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organic seed and breeding sect or. This st udy specifically explored t he 
mut ual influence of t he regulat ory environment for organic seed sec-
t or development in t he Unit ed St at es (US), Europe Union (EU) 
and Mexico, and t he ext ent t o which broccoli (Brassica oleracea var. 
it alica) cult ivars performed different ly under organic condit ions 
compared t o convent ional condit ions, measured by select ed hort icul-
t ural and phyt ochemical t rait s. Current ly, organic farmers depend 
largely on cult ivars bred for convent ional farming syst ems. However, 
organic farming pract ices oft en differ subst ant ially from conven-
t ional pract ices by refraining from using chemical input s. We in-
vest igat ed t he requirement s of organic growers for seed t hat allowed 
opt imizat ion of t heir product ion syst em, and fulfilled consumer 
expect at ions for high nut rit ional value. In addit ion, we discuss t he 
implicat ions for seed product ion and crop improvement. The field 
research was based on st akeholder int erviews, part icipant observat ion, 
document ary analyses, laborat ory analyses and paired field t rials (or-
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regulat ion in t he US has not been sufficient ly decisive t o prevent 
divergent int erpret at ion and pract ice, and in consequence t he needs of 
a rapidly growing economic sect or are not being met; and (3) Growt h 
of t he organic seed sect or is hindered by regulat ory imbalances and 
t rade incompat ibilit ies wit hin and bet ween global market s. For 
t he field st udies t he main findings were: (1) In t he part it ioning 
of variance, locat ion and season had t he largest effect on broccoli head 
weight. For glucoraphanin and lut ein, genot ype was t he major source 
of t ot al variat ion; for glucobrassicin, region and t he int eract ion of 
locat ion and season; and for neoglucobrassicin, bot h genot ype and it s 
int eract ions wit h season were import ant. For δ- and δ- t ocoph-
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Abstract

This thesis is about the regulatory and technical challenges to the organic seed 

and breeding sector. This study specifically explored the mutual influence of 

the regulatory environment for organic seed sector development in the United 

States (US), Europe Union (EU) and Mexico, and the extent to which broccoli 

(Brassica oleracea var. italica) cultivars performed differently under organic 

conditions compared to conventional conditions, measured by selected 

horticultural and phytochemical traits. Currently, organic farmers depend 

largely on cultivars bred for conventional farming systems. However, organic 

farming practices often differ substantially from conventional practices by 

refraining from using chemical inputs. We investigated the requirements of 

organic growers for seed that allowed optimization of their production system, 

and fulfilled consumer expectations for high nutritional value. In addition, 

we discuss the implications for seed production and crop improvement. The 

field research was based on stakeholder interviews, participant observation, 

documentary analyses, laboratory analyses and paired field trials (organic/

conventional) conducted in two contrasting regions, Maine and Oregon in the 

US, over two seasons (spring, fall) and two years for a total of 16 trials with 

23 cultivars. The main findings of the regulatory component were: (1) New 

organizations, procedural arrangements and activities have emerged in the 

US, EU and Mexico to support organic seed regulatory development, with both 

positive and negative results; (2) Official guidance on the interpretation of the 

regulation in the US has not been sufficiently decisive to prevent divergent 

interpretation and practice, and in consequence the needs of a rapidly growing 

economic sector are not being met; and (3) Growth of the organic seed sector 

is hindered by regulatory imbalances and trade incompatibilities within and 

between global markets. For the field studies the main findings were: (1) In the 

partitioning of variance, location and season had the largest effect on broccoli 

head weight. For glucoraphanin and lutein, genotype was the major source of 

total variation; for glucobrassicin, region and the interaction of location and 

season; and for neoglucobrassicin, both genotype and its interactions with 

season were important. For δ- and γ- tocopherols, season played the largest role 

in the total variation followed by location and genotype; for total carotenoids, 

genotype (G) was the largest source of variation and its interactions with 

location and season. For both horticultural and phytochemical concentrations, 
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vi

