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1 1.1. Geostatistics and expert knowledge

1.1.1. Geostatistics

Geostatistics is originally the study of  the spatial distribution of  natural resources 
in mining and geology (Matheron, 1963), where the statistical modelling of  spatial 
dependence is used for inference of  spatial structure and for spatial prediction at 
unobserved locations from observations (i.e. kriging prediction). These are the two 
main purposes of  geostatistical analysis. It has also founded an important statistical 

kriging variance. 

 A geostatistical model represents a spatial phenomenon as a regionalised var-
iable whose mean may depend on explanatory environmental variables and whose 
spatial dependence is modelled by the variogram. When the variation of  the spa-
tial phenomenon shows an obvious trend, the geostatistical model is the sum of  
the spatial trend (i.e. spatial mean) that models the large scale variation and the ze-
ro-mean random residual. The spatial trend can be modelled as a (unknown) constant 
or a linear function of  the covariates (i.e. the predictive secondary variables). The 
zero-mean random residual models the small scale variation (including small-scale, 
microscale and white-noise variation) and is characterised by the variogram (Cressie, 
1991, Section 3.1). The variogram is a mathematical function that plots the semivar-

the differences of  the variable at two locations a certain distance apart (Armstrong, 
1998; Oliver and Webster, 2014). Geostatistical data have a continuous variation in 
geographical space, but can be discontinuous in attribute space (Cressie, 1991, Section 
1.2.1; Schabenberger and Gotway, 2005, Section 1.2.1).

 In this dissertation, geostatistical inference refers to estimation of  the vari-

prediction refers to prediction of  the spatial variables at unobserved locations. In 
general, the geostatistical prediction or kriging prediction at an unobserved location 
is a weighted avarage of  the surrounding observations (Cressie, 1990; Stein, 1999). In 

weighted average of  the trend residuals at the surrounding observed locations. The 
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magnitude of  the kriging weights are controlled by the spatial dependence between 
the unobserved locations and the surrounding observations, and they guarantee unbi-
asedness and minimise the kriging variance (i.e., provide the ‘best’ predictor). 

 Geostatistics has been applied in various disciplines of  the Earth and envi-
ronmental sciences, such as geology, hydrology, soil science, ecology, forestry and 
climatology. Kriging tools can produce exhaustive maps of  the spatial phenomena 

soil pollutions or ambient air pollutions are needed to assess public exposure to these 
pollutions that can help prevent public health problems. Recently, mapping of  spatial 
variation of  epidemics using geostatistics proves useful in accessing the relationship 
between disease incidence and environmental, social-demographic factors. There are 

and societal value of  geostatistics.

1.1.2. The challenges of  optimal use of  data for geostatistical inference and 

prediction 

Geostatistical inference and prediction are fundamentally dependent on observations 

-
uously varies over a certain spatial domain, the observations can be sampled every-
where within this spatial domain for spatial inference. However, very often, the ob-
servations used in geostatistics are only a limited sample of  locations (point support) 
or areas (block support). Moreover, the number of  sampling locations is often con-

and environmental impact of  sampling. These constraints may lead to unsatisfactory 
sampling density and unrepresentativeness of  the observations that can hinder the 
effective use of  geostatistics in spatial inference and prediction.

Geostatisticians are well aware of  the possible drawbacks of  using limited ob-
servations in geostatistical inference and prediction. Considerable research has studied 
the magnitude of  this effect on the accuracy of  geostatistical inference and prediction 
(e.g. McBratney and Webster, 1983; Webster and Oliver, 1992; Frogbrook, 1999; Oli-
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1 ver and Webster, 2014). Meanwhile, various methods have been developed to increase 
the accuracy of  geostatistical inference and prediction. For example, optimum sam-
pling schemes are recommended to reduce kriging variance (McBratney et al., 1981; 
van Groenigen et al., 1999; Brus and Heuvelink, 2007; Vasát et al., 2010) and to best 
use the observations for variogram inference (Warrick and Myers, 1987; Lark, 2002; 

statistical algorithms for variogram estimation are recommended such as maximum 

to reach a comparable estimation accuracy. 

Geostatisticians have also incorporated different types of  data and informa-
tion in geostatistical models to improve the mapping accuracy. The terms prior in-
formation, soft data, secondary information or ancillary data have been used in the 
geostatistical literature to indicate data or information other than direct (error-free) 
measurements of  the target variable itself  (Stein, 1994; Goovaerts, 1997, Chapter 6; 
Kerry and Oliver, 2003; Oliver et al., 2010b). The use of  extra data and information is 
certainly valuable in many geostatistical applications. For example, optimal sampling 
design needs prior information about the spatial variation in a certain area before 
measurements are collected (Kerry and Oliver, 2004). Spatially exhaustive ancillary 

correlation between temperature and elevation furnishes the use of  elevation as an 
external drift variable to make a better prediction (Hudson and Wackernagel, 1994). 
Kriging tools such as regression kriging, cokriging, Bayesian kriging and indicator (co)
kriging have been used to incorporate these different sources of  data and information 
(Hoef  and Cressie, 1993; Hudson and Wackernagel, 1994; Goovaerts, 1997, Chapter 

1.1.3. The concept of  expert knowledge in geostatistics

While ancillary data and information are often used as an additional source of  data 
and information in modern geostatistics, expert knowledge about spatial phenome-
na is a huge pool of  knowledge that is relatively unnoticed. A study of  Stein (1994) 
gives an early overview of  the use of  ancillary information as prior information (i.e. 
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interpolation, and expert knowledge has been mentioned as one option. A large body 
of  expert knowledge about spatial phenomena has been accumulated in various dis-
ciplines of  the Earth and environmental sciences.

 Aforementioned, geostatistics characterises spatial variables by the spatial trend 
and the variogram. In case of  multiple variables, there are also cross-variograms that 

expert knowledge for geostatistical research is essentially about these trends and spa-
tial correlations. For example, experienced pedologists have good knowledge about 
the relationships between soils and environmental variables such as soil forming fac-
tors (parent material, climate, vegetation, rainfall, etc.). A study of  Walter et al. (2006) 
gives an overview of  the origin of  expert knowledge in pedology. Expert knowledge 

-
ster and Oliver, 2007) and to best guess or ‘guesstimate’ the magnitude of  spatial 
correlations (Kros et al., 1999). However, systematic use of  expert knowledge has 

be used as soft-information in mapping soil texture (Oberthür et al., 1999), to guide 
spatial sampling design according to expert judgements about the spatial variation of  
a certain variable in a certain area (van Groenigen et al., 1999), to supplement sparse 
observations for spatial inference (Lele and Das, 2000), or to specify the spatial rela-
tionship between the target variable and the covariates to develop optimum models 
for spatial prediction (Lark et al., 2007).

All studies that make use of  or refer to expert knowledge show a great potential 
of  using expert knowledge in geostatistics. But these studies also show that expert 
knowledge has not been formally and systematically used in geostatistical modelling 
and mapping. The use of  expert knowledge has also been criticised or undervalued 
because expert knowledge that is transformed into expert judgement is considered 
subjective and intractable (Tversky and Kahneman, 1974; Meyer and Booker, 2001, 
Chapter 2; O’Hagan et al., 2006, Chapter 3; McKenzie et al., 2008). This might be 

previous studies that use expert knowledge, the description of  how expert knowledge 
is elicited is overlooked.
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1 1.2. Statistical expert elicitation for spatial phenomena

Several common expressions are often encountered in the statistical expert elicitation 
literature and also in this dissertation: expert, expert knowledge, expert judgement or 

on a subject matter (e.g. scientist, professional or experienced practitioner). Expert 
-

titative statements. Expert knowledge is extracted into expert judgement or expert 
opinion (e.g. a meteorologist’s estimate of  the difference in average temperature in 
2013 between Amsterdam, The Netherlands and Ohio, The United States, an econo-

There is no distinction between these two terms. Expert data in this dissertation refers 

-

statistical expert elicitation is a systematic process of  formulating expert knowledge 

Because statistical expert elicitation is a systematic process, it involves several stag-

and revision, documentation and reporting (O’Hagan et al., 2006; Choy et al., 2009; 
Knol et al., 2010; Kuhnert et al., 2010). Depending on the purpose of  the research, 

-

to reach consensus among experts (French, 2011). Statistical expert elicitation is an 
appropriate approach to capture expert knowledge about the regionalised variables 
that represent spatial phenomena in geostatistics. To my knowledge, statistical expert 
elicitation has never been used to elicit expert knowledge to model spatial phenome-

expert elicitation research, I assert that expert knowledge can be elicited and used in a 
responsible and defensible way for geostatistical inference and prediction.

1.3. Research objectives
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and accordingly, to identify the use of  expert knowledge in geostatistical inference 
and prediction. The second is to investigate how to elicit expert knowledge and incor-
porate expert knowledge in geostatistical models for spatial inference and prediction. 

1.4. Research questions and dissertation outline

1.4.1. Main research questions

main research objectives:

1. What is the role of  expert knowledge in geostatistical inference and prediction?

2. How to elicit and incoporate expert knowledge in geostatistical inference and pre-
diction?

-

1.4.2. Detailed research questions

to 5 are:

1. How to apply statistical expert elicitation to elicit the variogram from multiple ex-
perts’ knowledge? 

The variogram is the keystone of  geostatistics. Almost half  of  the effort in 
geostatistical research is spent on estimation of  the variogram. Practically, all applied 
research in geostatistics makes use of  the variogram. Chapter 2 of  this dissertation 

were applied to elicit from multiple experts probabilistic judgements that can be used 
to estimate the variogram. The intention of  applying statistical expert elicitation tech-

-

1.1. Which measure to infer the variogram can be elicited from experts?
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1 experts the selected measure?

1.3. How to combine multiple expert judgements?

1.4. Is developing an online statistical expert elicitation tool an effective ap-
proach? 

One important reason for using kriging in spatial mapping is that it provides un-

used in all spatial mapping exercises. For instance, many soil maps have been derived 
by other ways (e.g. using pedotransfer function, aerial photographs, manual drawing 

of  these maps need to know how accurate they are. I tackled this issue in Chapter 3, 
where I applied the tool for expert elicitation of  the variogram developed in Chapter 
2. Question 1.4 is again addressed in Chapter 3, together with the following research 

2.1. How to apply the web-based expert elicitation tool for the variogram to 

property maps? 

3. How to use expert judgements to solve the ill-posed problem in spatial disaggrega-
tion using area-to-point kriging? 

An important research topic in geostatistics is the change of  support problem. 
Here, the (spatial) support refers to the area or volume over which a measurement 
or a prediction is made. Geostatistics may be confronted with the problem of  spatial 
disaggregation when the support of  the observations is larger than that of  the pre-
dictions (e.g. using remote sensing imagery or choropleth maps as observations for 
mapping the continuous variation over a spatial domain). In Chapter 4, this problem 

3.1. Why is the nugget parameter of  the point support variogram often ignored 
in variogram deconvolution?

3.2. How to incorporate expert judgements in block support data to infer the 
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point support variogram model?

-
eter uncertainty) and model uncertainty propagation to spatial disaggregation?

4. How to incorporate expert judgements as observations in geostatistical inference 
and prediction?

Finally, I address a very conventional issue in geostatistics, which I have also 
discussed in Section 1.1. This is that in many geostatistical analyses, there is a lack of  
observations. Chapter 5 addresses the use of  expert knowledge as inaccurate obser-

in Chapter 5 are:

4.1. How to measure bias and imprecision of  expert probabilistic judgements 

data? 

4.2. How to incorporate expert judgements as observations to characterise spa-
tial variation using the variogram?

4.3. Which kriging method can be used to incorporate expert data in spatial 
prediction?

1.5. Scope and expected contributions of  the dissertation

1.5.1. Scope of  the dissertation

Mapping spatial variation of  natural phenomena using expert knowledge is the main 
focus of  my research; the spatio-temporal aspect of  natural phenomena in geostatis-
tics is not touched. Four illustrative examples and case studies presented in Chapters 
2 to 5 are:

1. mapping of  air temperature over The Netherlands;

Anglian Chalk area, The United Kingdom;

3. mapping air temperature over the Gelderland province, The Netherlands us-
ing remote sensing imagery;
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1 a study area in the Malpiebeemden nature reserve in the south of  The Nether-
lands. 

All experts who were involved in this research are scientists (i.e. professors and 

such as soil science, hydrology and meteorology.

 In the next four chapters, expert knowledge was always elicited in probabilistic 

elicitation was employed to build the elicitation tools. A model-based perspective 
in geostatistics (Diggle and Ribeiro, 2007) was taken as a foundation to develop the 
models to incorporate expert knowledge in geostatistical inference and prediction.

1.5.2. Expected contributions

-
edge in geostatistical research and the opportunity to enhance the use of  expert 

in the four main focuses of  geostatistical research: variogram estimation, spatial un-

solutions for the elicitation approaches and incorporation methods of  expert knowl-
edge in these geostatistical research focuses are provided. Chapter 6 concludes the 

I have done and what can be done in the future to advance this research topic. This 
dissertation as a whole may contribute to the optimum use of  data and information, 
both derived from measurements and from experts, for geostatistical inference and 
prediction. It may help advance the understanding of  the Earth surface and subsur-
face spatial phenomena.



Web-based tool for expert elicitation 

of  the variogram

Based on: Truong, P.N., Heuvelink, G.B.M., Gosling, J.P., 2013. Computers & Geo-
sciences 51, 390-399.

Chapter  2
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2
2.1. Introduction

Geostatistical interpolation of  environmental variables from georeferenced observa-

spatial variability of  environmental variables is characterized by the variogram (Jour-

Oliver, 2007). Theory about the variogram and kriging is well-described in the geosta-
tistical literature. We only recall that the variogram is commonly modelled from the 
empirical or sample variogram that is estimated from available observations using the 
common Matheron method-of-moments (Matheron, 1963). A dominant factor that 
controls the accuracy of  the variogram estimate is the number of  observations. Web-
ster and Oliver (2007) recommend using at least 100-150 observations for estimating 
the isotropic variogram and at least 250 observations for the anisotropic variogram.

-
pensive and time-consuming. There have been attempts to increase the accuracy of  
the variogram estimate for a given number of  observations by using different statis-

provide an alternative to the method-of-moments  when there are fewer than 100 ob-
-

ence for estimation of  the variogram parameters and their uncertainty by combining 
hard measurements with soft data from available prior information.

Environmental scientists are increasingly aware of  the use of  prior information 
of  spatial variation in cost-effective sampling design for both variogram estimation 
(Cui et al., 1995; Lark, 2002; Kerry and Oliver, 2007) and optimum spatial interpola-
tion (McBratney and Pringle, 1999; Kerry and Oliver 2003, 2004; Brus and Heuvelink, 
2007). In addition, Bayesian inference of  environmental variables making use of  prior 
information of  spatial variation has also become popular in mapping spatial varia-
bles with small samples, e.g. mapping hydrodynamic variables or petroleum reservoirs 

research on the use of  objective prior information for variogram estimation is the use 
of  a (average) variogram derived from a similar study area (Cui et al., 1995; McBratney 
and Pringle, 1999; Kerry and Oliver, 2004) or using a variogram derived from ancil-
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lary data (Kerry and Oliver, 2003). These approaches rely on the similarity of  spatial 
variation between similar areas and situations, which may not always be realistic or 
available. Alternatively, the value of  subjective prior knowledge when available data 
are scarce or unreliable has been acknowledged recently in landscape ecology, geo-
sciences and geographical research (Denham and Mengersen, 2007; James et al., 2010; 
Curtis, 2012; Perera et al., 2012a).

There are obvious demands for prior information about the spatial variation of  

to guide optimum sampling designs for costly measured and analysed variables. The 

information for inference when data are limited due to budget constraints or physi-

2012). In such cases, experts can be an important source of  information because ex-
perts can be very knowledgeable about the spatial variability of  a variable of  interest. 
Expert knowledge is also important when no data are available to predict the future 
variation in spatial pattern (e.g. patterns of  temperature or ozone concentration over 
a region ahead of  time). We therefore suggest that consulting experts may be sensi-

from expert knowledge in a responsible way. In previous research (Kros et al., 1999), 
the spatial correlations of  continuous variables are simply ‘guestimated’ by deriving 
a spatial correlation structure from direct consultation of  experts. In this study, we 

rules from statistical expert elicitation. 

From a statistical perspective, statistical expert elicitation is the process of  

knowledge about some aspects of  the problem that the analysts want to elicit (Meyer 
and Booker, 2001; Garthwaite et al., 2005). Examples of  typical cases that need expert 
assessment are estimation of  new, rare, complex or poorly understood phenomena, 
future forecasts for particular events, interpretation of  existing data, group decision 
making or extracting the current state of  knowledge about certain phenomena (Meyer 
and Booker, 2001). The ultimate purpose of  statistical expert elicitation is to reliably 
and consistently encode a person’s knowledge or belief  about an uncertain variable 
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2
as a probability distribution (in general, expert elicitation may not necessarily need to 
encode expert knowledge using a probability distribution).

