subsequent oviposition, but this memory was 
only short-lasting compared to a complete oviposition experience in the wasp Microplitis 
croceipes (Takasu & Lewis, 2003). The actual oviposition or contact of the ovipositor with the 
host haemolymph had an additional reinforcing effect resulting in a stronger association of 
the odour with the presence of hosts (Takasu & Lewis, 2003; Collatz et al., 2006). A similar 
phenomenon is seen in PER conditioning in honeybees; sucrose stimulation of the antennae 
alone, or feeding sucrose alone resulted in memory that decayed faster than after sucrose 
stimulation of the antenna followed by sucrose feeding (Wright et al., 2007).

Studies of oviposition learning often use a CS consisting of natural odour blends in 
natural concentrations; this feature facilitates interpretation of preference shifts from 
innate to learned responses. Some studies suggest that a blend is perceived as a singular 
entity (Perez-Orive et al., 2002; Riffell et al., 2009), whereas other studies suggest that 
individual components can be recognized (Meiners et al., 2003; Reinhard et al., 2010). 
Parasitoids generalize comparable odour blends to a certain extent, but can learn to 
discriminate between highly identical odour blends (Vet et al., 1998; Meiners et al., 2002). 
This shows that learning improves the ability to detect complex rewarding blends against 
a background of unrewarding blends.
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ABSTRACT
Most of our knowledge on learning and memory formation results from extensive studies 
on a small number of animal species. Although features and cellular pathways of learning 
and memory are highly similar in this diverse group of species, there are also subtle 
differences. Closely related species of parasitic wasps display substantial variation in 
memory dynamics and can be instrumental to understanding both the adaptive benefit 
of and mechanisms underlying this variation. Parasitic wasps of the genus Nasonia offer 
excellent opportunities for multidisciplinary research on this topic. Genetic and genomic 
resources available for Nasonia are unrivaled among parasitic wasps, providing tools for 
genetic dissection of mechanisms that cause differences in learning. This study presents 
a robust, high-throughput method for olfactory conditioning of Nasonia using a host 
encounter as reward. A T-maze olfactometer facilitates high-throughput memory retention 
testing and employs standardized odors of equal detectability, as quantified by electroan-
tennogram recordings. Using this setup, differences in memory retention between Nasonia 
species were shown. In both Nasonia vitripennis and Nasonia longicornis, memory was 
observed up to at least 5 days after a single conditioning trial, whereas Nasonia giraulti 
lost its memory after 2 days. This difference in learning may be an adaptation to species- 
specific differences in ecological factors, for example, host preference. The high-throughput 
methods for conditioning and memory retention testing are essential tools to study both 
ultimate and proximate factors that cause variation in learning and memory formation in 
Nasonia and other parasitic wasp species.
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INTRODUCTION
Learning and memory have been shown in a large number of animal species, with a focus 
on a few well-established model species, including the marine snail (a mollusc), the fruit fly 
and honeybee (insects), several bird species and mammals (most importantly mouse and 
rat) (Bottjer & Johnson, 1997; Chen & Tonegawa, 1997; Margulies et al., 2005; Eisenhardt, 
2006; Reissner et al., 2006). The importance of learning is reflected by strikingly similar 
features of memory formation in this diverse group, such as the effects of massed or spaced 
conditioning, as well as highly conserved neural and genetic pathways that underlie this 
trait (Dubnau, 2003). Nonetheless, differences can be observed as learning is shaped by 
differences in ecology between animal species (Hoedjes et al., 2011). Furthermore, memory 
dynamics can vary within a species depending on the type of conditioning (Nakatani et 
al., 2009; Burke & Waddell, 2011). Variation is determined by factors such as quantity 
and quality of the reward or punishment, and reliability of learned cues (Hoedjes et al., 
2011). In-depth studies on a larger number of species and on different types of conditioning 
are needed to understand variation in learning and memory. Parasitic wasps can be 
instrumental for understanding this variation.

Several wasp species are ecologically and behaviorally well studied, are known to 
learn environmental cues readily (Vet et al., 1995) and display substantial interspecific 
and intraspecific variation in memory dynamics (Tamo et al., 2006; Smid et al., 2007; van 
den Berg et al., 2011). Learning plays an important role in optimizing foraging efficiency, 
and thus reproductive success, of female wasps searching for hosts (Papaj & Vet, 1990). 
Parasitic wasps, therefore, feature an alternative type of appetitive conditioning, based 
on the reward that a female wasp experiences when finding and ovipositing in a host, 
so-called oviposition learning. This study is the first to show differences in oviposition 
learning between species of the genus Nasonia. Especially these species are excellent for 
comparative, multidisciplinary studies of variation in learning and memory. Many aspects 
of the biology of Nasonia vitripennis, Nasonia giraulti and Nasonia longicornis have been 
studied, and the species are known to differ in host range and host preference (Darling & 
Werren, 1990; Desjardins et al., 2010). Furthermore, their genomes have been sequenced, 
and there are several unique genetic tools available (Werren & Loehlin, 2009; Werren et al., 
2010). This provides opportunities to test hypotheses on how ecological differences may 
result in different memory dynamics as well as studying the genetic basis of this variation.

Previous studies showed learning in N. vitripennis but involved laborious methods 
for conditioning and testing memory retention (Oliai & King, 2000; Schurmann et al., 
2009). In Drosophila, the availability of standardized, high-throughput methods for both 
conditioning and memory testing (Tully & Quinn, 1985) was a prerequisite for the immense 
success of this model species. This article describes the development of both high-through-
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put olfactory conditioning and a memory retention test for the Nasonia model system. This 
setup was successfully used for N. vitripennis, N. longicornis and N. giraulti.

MATERIALS AND METHODS
Nasonia strains and maintenance

Cultures of Nasonia were reared in polystyrene rearing vials (dimensions 28.5 x 95 mm) 
with foam stoppers (Genesee Scientific, San Diego, CA, USA) in a climate cabinet under 
a constant temperature (25°C) and a photoperiod of 16:8 (L/D). The wasps were reared 
on Calliphora vomitoria pupae, which were obtained as maggots (Kreikamp, Hoevelaken, 
the Netherlands) and allowed to pupate at room temperature and subsequently stored 
in a fridge for a maximum of 1 week. Inbred strains of N. vitripennis (AsymC), N. giraulti 
(RV2x(U)) and N. longicornis (IV7(U)) were used for the experiments (Werren et al. 2010). 
Both females and males were collected on the day of emergence to ensure mating and were 
kept in vials with access to honey and water. Females were used in experiments between 1 
and 3 days after emergence.

Electroantennogram analysis

Odors that were expected to be neutral stimuli to Nasonia were chosen for the experiments. 
Vanilla and chocolate extract (Natural Chocolate extract and 2× Royal Brand Bourbon Vanilla 
extract; Nielsen-Massey Vanillas Intl., Leeuwarden, the Netherlands) are watery extracts 
that produce complex odor blends. Electroantennogram (EAG) analysis was performed to 
confirm that all three species had a similar sensitivity to these two odors. A large difference 
in sensitivity to one of the odors would make it more difficult for wasps to detect both 
odors in the olfactometer and could hinder the detection of memory retention. We used an 
EAG setup as described previously (Smid et al., 2002). Odor blends were diluted in water to 
1%, 10% and 100%, and glass capillaries (Stuart SMP1/4, inner diameter: 1.3 mm, length 
adjusted to 30 mm; Bibby Scientific, Staffordshire, UK) were filled with these odors. The 
glass capillaries were subsequently placed in a Pasteur pipet and attached to the wall of 
the pipet with double-sided adhesive tape to ensure that both ends are exposed to the air 
in the Pasteur pipet. The resulting odor cartridge was then sealed with parafilm until use.
Nasonia wasps were decapitated and the very tip of the antenna was cut with a scalpel. 
The tip of the antenna was then brought into contact with the glass recording electrode 
of the EAG setup, whereas the head, with a part of the prothorax attached, was connected 
to the ground electrode, as described previously. Natural almond extract (Nielsen-Mas-
sey Vanillas Intl.) 10% diluted in water was used as a standard odor. All measurements 
were corrected for responses to a blank odor stimulus (pure water) and normalized to the 
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standard odor as described previously (Smid et al. 2002).

Olfactory conditioning assay

This olfactory conditioning assay is a simulation of natural behavior, in which female 
wasps likely use odor cues to find suitable host patches and then localize hosts in the 
patch (Whiting, 1967). The long-range searching behavior is omitted in this assay and 
female wasps are placed in close contact with the hosts instead. The female wasps will 
immediately perceive the odor and will encounter a host quickly thereafter; for this reason, 
the conditioning assay is considered a form of classical (Pavlovian) conditioning. The aim 
of the conditioning procedure was to associate a rewarding host encounter (unconditioned 
stimulus, US) with one of the two odors, vanilla or chocolate (conditioned stimulus, CS+), 
followed by exposure to the other odor without reward (CS−). This differential conditioning 
procedure was carried out in a reciprocal manner, where each group of 48 wasps was 
divided into two parts, one receiving a CS+ with chocolate followed by a CS− with vanilla, 
and the other a CS+ with vanilla and a CS− with chocolate. CS+ conditioning was adapted 
from Schurmann et al. (2012) and was performed at room temperature in wells of a 12-well 
microtiter plate (Greiner Bio-One, Alphen aan den Rijn, the Netherlands), which allows 
individual observations during the conditioning procedure. Two C. vomitoria pupae (US) 
and a piece of filter paper (0.75 cm2) with 1 µl vanilla or chocolate extract (CS) were placed 
in a well, before one female wasp was released from an aspirator into the well, which was 
then closed (not airtight) with a plastic cap (protection plug, 21.7 mm diameter; Skiffy, 
Amsterdam, the Netherlands). A wasp can immediately smell the odor and, because of the 
small size of the well, will encounter a host quickly thereafter. The wasp was then left for 
1 h, in which she typically drills into a host pupa, forms a feeding tube and starts to feed 
from it. Wasps that did not start drilling within the first 30 min of the training were noted 
and removed from the experiment after 1 h. All wasps that had shown drilling behavior 
were then gently transferred to an empty rearing vial and kept here, as a group, for 15 
min. A glass capillary with one closed end (ID 1.3 mm, length adjusted to 30 mm; Fisher 
Emergo, Landsmeer, The Netherlands) was filled with the complementary odor (CS−) 
using a syringe and was then placed in the vial. Wasps were exposed to this odor without a 
reward for 15 min. Earlier research on N. vitripennis has shown that presenting the insect 
with an odor (CS−) after the reward (a host experience) results in decreased attraction 
to that odor (Schurmann et al., 2009). Differential conditioning with two odors (CS+ and 
CS−) was therefore expected to result in a stronger preference shift toward the CS+ than 
a conditioning with CS+ only, similar to the result in fruit flies (Tully & Quinn, 1985). 
When conditioning was finished, wasps were transferred to rearing vials with access to 
honey and water and kept in a climate cabinet under a constant temperature (25°C) and a 
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photoperiod of 16:8 (L/D) until testing. Groups of 48 (two reciprocal groups of 24 wasps) N. 
vitripennis, N. longicornis or N. giraulti were conditioned as described above. Each reciprocal 
group of 24 wasps was then divided in two groups of 12 wasps at 4 (±0.5), 24 (±1), 48 
(±1), 72 (±1), 96 (±1) or 120 (±1) h after conditioning to test memory retention (see below). 
This was repeated five times on different days, resulting in 20 groups (10 per reciprocal 
conditioning) per data point. In addition, groups of N. vitripennis were ‘conditioned’ with 
the same procedure but without host reward to assess the effects of presentation of the 
odors alone. These wasps were tested 4 h (±0.5) after conditioning.

Memory retention test

The T-maze olfactometer (Figure 1) designed for testing memory retention in Nasonia was 
adapted and modified from the well-established T-maze designed for Drosophila (Tully & 
Quinn, 1985). Wasps of the genus Nasonia are commonly observed to move by walking, 
making this setup suitable for this species. Differences in behavior between Drosophilia 
and Nasonia did require a number of modifications to the design. The T-maze for Nasonia 

Figure 1: Schematic overview of the T-maze for Nasonia. The T-maze consists of a central cylinder 
(cc) that slides into two lateral cylinders (lc). The cylinders are connected to a Teflon capillary holder 
(tch) with a brass press fit (bpf) fitted on a polyvinyl chloride (PVC), removable lid (rl). The Teflon 
capillary holders are holding the odor capillaries (oc) for odor supply. Humidified and charcoal-fil-
tered air is blown into the T-maze via adjustable flow meters (fm) and can leave the T-maze via the 
ventilation grid (vg) in the central cylinder. Wasps are released through a hole in the center of the 
central cylinder and are allowed to move freely in the T-maze. Escape is prevented by closing the 
hole in the center with a cotton wool plug (cwp), netting on the ventilation grid and netting on the 
side grid (sg).
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was enlarged, because crowding of Nasonia wasps in smaller tubes resulted in fleeing from 
each other.

The design for Nasonia does not include a training tube and sliding center as training 
was performed in microtiter plates as described above. The T-maze was made of Plexiglas 
and consisted of three tubes. Two lateral tubes (length: 20 cm and diameter: 4 cm) were 
connected to the center tube (length: 20 cm and diameter: 3.5 cm), which were attached 
by sliding them into each other. The distal ends of the tubes were connected to Teflon 
tubing for odor supply. Charcoal filtered, moisturized air (60–70% relative humidity) was 
blown into the apparatus with a flow rate of 100 ml/min on each side, which can leave 
the setup through ventilation slits in the middle tube. Polyamide netting (Monodur, PA 
250; Nedfilter b.v., Almere, the Netherlands) prevented wasps from entering the Teflon 
tubing and ventilation slits. Capillaries filled with odors (chocolate or vanilla, respectively, 
as described above) were introduced in the Teflon tubing adjacent to the connection with 
the lateral Plexiglas tubes. Odor supply was adjusted for each species by the number of 
capillaries that were placed in the Teflon tube until naïve wasps distributed themselves 
approximately 50:50 when given a choice for chocolate and vanilla (groups of 12 (±2) wasps 
were released simultaneously, and 20 groups were tested on 5 different days). For testing 
memory retention in N. vitripennis and N. longicornis, two capillaries of chocolate extract 
and two capillaries of vanilla extract were placed in the tubes. In the case of N. giraulti, four 
capillaries of chocolate extract and two capillaries of vanilla extract were placed in the 
tubes. The entire setup was shielded from environmental light and surrounded by white 
surfaces, and illumination was provided from above by LED strip illumination (Grandi 
‘white’ 6000-6500K, 170 lm/m with 30 leds/m mounted against a white shelf 40 cm above 
the T-maze). During the run, a sheath of white paper (Satino, van Houtum, the Netherlands) 
shielded the T-maze from direct illumination.

Standard procedure involves testing memory for each of the two reciprocal pairs 
of up to 24 wasps in two runs to prevent crowding in the T-maze. Ten to twelve wasps 
were released into the middle part through a circular opening (8 mm diameter) using 
an aspirator, after which the opening was closed with a cotton wool plug. The memory 
retention test was performed at a temperature of 23.5 ± 1°C. Wasps that were released in 
the T-maze are allowed to move freely in the tubes for 10 min, after which their choice is 
recorded. Only the wasps that have entered one of the two arms were considered to have 
made a choice. Wasps that remain in the middle part of the T-maze are regarded as non-re-
sponding. On average, approximately 5–10% of the wasps do not respond in the test, and 
these wasps were ignored in the data analysis.

Experiments were performed to assess whether releasing wasps in groups of 12 (the 
number of wasps trained in one 12-well microtiter plate) affected the choice they made 
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in the T-maze compared with individually released wasps in N. vitripennis. A total of 12 
(±2) wasps trained on vanilla and chocolate (CS+) were tested individually 4 h (±0.5) after 
conditioning. Two reciprocal groups were reconstructed from the results of individually 
released wasps. This was repeated five times on different days. Memory retention was 
compared with wasps that had been tested in groups of 12 (±2) wasps 4 h (±0.5) after 
conditioning.

Data analysis

Relative EAG responses were calculated as a percentage response compared with 10% 
almond. We used univariate analysis of variance (ANOVA) to test whether there were 
differences in odor perception between the two odors, chocolate and vanilla, for each 
species and whether there were differences in relative sensitivity between the species. 
Naïve preferences toward the odors in the T-maze were analyzed by calculating percentage 
of wasps choosing vanilla for each group (n = 20). These percentages were tested with a 
t-test with a test value of 50.

Conditioning is expected to result in a shift in preference of the two groups of wasps 
toward the CS+. The difference in preference between two reciprocal groups was used 
as a measure for memory retention and is represented by the performance index (PI), 
comparable to the PI described by Tully et al. (1994). The first group has vanilla as CS+ and 
chocolate as CS−, and the second group has chocolate as CS+ and vanilla as CS−. The PI is 
calculated by subtracting the percentage of the second group choosing vanilla (CS−) from 
the percentage of the first group choosing vanilla (CS+): group 1 (CS+) − group 2 (CS−). If all 
trained wasps choose CS+, the difference between two reciprocal groups is at its maximum 
and the PI would be 100. This would represent perfect memory retention. When there is 
no memory retention, the two groups will choose similarly; this would result in a PI of 0. 
In order to monitor odor bias or preference after conditioning, an analysis was performed 
to observe if reciprocal groups showed a similar shift in preference toward the CS+ after 
conditioning. This was performed by subtracting the percentage of the second group 
choosing chocolate (CS+) from the percentage of the first group choosing vanilla (CS+). An 
equal shift in preference in both groups will result in a value of 0, which means that there 
is no bias toward one of the odors. All values from different time points after conditioning 
were taken together for each of the three species (n = 60), and a t-test was performed to test 
for odor bias after conditioning.

Two reciprocal groups of 24 wasps that were trained on 1 day were tested in two series 
of 12 wasps. Two reciprocal series of trained wasps were tested immediately after each 
other and a PI was calculated for these wasps. The setup was then turned 180° to average 
out the effect of external factors, and the two remaining series of wasps were tested. This 
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results in two PIs per day. The experiment was repeated five times in total, resulting in 10 
PIs. Normality and equal variances of the data were tested, and a t-test was used to test 
memory retention for each species at each time point. Univariate ANOVA was used to test 
whether there were differences between species, between time points and whether these 
factors interact. PIs of wasps released in groups or individually (N. vitripennis, 4 h after 
training) were compared with an independent samples t-test. All statistical analyses were 
performed in SPSS, version 19 (IBM, Armonk, NY, USA).

RESULTS
High-throughput olfactory conditioning assay for Nasonia

This study describes a conditioning assay in which female wasps of the genus Nasonia 
associate an odor (CS+) with a rewarding host encounter, in this case two C. vomitoria pupae. 
When a female wasp encounters a host pupa, she will touch the host with her antennae and 
she will subsequently start drilling into the puparium. In general, 85–100% of all females 
will initiate drilling within 30 min. When a female finishes drilling, she can build a feeding 
tube and feed from the host. No obvious differences were observed in drilling or feeding 
behavior between N. vitripennis, N. longicornis and N. giraulti in pilot experiments (results 
not shown). After associating an odor (CS+) with the rewarding host encounter, the wasps 
were exposed to the second odor without a reward (CS−). This conditioning step was found 
to improve PIs compared with training with the CS+ alone in pilot experiments (results 
not shown) and was therefore included in the procedure. Presentation of the odors alone, 
without a reward, does not result in significant memory formation (PI = −0.2 ± 5.5; n = 10, 
t9 = −0.038, P = 0.979). This conditioning assay can be used for all three species making it 
suitable for comparative studies on Nasonia spp. Training wasps in microtiter plates allows 
simultaneous conditioning of large numbers of individual wasps, while efficient individual 
monitoring remains possible.

Choice and concentration of odors

All three species responded in a dosage-dependent manner to both vanilla and chocolate odor. 
The EAG analyses (Figure 2) showed that there was a significant effect of concentration as 
well as of species, showing that there are differences in relative responses between species 
as well as between different odor concentrations. There was, however, no significant effect 
of odor, which indicates that the responses to both odors are equal (odor: F1,240 = 0.979, 
P = 0.323; concentration: F2,240 = 89.343, P < 0.001; species: F2,240 = 4.177, P = 0.016; odor × 
concentration: F2,240 = 0.733, P = 0.481; odor × species: F2,240 = 0.752, P = 0.472; concentration 
× species: F4,240 = 1.62, P = 0.170; odor × concentration × species: F4,240 = 0.449, P = 0.773). 
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Behavioral responses of unconditioned 
wasps toward vanilla and chocolate odor 
showed that when two capillaries of vanilla 
and chocolate were placed in the T-maze, 
both N. vitripennis (t19 = −0.292, P = 0.774) 
and N. longicornis (t19 = 0.158, P = 0.876) 
preferred the odors equally, resulting in 
a near 50:50 distribution. For N. giraulti 
(t19 = 0.737, P = 0.470), two capillaries of 
vanilla and four capillaries of chocolate 
resulted in a near 50:50 distribution. 
Both the results from EAG analyses and 
behavioral tests show that vanilla and 
chocolate are suitable odor sources for this 
assay.
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Figure 2: Electroantennogram responses. 
Relative EAG responses of (a) N. vitripennis, (b) 
N. longicornis and (c) N. giraulti to different con-
centrations of chocolate and vanilla odor. All 
responses were corrected for blank with EAG 
response to 10% almond odor in water (n = 17 
for N. vitripennis and n = 13 for N. longicornis 
and N. giraulti). There was a significant effect 
of concentration and species, but no significant 
effect of odor. None of the interactions were 
significant.
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Figure 3: Effect of testing Nasonia 
vitripennis in the T-maze individually 
vs. a group of wasps. Memory retention of 
individual and groups of 10-13 N. vitripennis 
wasps was compared 4 h after conditioning to 
assess if testing groups of wasps simultane-
ously had an effect on the PIs. The PI of wasps 
tested in groups is 73.0 ± 3.5 (n = 10); the PI of 
individually tested wasps is 70.1 ± 4.0 (n = 5). 
There is no significant difference between 
these scores.
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High-throughput memory retention test using the T-maze

A T-maze olfactometer was designed to allow high-throughput testing of memory retention 
in Nasonia. Groups of wasps can be tested simultaneously in this olfactometer, greatly 
reducing time that is needed to test a certain number of wasps. Experiments were performed 
to determine whether testing wasps in groups had any effect on the choice behavior in 
the T-maze. Although no apparent interference of wasps was observed, i.e. wasps did not 
appear to avoid or follow each other, it may be possible that a wasp is influenced by choices 
that other wasps of a group make. Comparisons between PIs calculated from reciprocal 
groups of 12 (±2) wasps tested either individually or as groups showed that there was no 
effect on PI (group tested: PI = 73.0, n = 10; individually tested: PI = 70.1, n = 5; t13 = 0.517, 
P = 0.614) (Figure 3).

In the T-maze, the wasps walk toward one of the two odor sources. Nasonia vitripennis, 
N. longicornis and N. giraulti were observed to walk readily into the two lateral tubes, 
and only a minority of the wasps did not leave the middle tube. This T-maze setup can be 
considered suitable for all Nasonia species.

Memory retention in Nasonia

Memory retention was tested for N. vitripennis, N. longicornis and N. giraulti at 4, 24, 48, 72, 
96 and 120 h after one olfactory conditioning (Figure 4). All three species were found to 
have a significant retention of memory at 4 and 24 h after conditioning. These results show 
that both the conditioning assay and the memory retention test can be used successfully for 
these Nasonia species. After 48 h, N. giraulti had lost its memory, whereas both N. vitripennis 
and N. longicornis have memory up to at least 120 h after conditioning (Figure 4 and Table 1). 
The memory dynamics of the three species differ from each other (F2,174 = 12.649, P < 0.001) 

Hours (h) PI t9 P PI t9 P PI t9 P

N. vitripennis N. longicornis N. giraulti

4 73.0 20.92 <0.001*** 67.2 13.47 <0.001*** 49.4 13.21 <0.001***
24 67.5 14.62 <0.001*** 53.0 7.77 <0.001*** 44.5 10.30 <0.001***
48 62.7 11.70 <0.001*** 47.0 10.21 <0.001*** 5.7 0.94 0.372 n.s.
72 44.7 8.93 <0.001*** 14.1 2.88 0.018* 1.8 0.28 0.789 n.s.
96 39.3 8.28 <0.001*** 14.3 3.36 0.008** -3.9 -0.60 0.564 n.s.

120 38.4 14.42 <0.001*** 17.9 2.94 0.016* -1.9 -0.35 0.734 n.s.

Table 1: Memory retention of Nasonia after a single conditioning (statistics). A t-test was used 
to test memory retention of each species at 4, 24, 48, 72, 96 and 120 h (n = 10) after the oviposition 
conditioning procedure. Asterisks indicate the level of significance (***P < 0.001, ** < P < 0.01, 
*0.01 < P < 0.05, n.s. = not significant).
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and the PI decreases over time (F1,174 = 177.556, P < 0.001). There was no significant 
interaction of species and time (F2,174 = 2.349, P = 0.098). These results from the analyses 
show that both N. vitripennis and N. longicornis have a long-lasting memory retention after 
a single conditioning, although their PIs decrease over time. Nasonia giraulti only has a 
relatively short memory retention up to 24 h after a similar conditioning.

The odor preference was 50:50 for vanilla and chocolate in naïve animals, but after 
conditioning a bias toward one of the two odors was found in all three Nasonia species 
(n = 60). Both N. vitripennis (8.9%, t59 = −3.508, P = 0.001) and N. longicornis (6.0%, 
t59 = −2.181, P = 0.033) have a slight bias toward chocolate odor after conditioning. Nasonia 
giraulti (7.1%, t59 = 2.493, P = 0.015) has a slight bias toward vanilla odor after conditioning. 
This result shows that the odor preference of the three species changes after conditioning, 
emphasizing the importance of using a reciprocal setup for memory retention tests.

DISCUSSION
This study presents a novel method for high-throughput olfactory conditioning and memory 
retention testing of Nasonia. The olfactory conditioning assay was used to investigate 
the association of vanilla or chocolate odor (CS+) with the reward of finding a host (US) 
in female wasps of N. vitripennis, N. longicornis and N. giraulti. All three Nasonia species 
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Figure 4: Memory retention of Nasonia after a single conditioning. Memory retention of N. 
vitripennis, N. longicornis and N. giraulti was tested in the T-maze at 4, 24, 48, 72, 96 and 120 h (n = 10) 
after the oviposition conditioning procedure. All three species had significant memory at 4 and 24 h. 
Both N. vitripennis and N. longicornis have significant memory at 48, 72, 96 and 120 h after training 
as well, whereas N. giraulti did not. The PIs of the three species differ from each other and differ 
between time points. Species and time points also interact.
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could be conditioned using a similar protocol, allowing a good comparison of learning and 
memory between the species. The US consisted of multiple components in this assay; the 
female wasp first touches the host with her antenna and thereby will perceive chemical 
information inducing drilling behavior. She drills a hole in the puparium and will use her 
ovipositor to find the host and assess its quality; then she feeds from the pupa, which is 
required for egg production (Whiting, 1967). Previous studies have shown that drilling 
alone is sufficient for N. vitripennis to form an anesthesia-resistant memory that lasts up 
to 4 days (Schurmann et al., 2009). Both drilling and host feeding result in a long-term, 
protein synthesis-dependent memory (LTM) that lasts for at least 6 days (Schurmann et al., 
2012). This shows that these two components of the US affect the strength of the memory 
differently. Access to the host for 1 h typically enables wasps to obtain multiple experiences 
consisting of drilling and host feeding, but actual oviposition does not occur yet (Schurmann 
et al., 2012). It will be interesting to study how drilling alone, drilling and host feeding and 
oviposition affect memory retention in N. longicornis and N. giraulti as well.

The T-maze olfactometer facilitates comparative memory retention tests of the three 
Nasonia species using the same odors. The odor concentrations were chosen to result in a 
50:50 distribution of naïve animals. For N. giraulti, a higher concentration of chocolate odor 
was required than for N. vitripennis and N. longicornis to achieve this equal distribution. 
This difference between N. giraulti and the other two species may be the result of a slight, 
but insignificantly higher antennal sensitivity for vanilla compared with chocolate (Figure 
2). After conditioning, the preference of N. vitripennis and N. longicornis shifts, slightly, 
toward chocolate odor, whereas the preference of N. giraulti shifts toward vanilla odor. A 
similar preference shift was also found in the parasitic wasp Leptopilina heterotoma and 
may be a result of a change in sensitivity in olfactory receptor neurons due to conditioning 
(Vet et al., 1990). EAG analyses before and after conditioning can elucidate this question.

Both the conditioning procedure and testing memory retention in the T-maze 
olfactometer are high-throughput methods compared with individual conditioning and 
testing of wasps (Huigens et al., 2009; Schurmann et al., 2009; van den Berg et al., 2011). This 
makes it possible to determine memory retention of a group of wasps more accurately. The 
average PIs in this study were calculated from a sample size of 10, and the standard errors 
were between 2.5 and 7. The PI is therefore a highly reproducible measure for memory 
allowing detection of small differences in memory retention. We expect that the T-maze can 
be used for many other parasitic wasps as well, especially those that are known to exhibit 
olfactory microhabitat and host location by walking, such as parasitic wasps of Drosophila 
(Vet, 1985; Kaiser et al., 2009) and Lariophagus (Müller et al., 2006). The T-maze may also 
be adapted to conduct high-throughput studies on olfactory responses of Nasonia or other 
parasitic wasps in the context of host location, e.g. comparable to Turlings et al. (2004). 
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Being able to perform high-throughput studies on learning and olfaction on more species of 
parasitic wasps will greatly accelerate studies of variation in learning and memory.

This study shows differences in memory retention between N. vitripennis (AsymC), 
N. longicornis (IV7(U)) and N. giraulti (RV2x(U)). This result may indicate that there are 
differences in memory retention between populations or species in this genus. More strains 
of these species need to be tested to investigate this variation on a wider scale. In both N. 
vitripennis and N. longicornis, memory was observed up to at least 5 days, although the PIs 
decreased over time. This may be long-term memory, which was also observed in another 
strain of N. vitripennis when conditioned with a comparable procedure (Schurmann et 
al., 2012). In contrast, no memory was present after 1 day in N. giraulti, showing that the 
memory dynamics of N. giraulti differ from the other two species. The significance of the 
differences between the three Nasonia strains may become clear when analyzing memory 
dynamics using specific memory inhibitors, as previously shown for Cotesia parasitic 
wasps (Smid et al., 2007).

Future studies can focus on ultimate and proximate factors that cause this variation 
in parasitic wasps. Ecological differences such as host range and host distribution are 
considered important ultimate factors that determine learning rate or memory dynamics 
(Hoedjes et al., 2011). Species or populations that have a wide host range and a wide host 
distribution may need to divide their attention over a wide variety of cues. Learning may 
be important to limit their ‘search image’ and focus only on a specific type of habitat or host 
that is available (Dukas, 1998a; Ishii & Shimada, 2010). Nasonia vitripennis, and to a lesser 
degree N. longicornis, are considered to be generalist species that will parasitize a wide 
range of fly species, most importantly from the families Sarcophagidae and Calliphoridae, 
in a number of distinct habitats, such as manure, decaying carcasses and birds' nests. A 
wider host range may explain why the strains of N. vitripennis and N. longicornis tested 
in this study form a long-lasting memory after only a single learning experience. Nasonia 
giraulti is considered a specialist of Protocalliphora spp. in birds' nest and may rely more 
on innate preferences, e.g. for bird nest-specific odors (Darling & Werren, 1990; Stephens, 
1993; Ings et al., 2009). Memory dynamics can also vary depending on the encountered host 
species. Certain host species are reliably associated with certain cues or habitats, whereas 
other species do not have such a reliable association. Differences in host preference or host 
suitability may also result in differences in host reward value for a female wasp (Hoedjes et 
al., 2011). Several studies have addressed aspects of Nasonia ecology, including natural host 
range, host and wasp distribution, host preference and host suitability (Pimentel, 1966; 
Darling & Werren, 1990; Rivers & Denlinger, 1995; Peters & Abraham, 2004; Desjardins 
et al., 2010). However, few of these studies have made a comparison between different 
Nasonia species or populations, and none has evaluated the effect of ecological factors 
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on learning rate or memory dynamics. Such studies are necessary to understand which 
ecological factors shape learning and memory in Nasonia.