Management (M) main effect and G × M interactions were often small but G × M 

× E (location and season) were large; (2) Cultivars with both greater head weight 

and stability under conventional conditions generally had high head weight and 

stability under organic growing conditions, although there were exceptions in 

cultivar rank between management systems. Cultivars highest in tocopherols 

and carotenoids were open pollinated or early maturing F
1
 hybrids. Distinct 

locations and seasons were identified where phytochemical performance was 

higher for each compound; (3) Larger genotypic variances and increased error 

variances were observed in organic compared to conventional management 

systems led to repeatabilities for several horticultural and phytochemical traits 

that were similar or even higher in organic compared to conventional conditions; 

(4) The ratio of correlated response (predicting performance under organic 

conditions when evaluated in conventional conditions) to direct response 

(predicted performance in organic when evaluated under organic conditions) 

for all traits was close to but less than 1.0 with the exception of bead uniformity. 

This would imply that in most cases, direct selection in an organic environment 

could result in a more rapid genetic gain than indirect selection in a conventional 

environment; (5) Correlations among phytochemical traits demonstrated 

that glucoraphanin was negatively correlated with the carotenoids and the 

carotenoids were highly correlated with one another; and (6) There was little 

or no association between phytochemical concentration and date of cultivar 

release, suggesting that modern breeding has not negatively influenced the 

level of tested compounds and there were no significant differences among 

cultivars from different seed companies. Based on the findings strategies for 

seed system models are discussed.

Keywords

Organic seed regulation, stakeholder analysis, crop improvement, Brassica 

oleracea, horticulture traits, phytochemical concentrations, selection 

environment, seed system models
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Chapter 1

2

1.1 Introduction

This thesis is about the regulatory and technical challenges in the organic seed 

and breeding sector, taking broccoli (Brassica oleracea var. italica) in the USA as the 

model case. In this chapter the theme is introduced and background information 

is provided. The problem addressed by this thesis is introduced, and the research 

objectives, hypotheses and main research questions are presented, followed by 

the research design and methodology, and the outline of this thesis.

Organic farm practices often differ substantially from conventional practices 

in refraining from chemical-synthetic inputs such as fungicides, pesticides and 

mineral fertilisers) but also in the diversity of their crop rotations, number of 

crops, production area, and market outlets (Kristiansen et al., 2006). Organic 

farming systems are based on organically-derived inputs such as compost 

and animal manure and focus their management on stimulating long-term 

biological self-regulatory processes to achieve resilience for stable productivity. 

However, organic farmers have fewer options to intervene in the short-term 

when weather or soil conditions are not favourable for optimal crop growth 

(Mäder et al., 2002; Messmer et al., 2012). Therefore organic growers require 

cultivars with stable performance across variable growing conditions over years. 

Currently, organic farmers depend largely on cultivars bred for high external 

input conventional farming systems (Lammerts van Bueren et al., 2002). One 

of the challenges for the organic agricultural sector is to comply with the 

principles of organic agriculture concerning health, ecology, fairness and care, 

see Table 1.1, as formulated by the world umbrella organization for the organic 

sector the International Federation of Organic Agriculture Movements (IFOAM, 

2012; Luttikholt, 2007). It includes that all farm inputs should be produced 

organically. Use of organic seed as a required farm input is a component in the 

overall organic certification process. Recent developments in the interpretation 

of organic seed regulation have created tensions between farmers and seed 

companies as to how to provide a sufficiently diverse assortment of cultivars 

suited for organic agriculture and meet the requirements (USDA AMS, 2002; 

Dillon and Hubbard, 2011).
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Table 1.1 Four principles of organic agriculture as described by IFOAM (2012).

Principle Description

Health Organic Agriculture should sustain and enhance the health of soil, plant, animal, human 
and planet as one and indivisible

Ecology Organic Agriculture should be based on living ecological systems based on living 
ecological systems and cycles, work with them, emulate them and help sustain them

Fairness Organic Agriculture should build on relationships that ensure fairness with regard to 
the common environment and life opportunities

Care Organic Agriculture should be managed in a precautionary and responsible manner to 
protect the health and well-being of current and future generations and the environment