Formal statistical expert elicitation procedure involves a systematic process with 
several stages (O’Hagan et al., 2006; Choy et al., 2009; Knol et al., 2010; Kuhnert et 

Before conducting the elicitation, experts should be motivated and trained through a 
dry-run. Execution of  the elicitation process can be done in a workshop of  a group 
of  experts with support of  computer software and must be facilitated by the analysts. 
It can also be an individual elicitation by means of  face-to-face interviews, online or 
telecom interviews. The analysts play an important role in this stage: they have the re-
sponsibility of  facilitating, designing or choosing elicitation protocols and supporting 
tools. Expert judgement is encoded into probability distributions by either parametric 

to experts, commonly in graphical forms and letting experts revise their judgements 
if  needed. Elicited information from multiple experts can be combined by a mathe-
matical pooling approach (O’Hagan et al., 2006). Bringing experts together in group 
elicitation is another way of  obtaining consensual judgments, in this case using the 
so-called behavioural approach (O’Hagan et al., 2006). Heuristics and biases in expert 
cognition may result in inaccurate probability judgements (Kynn, 2008). The struc-
tured elicitation protocol has been designed in an attempt to minimize all contamina-
tions to the process of  eliciting reliable expert judgement.

Statistical expert elicitation functions as a statistical tool to extract knowledge 
from experts about real-world phenomena. In practice, statistical expert elicitation 
procedure needs computer assistance to effectively, conveniently and routinely cap-
ture and encode expert judgement (O’Hagan, 1998). In response to this, an increasing 
number of  software and web-based tools have been built. Examples of  web-based 
tools for the elicitation of  univariate discrete and continuous probability distributions 
of  uncertain variables are the MATCH Uncertainty elicitation tool (Morris et al., 
2014) and The Elicitator (UncertWeb - The Elicitator1, assessed 29/02/2012); exam-
ples of  software are SHELF (Oakley and O’Hagan, 2010) - the elicitation framework 
for single and multiple experts, Elicitator (James et al., 2010; Low-Choy, 2012) for 
elicitation of  regression models in ecology, and ElicitN (Fisher et al., 2012) for elici-
tation of  species richness.
1 http://elicitator.uncertweb.org



EXPERT ELICITATION FOR THE VARIOGRAM                                                                   21

However, so far statistical expert elicitation has not been used to characterise 
spatial variation and elicit the variogram from experts. In this chapter, we aimed at 
applying statistical expert elicitation to geostatistical research domain, particularly to 
elicit the variogram from expert knowledge. We developed a novel and generic statis-
tical expert elicitation protocol and built a web-based tool to facilitate statistical expert 
elicitation for the variogram of  an isotropic second-order stationary multivariate nor-

In Section 2.2, we present the statistical expert elicitation protocol. Section 2.3 
describes the web-based tool, its architecture and functionality. In Section 2.4, we 
present the results from a simple case study to test the protocol and web-based tool. 

of  the tool and avenues for further research in Section 2.5.

2.2. Developing a statistical expert elicitation protocol

-

its estimators that forms the basis for the developed protocol is presented.

Z(s1) – Z(s2)] 
(Journel and Huijbregts, 1978) where Z is the random function that characterizes the 

s1 

and s2 s1, s2 Z(s1) – Z(s2)].

Assuming that Z is an isotropic second-order stationary random function on the 
Z(s1 Z(s2

Z(s1) – Z(s2)] = 0,

h

with h
vectors s and s Z(s+h) – Z(s)].

 Dowd (1984) introduced a robust estimator of  the variogram, which was de-
rived from Cressie and Hawkins (1980), based on the median of  the absolute value of  

 2 ˆ Z(s+h) – Z(s 2 (2.1)
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2
-

Z(s+h) – Z(s
psychological research and practical expert elicitation exercises have shown that the 

most precise and reliable outcomes (Peterson and Miller, 1964; Kadane and Wolfson, 
1998; O’Hagan et al., 2006). Using this approach, the variogram can be inferred at 

through these estimates in the usual way. In addition, the marginal probability distri-

distribution of  the random process Z over a geographical plane is also elicited.

Figure 2.1: Components of  elicitation protocol

Based on this concept, the statistical expert elicitation protocol was designed 
for multiple-expert elicitation with two main rounds. Round 1 is the elicitation for the 
mpdf  and Round 2 is the elicitation for the variogram. Fig. 2.1 outlines the process 
of  the whole elicitation procedure.

2.2.1. Expert elicitation for the marginal probability distribution

To elicit the mpdf, we used the bisection method for unbounded probability distribu-
-

edge from experts on probability (Garthwaite and Dickey, 1985). Fig. 2.2 outlines the 
process of  Round 1. In this method, the ordered range of  possible values of  the ran-
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dom variable Z(s s is 
immaterial because Z

Figure 2.2: Round 1 of  elicitation procedure

To avoid complexity, it is reasonable to assume that expert’s belief  about the 
mpdf  of  the random environmental variables can be represented as a normal or log-
normal distribution. The decision between normality and lognormality is based on a 

 (Bowley, 1920):

= (Z0.75 + Z0.25 – 2Zmed)/(Z0.75 – Z0.25) (2.2)

where Z0.25, Zmed, Z0.75

t t, the distribution is assumed 
 the lognormal distribution is assumed.

-
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2
) 

and the variance ( 2) of  the mpdf  are chosen by numerically minimizing: 

0.25; , 2) – 0.25]2
med; , 2) – 0.5]2

0.75; , 2) – 0.75]2, where F is 
the normal or lognormal cumulative distribution function.

-
liefs are correctly conveyed in the given feedback. Because the mpdf  of  the random 

about the mpdf  before proceeding to the next round. Section 2.2.3 details how con-
sensus amongst experts can be obtained.

2.2.2. Expert elicitation for the variogram

To model the variogram function, the variogram values for various lags need to be 
estimated. For kriging, modelling the variogram at small lags is more important than 
at larger lags because the nearer locations give more weight in the kriging predic-
tion (Myers, 1991; Webster and Oliver, 1992, 2007). Choosing more small lags is 

-

xmax – xmin)2+(ymax – ymin)2], where xmax, xmin, ymax, ymin

to the nearest number of  type k×10a with k=1, 2 or 5 and an integer a (e.g. if  the 
initial distance is 5×103 then the next is 2×103, if  it is 1×103 then the next is 5×102, 
etc.). We chose to elicit from experts the median of  no more than seven lags because 
experience has shown that experts cannot give proper judgements for more than 
seven values in a single session (Meyer and Booker, 2001). Note also that the ratio of  
the largest and smallest lag is at least 100 which ensures that the smallest lag is small 
compared to the extent of  the study area.

-
mal or lognormal distribution, the next step of  eliciting the variogram will be differ-
ent. Fig. 2.3 outlines the procedure of  Round 2.
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Figure 2.3: Round 2 of  elicitation procedure

Variogram elicitation in case of  the normal distribution

When the consensus mpdf  is a normal distribution, Z is a second-order stationary 

Z(s + h) – Z(s inc_med for each of  the 
seven lags. The medians elicited from each expert are used to calculate the variograms 

mpdf, which is the consensual mpdf  from the Round 1 (Barnes, 1991). Thereby, it is 
easy to derive that the medians judged by experts must satisfy the following condition: 
Vinc_med 0.75 – Z0.25). This condition is checked during Round 2.

-
ulation (Goovaerts, 1997; Pebesma, 2004) along an arbitrary transect within the study 
area. The variation in simulated values along the transect is shown to the experts. 
Note that, experts can only see the outcomes from their own judgements. Several 
simulations are generated and experts can toggle between these to get an impression 
of  the whole range of  possible realities. Experts can reconsider whether the spatial 
structure shown along the transect conveys what they think it should be. If  not, they 
can revise their judgements about the medians at lags and the variogram elicitation is 
reiterated. Note that at this stage, they can no longer change the judged values of  the 
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Variogram elicitation in case of  the lognormal distribution

When the mpdf  is lognormal, each expert is asked to judge the median of  the absolute ra-
tio of  change Vr, called Vr_med, between two locations at distance h: Vr  Z(s+h)/Z(s

Z(s Z(s
Z(s+h)) log(Z(s Z(s+h)/Z(s

Z(s+h)/Z(s Z(s+h)/Z(s
the sill not increasing the variance yields the condition: Vr_med Z0.75/Z0.25)0.709.

-
ment of  log-transformed values. The remaining steps are the same as in the case of  
normal mpdf. Note that, because the simulated values in this case are taken from the 

values along a transect are shown to experts.

2.2.3. Pooling experts’ judgements

The multiple judgments from experts are combined using the mathematical com-
bination method, also known as opinion pooling (O’Hagan et al., 2006). We follow 
the linear opinion pooling method in which all experts’ judgements are combined by 

the elicitation for the mpdf  and for the variogram.

The pooling of  the mpdf  is done by applying probabilistic averaging of  many 

The minimum value from all experts is taken as the minimum, likewise for the max-
-

chosen probability distribution (i.e. the normal or lognormal). The consensual mpdf  
is reported back to each expert, giving them a chance to compare it with their own 
mpdf  and revise their judgements. The process continues until all experts are satis-

point, the Round 1 is ended. In practice, it may be sensible to allow just one revision 
turn.

To pool the variogram, the medians elicited from all experts for the seven lags 
-
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tation procedure is ended when all experts stop revising their own judged values for 
the medians.

2.3. Description of  the web-based tool

General structure of  the web-based tool has three main components: web interface, 

design are discussed in detail hereafter.

Figure 2.4: Three main components of  web-based tool

2.3.1. Web elicitation interface

The web interface was built around Symfony, which is an Open Source PHP Web 
application development framework (Symfony, 2012). It facilitates interaction of  indi-
vidual expert with the tool to automatically proceed through the elicitation procedure. 

and answer forms and the graphical feedbacks. Google Maps is embedded to pro-

designed in each webpage with different functions such as saving experts’ judgments, 
executing statistical computation, rendering graphical feedbacks and navigating. 

To access the tool, experts login at URL: http://www.variogramelicitation.org 
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were set up to handle submission of  experts’ judgements. Graphical feedbacks pro-

the Round 2 both for individual and pooled outcomes. The graphical feedbacks are 
rendered using the Flot - Javascript plotting library2 for jQuery (jQuery3, accessed 
28/02/2012). 

2.3.2. Database

open source database MySQL. Symfony integrated with Doctrine provides an object 
4) to interact with the MyS-

QL database to retrieve and store data.

2.3.3. Statistical computation

variogram, to combine multiple experts’ judgements and to simulate realisations of  

combination of  the Nugget model with each of  the others. The initial parameters 

Other statistical functions were originally built around the R package gstat (Pebesma, 
2004). All statistical functions were assembled in a standardized format of  an R pack-
age, named eeVariogram. 

Executions of  these statistical functions are initialized by experts after they have 

-
not interfere. PHP executes and passes arguments to R scripts which invoke R func-
tions from the eeVariogram package. The outputs are returned to PHP for rendering 
by Flot.

2 http://www.flotcharts.org/
3 
4 http://www.doctrine-project.org/



EXPERT ELICITATION FOR THE VARIOGRAM                                                                   29

2.4. Illustrative example

set up a simple case study on elicitation of  the spatial variability of  the maximum tem-
perature over The Netherlands on April 1st, 2020. Historical data from KNMI-Royal 
Netherlands Meteorological Institute were used to compare with the elicitation out-
comes. The data are the measured maximum temperature on April 1st from 1993 to 
2012 at 35 stations over The Netherlands. Five partners from UncertWeb project5 
were invited to join the case study as experts. It should be noted that this simple 
example was only chosen to test the tool, and that the experts are not climatologists 
of  The Netherlands. Hence, a variable was chosen that, with the right background 
5  http://www.uncertweb.org
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information provided by the tool, each participant could form an opinion on.

The web-based tool started with information about the geographical attributes, 
a link to the KNMI website where the experts could obtain information about the 
weather of  the Netherlands and a Google map of  The Netherlands. Although the 

document, the causes of  biased judgements including cognitive bias due to limitations 
in human information processing and motivational bias due to human subjectivity 
(Meyer et al., 1990) were also explained to point the experts to possibly major causes 
of  bias in their judgements. The experts were asked to carefully read the introduction 

Round 1 and 2.

We present the results from one expert as an example. The expert’s judged val-

past twenty years at an arbitrary selected station shows a fair degree of  agreement 
(Fig. 2.10). Apparently, the experts have a fair idea of  the variations that occurred in 
the past and projected this to assess uncertainty about the maximum temperature on 
April 1st, 2020.

was the Vinc_med. Fig. 2.11 shows the variograms computed from the elicited medians 
from all experts and the pooled medians at the seven lags (ranging from 2 to 200 km). 

knowledge about geostatistics that was not presumed. The pooled variogram model is 
the Matérn model with nugget = 0.02ºC2, partial sill = 4.56ºC2, range = 27.6 km and 
smoothness (kappa) = 0.7.
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Fig. 2.12 shows an example of  simulation transects that are the actual feedbacks 

to the experts. The pooled transect shows a substantial degree of  short-distance var-
iation; this is in agreement with the pooled variogram model (Fig. 2.11). The vario-
gram that was derived from the data over the past twenty years at 35 stations was cal-

model (Fig. 2.11). Although there are data from only 35 stations that make variogram 
estimation inaccurate, part of  this inaccuracy is taken away by pooling over twenty 
years. By comparison with the variogram model from the data, the elicited variograms 
from the experts show that the experts tend to overestimate the spatial variability, es-
pecially at short distances. This difference may partly be explained by the fact that the 
experts are indeed not experts in climatology of  the Netherlands, partly because the 
variogram was derived from data of  only 35 stations, and partly because the expert 
elicitation addressed the future temperature.

Figure 2.8: Screenshot of  graphical feedback for individual expert’s marginal 

probability distribution
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Figure 2.9: Screenshot of  graphical feedback for pooled marginal probability distri-

bution

Figure 2.10: Histogram of  maximum temperature from one station on April 1st over 
past twenty years compared with experts’ (dotted lines) and pooled (solid line) mar-

ginal probability distribution function
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Figure 2.11: Elicited variogram models from experts (dotted lines) and from pooling 
(solid line). The dashed line represents the variogram model derived from historical 

data

2.5. Discussion and Conclusions

-
signing an elicitation protocol for the variogram. The variogram elicitation procedure 
works and the elicited variogram captures the experts’ knowledge of  spatial variability.

use, has an interactive interface, provides immediate graphical feedback, is remotely 
accessible, provides a database management and automatically performs the mathe-
matical and statistical computations in the background. It is easily adaptable to dif-

from experts nor experts to be geostatisticians. It was developed based on the recom-
mended seven steps of  designing an expert elicitation protocol and software (Choy et 
al., 2009; Knol et al., 2010). We used indirect encoding method (Choy et al., 2009) in 
Round 2 which asks experts about what values they observe in the study area, rather 
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than directly ask them the parameters of  the variogram. We believe that non-geosta-
tistical expert knowledge of  spatial variability can be easily communicated in this way.

Figure 2.12: Feedback of  simulated transects from one expert (grey line) and 

pooling (dark line)

The web-based elicitation tool only incorporates mathematical opinion pooling. 
-

ering of  experts that cannot be remedied using video-conferencing or similar meeting 
formats. Amongst available mathematical combination methods, the average pooling 
method is the simplest but is generally found to perform as well as more complex 
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approaches (Clemen and Winkler, 1999).

To minimize common biases in expert judgments, especially cognitive bias 
which occurs more often in a web-based elicitation process, we followed the guide-
lines in Meyer et al. (1990) and Choy et al. (2009) in the design of  the protocol. The 

-
perts can encounter. Well-documented information about the study area and related 

much as possible, while revision of  judgements is allowed to further reduce anchoring 
-

nology to prevent misunderstandings. Question forms of  both rounds have no more 
-

ity. Motivational bias is limited in real time, e.g. experts are not informed about other 
experts and their individual judgements. The indirect encoding method used does not 
directly show a link between the experts’ answers and the encoded variogram param-

interpretations.

The web-based tool presented in this work is a research prototype that has sev-
eral limitations. Firstly, the feedback of  the simulated transect in Round 2 was found 

of  multiple simulated maps over whole study area, although this can slow down the 

accuracy. This can frustrate experts to spend much time on the revision. However, 

some IT skills that might limit the easy reuse of  the tool. Implementation of  a user 
interface to conveniently create different case studies (for example, see The Elicita-
tor6) is recommended for future development.

In spite of  the limitations, the tool functions appropriately and is ready to be 
used for real-world case studies. These real-world case studies need to be carried out 
with domain experts to more exhaustively evaluate the protocol and tool. The poten-
tial routine use of  the tool is promising because of  its simple principle. Despite the 
6 http://elicitator.uncertweb.org/
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hesitation of  using expert knowledge to infer uncertain environmental variables, the 
-

2000; Meyer and Booker, 2001; O’Hagan et al., 2006). This is also valid in geosta-
tistics, where experts can be an important source of  information about the spatial 
variability of  a phenomenon, particularly when data are scarce or completely lacking. 
Expert information should not be discarded because it is supposedly subjective. We 
need proper tools to extract information from experts in a responsible way. With this 
work, we have provided such a tool and we hope that it may encourage further de-
ployment of  expert knowledge in geosciences.





Chapter 3

property maps with statistical expert 

elicitation

Based on: Truong, P.N., Heuvelink, G.B.M., 2013. Geoderma 202-203, 142-152.
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3.1. Introduction

Errors in mapped soil properties are inevitable because our knowledge about the 
soil is always limited (Webster, 2000; Heuvelink et al., 2007). Mapping soil proper-
ties using a geostatistical prediction framework has the advantage that these errors 

kriging prediction error characterises the uncertainty about the unknown true value at 
a prediction location and is represented by a probability distribution, centered around 
the predicted value. In a kriging based approach, the magnitude of  the uncertainty is 

variance map can be taken as a summary measure of  the accuracy of  the predictions 
because it characterises how close the predictions on average are to the unknown true 
values.