Wasps of the genus Nasonia are also excellent organisms to provide understanding of 
proximate factors that underlie differences in learning and memory. First of all, the genomes 
of three Nasonia species, N. vitripennis, N. giraulti and N. longicornis, are fully sequenced 
and partially annotated (Werren et al., 2010). Genetic tools for Nasonia include a number 
of arrays, such as a tiling microarray and comparative genomic hybridization mapping 
arrays, as well as detailed genetic and molecular marker maps. Another important charac-
teristic of the Nasonia system is the possibility to interbreed different species. This allows 
backcrossing of loci that are involved in differences in learning and memory into another 
species of Nasonia (Werren & Loehlin, 2009). A combination of these tools will allow one 
to pinpoint species-specific differences in genetic pathways causing differences in learning 
and memory. Next to genetic differences, neural pathways may also differ. Comparative 
studies in Nasonia can focus on the organization of groups of neurons or entire brain 
regions similar to studies in parasitic wasps of the genus Cotesia. Immunolabeling may, 
for example, show differences in the number or arborization patterns of reward neurons 
(Bleeker et al., 2006b). Construction of 3D models of the brain and individual brain regions 
will provide insight into overall organization of the brains of different species (Smid et al., 
2003). A combination of genetic and neural studies can provide extensive understanding 
of the mechanisms that cause differences in learning and memory in the genus Nasonia. It 
is expected that there is a large homology in genetic and neural pathways between these 
species and well-studied model insect species, such as fruit flies and bees (Dubnau, 2003). 
The large amount of knowledge gained from research on these model insects will likely 
benefit studies in Nasonia.

We argue in this study that wasps of the genus Nasonia offer excellent opportunities 
for integrative studies on ultimate and proximate factors that cause variation in learning 
and memory formation. The novel olfactory conditioning assay and T-maze olfactometer 
for testing memory retention, presented in this study, facilitate high-throughput studies 
in Nasonia wasps. This setup may be used for studies on learning or olfaction in other 
parasitic wasps that locate their hosts by walking as well.
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ABSTRACT
Closely related species of parasitic wasps can differ substantially in memory dynamics. 
In this study we demonstrate differences in the number of conditioning trials required 
to form long-term memory between the closely related parasitic wasp species Nasonia 
vitripennis and N. giraulti (Hymenoptera: Pteromalidae). A single conditioning trial, in 
which a female wasp associates an odour with the reward of finding a host, results in 
the formation of transcription-dependent long-term memory in N. vitripennis, whereas N. 
giraulti requires spaced training to do so. Memory formation does not depend on the type 
of reward: oviposition, which was hypothesized to be a ‘larger’ reward results in similar 
memory retention as host feeding in both Nasonia species. There are several genetic and 
genomic tools available for Nasonia species to identify genetic mechanisms that underlie 
the observed variation in the number of trials required to form long-term memory.
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INTRODUCTION
The ability to learn and form memories is universal across the Animal Kingdom and both 
behavioural and cellular properties of memory formation are conserved among distant 
animal phyla (Dubnau, 2003). This makes insects relevant model species for memory 
research and a diverse group of insect species have been studied intensively for this reason 
(Margulies et al., 2005; Eisenhardt, 2006; Hoedjes et al., 2011). During an associative 
learning experience, an insect will associate a specific cue or behaviour with a rewarding 
or punishing stimulus. As a result, the insect will demonstrate, respectively, an increased 
or decreased preference towards that cue or tendency to perform the specific behaviour. 
Associative learning can thereby optimize behaviour aimed at finding food, hosts or mates 
(Laverty & Plowright, 1988; Papaj & Vet, 1990; Raine & Chittka, 2008).

After a learning experience, different types of memory can be formed which differ in 
their characteristics, as well as in cellular pathways that are involved in the formation of 
these memory types. Comparable classifications of memory types were made for Drosophila 
melanogaster, Apis mellifera and a number of parasitic wasp species (Margulies et al., 2005; 
Eisenhardt, 2006; Hoedjes et al., 2011). Immediately after conditioning, short-term memory 
(STM) is present. This type of memory lasts, depending on the investigated species, several 
minutes up to a few hours (Menzel, 1999; van den Berg et al., 2011). STM is sensitive to 
disruption with anaesthesia and is, therefore, also known as a form of anaesthesia-sen-
sitive memory (ASM) (Xia et al., 1999). Hours to days after conditioning, longer-lasting 
memory types will be formed. This is a process called memory consolidation and two main 
types of memory are distinguished: anaesthesia-resistant memory (ARM) and long-term 
memory (LTM). LTM is the most stable and durable type of memory and requires protein 
synthesis, in contrast to ARM, which is resistant to anaesthesia but does not require protein 
synthesis (Tully et al., 1994; Smid et al., 2007). Generally, single or massed conditioning 
trials, i.e. without or with a short inter-trial interval, will result in the formation of ASM and 
ARM. Many animal species will only form LTM after spaced conditioning, i.e. multiple trials 
with a longer inter-trial interval (e.g. Margulies et al., 2005; Eisenhardt, 2006). There is, 
however, variation in the number of conditioning trials required to form LTM: some insect 
species will form LTM after only a single conditioning trial. 

LTM formation after a single trial has been demonstrated in a number of parasitic 
wasp species, including Cotesia glomerata, Trichogramma evanescens and Lariophagus 
distinguendus (Collatz et al., 2006; Smid et al., 2007; Huigens et al., 2009). Interestingly, 
closely related species of these parasitic wasps, for example Cotesia rubucula, do require 
spaced conditioning trials to form LTM. Additionally, the number of trials depends on 
the reinforcing stimulus that is experienced during conditioning. For example, fruit flies 
will form LTM after a single appetitive conditioning trial, but not after a single aversive 
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conditioning trial (Krashes & Waddell, 2008). Memory formation in bumble bees depends 
on nectar concentration of the flowers and memory dynamics of parasitic wasps may 
depend on the value of the host (Cnaani et al., 2006; Kruidhof et al., 2012). Both the inter- 
and intraspecific variation in the number of trials required to form LTM are high among 
parasitic wasps species, which are, therefore, considered model species to study both 
ultimate and proximate factors involved (Hoedjes et al., 2011). 

Parasitic wasps learn cues to find their inconspicuous insect hosts in which they lay 
their eggs and most studies have focused on this so-called oviposition learning (Hoedjes 
et al., 2011). Variation in LTM formation is thought to depend on the ecology of both the 
parasitic wasp species and its host species: factors such as the variability of the host 
environment, whether hosts occur gregariously or solitary, the quality of the host, and 
the number of hosts that a parasitic wasp will parasitize have been hypothesized to be 
important (Hoedjes et al., 2011; Kruidhof et al., 2012). In addition, different stimuli that are 
encountered during oviposition can also affect the formation of LTM. Although, oviposition 
is generally considered the reinforcing stimulus in oviposition learning, there are also 
other aspects of the rewarding stimulus. These include contact of antennae, mouth parts 
or ovipositor of a female wasp with host faeces, host haemolymph or other chemosensory 
cues that are present on the host (Takasu & Lewis, 2003; Collatz et al., 2006; Schurmann 
et al., 2012). Contact with host traces or host haemolymph alone can be sufficient to form 
a short-term memory, but oviposition was required to form a long-lasting memory in the 
parasitic wasp species Microplitis croceipes and L. distinguendus (Takasu & Lewis, 2003; 
Collatz et al., 2006). A strain derived from a German population of N. vitripennis was observed 
to form ARM after contact with host haemolymph, but LTM when it was also allowed to feed 
from this host haemolymph (Schurmann et al., 2009; Schurmann et al., 2012). 

The genetic mechanisms that are responsible for variation in LTM formation are poorly 
understood (Hoedjes et al., 2011). Parasitic wasps of the genus Nasonia offer unrivalled 
opportunities to focus on both ecological and genetic aspects of variation in LTM formation. 
A recent study demonstrated variation in memory retention after a single conditioning 
trial, which waned within two days in N. giraulti, but lasted at least 5 days in N. vitripennis 
(Hoedjes et al., 2012). This difference in memory retention between N. vitripennis and N. 
giraulti may be explained by differences in ecological factors, as was discussed in Hoedjes et 
al. (2012). The species of the genus Nasonia offer unique opportunities to study the genetic 
basis of variation in memory formation and genomic and genetic resources are available for 
these species (Werren et al., 2010). Characterization of differences in long-term memory 
formation between the N. vitripennis and N. giraulti strains for which these genetic tools are 
available is essential to benefit from these opportunities for genetic studies.

The aim of this study was, therefore, to investigate LTM formation in N. vitripennis and 
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N. giraulti and to investigate the effect of variation in the rewarding stimulus on memory 
of both species. Nasonia vitripennis was expected to form LTM after a single conditioning 
trial, which was investigated using inhibitors of LTM. The ability of Nasonia giraulti to 
form long-lasting memory after multiple conditioning trials was investigated. In addition, 
we studied the effect of host feeding and oviposition on memory strength and memory 
retention in both species. Oviposition was hypothesized to be a ‘larger’ reward than host 
feeding, which would result in increased memory retention or a stronger association 
between the learned cue and the reward. 
	

MATERIALS AND METHODS
Insects

Inbred strains of Nasonia vitripennis (AsymCx) and N. giraulti (RV2x(U)) were used. Both 
strains have a sequenced genome and genetic tools have been developed for these strains 
(Werren et al., 2010). The wasps were reared on host pupae of Calliphora vomitoria at 25oC 
and a 16L:8D photoperiod as described by Hoedjes et al. (2012). Pupae of C. vomitoria were 
used also used as host species during all experiments. Wasps were collected on the day 
of emergence and were allowed access to honey and water ad libitum, unless specified 
otherwise. Female wasps were used for experiments 1 to 2 days after emergence. 
 

Oviposition behaviour

The aim of this experiment was to determine if oviposition occurs in our strains of N. 
vitripennis and N. giraulti during two subsequent periods of contact with a host, before 
subsequent experiments on oviposition learning were done. Schurmann et al. (2012) 
demonstrated that their strain of Nasonia vitripennis (‘Hamburg’ strain), will not oviposit, 
but only drill with their ovipositor to enable host-feeding when allowed access to the hosts 
for one hour. Groups of 100 N. giraulti and 100 N. vitripennis females were individually 
provided a single host in a well of a 24-well microtiter plate (Greiner Bio-One, Alphen aan 
den Rijn, the Netherlands) closed with a plastic cap (protection plug, 14.5 mm diameter, 
Skiffy, Amsterdam, the Netherlands) for one hour. Wasps that did not initiate drilling into 
the host within 30 minutes were afterwards removed from the experiment. Wasps were 
subsequently kept in a climate cabinet (25oC) with access to honey and water for 4 hours 
and were then allowed access to another single host for one hour. The hosts were kept 
in vials in a climate cabinet (25oC, 16L:8D) until offspring emerged in order to score the 
percentage of ovipositing females and the average number of offspring.
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Conditioning procedure

Conditioning was done using an olfactory conditioning assay as described by Hoedjes et 
al. (2012). This is a Pavlovian conditioning assay in which female wasps will associate an 
odour with the reward of access to a host. Briefly, female wasps were individually allowed 
access to a host pupa (the unconditioned stimulus, US) for one hour in the presence of either 
chocolate or vanilla odour (the conditioned stimulus, CS+). Then, after a 15 minutes resting 
period, females were exposed to, respectively, vanilla or chocolate odour (CS-) without a 
reward present. Two reciprocal groups of 24 wasps were conditioned simultaneously with 
this procedure.

Memory retention differs between N. vitripennis and N. giraulti when wasps received 
a single conditioning trial in which host feeding was the reward (Hoedjes et al., 2012). 
Oviposition may be perceived as a different and possibly larger reward, than host feeding 
alone by female parasitic wasps during oviposition learning. This experiment aimed to 
assess memory retention of both species after a single conditioning trial in which host 
feeding was the reward (1) vs. a single conditioning trial in which oviposition is the reward 
(2). In addition, these wasps were compared to wasps that had received two conditioning 
trials spaced in time by four hours (3). Female wasps that received a single trial with host 
feeding as a reward (1) were conditioned as described above. These females perform host 
feeding, but do generally not oviposit during the conditioning period. Female wasps that 
received a single trial with oviposition as a reward (2) were allowed to drill into and feed 
from a single host for one hour (as described above) without CS+ present. This host feeding 
before conditioning allows these female wasps to develop eggs, so they can oviposit during 
a subsequent conditioning trial. These wasps were kept in a climate cabinet (25oC) with 
access to honey and water for 4 hours and then received a single one-hour conditioning 
trial, in which the majority of females indeed did oviposit. Female wasps that received two 
spaced conditioning trials (3) received a conditioning trial as described for (1) and were 
subsequently kept in a climate cabinet (25oC) with access to honey and water during a 4 
hour intertrial interval. They then received a second conditioning trial similar to (2).

Memory retention test

Wasps were tested once for memory retention 24 (±1), 72 (±1) or 120 (±1) hours after 
conditioning in a T-maze olfactometer as described in Hoedjes et al. (2012). This is 
an olfactometer with two arms, with vanilla odour on one side and chocolate odour on 
the other side. A group of 12 wasps is released in the middle of the T-maze and after 10 
minutes the number of wasps that has walked into each of the two arms is recorded to 
calculate the percentage of wasps that chose the learned odour. Immediately afterwards, 
a reciprocally trained groups of 12 wasps is released into the T-maze and tested similarly. 
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The difference in preference of these two reciprocally trained groups of wasps towards 
vanilla and chocolate odour is a measure for memory retention, which is represented by the 
performance index (PI). This method for calculating memory retention is commonly used 
in research on fruit flies (Tully et al., 1994) and PI is calculated as follows: 1st group (%CS+) 
– 2nd group (%CS-). If all wasps of both groups choose the odour they’ve been trained on 
(CS+), then PI will be 100, which would represent perfect memory retention. If there is no 
memory retention, then there will be no difference between the two reciprocal groups of 
wasps, which would result in a PI of 0. A previous study has shown that both N. vitripennis 
and N. giraulti can learn vanilla and chocolate odour equally well, and that unexperienced 
wasps distribute evenly over the two arms of the T-maze (Hoedjes et al., 2012). Two PIs per 
treatment were obtained per day and the experiment was repeated 5 times on different 
days, resulting in 10 PIs per treatment and time point.

LTM inhibition

It was expected that N. vitripennis would form LTM after a single conditioning trial. In this 
experiment we determined at which time points after conditioning LTM was expressed by 
inhibiting this type of memory with anisomycin (ANI) or actinomycin D (ACD), respectively 
a translation and a transcription inhibitor. The method for feeding these inhibitors to N. 
vitripennis was adapted from Smid et al. (2007). Wasps were fed ACD or ANI dissolved in 
sucrose solution directly before conditioning, whereas control wasps were fed sucrose 
solution. Female wasps were collected at the day of emergence and they were kept 
overnight in polystyrene rearing vials (dimensions 28.5 x 95 mm) with foam stoppers 
(Genesee Scientific, San Diego, CA, USA) in a climate cabinet under a constant temperature 
(25oC) and a photoperiod of 16L:8D without access to water and honey. The next morning, 
wasps were offered 0.5 μl solution containing 0.005 mM ACD (Sigma-Aldrich, Zwijndrecht, 
The Netherlands) in 25% sucrose. ANI (Sigma-Aldrich, Zwijndrecht, The Netherlands) was 
administered in a similar way, but at a concentration of 1.0 mM. Control treatment involved 
feeding 25% sucrose without ANI or ACD. The wasps were allowed to feed individually for 
1.5 to 2 hours in wells of a 24-well microtiter plate (Greiner Bio-One, Alphen aan den Rijn, 
the Netherlands) closed with plastic caps to prevent escaping (protection plug, 14.5 mm 
diameter, Skiffy, Amsterdam, the Netherlands). The wasps generally do not eat the entire 
0.5 μl solution; only individuals that were observed to feed from the solution were used for 
further experiments. The wasps were then transferred to polystyrene rearing vials with 
access to water and food and kept in a climate cabinet (25oC) for 1.5 to 2 hours, and then 
received a single conditioning trial (in which host feeding was the reward) as described 
above. Memory retention was tested in the T-maze 72 (±1), 96 (±1), 120 (±1) or 144 (±1) 
hours after conditioning as described above. Pilot experiments and results on another 
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strain of N. vitripennis (Schurmann et al., 2012) revealed that ANI and ACD did not affect 
memory retention after 24 and 48 hours and these time points were therefore not included 
in this study.

To assess deleterious effects of ANI and ACD on N. vitripennis, the mortality rates of 
female wasps were determined. Groups of 24 wasps were individually fed 0.5 μl solution 
containing either 0.1 mM, 0.01 mM, 0.005 mM ACD in 25% sucrose, 1.0 mM ANI in 25% 
sucrose or 25% sucrose without ACD or ANI (controls). Only a single concentration of ANI 
was tested, because wasps refused to feed from higher concentrations of ANI. The wasps 
were kept in polystyrene rearing vials with access to water and food and in a climate 
cabinet (25oC) with a light regime of 16L:8D. The number of dead wasps was determined 
each day for 7 days. This was repeated 4 times. The highest concentration of the ACD and 
ANI that did not affect survival of the wasps and from which the wasps would feed was 
chosen for the experiments.

Data analysis

Normality and equal variances of the data were tested. A t-test was used to test if the PI 
was significantly different from 0, i.e. testing if there was memory retention. Results from 
N. vitripennis and N. giraulti were 
analyzed separately using univariate 
ANOVA to test for effects of time 
(a covariate), and treatment (ANI/
ACD/control) and/or conditioning 
procedure (procedure 1/2/3) (the 
fixed factor) on memory retention. 
The interaction between time and 
treatment or between time and 
conditioning procedure was tested 
and removed from the model if not 
significant. Pairwise comparisons 
were done using a Fisher’s LSD test in 
order to determine which treatments/
conditioning procedures differed 
from each other. Onset of memory 
inhibition by ANI and ACD was tested 
with univariate ANOVA for each time 
point. All analyses were done in SPSS, 
version 19 (IBM, Armonk, NY, USA).
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Figure 1: Oviposition behaviour. The number of 
parasitized (‘wasps emerged’) and unparasitized (‘fly 
emerged’ and ‘neither fly nor wasps emerged’) after 
a period in which a female was provided access to a 
single host (n = 100 females per species). Oviposition 
behaviour on the first and second host provided, 
respectively, was compared for (a, c) N. vitripennis and 
(b, d) N. giraulti.
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RESULTS
Oviposition behaviour

None of the N. giraulti wasps produced any offspring after their first hour of access to a 
host; 8% of the hosts developed into flies and 92% produced neither a fly nor wasps. Eight 
percent of N. vitripennis wasps did produce a small number of offspring (on average 3.0 
offspring per ovipositing female); 8% of the hosts developed into flies and 84% produced 
neither a fly nor wasps. During the second period of host access, 93% of both N. giraulti 
and N. vitripennis produced offspring (respectively 13.2 and 11.3 offspring on average per 
ovipositing female). This result shows that both Nasonia species will mostly perform host 
feeding only during their first contact 
with a host, whereas they will mostly 
oviposit when offered a second host four 
hours later (Figure 1). 

Effect of conditioning procedure on 

memory retention

The effect of conditioning procedure 
and time on memory retention (PI) 
was analyzed. The interaction between 
time and conditioning procedure 
was not significant for either Nasonia 
species (N. vitripennis: F2,84 = 0.97, P = 
0.38; N. giraulti: F2,84 = 0.57, P = 0.57) 
and was, therefore, removed from the 
model. Memory retention depends on 
the conditioning procedure for both N. 
vitripennis (F2,86 = 20.29, P < 0.001) and 
N. giraulti (F2,86 = 32.78, P < 0.001) and 
PIs decrease over time (N. vitripennis: 
F1,86 = 54.49, P < 0.001; N. giraulti: F1,86 
= 89.47, P < 0.001). For N. vitripennis, all 
three conditioning procedures resulted 
in significant PI values up to 120 hours 
after conditioning ((1): t9 = 13.87, P < 
0.001; (2): t9 = 9.82, P < 0.001; (3): t9 = 
17.27, P < 0.001 ). The PIs of wasps that 
received a single conditioning trial in 
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Figure 2: Effect of conditioning procedure on 
memory retention. Memory retention of (a) N. 
vitripennis and (b) N. giraulti wasps after a single 
conditioning trial, in which the reward is either 
host feeding or oviposition, and after two spaced 
conditioning trials (one trial with host feeding 
followed by one trial with oviposition) (n = 10 PIs 
per time point and conditioning procedure).
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which host feeding was the reward (1) did not differ from wasps that received a single 
conditioning trial in which oviposition was the reward (2) (LSD, P = 0.96). Wasps that 
received two spaced conditioning trials (3) had significantly higher memory scores than 
wasps that received a single conditioning trial (1 vs. 3: LSD, P < 0.001; 2 vs. 3: LSD, P < 
0.001) (Figure 2a).

For N. giraulti there was no difference in PIs between the two types of single trial 
conditioning (host feeding (1) and oviposition (2)) (LSD, P = 0.82); there was significant 
memory retention 24 hours after conditioning, but this memory had decayed after 72 
hours ((1): t9 = -0.02, P = 0.987; (2): t9 = 0.53, P = 0.608). Two spaced conditioning trials (3), 
however, resulted in higher memory scores (1 vs. 3: LSD, P < 0.001; 2 vs. 3: LSD, P < 0.001) 
and significant memory retention up to at least 120 hours (t9 = 9.56, P < 0.001) (Figure 2b).

LTM inhibition

The survival analysis showed that 
administration of 0.005 mM ACD in 
a 25% sucrose solution did not affect 
survival rate in N. vitripennis compared 
to the control treatment (Figure 3a). The 
survival was 100% in both cases. An 
increased dosage of ACD of 0.010 or 0.100 
mM results in a decreased survival rate, 
respectively 77.1% and 3.1% of these 
wasps survive up to 7 days after feeding. 
This indicates that 0.005 mM ACD is 
the highest possible dosage without an 
effect on survival of the wasps. This 
concentration was, therefore, chosen 
for further experiments. Administration 
of 1.0 mM ANI did not affect survival 
rate in N. vitripennis compared to the 
control treatment, which was 100% in 
both cases (Figure 3b). This indicates 
that this concentration of ANI can be 
used for further experiments. It is 
possible that higher dosages of ANI can 
also be administered without effects on 
survival, but this could not be tested as 
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Figure 3: Survival after feeding of ACD or ANI. 
Survival rate of N. vitripennis wasps which were fed 
0.5 µl sucrose solution with different concentrations 
of (a) actinomycin D or (b) anisomycin (n = 4 x 24 
wasps per treatment).
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N. vitripennis wasps refused to feed from higher concentrations of ANI.
Memory retention of N. vitripennis was analyzed after treatment with ANI, ACD, or the 

control treatment. Memory retention decreases over time (F1,114 = 35.979, P < 0.001), but was 
not affected by treatment (F2,114 = 0.729, 
P = 0.484). The interaction between 
treatment and time was significant 
(F2,114 = 4.14, P = 0.018), which indicates 
that the effect of ANI and ACD depends 
on the time point of the memory 
retention test. Both ANI and ACD 
inhibited memory retention in a similar 
manner (LSD, P = 0.80); the time point 
at which inhibition of memory becomes 
visible as well as the level of inhibition 
is similar for both inhibitors. Analysis 
of individual time points shows that 
memory inhibition by ANI and ACD is 
not visible 72 hours after conditioning 
(F2,27 = 0.096, P = 0.91), but starts at 96 
hours (F2,27 = 6.85, P = 0.004) (Figure 4). 

DISCUSSION
This study demonstrates variation in memory retrieval of N. vitripennis and N. giraulti, which 
we interpret as variation in memory retention between the two species. Nasonia vitripennis 
will form transcription- and translation-dependent LTM after a single conditioning trial, 
whereas N. giraulti requires two spaced trials to form long-lasting memory. The number of 
trials required to form LTM in these two species appears to be independent of the type of 
reward that was offered during conditioning, namely host feeding vs. oviposition. 

It was observed that only a small percentage of N. vitripennis and none of N. giraulti 
will start oviposition within one hour when offered a host for the first time. Nasonia 
vitripennis require host feeding for the maturation of eggs, but few matured eggs are 
already present upon emergence, which may explain why a low percentage of N. vitripennis 
females will already start oviposition (Whiting, 1967). Oviposition was observed in most 
wasps of both species during the second host contact period of one hour, which these 
wasps were given after a 4 hour resting period. These results imply that the rewarding 
stimulus in a first conditioning trial is mostly host feeding and in a second conditioning 
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Figure 4: LTM inhibition by ACD or ANI. Inhibition 
of LTM after a single conditioning trial of N. vitripennis 
wasps by anisomycin (ANI) and actinomycin D (ACD) 
(n = 10 PIs per time point and treatment) (LSD; ***P 
< 0.001, ** 0.001 < P < 0.01, * 0.01 < P < 0.005, n.s. = 
not significant). 
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trial it is oviposition. We had hypothesized that oviposition would be considered a ‘larger’ 
reward than host feeding alone. However, there was no difference in the level of the PI or 
retention of memory when comparing these two stimuli. Host feeding by a Nasonia female 
will decrease the value of the host, as fewer resources will be available for future offspring, 
although Nasonia parasitic wasp species can use the same host for both host feeding and 
oviposition (Rivero & West, 2005). Possibly, Nasonia parasitic wasps perceive both host 
feeding and oviposition as a measure of reproductive success. The rewarding stimulus may 
also be similar in both situations: chemosensilla on the ovipositor of female wasps will 
likely have contact with host haemolymph before host feeding as well as before oviposition 
(van Lenteren et al., 2007), which could mean that host feeding and oviposition are not 
perceived as being different rewards by Nasonia parasitic wasps. 

Both the level of PI and memory retention of N. vitripennis and N. giraulti do not 
depend on the type of reward during conditioning, but they do depend on the number of 
conditioning trials. The level of the PI increased in both species when they were conditioned 
twice with an intertrial interval of 4 hours, compared to a single conditioning trial. Memory 
retention of N. giraulti was, furthermore, increased up to at least 5 days, which is similar 
to memory retention of N. vitripennis after a single trial. This demonstrates that N. giraulti 
females can form long-lasting memory types only after multiple conditioning trials spaced 
in time, whereas N. vitripennis does so already after a single conditioning trial. 

Nasonia vitripennis consolidates LTM after a single conditioning trial, which is then 
expressed 4 days after conditioning, considering that both ANI (translation inhibitor) 
and ACD (transcription inhibitor) inhibit memory from 4 days onwards. This suggests 
that the memory trace is completely dependent on translation and transcription 4 days 
after conditioning. This combined dependency on both translation and transcription is 
comparable to LTM consolidation in Cotesia parasitic wasps and honeybees (Wüstenberg 
et al., 1998; Smid et al., 2007). Nasonia giraulti will form a memory that will last at least 5 
days after two spaced conditioning trials. Based on our results on N. vitripennis (Figure 4), 
we expect that the long lasting memory trace in N. giraulti is also transcription-dependent 
LTM. 

In addition to comparing LTM formation among closely related species, Nasonia 
parasitic wasps can be compared to other parasitic wasp species. Nasonia giraulti can be 
compared to other species which require multiple conditioning trials to form LTM, such as 
C. rubecula which requires three spaced trials (Smid et al., 2007). Nasonia vitripennis forms 
LTM after a single trial comparable to C. glomerata, L. distinguendus and T. evanescens. 
Interestingly, the speed of LTM consolidation varies considerably among these four species: 
N. vitripennis has consolidated LTM 4 days after conditioning, whereas L. distinguendus and 
T. evanescens have consolidated LTM after 24 hours and C. glomerata already after only 4 
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hours (Collatz et al., 2006; Smid et al., 2007; Huigens et al., 2009). Nasonia vitripennis forms 
ARM, before LTM is consolidated after 4 days (Schurmann et al., 2009). This is comparable 
to memory consolidation in C. rubecula, which will consolidate LTM within two to three 
days after 3 spaced conditioning trials and also forms ARM (Smid et al., 2007). The rate of 
LTM consolidation determines the time window that an animal has to evaluate the learned 
information before this information is consolidated as LTM (van den Berg et al., 2011). 
Schurmann et al. (2012) hypothesized that a low rate of LTM consolidation would enable 
an animal to re-evaluate information that was learned. Memory is potentially erased if 
a wasp experiences conflicting information or unrewarding experiences before LTM is 
consolidated (Schurmann et al., 2012). A high rate of LTM consolidation without formation 
of ARM, as observed in C. glomerata, may only occur when the learned cue predicts host 
presence very reliably (van den Berg et al., 2011). Further experiments on the susceptibility 
of STM, ARM and LTM to unrewarding experiences or conflicting information are necessary 
to test this hypothesis. The mechanisms that regulate the number of trials required to form 
LTM as well as LTM consolidation rate also remain to be elucidated.

The genus Nasonia has emerged as a powerful model system for genetic research. 
Genetic resources, including genetic maps and genome sequences, were established for a 
purely homozygous strain of each species (Werren et al., 2010). We demonstrated profound 
variation in LTM formation between these strains of N. vitripennis (AsymCx) and N. giraulti 
(RV2x(U)), which allows future studies on memory dynamics to benefit from the tools 
available for these strains. Our results on LTM formation in N. vitripennis are comparable 
to observations on a strain from a German population of N. vitripennis by Schurmann et 
al. (2012). This study also demonstrated LTM expression 4 days after a conditioning trial, 
using different techniques to administer ACD (injection into the abdomen) and to test 
memory retention (a four-armed olfactometer). This confirms our results. Future studies 
on the homozygous strains of N. vitripennis (AsymCx) and N. giraulti (RV2x(U)) can include 
introgression experiments, because the species of the genus Nasonia can interbreed. In 
such an experiment, genes that regulate the number of trials required to form LTM in one 
species can be expressed and studied against the background of the other species in order 
to unravel the genetic mechanisms that regulate this trait (Werren & Loehlin, 2009). The 
fact that LTM consolidation after a single conditioning trial is transcription-dependent 
in N. vitripennis implies that conditioning will result in differences in expression levels 
of genes related to LTM formation. This opens exciting possibilities to study differential 
gene expression related to memory dynamics using a transcriptomics approach, which will 
further increase understanding of genetic mechanisms involved in LTM formation.
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Conclusions

In conclusion, this study has provided valuable new insights on LTM formation of N. 
vitripennis and N. giraulti. The two species differ in the number of conditioning trials 
required to form LTM, but this number is not affected by the type of reward, respectively 
host feeding or oviposition, which is offered during conditioning. Parasitic wasps of the 
genus Nasonia offer unique opportunities to study both ecological factors as well as genetic 
mechanisms underlying this variation. Such multidisciplinary research is necessary 
to fully understand the evolution of memory dynamics. This will not only increase our 
understanding of insect memory and behaviour, but also memory and behaviour in higher 
animals.
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ABSTRACT
Learning can be instrumental in acquiring new skills or optimizing behavior, but it 
is also costly in terms of energy and when maladaptive associations are formed: the 
balance between costs and benefits affects memory dynamics. Numerous studies have 
demonstrated that memory dynamics of animal species depend on the value of the reward 
during conditioning, even when animals are inexperienced with this reward. Reward 
value consists of both the perceived value of the reward to the fitness of an animal and the 
reliability of the learned association. The aim of this study was to study the effect of reward 
value on oviposition learning in parasitic wasps of the genus Nasonia. Host species of these 
parasitic wasps can differ in their value as a host, i.e. the number and size of emerging 
offspring, but reliability of the learned association is hypothesized to be similar for different 
host species. This allows studying the effects of host value only. We conditioned parasitic 
wasps of the species Nasonia vitripennis and N. giraulti using three different host species 
as a reward, which differed profoundly in their value as a host. However, for both parasitic 
wasp species, the resulting memory formation was independent of the value of the host. We 
discuss factors that may be responsible for this observation. 
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INTRODUCTION
Learning can optimize behaviour of an animal, but is costly in terms of time and energy, 
and in case that maladaptive associations are formed (Menzel, 1999; Laughlin, 2001; Mery 
& Kawecki, 2005). It is, therefore, not surprising that memory depends on the type and 
quality of the reinforcer, i.e. the reward or punishment experienced during a learning 
experience, or the reliability of the learned association (Rescorla, 1988; Stephens, 1993; 
Hoedjes et al., 2011). 