The research program under consideration here was designed to investigate 

efforts to translate the requirements of organic growers for seed that will allow 

them to optimise their production system, and fulfil consumer expectation 

for the integrity of organic products, into a strategy for seed production and 

crop improvement. Broccoli was used as a model crop because it is one of 

the most important horticultural crops in the world’s fastest growing organic 

product market, the United States (US). This study specifically explored the 

mutual influence of the regulatory environment and technical opportunities for 

organic seed sector development in the US, Europe Union (EU) and Mexico, and 

the extent to which cultivars performed differently under organic conditions 

compared to conventional conditions, measured by selected horticultural 

traits and phytochemical compound concentrations. The research was based 

principally on a range of stakeholder interviews, participant observation, 

documentary analyses, laboratory analyses, and paired field trials (organic/

conventional) conducted in two contrasting regions in the US, Northeast US 

(Maine) and Pacific Northwest (Oregon), over two seasons (spring, fall) and two 

years for a total of 16 trials with 23 cultivars (Figure 1.1).
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Figure 1.1 Map of the US, showing the two broccoli field trial site locations in Maine and Oregon.

1.2 Background

1.2.1 Organic Agriculture in USA

The US organic market, with consumer sales of $US 31.5 billion (€23 billion) 

and 5.4 million production acres (2.2 million ha), is the fastest growing global 

market, with 9.5% market growth in 2012 (compared to 4.7% conventional) 

(Willer and Lernoud, 2014, OTA, 2013). Organic food sales value now represent 

4.2% of all US food sales (OTA, 2013). Since the implementation of the United 

States Department of Agriculture (USDA) National Organic Program (NOP) in 

2002, certified organic farmland in the US has nearly tripled (USDA AMS, 2002; 

USDA NASS, 2012). Organic production in the US is comprised of both large-

scale growers concentrated in specific regions and numerous small scattered 

acreages across the country that produce in a broad range of environments to 

service local and diverse food markets (USDA ERS, 2011). Consumer preference 

for more sustainably produced foods, combined with the perception that 

organically produced food is more nutritious, are the primary drivers behind 

the growth in this demand (Stolz et al., 2011). While the organic market has 

been developing, so too have the organic agriculture production systems that 

support sector growth. 
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1.2.2 Broccoli in USA

Consumption of organic foods is partially driven by the perception that 

organically grown foods are more nutritious (Saba and Messina, 2003). Several 

studies have indicated that organic vegetables and fruits contain higher 

concentrations of certain secondary plant metabolites than those produced 

conventionally (Asami et al., 2003; Chassy et al., 2004; Brandt et al., 2011), 

although there are also studies that show no differences (Smith-Sprangler 

et al, 2012). Broccoli is a relatively abundant source of vitamins, including 

provitamin A (primarily beta-carotene, a carotenoid), vitamin C (ascorbate), 

and vitamin E (tocopherol) (USDA Nutrient Database, 2011). It is also a 

source of phytochemicals that have been associated with health promotion. 

Phytochemical groups with reported health activity found in broccoli include 

glucosinolates, tocopherols, carotenoids, and flavonoids (Brown et al., 2002; 

Kushad et al., 1999; Farnham et al., 2009). Several authors, e.g. Verhoeven et al. 

(1996), Keck and Finley (2004) and Here and Büchler (2010), reported that diets 

rich in broccoli reduce cancer incidence in humans. A strong case for a cause-

effect association between consumption (dose) and reduction in disease risk 

exists for the glucosinolates (anti-cancer), tocopherols (cardiovascular) and 

carotenoids (particularly related to eye-health) (Higdon et al., 2007).

Broccoli has developed into a significant Brassica crop in organic agriculture 

due to market demand and its role in crop rotation. It was grown in the US on 

743,088 organic production acres (300,717 ha) and generated $US 47,629,515 

(€34,514,185 in sales in 2011 (USDA NASS, 2012). The main organic and 

conventional broccoli production areas in the US are California and Arizona 

comprising over 90% of the production acreage (USDA ERS, 2011; USDA NASS, 

2012). While organic broccoli is in part grown in these primary production 

regions, there is also a range of growers distributed throughout the US, located 

primarily in northern latitudes, whose farms are subjected to more extreme hot 

and cold climatic conditions than are farms in the primary production areas 

(Heather et al., 1992; Farnham and Björkman, 2011a, 2011b; Lammerts van 

Bueren et al., 2011; Myers et al., 2012).