Although much work has been done on soil property mapping using the ge-
ostatistical framework, many maps of  soil physical and chemical properties are not 
produced using this framework and are often not accompanied by accuracy measures. 

maps. This prohibits a sensible assessment of  the usability and validity of  soil maps 
for decision making and prevents uncertainty propagation analyses that trace the 
propagation of  errors and uncertainties through environmental models (Heuvelink, 
2006).

Since many soil property maps are not produced using a geostatistical frame-

framework is valid only under the assumptions made in the geostatistical model, Brus 

-

of  the estimated overall purity of  the categorical soil map of  the province of  Dren-
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the, The Netherlands with 150 validation observations. Malone et al. (2011) combine 
model-based and design-based approaches to introduce two new measures of  the 

-

Moreover, independent validation only provides summary measures of  the map ac-
curacy and does not yield a full spatial-probabilistic description of  the uncertainty as 

-

soil maps based on their experience and knowledge. In such cases, when independent 

2012; Perera et al., 2012a). Experts, and the knowledge they provide, can be valuable 

2001; Krueger et al., 2012).

In this chapter, we aimed at applying an existing statistical expert elicitation  

Anglian Chalk area of  The United Kingdom. The SWFC map is part of  the National 
Soil Map of  England and Wales (NATMAP). The SWFC map can be prone to un-
certainty due to measurement and mapping errors of  the covariate data and errors in 
the pedotransfer function used to create the map (Minasny et al., 1999; McBratney 
et al., 2002; Minasny and McBratney, 2002). The SWFC map is used as one of  the 
main inputs in a chain of  models that predict regional future crop yield for the East 
Anglia Chalk area (UncertWeb, 2010). The uncertainty about the SWFC can lead to 
uncertainty in crop yield and hence, uncertainty propagation can cause bias and lack 
of  precision in the yield prediction outcomes.

The results from this chapter are meant to serve as a demonstration of  how 
-

erties. Also, the presented work is meant to show the use of  the elicitation protocol 
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and web-based tool for expert elicitation of  the variogram as proposed in Chapter 2. 
In Section 3.2, we elaborate on the materials and methods used in this work. Section 
3.3 presents the results of  the case study. In Section 3.4, we discuss the results, draw 
conclusions and give recommendations for future research.

3.2. Materials and Methods

3.2.1.  Description of  the study area

The study area is located in East Anglia in the southeast of  The United Kingdom 
(Fig. 3.1). The mainly arable region was formed on a narrow continuation of  the chalk 
ridge that runs from southwest to northeast across southern England. The region is 
about 839 km2 in size, spanning about 69 km along its longest dimension; its width 
ranges from about 10 km to 20 km. The altitude of  the region gradually increases 
from about 0 meters in the northeast to about 167 meters above sea level in the south-

7, the East Anglia region is drier 
than other regions in The United Kingdom: it has a low annual rainfall (less than 700 
mm per year) with much more even distribution of  rainfall throughout the year than 
most other parts of  The United Kingdom. The mean annual temperature is about 
9-10ºC; the difference in temperature between winter and summer is about 10-15ºC. 
According to NATMAP - soil map of  the East Anglia region, the main soil types over 
the study area are loam over chalk, sandy loam, deep clay and shallow silty over chalk.

In this study, the SWFC is the volumetric water content at 10kPa suction. The SWFC 
map for the East Anglian Chalk area (Fig. 3.2) is part of  the NATMAP8. The NAT-
MAP is a vector map with national coverage for England and Wales. It was produced 

-
dom. The map has a scale of  1:250,000. 

The values of  the SWFC map for the East Anglian Chalk area are expressed in a 

are ‘representative’ for the dominant soil series associated with the polygons in the map. 
The values are computed by applying a pedo-transfer function that predicts the SWFC 
from basic soil properties (clay, silt, organic carbon and bulk density) using a multiple 
linear regression derived from the soil survey of  England and Wales (Hall et al., 1977). 

7 http://www.metoffice.gov.uk
8 http://www.landis.org.uk.
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The values of  the basic soil properties per soil series used in the regression are based on 
observations taken across England and Wales of  which the mean values per soil series 
of  these properties are computed and assigned to corresponding polygons on the map.

Figure 3.1: East Anglian Chalk area

In addition, maps of  soil type, land cover, texture, bulk density, geology, eleva-
tion and climatic information for the study area were used as ancillary information 
and provided to experts. These maps were also extracted from the NATMAP vector 
data.

3.2.3. Design of  expert elicitation procedure

because in reality, the exact value of  the error at any location in the study area is un-

Heuvelink et al., 2007). In order to facilitate experts to characterise this full spatial 
probability distribution, we used a formal expert elicitation framework following the 



44                                                                                                                                                                                                                                      CHAPTER 3

3

Particularly, we used the web-based tool that was designed for expert elicitation for 
the variogram (Chapter 2). By using this tool, we implicitly assumed that the random 
function model of  the error is either normally or log-normally distributed, and is sec-
ond-order stationary. We now describe the steps of  the framework.

Step 1: Characterisation of  uncertainty

map at any location in the study area: ˆZ X Xs s s , where Z is the error value 

at a location s D, D is the study area, X̂  is the SWFC value provided by the map 
and X is the true value of  the SWFC. The true value is the SWFC of  a core taken at 
25 cm depth. Experts were asked to take all sources of  error that cause the map value 
to differ from the true value into account.
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As already mentioned, the error was assumed to have either a normal or log-nor-
mal distribution. Further, we assumed that the error is second-order stationary and 
isotropic. This means that its spatial mean and standard deviation are location-inde-
pendent and that the spatial correlation of  the error at two locations only depends 

h

correlation is characterised by the variogram.

The probabilistic model of  the error {Z(s), s Z(s) =  + (s), 
where Z(s) is a random variable that represents the error at location s,  is the spatial 
mean error that depicts the bias in the SWFC map, the stochastic error  is a sec-
ond-order stationary and isotropic random function with zero mean and variogram 
function: (h) = Z(h) s+h) – Z(h))2] (Goovaerts, 1997), where stands for 
the variogram.

Step 2: Selection of  experts

We selected experts through a two-step procedure. First, we nominated a list of  ex-
perts. Based on this list, we studied their CVs to have a better understanding of  

peer-reviewed papers in soil science, particularly in agricultural hydrology. Experience 
was derived from the time they started their research in soil science. Motivation was 

this way, we selected ten experts from The United Kingdom and The Netherlands 
with a high level of  expertise, at least ten year experience in soil science with a good 
level of  motivation and who are familiar with the study area. All selected experts have 

-
lected experts, we sent them by email an invitation letter for the elicitation exercise. 

Kingdom were willing to participate in the full elicitation procedure. The others could 

to achieve robust results (Knol et al., 2010). 

Step 3: Design of  the elicitation protocol

In this step, we adopted the web-based protocol for expert elicitation of  the vario-
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gram (Chapter 2) which allows to elicit from experts the mpdf  and the variogram to 
form the full spatial distribution of  the spatial random error under the assumptions 
of  a normal and log-normal distribution. There are two main rounds in the elicita-
tion protocol. Round 1 is the elicitation of  the mpdf  and Round 2 is the elicitation 
of  the variogram (Fig. 2.1). By using the web-based tool, the tasks in Step 2-Scope 
and format of  the elicitation, Step 5-Preparation of  the elicitation session and Step 
6-Elicitation of  expert judgements in Knol et al. (2010) were incorporated into this 
step. Implementing this step is the most laborious task among all steps.

After experts were given usernames and passwords, they could access the tool at: 
http://www.variogramelicitation.org. We designed an introduction page that provid-
ed the experts with a detailed description of  the study area, information and map of  
the SWFC together with maps of  all auxiliary variables as described in Section 3.2.2. 
The introduction was provided to familiarise the experts with the context and pur-
pose of  the case study.

-
-
-

outcomes from the elicitation were to be presented in a research paper aiming at stu-
dents, experts, decision makers and scientists in crop yield modelling and soil science. 

experts in giving their judgements.

two weeks for the second round. For Round 1, because there were holidays in be-
tween, the time lasted from 20th

to the experts until 6th

from 23rd of  January, 2012 to 5th of  February, 2012. We recommended that the actual 

The web-based tool provided a mechanism for minimising bias in experts’ judge-
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pooling) for pooling multiple experts’ judgements.

The experts were contacted by email to start each of  the elicitation rounds and 

issues during the elicitation procedure.

Step 4: Evaluation and report of  results

exercise, besides communicating with the experts during the elicitation session, we 

covered two main aspects: the practicality of  the elicitation exercise and the experts’ 
-

imum of  ten minutes for each expert to complete.

Documentation of  the elicitation procedure and presentation of  the results are 
accomplished in this paper. The results are presented graphically and in the form 
of  summary tables. Judgements by individual expert are reported anonymously.

3.3. Results

-
cause we anonymously report judgements from each expert, we encode the six ex-

The variogram lags are encoded as Lj of  which the index j = 1, ..., 7 numbers the lags 
from the shortest to the longest lag. Recall that Z denotes the isotropic second-or-
der stationary spatial random error in percentages. The results of  the two elicitation 
rounds are presented in turn.
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Table 3.1: Questionnaire for Round 1 and Round 2 of  the elicitation protocol.

Questions of  Round 1
1. What is the lowest possible value of  Z? (Zmin) 

2. What is the highest possible value of  Z? (Zmax)

3. What is the value Zmed Z is less than 
Z med

4. What is the value Z0.25 Z is less than 

min, Zmed]? Pr(Z 0.25

5. What is the value Z0.75 Z is less than 

med, Zmax]? Pr(Z 0.75

Questions of  Round 2

For each of  seven variogram lags:

Could you specify a value Vinc_med 

Vinc inc inc_med) 

3.3.1. Judgements on the marginal probability distribution

Z 
at a random location within the study area. Due to the second-order stationarity as-
sumption, the mpdf  is the same at all locations within the study area. Hence, it is im-

pointing them to a particular location. The experts gave judgements for the plausible 
range of  the value of  Z (the possible minimum and maximum values) and the three 

Z.

There were variations in the plausible range of  the error in the SWFC map. 

The three experts E1, E2 and E4 judged nearly the same range. All ranges had over-

judged medians were outside this interval. Experts E2 and E4 judged the median to 
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values of  all experts resulted in a (more or less) symmetric distribution around the 

density function to the expert’s judged values are shown in Fig. 3.4.

Table 3.2: Information about experts participating in the study

Expert Title Expertise
E1 - a - Land surface modelling, 

soil physical, hydro-mete-
orological and plant-phys-
iological measurement 
methods

E2 Department of  Geog-
raphy & Environmental 
Science, University of  
Reading

Professor in Soil Science Soil science, Pedometrics

E3 Computer Science, As-
ton University

Reader in Computer 
Science

Environmental Statistics, 
Geo-Informatics

E4 Department of  Geog-
raphy, Brigham Young 
University

Associate Lecture Soil Science

E5 Rothamsted Research Lawes Trust Senior 
Fellow

Soil science, Pedometrics

E6 Soil Physics and Land 
Use Team, Alterra, Wa-
geningen University

Senior Researcher Soil Sciences, Soil Physics, 
Land Evaluation

aE1 wishes the information to remain anonymous.
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Figure 3.3: Judged values from six experts for the minimum, maximum and the 

chosen location in the study area

Figure 3.4: Fitted marginal probability density functions to individual expert’ 
judgements and to the pooled opinion
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-

probability density functions to experts’ judgements. Experts E2 and E4 judged that 

-
ted standard deviation measures the absolute degree of  variation in the random error. 

smaller than those of  all other experts. This is also depicted in Fig. 3.4 by the two 
narrow probability density graphs for experts E5 and E6.

As also shown in Fig. 3.4, the pooled mpdf  that is a probabilistic average of  all 

experts’ judgements

Expert

E1 0.0 18.2
E2 8.0 15.8
E3 0.0 14.8
E4 8.0 12.9
E5 0.0 2.2
E6 0.0 3.1

3.3.2. Judgements on the variogram

Variogram elicitation was started by eliciting the median of  the absolute values of  

inc Z(s)  Z(s
distances h (Chapter 2). We denote this median by Vinc_med. The seven lags where the 
values of  Vinc_med were elicited were estimated based on the extent of  the study area. 
The seven lags Lj range from 0.5km to 50km and are shown on the bottom-right 
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legend in Fig. 3.5. In general, the judged values of  Vinc_med from all experts increased 

2004). The Vinc_med for seven lags were used to calculate the variogram values by the 
ˆ (h) = 2.198(Vinc_med)2 (Cressie and Hawkins, 1980). The judged values 

-
ance of  the pooled mpdf. This is because the variance of  the pooled mpdf  represents 
the maximum possible total variance of  the error over the study area. These are two 
of  the coherence conditions incorporated in the web-based tool (Chapter 2). Howev-

-
ent between experts, and this resulted in different scales of  spatial dependency. The 
variations in the values of  Vinc_med among experts were also different for different lags. 
There were almost no common values of  Vinc_med in each lag, except for lag L1 (two 
experts: E3, E4) and lag L2 (three experts: E3, E4 and E5). There were considerable 
variations in the judged values of  Vinc_med

the other four lags. This means that there were diverse opinions from the six experts 
-

the spherical model (E4).

experts about the spatial variability of  the error in the SWFC map over the study area. 

the judgements of  expert E6, spatial variability of  the error at short distances is large 
(largest values of  the nugget and partial sill and smallest range value). Its range param-
eter was smallest, about 2km, meaning that the extent of  spatial correlation is short. 

of  expert E6 compared with those of  other experts.
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inc_med) at seven spatial 
lags from six experts
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The variogram models of  experts E1, E2 and E5 depict almost the same behav-
iour at short distances: strong spatial correlation resulting in smooth variation (larger 
values of  the kappa parameters of  the Matérn models and smaller nugget effect). The 
range parameter of  the model of  expert E5 (7.5 km) and that of  expert E2 (10 km) 
were shorter than that of  expert E1 (20 km). This means that according to experts 

gradual decrease of  spatial correlation with increasing distance. The opinions of  ex-

models to their judgements were also different among each other, the behaviours of  

those of  the other experts. This group of  opinion seemed to be ‘moderate’, while the 

expert E4 was the only spherical model that has a large range, large partial sill and also 
a large nugget. This model resulted in a combination of  a noisy signal and gradually 
changing values over distances.

Table 3.4: Fitted variogram models to six experts’ judgements and their parameters.

Expert Model Parameters
Range (meter) 2) 2) Kappa

E1 Matérn 19,623 0.34 68.88 1.1
E2 Matérn 10,352 0.004 44.55 1.7
E3 Matérn 6,918 0.73 27.92 0.4
E4 Spherical 35,368 4.81 59.28 -
E5 Matérn 7,575 0.09 37.47 2.0
E6 Matérn 2,164 6.16 66.22 0.6

-
iogram values that were the average values of  all experts’ judgements for the sev-
en lags (Chapter 2). The pooled variogram model is the Matérn model with pa-

2 2, range = 25,400 meters, 
kappa = 0.4. A set of  simulated maps of  the error based on the pooled mpdf  

-
an simulation (Fig. 3.7). Fig. 3.8 shows the simulated SWFC maps that were gen-
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erated by adding each of  the simulated error maps to the SWFC map (i.e. Fig. 3.2).

3.3.3. Feedback from experts on the elicitation exercise

The feedback from the experts about the elicitation exercise concerned two aspects: 
feedback on the experts’ performances and on the practicality of  the elicitation ex-

(see Appendix 3.A) that they received.

capacity for the East Anglian Chalk area
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Anglian Chalk area
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Table 3.5: Summary of  experts’ feedbacks on the elicitation exercise

Feedback on expert performances

Round 1 E2,E5,E6 E1,E3,E4
Round 2 E2,E5 E1,E3,E4,E6

Elicitation time < 15 mins 15 mins 30 mins
Round 1 E2,E5,E6 E1,E3,E4
Round 2 E2,E4,E5 E1,E3,E6

Experience on expert 
elicitation

Yes No

E1 E2,E3,E4,E5,E6
Field work on study 
site

Yes No
E4 E1,E2,E3,E5,E6

Most useful data E1 E2 E3 E4 E5 E6
Soil tex-
ture and 
struc-
ture, 
land 
cover

Soil tex-
ture and 
structure, 
elevation, 
soil map

Soil 
map

Soil texture 
and struc-
ture

Soil map Soil 
texture 
and 
struc-
ture

Feedback on the web-based tool

Introductory part E4 E1,E2,E3,E5,E6
E1,E2,E3,E5,E6 E4

Very clear Clear Not clear

error
E3,E5,E6 E1,E2,E4

Very easy Easy Not easy
Question of  Round 1
Understanding E3 E2,E6 E1,E4,E5
Answering E2,E4,E6 E1,E3,E5
Question of  Round 2
Understanding E2,E4,E5,E6 E1,E3
Answering E2,E4,E5,E6 E1,E3
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3 Round 2, the time they spent on this round was less than that for Round 1. All experts 
spent at least thirty minutes on Round 1. In Round 2, the two experts who expressed 

time of  30 minutes while the rest spent the maximum of  30 minutes. This contrasts 
with our expectation that experts would spend more time carefully examining the 

Continuing on the performance of  the experts, only one expert had previous 

work in the study area, although all were familiar with the soils in this region. We were 
interested in which information was most important for the experts to base their 
judgements on. Four experts found the information about soil texture and structure 
of  the study area most useful. The other two experts found the soil map most useful.

the tool. During the elicitation procedure, there was no complaint about the function-
-

tory part, although one expert felt somehow distracted by the interesting background 

-
eral experts initially interpreted the error as the absolute error, meaning that it could 

-
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3.4. Discussion and Conclusions

In this section, we discuss the results of  the expert elicitation process, especially their 
robustness and the possibility of  bias. Robustness here means how closely the six 
experts’ opinions represent the total expert community’s. We will also discuss the 
practicality of  the web-based tool and facilitating expert elicitation using the web-
based tool.