Memory of fruit flies (Drosophila melanogaster) and crickets (Gryllus bimaculatus) 
decays faster when aversive conditioning is applied compared to appetitive conditioning 
(Krashes & Waddell, 2008; Nakatani et al., 2009). A conditioned response also changes when 
the reinforcer has an increased intensity or quality, for example in fruit flies conditioned to 
avoid heat (Diegelmann et al., 2006), male rats (Rattus norvegicus) that received different 
intensities of sexual stimulation (Camacho et al., 2009) and in several bird and insect species 
that received more nutritious or preferred food (Clayton & Dickinson, 1998; Wäckers et al., 
2006; Wright et al., 2009; Burke & Waddell, 2011). These studies suggest that rewards or 
punishments that are perceived as more important to the fitness of an animal will result in 
stronger and more durable memory.

The importance of the reliability of the association between a learned cue and 
the reinforcer was demonstrated in a study on bumblebees (Bombus impatiens), which 
responded stronger after conditioning with an increased sucrose concentration compared 
to an increased volume of sucrose solution with a similar total reward. This is considered 
an evolutionary adaptation because a flower's nectar volume varies due to foraging 
activity, whereas sucrose concentration is a reliable characteristic of the species (Cnaani 
et al., 2006). Another study on magpies (Pica pica) has shown that these birds will respond 
to visual cues that reliably indicate the presence of food and will ignore less reliable spatial 
cues (Feenders & Smulders, 2011). 

A study on two unrelated parasitic wasp species has shown that memory retention 
after oviposition learning, in which the reward is finding and parasitizing a host, can depend 
on host species (Kruidhof et al., 2012). Cotesia glomerata and Trichogramma evanescens 
both parasitize cabbage white butterflies, albeit each a different developmental stage, 
respectively caterpillars and eggs. Both wasp species formed long-term memory after a 
single conditioning trial on the large cabbage white (Pieris brassicae), but a short-lasting 
memory (<24h) after a single conditioning trial on the small cabbage white (Pieris rapae). 
Kruidhof et al. (2012) hypothesized that both the value of the host and the reliability of the 
learned cue, which together constitute ‘reward value’, determine memory retention. The 
large cabbage white has a higher host value, which is reflected by a higher number and an 
increased size of offspring (Salt, 1940; Harvey, 2000). The reliability of learned cues differs 
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due to differences in the ecology of these hosts. The large cabbage white will lay clusters 
of eggs on a cluster of plants of the same species (Davies & Gilbert, 1985). Learned cues 
that are associated with this host, such as odors of these plants are, therefore, a reliable 
indication for the presence of multiple hosts. The small cabbage white, on the other hand, 
will lay single eggs on multiple plant species (Root & Kareiva, 1984). As a result, the odor of 
a specific plant species is not a reliable cue for the presence of more hosts. 

These studies demonstrate that the value of the reinforcer, the reliability of the 
association, or both can have profound effects on memory retention. In the majority of 
the studies described, the animals were inexperienced with the reinforcer, which implies 
that they were able to innately assess ‘reward value’ and adjusted their memory to this 
value. Both factors need to be considered to fully understand observed differences in 
memory retention in an animal. Studies that allow these two factors to be unravelled are 
instrumental in investigating this question.

In this study, we focussed on the parasitic wasp species Nasonia vitripennis and N. 
giraulti and tested how host value affects memory retention in naïve wasps. Both species 
can learn odors upon host encounter, but differ in their memory retention after a single 
conditioning trial on their host Calliphora vomitoria: N. vitripennis forms long-term, tran-
scription-dependent memory (lasting >6 days), whereas memory of N. giraulti decays 
within two days (Hoedjes et al., 2012; Schurmann et al., 2012; Hoedjes & Smid, 2014). This 
interspecific difference in memory retention has been hypothesized to reflect a difference 
in specialisation between N. vitripennis and N. giraulti (Hoedjes et al., 2012). These wasp 
species will encounter different host species in their habitat, which differ in their suitability 
or value as a host (Peters & Abraham, 2010; Daoust et al., 2012). Reliability of learned 
cues is, in contrast with the study by Kruidhof et al. (2012), hypothesized to be similar for 
different host species. Nasonia species parasitize various species of fly pupae that occur on 
carcasses and in bird nests. These habitats have a highly variable community composition 
of fly species. Several species can co-occur and the number of available hosts can range 
from none or few to hundreds of hosts. Factors such as season, geography, bird species or 
carcass species, size, decomposition stage or decomposition type all influence the species 
and number of fly hosts (Anderson & Vanlaerhoven, 1996; Peters & Abraham, 2010; Castro 
et al., 2012; Daoust et al., 2012). Habitat specific cues are, therefore, not reliably associated 
with the presence of specific host species for Nasonia; they rather predict the presence of 
multiple fly species. It is, therefore, expected that the effect of host quality can be studied 
in the genus Nasonia, without inducing variation in reliability of the association at the same 
time.

We have varied host quality by offering N. vitripennis and N. giraulti three different 
host species that differ in size as a reward during conditioning: Calliphora vomitoria, Lucilia 
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sericata (Diptera: Calliphoridae) and Musca domestica (Diptera: Muscidae). The difference 
in host size was hypothesized to result in differences in the numbers or fitness of offspring 
and consequently host value (Rivers & Denlinger, 1995; Peters & Abraham, 2010). A 
difference in host quality was confirmed in this study. All three fly species are potential 
hosts for the generalist N. vitripennis and it was, therefore, expected to distinguish the 
three host species. The specialist N. giraulti is not adapted to these specific host species, 
but does accept these species as a host in laboratory rearings. These three host species 
were chosen, because of their suitability as a host for both Nasonia species and because 
they were commercially available in large numbers and consistent quality. If host value 
affects memory retention in naïve Nasonia species, this will be reflected by differences in 
the strength of the conditioned response or memory retention. 

MATERIALS AND METHODS
Insects

Nasonia vitripennis (strain AsymCx) and N. giraulti (strain RV2x(U)) were used for the 
experiments; the genomes of these strains have been sequenced (Werren et al., 2010). The 
wasps were reared on Calliphora vomitoria pupae and were maintained as described in 
Hoedjes et al. (2012). The three host species Calliphora vomitoria, Lucilia sericata (Kreikamp, 
Hoevelaken, The Netherlands) and Musca domestica (Kreca, Ermelo, The Netherlands) 
were obtained as maggots and were allowed to pupate at room temperature and were 
subsequently stored in a fridge (4oC) for a maximum of two weeks.

Host value

Host value of the three fly species was assessed by measuring weight, length and width 
of 50 host pupae per species. The offspring number per female per host pupa, sex ratio 
and size of offspring were determined for both N. vitripennis and N. giraulti on each of the 
three host species. Twenty female wasps were collected at the day of emergence and were 
individually provided 5 hosts of the same species in a glass tube (75x12x0.08 mm; VWR, 
Amsterdam, The Netherlands) closed with a cotton wool plug. The wasps were removed 48 
hours later and hosts were kept in a climate cabinet under a constant temperature (25oC) 
and photoperiod (16L:8D) until emergence of the offspring. The total number of offspring, 
which consists of emerged offspring, diapausing larvae and offspring that had died during 
development, was counted and the average number of offspring per parasitized pupa per 
mother was determined. Sex ratio of the emerged offspring was determined, because a 
decreased host size has been hypothesized to result in an increased sex ratio in parasitic 
wasps (King, 1987). Hind tibia length of 30 female offspring per wasp species and host 
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species was measured; this is a commonly used measure for adult body size of parasitic 
wasps (Godfray, 1994). 

Olfactory conditioning assay

The olfactory conditioning assay described by Hoedjes et al. (2012) was used. This is a 
Pavlovian conditioning assay in which female parasitic wasps associate the reward (a 
host) with an odor. Briefly, female wasps were placed individually in close contact with 
two host pupae (the unconditioned stimulus, US) in the presence of either vanilla or 
chocolate odor (the conditioned stimulus, CS+) and they were allowed to drill into a pupa 
and to perform host feeding for 1 hour. Oviposition does typically not take place during this 
period (Hoedjes & Smid, 2014). The wasps were then exposed to respectively chocolate or 
vanilla odor (CS-) for 15 minutes without a reward present. Three groups of 48 wasps were 
conditioned simultaneously either with C. vomitoria, L. sericata or M. domestica pupae as 
reward in order to assess the effect of host value on memory retention. Conditioning was 
done reciprocally: each group of 48 wasps was divided and one half was conditioned with 
vanilla as CS+ and chocolate as CS-, whereas the other half was conditioned with chocolate 
as CS+ and vanilla as CS-. The occurrence of drilling within 30 minutes was also scored 
for each host species to assess differences in wasp behavior towards the different hosts. 
Wasps that did not initiate drilling within 30 minutes were removed from the experiment. 
Based on previous experiments (Hoedjes et al., 2012), Nasonia vitripennis was tested for 
memory retention either 24 (±1) or 120 (±1) hours after conditioning in order to study 
effects of host species on both short- and long-lasting memory types. Nasonia giraulti was 
tested either 24 (±1) or 72 (±1) hours after conditioning, because it was previously shown 
to form short-lasting memory types only after conditioning. 

Memory retention test

All wasps were tested in a T-maze olfactometer in which vanilla odor was offered in one 
tube and chocolate odor in the other tube as described by Hoedjes et al. (2012). The standard 
procedure involves testing memory of each of the two reciprocal pairs of up to 24 wasps in 
two runs. The choice of 10-12 wasps was recorded 10 minutes after release in the T-maze 
and immediately afterwards a reciprocal group of 10-12 wasps was tested. 

Data analysis

The different parameters for host value were analyzed separately for N. vitripennis and 
N. giraulti. Univariate ANOVA was used to test for differences between the host species. 
Pairwise comparisons were done using a Tukey-HSD test. 

The percentage of wasps that initiated drilling was determined for each day of 
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conditioning (n=5). Univariate ANOVA was used to test for differences between the host 
species. Pairwise comparisons were done using a Tukey-HSD test.

Memory retention was determined by testing for a difference in preference between 
the two reciprocal groups of 10-12 wasps. This difference is represented by the performance 
index (PI) as described by Hoedjes et al. (2012). The PI is calculated as: group 1 (%CS+) − 
group 2 (%CS−). If all trained wasps choose CS+, the difference between two reciprocal 
groups is at its maximum and the PI would be 100. This would represent perfect memory 
retention. When there is no memory retention, the two groups will choose similarly; this 
would result in a PI of 0. A total of 10 PIs was obtained for each wasp and host species. A 
t-test was used to test for the presence of memory retention. Univariate ANOVA was used 
to test if memory retention was different between host species. 

RESULTS
Host value

The weight, length and width of the three host species were determined as a measure 
for host size and were all found to be different between each host species (weight: F2,147 = 
951.1, P < 0.001; length: F2,147 = 1073.6, P < 0.001; width F2,147 = 705.2, P < 0.001). Calliphora 
vomitoria is the host species with the highest weight (61.17 ± 0.95 mg) and the largest 
length (9.36 ± 0.06 mm) and width (3.76 ± 0.03 mm). Lucilia sericata is intermediate for all 
three parameters (weight: 31.98 ± 0.39 mg; length: 7.38 ± 0.04 mm; width: 2.85 ± 0.02 mm) 
and Musca domestica has the lowest weight (24.77 ± 0.33 mg), and the smallest length (6.50 
± 0.04 mm) and width (2.66 ± 0.02 mm) (Figure 1).

The number, sex ratio and the size of offspring that emerged from each of the three 
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Figure 1: Characteristics of host pupae. The weight (a), length (b), and width (c) of host pupae 
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< P < 0.05, n.s. = not significant).
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hosts were studied to determine differences in host value (Figure 2). Host species has an 
effect on number of emerged offspring in both N. vitripennis (F2,57 = 98.0, P < 0.001) and 
N. giraulti (F2,57 = 64.3, P < 0.001). The number of emerged offspring for N. vitripennis was 
highest for C. vomitoria (23.05 ± 0.87) and was on average respectively 46.9% and 50.2% 
lower for L. sericata (12.24 ± 0.48) and M. domestica (11.48 ± 0.54), which do not differ 
significantly from each other (Tukey-HSD, 
P = 0.69). The number of emerged offspring 
for N. giraulti was also highest for C. 
vomitoria (18.97 ± 0.72), intermediate for 
L. sericata (12.66 ± 0.56; 33.3% decreased 
compared to C. vomitoria), and lowest for 
M. domestica (8.90 ± 0.62; 53.1% decreased 
compared to C. vomitoria).

Next to emerged offspring, there 
were also very low numbers of diapausing 
larvae, which is normal for the Nasonia 
species under 16L:8D light regime. A 
number of offspring had died during 
development, which occured mostly in 
the pupal stage. For both N. vitripennis 
and N. giraulti the number of diapausing 
larvae per female per pupa did not depend 
on host species (N. vitripennis: F2,57 = 2.57, 
P = 0.085; N. giraulti: F2,57 = 1.0, P = 0.37) 
and the level of diapause was low (for N. 
vitripennis - C. vomitoria: 0.28 ± 0.10, L. 
sericata: 0.77 ± 0.21, M. domestica: 0.28 
± 0.16; for N. giraulti - C. vomitoria: 0, L. 
sericata: 0.04 ± 0.04, M. domestica: 0). 
The number of dead offspring per female 
per pupa did depend on host species for 
both N. vitripennis (F2,57 = 4.89, P = 0.011) 
and N. giraulti (F2,57 = 35.6, P < 0.001). The 
numbers of dead wasp offspring are low 
for N. vitripennis in C. vomitoria (0.12 ± 
0.07) and L. sericata (0.04 ± 0.02), and this 
number is only significantly higher in M. 
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Figure 2: Host value parameters for the three 
host species. (a) the average offspring per pupa 
per female. The black sections on the bars indicate 
the number of offspring that did not emerge 
(diapausing larvae and dead offspring) (n = 20), 
(b) the sex ratio of emerged offspring (n = 20, and 
(c) tibia length of emerged female offspring, which 
is a measure for body size (n = 30). The left panels 
show data on N.vitripennis, the right panels show 
data on N. giraulti. Asterisks indicate the level of 
significance (*** P < 0.001, ** < P < 0.01, * 0.01 < P 
< 0.05, n.s. = not significant).
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domestica (0.31 ± 0.08) compared to L. sericata (Tukey-HSD, P = 0.010).  The numbers of 
average dead wasp offspring per pupa are also very low for N. giraulti in C. vomitoria (0) and 
L. sericata (0.01 ± 0.01), but significantly higher for M. domestica (2.77 ± 0.46) (Tukey-HSD, 
P < 0.001); the percentage of dead offspring of the total number of offspring per N. giraulti 
female per pupa is 23.7% for M. domestica.

The total number of offspring consists of emerged offspring as well as diapausing 
larvae and offspring that had died during development. Host species has an effect on number 
of total offspring in both N. vitripennis (F2,57 = 109.5, P < 0.001) and N. giraulti (F2,57 = 40.6, 
P < 0.001). For both species the total number of offspring was highest for C. vomitoria (N. 
vitripennis: 23.45 ± 0.81; N. giraulti: 18.97 ± 0.72). The number of offspring from L. sericata 
(N. vitripennis: 13.06 ± 0.42; N. giraulti: 12.71 ± 0.56) and M. domestica (N. vitripennis: 12.07 
± 0.51; N. giraulti: 11.67 ± 0.56) did not differ significantly from each other (Tukey-HSD, N. 
vitripennis: P = 0.48, N. giraulti: P = 0.46).

Host species did not have an effect on sex ratio of emerged N. vitripennis offspring 
(F2,57 = 2.57, P = 0.085; C. vomitoria: 0.14 ± 0.01, L. sericata: 0.16 ± 0.01, M. domestica: 0.12 
± 0.01), but did have an effect on sex ratio of emerged N. giraulti (F2,57 = 4.82, P = 0.012; 
C. vomitoria: 0.07 ± 0.00, L. sericata: 0.09 ± 0.00, M. domestica: 0.06 ± 0.01). There was a 
significant difference in sex ratio between L. sericata and M. domestica (Tukey-HSD, P = 
0.009). 

The size of female offspring, which was determined by measuring hind tibia length, 
was affected by host species for both N. vitripennis (F2,87 = 42.3, P < 0.001) and N. giraulti 
(F2,87 = 137.4, P < 0.001). For N. vitripennis the size of female offspring was not significantly 
different for C. vomitoria (612.3 ± 7.4 µm) 
and L. sericata (601.4 ± 6.8 µm), but was 
decreased by 14.5% in M. domestica (523.8 
± 8.0 µm) compared to C. vomitoria. For N. 
giraulti the size of female offspring was 
highest for C. vomitoria (550.0 ± 2.4 µm), 
intermediate for L. sericata (521.9 ± 3.5 µm; 
5.1% decreased compared to C. vomitoria), 
and lowest for M. domestica (430.6 ± 8.2 µm; 
21.7% decreased compared to C. vomitoria). 

Drilling percentage

Drilling percentage of N. vitripennis is 
affected by host species (F2,12 = 25.7, P < 
0.001) (Figure 3). The percentage of wasps 
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Figure 3: Drilling behavior. Percentage of (a) 
N. vitripennis and (b) N. giraulti that initiate 
drilling in a host within 30 minutes after the 
start of conditioning (n = 5). Asterisks indicate 
the level of significance (*** P < 0.001, ** < P < 
0.01, * 0.01 < P < 0.05, n.s. = not significant).
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that initiate drilling is highest when C. vomitoria (95.2 ± 0.53) is offered, intermediate when 
L. sericata (89.4 ± 1.37) is offered, and lowest when M. domestica (80.0 ± 2.17) is offered. 
Drilling percentage of N. giraulti is not dependent on host species (F2,12 = 0.66, P = 0.55) (C. 
vomitoria: 90.8 ± 1.96, L. sericata: 91.3 ± 2.54, M. domestica: 87.5 ± 2.89) (Figure 3). 

Memory retention

Memory of N. vitripennis was tested 24 and 
120 hours after conditioning and memory 
was present at both time points for all 
three host species (Figure 4). Memory 
retention was not affected by the host 
species that was offered as a reward (F2,56 = 
0.32, P = 0.73). PI decreases over time for all 
three host species (F1,56 = 43.4, P < 0.001). 
Memory of N. giraulti was tested 24 and 72 
hours after conditioning. Again, memory 
retention was not affected by the host 
species that was offered as a reward (F2,56 
= 0.019, P = 0.98). Memory was present 24 
hours after conditioning, but had decayed 
after 72 hours (Figure 4). PI decreases 
over time for all three host species (F1,56 
= 120.1, P < 0.001). These results indicate 
that the host species that is offered during 
conditioning does not affect the strength 
or duration of the conditioned response or 
memory retention for both N. vitripennis 
and N. giraulti. 

 
DISCUSSION

This study investigated the effect of host value on memory formation in the parasitic wasp 
species N. vitripennis and N. giraulti. Our results demonstrate that there are significant 
differences in host value between the three host species for both Nasonia species: the 
number of offspring and offspring size were decreased in the smaller host species. The 
number of emerged offspring of a female wasp is strongly correlated with Darwinian fitness, 
but also the size of a wasp has a strong effect on fitness (Rivero & West, 2002): smaller 
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females typically have lower fat reserves affecting fecundity, longevity and dispersal 
ability. The total number of offspring, consisting of emerged offspring as well as diapausing 
larvae and offspring that had died during development shows how many offspring a female 
has allotted to a host and how she perceives host value. In this study, total numbers of 
offspring correlate with host value. The numbers of dead offspring are generally low, but 
were higher in M. domestica compared to the other host species, especially for N. giraulti. 
This may indicate a mismatch between perceived and actual host value of M. domestica, 
likely because Nasonia is not well adapted to this species (Werren, 1983; Peters & Abraham, 
2010). Next to the fitness parameters that we determined, other parameters can affect 
host value, e.g. specific nutritional characteristics of a host can affect fitness of offspring; 
the presence of other female wasps or superparasitism can affect offspring numbers, size 
and sex ratio (Ivens et al., 2009; Blaul & Ruther, 2011). These factors were not tested and 
it cannot be concluded that these will not have an effect on memory retention. However, 
both Nasonia species decrease their total offspring number with decreasing host value. 
This result strongly indicates that both N. vitripennis and N. giraulti indeed perceive the 
differences in host value and also respond to that. 

Sex ratio of offspring was determined, because a smaller host size has been 
hypothesized to result in an increased sex ratio in parasitic wasps (King, 1987). We did not 
find such a relationship; in fact, there was a trend that sex ratio was lowest in M. domestica 
(although only significant for N. giraulti). Other studies have also shown that differences in 
sex ratio between host species are not necessarily correlated with host size (King, 1996). 
From this we conclude that sex ratio is not the most informative parameter for host value 
in this study. We observed that N. giraulti overall has a lower sex ratio than N. vitripennis 
(respectively 0.06 ± 0.005 and 0.14 ± 0.007 in C. vomitoria). This is considered an adaptation 
to the mating strategy of Nasonia giraulti, which often mates within the host puparium 
(Drapeau & Werren, 1999). 

The difference in host value is not only reflected in offspring numbers and size, but, 
interestingly, also by drilling behavior of N. vitripennis. Possibly, N. vitripennis has a search 
or host acceptance strategy that is adapted to parasitizing larger hosts instead of smaller 
hosts, as was observed by Desjardins et al. (2010). In that study, a higher percentage of N. 
vitripennis would drill in large pupae of Sarcophaga bullata. The situation was reversed in N. 
giraulti, which preferred its natural, smaller host species Protocalliphora spp. (Desjardins 
et al., 2010). In our study we did not observe a difference in drilling percentage between 
host species in N. giraulti, indicating that this species has a more tolerant host acceptance 
strategy. This is unexpected as N. giraulti is considered a specialist species, but may be 
explained by the fact that none of the species that we used in our study are the preferred 
host species of N. giraulti.
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Both behavioral and fitness parameters clearly indicate that the different host species 
used in this study differ in host value and the results further indicate that both N. vitripennis 
and N. giraulti likely perceive this difference in host value. Surprisingly, host value neither 
affected the level of the PI nor duration of memory retention in either wasp species. Results 
on N. giraulti should be interpreted with some caution, because the three host species tested 
were not the preferred host of N. giraulti, but both (naïve) Nasonia species appear not to use 
information on host value in memory formation. This is in contrast with a number of other 
studies in which animals, including other parasitic wasp species, were observed to adjust 
their conditioned response according to reward value, even when they were inexperienced 
with the reinforcing stimulus (Diegelmann et al., 2006; Wäckers et al., 2006; Camacho et al., 
2009; Burke & Waddell, 2011; Kruidhof et al., 2012).

Kruidhof et al. (2012) hypothesized that the strength of association in oviposition 
learning is not only determined by host value, but also by the reliability of the learned 
association. We have argued that finding a host of a specific quality is likely not a reliably 
indication for the number and quality of other hosts in the patch for both N. vitripennis and 
N. giraulti. Consequently, host value is also not a reliable indication for future reproductive 
success, which is a potential reason that these species do not adjust memory retention 
based on host value. This result emphasizes the importance to consider all aspects of 
‘reward value’ in order do understand memory dynamics. 

It is possible that Nasonia parasitic wasps do not adjust memory retention to hosts of 
different qualities, because they have not experienced variation in host value. A naïve animal, 
inexperienced with the reward, can demonstrate a strong conditioned response, even if 
the value of the reward is low: inexperienced male rats (Rattus norvegicus) required less 
sexual stimulation to learn a cue than experienced rats (Tenk et al., 2009). The conditioned 
response of a parasitic wasp (Pseudeucoila bochei) and a hummingbird (Selasphorus rufus) 
was shown to depend on the relative value of a reward compared to previous rewards 
(van Lenteren & Bakker, 1975; Bateson et al., 2003). It is possible that a low host value was 
sufficiently rewarding for our naïve Nasonia wasps, and future studies in which female 
wasps experience a host of either a higher or lower value before conditioning are needed 
to assess effects of previous experience on memory retention. Our results on offspring 
numbers and drilling behavior did indicate, however, that the naïve Nasonia wasps were 
able to estimate host value, without any other host experience. 

A difference of our study with the study on the parasitic wasp species C. glomerata 
and T. evanescens, is that oviposition took place during conditioning in that study (Kruidhof 
et al., 2012). Nasonia parasitic wasps require host feeding for the maturation of eggs and 
naïve females will mostly perform host feeding during their first period of contact with 
a host and will initiate oviposition later on (Schurmann et al., 2012; Hoedjes & Smid, 



71

Effect of host value on memory retention

2014).  The same host can be used for host feeding and oviposition (Rivero & West, 2005). 
Potentially, the Nasonia wasps did not adapt memory retention to host value, because they 
were not ready to initiate oviposition yet. Host feeding and oviposition will, however, result 
in similar memory retention in both N. vitripennis and N. giraulti (Hoedjes & Smid, 2014).

Concluding, this study has shown that the value of the host does not have an effect on 
memory retention in naïve N. vitripennis and N. giraulti. This is in contrast to a number of 
other studies in diverse animal species. We’ve argued that host value may not be a reliable 
indication for future reproductive success for Nasonia, which could be a reason that these 
species to not adapt memory retention to host value. Alternatively, previous experience or 
the occurrence of host feeding versus oviposition may play a role. The results suggest that 
both the quality of the reinforcer and reliability of the learned association can be important 
aspects of total reward value. Both aspects should be considered to understand variation 
in memory formation. Further studies, both on reward value for parasitic wasps as well 
as other animals, will deepen our knowledge on how a reward affects memory dynamics, 
which can improve conditioning methods for animals. Comparative studies on parasitic 
wasps can further elucidate which ecological factors or mechanisms are important for the 
perception and adaptation of memory dynamics in response to different hosts. This will 
increase our understanding on the evolution of variation in learning and memory.
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ABSTRACT
Genes involved in the process of memory formation have been studied intensively in model 
organisms, but little is known about the mechanisms that are responsible for natural 
variation in memory dynamics. There is substantial variation in memory retention among 
closely related species: the parasitic wasp Nasonia vitripennis consolidates long-term 
memory, which lasts at least 6 days, after a single olfactory conditioning trial. Memory 
of the closely related species N. giraulti is lost within two days after a single conditioning 
trial. The genetic basis of this inter-specific difference in memory retention was studied 
in a backcrossing experiment in which the phenotype of N. giraulti was selected for 
in the background of N. vitripennis for up to 5 generations. A genotyping microarray 
analysis revealed 5 candidate regions, which were retained in wasps with decreased 
memory. Independent introgressions of individual candidate regions were created using 
linked molecular markers and tested for memory retention. One region on chromosome 
1 (spanning ~ 5.8 cM) and another on chromosome 5 (spanning ~ 25.6 cM) resulted in 
decreased memory after 72 hours, without affecting 24-hour-memory. This phenotype was 
observed in both heterozygous and homozygous individuals. Transcription factor CCAAT/
enhancer-binding protein (C/EBP) and a dopamine receptor, both with a known function in 
memory formation, are within the regions and are candidates for the regulation of memory 
retention. Concluding, this study demonstrates a powerful approach to study variation in 
memory retention and provides a basis for future research on its genetic basis.
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INTRODUCTION
The ability to learn and form memory is vital for animal species. Learning will alter innate 
behaviour with regard to finding food, mates or hosts, which allows species to adapt to 
variation in their environment. A learning experience can result in the formation of different 
types of memory, which differ in their characteristics and cellular pathways involved. 
Immediately after a learning experience, short-term memory (STM) is formed, which is a 
labile type of memory that typically lasts for minutes up to hours at most (Menzel, 1999; 
Margulies et al., 2005; van den Berg et al., 2011). This type of memory can be disrupted by 
anaesthesia, such as a cold-shock in insects, and is, therefore, also classified as anaesthe-
sia-sensitive memory (ASM). More durable and less-labile types of memory include anaes-
thesia-resistant memory (ARM), which can last from hours to days, and long-term memory 
(LTM), which is dependent on protein synthesis and can last up to the entire life-time of an 
animal (Margulies et al., 2005; Eisenhardt, 2006; Smid et al., 2007). 

Both the process of memory formation and the cellular mechanisms involved are 
highly conserved among distant animal phyla (Dubnau, 2003). There is, however, inter- 
and intraspecific natural variation in memory dynamics (Hoedjes et al., 2011). A single 
conditioning trial or multiple massed trials, i.e. trials with short inter-trial intervals, 
will often result in the formation of STM and/or ARM, which will be lost after hours to 
days. Many animal species will only form LTM after multiple conditioning trials, which 
are spaced in time (Margulies et al., 2005; Eisenhardt, 2006; Smid et al., 2007). However, 
some species, including a number of parasitic wasps, already consolidate LTM after a single 
conditioning trial (Krashes & Waddell, 2008; Hoedjes et al., 2011). Parasitic wasps lay their 
eggs in or onto insect hosts, from which their developing larvae will feed. Female wasps 
can learn cues that are associated with their hosts, so-called oviposition learning (Hoedjes 
et al., 2011). Natural variation in memory retention and the number of conditioning trials 
required to form LTM can be substantial, even between closely related parasitic wasp 
species (Smid et al., 2007; Hoedjes & Smid, 2014). 

Extensive research on genetic model organisms has provided a wealth of knowledge on 
the genetic and neural mechanisms involved in different aspects of the memory formation 
process. However, the mechanisms that are responsible for variation in memory dynamics 
between individuals or species are largely unknown (Hoedjes et al., 2011). Few studies 
have investigated natural variation in memory dynamics in parasitic wasps of the genus 
Cotesia and in fruit flies using an experimental evolution procedure, but did not study the 
genetic basis of this trait (Mery & Kawecki, 2002; van den Berg et al., 2011). Studies using 
laboratory-generated mutants of Drosophila melanogaster have been highly successful in 
identifying single loci with large effects on memory formation (Margulies et al., 2005). 
Induced expression of a specific splice variant of cAMP-responsive transcription factor 
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CREB in Drosophila melanogaster results in LTM formation after a single conditioning trial, 
whereas 10 spaced conditioning trials are normally required (Tubon et al., 2013). Induced 
expression of tyrosine phosphatase SHP2 (corkscrew), also in D. melanogaster, results in 
LTM formation after 10 massed conditioning trials (Pagani et al., 2009). It remains to be 
investigated if these two specific genes are also involved in natural variation in memory 
retention, which may depend on more subtle variation in these genes or on completely 
different genes. The aim of this study is to identify genetic factors that are responsible for 
interspecific natural variation in memory retention after a single conditioning trial. 

Parasitic wasp species of the genus Nasonia provide unique opportunities to study 
variation in memory retention. Nasonia vitripennis will form LTM, which will last over 6 days, 
after a single Pavlovian conditioning trial in which an odor is associated with the reward of 
finding a host. In contrast, a single conditioning trial results in the formation of ARM in the 
closely related species N. giraulti and this memory will be lost within one to two days after 
conditioning. Only multiple conditioning trials will result in the formation of long-lasting 
memory in N. giraulti (Hoedjes et al., 2012; Hoedjes & Smid, 2014). The genus Nasonia has 
emerged as a model system with powerful genetic tools to study interspecific variation. 
The combination of a sequenced genome, a high-density genetic map and the possibility 
to interbreed the four described species of the genus provides excellent opportunities for 
genetic studies, including QTL mapping (Werren & Loehlin, 2009; Werren et al., 2010). 
Recent research has successfully backcrossed traits of N. giraulti into a N. vitripennis 
background in order to study the genetic basis of interspecies differences in wing size and 
morphology, female host preference behaviour, hybrid incompatibilities and pheromone 
composition (Niehuis et al., 2008; Desjardins et al., 2010; Loehlin & Werren, 2012; Niehuis 
et al., 2013). We hypothesized that memory retention can also be introgressed from one 
Nasonia species to another, which facilitates studies on the genetic basis of this trait.