The spatial probability distribution of  the error in the SWFC map has a nor-

that the SWFC map was overall underestimated for all soil types (or at every location). 

the systematic error is smaller than the random error. On average at every location 

To elicit the uncertainty of  the SWFC map, we assumed that the spatial error 

-
sumed in geostatistics, but it is important to verify that the resulting model is a plau-
sible description of  reality. In our case, we assumed that the error in the SWFC has 
constant mean and variance, while it may be more realistic to relax this assumption 
and let it vary with soil type (e.g., larger uncertainty in stony soils). This could be a 
topic for follow-up research.

both the mpdf  and the variogram. Unweighted averaging is simplistic but pragmatic 
-

ods (Clemen and Winkler, 1999; O’Hagan et al., 2006; French, 2011). Alternatively, 
weighted pooling can be used to give some experts larger weights than others. The 
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weights can be interpreted in a variety of  ways (Genest and McConway, 1990), e.g., 

of  the informativeness of  experts’ judgements and the experts’ performance (Cooke, 
1991), etc. The weights can be assigned to experts by the analysts or the decision 
maker (French, 2011) or the experts can weigh each other and/or choose their own 
weights (i.e. self-assigned weights) (DeGroot, 1974; Genest and McConway, 1990). 

experts and in which conditions using weighted average truly improves results com-
pared to unweighted average (O’Hagan et al., 2006; Clemen, 2008). Therefore, we 

The pooled outcomes can be interpreted as the average knowledge of  six rep-

investigated case. Based on the recommendations from several publications that serve 
as guidelines to design and conduct a statistical expert elicitation, six experts should 
be enough to obtain robust results when considering the trade-off  between expenses 
and informative gain (Meyer and Booker, 2001; Hora, 2004; Knol et al., 2010). We 

soil properties of  the study area. This makes the elicited results well representative 
for (diverse) opinions on the error of  the SWFC map. Concerning the reliability of  

in Round 2. We conclude that the elicited outcomes encapsulate the current knowl-
edge of  multiple experts of  the error in the SWFC map for the East Anglian Chalk 

The elicitation method we used is a variation of  the Delphi method (Ayyub, 
2001) where the experts’ judgements are anonymously and independently elicited. By 
examining the elicited outcomes from every expert, we see that the experts’ judge-
ments for both the mpdf  and the variogram seem to be clustered. The cluster of  the 
judgements might indicate true consensus in a subgroup of  experts about the error in 
the SWFC map. However, it can also indicate a correlation or dependence in experts’ 

The striking difference in judged values from Round 1 is that between the nonzero 
(E2 and E4) and zero median (E1, E3, E5 and E6) of  the mpdf. Assuming that E2 



SPATIAL UNCERTAINTY QUANTIFICATION                                                                   61

3

and E4 are completely dependent, one of  the expert judgements would be eliminated 
from the pooling, then the positive bias would reduce. But, if  experts in the second 
subgroup are completely dependent, only one opinion from the second subgroup can 
contribute to the pooling, in this case the positive bias increases. It would be inter-
esting to examine the dependence in expert judgements. However, the feedback on 
experts’ performances (Table 3.5) and information about experts given in Table 3.2 

is beyond the scope of  this study. Moreover, in the context of  web-based elicitation, 
detecting the occurrence of  cognitive and motivational biases in the expert judging 

-
mances of  the experts while giving judgements could not be observed.

Initially, the outcomes from Round 1 were systematically biased due to misin-

was elicited). Thereby, all experts redid the elicitation task for Round 1. This misin-
terpretation might have been avoided by doing a pre-elicitation training (Knol et al., 
2010); but, we did not include it in our four steps (Section 3.2.3). Moreover, although 
the elicitation session was prepared according to a formalised elicitation protocol, 

experts prior to the elicitation exercise. These documents should ideally have been 
accessible to the experts at least two weeks in advance (Ayyub, 2001). The lack of  a 

some experts were familiar with giving probabilistic judgements, other experts found 

probabilistic judgements prior to their involvement in the elicitation exercise (Hog-

familiarize experts to the elicitation exercise and giving probabilistic judgements and 
-

text of  web-based statistical expert elicitation.

We can conclude from the case study that the web-based tool, which provides 
a uniform procedure to characterise the spatial probability distribution of  uncertain 
variables from expert knowledge, functioned well. With the developed elicitation pro-

maps from expert knowledge. Simulated SWFC maps of  the study site such as shown 
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in Fig. 3.8 can be used to investigate the propagation of  uncertainty from the SWFC 
map to the output of  the regional crop yield model. This study also showed that 

errors in) soil properties. This can overcome the limitations of  using an average var-

lessons from our experiences of  facilitating an elicitation exercise with a web-based 
tool:

1. The facilitators play a crucial role in the success of  the elicitation exercise, also 
for the web-based elicitation methods where a self-elicitation process is expected.

2. Motivation is a very important criterion when choosing experts for the success 
of  the elicitation exercise and reliability of  the elicited outcomes.

3. Differences in experts’ opinions are legitimate (Morgan and Henrion, 1990); 
but reliable elicitation protocols are those that do not exaggerate these inherent 
differences.

4. To determine whether experts’ judgements are dependent, an extensive investi-

Booker, 2001).

-
tively ascertain the generalisation of  the elicitation results.

6. Computer tools are uniform, supportive and reusable mechanisms for eliciting 
expert knowledge, but they have the disadvantage compared to physical expert elici-
tation meetings that experts’ performances cannot be monitored for the possibility of  
bias occurrence.

7. Precision in elicited outcomes from multiple experts might indicate a poor elic-
itation protocol, while imprecision does not necessarily represent inaccuracy in ex-
perts’ knowledge.

This study showed that statistical expert elicitation is a promising method to 
characterise spatial uncertainty of  soil property maps using expert knowledge when 
data-based validation methods are not affordable or feasible. The value of  expert 
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knowledge in soil science was acknowledged as a valuable informative prior, especially 
when there are no alternative useful sources of  information (Stein, 1994). Exploring, 
developing and applying reliable methods to extract knowledge from experts, e.g. 
using statistical expert elicitation for the variogram elicitation as done in this study, 
should be stimulated among soil scientists to effectively and reliably extract informa-
tion from experts in soil research. 

Appendix 3.A. Questionnaire for elicitation exercise evaluation

Dear Expert,

when it is ready to be published).

Thank you very much for your contribution to the elicitation exercise.

The elicitation team.



64                                                                                                                                                                                                                                      CHAPTER 3

3 error in the mapped soil water content?

Information                                                                                          Your choice

Soil texture and structure                                                       

Temperature                                                        

Soil map                                                        

Land cover                                                        

Annual precipitation                                                       

Geology map                                                        

Elevation map                                                        

Please specify any others:

capacity clear to you?

Clearness                                                                                                                 Your choice

Very clear                                                                  

Clear                                                                 

Not clear                                                                  
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Easiness                                                  Round 1                                                Round 2
Very easy                                          

Easy                                            

Not easy                                            

Easiness                                     Round 1                                   Round 2
Very easy                                         

Easy                                         

Not easy                                         

capacity? 

Yes                                  

No                                  

8. How much time did you spend for each round of  the elicitation exercise?

Time                                                     Round 1                          Round 2
Less than 15 minutes                            

15 minutes                            

30 minutes                            

More than 30 minutes                            

9. Have you ever participated in an elicitation exercise before?

Yes 

No 
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10. Do you have other comments on the elicitation exercise?



Chapter 4

Bayesian area-to-point kriging using 
expert knowledge as informative 
priors

Based on: Truong, P.N., Heuvelink, G.B.M., Pebesma, E., 2014. International 
Journal of  Applied Earth Observation and Geoinformation 30, 128-138. 
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4.1. Introduction

Spatial disaggregation (downscaling) is becoming more important in a world where 
the demand for data transformation from global to local scales is rapidly increasing. 

spatial climate attributes (e.g. precipitation, air temperature or atmospheric vapour) at 

using global climate models. Here, spatial resolution or pixel size stands for the spatial 
support, i.e. the geometrical size, shape and spatial orientation of  a spatial unit of  
an observation or a prediction. Changing the spatial support of  a variable changes 
its statistical and spatial properties (Schabenberger and Gotway, 2005). This is the 
well-known change of  support problem (Cressie, 1996; Gotway and Young, 2002; 
Schabenberger and Gotway, 2005).

 Spatial support and change of  support problem have been acknowledged as 
an important source of  uncertainty in remote sensing analyses due to aggregation 
and zoning effects (Marceau and Hay, 1999; Dungan, 2006). Spatial disaggregation 
of  remotely sensed imagery through interpolation shows an important application of  
geostatistics to remote sensing analysis (Van der Meer, 2012). Well-known geostatisti-

Area-to-point (ATP) kriging and multivariate ATP kriging (Atkinson, 2013 ). 

In this study, we focused on ATP kriging (Kyriakidis, 2004) for spatial disaggre-
-

ing and makes predictions of  an attribute at point support (PoS) from block support 

the condition that the arithmetic average of  the predictions (and simulations) at all 

of  BSO are used as conditioning data (Goovaerts, 2008). Hence, to use ATP kriging, 
BSO must be (assumed to be) the arithmetic average of  PoS data within the blocks.

Let z be the variable of  interest that is assumed to be a realisation of  a sec-
ond-order stationary Gaussian random function Z and let z B = z1

B
B

ii

i

d( ) ( )
∈
∫

s

s s be 

the value of  z at block support, where z(s) is the value of  z at point location s and  

iB is the area of  a block B indexed by i. Because the arithmetic averaging is linear in 
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its argument, the random process at block support is also a Gaussian process.

Let Zp = (Z(s1), …, Z(sM))T and                                  denote vectors of  Z at 
point and block support, then their joint probability distribution is jointly Gaussian:

  (4.1)

where  is the constant spatial mean of  Z, 1M and 1N are M and N vectors of  ones, Cpp 
is the M×M variance - covariance matrix of  Zp, CBB is the N×N variance-covariance 
matrix of      , CpB and CBp are the variance-covariance matrix between Zp and B and 
vice versa. Because their joint distribution is normal, the optimal predictor of  Zp giv-

                                      (4.2)

The variance-covariance matrix of  the prediction error, called C(Zp - pẐ ), is given by:

 (4.3)

This shows that ATP kriging is straightforward and very similar to common 

to calculate the point-point, point-block and block-block variance-covariance matri-

1978, Section II.D.4). Estimation of  the PoS variogram from BSO is usually done us-
ing deregularisation or deconvolution (Journel and Huijbregts, 1978, Section II.D.4). 

method to derive the PoS variogram from regular BSO (i.e. satellite imagery). In their 

is that the derived PoS variogram is the one minimising the difference between the 

variogram from both regular and irregular (i.e. different size and shape) BSO. Gotway 
and Young (2007) present an iterative generalised estimation approach to estimate the 
parameters of  the PoS covariance function and the trend surface using irregular BSO. 
Nagle et al. (2011) use maximum likelihood estimation for the PoS covariance func-
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tion using BSO. Gelfand et al. (2001) address Bayesian estimation of  PoS variogram 
parameters from BSO of  a spatial-temporal process. Their study focuses on devel-
oping objective Bayesian inference methods, where the priors of  the PoS variogram 
model parameters are given as noninformative priors. This is one of  few studies that 
addresses PoS variogram estimation from BSO using a Bayesian approach.

In all aforementioned methods for deriving the PoS variogram, the nugget com-
ponent of  the PoS variogram was dismissed and assumed to be zero. There was 
surprisingly little attention on resolving the issue of  inferring the nugget parameter 
from BSO, despite the material impact of  the nugget variance on the ATP prediction 
and associated uncertainty (Kyriakidis, 2004). From the performance assessment of  
the iterative numerical deconvolution method using irregular BSO, Goovaerts (2008) 
concludes that the behaviour at the origin of  the PoS variogram model (i.e. the nug-
get effect and within-block semivariance) could not be characterised with only BSO. 
Recently, Nagle et al. (2011) points out that the BSO retain little information to infer 
the nugget component of  the PoS variogram and recommends using prior knowledge 
to overcome this problem.

The advantage of  using a Bayesian approach is that the Bayesian estimator can 

also the only formalised method to combine prior knowledge with BSO. However, 
extracting expert knowledge as informative priors is a delicate process in order to 
obtain reliable information. Much research has been done recently on using statis-
tical expert elicitation to extract expert knowledge to use as informative priors for 
Bayesian statistical models, e.g. in Bayesian environmental and ecological modelling 
(Choy et al., 2009; Kuhnert et al., 2010; Kuhnert, 2011) and Bayesian geological mod-
elling (Wood and Curtis, 2004). Formal statistical expert elicitation (Garthwaite et 

from expert knowledge the probability distributions of  the PoS variogram parame-
ters to use as informative priors (Chapters 2 and 3). The statistical expert elicitation 

the real elicitation task with experts to post-processing and using the statistical expert 
elicitation outcomes. There is increasing literature presenting detailed guidelines of  
developing and using statistical expert elicitation methods, e.g. Hahn (2006), Knol et 
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al. (2010), Kuhnert et al. (2010), O’Hagan (2012) to name a few. This promises to be a 

component of  the PoS variogram.

Our aim in this study was twofold. Firstly, we wanted to resolve the issue of  
poor estimation of  the nugget effect from BSO by using a Bayesian approach that 

propagation of  PoS variogram parameters and ATP kriging model uncertainty to the 
disaggregated outcomes using Bayesian ATP conditional simulation. We illustrate the 
method with an example on disaggregating MODIS air temperature data measured 

remainder of  this paper has three main sections. Section 4.2 presents the statistical 
methods and a description of  the example. Section 4.3 presents the main results of  
the study and a discussion. Section 4.4 provides the conclusions and recommenda-
tions for further research.

4.2. Materials and methods

Figure 4.1 shows the three main steps of  the method.

Figure 4.1: Three main steps of  Bayesian area-to-point kriging method

4.2.1. Data

Spaceborne thermal imagery is becoming important in climate modelling, soil mois-
ture assessment, irrigation management, etc. (Kuenzer et al., 2013a; Ha et al., 2013). 
Products of  daily spaceborne thermal imagery often have lower spatial resolution 
(e.g., MODIS: 1 km to 5 km, NOAA-AVHRR: 1 km, Sentinel 3-ESA future mission: 
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urban heat effect (Kuenzer et al., 2013b). For these reasons and for illustration pur-

product (MOD07_L2) as BSO of  a continuous variable. The study area was the Gel-
derland province, The Netherlands (Fig. 4.2). It is located in the east of  The Nether-
lands with a total area of  5,137 km2. The MOD07_L2 dataset (cloud-free, Collection 
5) of  August 1st, 2012 at 10:05 a.m. UT (i.e. 12 a.m. CEST) at 5 km resolution was 
obtained from LAADS Web - Level 1 and Atmosphere Archive and Distribution Sys-
tem9

extracted and subset to the area of  the Gelderland province (Fig. 4.3). The BSO of  
the study area had a mean of  21.6ºC and a standard deviation of  0.85ºC.

4.2.2. Statistical expert elicitation for prior distributions

to extract multiple expert knowledge for the prior distributions of  the PoS variogram 
parameters.

parameters (i.e. sill, nugget, range and smoothness parameters) as the target variables 
of  the elicitation task. The smoothness parameter of  the Matérn variogram model 

The Matérn variogram model p is given by:

 p(h) = c0 + c1
1 ))(h/r) K

function of  the second kind of  order , c0 is the nugget variance, c1 is the partial sill 
variance, r is the range parameter, and  is the smoothness parameter.

knowledge about the temperature variation within the Gelderland province. We also 

researchers (two from Wageningen University and one from KNMI - Royal Nether-
lands Meteorological Institute) were recruited into the online elicitation task lasting 
for two weeks from January 3rd, 2013 to January 17th, 2013.

9 http://ladsweb.nascom.nasa.gov/data/search.html.
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Figure 4.2: Gelderland province, The Netherlands

Figure 4.3: MODIS dataset (MOD07_L2) of  Gelderland province
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Figure 4.4: Formal statistical expert elicitation procedure

study and all assumptions related to the dataset and the Matérn variogram model, 

elicit the vairogram parameters, and (4) the common causes of  biased judgements. 
Because the experts have expertise in geostatistics, there was no explanation provided 

week in advance. They were informed of  the possibility to gather all possible sources 
-

itation task.

Step 4: we set up the elicitation task where the experts were facilitated by the 
MATCH Uncertainty elicitation online tool10 (accessed 21/03/2013) to independent-
ly and individually judge the probability distributions of  the PoS Matérn variogram 

10 http://optics.eee.nottingham.ac.uk/match/uncertainty.php
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probability density function (pdf) of  each parameter (available on the MATCH tool) 
and the variogram generated from the pdfs of  the four parameters. A guideline of  
how to proceed with the elicitation task using the MATCH tool was given. The ex-
perts were asked to spend time on self-training in giving probabilistic judgements with 
the MATCH tool. Thereby, we provided a week for the experts in total, of  which only 
45 minutes was recommended to complete the elicitation task for all four parameters.