Introgression of memory related phenotypes was successful in a number of studies 
on mice and rats (Wehner et al., 1997; Jarome et al., 2010). Compared to these mammalian 
species, Nasonia has a much shorter generation time and is easier to rear and handle. In 
addition, these hymenopteran species have a haplodiploid mating system which makes 
them particularly suitable for introgression and genetic dissection (Werren & Loehlin, 
2009). These features allow us to study multiple QTLs involved in memory retention and 
to carry out multiple confirmation experiments in a single study. In addition, this is the 
first study to map memory retention QTLs by introgression of genes between species, thus 
exploiting interspecies divergence in memory retention.  

We studied memory retention 24 hours after conditioning (likely a form of ARM), 
which we define as short-lasting memory for the purpose of this study, and after 48 
hours or more following conditioning (which can include ARM and LTM), defined here 
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as long-lasting memory. The aim of this study is to specifically identify genes involved in 
reduced long-lasting memory (N. giraulti phenotype, i.e. short memory retention), without 
affecting short-lasting memory (observed in both species). Wasps with the desired memory 
retention are selected for during the genetic introgression process, which was carried out 
up to the fifth generation. Then, selected introgression lines were genotyped (Desjardins 
et al., 2013). Effects of individual, putative memory retention QTLs were confirmed by 
testing memory retention of independently created segmental introgression lines for these 
regions in three confirmation experiments. Two QTLs affecting long-lasting memory, but 
not short-lasting memory, were identified.

MATERIALS AND METHODS
Nasonia strains and maintenance

Experiments were done with N. vitripennis (AsymCx) and N. giraulti (RV2x(U)) strains, 
which are completely homozygous and have a sequenced genome (Werren et al., 2010), or 
on hybrids and introgression lines derived from a cross between these two strains. Wasps 
were reared on Calliphora vomitoria fly pupae as described in Hoedjes et al. (2012). Female 
wasps were collected on the day of emergence, and were then mated, provided honey and 
water, and kept in a climate cabinet at a temperature of 25oC and a photoperiod of 16L:8D 
for 1 to 3 days until conditioning. 

Olfactory conditioning and memory retention test

Female parasitic wasps were conditioned using a Pavlovian conditioning assay in which 
an odor (chocolate or vanilla odor, the conditioned stimulus (CS+)) was associated with 
the reward of access to a host (the unconditioned stimulus (US)), a C. vomitoria pupa. The 
protocol for individual conditioning as described in Hoedjes et al. (2012) was adapted to 
allow conditioning of groups of wasps in order to obtain large numbers of conditioned 
wasps that were required for the experiments (see Supplementary Information for more 
details). 

Memory retention was tested in a T-maze olfactometer as described in Hoedjes et al. 
(2012). Briefly, the olfactometer consists of two tubular arms, which are connected to a 
middle tube, with a continuous airflow of 100 ml/min through each arm. Chocolate odor 
was offered on one side and vanilla odor was offered on the other side. Groups of 10 to 12 
wasps were released in the middle of the T-maze, the numbers of wasps in the two arms was 
recorded after 10 minutes, and the percentage that had chosen each odor was calculated. 
Immediately afterwards, a reciprocal group of wasps was tested. The difference in odor 
preference between the two reciprocal groups (group 1 and group 2) is traditionally used 
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as a measure for memory retention and is represented by the Performance Index (PI) (Tully 
et al., 1994). PI was calculated as follows: group 1 (%CS+) – group 2 (%CS-). A t-test is used 
to test for significant memory retention, i.e. whether a PI is significantly different from 0 
(SPSS version 19; IBM, Armonk, NY, USA)

Initial introgression of memory retention genes from N. giraulti into                     

N. vitripennis background

F1 hybrids were generated by mating N. vitripennis females to N. giraulti males. This cross 
was chosen because nuclear-mitochondrial incompatibilities can complicate introgres-
sions in the reciprocal cross (Breeuwer & Werren, 1995). Memory retention of the hybrids 
was compared to both parental strains using the conditioning procedure and memory 
retention test as described above. Memory retention was tested 24 (±1) and 48 (±1) hours 
after conditioning.	

A total of 20 F1 hybrid females were mated to N. vitripennis males and their female 
offspring was conditioned and tested for memory retention (Figure 1a). The aim of this 
experiment was to select wasps that did demonstrate memory retention after 24 hours, 
but not after 48 hours or later (similar to N. giraulti), and to backcross this short memory 
retention into the background of N. vitripennis. Virgin female offspring were mated to N. 
vitripennis males. An entire group of sisters was subsequently conditioned on either vanilla 
or chocolate odor (CS+) as described above; the aim was to have approximately similar 
numbers of wasps conditioned on each of the two odors. Wasps were tested 20-24 hours after 
conditioning and wasps that failed to walk towards the learned odor were removed from 
the experiment in order to avoid selecting wasps with general defects in the learning and 
memory pathways. The remaining wasps were tested two times between 60-72 hours after 
conditioning, which was a more convenient time frame than 48 hours after conditioning. 
Wasps that chose the ‘wrong’ odor (CS-) twice were considered to have lost their memory, 
implying that they did not have long-lasting memory, similar to N. giraulti, and these wasps 
were selected to continue introgression of this memory phenotype. Wasps that chose the 
learned odor (CS+) twice were considered to be mostly wasps with long-lasting memory, 
and were selected to create control lines. Control experiments had been done to test effects 
of multiple memory retention tests on the observed memory behaviour of N. vitripennis and 
N. giraulti (see Supplementary Information). Selected females were individually provided 
3 hosts in a glass tube closed with a cotton wool plug to generate offspring. Offspring was 
further backcrossed with N. vitripennis, and conditioned and tested as described above 
up to the 5th generation. Every generation 15 to 25 selected females with decreased 
long-lasting memory and selected females from the control lines were used to set up a next 
generation. Offspring from females that were conditioned on vanilla were conditioned on 
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chocolate the next generation to avoid selection for a specific odor preference. As entire 
groups of sisters were conditioned on a single odor, an adjusted PI was calculated for this 
experiment. Approximately 50% of unconditioned wasps will choose the ‘learned odor’ (as 
shown in Hoedjes et al., 2012) and ‘half’ of a PI can be calculated by subtracting 50% from 
the percentage of wasps that choses the learned odor. The PI is obtained by multiplying this 
number by two: (%CS+ - 50%)*2. 

A back-up was created during the 4th generation of introgression in order to ensure 
continuation of the project during transition from the USA to the Netherlands. Experiments 
on these back-up lines are described in the Supplementary Information. 

Univariate ANOVA was used to test for variation in memory retention and a Tukey-HSD 
post-hoc test was used when appropriate (SPSS version 19; IBM, Armonk, NY, USA).

Genotyping of memory introgression lines

Four samples of wasps from a sibship of up to 10 wasps with a decreased long-lasting 
memory (sisters that had chosen the ‘wrong’ odor twice) and their controls (sisters that 
had chosen the learned odor twice) were genotyped using the high-density CGH genotyping 
microarray for Nasonia, which contains more than 20,000 markers, and analysed using 
a bulk-segregant analysis (Desjardins et al., 2013). The four samples were composed of 
groups of sisters that each had been derived from a different female selected in the F2 
generation. Two samples were taken from the 4th generation of introgression and two 
from the 6th generation. In addition, the genotype of individual wasps was confirmed 
using indel-markers within observed introgressed regions in a polymerase chain reaction 
(PCR). The genotyping analyses have been described more in detail in the Supplementary 
Information. 

Confirmation of memory retention QTLs by independent introgressions

A total of 5 introgressed regions were observed in wasps with decreased long-lasting 
memory retention in the microarray experiment. To independently and individually 
test these candidate regions, each was backcrossed from N. giraulti into the background 
of N. vitripennis for a confirmation experiment, using linked molecular markers tracked 
during introgression by polymerase chain reaction (PCR) genotyping (see Supplementary 
Information for more details). The experiment is independent from the initial introgression 
experiment and selection depended on genotype alone and not on phenotype (i.e. memory 
retention). F1 hybrids were generated as described above and backcrossed to N. vitripennis 
up to the fourth to sixth generation, before the effects of the introgressed regions on 
memory retention were tested. In each generation, female wasps that were selected based 
on genotype, were provided 3 hosts individually in a glass vial as described. For each of the 
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5 regions of interest, multiple primers were used that are located close to the border of the 
region and/or within the region. We ensured that each of these introgression lines had a 
single region of interest, and not any of the other 4 regions of interest. The boundaries of the 
region were not determined. The locations of the regions on the linkage map of Desjardins 
et al. (2013) are given. A single region on chromosome 1 (location: 45.3 - 60.6 cM), a small 
region on chromosome 4 (location: 86.2 - 90.6 cM) and two regions on chromosome 5 
(locations: 0.0 - 2.9 cM and 34.3 - 59.9 cM) were introgressed and tested. Two lines with 
different parts of the region of interest on chromosome 3 were created (locations: 0.0 - 27.7 
cM and 27.7 - 51.8 cM). 

The introgressed regions were maintained heterozygously throughout this 
experiment. Hybrid females were mated to N. vitripennis, which, therefore, results in a mix 
of female offspring with and without the introgressed region. In order to test the effect of 
an introgressed region on memory retention, sibling females were individually provided 5 
hosts in a glass vial as described above. Their female offspring were conditioned and tested 
for memory retention after 72 (±2) hours; this time point was chosen instead of 48 hours to 
match the time point of selection in the initial introgression experiment. Memory retention 
was tested after 4 (chromosome 1 and 3), 5 (chromosome 3 and 5) or 6 (chromosome 4) 
generations of introgression. Offspring of wasps that were heterozygous for the region of 
interest were compared to offspring of sister wasps that were homozygous N. vitripennis 
for the region of interest (control group). This approach controls for unlinked regions 
segregating in the offspring that could affect memory retention. A region was considered 
to have an effect on memory retention if the PIs of the wasps with the introgressed region 
differed from those of control wasps. 

As a further test, regions which were found to have an effect on PI were investigated 
by testing memory retention of offspring of males with the introgressed region, which 
were mated to N. vitripennis females to produce isogenic female sibships containing the 
heterozygous region of interest (Velthuis et al., 2005). Wasps were conditioned and memory 
retention was tested after 24 (±2) and 72 (±2) hours as described earlier. Offspring of males 
which carried the region of interest were compared to offspring of brothers without the 
introgressed region (control group). 

Experiments were carried out to generate homozygous strains for regions of interest 
which affected long-lasting memory, in combination with further partitioning of the genomic 
regions by recombination. We succeeded in generating a strain which was homozygous 
for a part of the introgressed region on chromosome 1 (location: 54.8 - 60.6 cM). This 
strain was named ‘SIL_LTM1A_gV’ and this strain was tested for memory retention after 
24 (±2), 72 (±2) and 120 (±2) hours after a single conditioning. Memory retention of this 
segmental introgression line was compared to N. vitripennis and N. giraulti. The size of the 
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introgressed region was determined by PCR as described above.
Univariate ANOVA was used to analyse differences in memory retention and a 

Tukey-HSD post-hoc test was used when appropriate (SPSS version 19; IBM, Armonk, NY, 
USA). 

RESULTS
Initial introgression of memory retention genes from N. giraulti to N. vitripennis

Memory retention of N. vitripennis (NV), N. giraulti (NG) and F1 hybrids (N. vitripennis 
females x N. giraulti males) was tested in order to determine which of the memory 
phenotypes was dominant (Figure 1b). There was an effect of genotype on the PI both after 
24 and 48 hours (24 hours: F2,27 = 10.93, P < 0.001; 48 hours: F2,27 = 37.65, P < 0.001; n = 
10 PIs for each genotype and time point). After 24 hours, memory of N. vitripennis and N. 
giraulti differ significantly from each other (Tukey-HSD: NV vs. NG < 0.001) and the PIs of 
the F1 hybrids were almost intermediate to the parentals (Tukey-HSD: NV vs. F1 = 0.099, 
NG vs. F1 = 0.045). The finding that F1 hybrids are intermediate suggests the presence 
of one or more loci affecting short-lasting memory, with at least some co-dominance. By 
48 hours, memory of N. giraulti has been lost whereas N. vitripennis still had significant 
memory retention. Memory retention of the F1 hybrids is similar to N. giraulti (Tukey-HSD: 
NV vs. F1 < 0.001, NG vs. F1 = 1.000). This demonstrates that the hybrids lose their memory 
within 48 hours after conditioning, similar to N. giraulti.  

The dominant N. giraulti phenotype was backcrossed into N. vitripennis genetic 
background (Figure 1a). The F2 generation (Figure 1c) is a mixture of different genotypes 
and memory retention phenotypes, from which introgression lines, with N. giraulti 
phenotype, and control lines were selected. In the F3 generation (Figure 1d), both control 
and introgression lines have similar PIs at 24 hours after conditioning (F1,40 = 0.44, P = 0.835, 
introgression: n = 22 PIs, control: n = 20 PIs). After 72 hours the PIs of the introgression 
lines have decreased in comparison to the control lines (F1,30 = 9.73, P = 0.004, introgression: 
n = 17 PIs, control: n = 15 PIs). A similar pattern of memory retention is visible in the F4 
generation (Figure 1e) (24 hours: F1,50 = 0.15, P = 0.699, introgression: n = 27 PIs, control: n 
= 25 PIs; 72 hours: F1,42 = 10.25, P = 0.003, introgression: n = 23 PIs, control: n = 21 PIs). In 
the F5 generation (Figure 1f), the introgression line has higher PIs compared to the control 
at 24 hours after conditioning (F1,57 = 7.55, P = 0.008, introgression: n = 35 PIs, control: n 
= 24 PIs), but again a decreased memory retention after 72 hours (F1,46 = 17.36, P < 0.001, 
introgression: n = 29 PIs, control: n = 19 PIs).
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Figure 1: Initial introgression of memory retention genes. (a) Genes that control long-lasting 
memory (‘m’) were backcrossed from N. giraulti (<48h memory retention) into the background 
of N. vitripennis (>144h memory retention). (b) Memory retention of F1 hybrids was compared to 
both parentals. The hybrids have lost their memory after 48 hours, comparable to N. giraulti. (c) 
Selection for decreased long-lasting memory while backcrossing was started in the F2 generation  
and resulted in decreased memory scores in the memory introgression lines compared to control 
lines when tested after 72 hours in the (d) F3, (e) F4, and (f) F5  generations. There was no decrease 
in memory scores when tested after 24 hours. Level of significance: *** P < 0.001, ** < P < 0.01, * 0.01 
< P < 0.05, n.s. = not significant.
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Genotyping of memory retention introgression lines

A total of 4 selected introgression lines were genotyped using the microarray (Desjardins 
et al. 2013), which revealed a number of regions that were retained during the introgression 
process (Figure 2a and Table 1). Two samples consisted of wasps from the 4th generation 
of introgression. The first of these samples (F4A) had retained two introgressed regions. 
One region was on chromosome 4 in wasps with decreased long-lasting memory 
(F4A-memory). The same region was, although larger, also retained in the control sample. 
In addition, almost entire chromosome 5 was retained (F4A-control). The second sample 
of the F4 generation (F4B) did not contain any detectable N. giraulti regions in wasps with 
decreased long-lasting memory (F4B-memory), whereas the control sample had retained a 
small region on chromosome 4 (F4B-control). 

Two samples consisted of wasps from the 6th generation of introgression. In the 
first sample (F6A), the wasps with decreased long-lasting memory had retained a region 
on chromosome 1 and a small region on chromosome 5 (F6A-memory) and the control 
sample had retained a region on chromosome 3 (F6A-control). The wasps with decreased 

Sample QTL location QTL size Marker clusters # with QTL

F4A-memory Chr. 4, 86.2-90.6 cM ~4.4 cM ~2.1 Mb 4.099-4.103 2 of 3 (66.7%)

F4A-control Chr. 4, 57.7-90.6 cM ~32.9 cM ~6.3 Mb 4.071-4.103 5 of 10 (50.0%)

Chr. 5, 1.5-73.0 cM ~71.5 cM ~32.4 Mb 5.001-5.091 8 of 10 (80.0%)

F4B-memory none observed n.a. n.a. n.a. 0 of 4 (0%)

F4B-control Chr. 4, 4.4-9.5 cM ~5.1 cM ~1.0 Mb 4.005-4.011 7 of 10 (70.0%)

F6A-memory Chr. 1, 45.3-60.6 cM ~15.3 cM ~44.0 Mb 1.051-1.072 1 of 2 (50.0%)

Chr. 5, 34.3-59.9 cM ~25.6 cM ~19.4 Mb 5.040-5.075 1 of 2 (50.0%)

F6A-control Chr. 3, 36.5-51.8 cM ~15.3 cM ~23.9 Mb 3.043-3.064 1 of 3 (33.3%)

F6B-memory Chr. 3, 0.0-29.2 cM ~29.2 cM ~8.0 Mb 3.000-3.035 7 of 10 (70.0%)

Chr. 5, 0.0-2.9 cM ~2.9 cM ~1.8 Mb 5.000-5.003 3 of 10 (30.0%)

F6B-control Chr. 3, 0.0-10.9 cM ~10.9 cM ~4.0 Mb 3.000-3.014 6 of 10 (60.0%)

Chr. 5, 0.0-1.5 cM ~1.5 cM ~0.8 Mb 5.000-5.001 2 of 10 (20.0%)

Table 1: Potential memory retention QTLs. This table shows the regions that were detected in 
each of the samples by genotyping microarray analyses and it shows characteristics of these regions: 
The location of the QTL on the linkage map (cM), the size in cM, and the location of the QTL within 
the marker clusters on the linkage map of Nasonia (Desjardins et al. 2013). The QTL size is also 
estimated in Mb, by adding up scaffold sizes that were mapped to the genetic map by Desjardins et 
al. (2013). The QTL size can be larger than estimated due to gaps between scaffolds and a number of 
scaffolds that could not be mapped to the genetic map. The table also shows the number of wasps in 
which the QTL could be confirmed by PCR.
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long-lasting memory of the second sample 
(F6B-memory) had retained regions on 
chromosome 3 and 5. These regions were 
also retained in the control sample (F6B-
control), although both regions were 
smaller in these wasps. Summarising, 
a total of 5 regions was found in wasps 
with decreased long-lasting memory. 
Two of these regions (on chromosome 1 
and part of the region on chromosome 
3) were only detected in wasps with 
decreased long-lasting memory, whereas 
the other regions were also detected in 
control samples. None of these 5 regions 
was detected in multiple samples. Two 
regions and parts of two other regions 
were detected only in control samples.

Confirming memory retention QTLs 

by independent introgressions

Segmental introgression lines for each of 
the 5 potential memory retention QTLs 
were created and tested for effects on 
memory retention (Figure 2b). Offspring 
of females that were heterozygous for 
these regions were tested 72 hours 
after conditioning (Figure 3a - f). The 
locations of the regions on the linkage 
map of Desjardins et al. (2013) are given. 
Two out of the 5 regions were observed 
to result in a decreased 72 hour memory 
compared to control wasps, although this 
memory had not completely disappeared 
as is the case in N. giraulti. These two 
regions are located on chromosome 1 
(location: 45.3 - 60.6 cM) (F1,43 = 15.22, P 
< 0.001, QTL: n = 20 PIs, control: n = 25 

Figure 2: Potential memory retention QTLs.              
(a) Multiple heterozygous regions were detected by 
genotyping microarray in the four pairs of samples 
(F4A, F4B, F6A, F6B). The grey regions show the 
location on each of the 5 chromosomes of Nasonia, 
which is also given in cM on the left. The lines on the 
right of each region show the size of the introgressed 
region in each of the samples (m = decreased 
long-lasting memory, black lines; c = control, dashed 
grey lines). (b) A total of 6 new introgression lines 
were generated to test the effects of individual 
introgressed regions on memory retention. The 
grey regions indicate the location of each of these 
regions on the chromosomes of Nasonia, the location 
is given in cM on the left of each region and the 
marker cluster on the linkage map of Desjardins et 
al. (2013) is given on the right. The two dark grey 
regions were found to have an effect on memory 
retention, whereas the light grey regions did not.
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PIs) (Figure 3a) and chromosome 5 (location: 34.4 - 59.9 cM) (F1,25 = 10.73, P = 0.003, QTL: n 
= 11 PIs, control: n = 16 PIs) (Figure 3f). No decrease in memory retention was observed for 
the two tested regions on chromosome 3 (location: 0.0 - 27.7 cM: F1,28 = 0.02, P = 0.895, QTL: 
n = 13 PIs, control: n = 17 PIs; location: 27.7 - 51.8 cM: F1,32 = 0.65, P = 0.426, QTL: n = 15 PIs, 
control: n = 19 PIs) (Figure 3b and 3c), the region on chromosome 4 (location: 86.2 - 90.6 
cM) (F1,31 = 0.08, P = 0.786, QTL: n = 18 PIs, control: n = 15 PIs) (Figure 3d), and the second 
tested region on chromosome 5 (location: 0.0 – 2.9 cM) (F1,26 = 0.06, P = 0.810, QTL: n = 14 
PIs, control: n = 14 PIs) (Figure 3e).

Additional confirmation experiments, in which isogenic offspring of males with or 
without the introgressed region were tested at 24 and 72 hours after conditioning, were 
carried out for the region on chromosome 1 (location: 45.3 - 60.6 cM) and a smaller subset 
of this region (location: 54.8 - 60.6 cM), resulting from a recombination event within the 
introgressed region (Figure 3g), and for the region on chromosome 5 (location: 34.4 - 59.9 
cM) (Figure 3h). For the introgressed region on chromosome 1, there was no effect on 24 
hour memory retention (F2,46 = 1.32, P = 0.277, 45.3 - 60.6 cM: n = 11 PIs, 54.8 - 60.6 cM: n 
= 15 PIs, control: n = 23 PIs), but there was an effect on 72 hour memory retention (F2,49 = 
15.68, P < 0.001, 45.3 - 60.6 cM: n = 11 PIs, 54.8 - 60.6 cM: n = 17 PIs, control: n = 24 PIs). Both 
the larger introgressed region and the smaller subregion resulted in lower PIs compared to 
the control, although this decrease was only significant for the smaller subregion, possibly 
due to the smaller sample size that was available for the larger region (Tukey-HSD; control 
vs. 45.3 - 60.6 cM: P = 0.103; control vs. 54.8 - 60.6 cM: P < 0.001). The introgressed region 
on chromosome 5 also does not affect 24 hour memory retention (F1,51 = 3.31, P = 0.075, 
34.4 - 59.9 cM: n = 29 PIs, control: n = 24 PIs), but only 72 hour memory retention (F1,51 = 
16.69, P < 0.001, 34.4 - 59.9 cM: n = 29 PIs, control: n = 24 PIs).

A homozygous introgression line, named “SIL_LTM1A_gV”, was created for the region of 
interest on chromosome 1 (location: 54.8 - 60.6 cM; 913 kb according to N. vitripennis genome 
assembly v1.0). The size of the introgressed region in SIL_LTM1A_gV was characterized 
(Figure 4a). The region results from one recombination event at ~54.8 cM and a second 
recombination event between 71.5 and 83.2 cM. The entire introgressed region is located 
on Scaffold 1 and has a size between 2059 – 4409 kb. Memory retention of SIL_LTM1a_gV 
(SIL) was compared to memory retention of N. vitripennis and N. giraulti (Figure 4b). The 
three genotypes were tested 24 hours after conditioning to observe effects on short-lasting 
memory retention. At this time the three genotypes differed in memory retention (F2,27 = 
6.89, P = 0.004, n = 10 PIs for each genotype). The PIs of SIL_LTM1a_gV were similar to N. 
vitripennis, but higher than N. giraulti (Tukey-HSD: NV vs. SIL = 0.993; NG vs SIL = 0.008). 
The genotypes were, furthermore, tested after both 72 and 120 hours after conditioning to 
observe effects on long-lasting memory retention. At both time points the three genotypes 
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Figure 3: Confirming memory retention QTLs. A total of 6 regions were introgressed and tested 
for effects on 72 hour memory. (a) The region on chromosome 1 was observed to affect memory. 
(b and c) Two regions on chromosome 3, (d) a region on chromosome 4 and (e) a small region on 
chromosome 5 did not appear to affect memory. (f) A second, larger region on chromosome 5 did 
affect memory. Additional experiments on the regions of interest on (g) chromosome 1 and (h) 
chromosome 5 confirmed that there was an effect on long-lasting memory (tested 72 hours after 
conditioning), but not on short-lasting memory (tested 24 hours after conditioning). Level of 
significance: *** P < 0.001, ** < P < 0.01, * 0.01 < P < 0.05, n.s. = not significant.
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differed in PI (72 hours: F2,27 = 13.34, P 
< 0.001, n = 10 PIs for each genotype; 
120 hours: F2,27 = 12.24, P < 0.001, n = 
10 PIs for each genotype). At 72 hours, 
memory retention of SIL_LTM1a_gV has 
significantly decreased compared to N. 
vitripennis, and is no longer significantly 
higher than N. giraulti (Tukey-HSD: 
NV vs. SIL = 0.006; NG vs. SIL = 0.220). 
There is, however, still significant 
memory retention in SIL_LTM1a_gV 
(t9 = 2.79, P = 0.021). After 120 hours, 
the PI of SIL_LTM1a_gV is no longer 
significantly different from 0 (t9 = 1.42, 
P = 0.189) and not significantly different 
from N. giraulti, whereas N. vitripennis 
still has memory retention (Tukey-HSD: 
NV vs. SIL = 0.002; NG vs. SIL = 0.628). 
These results confirm earlier results on 
the effects of the introgressed region in 
SIL_LTM1a_gV on long-lasting memory 
retention (Figures 2a and 2g). The 
region does not affect 24 hour memory 
retention, but it does affect memory 
retention measured after 72 and 120 
hours after conditioning. The memory 
trace appears to be completely lost in 
SIL_LTM1a_gV when measured after 
120 hours.

DISCUSSION
Introgression of memory retention

The memory retention phenotype of N. giraulti was introgressed into the background of N. 
vitripennis. This procedure was chosen, because the phenotype of N. giraulti was dominant 
in F1 hybrids and could be tracked in individuals heterozygous for memory retention 
QTLs during introgression. Selection for decreased memory retention may, however, raise 
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Figure 4: Memory retention of the homozygous 
introgression strain ‘SIL_LTM1A_gV’. A 
homozygous segmental introgression line was 
generated (a) which includes the memory retention 
QTL on chromosome 1, scaffold 1. SIL_LTM1A_gV has 
an introgressed region of at least 2059 kb (shown in 
dark grey), between ~ 54.8 – 71.5 cM, which was 
confirmed by genotyping with PCR. Recombination 
had occurred between 172 – 897 kb and 2,956 – 4,581 
kb (within the light grey areas), which implicates 
that the introgressed region can have a size of up to 
4,409 kb. (b) SIL_LTM1A_gV was observed to have a 
decreased memory compared to N. vitripennis when 
tested after 72 and 120 hours after conditioning, but 
not when tested after 24 hours. Level of significance: 
*** P < 0.001, ** < P < 0.01, * 0.01 < P < 0.05, n.s. = not 
significant.
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concerns, because mechanisms that result in a loss of a trait can potentially be numerous 
and reduced memory retention is not necessarily related to the process of memory 
formation. Negative epistatic interactions between nuclear genes of the two species occur 
in hybrids of N. vitripennis and N. giraulti, which can cause reduced viability (Breeuwer & 
Werren, 1995; Gadau et al., 1999). Behavioural alterations called ‘behaviour sterility’ occur 
in some genotypes of hybrid males (Clark et al., 2010). Consequently, hybrid breakdown 
in learning behaviour may occur in hybrids containing introgressed regions between the 
species, for example as a result of decreased perception or ability to discriminate odors, 
disturbed perception or behaviour towards other wasps or hosts, or general defects of 
cognitive skills. These factors result in a decreased performance during memory retention 
tests, which can incorrectly be interpreted as decreased memory retention (Tully et al., 
1994; Mery & Kawecki, 2002). However, our tested memory retention QTLs did not affect 
memory retention when tested at 24 hours (Figures 3g, 3h and 4b). Also, no reduced 
response levels were observed. Therefore, we can conclude that these QTLs are not causing 
general disruption of learning ability, but specifically altered long-lasting memory retention 
after olfactory conditioning. Throughout most of this study, the introgressed regions were 
maintained heterozygously in females, thereby further reducing expression of potential 
hybrid incompatibilities, which have been observed to be mostly recessive (Breeuwer & 
Werren, 1995). Hybrid breakdown as a result of interspecific introgression appears not 
to affect the ability to learn and form memories, at least for the regions under study. The 
initial introgression experiment specifically targeted a decreased long-lasting memory, 
which allowed further studies on the genetic basis of this trait.

Memory retention QTLs

The genotyping analysis revealed multiple genomic regions that had been retained. A 
QTL on chromosome 1 (~5.8 cM in size), and a QTL on chromosome 5 (~25,5 cM in size) 
both reduced memory retention after 72 hours. Long-lasting memory was, however, not 
completely lost, as is the case for N. giraulti. This phenotype was observed both when the 
QTLs were maintained heterozygously (both QTLs) and homozygously (only tested for the 
QTL on chromosome 1). This indicates that the effect of both QTLs on memory retention 
is dominant, but that neither region alone results in the complete N. giraulti memory 
retention phenotype. Considering the complexity of this behavioural phenotype, it can 
be expected that multiple loci with potential epistatic interactions among them control 
memory retention. Long-lasting memory (> 48 h) of N. vitripennis is known to consist of 
multiple memory types that may occur in parallel. These include a form of ARM, which is 
expressed between approximately 72 hours up to 96 hours after a single conditioning trial 
(Schurmann et al., 2009), and LTM, which is observed at 96 hours (Schurmann et al., 2012; 
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Hoedjes & Smid, 2014). 
The two QTLs identified in this study may affect a single memory type, which could 

explain a reduction, but not a complete loss of 72 hour memory. A complete loss of memory 
after 120 hours was observed for the QTL on chromosome 1, which suggests that this 
QTL affects LTM formation. The two QTLs may have an additive effect, especially if they 
affect different memory types: combining both QTLs into a single introgression line may 
result in N. giraulti phenotype. Additionally, the QTLs may interact with the other observed 
introgressed regions, which did not affect memory retention on their own when tested 
after 72 hours (Carlborg & Haley, 2004). Further research is required to elucidate epistatic 
interactions. 

Genetic factors that regulate memory retention

The goal of this study was to determine genetic factors that underlie natural variation in 
(long-lasting) memory retention in the genus Nasonia. The observed QTLs provide a basis 
for further research to determine the exact mechanisms involved. Several genes with a 
known function in the memory formation process are located on the genomic regions, 
which contain the two observed QTLs. These include the transcription factor CCAAT/
enhancer-binding protein (C/EBP) and a dopamine receptor (El-Ghundi et al., 2007; 
Alberini, 2009). It is, however, preliminary to select such potential candidates for further 
research, as the introgressed regions with memory retention QTLs contain hundreds 
of genes. Further partitioning of the genomic regions by recombination, combined with 
the excellent mapping and molecular tools available in Nasonia, will allow fine-scaling of 
memory retention loci (Werren et al., 2010; Desjardins et al., 2013). 