(maximum, minimum, mean and standard deviation) of  the pdfs that best conveyed 
the experts’ beliefs about the probability distributions of  the parameters.

Three elicited pdfs from the three experts for each parameter were probabil-

1999; O’Hagan et al., 2006; French, 2011) to derive a single prior probability density 

in all experts’ knowledge. These combined pdfs were used as informative priors in the 
Bayesian ATP estimator.

4.2.3. Bayesian ATP estimator using Markov Chain Monte Carlo

Assuming that the spatial random process characterising air temperature at PoS, called 
Z, over the study area is a Gaussian isotropic second-order stationary random pro-
cess, it is fully characterised by the mean and variogram: Zp ~ N( , p). The variogram 

p = p(h, ) is a function of  the Euclidean distance h and the vector  of  four pa-
rameters of  the Matérn variogram. Block averages: B ~ N( , ) have the same spa-
tial mean (Gotway and Young, 2002) but a different spatial structure.  is the block 
support variogram and a function of  the distance h and the vector of  parameters .

In Bayesian estimation, the joint posterior distribution of   and  is related to 

 p( ) ( )L( ) (4.5)

where p( ) is the joint posterior distribution, ( ) is the joint prior distribution and  L( ) 
is the likelihood. The joint prior distribtion of  -
ate kernel density to the pooled pdfs of  all four variogram parameters.
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The likelihood of   and  conditioning on BSO is given by:

Approximately numerical calculation of  each item of  CBB is: 

where the i, j index the BSO (i, j = 1, …, N), the k and l  index the discretised points 

within blocks and K is the number of  discretisation points per block. Blocks were 

The ‘Metropolis within Gibbs’ or hybrid MCMC algorithm (Chib and Green-
berg, 1995; Robert and Casella, 1999, Chapters 6 and 7; Albert, 2009, Chapter 6) 
that simultaneously uses both Gibbs sampling steps and Metropolis-Hastings steps 

sampler to iteratively and alternatingly sample  from its full distribution conditional 
on and sample  from its full distribution conditional on . To simulate a set of   
from  the full conditional distribution on , the Metropolis-Hastings algorithm was 
used because their joint conditional distribution cannot be sampled directly. The same 
approach was used for . We used Geweke’s convergence diagnostic test (Geweke, 
1992) to test the convergence of  the MCMC chains to stationary distributions. 

The hybrid MCMC was implemented in R (R Core Team, 2013), gstat package 
(Pebesma, 2004) for implementing ATP kriging, and the geweke.plot function of  the 
CODA package for convergence diagnostics (Plummer et al., 2006). These computa-
tions resulted in successive sets of   and  that were thinned to obtain a reasonably 
independent set to use as input to ATP conditional simulation (Section 4.2.4).

4.2.4. ATP conditional simulation

ATP conditional simulation enables to generate realisations of  Z at PoS conditional 
on BSO     . We applied the approach of  stochastic conditional simulation by gener-

kriging of  the differences between the BSO and simulated block arithmetic averages 
Zpcs as the 
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ATP conditional simulation at PoS, it can be shown that:

  (4.6)

where Zps is the PoS unconditional simulation and pkẐ  is ATP simple kriging of  
the difference between BSO and the simulated block arithmetic average Bs.

Practical implementation of  this approach comprised four steps:

Step 1. Unconditional simulation at PoS prediction locations: unconditional 

grid for each set of  PoS variogram parameters derived from the Bayesian ATP esti-
mation (Section 4.2.3).

Step 2. Aggregating each PoS unconditional simulation to block support to 
obtain Bs  and calculating the difference:ΔΖΖ ΖΖ ΖΖ= B − Bs .

Step 3. ATP simple kriging of  ΔΖΖ  at PoS prediction locations to obtain pkẐ

Step 4. Summing Zps and pkẐ
Zpcs. 

All four steps were implemented in R (R Core Team, 2013).

4.3. Results and Discussion

4.3.1. Informative priors from multiple expert knowledge

We anonymously report the elicitation outcomes from the three experts, named Ex-
pert 1, Expert 2 and Expert 3. Figs. 4.5 - 4.8 show the pdfs of  the four parameters 
of  the PoS Matérn variogram model that, according to the experts, best convey their 
opinion about the probability distributions of  these parameters. Tables 4.1 provides 
summary statistics of  these pdfs.

pcs ps pk
ˆ= +Z Z Z
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Figure 4.5: Probability density functions of  partial sill parameter from three experts 

Figure 4.6: Probability density function of  nugget parameter from three experts and 
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Figure 4.7: Probability density function of  range parameter from three experts and 

15

Figure 4.8: Probability density function of  kappa parameter from three experts and 
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Table 4.1: Elicited outcomes from experts

Parameters  Pdf   Minimum Maximum Mean Standard  
         deviation

Expert 1
Partial sill (°C2) Log-normal 9.0 16.0  2.5 0.17
Nugget (°C2) Log-normal 0.5 9.0  1.5 0.59
Range (km) Normal 3.0  10.0  6.5 2.17
Kappa                         Log-normal 1.0  10.0  1.6 0.53
Expert 2
Partial sill (°C2) Normal 1.0  10.0  4.7 2.20
Nugget (°C2) Normal 0.0 3.0  1.2 0.44
Range (km) Normal 25.0 151.0 63.0 29.84
Kappa                         Normal 3.0 5.0  4.0 0.44
Expert 3
Partial sill (°C2) Scaled-beta 0.0 4.0  4.7 3.14
Nugget (°C2) Normal 0.0 1.0  0.3 0.14
Range (km) Scaled-beta 0.0  80.0  2.7 4.69
Kappa                         Log-normal 0.4 4.0  0.4 0.24

-
ty of  the parameters of  the PoS variogram. In particular, there was little agreement 
among the experts about the values of  the sill and the nugget parameters. Their pdfs 
have modes located at different values. The different widths of  the pdfs indicat-
ed different level of  experts’ uncertainty about these parameters. The variograms in 
Fig. 4.9 show a better agreement among the experts for the effective range (i.e. the 

is not apparent from Figs. 4.7 and 4.8 for the range and smoothness parameters. The 
reason is that there is a correlation between the smoothness parameter and the range 
parameter: a large range parameter corresponds to a small smoothness parameter 
and vice versa, which when combined, results in similar variograms. Although the 
effective ranges are similar, the variograms from Experts 1 and 2 approach the origin 
differently with different combinations of  smoothness and range. Compared to the 
extent of  the study area, the judgements of  Expert 2 resulted in a very smooth spatial 
process, while those of  Expert 1 resulted in a much more rough spatial process. 
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Figure 4.9: Experts’ prior variograms

The elicitation procedure had the form of  a Delphi elicitation process for mul-
tiple experts (Kuhnert et al., 2010), of  which the feedback of  the pdfs and the vari-
ogram provided a mechanism for calibrating experts’ judgements regarding the best 
expression of  their opinions. The difference from the traditional Delphi method is 
that the outcomes from each expert were not given as feedback to other experts. This 
kept maximum diversity in expert opinions. To validate the experts’ judgements, we 
had measured data from only three KNMI meteorological stations located across 
the Gelderland province. The data were too few to make an accurate estimation of  
the PoS variogram for validation. Using KNMI station data of  the whole of  The 
Netherlands, the PoS variogram derived from these data (see Salet, 2009) agreed well 

terms of  spatial and temporal extent. In fact, we consulted the experts because of  

Gelderland province. 

Although Expert 1 had a remarkably different opinion about the sill and nugget 
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because of  the reasoning behind the judgements of  this expert. Disagreements in 
experts’ judgements that result from differences in experts’ perception or in weighing 
and combining various sources of  knowledge and information can bring more infor-
mation but can also imply large uncertainty in the current experts’ knowledge. Even 
though the experts have expertise in geostatistics, prior knowledge elicitation of  the 

This can partly explain the large uncertainty and diversity in the experts’ judgments.

4.3.2. Bayesian ATP estimation of  point support Matérn variogram model

distribution for  was the joint distribution of  the pooled pdf  of  all parameters (Sec-
tion 4.3.1). The prior for  was a wide, uninformative uniform distribution ranging 
between 10°C and 40°C. Trace plots in Fig. 4.10 show well-mixing outcomes with an 
acceptance rate of  0.5 for  and 0.25 for  that satisfy the recommended acceptance 
rate for one-dimensional and multi-dimensional parameters (Chib and Greenberg, 
1995). Geweke’s diagnostic test results (Fig. 4.11) show that the MCMC chain con-
verged using 30,000 runs. Because the main focus of  this work is on the PoS vario-
gram model’s parameters, there will be no more elaboration on .

The pdfs of  the PoS variogram parameters were plotted together with their 
informative prior distributions in Figs. 4.12 and 4.13. The posterior distribution of  
the nugget parameter is almost the same as its prior distribution, except some erratic 

BSO did not provide information to identify the nugget component of  the PoS vari-

information. Even though, there was considerable uncertainty in the experts’ opin-
ions about the nugget parameter, the elicited informative prior brought valuable in-
formation to the Bayesian ATP estimator. 
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Figure 4.10: Trace plots for point support Matérn variogram model parameters and 
spatial mean

Figure 4.11: Results of  Geweke’s convergence diagnostic test
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Figure 4.12: Informative prior and posterior probability distribution of  nugget 

parameter

The posterior distributions of  the other PoS variogram model parameters devi-
ated largely from their priors and were indeed much narrower. This implies that esti-
mates of  the other parameters were strongly driven by BSO. Fig. 4.14 shows the pos-
terior variograms that were generated by several random sets of  the four parameters. 
The total sill of  the posterior PoS variogram is much larger than the total variance of  
BSO (0.73°C2), which agrees with the fact that block support data are  smoother and 
have smaller variance than point support data (Gotway and Young, 2002). The effec-
tive range was about 50 km in average. Fig. 4.15 shows a negative correlation between 
the range and smoothness parameter and high positive correlation between the partial 

sill and the range parameter.

4.3.3. ATP conditional simulations

Fig. 4.16 shows maps of  the outcomes from 1,000 ATP conditional simulations with 
1,000 inputs of  PoS variogram parameters. These inputs were obtained from the 
MCMC chains by thinning every 30th iteration to obtain a reasonably uncorrelated 
set. The mean of  the conditional simulations ranged from 18.8ºC to 24ºC. All sim-

maps of  the 5th (lower limit) and 95th
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PoS. The number of  simulations was not enough to obtain a stable estimate of  the 
variance of  the ATP simulations. However, the variance of  the ATP simulations was 

of  the joint posterior of  the variogram parameters (Fig. 4.17). This shows that uncer-
tainty about the PoS variogram parameters can make a substantial contribution to the 
uncertainty about the PoS values at prediction nodes.

Figure 4.13: Informative prior and posterior distributions of  partial sill, range and 
smoothness parameters
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Figure 4.14: Posterior point support variograms

Figure 4.15: Correlation between point support Matérn variogram model parameters
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Figure 4.16: Bayesian ATP conditional simulation outcomes (°C) 
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Figure 4.17: Standard deviation of  ATP conditional simulations (top) and that of  
ATP Kriging with modal variogram (bottom) (°C) 

4.4. Conclusions and Recommendations

ATP kriging provides a methodological solution to allow maximum use of  available 

it does not introduce new sources of  information (Atkinson, 2013). In this study, we 
introduced a new source of  information, i.e. by using expert knowledge via inform-
ative priors of  the PoS variogram parameters. By using the Bayesian ATP estimator, 
we have shown that the nugget of  the PoS variogram cannot be estimated by only 

-
servations at PoS, expert knowledge is the best or perhaps only source of  informa-



SPATIAL DISAGGREGATION                                                                   89

tion available about the nugget effect at PoS. For the other parameters, the posterior 
distributions are narrower than the priors because the BSO did provide real infor-
mation, which also affected the correlations between these parameters. The example 
also showed that uncertainty about the PoS variogram parameters can substantially 
contribute to the overall ATP kriging prediction uncertainty. 

The example illustrated that our proposed approach worked well, both in the-
ory and practice. By this, we were able to derive an appropriate estimator of  the PoS 
variogram parameters to perform spatial disaggregation with ATP kriging. It is worth 
mentioning that the prior knowledge derived by statistical expert elicitation in the 
form of  probability distributions is a delicate task and to keep in mind that the elici-
tation outcomes are always imprecise (O’Hagan and Oakley, 2004). In this study, we 
took the view that the best statistical expert elicitation task is the one that can elicit 
the true opinions of  the experts. Although our direct elicitation approach for the PoS 
variogram parameters was structured and transparent, we noticed that it was a fairly 

-
stract to experts. Moreover, biases in expert opinion can directly distort the elicitation 
outcomes; this impact might be less when using indirect elicitation. We recommend 
that indirect elicitation approaches, such as those proposed in Chapter 2, should be 
explored and extended to derive the prior probability distribution of  the PoS vario-
gram parameters in future research. ATP conditional simulation was time-consum-
ing because all BSO and already simulated nodes at PoS were used as conditioning 
data in ATP conditional simulation (i.e. we used global ATP conditional simuation). 
Implementing ATP conditional simulation with a local neighbourhood or using the 
circulant embedding method (Dietrich and Newsam, 1993) will help to speed up the 
simulation.





Chapter 5

Incorporating expert knowledge as obser-
vations in mapping biological soil quality 
indicators with regression cokriging
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5.1. Introduction

Geostatistics furnishes a statistical tool - kriging - for spatial prediction at unobserved 

has the smallest prediction error variance among all unbiased spatial interpolation 
methods (Armstrong, 1998, Chaper 7; Schabenberger and Gotway, 2005, Chapter 5). 
In geostatistics, reality is treated as if  it were a realisation of  a random process that 
is characterised by a probability distribution, which includes the spatial dependence 
structure (i.e. the variogram). The variogram is estimated from the observations using 
the methods-of-moments (Matheron, 1963; Cressie, 1985) or maximum likelihood 

-
servations are used both for modelling the spatial dependence and kriging.

Statistical inference of  variogram parameters is problematic when there are few 
observations because the sampling variance is often large and little information about 
short distance spatial variation is available (Webster and Oliver, 2007, Section 6.1.2). 
Also, prediction by kriging with few observations typically results in large prediction 
error variances because of  the low sampling density (Frogbrook, 1999). In short, us-
ing few observations for kriging produces inaccurate maps. Unfortunately, in many 
practical cases, only few observations may be available for mapping because of, for 
instance, poorly accessible areas or laboriously and expensively measured variables. 
An alternative to collecting extra measurements of  the target variable to improve 
mapping is using ancillary data and/or soft data that are more easily or more cheaply 
obtained. The ancillary data could be point observations of  auxiliary variables that 
are spatially correlated with the variable of  interest as used in cokriging (Goovaerts 
and Kerry, 2010) or spatially exhaustive covariate layers used in regression kriging or 
kriging with external drift (Goovaerts, 1997, Chapter 6; Hengl et al., 2007) while soft 
data are typically associated with the observations of  the target variable that have 
(larger) measurement error. Such soft data could be measurements with a cheaper 
and less accurate instrument (e.g. Hamzehpour et al., 2013), but these could also be 

-
porated in kriging using cokriging and Bayesian kriging (Omre,1987; Goovaerts, 1997, 
Chapter 6).

There have been few studies that use expert knowledge as soft data to supple-
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guesses of  plausible ranges of  values in indicator cokriging, but without further inves-

guesses of  the expected surface of  a spatial process with uncertainty as prior infor-

expert judgements but does not provide a description of  how expert judgements 
are obtained nor an evaluation of  the use of  expert knowledge for kriging. Lele and 
Das (2000) and Lele and Allen (2006) use expert knowledge as exact estimates of  the 

observations on the estimation of  the spatial structure (i.e. the trend and the spatial 
correlation) is investigated, but the method used to extract expert judgements is not 
elaborated. These studies show the potential of  using expert knowledge as supple-
mentary data to direct measurements of  the target spatial variable in mapping, but 
they lack a clear and formalised way to extract expert knowledge, and the important 
fact that expert judgements are uncertain is often ignored.

 In this chapter, we propose to use expert knowledge as probabilistic soft data 
to augment direct measurements to map spatial variables by cokriging. To our knowl-
edge, the use of  expert knowledge in this way has not been investigated before. Prob-
abilistic soft data are soft data recorded in the form of  a probability distribution. 
We use soft data given by experts to improve variogram estimation and kriging. The 
rationale behind this is that expert knowledge can provide a valuable source of  in-
formation about spatial variability (Stein, 1994; Chapters 2 and 3). Statistical expert 

a probabilistic form (Garthwaite et al., 2005; O’Hagan et al., 2006). However, data 
derived from expert knowledge cannot simply be treated as additional observations, 
and their different characteristics must be recognised in geostatistical inference and 

-
tors in a semi-natural grassland in The Netherlands. 

 During the last decades, biological soil indicators have been increasingly used 
not only to indicate soil threats such as soil degradation and contamination but also 
to indicate the ability of  the soil to provide valuable ecosystem services such as the 
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habitat forming for species rich natural ecosystems (Wall, 2004). Nematodes are the 

index (SI) and enrichment index (EI). Nematodes occur mostly in high abundances 
and are positioned in the soil food web at all different trophic levels: herbivores, mi-
crobivores, omnivores and predators (Yeates, 2003). Differences in life-history traits 
of  nematode species form the basis of  the SI and EI (Ferris et al., 2001). Nematodes 
can be grouped into (rapid growing) enrichment opportunists and general oppor-
tunists and (slow growing) persisters. The ratio between enrichment opportunists 
and general opportunists is the EI, and the ratio between the persisters and general 
opportunists is the SI (Ferris et al., 2001). A high EI indicates high soil fertility, i.e. 

to environmental stress or disturbance (de Goede et al., 1993; Ferris et al., 2001). 
Although the conceptual framework of  these indices is well developed and current 

expensive and time-consuming. Moreover, soil biological properties like nematode as-
semblages may vary strongly over space (Ettema and Wardle, 2002). Therefore, the EI 
and SI are relevant variables for which the value of  incorporating expert knowledge 
may be investigated.

 Section 5.2 describes the geostatistical model used for incorporating expert 
knowledge in spatial inference and prediction. Section 5.3 presents the case study and 

discussed in Section 5.4.

5.2. Methods

We consider the case where the variable of  interest is modelled by a spatial Gaussian 

that the measured data are error-free, while the expert data can be biased and im-
precise and have different error variances that measure the expert uncertainty about 

Z1 represent the 
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measured data at n locations si, i = 1, …, n within a spatial domain D and let Z2 rep-
resent the expert data at m locations sj, j = 1, …, m. Note that, in this study, the si are 
a subset of  the sj

Z1(s) = F(s) 1+e1(s), where: 

1 = { 1k  -

cients, F s
s

s
( ) ( )

( )
⎧
⎨
⎩

⎫
⎬
⎭

=
= 0, k = 0
      , k = 1, , p

0

k

f
f …

is a (p+1) vector of  covariates at any location s 

in D, and e1 denote 
the n×n variance-covariance matrix of  the Z1 at the measurement locations by C11.

Z2(sj) = Z1(sj) + m (sj) + (sj e1(sj), 
where the zero-mean Gaussian random variables (sj) represent the random errors of  
the expert data. It is assumed that the (sj) are mutually independent and independent 
of  e1(sj). The m (sj) represents the systematic error (bias) of  the expert data, which is 
taken as a sum of  a constant and a linear combination of  the covariates, to capture 

-
iates on the target (dependent) variable. The term e1(sj) measures the conditional 
bias toward the mean (i.e. the smoothing effect of  the expert judgements), with  a 

Z1 and Z2 have the same set of  covariates because they 
model the same variable of  interest. Substituting the model of  Z1 in that of  Z2 gives 
Z2(sj) = F(sj) 2 + e2(sj), where 2 = { 2k  of  
unknown e2(s) = (s) + (1 )e1(s)~N(0,C22), with C22 a 
variance-covariance matrix derived from the covariance structures of  e1 and . The 

covariates: m (s) = F(s 2 1].

5.2.2. REML estimation

non-stationary spatial trend, REML estimates of  covariance parameters of  a Gauss-

compared to maximum likelihood estimation and the method-of-moments (Schaben-
berger and Gotway, 2005, Section 5.5; Lark et al., 2006). Recall that the locations of  
expert data include the locations of  the measured data. Because of  this, the trend and 
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Section 5.4; Wackernagel, 2003, Section 23).

Hence, we transform Z1 to Z1
*  = A1 

Z1, where A1

removing the last p+1 rows of  I F F F Fn 1 1
T

1

1

1
T−

−( )  

F1 = F(si) is the n×(p+1) design matrix of  Z1, In is the n×n identity matrix. Simi-
larly, for Z2 A2 by removing the last p+1 
rows of I F F F Fm

T 1 T−
−

2 2 2 2( ) , Z2
* =A2Z2  F2 = F(sj) is the 

m×(p+1) design matrix and Im is the m×m identity matrix.

Because Z1 and Z2 are linearly transformed,     and     are also jointly normally 
distributed and both have zero mean due to the trend removal transformation. The 
likelihood is derived from the multivariate Gaussian probability density function: 

, 2
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 The estimates of  the unknown parameters 2, 2,  and  that maximize the 

1 and 2 by 

 

1T 1 T 1
1 1 11 1 1 11 1

ˆ ˆ ˆ= F C F F C Z  and                                           .  

5.2.3. Plug-in regression cokriging

We used the REML estimated parameters in regression cokriging (RCK) (Stein and 
Corsten, 1991; Lark et al., 2006). The best linear unbiased predictor of  the variable 

of  interest at an unobserved location s0 is: 1 1 1T 1
RCK 0 0 1 0

2 2 2

ˆ
ˆ ˆ ˆˆ

ˆ
Z F

s F
Z F

where: 

F0 = F(s0) is a (p+1) row vector of  the covariates at location s0, 11 12

21 22

ˆ ˆ
ˆ

ˆ ˆ
C C

C C
is the 

(n+m)×(n+m) estimated variance-covariance matrix of  the expert data and the meas-

ured data, and 
11 i 0

0
21 j 0

ˆ ,ˆ
ˆ ,

C s s

C s s
the (n+m)×1 variance-covariance matrix between the 

expert data, measured data and the target variable at s0. The regression cokriging variance 

is given by:
T 12 T 1 T 1 T 1 T 1

RCK 0 11 0 0 0 0 0 0 0 0
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ,s C s s F F F F F F
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F

F
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2

⎡

⎣
⎢

⎤

⎦
⎥ .

 All estimation and prediction methods were implemented in R (R Core Team, 
2013). In particular, the DEoptim package (Mullen et al., 2011), the gstat package 
(Pebesma, 2004) and the geoR package (Diggle and Ribeiro, 2007) were used.

5.3. Case study

To illustrate the methods presented in Section 5.2, we used a case study on mapping 
-

ing nematode taxa are allocated to functional guilds according to their feeding behav-

and EI, nematodes are allocated to three components:

- Basal component (b) comprising bacterivores of  cp2 and fungivores of  cp2;

- Enrichment component (e) including all cp1 nematodes (bacterivores) and 
fungivores of  cp2;

- Structure component (s) representing all cp3-5 nematodes as well as predators 

1T 1 T 1
2 2 22 2 2 22 2

ˆ ˆ ˆ= F C F F C Z
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of  cp2. 

 A weight is assigned to each functional guild based on the hypothesis of  con-
stant connectance in the community food web. Weights are 0.8 for cp2, 1.8 for cp3, 
3.2 for cp1 and cp4, and 5.0 for cp5 (Ferris et al. 2001). Weighed combinations of  

The study area (Fig. 5.1) is about 23 ha and located in the Malpiebeemden na-
ture reserve in the south of  The Netherlands. The main vegetation type is grassland 
with some patches of  forest. The patches with forest were excluded. The area is used 
for extensive cattle grazing. At the east, the area borders a small river (river Dommel) 

grassland area became polluted with e.g. cadmium and zinc.

Figure 5.1: Study area located in the Malpiebeemden nature reserve



SPATIAL INTERPOLATION                                                                   99

5

-
pling was used because the measurement data were also used for validation (see Sec-
tion 5.3.4), and it can improve the accuracy of  validation measures compared to sim-
ple random or systematic sampling schemes (de Gruijter et al., 2006, Section 7.2.4). 

clustering algorithm as provided in the R-spcosa package (Walvoort et al., 2010). In 
each stratum, two locations were randomly selected. This yielded in total 16 locations 
to be used as measured data (i.e., Z1

other locations were randomly selected within each stratum for validation (see Section 
5.3.4). Fig. 5.2 shows the strata and the sampling locations where in total 80 measure-
ments were collected.

                            

for validation data with SI values
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Soil samples were collected on March 20th, 2013 at 0-20 cm depth using a 4 cm 
diameter soil corer. The nematodes in each of  the 80 soil samples were extracted us-
ing an Oostenbrink elutriator (Oostenbrink, 1960), within three weeks after sampling. 

5.3.2. Sampling scheme for expert elicitation

For expert elicitation, we added 34 locations to the available 16 locations where meas-
urements were taken to make in total 50 locations. The 34 additional locations were 
uniformly spread over the study area as well as at short distances to better infer short 
distance variation in all directions (we assumed isotropic variation because there is 
no reason for anisotropic variation of  the regression residual). For this purpose, we 

possible 19 sampling locations, conditional to the available 16 measurement locations. 
The remaining 15 locations were added at short distances (about 15 meters) from 

measured data and 50 expert data) is accepted as an appropriate sample size for var-
iogram inference using REML (Kerry and Oliver, 2007). Fig. 5.3 shows all locations 
for expert elicitation within the study area. 

5.3.3. Expert elicitation procedure

A web-based tool11 was built to facilitate the expert elicitation procedure. Fig. 5.4 
shows the main page of  the web-based tool. We recruited one expert who is a soil 
ecologist with hands-on experience in nematode biomonitoring, including data in-
terpretation. The expert has never visited the study area and received an allowance 
for the job. The expert was given access to the web-based tool where information 
about the study area, the sampling scheme, soil conditions of  the study area (maps 
and tables, see Appendix 5.A, with soil properties: moisture content, organic matter 
content, pH-water, clay content, total concentrations of  cadmium and zinc, elevation, 
and distance to river), and explanation of  the probability expert elicitation procedure 
was given. 

11http://variogram.isric.org/
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Figure 5.3: Sampling scheme for expert elicitation of  nematode community indices: 
1. Locations with measured and expert data (16 locations), 2. Locations with only 

expert data (34 locations)

indicator values (O’Hagan, 1998; Bedford and Walls, 2010). The expert was asked to 
work on the exercise during one working day including getting familiar with the tool, 
the soil conditions in the study area, the statistical background on estimating the val-

st, 2013.

In Section 5.4, we report and analyse only the results of  SI from the elicitation 
exercise because the EI did not show spatial correlation from the direct measure-
ments. The soil properties that have a high correlation with SI from the direct meas-

the spatial trend of  SI was modelled as a linear function of  these three covariates: 
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pH-water ƒ1 , soil moisture ƒ2 and organic matter content ƒ3 . The exhaustive 
maps of  the three covariates over the study area (Fig. 5.5) to be used for regression 
were interpolated by ordinary kriging on nodes of  a 5m-grid map covering the study 
area from 100 soil samples that were collected and analysed in 2008.

Figure 5.4: Main page of  web-based tool for expert elicitation of  nematode struc-

ture and enrichment indices

5.3.4. Accuracy assessment

-

deviation ( -

al., 2006, Section 7.2.4).
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two measures:
64

1
64 RCK

1
RCK v

i=

s and
64 2

1
64

1

ˆ
RCK RCK v v

i=

RMSE Z s Z s , where sv, v = 1, …, 64 

are the validation locations. For the purpose of  comparison, we also did regres-

sion kriging (RK) using only the measured data with the same three covariates (Sec-
-

RCK and RMSERK were also 

RMSE RMSERCK RCK(RK) (RK). var± ( )1 998 -
dent distribution with 63 degrees of  freedom.

5.4. Results and Discussion

5.4.1. Expert data of  SI

Fig. 5.6 shows the mean and standard deviation of  SI that were calculated from the 
-

locations were given to help the expert distinguish the spatial differences, particularly 
between nearby locations, but this demanded the expert the ability to link and weigh 
all information in the judgements. The number of  locations for which the expert gave 

-
ing the exercise. These two factors can also contribute to high uncertainty in expert 

-

 Fig. 5.6 (left) shows that nearby locations tend to have similar mean values of  
SI. The magnitude of  the spatial autocorrelation is presented in Section 5.4.2. The 
mean values of  the SI also show a slight trend with higher values in the west and lower 
values in the east. There is a slightly positive linear correlation (Pearson correlation 
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SI. This means that the expert is more uncertain at locations where the expert thought 
that SI is large. At co-located locations, the mean values of  the expert data are on 

Z2 in 

data at co-located locations is 0.11 (p-value = 0.347). This indicates a positive linear 
relationship between the measured data and the expected values of  the expert data, 
but the correlation is not strong.

Figure 5.6: Nematode structure index estimated from expert judgements: mean 
value (left) and standard deviation (right)

 The weak relationship between the mean values of  SI from expert data and the 
measured data at co-located locations and high variation in SI values of  expert data 

values as Z2 and the standard deviation as  is legitimate but apparently has conse-
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5.4.2. REML estimation

the covariance parameters . The measure of  the conditional 
bias of  the mean of  the expert data towards the spatial mean compared to that of  the 
measured data is ˆ  = 0.95. This is a high value but a reasonable value as can be seen in 
Fig. 5.7, which shows less spatial variation in the mean of  SI from expert judgements 

-

at every location compared to that of  the measured data. This must be distinguished 
(as internal bias) from the external bias m  of  the difference between the two expected 
surfaces of  Z1 and Z2.

Figure 5.7: Boxplot of  expert data versus that of  measured data

The covariance function of  the residual of  Z1 is an exponential function with 
the REML estimated parameters: 2ˆ 2), ˆ =62.3(m) and 2ˆ 2). Fig. 5.8 
shows the covariance functions of  the residual of  Z1 (c11),  Z2 (c22) and the cross-co-
variance function between the residual of  Z1 and Z2 (c12). Notice that the covari-
ance fucntion of  the Z1 residual has no nugget effect. The covariance function of  
the Z2 residual is almost a pure nugget because the uncertainty in the expert data 
was modelled as white noise. The nugget value in the plot c22 is the mean of 2 s , 
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Z1 is 1 10 11 12 13
ˆ ˆ ˆ ˆ ˆ389.1, 85.2, 1.9, 4.6 and that of  Z2 is  

2 20 21 22 23
ˆ ˆ ˆ ˆ ˆ89.8, 11.6, 0.5, 3.75 . Hence, the systematic bias of  the ex-
pert data is 1 2 3m 299.3 73.6 1.4 0.85s s s sf f f .

Figure 5.8: REML estimated covariance functions (c11, c22) and cross-covariance 
function (c12)

Fig. 5.9 shows the trends of  SI from the two models on an arbitrary transect 
through the study area from west to east. The values were sorted from smallest to 
largest according to the mean values of  Z1. It clearly shows that the expert data are 

of  the expert data for the SI has been smoothed over the study area: the high mean 

 

condition of  the RCK predictor (Journel and Huijbregts, 1978, Section V.A.4; Chilès 

prediction.

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
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Figure 5.9: Difference in mean value (spatial trend) of  SI from expert data versus 

measured data over an arbitrary transect from east to west in the  study area

5.4.3. RCK prediction and accuracy

Recall that the data used for RCK included 16 error-free measurements and 50 soft 
data. Fig. 5.10 shows the RCK prediction and standard deviation maps. The RCK pre-

the expert data were not reproduced exactly because these had error. 

For the case of  using only the measured data, RK predictions over the study 
area have a wider range of  value of  the standard deviation than that of  RCK (i.e. 

a large amount of  the kriging variance at locations farther away from exact meas-
urements. At the 64 validation locations, RCK RCK

while for the case of  using only measured data, RK RK = 24.3 
2

RCK
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RMSERK -
ence in the performance of  RCK compared to that of  RK. Fig. 5.11 shows a scatter 
plot of  the prediction error of  RCK versus that of  RK at the validation locations.

Figure 5.10: Regression cokriging of  SI using expert data and measured data: 
kriging prediction (left) and kriging standard deviation (right)

The validation results showed no improvement in the prediction accuracy when 
-

relation between expert and measured data and the contrast in the nugget effect be-
tween the residual covariance functions of  the two datasets. As a result, the RCK 
weights of  the expert data were very small compared to that of  the measured data 
(Asli and Marcotte, 1995; Goovaerts, 1997, Section 6.2). The RCK system assigned 

-
iance of  the estimated trend at locations without direct measurements is the main 
reason that caused a large reduction of  the RCK standard deviation. Similar results 
have been observed in the study of  Stein and Corsten (1991).
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Figure 5.11: Regression cokriging prediction error versus regression kriging predic-

tion error at validation locations

5.5. Conclusions

In this study, expert judgements based on expert knowledge about the values of  a 

measurements in geostatistical prediction. This has not been the only work that at-
tempted to make use of  information from experts for geostatistical prediction (other 
examples are Omre (1987), Okx et al.(1991), Stein (1994), Chapters 2 - 3), but this is 

knowledge was extracted by a formal statistical expert elicitation procedure. By using 

experts in a probabilistic form. 