An alternative approach could be to compare differential gene expression of selected 
introgression lines with both parental species. A study on Drosophila melanogaster 
compared gene expression between two selected lines differing in geotaxis behaviour, and 
this was shown to be a successful approach to identify genes involved in this behavioural 
trait (Toma et al., 2002). In addition, RNA interference can effectively be applied in Nasonia 
(Lynch & Desplan, 2006) and so can be implemented to address the effects of specific genes. 
Future studies can also address epigenetic factors, which have been shown to have a role in 
memory formation (Barrett & Wood, 2008; Lockett et al., 2010). 

Correlated memory traits

Another aspect to be tested is if decreased memory retention that is observed in our assay, 
in which an odor (CS) is paired with a host (US), is also observed when other conditioned 
and unconditioned stimuli are used, e.g. visual cues (CS), a sucrose reward (US) or a female 
to mate with (US) in case of conditioning of males. Such correlations were observed in 
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selection experiments in other insects (Chandra et al., 2001; Mery et al., 2007b). Correlation 
experiments can demonstrate if the observed QTLs affect the memory formation process 
in general or if they are rather involved in the perception and/or processing of a specific 
cue (e.g. either the odor or the host reward). The availability of alternative conditioning 
procedures provides opportunities to study correlated memory traits in Nasonia, for 
example male learning in mate finding and color learning (Oliai & King, 2000; Baeder & 
King, 2004).

Conclusion

Learning and memory formation are universal animal traits, but there is variation in 
memory retention. We have introgressed the short memory retention of N. giraulti into the 
genetic background of N. vitripennis and have identified two QTLs which result in decreased 
long-lasting memory. Species-specific variation in learning and memory performance may 
have large implications for host finding behaviour in parasitic wasps, and likely represents 
an important evolutionary adaptation to changing environmental conditions (Hoedjes et 
al., 2011). Our study with Nasonia is the first to provide insight in the genetic mechanisms 
that regulate natural variation in memory retention. Further studies are required to 
fine-scale the identified QTLs and to investigate epistatic interaction among QTLs, in order 
to identify genetic factors that regulate memory retention. The generated introgession 
lines can be used to study correlations between a decreased olfactory-appetitive memory 
and other types of memory. The Nasonia model system provides excellent possibilities to 
pursue these experiments. Knowledge of the genetic basis of natural variation in memory 
retention is important for our understanding of the evolution of this variation, not only in 
Nasonia, but also in other animal species. 
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SUPPLEMENTARY INFORMATION
This supplementary information file contains additional information on (1) the conditioning 
procedure and memory retention test used in this study, (2) information on the methods 
used and results from the back-up lines that were generated during the initial introgression 
experiment, and (3) additional information on the genotyping methodology.

Adaptations to the conditioning and memory retention testing procedures that 

have been described in Hoedjes et al. (2012)

The conditioning method as described by Hoedjes et al. (2012) was adapted for this study 
to facilitate conditioning of groups of wasps instead of individual wasps. A group of up to 
30-40 wasps was conditioned in a Petri dish (diameter: 90 mm; Greiner Bio-One, Alphen 
aan de Rijn, The Netherlands) in which 30-40 host pupae were present. Immediately 
before conditioning, 5 µl of vanilla or chocolate extract (Nielsen-Massey Vanillas Intl., 
Leeuwarden, The Netherlands) was applied to a piece of filter paper (± 2 cm2) and placed 
in the Petri dish. Then the female wasps were released inside the Petri dish and were 
allowed contact with the hosts for 1 hour. Wasps typically initiate drilling into the host 
pupae during this period; wasps that did not exhibit this behaviour were carefully removed 
from the experiment after 30 minutes. After an hour, the wasps were gently taken from the 
hosts and placed in a rearing vial for 15 minutes, next they were exposed to a second odor, 
respectively 5 µl chocolate or vanilla extract (CS-), applied to a piece of filter paper which 
is immediately thereafter inserted in the rearing vial with the wasps, without a reward 
present for another 15 minutes. When conditioning was finished, wasps were transferred 
to rearing vials with access to honey and water and kept in a climate cabinet (25oC, 16L:8D 
photoperiod) until testing. Reciprocal groups of wasps (with either vanilla or chocolate as 
CS+) were conditioned simultaneously.

Control experiments compared memory retention between individually and group 
conditioned wasps. Research on Drosophila melanogaster has shown that the social 
environment during conditioning and/or testing can affect the memory scores that 
are observed (Chabaud et al., 2009; Foucaud et al., 2013). Memory retention of both N. 
vitripennis and N. giraulti, which was measured 24 and 48 hours after group conditioning, 
was comparable to earlier results by Hoedjes et al. (2012). In this supplemental experiment 
we have compared memory retention after group conditioning vs. individual conditioning 
of N. vitripennis 120 (±1) hours after conditioning (Figure S1a). No effect of conditioning 
procedure (F1,18 = 0.97, P = 0.337, n = 10 PIs for both procedures) could be detected. We, 
therefore, conclude that group conditioning is suitable for this study. 

An adaptation was made to the memory retention test during the initial introgression 
experiment. Memory retention is typically only tested once in each individual, because 
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memory recall (without a reward present) can affect memory dynamics. Exposing animals 
to the learned cue without a conditioned stimulus, so-called extinction tests, can result in 
a decay of memory as was shown in the parasitic wasp Leptopilina boulardi and Drosophila 
melanogaster (Kaiser et al., 2003; Lagasse et al., 2009). Alternatively, memory can be 
reconsolidated, depending on the number of extinction tests (Lagasse et al., 2009). The 
effects of multiple tests on memory are species-specific. During the initial introgression 
experiment, Nasonia wasps were tested three times in total: once after 24 hours and two 
times after 72 hours. The aim of this supplementary experiment was to assess if there were 
any effect of multiple tests on memory retention. Groups of N. vitripennis and N. giraulti 
were conditioned and tested as described in the Materials and Methods section. One group 
of wasps was tested after 24 (±1) hours and once again after 72 (±2) hours (2x tested); a 
second group was tested once after 72 (±2) hours (1x tested). Both groups were then tested 
a second time after 72 (±2) hours and compared to a third group of wasps that had not been 
tested before (control). No 
effects of multiple tests 
on memory retention 
were observed for either 
species (N. vitripennis: F2,27 
= 1.37, P = 0.280, n = 10 
PIs for all test procedures; 
N. giraulti: F2,27 = 0.26, P = 
0.775, n = 10 PIs for all test 
procedures) (Figure S1b). 
This indicates that testing 
the wasps 3 times during 
the initial introgression 
experiment did not have 
effects on the expected 
memory retention and this 
procedure was suitable 
for selection on memory 
retention.
 

Initial introgression experiment (Backup lines F5-F7)

In addition to the initial introgression experiment as described in this paper, a back-up was 
created during the 4th generation of introgression in order to ensure continuation of the 
project during transition from the laboratory in the USA to the Netherlands. Individuals 
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Figure S1: Adaptations to the conditioning procedure and 
memory retention test. (a) Group conditioning was used in this 
study instead of individual conditioning. This adaptation did not 
affect memory retention of N. vitripennis when tested 120 hours 
after conditioning. (b) During the initial introgression experiments, 
wasps were tested multiple times in order to select for learning 
rate. Testing for memory retention multiple times was not found to 
have an effect on memory of N. vitripennis and N. giraulti.
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that had descended from similar females in the F2 were kept together, resulting in 4 lines 
selected for a low learning rate and three control lines. Sibmating was allowed in these 
lines in order to maintain genomic regions involved in regulation of memory retention. 
Selection for short memory retention was continued, but memory retention was only 
tested twice 60-72 hours after conditioning. Selection continued up to the 7th generation 
as described earlier, after which diapause was induced. In addition to the control lines that 
were established in the F2 generation, as described in the materials and methods section, 
new control lines were established in the 5th and 6th generation by selecting females that 
chose the learned odour twice from the low learning rate lines (indicated as long memory 
retention lines). This was done to confirm that the memory retention phenotype of N. 
vitripennis could still be selected for. Univariate ANOVA was used to test for variation in 
memory retention between control lines and short memory retention lines and a Tukey-HSD 
post-hoc test was used when appropriate (SPSS version 19; IBM, Armonk, NY, USA).

Memory was decreased when measured after 72 hours in the short memory retention 
introgression lines compared to the control lines in the 5th generation of introgression (F1,26 
= 8.14, P = 0.008, short memory: n = 16 PIs, control: n = 12 PIs) (Figure S2a). In the 6th 

generation short memory retention introgression line was compared to the control (F2) 
and the newly created long memory retention lines (F5) (Figure S2b). There was significant 
variation in memory measured after 72 hours among these lines (F2,89 = 3.41, P = 0.038, 
short memory: n = 42 PIs, long memory (F5): n = 32 PIs, control (F2): n = 18 PIs). The short 
memory retention introgression lines had decreased memory retention compared to the 
two other lines, although not significantly (Tukey-HSD: short memory vs. control (F2) = 
0.067, short memory vs. long memory (F5) = 0.111, control (F2) vs. long memory (F5) = 
0.848). In the 7th and final generation of selection, 72-hour-memory also differed among 
lines (F3,119 = 4.17, P = 0.008, short memory: n = 38 PIs, long memory (F6): n = 34 PIs, long 
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memory (F5): n = 39 PIs, control (F2): n = 12 PIs) (Figure S2c). Pairwise comparisons 
revealed a significant difference in memory retention between the short memory lines 
and the long memory lines (F5) (Tukey-HSD: short memory vs. long memory (F5) = 0.004). 
These results demonstrate that selection for decreased memory retention was successful 
up to at least 7 generations. Selection for long memory retention, the phenotype of N. 
vitripennis, is still possible from the introgression lines which were selected for decreased 
memory retention for 4 to 6 generations, suggesting that this phenotype is likely controlled 
by genetic factors and not only epigenetic factors. 

Genotyping using a genotyping microarray and primers surrounding an              

indel-marker in a PCR

DNA was extracted individually from all wasps using the Gentra Puregene Cell kit (Qiagen, 
Antwerp, Belgium) following the protocol for a single Drosophila fly. When preparing 
samples for analysis by genotyping microarray, 2 µl of the DNA from each wasp of a sample 
was mixed and amplified using the GenomiPhi DNA amplification kit (Sigma-Aldrich, 
Zwijndrecht, The Netherlands) according to instructions of the manufacturer. DNA was 
then labelled and hybridized according to Roche NimbleGen’s User’s Guide and a bulk 
segregant analysis was performed as described by Desjardins et al. (2013) in order to 
determine which genomic regions were heterozygous for N. vitripennis and N. giraulti. This 
analysis determines the proportion of N. vitripennis DNA in a sample for each marker (a 
score of 1 represents 100% N. vitripennis, a score of 0 represents 100% N. giraulti). Two 
samples of F1 hybrids were analysed to determine the suitability of each marker in this 
analysis. Markers that scored >0.9 or <0.1 were considered unsuitable for bulk analysis and 
were therefore removed; 14949 of 15546 markers were considered suitable. The average 
proportion of N. vitripennis DNA was determined per 50 subsequent markers. When this 
average was lower than 0.8, an introgressed genomic region of N. giraulti was considered 
to be present. The scores of individual markers were then inspected manually to determine 
the boundaries of the introgressed genomic region. The genotype of individual wasps was 
confirmed using indel-markers within observed introgressed regions in a polymerase 
chain reaction (PCR) using GoTaq Flexi polymerase (Promega, Leiden, The Netherlands) 
and primers that surround an insertion-deletion polymorphism between N. vitripennis 
and N. giraulti (Table S1). These primers allow distinguishing between N. vitripennis and N. 
giraulti based on the size of the amplicon. This method and these primers were also used 
to genotype individual wasps during the experiment ‘Confirmation of memory retention 
QTLs by independent introgressions’. Table S1 provides details on the sets of primers that 
were used. The location of each primer set is given as marker cluster (based on the genetic 
map by Desjardins et al. (2013), the location on the chromosome in centimorgan (cM), and 
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the scaffold and base pair position of the 5’ base of each forward primer in N. vitripennis 
genome assembly v1.0. All primer sets are suitable when using touch-down PCR conditions: 
94oC for 3 min., 9 touch-down cycles in which the annealing temperature drops 1oC per 
cycle (94oC for 15 sec., 63 - 55oC for 30 sec., 68oC for 1 min.), 28 cycles of (94oC for 15 sec., 
55oC for 30 sec., 68oC for 1 min)., 68oC for 6 min. Primers set that have an asterisk following 
their name also work well using a regular PCR protocol: 94oC for 3 min., 35 cycles of (94oC 
for 15 sec., 60oC for 30 sec., 68oC for 1 min)., 68oC for 6 min. Genotype was determined 
based on size differences between amplicons as visualized on a 1.5% agarose gel.
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ABSTRACT
Natural variation in memory between animal species or populations is widely observed, 
but its genetic basis is poorly understood. Closely related species of Nasonia parasitic wasps 
differ in long-term memory (LTM) formation: N. vitripennis will form transcription-de-
pendent LTM after a single conditioning trial, which lasts more than 6 days, whereas N. 
giraulti will form ASM and ARM and has lost its memory within 2 days. RNA was collected 
from heads of both species before and after conditioning of the wasps. It was sequenced 
strand-specifically, which allows distinguishing sense and antisense transcripts, on the 
HiSeq Illumina platform and assembled de novo. Substantial differences in differential gene 
expression were observed between the two species when compared immediately after 
conditioning and, to a lesser extent, also at 4 and 24 hours after conditioning. Differential 
expression of various genes with a known role in LTM formation was exclusively observed 
in N. vitripennis. Some LTM genes, including genes involved in dopamine synthesis and in 
the Ras-MAPK and PI3K signalling pathways, were exclusively differentially expressed in 
N. giraulti, which may indicate an LTM inhibitory mechanism in this species. Antisense 
transcripts of a number of known memory genes were detected and may have a role in 
regulation of transcription, alternative splicing, or translation. This study is the first to 
compare expression patterns, of both coding and non-coding (antisense) transcripts, at 
different time points after conditioning between two closely related animal species that 
differ in LTM. Opportunities for further in-depth studies on the regulation of LTM formation 
are discussed.
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INTRODUCTION
The ability to learn and form memory has been demonstrated in most animal species, and 
there is substantial natural variation in memory formation between species (Brenowitz 
& Beecher, 2005; Hoedjes et al., 2011). The opportunity to acquire new skills or adapt 
behaviour through learning is an important benefit and can increase animal fitness (Papaj 
& Vet, 1990; Raine & Chittka, 2008). Memory formation can, however, be maladaptive when 
unreliable associations are formed (Menzel, 1999). In addition, the process of memory 
formation is energetically costly, depending also on the type of memory that is formed 
(Laughlin, 2001; Mery & Kawecki, 2005). Therefore, variation in memory formation is 
considered to be a species-specific adaptation to the ecology of an animal and depends on 
the costs and benefits of memory formation for this animal (Menzel, 1999).

Three main types of memory can be distinguished based on temporal expression 
and cellular pathways involved. Anaesthesia-sensitive memory (ASM) (also known as 
short-term memory (STM)) typically lasts from minutes up to an hour and is sensitive to 
disruptive treatments (Xia et al., 1999; Margulies et al., 2005; Müller, 2012). During the ASM 
phase the formation of more stable and durable types of memory starts, a process called 
memory consolidation, and this process can take hours to days to complete (Margulies et 
al., 2005; Smid et al., 2007). Two main forms of consolidated memory are distinguished. 
Anaesthesia-resistant memory (ARM) typically lasts from hours to days and formation 
of this type of memory is thought to depend on changes in existing proteins (Tully et al., 
1994). Long-term memory (LTM) can last from days up to the entire lifetime of an animal. 
LTM formation is dependent on both transcription and translation and it is, therefore, 
considered the most costly type of memory (Margulies et al., 2005; Mery & Kawecki, 2005; 
Müller, 2012). As a result, many animal species require multiple conditioning trials, which 
are spaced in time, to induce LTM consolidation. Such repeated learning experiences allow 
animals to evaluate the information before investing in costly LTM (Menzel, 1999). A single 
conditioning trial or massed conditioning trials, i.e. multiple trials without or with a very 
short intertrial interval, typically do not induce LTM formation, but result in the formation 
of ASM and ARM.

There is variation in the number of trials required to form LTM between species 
(Hoedjes et al., 2011). A number of insect species are known to consolidate LTM after a 
single conditioning trial (Smid et al., 2007; Krashes & Waddell, 2008). Ecological factors 
concerning the value of the rewarding or punishing stimulus and the reliability of the 
learned association are considered to determine the number of trials required to form LTM 
(Kruidhof et al., 2012). These factors can vary between species, but also between different 
stimuli. Very little is currently known about genetic and neural factors that are involved in 
natural variation in LTM formation.
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We have studied the genetic basis of variation in LTM formation in the parasitic 
wasp Nasonia vitripennis and its closely related species N. giraulti. Nasonia vitripennis will 
form LTM which lasts at least 6 days after a single conditioning trial in which an odour is 
associated with the reward of a host to parasitize (Hoedjes et al., 2012; Schurmann et al., 
2012; Hoedjes & Smid, 2014). This type of memory becomes visible 4 days after conditioning, 
as demonstrated by inhibition through transcription- and translation-inhibitors (Hoedjes 
& Smid, 2014). Nasonia giraulti, on the other hand, forms only ASM and ARM after a single 
conditioning trial and this memory has disappeared within 2 days. Multiple spaced 
conditioning trials are required to induce long-lasting memory retention (Hoedjes & Smid, 
2014). The genus Nasonia has emerged as a powerful model with unique opportunities 
for genetic studies on inter-species differences (Werren et al., 2010). In a recent study, 
the memory phenotype of N. giraulti was backcrossed into the genetic background of N. 
vitripennis, which revealed two quantitative trait loci (QTL) that control memory retention 
(Hoedjes et al., submitted). In the present study, we compare gene expression patterns in the 
brains of N. vitripennis and N. giraulti before and after conditioning, to provide additional 
information on the genetic regulation of LTM formation. 

The gene expression profiles of both N. vitripennis and N. giraulti were analysed using 
Illumina HiSeq sequencing of RNA extracted from the heads of naïve and conditioned wasps. 
A strand-specific RNA-sequencing protocol was used to identify both sense transcripts and 
antisense transcripts, i.e. a class of long non-coding RNA, which align to sense transcripts in 
the reverse orientation. Sequencing RNA strand-specifically is important considering that 
genes on different strands can overlap (Vanhee-Brossollet & Vaquero, 1998; Katayama et 
al., 2005). This is, to our knowledge, the first study of insect brain transcriptomes that uses 
strand-specific HiSeq sequencing, in order to take antisense transcripts into account. Wasps 
were collected immediately, 4 hours or 24 hours after conditioning to observe temporal 
patterns in expression of genes that are involved in the early and intermediate phases of 
LTM formation. Differential gene expression related to oviposition behaviour will likely be 
observed in heads of both Nasonia species; however, transcripts related to LTM formation 
were expected only in N. vitripennis because this species forms transcription-dependent 
LTM after a single conditioning trial. An alternative hypothesis is that genes that are differ-
entially expressed in N. giraulti but not in N. vitripennis have a role in inhibition of long-term 
memory formation We hypothesize that comparing differential gene expression patterns 
between both species will elucidate genetic pathways responsible for the difference in LTM 
formation between N. vitripennis and N. giraulti. 
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MATERIALS AND METHODS
Insects

Nasonia vitripennis (strain AsymCx) and N. giraulti (strain RV2x(U)) were used in the 
experiments. These strains are completely homozygous and have a sequenced genome 
(Werren et al., 2010). Wasps were reared on Calliphora vomitoria pupae as described by 
Hoedjes et al. (2012). Female wasps were collected on the day of emergence, were provided 
honey and water in a polystyrene rearing vial, and were kept in a climate cabinet at 25oC 
and a photoperiod of 16:8 (L/D).

Conditioning procedure

Female wasps were conditioned using a Pavlovian conditioning assay in which an odour 
(chocolate) is associated with the reward of a host (C. vomitoria pupa) as described by Hoedjes 
et al. (2012). Briefly, wasps were individually given two host pupae (the unconditioned 
stimulus, US) in the well of a 12 well-microtiter plate in the presence of chocolate odour 
(the conditioned stimulus, CS+). Wasps were allowed to drill into the pupae and perform 
host feeding for 1 hour. Oviposition does not take place during this period. Wasps that did 
not initiate drilling within 30 minutes (~5-10%) were removed from the experiment. After 
the 1 hour period, the wasps were gently removed from the hosts and transferred to a 
clean rearing vial. After a 15-minute resting period, wasps were exposed to vanilla odour 
(CS-) for another 15 minutes without a rewarding or punishing stimulus present. After this 
conditioning trial, the wasps were transferred to a rearing vial with access to honey and 
water, and were kept in a climate cabinet as described above. Both N. vitripennis and N. 
giraulti were conditioned using this protocol. Three groups of 30 wasps were (individually) 
conditioned for each species. This was repeated 5 times on different days.

Sample preparation and RNAseq

Groups of 30 wasps were collected for RNA isolation (1) immediately after conditioning, (2) 
4 hours after conditioning or (3) 24 hours after conditioning and (4) (naïve wasps), i.e. wasps 
of the same age that had not been conditioned. Wasps were frozen in liquid nitrogen, heads 
were cut off with a scalpel and collected in a 1.5 ml microcentrifuge tube which was stored 
in liquid nitrogen. RNA was extracted from the heads using the RNeasy Micro Kit (Qiagen, 
Antwerp, Belgium) according to instructions of the manufacturer. A total of 3 biological 
replicates was collected for each of the three treatments and naïve controls, resulting in 
12 samples per Nasonia species. RNA quantity and integrity was measured using a 2100 
Bioanalyzer (Agilent Technologies, Amstelveen, The Netherlands). The RNA concentration 
ranged from 270 – 650 ng/µl and the RNA integrity number (RIN) was between 9.7 and 10 
(Schroeder et al., 2006).
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One microgram total RNA was used for mRNA isolation and subsequent RNAseq 
library preparation following TruSeq Stranded mRNA Sample Preparation Protocol 
(Illumina). In short, mRNA was isolated using oligo dT beads and chemically fragmented 
prior to first strand cDNA synthesis using random hexamer primers. Strand specificity was 
achieved by replacing dTTP with dUTP during Second Strand synthesis and the addition 
of transcription inhibitor Actinomycin D to the First Strand Master Mix. Obtained cDNA 
fragments were used for 3’adenylation and adapter ligation using 24 different barcoded 
adapters, one for each library. Adapter-ligated cDNA was amplified using 15 PCR cycles. 
Quality control of libraries was done using Agilent Bioanalyzer2100 DNA 1000 assays. 
Quantification was performed using Quant-iT PicoGreen dsDNA reagent (Molecular Probes, 
Invitrogen) and a fluorescence plate reader system (Tecan XFluor). Equimolar amounts of 
all 24 libraries were pooled together and were applied on two lanes together with Illumina 
V3 reagents. Paired-end 100 bp sequencing was performed on a HiSeq2000 instrument. 
De-multiplexing of obtained sequences was done using CASAVA 1.8.1. software.

Transcriptome assembly

All reads were quality filtered and adapter trimmed using Cutadapt (version 0.9.5), options: 
-O 10, -n 3, -q 10. Data were then filtered using fastq-mcf, options: -k 5, -q 20, -l 50. 

The reads of all N. vitripennis samples were pooled to assemble the transcriptome de 
novo using Trinity (version r2013-02-15, option: --SS_lib_type RF) (Grabherr et al., 2011). 
The same was done for N. giraulti. The assembled transcripts have names that consist of 
three parts, for example comp100_c0_seq1, of which the first two parts define the “gene” 
name. All transcripts from one “gene” were considered to be alternative splice variants, 
for example comp100_c0_seq1 and comp100_c0_seq2. Transcripts smaller than 200 bp 
and those that had little read support were removed from the transcriptome. The latter 
was done by first mapping the unfiltered reads of each sample individually back to the 
transcriptome using bowtie (version 0.12.7, options: -n 2, -e 99999999, -l 25, -3 0, -a, -m 
200, -I 1, -X 1000, --nofw). The mapped reads were quantified using eXpress (version 1.3.1). 
Using this program, the rounded effective read counts per transcript were extracted. These 
counts were analysed using R (version 2.15.2) and only transcripts with a read count per 
million (CPM) > 1 for at least 3 out of the 12 samples were kept. 

Annotation

Transcripts were annotated by aligning them to the N. vitripennis proteome (Nvit 2.0) or 
NCBI RefSeq database (sept-01-2013) using blastx (options: -max_target_seqs 1, -word_
size 11, e-value 10), which is integrated in the Blast facility of the Centre for BioSystems 
Genomics (CBSG) and Wageningen University (created by Applied Bioinformatics, Plant 
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Research International). Because the mRNA was sequenced strand-specifically, the sense 
or antisense orientation of the aligned transcripts could be deduced.

The transcripts were first aligned to the N. vitripennis proteome. Transcripts that 
scored less than 60% to the N. vitripennis proteome (Nvit2.0) were aligned to the NCBI 
RefSeq database. Protein coding transcripts were defined as sense transcripts if they had 
more than 60% protein alignment length to the N. vitripennis proteome or NCBI RefSeq 
protein database. The transcripts that did not align to a protein with more than 60% protein 
alignment length could be of different origin: (1) sense RNA encoding proteins not present 
in the published proteome databases, (2) sense RNA encoding proteins smaller than 60% 
of the complete protein, for example unknown small splice variants, (3) antisense RNA, 
(4) long non-coding RNA, or (5) misassembles. Point (2) was addressed by also defining all 
transcript variants of a protein-coding (sense) transcript as sense transcripts as well, even 
if they were smaller than 60% if the complete protein. We defined antisense transcripts 
(3) as transcripts with an antisense orientation to a protein with more than 50% protein 
alignment length, or with an antisense orientation to a sense transcript with more 
than 80% antisense transcript alignment length and 95% sequence identity. Antisense 
transcripts that do not align to a protein, but only to a sense transcript likely have a hit 
to an untranslated region of that gene. Transcripts that were not categorized as sense or 
antisense transcripts but aligned to the N. vitripennis genome or NCBI RefSeq nucleotide 
database with more than 80% alignment length and 95% sequence identity are suggested 
to be long non-coding RNA (4). Transcripts without sense, antisense or long non-coding 
label were defined as ‘unknown’ (5) and may include misassembles, but also (anti)sense 
transcripts or long non-coding RNA with insufficient alignment length or identity to known 
sequences. Putative open reading frames (ORFs) were determined for long non-coding and 
unknown transcripts using the script ‘transcripts_to_best_scoring_ORFs.pl’ from Trinity 
(options -m 30 -S). Putative ORFs were defined as an ORF with a 5’start and 3’end and 
minimally 30 amino acids.

Differential expression analysis

Differentially expressed (DE) transcripts in the N. vitripennis and N. giraulti transcrip-
tomes compared to naïve expression levels were identified using EdgeR (version 3.0.8). The 
rounded effective read counts of each sample, extracted from eXpress (version 1.3.1), were 
analysed using a GLM trended dispersion with Pearson correlation with eight degrees of 
freedom (12 samples minus four sample types) and P=0.05, and also taking the replica 
effect into account.

Two complementary analyses were used to analyse the differential gene expression 
patterns of N. vitripennis and N. giraulti. (1) Gene Ontology (GO) enrichment analyses were 
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performed on the transcripts that aligned to the N. vitripennis proteome (Nvit2.0) using 
the Blast2go GUI (using a Fisher’s exact test, P < 0.05) in order to visualize expression 
patterns of functional clusters of genes. GO terms were linked to the Nvit2.0 proteome 
using Blast2GO as described on http://www.hymenopteragenome.org/nasonia/?q= 
evidential_gene_data. Generic GOSlim categories were used to limit the number of GO-term 
categories (Gene Ontology Consortium, jan-10-2014). Enriched GO terms were compared 

Total transcriptome DE transcripts
(a) N. vitripennis # transcripts length (bp) # transcripts length (bp)
protein coding (sense) 22760 75.3% 4076 2175 88.5% 3819
antisense 1525 5.0% 76 3.1%
   with a hit to a protein 730 2.4% 2337 44 1.8% 3236
   with a hit to a sense transcript 596 2.0% 1162 26 1.1% 802
   with a hit to both 199 0.7% 6 0.2%
long non-coding RNA 3245 10.7% 1342 112 4.6% 1512
   with a putative ORF 220 0.7% 10 0.4%
unknown 2693 8.9% 946 95 3.9% 1158
   with a putative ORF 81 0.3% 4 0.2%
Total 30223 3389 2458 3565

(b) N. giraulti # transcripts length (bp) # transcripts length (bp)
protein coding (sense) 23806 80.3% 4004 2008 90.5% 3336
antisense 719 2.4% 30 1.4%
   with a hit to a protein 154 0.5% 1165 4 0.2% 1254
   with a hit to a sense transcript 529 1.8% 846 24 1.1% 561
   with a hit to both 36 0.1% 2 0.1%
long non-coding RNA 2244 7.6% 1381 90 4.1% 1398
   with a putative ORF 190 0.6% 12 0.5%
unknown 2872 9.7% 972 92 4.1% 1138
   with a putative ORF 92 0.3% 2 0.1%
Total 29641 3437 2220 3126

Table 1: Categories of transcripts in the transcriptomes. The number (and percentage of the total 
number of transcripts) and the average length of transcripts classified as ‘protein coding (sense)’, 
‘antisense’, ‘long non-coding RNA’ and ‘unknown’ are given for the total transcriptome and for the 
differentially expressed transcripts (compared to naïve expression) of (a) N. vitripennis and (b) N. 
giraulti. For the ‘antisense’ transcripts, the number of transcripts with a hit to a protein, a sense 
transcript or both is also given. The number of transcripts with a putative ORF is given for ‘long 
non-coding RNA’ and ‘unknown’.
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between N. vitripennis and N. giraulti total and DE transcripts, for different time points 
after conditioning for each individual species, and for antisense transcripts. (2) The gene 
expression patterns of 44 genes that are known from literature to be involved in (long-term) 
memory formation were analysed for both species (Supplementary table 5). The Nasonia 
homolog of a ‘memory’ gene was obtained by aligning the Drosophila melanogaster gene 
sequence to the N. vitripennis genome (Nvit 2.0) using blastn or blastp. 

RESULTS
Transcriptome assembly and annotation

The results of the transcriptome assembly (both filtered and unfiltered) are presented in 
Supplementary Table 1. The majority of the genes in the transcriptomes, respectively 74.7% 
for N. vitripennis and 73.0% for N. giraulti, has a single transcript. Genes with multiple 
splice variants (‘transcripts’) account, however, for 61.7% and 62.0% of all transcripts, 
respectively.

The transcriptomes of N. vitripennis and N. giraulti were analysed for their alignment to 
the publicly available N. vitripennis proteome and genome and to the NCBI RefSeq database. 
Respectively 71.5% and 74.5% of the N. vitripennis and N. giraulti transcripts aligned to an 
N. vitripennis protein with more than 60% protein alignment length. Most of the remaining 
protein coding transcripts, which had no alignment to the published N. vitripennis proteome 
(Nvit2.0), did align to transcripts of other Hymenoptera or even N. vitripennis, showing that 
the published Nvit2.0 proteome is incomplete. The percentages and average length of pro-
tein-coding (sense) transcripts, antisense transcripts, long non-coding RNA and unknown 
transcripts are shown in Table 1 and Figure 1 (a-b). A portion of the long non-coding RNA 

Figure 1: Categories of transcripts in the transcriptomes. The proportion of ‘protein coding 
(sense)’, ‘antisense’, ‘long non-coding RNA’ and ‘unknown’ is shown for (a) N. vitripennis total 
transcriptome (30223 transcripts), (b) N. giraulti total transcriptome (29641 transcripts), (c) 
N. vitripennis differentially expressed (DE) transcripts (2458 transcripts), and (d) N. giraulti DE 
transcripts (2220 transcripts) (DE compared to naïve expression).

N. vitripennis
total transcriptome

N. giraulti
total transcriptome

N. vitripennis
DE transcriptome

N. giraulti
DE transcriptome

a                               b                              c                                d

protein coding (sense)          anti-sense          long non-coding RNA           unknown
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and unknown (i.e. misassembled or misassigned transcripts) contains a putative ORF, 
suggesting these might be (unknown) protein-coding genes. 