 The geostatistical models were built not only for incorporating expert knowl-

provided the tool to validate expert judgements by measures of  the systematic bias, 
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the conditional bias and random error. The case study indicated that when expert data 
are treated as soft data that have large random errors, inclusion of  expert data has no 

cannot improve the prediction accuracy. However, this conclusion must be adhered 

in this study. Future research may investigate different ways of  specifying the model 

increasing the number of  experts sharing knowledge) on the prediction accuracy. One 

Appendix 5.A. Soil condition and expert judgements at 50 locations

Loc pH Clay OC Moist Disri Elev Cdtot Zntot LQ UQ
1 4.09 0.56 2.30 18.45 136 27.29 0.26 8 20 40
2 4.10 0.64 3.54 17.22 289 27.43 0.34 12 30 50
3 4.42 1.39 6.66 39.39 143 26.50 2.10 81 20 40
4 4.75 11.15 14.11 72.78 13 26.38 73.64 1,326 15 25
5 4.79 0.88 4.98 36.24 63 27.00 2.83 116 25 40
6 4.78 1.69 7.15 44.84 18 26.84 8.08 214 20 40
7 4.72 1.74 5.38 37.19 73 27.16 5.17 140 25 40
8 4.18 0.56 2.65 14.95 167 27.54 0.41 15 40 50
9 4.72 4.80 10.85 65.54 21 26.64 55.44 753 23 30

10 4.08 1.10 2.71 17.57 197 27.33 0.15 10 30 50
11 4.34 1.07 4.00 27.38 178 26.88 0.55 31 20 40
12 4.46 0.92 6.12 31.50 154 27.15 2.78 81 25 45
13 4.49 3.49 12.60 72.45 69 26.69 13.11 313 25 35
14 4.75 8.82 15.55 80.74 33 26.57 30.27 561 20 30
15 4.46 1.62 7.87 45.41 105 26.63 4.15 81 25 35
16 4.48 0.57 5.69 32.29 161 26.63 1.66 51 25 35
17 4.48 1.37 6.60 44.39 100 26.56 6.46 105 23 44
18 4.55 0.60 5.74 30.22 204 26.88 1.55 75 25 45
19 4.55 8.63 16.76 87.67 24 26.46 29.27 509 20 30
20 4.61 10.09 14.55 79.62 20 26.48 30.28 661 20 30
21 4.17 1.63 2.38 16.60 231 26.90 0.05 6 20 40
22 4.30 1.04 2.96 13.64 310 27.20 0.42 29 30 50
23 4.28 0.68 5.48 30.42 268 27.05 0.77 30 25 40
24 4.58 0.85 3.56 24.58 276 26.39 0.53 31 30 50
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Loc pH Clay OC Moist Disri Elev Cdtot Zntot LQ UQ
25 4.63 1.14 10.65 55.22 180 26.49 4.11 185 25 40
26 3.60 1.88 3.92 15.62 271 27.95 0.31 13 20 45
27 4.09 0.57 4.11 17.30 331 27.25 0.56 22 30 50
28 4.57 2.54 8.58 57.66 111 26.43 11.74 190 20 41
29 4.72 11.15 14.95 76.45 35 26.35 66.18 1,023 10 25
30 4.45 1.47 6.85 44.21 164 26.45 1.99 68 25 40
31 4.82 8.68 13.56 68.20 71 26.31 98.35 1,743 10 20
32 4.61 3.34 11.20 60.20 87 26.30 23.05 476 15 23
33 4.46 0.57 7.13 43.57 243 26.62 0.84 56 25 40
34 4.47 2.14 7.24 44.01 49 26.49 7.39 126 23 44
35 4.35 0.66 2.81 20.14 136 27.45 0.63 24 32 50
36 4.26 0.59 2.70 17.20 152 27.45 0.50 19 40 50
37 4.22 0.57 2.67 15.95 159 27.47 0.45 17 40 50
38 4.30 0.62 2.74 18.62 144 27.46 0.56 21 42 50
39 4.70 5.15 11.98 61.64 81 26.35 49.75 877 13 21
40 4.78 6.54 12.63 64.35 82 26.33 70.66 1,259 10 20
41 4.64 4.14 11.54 60.10 83 26.33 35.13 639 13 21
42 4.40 0.65 6.25 37.61 255 26.69 0.78 49 23 39
43 4.37 0.70 5.93 33.97 261 26.74 0.84 44 23 39
44 4.39 0.58 6.52 41.26 249 26.67 0.65 47 23 39
45 3.87 1.48 3.02 13.73 249 27.19 0.22 13 20 40
46 3.72 1.69 3.52 14.60 260 27.80 0.30 14 20 40
47 4.01 1.42 2.61 14.08 240 27.04 0.11 10 20 40
48 4.49 1.49 7.08 45.39 72 26.50 5.11 96 25 45
49 4.48 1.52 7.01 43.95 59 26.53 5.03 94 24 45
50 4.49 1.49 6.96 45.64 87 26.56 5.71 102 24 45

Loc = locations, pH = pH-water
Disri = Distance to river (meter), Elev = Elevation asl (meter), Cdtot 

= Cd total concentration (mg/kg), Zntot = Zn total concentration (mg/kg), LQ = 
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Appendix 5.B. Locations of  sampling scheme for expert elicitation

    





General discussion

Chapter  6
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6.1. Introduction

Geostatistics is increasingly used in numerous disciplines of  the Earth and environ-
mental sciences and in practical problem-solving, along with the increased urge to 
advance our understanding of  the Earth surface and subsurface spatial phenomena. 

or collect more (direct and ancillary) data and information. In this dissertation, I have 
gone for the second approach that seeks for more data and information. In my case, 
the source of  more data and information is expert knowledge. Due to this, I also had 
to modify the geostatistical models that incorporate expert knowledge because using 

-

-
cal research for data and information that cannot be sensibly obtained using physical 
measurement systems, the rapid developments in expert elicitation research and the 
availability of  increasingly knowledgeable experts working in geostatistical research 
and other disciplines within the Earth and environmental sciences. These factors not 

This chapter synthesises the main accomplishments of  the work that I have 
done and that were presented in the previous chapters: to identify the role of  ex-
pert knowledge in geostatistical research and to offer methods to elicit and incorpo-
rate expert knowledge in geostatistical inference and prediction. While the foregoing 

is the role of  expert knowledge in geostatistical inference and prediction?, 2. How 
to elicit and incorporate expert knowledge in geostatistical inference and prediction? 

-
ence and prediction. Section 6.3 provides the answer to the second main research 

expert knowledge in geostatistical models. Section 6.4 provides my personal view and 
discussion about how to advance this research topic. Finally, concluding remarks are 
given in Section 6.5.
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6.2. What is the role of  expert knowledge in geostatistical inference 

and prediction?

6.2.1. The role of  expert knowledge in geostatistical inference and prediction

The geostatistical literature shows that expert knowledge has been marginally and 
informally used so far for geostatistical inference and prediction. When geostatistical 
data and information are unattainable (promptly and conveniently), the only remain-
ing option is to ask for expert opinions. Several situations where expert knowledge 

structure inference (i.e. variogram estimation described in Chapters 2, 3, 4 and 5, and 
spatial trend estimation addressed in Chapter 5), spatial interpolation (Chapters 4 

(Chapter 4). These situations can be categorised into cases of: 1. inaccessible or unat-

The data and information gaps recognised in this research are: information about the 
spatial structure to use as prior information or forecast (Chapter 2), data for spatial 

-
mation about the spatial structure at a different spatial support (Chapter 4) and spatial 
gaps in the measurements for the variogram and spatial trend inference and kriging 
(Chapter 5).

Throughout this research, expert knowledge has been used not only as prior 
information but also as (soft) data. The formal roles of  expert knowledge in geosta-

Drescher et al. (2013): as surrogate for absent geostatistical data to infer the variogram 

poorly captured by conventional mapping methods (Chapter 3), as complementary data 

(Chapter 4), and as supplement to measured data to enhance inference and prediction 
(Chapter 5).

judgement. This is the type of  data and information that geostatisticians need for 
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of  geostatistical data, and this analysis is subject to uncertainty. The role of  expert 

in other research disciplines such as geology (Wood and Curtis, 2004; Curtis, 2012), 
landscape ecology (Perera et al., 2012b; Drescher et al., 2013), environmental health 
impact assessment (Knol et al., 2010), and environmental modelling and management 
(Krueger et al., 2012). The marginal and informal use of  expert knowledge in geosta-
tistics has been replaced in this research by a formal and systematic use. This formal 
use enhances the added value of  expert knowledge because the expert elicitation pro-
cedure is formalised and explicitly reported. Hence, the validity of  expert judgement 
can be monitored and assessed.

dependence on location or area, i.e. the knowledge used is about the spatial variability 

to have knowledge that can be used to infer the spatial correlation structure of  a 

in using expert knowledge in geostatistical inference and prediction, besides other 
-

ley, 1975; Meyer and Booker, 2001). As mentioned in Chapter 2, there are limited 

the second-order moment (i.e. the variance) (Cressie, 1991, Section 2.3.1; Oliver et 
al., 2010a). Expert elicitation literature indicates that experts are subject to cognitive 

-
mation in two dimensions: spatial space and attribute space. As a result, it is more dif-

-
ences reported in Chapter 3 where experts were asked to judge the spatial structure of  

-
dane and Wolfson, 1998). Another aspect is that local expert knowledge might out-
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weigh general expert knowledge in a geostatistical context because local and detailed 

the data used in geostatistics. Besides the case shown in Chapter 4, another clear ex-

locations within a given area. The high uncertainty in the expert judgements is good 

My research also showed that expert knowledge cannot be helpful in all cases, as 
also stated in Kuhnert et al. (2010) and Kuhnert (2011). Its usefulness is determined 

knowledge. The former is determined by all factors that build the elicitation proce-
dure (e.g. see Knol et al., 2010), while the latter might be dependent on the domain 
expert (not the elicitation expert). Chapter 5 gives an example of  the unsuccessful 
use of  expert knowledge to improve spatial inference and prediction. The reasons for 

knowledge from the expert. Natural scientists might encounter this obstacle when 
they work with experts because they may lack social and psychological skills. This 
important point will be further discussed in Section 6.3. It is also suggested to use a 
better approach than  directly eliciting the values of  the variable at multiple locations, 
because this long and intensive knowledge extraction procedure can be tiring (Miller, 
1956). Another reason for the disappointing results in Chapter 5 might be that single 
expert knowledge is not satisfactory in all cases.

Indeed, using knowledge from a single expert can be risky and is only recom-
mended in the case of  testing new elicitation methods. However, in practice, there 
might not be many experts, particularly in geostatistics where the experts are ex-

-
cept for one of  the co-authors. As emphasised in the expert elicitation literature (e.g.  
O’Hagan, 2012; Drescher et al., 2013), this research corroborates that uncertainty in 
expert knowledge and judgement must be taken into account. Otherwise, the use of  

in each expert judgement, which was done in Chapter 5. Another way is to consult 
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multiple experts where all of  the differences in expert knowledge are taken into ac-
count (Chapters 2, 3 and 4). When expert data are integrated with measured data at 
the same spatial support (i.e. the expert knowledge plays a supplement role), there can 
be a (complete) overlap between measured data and expert knowledge if  the knowl-
edge has been accumulated based on available measured data published elsewhere. 

due to its geographical dependence, the two dimensional information processing 
-

tiple experts and uncertain expert knowledge. Note that the discussion in this section 

using expert knowledge to identify relevant models, data sources, types of  knowledge, 
etc. (Booker et al., 2001)) has not been investigated in this research. In spite of  the 

that expert knowledge can be very meaningful. Having recognised this, the challenges 

discusses some mechanisms to tackle these challenges.

6.3. How to elicit and incorporate expert knowledge in geostatisti-

cal inference and prediction?

In this research, I have been working on geostatistical analysis of  only spatial datasets 
of  natural phenomena, and they are collected from measurements and expert knowl-
edge. The aims of  using geostatistical analyses are to statistically analyse the spatial 

6.3.1. Statistical expert elicitation in a geostatistical context

-
tributions were used to extract expert knowledge, but expert judgements were used 

-
tion of  random variables indexed by spatial coordinates (Schabenberger and Gotway, 

-
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tistical settings. The model-based geostatistical approach (Diggle and Ribeiro, 2007) 
was applied throughout this research by explicitly assuming the underlying process of  
the spatial phenomena as normal or log-normal multivariate distributions. Hence, the 

distribution. Although there are elicitation methods for the multivariate probability 
distribution, these are far too complicated and inappropriate to be applicable to the 
geostatistical setting. Nevertheless, the elicitation method in this research was devel-
oped based on the same principle that is used in the expert elicitation literature for 
multivariate distributions (e.g. Al-Awadhi and Garthwaite, 1998; O’Hagan et al., 2006, 
Section 5.3). The method includes two components (Chapters 2 and 3): the elicitation 

-
alent to the elicitation of  the association in the expert elicitation literature).

A systematic and formal procedure was used to develop the expert elicitation 
tasks in each of  the four case studies (Section 1.5.1) of  which the core component 
of  the elicitation facilitator is a web-based tool. This formal procedure (e.g. as used 
in Chapter 3) completely followed recommended procedures recently published in 
the expert elicitation literature (e.g. Choy et al., 2009; Knol et al., 2010; Kuhnert et 
al., 2010), although the web-based tools were newly built in Chapters 2, 3 and 5. One 

expertise of  the facilitator but also social skills (interpersonal skills) that can be a main 
obstacle for a natural scientist. Some previous investigations on this task also share 
the same experience, e.g. as reported in Drescher et al. (2013). The most laborious 
task is designing the elicitation tool, and this task is distinct among different research 
disciplines. The other tasks more or less stay unchanged as in the recommended pro-
cedure when applied in geostatistical setting.

-

-

parameters (i.e. the parameters of  the Matérn variogram model in Chapter 4) and 
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being elicited: the indirect method was used in Chapters 2 and 3 and the direct meth-
od in Chapters 4 and 5. As recommended in the expert elicitation literature (e.g. Choy 

-
pert. The domain experts in this case are demanded to use their expertise to identify 

The web-based elicitation tools were developed for both one and multiple ex-
perts’ elicitation. In case of  multiple expert elicitation, the Delphi method was used 
where the experts were anonymous to each other, and only the combined expert 
judgement was revealed to all experts (Cooke, 1991, Section 3.3.1; Kuhnert et al., 
2010). The purpose was to seek for a consensus among multiple experts, except in 

-
ly weighs the knowledge of  the experts was used to combine multiple experts’ judge-

pragmatic reason (i.e. simple use and debate, taking into account all expert opinions 

opinion. One of  the main reasons is that I am not convinced by other more com-
plicated approaches (i.e. the Bayesian method, weighted pooling, etc.) in terms of  
reaching a better representation of  expert consensus. This sceptical point of  view 
also appears in other studies (e.g. Clemen and Winkler, 1999; Clemen, 2008; Kuhnert 
et al., 2010). The technical solution for implementation of  a web-based tool is limit-

Cooke’s classical methods (Cooke, 1991) were used. Another reason for mathematical  

experts (Chapters 2 and 3) and to use the maximum diversity of  the expert opinions 
to consider all experts’ uncertainty (Chapter 4). 

When developing the elicitation tools, I paid much attention to controlling the 
(cognitive) biases in expert judgements because it is a severe problem in using expert 
knowledge. My work was aimed at not only raising awareness of  the experts them-

minimising the biases at some stages of  the elicitation procedure. For example, the 
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method with anonymous experts was used to prevent motivational biases. This is also 

knowledge from psychology and decision theory. Regardless of  all the effort, the self-
de-biased capability of  experts might play a decisive role, particularly in the context 
of  individual self-elicitation using web-based tools.

The role of  the facilitator is always important (e.g. as proven Section 3.4), re-
gardless which elicitation approach used (i.e. interview, workshop, web-based, etc.). 

-
pert and the elicitation facilitator or elicitator. The responsibility of  the domain expert  
is on the domain knowledge (i.e. geostatistical knowledge in this research), and that of  

of  both the domain expert and the elicitator (as done in my case) demands a double 
effort; and hence, drawbacks are inevitable (e.g. the revision of  expert judgement in 
Chapter 3, a large uncertainty in the elicitation outcome of  one expert in Chapter 5). 
To apply expert elicitation theory in a  geostatistical context, geostatistical background 
is a ‘must’ condition, while expert elicitation knowledge is an ‘enough’ condition to 
obtain a successful task; and again all frustrations that may turn up are due to the fact 
that working with human knowledge is a more complex and totally different situation 

-
cians and the elicitation experts is recommended.

In this research, I have developed practically rigorous expert elicitation ap-
proaches that satisfy two criteria: incorporating a measure of  uncertainty for the elic-
ited expert knowledge and including an assessment of  internal or external validity of  

other chapters, where expert uncertainty was taken into account, and the internal and 
external biases of  expert judgements were measured; hence, validity of  the kriging 
map was assessed. This is an effort that should be stimulated, even though the results 
of  this chapter are provisionally frustrating. 

6.3.2. Methods of  expert knowledge incorporation in geostatistics

To incorporate expert knowledge in geostatistical inference and prediction, two par-
adigms were leading this research: expert knowledge as prior information under a 
Bayesian perspective (i.e. Bayesian area-to-point kriging in Chapter 4) and as (soft) 
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-
ter 5). The important consideration for incorporating expert knowledge in geosta-
tistical models is about the inexact or uncertain nature of  judgements. The Bayesian 

to include uncertainty about the model parameters in kriging (Pilz and Spock, 2008) 
and combine data from different spatial supports (Gotway and Young, 2002). When 
expert data are integrated with measured data (either at the same or a different spatial 
support), properly weighing the contribution of  expert knowledge in inference and 
prediction compared to that of  the measured data may be of  most concern. This 
weighing system should be controlled by the size of  the dataset, the overlap between 

-
tances. In this regard, both paradigms can be satisfactory.

Geostatistical models are usually well-prepared to integrate incompatible data-
sets (see e.g. Goovaerts, 1997, Chapter 6; Gotway and Young, 2002 for an overview). 
This statement is made based on the fact that all geostatistical models that were used 
to incorporate expert knowledge in this research are available in the literature. The 

that are integrated (e.g. Chapter 5). However, this can be a biased statement because 

experts, less work is demanded on ‘reinventing’ geostatistical models. A better com-
prehensive approach can be to ask the expert what knowledge they can best provide 
and then modify the geostatistical models to best use these knowledge. The evolu-
tion of  a hierarchical perspective in spatial-temporal geostatistics (Cressie and Wikle, 

In summary, while elicitation of  expert knowledge in geostatistics may be ac-
complished by following an existing formal elicitation procedure with a new elicita-

in geostatistical inference and prediction may make use of  the Bayesian and the ge-
ostatistical approaches. Note that all the comparisons made so far are based on the 
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literature from other research disciplines because no previous research on expert elic-
itation in geostatistics has been published.