Differential gene expression

Differential gene expression was determined 
compared to naïve expression levels for both 
species. The percentages and average length of 
differentially expressed (DE) protein-coding 
(sense) transcripts, antisense transcripts, long 
non-coding RNA and unknown transcripts 
are shown in Table 1 and Figure 1c-d. The 
proportion of sense transcripts is larger in 
the DE transcriptomes than in the complete 
transcriptomes, but a number of antisense 
transcripts, long non-coding RNA and unknown 
transcripts are also differentially expressed. 
An analysis of DE transcripts of each time point 
after conditioning shows that the majority of 
the DE transcripts, i.e. 1,759 transcripts of N. 
vitripennis (71.6%) and 1,678 transcripts of N. 
giraulti (75.6%), are differentially expressed 
at only a single time point (Figure 2), which 
indicates that gene expression patterns are 
different when measured immediately, 4 hours 
or 24 hours after conditioning.

The protein-coding (sense) transcripts 
of N. vitripennis and N. giraulti which had a 
hit to the N. vitripennis proteome (Nvit2.0) 
were compared amongst each other to assess 
differences in gene expression between the 
two species. The majority of the transcripts 
(respectively, 86.1% and 82.9% of the total 
transcriptome) in the transcriptomes of N. 
vitripennis and N. giraulti was observed in 
both species, which indicates a high level of 
similarity in transcripts expressed in the 
brains of both species. However, only 37.8% 
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Figure 2: Differentially expressed genes at 
different time points after conditioning. 
Venn diagrams show the number of genes 
differentially expressed (compared to 
naïve expression) at 0h, 4h and 24h after 
conditioning and how many of them are dif-
ferentially expressed at a single time point or 
at multiple time points. The top row shows 
results for N. vitripennis, the bottom row for 
N. giraulti. Venn diagrams are shown for up- 
(left column) or downregulated transcripts 
(right column).

Figure 3: Shared and unique genes ob- 
served in the N. vitripennis and N. giraulti 
transcriptomes. The number of genes that 
are observed in the transcriptomes of only 
N. vitripennis or N. giraulti and the number 
of shared genes are shown for the entire 
transcriptome (left) and differentially 
expressed transcripts (right).
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and 39.0% of the DE transcripts of, respectively, N. vitripennis and N. giraulti are differen-
tially expressed in both species (Figure 3). This result suggests that there is substantial 
species-specific differential gene expression between N. vitripennis and N. giraulti after 
conditioning. 

GO enrichment analysis of differentially expressed genes

Differentially expressed protein-coding transcripts with a hit to the N. vitripennis proteome 
(Nvit2.0) were analysed using GO enrichment analyses to provide insight into functional 
clusters of genes. Supplementary table 2 shows the complete lists of enriched GO-terms for 
each of the analyses presented in this paragraph.

As presented earlier, a large number of transcripts are differentially expressed only 
in N. vitripennis or N. giraulti. An overrepresentation of GO terms concerning processes 
involved in reproduction, the response to stimuli and a number of metabolic processes was 
observed in the transcripts that are unique for N. vitripennis. Terms concerning processes 
involved in cell cycle, cytoskeleton organization, kinase activity and a number of metabolic 
processes were revealed in transcripts unique to N. giraulti. 

Analyses of up- and downregulated transcripts that are differentially expressed 
immediately (0 hours), 4 hours or 24 hours after conditioning were done for both species 
separately. The most specific GO terms of the category ‘biological process’ are presented 
in Figure 4. When comparing differential expression between the two wasp species 
immediately after conditioning, it is revealed that there is very little overlap with regard to 
enriched GO terms. Most of the terms found in N. vitripennis, both in up- and downregulated 
transcripts, indicate processes related to signal transduction or the response to stimuli. In 
N. giraulti, terms concerning processes involved in the regulation of biological processes, 
structure morphology, cell death and transcription factor activity were observed to be 
upregulated, whereas actin binding and single-organism process are downregulated. 

For both wasp species, the expression patterns observed immediately after 
conditioning have very little functional overlap with those observed at 4 or 24 hours 
after conditioning. Both N. vitripennis and N. giraulti have an overrepresentation of terms 
that indicate that translation of transcripts is upregulated at both 4 and 24 hours after 
conditioning. Terms that indicate a number of metabolic processes, including lipid and 
carbohydrate metabolism, are observed in downregulated transcripts at both time points 
and in both species. Unique enriched GO terms observed in N. vitripennis indicate processes 
involved in the response to an endogenous signal, which is observed among upregulated 
transcripts at 4 hours after conditioning, but among downregulated transcripts at 24 hours 
after conditioning. Enriched terms observed in N. giraulti indicate processes involved in 
cytoskeleton and cell cycle, observed among upregulated transcripts, and homeostasis and 
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cell recognition, observed among downregulated transcripts. These terms are enriched 
only 24 hours after conditioning. 

Enriched GO terms that are unique for N. vitripennis

We hypothesized that genes that are differentially expressed in N. vitripennis but not in 
N. giraulti have a role in long-term memory formation. Differences in differential gene 
expression between the two species are most pronounced immediately after conditioning. 
Enriched GO-terms concerning processed involved in signal transduction or the response 
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Figure 4: GO-enrichment analyses of differentially expressed genes of different time-points 
after conditioning compared to naïve wasps for N. vitripennis and N. giraulti. The Blast2go GUI 
(using a Fisher’s exact test, P < 0.05) was used in order to test expression patterns of functional 
clusters of genes. Generic GOSlim categories were used to limit the number of GO-term categories. 
The most specific GO-terms in the category ‘Biological process’ (as determined using Blast2go) for 
each time point, respectively (a) 0h, (b) 4h, and (c) 24 h after conditioning, are shown in this network 
graph. Each node represents a different GO-term. Not all parental GO-terms and interactions 
between terms are shown in this network graph to simplify the figure. GO-terms at which multiple 
overrepresented GO-terms converge are shown to demonstrate functional patterns. Uncolored 
nodes are not overrepresented, but can be the parent of overrepresented GO-terms. Colored nodes 
are significantly overrepresented (P < 0.05), with the shade indicating significance as shown in the 
color bar. 
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to stimuli are observed exclusively among DE transcripts of N. vitripennis. A literature 
search was carried out for differentially expressed genes, which were clustered in the 
enriched GO-terms ‘signal transduction’ (GO:0007165), ‘response to endogenous stimulus’ 
(GO:0009719) and ‘response to stimulus’ (GO:0050896) immediately after conditioning, 
to identify specific transcripts known to be involved in memory formation. A total of 71 
transcripts (59 genes), were clustered in the GO-terms mentioned (Supplementary table 
3). A total of 40 transcripts was differentially expressed in N. vitripennis, but not in N. 
giraulti, 23 transcripts were differentially expressed in both species, and 8 transcripts 
were not observed in the transcriptome of N. giraulti. The DE transcripts include members 
of signalling cascades regulated by members of the Ras small G protein superfamily. Ras 
is known to activate the mitogen-activated protein kinase (MAPK) signalling pathway and 
the cAMP signalling cascade, which are both essential for long-term memory formation 
(Orban et al., 1999; Eisenhardt, 2006). A total of 9 different transcripts involved in the 
Ras signalling cascade are upregulated or downregulated in N. vitripennis, but not in N. 
giraulti. Ras-related protein Rab-32 (Kawasaki et al., 1998) is upregulated in N. vitripennis, 
but downregulated in N. giraulti. Members of the Rho signalling cascade, a subfamily of the 
Ras superfamily, are also differentially expressed, i.e. SLIT-ROBO Rho GTPase-activating 
protein, still life and TRIO (Sone et al., 1997). Rho signalling is known to be involved in 
dendritic remodelling through organization of the actin cytoskeleton and is also essential for 
long-term memory formation (Threadgill et al., 1997; Bailey et al., 2004). Other genes with 
a known role in long-term memory formation include a glutamate receptor (upregulated), a 
metabotropic glutamate receptor (downregulated) (Riedel et al., 2003; Xia et al., 2005), and 
phosphatidylinositol 3-kinase (PI3KC3) (Yamada & Nabeshima, 2003), which is upregulated 
in N. vitripennis and downregulated in N. giraulti. Epigenetic mechanisms are also known 
to have an important role in memory formation (e.g. Levenson & Sweatt, 2006; Barrett & 
Wood, 2008; Lockett et al., 2010). The lysine-specific histone demethylase 1A was observed 
to be upregulated in N. vitripennis after conditioning, which may indicate a role in memory 
formation. 

Enriched GO terms that are unique for N. giraulti

We hypothesized that genes that are differentially expressed in N. giraulti but not in N. 
vitripennis have a role in inhibition of long-term memory formation. For this reason, enriched 
GO-terms, which were observed exclusively among DE transcripts of N. giraulti were also 
studied. A literature search was carried out for differentially expressed genes, which 
were clustered in the enriched GO-terms ‘regulation of biological process’ (GO:0050789), 
‘anatomical structure morphogenesis’ (GO:0009653), ‘cell death’ (GO:0008219) and 
‘single-organism process’ (GO:0044699) immediately after conditioning. A total of 90 
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transcripts (71 genes), were clustered in the GO-terms mentioned (Supplementary table 4). 
A total of 35 transcripts was differentially expressed in N. giraulti, but not in N. vitripennis, 
31 transcripts were differentially expressed in both species, and 16 transcripts were not 
observed in the transcriptome of N. vitripennis. Transcripts that are DE in N. giraulti, but 
not in N. vitripennis, include a number of genes involved in the regulation of transcription 
(including chromatin complexes subunit BAP18) and 
some genes encoding proteins involved in cytoskeleton 
organization, i.e. talin-1, slingshot, cappuccino, and 
γ-tubulin complex component 2. In addition, a few 
members of Ras/Rho and the MAPK signalling cascades 
are differentially expressed, i.e. Rho guanine nucleotide 
exchange factor, Rab5-activating protein 6, and 
son-of-sevenless, although not as many different genes 
are observed as in N. vitripennis. Also in N. giraulti, genes 
with a known role in LTM formation are differentially 
expressed, i.e. transcription factor CREB A is upregulated 
immediately after conditioning (Margulies et al., 2005; 
Müller, 2012). Two rate-limiting enzymes involved in 
the synthesis of neurotransmitter dopamine, i.e. GTP 
cyclohydrolase 1 and tyrosine 3-monooxygenase, are 
downregulated (Schultz, 2002; Meiser et al., 2013).

Memory gene expression analysis

A total of 44 genes with a known role in (long-term) 
memory formation were studied and 18 of these 
genes were observed to be differentially expressed 
after conditioning in N. vitripennis and/or N. giraulti 
(Supplementary table 5 and Figure 5). A total of 9 genes 
was differentially expressed in N. vitripennis only, 5 
were differentially expressed in N. giraulti only, and 
4 genes were differentially expressed in both species. 
In N. vitripennis 7 genes were upregulated and 6 were 
downregulated, whereas in N. giraulti most of the 
genes were downregulated (6 out of 9 genes). This may 
implicate that long-term memory formation is actively 
inhibited in N. giraulti by downregulation of certain 
‘memory’ genes. 

Gene

aPKC
corkscrew
fasciclin II
FMPR
G-sα60A
hop
linotte
pumilio
staufen
CAMKII
dCREB2
foraging
NF1
NF1
NF1
NMDAR2
dunce
dunce
crammer
dDA1
eIF-5C

0h 4h 24h  0h 4h 24h
NV             NG

<-1.5<  n.s  <1.5<

log2-fold change

Figure 5: Memory genes that are 
differentially expressed after 
conditioning. A total of 18 genes 
(21 transcripts) of the 44 known 
‘memory’ genes are differentially 
expressed after conditioning in N. 
vitripennis and/or N. giraulti. For 
most genes, a single transcript is 
differentially expressed (except 
NF1: 3 transcripts in N. giraulti, 
and dunce: 2 transcripts in N. 
vitripennis). The expression level 
is compared to naïve expression 
is shown for 0, 4 and 24 hours (n.s. 
= not significantly DE, log2-fold 
change shows if a transcript is 
upregulated (< 1.5 or >1.5) or 
downregulated (< -1.5 or > -1.5).
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The cAMP-signalling cascade is an important cascade in the formation of both 
short-term memory (STM) and long-term memory (LTM) (Margulies et al., 2005; 
Eisenhardt, 2006). Transcription factor dCREB2 (cAMP response element binding protein), 
which is essential for LTM formation, is down-regulated in N. giraulti. Another gene in 
this signalling cascade, dunce (cAMP phosphodiesterase), which is also involved in STM, 
was downregulated in N. giraulti, but upregulated in N. vitripennis. Another gene that was 
upregulated in N. vitripennis is corkscrew (SHP2 phosphatase); upregulation of this gene 
in D. melanogaster can shorten the inter-trial interval required for LTM induction and as 
a result massed conditioning trials, instead of multiple conditioning trials that are spaced 
in time, were sufficient for LTM induction (Pagani et al., 2009). Other genes that were 
upregulated in N. vitripennis are aPKC (atypical PKC, known to be involved in ARM), fasciclin 
II (a cell adhesion molecule), FMRP (Fragile-X mental retardation protein), and G-sα60A (a 
stimulatory G-protein) (Keene & Waddell, 2007; Banerjee et al., 2010; Müller, 2012). Among 
the downregulated genes in N. vitripennis are pumilio and staufen, both involved in the 
subcellular localization of mRNA translation (Dubnau et al., 2003), hop (Janus kinase), and 
linotte (RYK tyrosine kinase) (Keene & Waddell, 2007; Copf et al., 2011). Genes that were 
downregulated only in N. giraulti include the NMDA glutamate receptor 2 (Xia et al., 2005) 
and foraging, a cGMP-dependent protein kinase that has large effects on various aspects of 
(learning) behaviour, including STM and LTM formation (Mery et al., 2007a). The calcium/
calmodulin dependent kinase CAMKII (Ashraf et al., 2006) and NF1 (ras GTPase activating 
protein) (Keene & Waddell, 2007) are upregulated in N. giraulti only. Few genes are dif-
ferentially expressed in both species: crammer (trans inhibitors of cathepsins) and dDA1 
(dopamine receptor) are downregulated in both species, eIF-5C (involved in translation) 
was upregulated in both species (Keene & Waddell, 2007).

In conclusion, approximately 40% of the known memory genes that were studied are 
differentially expressed after conditioning in one or both wasp species. Both up- and down-
regulation of genes in a number of signalling pathways is observed in both N. vitripennis 
and N. giraulti. This approach yielded additional information when compared to the GO 
enrichment analysis, showing that both approaches are complementary.

GO enrichment analysis of antisense transcripts

Antisense transcripts can play a role in the regulation of gene expression of their sense 
transcripts (Pelechano & Steinmetz, 2013). Antisense transcripts with a hit to the N. 
vitripennis proteome (Nvit2.0) were analysed using GO enrichment analyses to provide 
insight into functional clusters of genes (results shown in Supplementary table 6). The 
two categories of antisense transcripts were analysed separately: ‘antisense2protein’ 
transcripts that have a hit to a N. vitripennis protein and ‘antisense2sense’ transcripts 
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that have a hit to a sense transcript only (and this sense transcript must have a hit to a 
N. vitripennis protein). GO-enrichment analyses were not carried out for the differentially 
expressed antisense transcripts with a hit the N. vitripennis proteome, because these 
numbers were too small to provide informative results using this analysis (antisense2pro-
tein: 45 from N. vitripennis, 3 from N. giraulti; antisense2sense: 32 from N. vitripennis, 26 
from N. giraulti).

A diverse group of overrepresented GO terms was observed in antisense transcripts 
of both wasp species. For N. vitripennis these terms concern processes involved in lipid 
and DNA metabolism and cytoskeleton organisation in antisense2protein transcripts and 
behaviour in antisense2sense transcripts. For N. giraulti, terms concerning processes 
involved in gene expression were observed in antisense2protein transcripts. Cell-signal-
ling, response to an abiotic stimulus, organelle organization, growth, anatomical structure 
morphogenesis and symbiosis were observed in antisense2sense transcripts. These results 
suggest that antisense transcripts of both N. vitripennis and N. giraulti play a role in diverse 
processes. The terms ‘behaviour’, ‘cell signalling’ and ‘response to an abiotic stimulus’ can 
implicate that part of these antisense transcripts are involved in synaptic processes or 
memory formation. 

An analysis of the 44 known ‘memory’ genes (Supplementary table 5), described 
in the previous paragraph, revealed that 8 of these genes aligned with an antisense 
transcript (Table 2). None of these antisense transcripts were differentially expressed 

Gene/ Gene description antisense transcript ID
transgene N. vitripennis N. giraulti

CAMKII calcium/calmodulin dependent 
kinase II

comp45169_c0_seq1(s) n.a.

crammer trans-inhibitor of cathepsins comp36751_c0_seq2(s/p) n.a.
dunce cAMP phosphodiesterase comp24558_c0_seq1(s) comp281362_c0_seq1(s)

leonardo 14-3-3 zeta protein family n.a. comp18485_c0_seq1(s/p)

NF1 ras GTPase activating protein comp43282_c0_seq1(s) n.a.
radish rap GTPase activating protein n.a. comp28992_c3_seq1(s)

S6KII ribosomal S6 kinase (RSK) comp14791_c0_seq1(s) comp130445_c0_seq1(s)

tequila neurotrypsin comp38985_c0_seq3(s/p) n.a.
comp38985_c0_seq4(s/p)

Table 2: Antisense transcripts that align to memory genes. Antisense transcripts that align to 
known memory genes (see Supplementary table 5) are shown. Antisense transcripts were observed 
to align to 8 of the 44 memory genes tested. A number of these align to a sense transcript only (shown 
as (s)), others align to a protein and a sense transcript (shown as (s/p)).
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after conditioning. These genes are CAMKII, crammer, dunce, leonardo, NF1, radish, S6KII 
and tequila. For the majority of these genes, an antisense transcript is detected from only 
one species (4 from N. vitripennis only, 2 from N. giraulti only). For only two of the memory 
genes an antisense transcript of both N. vitripennis and N. giraulti was observed. All 11 
observed antisense transcripts have a hit to a sense transcript, but 4 transcripts have 
a hit to a protein as well. This result corresponds with results from the GO-enrichment 
analyses, which indicate that interesting terms concerning ‘behaviour’, ‘cell signalling’ and 
‘response to an abiotic stimulus’ were overrepresented in antisense2sense transcripts only. 
It suggests that antisense transcripts align more often to untranslated regions of known 
memory genes than to protein-coding regions.

DISCUSSION
Differential gene expression after conditioning

The aim of this study was to identify genetic pathways that are responsible for the difference 
in LTM formation between the closely related parasitic wasp species N. vitripennis and 
N. giraulti by studying differential gene expression after a single conditioning trial. The 
results show that there are substantial differences in the differentially expressed genes 
between the two species, especially when compared immediately after conditioning. LTM 
formation requires at least two waves of transcriptional activity that occur during or 
shortly after conditioning and several hours after conditioning, respectively (Barzilai et al., 
1989; Alberini, 2009). Our results demonstrate that differential gene expression patterns 
differ substantially between the two Nasonia species immediately after conditioning, 
a procedure that lasts in total 1.5 hour in our experiment. This early differential gene 
expression is likely important for the initiation, or inhibition, of LTM formation after a 
single conditioning trial. Differences in differential gene expression between N. vitripennis 
and N. giraulti are also observed at 4 and 24 hours after conditioning, which may indicate 
that processes involved in the initiation or inhibition of LTM formation continue for hours 
up to at least a day after conditioning.

GO enrichment analyses demonstrated that terms involved in signalling are over-
represented in N. vitripennis, whereas terms involved in regulation and cell morphology 
are overrepresented in N. giraulti. An analysis of these ‘signalling’ and ‘regulatory/
cell morphology’ genes was done in both species. A number of genes, with a known role 
in LTM formation, were differentially expressed in N. vitripennis only and these genes 
are likely involved in the ongoing process of LTM formation in this species. These genes, 
which belong to various genetic pathways, may be responsible for the difference in LTM 
formation between N. vitripennis and N. giraulti. In addition to differential gene expression 
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involved in LTM formation, a gene known to be involved in ARM formation, aPKC (Müller, 
2012), was upregulated in N. vitripennis, but not in N. giraulti. In N. vitripennis two types 
of ARM are distinguished (Schurmann et al., 2012). One type is observed from an hour 
up to at least a day after conditioning, a type that is likely also formed in N. giraulti. A 
second type of ARM, which can be blocked by ethacrynic acid, is observed at 72 hours after 
conditioning (Schurmann et al., 2009). The observed differential expression of aPKC in N. 
vitripennis may be related to the formation of this type of ARM. Both up- and downregu-
lation of ‘memory’ genes is observed at approximately equal numbers, which may point 
to activation of positive regulatory mechanisms, as well as the removal of LTM inhibitory 
mechanisms (Abel & Kandel, 1998). This result differs from a recent transcriptome study 
in honeybee brains after conditioning, which suggested that downregulation of gene 
expression is predominant after conditioning (Wang et al., 2013). The results from this 
study are, however, difficult to compare to our study, due to differences in conditioning 
procedure, timing of sample collection and the fact that the honeybees were tested for 
memory retention before RNA extraction. 

A number of genes with a known role in LTM formation were differentially expressed 
in N. giraulti only. This species does not form LTM after a single conditioning trial and these 
differentially expressed genes may rather be part of an active inhibitory mechanism of LTM 
formation in this species. A targeted approach, in which differential gene expression of 44 
known memory genes was investigated, confirms that differential expression of memory 
genes occurs in both species. These memory genes are often, but not always, downregulated 
in N. giraulti. Two genes involved in dopamine neurotransmitter synthesis, i.e. GTP cyclo-
hydrolase 1 and tyrosine 3-monooxygenase (tyrosine hydroxylase), are downregulated 
immediately after conditioning in N. giraulti and an attractive hypothesis is that these 
genes have a role in the inhibition of LTM in this species. Dopamine has been widely shown 
to be important for memory formation, but different subsets of dopaminergic neurons with 
distinct functions have been reported, different dopaminergic receptors have different 
functions, and inhibition of dopamine signalling has been reported to abolish, but also 
enhance LTM formation (Berry et al., 2012; Klappenbach et al., 2013; Waddell, 2013). This 
example shows that it is difficult to predict effects of differential gene expression in whole 
brains on (long-term) memory formation.

In this study, differential gene expression patterns after conditioning, compared 
to naïve expression levels, were compared among two species with a different memory 
performance. Few other studies have compared gene expression levels between naïve 
animals that differ in their memory performance. Pravosudov et al. (2013) report on two 
populations of chickadees that differ in spatial memory performance and Armbrecht et al. 
(2014) compared control mice and mice with impaired memory performance. These studies 
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report differences in gene expression in various genes, including genes in the Ras-MAPK 
pathway and glutamate receptors in the chickadees, and genes in the Ras-MAPK and PI3K 
signalling pathways in mice. Differences in the expression patterns of these same genes 
and genetic pathways were observed between N. vitripennis and N. giraulti, which could 
indicate that these genes have an evolutionary conserved role in regulating variation in 
memory.

There are not only differences in differential gene expression between N. vitripennis 
and N. giraulti, but also similarities. A number of genes involved in signalling pathways and 
memory formation are differentially expressed in both Nasonia species. An upregulation 
of genes involved in translation is observed in both species at 4 and 24 hours after 
conditioning, whereas various metabolic pathways are then downregulated, including 
lipid and carbohydrate metabolism. A number of these genes may be involved in STM or 
ARM formation, which do not depend on transcription during or shortly after conditioning 
(Margulies et al., 2005), but may induce differential gene expression during or after their 
formation. In addition, genes involved in processes that have been induced by contact with 
the host during conditioning may be observed in both Nasonia species. During conditioning, 
the wasps will touch, evaluate and typically also feed from the host haemolymph, which 
induces the formation of eggs that are required for future oviposition. A recent study 
in N. vitripennis females indicated a downregulation of various metabolic processes in 
ovipositing females compared to resting females (Pannebakker et al., 2013). It is, however, 
difficult to compare our data to this study, because oviposition did not take place during 
our procedure and we used heads, not whole bodies as Pannebakker et al. (2013) did.

Alternative splicing

Alternative splicing is detected in large numbers of multi-exon genes and is known to 
be important for protein function, especially in neuronal genes (Lipscombe, 2005). In 
addition, neuronal activity can also induce alternative splicing (Hermey et al., 2013). For 
the transcription factor CREB, important for LTM formation, both inhibiting and activating 
transcript variants have been described and the balance of different transcript variants 
determines the number of trials required to initiate LTM consolidation in D. melanogaster 
(Yin et al., 1994; Tubon et al., 2013). Different splice variants of FMRP in D. melanogaster are 
thought to be involved in STM and LTM, respectively (Banerjee et al., 2010). Information on 
splice variants is, therefore, crucial for understanding gene functioning, but reliable and 
accurate determination of splice variants is challenging due to the small length of HiSeq reads 
that were analysed in this study. Multiple splice variants were detected for approximately 
25% of all genes in the (head) transcriptomes of N. vitripennis and N. giraulti and for the 
majority of the studied memory genes (33 out of 44). For many differentially expressed 
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genes, only a single splice variant is actually differentially expressed. In a number of other 
differentially expressed genes, one or more transcripts are upregulated, whereas others 
are downregulated. In addition, temporal expression patterns can be different for different 
splice variants. These results indicate the importance of precise splice variant information 
on the interpretation of gene function. Further studies on the function of individual splice 
variants of interesting genes detected in this study are necessary to interpret differences 
in memory formation between our species.

Non-coding sequences

Sequences that do not encode proteins have important roles in the regulation of gene 
expression (Mattick, 2003; Pelechano & Steinmetz, 2013). In this study we focused mainly 
on antisense RNA (a class of long non-coding RNA, which aligns to a sense transcripts in the 
reverse orientation), although other long non-coding RNAs (> 200 bp in length) were also 
distinguished. Smaller non-coding RNAs were mostly lost during RNA isolation and were 
not studied. 

The importance of antisense transcripts for gene regulation has only recently been 
recognized (Pelechano & Steinmetz, 2013) and novel methods for strand-specific Illumina 
Hi-Seq sequencing now allow transcriptome-wide studies on the expression of these 
transcripts. Antisense transcripts regulate transcription of their sense transcripts, but 
also of neighbouring genes; they regulate alternative splicing and affect mRNA stability 
and translation efficiency (Pelechano & Steinmetz, 2013). Antisense transcripts can affect 
chromatin structure and DNA methylation, which are also known to be important for 
alternative splicing and transcription regulation in the brain and for memory formation 
specifically (Li-Byarlay et al., 2013; Levenson & Sweatt, 2006). A total of 5.0% (1525) and 
2.4% (719) of all transcripts were classified as antisense transcripts in N. vitripennis and 
N. giraulti, respectively. The actual number of antisense transcripts may be higher, because 
only transcripts with a high percentage of alignment length and identity were classified as 
‘antisense transcript’ and others were classified as ‘long non-coding RNA’ or ‘unknown’. An 
interesting observation is that 47.9% (730) and 21.4% (154) of these N. vitripennis and N. 
giraulti antisense transcripts, respectively, only align to a known protein, but not a sense 
transcript in the transcriptome, which may suggest that these sense transcripts have 
been silenced. The majority of the remaining antisense transcripts (i.e. 75.0% (596) and 
93.6% (529), respectively) align to a sense transcript, but not to a protein, which indicates 
that these transcripts are likely located in the untranslated regions of protein-coding 
transcripts. GO enrichment analyses of this group of antisense transcripts revealed an 
overrepresentation of genes involved in ‘behaviour’ and ‘signalling’, which hints towards a 
role in the regulation of memory formation related genes. In addition, antisense transcripts 
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were observed for 8 out of 44 known memory genes that were studied, but none of these 
antisense transcripts are differentially expressed after conditioning. Although the 
significance of these observations remains to be investigated, they also hint towards a role 
of antisense transcripts in the regulation of long-term memory formation.

Conclusion

Learning and memory formation have an important role in animal and human behaviour 
and variation in memory formation is believed to reflect adaptations to species-specific 
ecological constraints. Studies on the genetic basis of natural variation in memory between 
animal species are necessary to understand the evolution of this variation. Our results 
demonstrate that there are substantial differences in differential gene expression in the 
brains of two closely related wasp species after single trial conditioning, which induces 
transcription-dependent LTM in only one of the two species. Various genes, with a known 
role in LTM formation, from different genetic pathways are up- or downregulated in N. 
vitripennis and point towards a role in the ongoing process of LTM formation in this species. 
However, differential expression of known (long-term) memory genes is also observed in 
N. giraulti, which does not form LTM after a single conditioning trial. This may suggest that 
LTM is actively inhibited in this species by components of known LTM genetic pathways. 
Alternative splicing is prominent in the Nasonia brain transcriptomes, including in known 
memory genes. Considering that different splice variants can have distinctly different 
roles in the formation of (long-term) memory, future studies should take the function and 
relative proportions of splice variants into account in order to understand the significance 
of differential gene expression patterns. Our study, furthermore, demonstrates that 
a significant proportion of the transcriptomes consists of non-coding RNA, including 
antisense transcripts. Antisense transcripts were observed for a number of known memory 
genes. Our results suggest that antisense transcripts have a role in the regulation of memory 
genes and may affect transcription, alternative splicing and translation. In conclusion, this 
study presents an extensive overview of both sense transcripts and non-coding transcripts 
that can be involved in variation in LTM formation between animal species. Many differ-
entially expressed genes that were observed in this study have a known role in memory 
formation and future studies on regulation of these genes, including epigenetic regulation, 
the function of specific splice variants, and spatial expression patterns in the brain will 
provide insight on how these genes are also involved in variation in memory formation. 
This is important for understanding the evolution of variation in memory formation, but it 
can also provide novel insights for studies on (treatments for) neurodegenerative diseases, 
in which known memory genes are involved as well.  



121

Learning-induced gene expression

ACKNOWLEDGEMENTS
This study was supported by the NWO/ALW Open Competition grant 819.01.011 (to H.M.S.) 
& NWO/ALW Ecogenomics grant 844.10.002 (to L.E.M.V). We are grateful to Jacintha Ellers 
and Dave Wheeler for discussions on analysing the transcriptome data and to Mattias 
de Hollander, Thomas van Gurp and Henri van de Geest for installing and use of the data 
analysis software.



122

Chapter 7

SUPPLEMENTARY INFORMATION

Supplementary table 1: Transcriptome analysis statistics. The numbers of reads before and 
after quality filtering and adapter trimming are shown, together with statistics of the de novo 
transcriptome assemblies for both N. vitripennis and N. giraulti. These statistics include the number 
of ‘Genes’ and the number of ‘Transcripts’ both before and after filtering (> 1 cpm for at least 3 
samples). The definition of ‘Genes’ and ‘Transcripts’ has been described in the materials and methods 
section. The number of ‘Genes’ with either a single or multiple splice variant (‘Transcripts’) is also 
given. The transcriptome size in bp (i.e. the combined length of the ‘Genes’), the N50 (the number of 
transcripts with the largest sizes which together make up for half the transcriptome) and maximum 
transcript length were determined from the filtered transcripts.

N. vitripennis N. giraulti

Raw reads 294,289,458 294,210,825

Filtered reads 218,100,037 220,260,984

Unfiltered ‘Genes’ 92,097 82,351

Unfiltered ‘Transcripts’ 139,448 129,06

Filtered ‘Genes’ 15,789 15,453

    Single splice variant 11,574 11,274

    Multiple splice variants 4,215 4,179

Filtered ‘Transcripts’ 30,223 29,641

Transcriptome size (bp) 33,232,483 32,353,139

N50 4,949 5,019

Maximum transcript length 48,825 49,445
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Supplementary table 2: Enriched GO-terms in differentially expressed protein-coding 
transcripts. GO-enrichment analyses of differentially expressed genes of different time-points after 
conditioning compared to naïve wasps for N. vitripennis and N. giraulti. Blast2go (Fisher’s exact test, 
P < 0.05) was used to visualize expression patterns of functional clusters of genes. Generic GOSlim 
categories were used to limit the number of GO-term categories and the most specific terms were 
determined using Blast2Go. The enriched GO-terms (GO-ID and Term) that are up- or down-regu-
lated, the category of the GO term (C = cellular component, F = molecular function, P = biological 
process), their P-value and the number of genes in the test-set and the reference-set are given. 

Differentially expressed transcripts unique for N. vitripennis 
GO-ID Category Term P-Value #Test #Ref

GO:0003824 F catalytic activity 3,62E-04 280 2071

GO:0005509 F calcium ion binding 2,29E-03 21 85

GO:0009719 P response to endogenous stimulus 4,07E-03 11 33

GO:0008289 F lipid binding 2,25E-02 12 50

GO:0005102 F receptor binding 2,25E-02 12 50

GO:0000003 P reproduction 3,57E-02 43 275

GO:0006629 P lipid metabolic process 3,70E-02 19 101

GO:0019748 P secondary metabolic process 4,79E-02 5 15

Differentially expressed transcripts unique for N. giraulti 
GO-ID Category Term P-Value #Test #Ref

GO:0000166 F nucleotide binding 1,55E-05 109 731

GO:0006259 P DNA metabolic process 2,59E-04 25 108

GO:0007049 P cell cycle 3,81E-04 45 257

GO:0009058 P biosynthetic process 5,20E-03 70 512

GO:0007010 P cytoskeleton organization 1,04E-02 33 211

GO:0008135 F translation factor activity, nucleic acid 
binding

1,07E-02 13 59

GO:0019538 P protein metabolic process 1,89E-02 96 785

GO:0030234 F enzyme regulator activity 3,17E-02 20 124

GO:0003774 F motor activity 3,32E-02 7 28

GO:0030246 F carbohydrate binding 3,48E-02 6 22

GO:0016301 F kinase activity 4,91E-02 45 348

N. vitripennis 0H after conditioning - Upregulated
GO-ID Category Term P-Value #Test #Ref

GO:0005509 F calcium ion binding 1,32E-03 10 96

GO:0007165 P signal transduction 5,32E-03 30 584

GO:0005215 F transporter activity 2,57E-02 18 344



124

Chapter 7

GO:0005811 C lipid particle 2,74E-02 6 70

GO:0009719 P response to endogenous stimulus 4,37E-02 4 40

N. vitripennis 0H after conditioning - Downregulated
GO-ID Category Term P-Value #Test #Ref

GO:0050896 P response to stimulus 1,84E-02 33 936

GO:0016032 P viral process 3,74E-02 2 11

GO:0004871 F signal transducer activity 4,81E-02 5 78

N. vitripennis 4H after conditioning - Upregulated
GO-ID Category Term P-Value #Test #Ref
GO:0005840 C ribosome 1,27E-14 32 78

GO:0006412 P translation 2,08E-11 42 186

GO:0005198 F structural molecule activity 1,90E-09 33 142

GO:0003723 F RNA binding 1,89E-04 28 200

GO:0005730 C nucleolus 2,49E-03 13 77

GO:0000003 P reproduction 4,36E-03 31 287

GO:0008283 P cell proliferation 1,37E-02 13 97

GO:0009719 P response to endogenous stimulus 1,46E-02 7 37

GO:0005215 F transporter activity 4,10E-02 30 332

N. vitripennis 4H after conditioning - Downregulated
GO-ID Category Term P-Value #Test #Ref
GO:0005811 C lipid particle 7,62E-04 10 66
GO:0016787 F hydrolase activity 1,30E-03 54 866
GO:0005975 P carbohydrate metabolic process 2,24E-03 13 120
GO:0005764 C lysosome 1,98E-02 3 12
GO:0019748 P secondary metabolic process 4,29E-02 3 17
GO:0006629 P lipid metabolic process 4,84E-02 9 111

N. vitripennis 24H after conditioning - Upregulated
GO-ID Category Term P-Value #Test #Ref

GO:0005840 C ribosome 1,51E-50 63 47

GO:0005198 F structural molecule activity 6,01E-35 63 112

GO:0006412 P translation 3,64E-29 65 163

GO:0005811 C lipid particle 2,37E-07 18 58

GO:0005829 C cytosol 5,32E-03 17 130
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GO:0003723 F RNA binding 7,22E-03 23 205

N. vitripennis 24H after conditioning - Downregulated
GO-ID Category Term P-Value #Test #Ref

GO:0005509 F calcium ion binding 6,26E-06 18 88

GO:0003824 F catalytic activity 2,03E-05 155 2196

GO:0019748 P secondary metabolic process 3,98E-05 7 13

GO:0005975 P carbohydrate metabolic process 4,41E-04 17 116

GO:0005811 C lipid particle 1,65E-03 11 65

GO:0016209 F antioxidant activity 2,49E-03 4 8

GO:0006629 P lipid metabolic process 3,35E-03 14 106

GO:0008289 F lipid binding 4,21E-03 9 53

GO:0009719 P response to endogenous stimulus 6,77E-03 7 37

GO:0019825 F oxygen binding 7,73E-03 2 1

GO:0009056 P catabolic process 1,06E-02 30 346

GO:0008092 F cytoskeletal protein binding 1,81E-02 14 132

GO:0006091 P generation of precursor metabolites and 
energy

2,57E-02 10 86

N. giraulti 0H after conditioning - Upregulated
GO-ID Category Term P-Value #Test #Ref

GO:0003700 F sequence-specific DNA binding 
transcription factor activity

4,50E-04 11 166

GO:0003677 F DNA binding 5,12E-04 16 322

GO:0000166 F nucleotide binding 5,80E-03 26 814

GO:0050789 P regulation of biological process 6,89E-03 38 1362

GO:0008219 P cell death 2,16E-02 8 175

GO:0009653 P anatomical structure morphogenesis 3,73E-02 18 597

GO:0005215 F transporter activity 4,77E-02 12 362

N. giraulti 0H after conditioning - Downregulated
GO-ID Category Term P-Value #Test #Ref

GO:0003779 F actin binding 2,34E-02 4 84

GO:0044699 P single-organism process 4,89E-02 31 1897

N. giraulti 4H after conditioning - Upregulated
GO-ID Category Term P-Value #Test #Ref

GO:0005730 C nucleolus 1,29E-06 16 80
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GO:0008135 F translation factor activity, nucleic acid 
binding

1,40E-04 11 61

GO:0000166 F nucleotide binding 1,57E-04 55 785

GO:0006412 P translation 3,24E-04 21 205

GO:0006139 P nucleobase-containing compound metabolic 
process

5,31E-03 37 556

N. giraulti 4H after conditioning - Downregulated
GO-ID Category Term P-Value #Test #Ref

GO:0005975 P carbohydrate metabolic process 7,16E-06 16 117

GO:0006629 P lipid metabolic process 1,58E-02 9 108

GO:0006091 P generation of precursor metabolites and 
energy

2,11E-02 8 95

GO:0019748 P secondary metabolic process 3,13E-02 3 18

GO:0005811 C lipid particle 4,28E-02 6 71

GO:0016787 F hydrolase activity 4,74E-02 40 889

N. giraulti 24H after conditioning - Upregulated
GO-ID Term P-Value #Test #Ref

GO:0005840 C ribosome 4,44E-47 65 45

GO:0006412 P translation 1,74E-42 86 140

GO:0005198 F structural molecule activity 6,01E-33 68 113

GO:0007049 P cell cycle 7,24E-07 46 256

GO:0008135 F translation factor activity, nucleic acid 
binding

1,01E-05 17 55

GO:0005829 C cytosol 1,36E-05 26 120

GO:0005811 C lipid particle 9,83E-05 16 61

GO:0000166 F nucleotide binding 4,63E-03 80 760

GO:0005694 C chromosome 8,43E-03 17 108

GO:0007010 P cytoskeleton organization 9,75E-03 28 216

GO:0006259 P DNA metabolic process 1,52E-02 17 116

GO:0009055 F electron carrier activity 2,65E-02 5 19

GO:0005730 C nucleolus 4,40E-02 12 84

N. giraulti 24H after conditioning - Downregulated
GO-ID Category Term P-Value #Test #Ref

GO:0005509 F calcium ion binding 2,07E-04 13 86

GO:0005975 P carbohydrate metabolic process 3,78E-04 15 118
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GO:0003774 F motor activity 2,89E-03 6 29

GO:0006629 P lipid metabolic process 9,15E-03 11 106

GO:0005811 C lipid particle 1,42E-02 8 69

GO:0005215 F transporter activity 2,16E-02 24 350

GO:0052689 F carboxylic ester hydrolase activity 3,16E-02 2 5

GO:0019725 P cellular homeostasis 3,26E-02 6 52

GO:0008037 P cell recognition 3,49E-02 5 39
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Learning-induced gene expression
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Supplementary table 5: Differential expression of known memory genes after conditioning. 
(a) The gene expression patterns of 44 genes that are known from literature to be involved in 
(long-term) memory formation were analysed for both species (Keene & Waddell, 2007) (a), (Alberini, 
2009) (b), (Pagani et al., 2009) (c), (Hirano et al., 2013) (d), (Banerjee et al., 2010) (e), (Mery et al., 2007a) 
(f), (Copf et al., 2011) (g), Shuai et al., 2010 (h)). The N. vitripennis (OGS2.0) homolog of each memory gene 
was determined by aligning the D. melanogaster gene sequence to the N. vitripennis genome (Nvit 2.0) 
using blastn or blastp. The number of transcripts that was observed in the transcriptome is given 
for each gene. Also, the differential expression pattern after conditioning is given, compared to naïve 
expression levels (not DE = not differentially expressed, n.a. = not observed in the transcriptome, ↑ 
= upregulated, ↓ = downregulated). (b) 18 genes were differentially expressed in N. vitripennis (NV) 
and/or N. giraulti (NG) after conditioning. For each DE transcript, the log2-CPM (count per million, a 
measure for abundance of the transcript), log2-fold change (FC), and the level of significance (P) of 
the DE transcript are given for all time points after conditioning’. This information is not given for 
transcripts of the same gene that are not differentially expressed.

a. Genes known to be involved in (long-term) memory formation
 Gene/ # isoforms DE pattern

transgene Gene description OGS2.0 ID NV NG NV NG

aPKC (a) atypical protein kinase C Nasvi2EG010162 5 3 ↑4h,24h not DE

CAMKII (b) calcium/calmodulin 
dependent kinase II

Nasvi2EG036901 16 15 not DE ↑0h,4h,24h

Corkscrew (c) SHP2 phosphatase Nasvi2EG012844 2 2 ↑4h not DE

Crammer (b) trans-inhibitor of 
cathepsins

Nasvi2EG034880 2 2 ↓4h,24h ↓4h

dCREB2 (b) cAMP response element 
binding protein

Nasvi2EG004930 11 9 not DE ↓4h,24h

dDA1 (a) dopamine receptor  Nasvi2EG001652 8 5 ↓4h ↓4h

Dunce (a) cAMP phosphodiesterase Nasvi2EG011498 10 7 ↑4h ↓4h

eIF-5C (a) elongation initiation 
factor-5C

Nasvi2EG002237 1 1 ↑4h ↑24h

fasciclin II (a) neural cell adhesion 
molecule

Nasvi2EG000400 6 6 ↑0h,4h,24h not DE

FMRP (e) fragile X mental 
retardation protein

Nasvi2EG013697 8 9 ↑0h not DE

foraging (f) cGMP dependent protein 
kinase

Nasvi2EG004831 2 2 not DE ↓24h

G-sα60A (a) stimulatory G protein Nasvi2EG010676 2 1 ↑24h not DE

hop (g) Janus tyrosine kinase Nasvi2EG014300 2 2 ↓0h not DE

linotte (a) RYK tyrosine kinase 
receptor

Nasvi2EG007570 2 1 ↓0h not DE

NF1(a) ras GTPase activating 
protein

Nasvi2EG011800 4 7 not DE ↑24h

NMDAR2 (a) glutamate receptor 
subunit

Nasvi2EG012232 6 5 not DE ↓4h
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pumilio (a) RNA binding protein Nasvi2EG006115 5 4 ↓4h not DE

staufen (a) mRNA translocation Nasvi2EG013994 3 2 ↓0h not DE

armitage (a) SDE3 helicase Nasvi2EG003373 2 1 not DE not DE

C/EBP (b) CCAAT-enhancer binding 
protein

Nasvi2EG010468 0 1 n.a. not DE

CBP/p300 (b) CREB binding protein/
p300

Nasvi2EG004485 15 5 not DE not DE

CRTC (d) cAMP-regulated transcrip-
tional cofactor

Nasvi2EG020434 8 15 not DE not DE

damb (a) dopamine receptor Nasvi2EG017876 2 6 not DE not DE

DC0 (a) PKA catalytic subunit Nasvi2EG014242 1 1 not DE not DE

ERK-A (b) extracellular signal-re-
lated kinase

Nasvi2EG002789 1 2 not DE not DE

latheo (a) origin recognition complex Nasvi2EG008683 1 1 not DE not DE

leonardo (a) 14-3-3 zeta protein family Nasvi2EG004640 1 1 not DE not DE

nalyot (a) adf1 transcription factor Nasvi2EG008127 0 0 n.a. n.a.

nebula (a) calcineurin inhibitor Nasvi2EG014610 5 5 not DE not DE

NMDAR1 (a) glutamate receptor 
subunit

Nasvi2EG000002 4 4 not DE not DE

Notch (a) Notch receptor Nasvi2EG009801 3 5 not DE not DE

oamb (a) octopamine receptor Nasvi2EG003445 1 4 not DE not DE

oskar (a) translation control Nasvi2EG013571 1 1 not DE not DE

p38 MAPK (b) mitogen activated protein 
kinase

Nasvi2EG000447 8 8 not DE not DE

PKA-RI (a) cAMP dependent protein 
kinase 1 

Nasvi2EG005068 2 2 not DE not DE

Rac1 (h) Rho family GTPase Nasvi2EG000948 1 1 not DE not DE

radish (a) Rap GTPase activating 
protein

Nasvi2EG000376 2 2 not DE not DE

rutabaga (a) adenylyl cyclase (type 1) Nasvi2EG013346 2 5 not DE not DE

S6KII (a) ribosomal S6 kinase (RSK) Nasvi2EG013142 1 1 not DE not DE

Stat92E (g) STAT transcription factor Nasvi2EG007751 2 2 not DE not DE

synapsin (a) presynaptic vesicle protein Nasvi2EG017400 4 4 not DE not DE

Tbh (a) tyramine beta- hydroxilase Nasvi2EG012708 1 1 not DE not DE

tequila (a) neurotrypsin Nasvi2EG010908 3 4 not DE not DE

volado (a) α-integrin Nasvi2EG012335 1 1 not DE not DE
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b. Differentially expressed memory genes
 Gene/ N. vitripennis NV NV 0h NV 4h NV 24h

transgene Transcript ID CPM FC P FC P FC P

aPKC comp35553_c1_seq4 3,88 0,95 3,17E-03 1,07 9,73E-04 0,99 2,09E-03

corkscrew comp32621_c0_seq1 7,17 0,27 2,96E-02 0,49 5,03E-05 0,23 6,05E-02

fasciclin II comp34025_c1_seq3 5,59 0,63 1,03E-04 0,68 2,39E-05 0,62 1,15E-04

FMRP comp34913_c0_seq6 5,12 0,67 6,65E-04 0,13 5,12E-01 0,06 7,57E-01

G-sα60A comp35901_c1_seq2 0,05 -6,88 1,83E-03 1,87 3,97E-02 3,62 2,05E-04

hop comp25200_c0_seq2 2,3 -2,92 7,40E-07 -1,06 5,52E-02 -1,13 3,79E-02

linotte comp33720_c1_seq2 1,24 -5,95 2,78E-07 0,82 3,44E-01 1,25 8,49E-02

pumilio comp38467_c2_seq2 6,06 0,1 4,94E-01 -0,6 3,05E-05 -0,25 7,46E-02

staufen comp32934_c0_seq2 4,19 -1,51 3,38E-07 -0,44 1,23E-01 -0,73 1,10E-02

dunce comp32729_c1_seq5 5,71 0,23 1,39E-01 0,64 3,83E-05 0,38 1,47E-02

comp34929_c0_seq3 0,55 2,1 8,10E-03 3,49 1,53E-05 1,82 2,04E-02

crammer comp32552_c0_seq1 8,44 -0,17 9,97E-02 -0,81 2,09E-15 -0,57 1,72E-08

dDA1 comp37078_c0_seq2 2,89 -0,18 6,69E-01 -1,38 1,79E-03 0,41 3,19E-01

eIF-5C comp40716_c0_seq1 7,66 -0,01 9,34E-01 0,4 3,71E-04 0,03 8,00E-01

Gene/ N. giraulti NG NG 0h NG 4h NG 24h

Transgene Transcript ID CPM FC P FC P FC P

CAMKII comp34936_c1_seq35 -0,78 7,56 4,91E-04 9,81 1,09E-06 7,62 3,86E-04

dCREB2 comp32151_c0_seq1 2,27 -1,15 1,60E-01 -3,67 1,24E-05 -6,19 8,08E-14

foraging comp22710_c0_seq2 4,03 -0,56 8,65E-02 -0,33 3,16E-01 -1,05 1,72E-03

NF1 comp33011_c0_seq3 3,83 0,22 5,45E-01 -0,33 3,65E-01 1,78 7,03E-06

comp33011_c0_seq5 3,03 1,28 4,62E-03 0,65 1,39E-01 2,15 2,41E-06

comp33011_c0_seq6 5,08 0,13 5,91E-01 0,37 1,33E-01 1,99 7,32E-15

NMDAR2 comp30975_c0_seq3 0,74 0,55 4,51E-01 -2,31 9,22E-04 0,94 1,93E-01

dunce comp34739_c4_seq3 5,36 -0,33 1,21E-01 -0,76 4,53E-04 -0,64 2,93E-03

crammer comp21791_c0_seq1 7,15 -0,33 4,23E-02 -0,71 1,48E-05 -0,41 1,09E-02

dDA1 comp32875_c0_seq2 2,44 -0,1 8,47E-01 -4,38 8,59E-12 -0,34 5,34E-01
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Supplementary table 6: Enriched GO-terms in antisense transcripts. GO-enrichment analyses 
of antisense transcripts for N. vitripennis and N. giraulti. The two categories of antisense transcripts 
were analysed separately: ‘antisense2protein’ transcripts that have a hit to a N. vitripennis protein 
and ‘antisense2sense’ transcripts that have a hit to a sense transcript only. The Blast2go GUI 
(Fisher’s exact test, P < 0.05) was used to visualize expression patterns of functional clusters of 
genes. Generic GOSlim categories were used to limit the number of GO-term categories and the most 
specific terms were determined using Blast2Go. The enriched GO-terms (GO-ID and Term) that are 
up- or down-regulated, the category of the GO term (C = cellular component, F = molecular function, 
P = biological process), their P-value and the number of genes in the test-set and the reference-set 
are given. 

N. vitripennis antisense2protein transcripts
GO-ID Category Term P-Value #Test #Ref

GO:0005929 C cilium 6,12E-03 3 13

GO:0006629 P lipid metabolic process 8,13E-03 8 112

GO:0005578 C proteinaceous extracellular matrix 2,29E-02 2 8

GO:0007010 P cytoskeleton organization 2,96E-02 11 229

GO:0004518 F nuclease activity 3,48E-02 3 27

GO:0005777 C peroxisome 3,79E-02 2 11

GO:0006259 P DNA metabolic process 3,98E-02 7 125

N. vitripennis antisense2sense transcripts
GO-ID Category Term P-Value #Test #Ref

GO:0005929 C cilium 1,85E-02 4 12

GO:0005578 C proteinaceous extracellular matrix 2,47E-02 3 7

GO:0007610 P behavior 3,33E-02 24 220

GO:0005886 C plasma membrane 4,98E-02 34 350

N. giraulti antisense2protein transcripts
GO-ID Category Term P-Value #Test #Ref

GO:0003824 F catalytic activity 2,31E-02 11 2348

GO:0097159 F organic cyclic compound binding 2,50E-02 8 1403

GO:1901363 F heterocyclic compound binding 2,50E-02 8 1403

GO:0010467 P gene expression 4,03E-02 3 274

GO:0005694 C chromosome 4,74E-02 2 123

N. giraulti antisense2sense transcripts
GO-ID Category Term P-Value #Test #Ref

GO:0007267 P cell-cell signaling 4,18E-03 19 216

GO:0009628 P response to abiotic stimulus 1,35E-02 11 112
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GO:0005102 F receptor binding 1,55E-02 7 56

GO:0006996 P organelle organization 1,90E-02 32 495

GO:0040007 P growth 2,17E-02 12 137

GO:0009653 P anatomical structure morphogenesis 3,46E-02 35 580

GO:0005829 C cytosol 4,16E-02 11 135

GO:0005794 C Golgi apparatus 4,64E-02 9 104

GO:0044403 P symbiosis, encompassing mutualism 
through parasitism

4,88E-02 3 17
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VARIATION IN LEARNING AND MEMORY FORMATION: THE GENUS NASONIA AS A 
NEW MODEL FOR MULTIDISCIPLINARY STUDIES

Learning and memory formation are cognitive traits. Cognition refers to processes by 
which animals respond to information from their environment, which includes acquisition, 
processing, storage and use of information (Shettleworth, 2010). Next to learning and 
memory formation, processes such as perception, attention, use of language and deci-
sion-making are also considered cognitive processes (Shettleworth, 2010). The research 
field of cognitive ecology studies the ecology and evolution of cognition with the aim of 
understanding differences in cognition between animal species (Dukas & Ratcliffe, 2009). 
Learning and memory formation have an important role in animal cognition and behaviour, 
and the ability to learn and form memory is widespread among the Animal Kingdom. Spe-
cies-specific differences in learning and memory are observed. This variation reflects 
differences in ecology: species are thought to have evolved learning abilities and memory 
dynamics that suit their needs (Dukas & Ratcliffe, 2009; Shettleworth, 2010). 

The aim of this thesis is to elucidate both ecological factors that can explain spe-
cies-specific differences in learning and memory formation, as well as the genetic 
mechanisms that underlie variation in these traits. In this thesis, I argue that parasitic 
wasps are excellent model organisms for multidisciplinary studies on natural variation 
in learning and memory formation for a number of reasons: (1) substantial differences 
in memory dynamics have been observed among closely related species, (2) there are 
clear-cut differences in the ecology of closely related species, which allows studies on the 
effect of ecological factors on learning and memory, and (3) recent advances in genetic and 
genomics tools now allow studies on genetic aspects of variation in memory formation in 
parasitic wasp species (Chapter 2). 

I present parasitic wasps of the genus Nasonia as a novel model for multidiscipli-
nary studies on interspecific variation in memory formation. A prerequisite for studies 
on learning and memory formation in any animal species is the availability of methods 
for both conditioning and for testing memory retention. A high-throughput method was 
developed in which female wasps associated an odour with the reward of a host. This 
method can be used for all Nasonia species, which is essential for comparative studies, 
and allows conditioning of large numbers of wasps. A high-throughput device for testing 
memory retention, a T-maze olfactometer, is used to test large numbers of wasps (Chapter 
3). Significant differences in olfactory/oviposition learning were detected between the 
homozygous and sequenced strains of N. vitripennis (AsymCx), N. longicornis (IV7(U)) and 
N. giraulti (RV2x(U)). The differences between N. vitripennis and N. giraulti were most 
pronounced and a further characterization of the memory dynamics of these two species 
was carried out (Chapter 4). The two species differ in their memory formation after a single 
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conditioning trial: N. vitripennis will form transcription-dependent long-term memory 
(LTM), which lasts more than 6 days, whereas N. giraulti likely forms anaesthesia-resist-
ant memory (ARM) and loses its memory after 1 to 2 days after conditioning. Nasonia 
giraulti will only form long-lasting memory (lasting >5 days) after multiple conditioning 
trials, which are spaced in time. The results from these chapters demonstrate that memory 
dynamics of N. vitripennis (AsymCx) are comparable to those of a German field population 
of N. vitripennis (Schurmann et al., 2009; Schurmann et al., 2012). The use of homozygous 
and sequenced strains of Nasonia species has, however, important advantages for genetic 
studies. In the remaining chapters of this thesis, I have studied ecological factors (Chapters 
4 & 5) and genetic factors (Chapters 6 & 7) that are responsible for this difference in LTM 
formation between N. vitripennis and N. giraulti.

Variation in learning and memory formation in the genus Nasonia is, however, not 
restricted to the strains of N. vitripennis and N. giraulti that were used throughout this 
thesis. Nasonia longicornis was found to form a long-lasting memory (lasting >5 days) after 
a single conditioning trial, similar to N. vitripennis. The observed performance index (PI) 
was, however, much lower compared to N. vitripennis. A weaker behavioural response to 
learned information could have large implications for host finding behaviour (Papaj & 
Vet, 1990; Raine & Chittka, 2008) and it presents another interesting variation in memory 
formation in the genus Nasonia. In addition to inter-specific variation in learning and 
memory formation, also intra-specific variation may be present in the genus Nasonia. 
Intra-specific variation in learning abilities, due to variation in the ecology of subpopu-
lations, has been observed in bees, birds, parasitic wasps, squirrels and snails (Ings et al., 
2009; Roth et al., 2012; Thiel et al., 2013; Bruck & Mateo, 2010; Orr et al., 2009). Studies on 
German populations of N. vitripennis have suggested that two ecotypes exist that utilize 
either fly pupae on carrion or in birds’ nests, which are two distinctly different ecological 
niches (Schröder & Abraham, 1997; Schröder, 1999). Populations of N. vitripennis have, 
furthermore, been collected from all over the world and are being maintained by different 
research groups of the Nasonia community, providing another source of potential variation 
in learning and memory formation. For example, different populations of N. vitripennis have 
been collected from different locations along a latitudinal cline in Europe (Paolucci et al., 
2013). A genetically diverse population of N. vitripennis, collected in the Netherlands, was 
recently constructed and its genetic composition was characterized (van de Zande et al., 
2014). These resources provide additional possibilities to study ultimate and proximate 
factors involved in inter- or intraspecific variation in learning and memory formation.
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ULTIMATE FACTORS RESPONSIBLE FOR NATURAL VARIATION IN LEARNING AND 
MEMORY FORMATION

Variation in learning abilities and memory formation are believed to reflect species- or pop-
ulation-specific differences in ecological factors. For many species it has been hypothesized 
why differences in memory are adaptive, e.g. food-caching birds require a better spatial 
memory than birds that do not cache food (Roth et al., 2012; Clayton & Dickinson, 1998), 
paper wasps that nest in groups have an increased ability to learn faces compared to 
solitary wasps, because it allows them to determine a dominance hierarchy (Sheehan & 
Tibbetts, 2011). Parasitic wasps can learn environmental cues that guide them towards 
food or hosts to lay their eggs in, so-called oviposition learning. Ecological factors such 
as the variability of the environment, the value of reward (i.e. the quality of the host for 
offspring development), and reliability of the learned association have all been proposed 
to affect learning and memory formation (Chapter 2). In this thesis, I focus on factors that 
were hypothesized to affect LTM formation in oviposition learning of parasitic wasps by 
changing the rewarding stimulus (i.e. the host) during conditioning. 

First, I investigated the role of two aspects of the rewarding host stimulus, i.e. host 
feeding and oviposition, in memory formation (Chapter 4). Parasitic wasps are known to 
experience multiple stimuli during oviposition, i.e. contact with host traces or haemolymph, 
host feeding and oviposition. Oviposition was observed to induce increased memory 
retention, compared to contact with host traces alone, in the parasitic wasp species 
Microplitis croceipes (Takasu & Lewis, 2003). For this reason, I hypothesized that oviposition 
was a more rewarding stimulus than host feeding alone. However, memory retention of 
both N. vitripennis and N. giraulti was not affected by the rewarding host stimulus. Second, 
I investigated the effect of three host species, with different qualities as a host, on memory 
retention of N. vitripennis and N. giraulti (Chapter 5). Reward quality had already been 
shown to be important for memory dynamics in several animal species. For example, a 
reward of higher quality or intensity resulted in increased memory retention in male 
rats that received different intensities of sexual stimulation (Camacho et al., 2009) and in 
several insect species that received food of varying nutritional value (Wäckers et al., 2006; 
Burke & Waddell, 2011). A recent study on two parasitic wasp species, Cotesia glomerata 
and Trichogramma evanescens, had shown that LTM was formed after conditioning on one 
host species, whereas only ARM was formed after conditioning on another host species, 
with a lower quality (Kruidhof et al., 2012). A combination of both reward quality (of the 
host) and reliability of the learned association was hypothesized to be responsible for these 
differences in memory dynamics. I observed that the three hosts that I used in Chapter 5 
had profound differences in host quality, but this did not affect memory retention in either 
N. vitripennis or N. giraulti. 
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The results from both experiments demonstrate that N. vitripennis and N. giraulti 
respond differently to variation in the rewarding stimulus than a number of other parasitic 
wasp species (as discussed in Chapters 4 & 5). Variation in LTM formation between 
closely related parasitic wasp species has evolved independently in multiple parasitic wasp 
lineages, e.g. in the genus Nasonia (Hymenoptera: Pteromalidae) and the genus Cotesia 
(Hymenoptera: Braconidae) (Smid et al., 2007; van den Berg et al., 2011; Chapters 3 & 
4). Species of these genera have profoundly different ecologies and have co-evolved with 
different host species. Consequently, different parasitic wasp species perceive and respond 
to different host cues, which constitute the rewarding stimulus in oviposition learning, 
and underlying mechanisms are likely different between species (Wajnberg & Colazza, 
2013). In addition, learning and memory formation may play a different role in foraging 
behaviour of different species. As a result, ecological factors that control LTM formation 
can be different between species of distant families, even though comparable variation 
in LTM formation is observed in these distant families. Some parasitic wasp species may 
have evolved mechanisms that allow them to adapt their memory dynamics to host quality, 
whereas these mechanisms may not be beneficial for other species.

PROXIMATE FACTORS RESPONSIBLE FOR NATURAL VARIATION IN LEARNING AND 
MEMORY FORMATION

The process of long-term memory formation involves perception of sensory information 
by an animal, the induction of activity in neurons that encode and integrate these stimuli 
and structural changes to specific neurons that represent a memory. The result is a change 
in response of the nervous system to specific sensory information, which can be observed 
as an altered behavioural response (Davis, 2011). Manipulation of specific neurons and 
a large number of different genes can affect LTM formation (Davis, 2011; Müller, 2012), 
which indicates that the number of mechanisms that can be involved in variation in LTM 
formation is potentially large. Which mechanisms are responsible for natural variation in 
LTM formation is, however, poorly understood. 

A unique opportunity for genetic studies in the genus Nasonia is provided by the 
possibility to interbreed the closely related species. This characteristic makes it possible 
to backcross a phenotypic trait of one species into the genetic background of another 
species (Werren et al., 2010; Werren & Loehlin, 2009). I have backcrossed the memory 
phenotype of N. giraulti, i.e. no LTM formation after a single conditioning trial, into the 
genetic background of N. vitripennis and I identified two quantitative trait loci (QTLs) that 
reduce long-lasting memory retention (Chapter 6). These results are an important step 
towards the identification of genomic factors that are responsible for the difference in 
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LTM formation between N. vitripennis and N. giraulti. Fine-scale mapping of the memory 
retention QTLs is a logical next step to determine these regulatory factors. In addition to 
the introgression study, I compared gene expression levels in the heads of N. vitripennis and 
N. giraulti after conditioning (Chapter 7). This analysis revealed substantial differences in 
differential gene expression between the two species. Various genes, with a known role in 
LTM formation, were uniquely differentially expressed in N. vitripennis. These genes may be 
involved in the ongoing formation of LTM in this species. A number of other genes, also with 
a known role in LTM formation, were uniquely differentially expressed in N. giraulti. These 
genes may be part of an LTM inhibitory process in this species. In addition, the results point 
toward the involvement of epigenetic regulatory mechanisms. Genes identified in Chapter 
7 are promising candidates for further research on variation in LTM formation in the genus 
Nasonia. 