6.4. Insight and Implications

6.4.1. Expert knowledge through the eye of  geostatisticians

Geostatisticians might look at expert knowledge of  a spatial variable as a (linear) 
regression prediction (with error) because they might expect that experts can relate 
their judgements to the factors in the environment that affect the distribution of  the 
spatial variable. They might even think that experts make a simple extrapolation in 
their judgements when they judge the value at unobserved locations. When knowl-

extract these only from the geostatistical specialists. These preliminary views are my 
personal, and the geostatisticians that I have in mind are geostatistical practitioners. 
This view may help experts understand the expectation when they are involved in a 
geostatistical elicitation task.

6.4.2. The interaction between geostatistical models and expert knowledge

geostatistics and the geostatistical models that can incorporate expert knowledge. On 

from experts was shaped in one way or another by geostatistical assumptions. For ex-
ample, the marginal distribution of  a random spatial variable was limited to be either 
normal or log-normal (Chapters 2 and 3), and the intrinsic and isotropic variogram 
model was elicited (Chapter 4). All of  the basic assumptions of  geostatistical mod-
els (i.e. (log-) normal probability distributions, (second-order or intrinsic) stationary, 
isotropy) were either explicitly or implicitly imposed on the expert judgements. To a 
certain extent, these imposed assumptions on the experts and their judgements are 

to say that geostatisticians have formed their knowledge about spatial phenomena in 
this way, and hence, the same expectation holds for the knowledge of  other experts 
of  applied geostatistics.

-
ostatistical models was not considerable in this research. Some limitations that were 
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appropriate any more (Chapter 2), and that kriging should consider the error in the 
data (Chapter 5). I argue that the better expert knowledge is the one that is not limited 
by geostatistical assumptions; otherwise, besides the possible (motivational) bias, the 
overlap between expert knowledge and published data and information can be large, 
which lessens the added value of  expert knowledge. It is interesting but not trivial to 
investigate what knowledge humans actually hold about a spatial phenomenon. Hu-
man knowledge is much more than a geostatistical sample. A different geostatistical 
model is thus need to sensibly make better use of  the data and information given by 
the expert judgements.

6.4.3. The possibility of  expert judgement calibration and validation by geo-

statistical models

-

Chapter 8). They are not necessarily related. The former has been discussed in the 
previous four chapters, in the implementation of  the elicitation procedures. In this 
section, only the calibration and validation of  expert judgements are of  concern. This 
is the assessment of  an agreement between expert judgments and reality in a geosta-
tistical context (O’Hagan et al., 2006).

I argue that expert judgments of  a spatial variable should be better calibrated 

6.3, while the experts judge the univariate probability distributions, their probabilistic 
-

tion of  the individual univariate probability distribution are inappropriate because the 
(auto) correlation of  the judgements matters. In case the expert judgements are the 
model parameters directly, the outcomes of  the geostatistical models should be used. 
The case studies presented in this research demonstrate the possibility of  using geo-
statistical models for expert judgement calibration and validation.

-

ena

In Chapters 2 and 3, I have argued for the necessary assistance of  computer software 
in statistical expert elicitation. Henceforth, all elicitation tasks in this research were 
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assisted by computer software, and they all are web-based tools. Numerical optimiza-
-

tation outcomes, for example is a favourite aid of  computer software. The visual aids 

in the form of  a spatial map; and web-mapping technology is already that much ad-
vanced that it can be greatly advantageous.

-
sive due to allowance and relocating cost in case recruited experts are geographically 
scattered. As a result, it can be costly (or even impossible) to gather multiple (busy) 

can be web-based operationalised (e.g. Morris et al., 2014). The remote elicitation ex-

when it is established, it provides a long term use.

6.4.5. Future research challenge

The important challenge for future researchers on this topic lies in how to maximise 
-

with interdisciplinary knowledge and skills. The challenge is worth the effort because 

their knowledge about them is often of  high value.

6.5. Conclusions

1. The added value of  expert knowledge in geostatistical inference and prediction is 
real.

2. The use of  statistical expert elicitation to extract knowledge from experts is 
essential to enhance the use of  expert knowledge in geostatistics.

3. Expert knowledge should ideally be elicited freely from geostatistical assump-
tions, and the geostatistical model should be well-prepared for integrating elicited 
knowledge.
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Summary

Geostatistics is commonly applied to predict the values of  a spatial variable at unob-

locations. The optimum use of  data for spatial inference and prediction is a funda-
-

rameter estimation and prediction. Geostatisticians succeeded in improving the map-

of  which expert knowledge is often considered as prior information and soft data. 
Although expert knowledge can be a valuable source of  data and information in geo-
statistics, expert knowledge (such as about the mean and (auto)correlation of  spatial 
variables) has so far been marginally and informally used in geostatistical research.

when the knowledge is extracted from experts using a formal expert elicitation proce-

in a transparent and reliable way. The rapid advance in statistical expert elicitation 
research can provide a sensible mechanism for the use of  expert knowledge in geo-
statistical inference and prediction.

Chapter 1 of  this dissertation presents the two main objectives of  this research: 1. 
to identify gaps in geostatistical data and accordingly, to identify the use of  expert 
knowledge in geostatistical inference and prediction; 2. to investigate how to elicit 
expert knowledge and incorporate expert knowledge in geostatistics. In Chapters 2 to 
5, the use of  expert knowledge is investigated for four main focuses of  geostatistical 

-
tion and kriging prediction. 
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In Chapter 2, expert knowledge is used to help infer the variogram to guide op-
timum sampling design, in a case when observations cannot easily or cheaply be col-
lected. An expert elicitation protocol for variogram estimation was developed, based 
on the bisection elicitation method and a formal elicitation procedure that is recently 
published in the expert elicitation literature. The protocol has two main rounds: elici-
tation of  the marginal probability distribution, which was assumed either normally or 
log-normally distributed, and elicitation of  the variogram. Multiple experts’ knowl-

web-based tool with three main components: a web interface, a statistical computa-
tion and mathematical pooling, and a database management. The results of  mapping 

expert knowledge about spatial variation, and that the online elicitation tool functions 
satisfactorily.

There is a lack of  information about the accuracy of  soil property maps that are 
produced by conventional, deterministic mapping methods. The common approach 

labour- and cost-intensive, and the validation outcome does not provide a full proba-
bilistic description of  the spatial uncertainty. In Chapter 3, a formal statistical expert 
elicitation procedure and the web-based tool for variogram elicitation developed in 
Chapter 2 are applied to extract multiple experts’ knowledge about the probabilistic 
model description of  the error in a soil property map. The spatial uncertainty about 

which was inferred using the experts’ judgements. The web-based tool for the vario-
gram elicitation again functioned satisfactorily in a real-world case study.

In Chapter 4, the point support variogram, of  which the nugget parameter 
cannot be inferred from only block support observations was elicited from multi-
ple experts’ knowledge using the MATCH uncertainty elicitation tool. It was used 
for spatial disaggregation with area-to-point kriging. The experts’ judgements were 

-
tify uncertainty of  the point support variogram parameters. The estimation of  the 
Matérn variogram model parameters of  the air temperature over the Gelderland 

-
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get parameter of  the point support variogram, while block support observations (i.e. 
a 5 km resolution MODIS satellite image) only brought new information to infer the 
other variogram parameters. Bayesian area-to-point conditional simulation provided 
a satisfactory way to predict air temperature at point support and model uncertainty 
propagation through spatial disaggregation.

inference and prediction by using expert judgements as probabilistic soft data. A 
geostatistical model was developed to model the expert data and integrate these as 
additional data in cokriging. The geostatistical model used includes measures of  the 
bias, imprecision and smoothing effects of  expert judgements. The model parameters 
were estimated from both expert data and measured data by maximum likelihood. A 
case study to map the nematode structure index in a 23 ha nature area in the south 

the nematode structure index. While the use of  expert data could largely decrease 
the cokriging prediction variance at areas farther away from measurement locations, 
the results of  validation showed that the overall accuracy of  the map is not improved 
compared to using only the measured data. More investigation on the models, the 
sampling design and the number of  experts sharing knowledge were hence recom-
mended in future research.

-
tions: 1. What is the role of  expert knowledge in geostatistical inference and predic-
tion? 2. How to elicit and incorporate expert knowledge in geostatistical inference 
and prediction? The formal role of  expert knowledge in geostatistical inference and 
prediction is similar to that in other research disciplines, such as the role of  surrogate, 

encountered in statistical expert elicitation, the geographical dependence of  spatial 
-

edge in geostatistics. Elicitation of  expert geostatistical knowledge can be accom-
plished by applying a formal expert elicitation procedure published in the literature, 

knowledge can be incorporated in geostatistical models (with observations) by Bayes-
ian or geostatistical approaches (e.g. maximum likelihood, cokriging). 

This dissertation showed that the added value of  expert knowledge in geosta-
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tistics is real. The informal and marginal use of  expert knowledge in geostatistics has 
been replaced by a formal and systematic use, with the application of  statistical expert 
elicitation to extract the knowledge. In so doing, the added value of  expert knowledge 
in geostatistics can be enhanced. This dissertation also showed that existing statistical 

this has been done in this research. The challenge of  future research lies in how to 

geostatistics.
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Geostatistiek wordt veelvuldig gebruikt om de waarden van een ruimtelijke variabele 
op onbemeten locaties in een studiegebied te voorspellen. Hiertoe maken geostatistici 
gebruik van een kwantitatieve maat voor de ruimtelijke correlatie, het ‘variogram’. Het 
variogram wordt eerst geschat op basis van puntgegevens uit het gebied en vervolgens 
gebruikt voor de ruimtelijke interpolatie. Het optimale gebruik van gegevens voor 
modellering van de ruimtelijke correlatiestructuur en voor ruimtelijke interpolatie is 
een belangrijke uitdaging in de geostatistiek, omdat deze de kwaliteit van de schatting 
van de modelparameters en van de interpolatie bepaalt. Geostatistici kunnen de 
nauwkeurigheid van de geïnterpoleerde kaarten vergroten door verbetering van het 
geostatistisch model en door gebruik van aanvullende kennis en gegevens, waaronder 
ook expertkennis. Hoewel expertkennis een waardevolle bron van informatie in de 
geostatistiek kan zijn, is deze kennis tot nu toe slechts marginaal en informeel gebruikt.

Ondertussen toont een groeiende hoeveelheid wetenschappelijke literatuur het 
grote voordeel van het gebruik van expertkennis in de aard- en milieuwetenschappen 
aan, in het bijzonder wanneer de kennis van experts wordt verzameld door middel 
van een formele ‘expertelicitatie’-procedure. Statistische expertelicitatie is een 
onderzoeksveld dat tot doel heeft statistische technieken en formele procedures 
te ontwikkelen, waarmee expertkennis op een transparante en betrouwbare wijze 
beschikbaar wordt gemaakt. De snelle vooruitgang in het onderzoek naar statistische 
expertelicitatie kan ook van groot nut zijn in de geostatistiek.

Naast het aannemelijk maken van de toegevoegde waarde van statistische 
expertelicitatie voor de geostatistiek, presenteert Hoofdstuk 1 van dit proefschrift de 

gegevens voor geostatistische analyses en hoe deze tekortkomingen met expertkennis 
te verhelpen; 2. ontwikkeling van methoden voor elicitatie van expertkennis voor 
geostatistische doeleinden. In hoofdstukken 2 tot en met 5 wordt het gebruik 
van expertkennis onderzocht voor vier kerntaken van geostatistisch onderzoek: 

Samenvatting
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en kriging-interpolatie.

voor meetnetoptimalisatie te ondersteunen, in een situatie waarbij waarnemingen 
duur of  moeilijk te verkrijgen zijn. Het hoofdstuk presenteert een protocol voor 
expertelicitatie van het variogram dat gebruik maakt van de zogeheten bisectie-
elicitatiemethode. Het protocol bestaat uit twee ronden: elicitatie van de marginale 
waarschijnlijkheidsverdeling (die normaal dan wel log-normaal verdeeld wordt 
verondersteld), en elicitatie van het variogram. Kennis van meerdere experts werd 
gecombineerd door berekening van het rekenkundig gemiddelde. Het protocol 
werd geïmplementeerd als een webapplicatie met drie hoofdcomponenten: een 
webinterface, een implementatie van statistische en wiskundige berekeningen, en een 
databasebeheer. De resultaten van het karteren van de luchttemperatuur in Nederland 
toonde aan dat het protocol geschikt is om expertkennis over ruimtelijke variatie vast 
te leggen, en dat de online elicitatie-applicatie naar behoren functioneert.

Conventionele bodemkaarten geven vaak geen informatie over de nauwkeurigheid 
van de weergegeven bodemeigenschappen. Met behulp van aanvullend veldwerk kan 
validatiedata verzameld worden waarmee de nauwkeurigheid kan worden vastgesteld, 
maar deze aanpak kan arbeids- en kostenintensief  zijn. Daarnaast geeft de validatie geen 
volledige probabilistische beschrijving van de ruimtelijke onzekerheid. In Hoofdstuk 
3 zijn de formele statistische expertelicitatie-procedure en de webapplicatie voor 
variogramelicitatie uit Hoofdstuk 2 toegepast om kennis van meerdere experts over 
de probabilistische modelbeschrijving van de fout in een bodemeigenschappenkaart 
te extraheren. De ruimtelijke onzekerheid over het volumetrisch bodemvochtgehalte 
op veldcapaciteit van het East Anglian krijtgebied (Verenigd Koninkrijk) is 
gekarakteriseerd door een normaal-verdeeld stochastisch veld, dat werd afgeleid met 
expertkennis. De webapplicatie voor de elicitatie van het variogram functioneerde 
opnieuw naar wens. 

In Hoofdstuk 4 werd het point support-variogram, dat refereert aan de 
ruimtelijke correlatie van puntmetingen, en waarvan de nugget-parameter niet kan 
worden afgeleid van alleen block support -waarnemingen, geëliciteerd met kennis 
van meerdere experts. De expertkennis werd met behulp van Bayesiaanse statistiek 
gecombineerd met block support-waarnemingen voor optimale schatting van 
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het point support-variogram. De schatting van de parameters van het variogram 
van de luchttemperatuur van de provincie Gelderland bevestigde dat expertkennis 
waardevolle informatie bevat over de nugget-parameter van het point support-
variogram, terwijl block support-waarnemingen (in dit geval een MODIS-satellietbeeld 
met een ruimtelijke resolutie van vijf  bij vijf  kilometer) slechts informatie levert over 

vervolgens met behulp van Bayesiaanse area-to-point-geostatistische interpolatie een 
hoge-resolutiekaart van de luchttemperatuur gemaakt.

Hoofdstuk 5 draagt een oplossing aan voor het probleem van onvoldoende 
waarnemingen voor geostatistische modellering en interpolatie door gebruik van 
expertkennis als additionele ‘waarnemingen’. Er werd een geostatistisch model 
ontwikkeld om expertkennis als additionele gegevens in de ruimtelijke interpolatie mee 
te nemen. Het gebruikte geostatistische model maakt onderscheid tussen werkelijke 
waarnemingen en waarnemingen afgeleid uit expertkennis, door rekening te houden 
met systematische en toevallige fouten en het afvlakkende effect van expertoordelen. 
Als case study werd de structuurindex van aaltjes in een 23 ha groot natuurgebied 
in het zuiden van Nederland met geostatistiek gekarteerd. In deze toepassing bleek 
dat de geraadpleegde expert tamelijk onzeker was over de ruimtelijke verspreiding 
van de structuurindex in het gebied. Dit had tot gevolg dat de meerwaarde van de 
expertkennis in dit geval gering was zodat de nauwkeurigheid van de resulterende 
kaart niet verbeterde, hetgeen werd bevestigd door een onafhankelijke validatie. Meer 
onderzoek naar het gebruikte model, het meetnetontwerp en het aantal benodigde 
experts is nodig om tot daadwerkelijke verbetering te komen.

Hoofdstuk 6 rondt het onderzoek af  door eerst de twee hoofdonderzoeksvragen 
te beantwoorden. De formele rol van expertkennis in geostatistische modellering en 
interpolatie komt overeen met die in andere onderzoeksdisciplines, en vervult de 
rol van alternatieve, complementaire of  aanvullende data en informatie. Naast de 
gebruikelijke moeilijkheden bij toepassing van expertelicitatie brengt toepassing in de 
geostatistiek diverse additionele problemen met zich mee. Veel van deze problemen 
worden opgelost door gebruik van formele expertelicitatie-procedures, maar daarnaast 
zijn ook nieuwe technieken nodig zoals ontwikkeld in dit proefschrift. Expertkennis 
kan worden ingebed in geostatistische modellen door gebruik van Bayesiaanse 
technieken.
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Dit proefschrift heeft aangetoond dat expertkennis een toegevoegde waarde 
heeft in de geostatistiek. Het informele en incidentele gebruik van expertkennis in 
geostatistiek is vervangen door een formele en systematische aanpak. Aldus is de 
toegevoegde waarde van expertkennis in de geostatistiek verhoogd. Dit proefschrift 
heeft ook laten zien dat bestaande statistische expertelicitatie-technieken dienen te 
worden aangepast voor toepassing in de geostatistiek. Hoe de toegevoegde waarde 
van expertkennis in geostatistiek kwalitatief  en kwantitatief  te optimaliseren is de 
uitdaging voor toekomstig onderzoek.
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