The combination of two complementary and innovative approaches to determine 
the genetic basis of variation in LTM formation is the main strength of this thesis and has 
increased our understanding of the regulation of LTM formation in the genus Nasonia. 
Future studies are needed to confirm genes involved in variation in LTM formation and can 
greatly benefit from tools available to manipulate genes in Nasonia species, including RNAi 
(Lynch & Desplan, 2006; Werren et al., 2009). Techniques to transform Nasonia species are 
currently being developed and are expected to become available in the near future (J.H. 
Werren, personal communication). In addition, spatial expression patterns of identified 
candidate genes can and should be studied. The brain is a highly heterogeneous tissue and 
processes in small numbers of neurons from specific brain regions can play an important 
role in (long-term) memory formation (Davis, 2011; Davis & Giurfa, 2012; Galizia & Menzel, 
2000; Hourcade et al., 2009; Müller, 2012). To interpret differences in genomes or brain-wide 
gene expression between N. vitripennis and N. giraulti, it is necessary to know where in 
the brains these differences are expressed. Detailed information on brain morphology 
and neural networks of these species are instrumental for such studies. Currently, brain 
atlases of the neuropils of both Nasonia species are being constructed and also the neural 
networks of octopaminergic and dopaminergic neurons, two neurotransmitters which are 
important for memory formation (e.g. Burke et al., 2012), have been mapped (J. Groothuis, 
A. Haverkamp & H.M. Smid, unpublished results). This information is valuable for studies 
on spatial expression of genes, but may also reveal structural differences between brains of 
N. vitripennis and N. giraulti that are potentially associated with their difference in memory 
formation.  

An interesting question that remains is whether mechanisms responsible for 
variation in learning and memory are conserved among distant animal phyla. Results from 
studies on Nasonia need to be compared to results from other animal species to answer 
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this question, e.g. to other parasitic wasp species that differ in LTM formation, but also to 
distant animal phyla in which variation in memory formation is observed between closely 
related species. Next-generation sequencing techniques allow gene expression profiling in 
non-model species that demonstrate variation in learning and memory. Pravosudov et al. 
(2013) compared two populations of chickadees that differ in spatial memory performance, 
whereas Armbrecht et al. (2014) compared control mice and mice with impaired memory 
performance. These two studies reported variation in a number of genes that I identified 
in Chapter 7 as well. An ongoing transcriptome analysis of brains of Cotesia glomerata and 
C. rubecula, before and after conditioning (J.J.F.A. van Vugt et al., unpublished results), will 
provide an additional source of information that can be compared to the Nasonia species. 
An advantage of this study is that it is very similar with regard to the observed variation in 
LTM and experimental set-up compared to Chapter 7.  

Introgression or QTL mapping can be used to identify genomic regions or genes 
responsible for variation in learning and memory. Inter-specific introgression of 
differences in LTM formation is a unique opportunity for the genus Nasonia (Chapter 6), but 
intraspecific variation in LTM formation could be studied using introgression as well, both 
in the genus Nasonia and potentially in other parasitic wasp species or other insect species 
as well. The ability to create homozygous lines, which can be genetically characterized, 
is a prerequisite for this approach. No other parasitic wasp species currently meet these 
prerequisites, but species from genera with known variation in memory formation and 
from which isofemale lines can be generated, e.g. Trichogramma evanescens (Huigens et al., 
2009) or Leptopilina boulardi (Carton et al., 1989; Kaiser et al., 2009) are potential candidate 
species for future introgression studies. Experimental evolution is another option for 
identifying genomic factors that are responsible for variation in learning and memory. 
Experimental evolution experiments, which resulted in intraspecific variation in LTM 
formation between the selected strains, have been reported in Drosophila melanogaster 
(Mery & Kawecki, 2002) and the parasitic wasp species Cotesia glomerata (van den Berg 
et al., 2011). However, neither of these studies investigated genomic differences between 
selected strains. A genetically diverse population of N. vitripennis, which was recently 
constructed and genetically characterized (van de Zande et al., 2013) also provides 
opportunities for experimental evolution. 

NATURAL VARIATION IN LEARNING AND MEMORY: CORRELATED TRAITS
Understanding both ultimate and proximate factors that are responsible for variation 
in learning and memory will increase our knowledge on how and why this variation has 
evolved. This variation is considered an adaptation to species-specific differences in 
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ecology, but this hypothesis has not been tested. Not only ultimate and proximate factors 
that regulate learning and memory are important in this regard, but also correlated traits 
need to be considered to understand the effects on the fitness of an animal.

Traits can be correlated if genetic regulatory pathways between two traits are shared; 
the consequence is that genetic changes that result in variation in one trait will also affect 
other traits (Schlichting & Pigliucci, 1998). As a result, correlated traits may not evolve 
independently from each other (Beldade et al., 2002; Allen et al., 2008; Ellers & Driessen, 
2011). Variation in a specific memory trait can affect other memory related traits, as was 
observed in a number of studies in insects. Honeybees with higher olfactory memory 
performance were observed to be better at visual learning as well (Brandes & Menzel, 
1990). Increased memory performance of fruit flies in an assay that paired a flavour of 
the oviposition medium with a bitter taste (Mery & Kawecki, 2002) generalized to olfac-
tory-aversive  memory performance (using mechanical shocks) (Mery et al., 2007b). These 
correlated memory traits suggest a genetic basis for variation in memory formation that 
is independent from specific sensory stimuli that were experienced during conditioning. 
This thesis focused on LTM formation after olfactory/oviposition learning, but the genus 
Nasonia offers ample opportunities to study correlated memory traits as well. Memory 
performance of the introgression lines with reduced memory retention after olfactory-ovi-
position learning (Chapter 6), can be tested using a visual conditioning procedure (Oliai & 
King, 2000), or using a different rewarding stimulus such as sucrose or honey (Oliai & King, 
2000) or a female to mate with, in case of male wasps (Baeder & King, 2004).

Correlated traits can also be unrelated to learning and memory formation. The gene 
foraging, encoding cGMP-dependent kinase, has been observed to affect STM and LTM 
formation (Mery et al., 2007a), but also foraging behaviour (Osborne et al., 1997), the extent 
to which personal or public information is used (Foucaud et al., 2013), phototaxis behaviour 
(Ben-Shahar et al., 2003) and a number of other traits. Increased learning or memory 
performance can be negatively correlated with other traits. An example is increased LTM 
performance in D. melanogaster, which is correlated with decreased larval competitive 
ability (Mery & Kawecki, 2003) and longevity (Burger et al., 2008). In the butterfly 
Pieris rapae, higher learning ability is correlated with decreased fecundity (Snell-Rood 
et al., 2011). These trade-offs may reflect resource allocation towards neural structures 
necessary for the increased memory performance at the cost of other life-history traits, 
which could have a negative impact on fitness.

These studies show that the costs and benefits of variation in learning and memory 
go beyond just these traits, and can include various other (life-history) traits that are 
correlated. Correlated traits need to be considered to fully understand the evolution of 
variation in learning and memory.
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BEYOND LONG-TERM MEMORY FORMATION
This thesis has focused on variation in the number of trials required to form LTM between 
animal species. Memory was investigated in wasps that received a single, or two similar, 
learning experiences. However, many animals will likely perceive multiple information 
sources about their environment and may form more than a single memory during their 
lifetime. In addition, new information can conflict with learned information. This aspect 
was already discussed briefly in two chapters of this thesis. 

Variation in the rate of LTM consolidation was discussed in Chapter 4. Nasonia 
vitripennis was observed to express LTM 4 days after a single conditioning trial, which 
was shown using transcription- and translation-inhibitors, whereas a number of other 
parasitic wasp species have been shown to consolidate LTM much faster, in the range of 
hours up to a day after conditioning (Smid et al., 2007; Huigens et al., 2009; Collatz et al., 
2006). This variation has been hypothesized to determine the time window of an animal 
to re-evaluate learned information before it is consolidated as LTM (van den Berg et al., 
2011; Schurmann et al., 2012; Chapter 4). The sensitivity of different types of memory to 
disturbances needs to be assessed to test this hypothesis; disturbances can be conflicting 
information or unrewarding experiences (Schurmann et al., 2012). I briefly touch on this 
topic in Chapter 6, in which I investigate the effect of testing N. vitripennis and N. giraulti 
multiple times, so-called extinction trials, on the observed memory performance. These 
experiences can be regarded as unrewarding experiences, because the wasps detect the 
learned odour, but they do not experience contact with a host afterwards. Extinction trials 
can induce reconsolidation of memory or extinction depending on the number of trials in 
the fruit fly and the honeybee (Stollhoff et al., 2005; Lagasse et al., 2012). In addition, the 
number of trials that result in extinction of memory differs among species (Kaiser et al., 
2003; Stollhoff et al., 2005; Lagasse et al., 2009). I performed one extinction trial after 24 
hours, when ARM is present in both Nasonia species, and another after 72 hours, when N. 
vitripennis has formed a second type of ARM. No effect on memory retention was observed 
(Chapter 6). This experiment was not set-up for testing effects of unrewarding experiences 
on memory retention extensively, as was the case in the studies mentioned, but it does 
provide first information of this aspect of memory dynamics in the genus Nasonia.

Both the rate of LTM consolidation and memory extinction can be considered 
as processes that have a role in regulating memory of animals when they experience 
information that conflicts with learned information. The probability of experiencing 
conflicting information likely depends on ecological factors, such as variability of the 
environment or the number of lifetime learning experiences (see Chapter 2 for a discussion 
of these factors). For this reason, substantial variation in memory processes that deal 
with conflicting information is expected, especially among parasitic wasp species which 
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have highly diverse ecologies. Retroactive interference, i.e. when a new memory inhibits 
the retrieval of older memories (Bouton, 1993), is considered an important memory 
process that can help animals deal with conflicting information (Anderson, 2003; Reaume 
et al., 2011). Variation in this trait has been reported between and within insect species 
(Cheng & Wignall, 2006; Reaume et al., 2011). LTM consolidation rate, memory extinction 
and retroactive interference are promising memory processes to further investigate in 
parasitic wasp species. Variation in these processes may indicate how species deal with 
multiple, potentially conflicting, sources of information. 

EPILOGUE
To remember or to forget, that’s the question that was studied in this thesis. I studied this 
question from both an ecological as well as a genetic point of view by comparing two closely 
related species of Nasonia parasitic wasps that differ in memory retention. 

Parasitic wasp species have already been studied for decades to unravel ecological 
factors that are responsible for observed differences in memory dynamics. Results from 
this thesis on N. vitripennis and N. giraulti provide new insights in how ecological factors 
may affect LTM formation. These results are not only valuable for the research field of 
cognitive ecology. Behaviour of parasitic wasps has also been studied, because of the 
application of parasitic wasps in biological control programs. Learning has an important 
role in host finding and oviposition behaviour of many species, and knowledge on factors 
that regulate this behaviour may, therefore, improve their success as biological control 
agents (Tumlinson et al., 1993).

Valuable insights were also obtained from the genetic studies on the genus Nasonia. 
This thesis provides a solid basis for the identification of genomic factors that are responsible 
for the difference in LTM formation between N. vitripennis and N. giraulti. In addition, the 
consequences of these genomic factors on gene expression patterns in the brains of these 
two species have been characterized using a transcriptome analysis. The genetic basis of 
learning and memory formation are highly conserved among distant animal species and 
insights from this thesis are likely applicable to other animal species and humans as well. 
My results are, therefore, interesting for the field of medical neurosciences, which aims 
to understand and treat neurodegenerative diseases or to improve memory in animals or 
humans. A substantial number of genes that have been identified in this thesis have a known 
role in pathology or are already being considered for potential treatments. Information 
on how these genes are involved in naturally occurring differences in LTM formation can 
provide novel insights for medical applications. 

I combine ecology and genetics in this thesis, which is important because the 
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General discussion

interaction between genetic and environmental factors is responsible for the evolution 
of variation in learning and memory. Nasonia parasitic wasp species offer unrivalled 
opportunities for multidisciplinary studies on variation in LTM formation, as shown in this 
thesis. I have exploited these excellent opportunities to investigate ecological and genetic 
factors. This thesis demonstrates how state-of-the-art techniques provide opportunities 
for genetic studies in non-model species. The multidisciplinary approach, as I demonstrate 
in this thesis, can be used in other animal species as well to study variation in learning 
and memory formation, but also to study variation in other cognitive traits, behaviour or 
completely different traits. Altogether, this thesis is a successful example of how genetics 
and ecology can be connected to achieve understanding of differences in learning and 
memory formation.
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The ability to learn and form memory has been demonstrated in various animal species, 
ranging from relatively simple invertebrates, such as snails and insects, to more complex 
vertebrate species, including birds and mammals. The opportunity to acquire new skills or 
to adapt behaviour through learning is an obvious benefit. However, memory formation is 
also costly: it can be maladaptive when unreliable associations are formed and the process 
of memory formation can be energetically costly. The balance between costs and benefits 
determines if learning and memory formation are beneficial to an animal or not. Variation 
in learning abilities and memory formation between species is thought to reflect spe-
cies-specific differences in ecology.  

This thesis focused on variation in the number of trials required to form long-term memory 
(LTM). LTM is considered the most stable and durable type of memory, but also the most 
costly, because it requires protein synthesis. Many animal species require multiple 
learning experiences, which are spaced in time, to form LTM. This allows re-evaluation 
of information before an animal invests in costly LTM. There is, however, variation in the 
number of trials that animal species require to induce LTM formation. A number of insect 
species, including a number of parasitic wasp species, form LTM after only a single learning 
experience. Parasitic wasps can learn odours that guide them towards suitable hosts for 
their offspring, so-called oviposition learning. Substantial differences in LTM formation 
are observed among closely related species of parasitic wasps, which provides excellent 
opportunities for comparative studies. Both ecological and genetic factors involved in 
variation in LTM formation have been studied in this project. A multidisciplinary approach 
is essential to understand the evolution of variation in LTM formation, because the 
interaction between genes and environment shapes learning and memory formation.

LTM formation was studied in closely related species of the genus Nasonia. These small 
parasitic wasps (~2 mm in length) lay their eggs in various species of fly pupae and 
differences in the ecology of the four known species of this genus have been described. 
A high-throughput method for olfactory conditioning was developed in which the wasps 
associated an odour, either chocolate or vanilla, with the reward of a host. A T-maze 
olfactometer was designed for high-throughput testing of memory retention. Using these 
methods, variation in memory retention was observed between three Nasonia species. Both 
N. vitripennis and N. longicornis form a long-lasting memory after a single conditioning trial, 
which lasts at least 5 days. Nasonia giraulti, on the other hand, lost its memory after 1 to 2 
days after a single conditioning trial. Further studies focused on the difference between N. 
vitripennis and N. giraulti, which was most pronounced. By inhibiting LTM with transcription 
and translation inhibitors, it was confirmed that N. vitripennis forms this type of memory 



172

Summary

after a single conditioning trial. LTM is visible 4 days after conditioning in N. vitripennis. 
Nasonia giraulti does not form LTM after a single conditioning trial. Long-lasting memory 
is only formed after two trials, with a 4-hour interval between them. This difference in 
LTM formation makes N. vitripennis and N. giraulti excellent model species to study both 
ecological and genetic factors involved in this difference.

Ecological factors such as the value of the reward and the reliability of the learned 
association have been shown to affect memory formation in a number of animal species. 
A recent study on oviposition learning in two parasitic wasp species demonstrated that 
LTM formation depends on the host species, i.e. the reward offered during conditioning. 
LTM was formed when a host with a higher quality was offered, but not when a host of 
lower quality was offered. The effect of host quality on memory retention of N. vitripennis 
and N. giraulti was tested. Either a large host, Calliphora vomitoria, a medium-sized host, 
Lucilia sericata, or a small host, Musca domestica, was offered during conditioning. These 
hosts were observed to differ significantly in their quality, i.e. in the number of parasitoid 
offspring that emerged and the size of the offspring. There was, however, no effect of host 
species on memory retention in either Nasonia species. These results suggest that host 
quality is not important for LTM formation in N. vitripennis and N. giraulti. This observation 
shows that ecological factors that are important for memory formation in one species may 
not be important for another species. 

The genetic basis of memory formation is highly conserved among distant animal phyla. 
A large number of genes involved in LTM formation have been identified in genetic model 
organisms, including fruit flies, honeybees, the California sea hare, mice and rats, and the 
zebra finch. Genetic factors responsible for natural variation in LTM formation between 
species are currently unknown, however. Two approaches were used to study genetic 
factors responsible for the difference in LTM formation between N. vitripennis and N. 
giraulti. The first approach took advantage of the unique possibility to interbreed Nasonia 
species. Hybrid offspring of N. vitripennis and N. giraulti did not form LTM after a single 
conditioning trial, similar to N. giraulti. The dominant LTM phenotype of N. giraulti was 
then backcrossed into the genetic background of N. vitripennis for up to 5 generations. 
Using a genotyping microarray analysis and subsequent confirmation experiments, we 
detected two genomic regions (quantitative trait loci – QTLs) that both reduce long-lasting 
memory, but not completely remove this memory. These results indicate that multiple QTLs 
regulate the difference in LTM formation between the two Nasonia species. Concluding, our 
approach has provided insights in the genomic basis of a naturally occurring difference in 
LTM formation between two species. Excellent opportunities for fine-scale QTL mapping 
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are available for the genus Nasonia. This will allow identification of decisive regulatory 
mechanisms involved in LTM formation that are located in the two genomic regions 
detected in this study.

The second approach took advantage of next-generation sequencing techniques that allow 
transcriptome-wide studies of gene expression levels. RNA from heads of N. vitripennis 
and N. giraulti was collected before conditioning and immediately, 4 hours, or 24 hours 
after conditioning. This RNA was sequenced strand-specifically using HiSeq technology, 
which allows detection of sense and antisense transcripts. Various genes, from a number 
of different signalling pathways known to be involved in LTM formation, were uniquely 
differentially expressed after conditioning in N. vitripennis. These genes are likely involved 
in the ongoing process of LTM formation in this species. A number of other genes with 
a known role in LTM formation, including genes involved in dopamine synthesis and in 
the Ras-MAPK and PI3K signalling pathways, were uniquely differentially expressed in 
N. giraulti. These genes may have a role in a LTM inhibitory mechanism in this species. 
Antisense transcripts were detected for a number of known memory genes, which may 
indicate a role in regulation of transcription, alternative splicing, or translation. This study 
is the first to compare gene expression patterns after conditioning between two species 
that differ in LTM formation. The results provide promising candidate genes for future 
studies in which the regulation of these genes, the function of specific splice variants, and 
spatial expression patterns in the brain should be studied to understand how these genes 
are involved in the regulation of LTM formation.

Learning and memory formation have an important role in animal and human behaviour. 
Novel and valuable insights on both ecological and genetic factors responsible for variation 
in LTM formation have been revealed by the research presented in this thesis. Integrating 
ecological factors and genetic factors is essential, as genes are the level on which ecological 
factors can drive the evolution of variation in learning and memory formation. The genus 
Nasonia has offered excellent opportunities for ecological research as well as unique 
opportunities for studies on genomic and genetic factors, which were addressed by 
comparing closely related species that differ in memory formation. This thesis provides 
the basis for the identification of genomic differences responsible for the difference in 
memory formation between Nasonia species, but it also characterized the consequences of 
these genomic differences on gene expression. The genetic basis of learning and memory 
formation is highly conserved among distant animal species and insights from this thesis 
are likely applicable to other animal species and humans, as well. Altogether, these small 
parasitic wasps allow us to understand and value differences in memory formation.
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Het vermogen om te leren en geheugen te vormen is aangetoond in diverse diersoorten, 
zowel in betrekkelijk eenvoudige invertebraten, zoals slakken en insecten, als in meer 
complexe diersoorten, inclusief vogels en zoogdieren. De mogelijkheid om nieuwe 
vaardigheden te verkrijgen of om het gedrag aan te passen door middel van leren heeft een 
duidelijk voordeel. Aan de andere kant zijn er ook kosten verbonden aan geheugenvorming: 
het kan nadelig zijn om onbetrouwbare associaties te vormen en het proces van geheugen-
vorming kost daarnaast energie. De balans tussen voor- en nadelen bepaalt of het voordelig 
is voor een dier om te leren en geheugen te vormen en deze balans verschilt per diersoort. 
Verschillen in de ecologie tussen soorten zijn waarschijnlijk verantwoordelijk voor variatie 
in leervermogen en geheugenvorming.

In dit project is onderzoek gedaan aan variatie in het aantal leerervaringen dat nodig is 
om langetermijn geheugen (‘long-term memory’: LTM) te vormen. LTM is de meest stabiele 
en langst durende vorm van geheugen, maar het is daarnaast de meest kostbare vorm, 
omdat er eiwitsynthese nodig is voor de vorming van LTM. Veel diersoorten vormen dan 
ook alleen LTM na meerdere leerervaringen die ze met tussenpozen ontvangen. Dit zorgt 
ervoor dat een dier de geleerde informatie kan evalueren voordat er wordt geïnvesteerd 
in kostbaar LTM. Het aantal leerervaringen dat vereist is om LTM-vorming te induceren 
verschilt echter per soort. Sommige insecten, inclusief een aantal soorten sluipwespen, 
vormen al LTM na één enkele leerervaring. Sluipwespen kunnen geuren leren die hen 
helpen om geschikte gastheren voor hun nageslacht te vinden. Deze vorm van leren, 
waarbij de beloning een geschikte gastheer is om eieren in te leggen, wordt ovipositie-   
leren genoemd. Tussen verwante soorten sluipwespen kunnen grote verschillen bestaan in 
LTM-vorming, waardoor deze soorten ideaal zijn voor vergelijkende studies naar deze vorm 
van geheugen. In dit project zijn zowel ecologische als genetische factoren die betrokken 
zijn bij verschillen in LTM-vorming bestudeerd. Een multidisciplinaire aanpak is essentieel 
om de evolutie van verschillen in LTM-vorming te begrijpen, aangezien de interactie tussen 
genen en de omgeving van een dier verantwoordelijk is voor het tot stand komen van 
leervermogen en geheugenvorming.

De vorming van LTM is bestudeerd in sterk verwante sluipwespsoorten van het genus 
Nasonia. Deze kleine sluipwespen (~ 2 mm lang) leggen hun eieren in de poppen van diverse 
soorten vliegen. De vier beschreven soorten van dit genus verschillen in bepaalde aspecten 
van hun ecologie. Binnen dit project is er een methode ontwikkeld om snel grote aantallen 
sluipwespen te kunnen conditioneren, waarbij wespen een associatie vormen tussen een 
geur (vanille of chocolade geur) en de gastheer, wat in deze methode de beloning is. Ook 
is er een T-maze olfactometer ontworpen waardoor het mogelijk is om bij grote aantallen 
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wespen te testen of er geheugen voor de geleerde geuren aanwezig is. Met behulp van deze 
methodes zijn er verschillen in geheugenvorming aangetoond tussen drie Nasonia soorten. 
Zowel N. vitripennis als N. longicornis vormen een langdurig geheugen dat minstens 5 
dagen aanwezig is na één enkele leerervaring. Nasonia giraulti, daarentegen, verliest haar 
geheugen binnen één tot twee dagen na één enkele leerervaring. Verdere studies binnen dit 
project hebben zich vervolgens gericht op het verschil tussen N. vitripennis en N. giraulti, 
omdat deze twee soorten het meest van elkaar verschillen wat betreft geheugenvorming. Er 
werd aangetoond dat het langdurend geheugen van N. vitripennis inderdaad LTM is door de 
vorming van dit type geheugen te blokkeren door middel van toediening van transcriptie- 
en translatieremmers. LTM is zichtbaar in N. vitripennis vanaf 4 dagen na het conditioneren. 
Nasonia giraulti vormt geen LTM na één enkele training. Langdurig geheugen wordt wel 
gevormd na twee trainingen met een tussenpoze van 4 uur. Dit verschil in LTM-vorming 
maakt N. vitripennis en N. giraulti ideale modelsoorten voor het bestuderen van zowel 
ecologische als genetische factoren die verantwoordelijk zijn voor dit verschil.

Het is bekend dat geheugenvorming wordt beïnvloed door een aantal ecologische factoren, 
zoals de waarde van de beloning en de betrouwbaarheid van de geleerde associatie. Een 
recente studie waarbij ovipositieleren is onderzocht in twee sluipwespsoorten laat zien dat 
LTM-vorming afhankelijk is van de soort gastheer die als beloning wordt gebruikt tijdens 
het conditioneren. LTM werd wel gevormd wanneer een gastheer met een hoge kwaliteit 
werd gebruikt, maar niet wanneer een gastheer van lagere kwaliteit werd gebruikt. In 
dit project is het effect van gastheerkwaliteit op geheugenvorming bij N. vitripennis en N. 
giraulti onderzocht. Een grote gastheer (Calliphora vomitoria), een gastheer van gemiddeld 
formaat (Lucilia sericata) of een kleine gastheer (Musca domestica) werden gebruikt tijdens 
het conditioneren. Deze drie gastheren verschillen significant in kwaliteit als gastheer, 
die bepaald wordt door het aantal en de grootte van het nageslacht dat zich ontwikkelt 
in één gastheer. Desondanks werd er geen effect van gastheersoort op geheugenvorming 
gevonden in zowel N. vitripennis als N. giraulti. Dit resultaat suggereert dat gastheerkwa- 
liteit niet belangrijk is voor LTM-vorming in beide Nasonia soorten. Het laat verder zien dat 
ecologische factoren die belangrijk zijn voor geheugenvorming in bepaalde soorten niet 
belangrijk hoeven te zijn voor andere soorten.

Genen die betrokken zijn bij geheugenvorming zijn evolutionair geconserveerd en er 
bestaan hierdoor grote overeenkomsten in de genetisch basis van LTM-vorming tussen 
zeer verschillende diersoorten. Dankzij onderzoek aan genetische modelsoorten, zoals 
de fruitvlieg, de honingbij, de Californische zeehaas, de zebravink, de muis en de rat, zijn 
er veel genen bekend die een rol in LTM-vorming spelen. Het is echter onbekend welke 
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genen verantwoordelijk zijn voor natuurlijke variatie in LTM-vorming. In dit project zijn 
er twee methodes gebruikt om genen te bestuderen die het verschil in LTM-vorming 
tussen N. vitripennis en N. giraulti kunnen verklaren. De eerste aanpak maakt gebruik 
van de unieke mogelijkheid om verschillende Nasonia soorten met elkaar te kruisen. Er 
is gevonden dat hybride nageslacht van N. vitripennis en N. giraulti geen LTM vormt na 
één enkele leerervaring, net als N. giraulti. Het dominante LTM fenotype van N. giraulti 
is vervolgens 5 generaties teruggekruist in de genetische achtergrond van N. vitripennis, 
waardoor zogenaamde introgressielijnen werden gecreëerd. Met behulp van een 
microarray analyse is het genotype van deze introgressielijnen bepaald en voor een aantal 
gevonden genomische regio’s zijn de effecten op geheugenvorming verder onderzocht. Er 
zijn twee genomische regio’s gedetecteerd, zogenaamde ‘quantitative trait loci’ (QTLs), die 
het langdurig geheugen (vanaf 72 uur na training) verminderen, maar niet geheel laten 
verdwijnen. Het korte-termijn geheugen (24 uur na training) werd niet beïnvloed. Deze 
resultaten laten zien dat meerdere QTLs betrokken zijn bij het verschil in LTM-vorming 
tussen de twee Nasonia soorten. Concluderend heeft onze aanpak nieuwe inzichten 
opgeleverd met betrekking tot de genetische basis van verschillen in LTM-vorming die 
van nature voorkomen. Er zijn binnen het genus Nasonia uitstekende mogelijkheden voor 
verder onderzoek aan de twee gevonden QTLs, waardoor er nauwkeuriger bepaald kan 
worden welke genen binnen deze regio’s betrokken zijn bij het verschil in LTM-vorming 
tussen N. vitripennis en N. giraulti. 

De tweede aanpak om de genetische basis van het verschil in LTM-vorming te onderzoeken 
maakt gebruik van ‘next-generation sequencing’ technieken, waardoor genexpressie 
niveau’s van het gehele transcriptoom bepaald kunnen worden. Beide Nasonia soorten 
werden één keer geconditioneerd en direct, 4 uur of 24 uur later is er vervolgens RNA 
geïsoleerd uit de koppen van deze wespen. Ook is er RNA geïsoleerd uit koppen van wespen 
die niet getraind werden. Het RNA is vervolgens streng-specifiek gesequenced met behulp 
van HiSeq technologie, waardoor het mogelijk is om ‘sense’ transcripten, oftewel eiwit- 
coderende transcripten, en ‘antisense’ transcripten van elkaar te onderscheiden. Er zijn 
diverse genen gedetecteerd, waarvan het bekend is dat ze betrokken zijn LTM-vorming, die 
een veranderd expressie niveau hebben in N. vitripennis na het conditioneren, maar niet in 
N. giraulti. Deze genen, die behoren tot een aantal verschillende genetische signaalroutes, 
zijn waarschijnlijk betrokken bij de vorming van LTM in N. vitripennis, wat kort na het 
conditioneren al begint. Voor een aantal andere genen, waarvan ook bekend is dat ze een rol 
spelen bij LTM-vorming, is alleen in N. giraulti een veranderd expressie niveau gevonden. 
Deze groep bevat onder andere genen die betrokken zijn bij dopamine synthese en genen die 
behoren tot de Ras-MAPK en PI3K signaalroutes. Het is mogelijk dat deze groep genen een 
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rol speelt bij het blokkeren van LTM-vorming in N. giraulti. Daarnaast zijn er voor een aantal 
bekende geheugengenen antisense transcripten gevonden en deze transcripten spelen 
mogelijk een rol in het reguleren van de transcriptie, alternatieve splicing of translatie van 
de betreffende geheugengenen. Dit is de eerste studie die genexpressiepatronen vergelijkt 
tussen twee soorten die verschillen in LTM-vorming na conditioneren. De resultaten wijzen 
veelbelovende genen aan voor vervolgonderzoek waarin de regulatie van deze genen, de 
functie van splice varianten en ruimtelijke expressiepatronen in de hersenen onderzocht 
moeten worden.

Leren en geheugenvorming spelen een belangrijke rol in het gedrag van mensen en dieren. 
Het onderzoek dat gepresenteerd is in dit proefschrift levert nieuwe en waardevolle 
inzichten op in zowel ecologische als genetische factoren die verantwoordelijk zijn voor 
verschillen in LTM-vorming. Het integreren van ecologische en genetische factoren is 
essentieel, omdat ecologische factoren de evolutie van variatie in leren en geheugenvor- 
ming aansturen via genen. Het genus Nasonia heeft uitstekende en unieke mogelijkheden 
geboden voor zowel ecologisch onderzoek en onderzoek aan genetische en genomische 
factoren. Deze factoren zijn onderzocht door het vergelijken van sterk verwante soorten 
die verschillen in geheugenvorming. Dit proefschrift vormt het fundament om verschillen 
in het genoom tussen N. vitripennis en N. giraulti te identificeren die verantwoordelijk 
zijn voor het verschil in geheugen tussen de twee soorten. Daarnaast zijn de gevolgen van 
deze verschillen in het genoom op genexpressiepatronen in de hersenen in kaart gebracht. 
Gezien het feit dat de genetische basis van geheugenvorming evolutionair geconserveerd 
is, is het waarschijnlijk dat inzichten van dit onderzoek ook van toepassing zullen zijn op 
andere diersoorten en zelfs mensen. Alles bij elkaar hebben de kleine sluipwespen van het 
genus Nasonia er dus voor gezorgd dat we de verschillen in geheugenvorming beter kunnen 
begrijpen en op waarde kunnen schatten.
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