1.2.3 Organic seed regulation

During this period of market and production growth, the USDA developed 

the NOP standard, with which organic growers and processors must comply 
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to receive their organic certification. The NOP standard, Section 205.204(a)(5) 

prescribes the use of organic seed in an organic production system whenever 

such seed is commercially available, and details how to apply for derogation if 

the organic seed is not available (USDA AMS, 2002). According to the standards 

of the IFOAM, ‘certified organic seed’ is defined as seed from varieties that may 

be derived from conventional breeding programs (excluding genetic engineer-

ing) that are produced under organic farming conditions for one growing season 

for annual crop species, and two growing seasons for perennial and biannual 

crop species (IFOAM, 2012). At the start of my study in 2007, the US organic 

seed regulation was (and still is) very much in development. Nevertheless, the 

evolving interpretation of the seed clause stimulated some seed companies 

to enter the organic market by investing in organic seed production, and has 

also raised the awareness of farmers about their cultivar requirements and 

their current and potential role in the organic seed chain (Dillon and Hubbard, 

2011; Podoll, 2011). Other conventional seed companies are struggling with 

the implications of the organic seed regulation enforcement upon their seed 

business model. Currently, these seed companies supply organic farmers 

with post-harvest untreated seed of the conventional varieties that they have 

available. In addition to the involvement of the formal seed sector and farmer 

groups in the organic seed regulation, several new organizational structures 

have developed in response to the evolving regulatory environment. Various 

organizations have been formed with the overarching objective of guiding the 

enforcement process and supporting farmers in identifying varieties that best 

suit their production systems and markets.

1.3 Problem description 

The challenge of designing a seed development and breeding strategy for 

robust cultivars adapted to organic agriculture raises both regulatory and 

technical issues that at the beginning of the study, and in fact since, had not 

been empirically researched or discussed fully in the scientific literature.

1.3.1 Challenges in developing an organic seed sector

While at the inception of the study the EU organic seed regulation was more 

developed, with clear guidelines and timelines for enforcement, the US organic 
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seed regulation was not as well described (EU, 2007). There was tension among 

the multiple stakeholders concerned, including the formal seed sector and 

organic producers, as to how and when the NOP organic seed regulation should 

be enforced (NOSB, 2005, 2007, 2008a, 2008b, 2008c). Contention around 

enforcement stemmed from the fact that there was only a limited number of 

suitable and diverse cultivars available with sufficient quantities of seed for 

organic production. Organic farmers were concerned that 100% enforcement 

of the organic seed regulation would limit their choice of cultivars and force 

them into using cultivars not appropriate for its farming system or markets, and 

potentially of lower quality or of higher price. The introduction of the organic 

seed regulation in the US spurred a reaction from the global organic sector. 

At the start of the study, the US and the EU had established domestic organic 

standards and the seed clause sections of their respective regulations were 

in process of interpretation and implementation. Mexico was just beginning 

the process of developing its own federal organic standard (inclusive of a 

seed clause) (SAGARPA, 2013; USDA FAS, 2013). By 2014 all jurisdictions were 

challenged to determine how to implement organic seed policy, how they 

chose to do so has implications that affect global trade (Sonnabend, 2010; 

Dunkle, 2011). At present (March 2014), there were still no other studies that 

have evaluated the various stakeholders’ interests and roles in the evolving 

organic seed regulations, or assessed how the US process differs from the EU 

process, or the implications for Mexico’s evolving organic sector. At the start of 

the study, there also were no studies of the potential implications of the various 

outcomes of an enforced, or unenforced, organic seed regulation in the US, and 

the further scenarios that any outcome might entail.

1.3.2 Organic cultivar requirements for agronomic performance

The seed industry still finds it economically challenging to satisfy the needs of 

organic agriculture, and often does not understand the special requirements of 

organic agricultural systems with which they are unfamiliar. Organic farmers in 

general want varieties that are adapted to their location and are reliable under 

adverse conditions, rather than varieties that promise higher yields but may 

lose that yield advantage in production because of disease susceptibility or an 

inability to perform in an organic farming system. Lammerts van Bueren et al. 

(2002) have indicated such desired traits as a general organic ‘crop ideotype’, 

which needs to be specified for different crops. More specifically, organic 
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farmers refrain from use of chemical inputs for weed management and pest 

and disease control, thus varieties must perform under different management 

conditions compared to conventional farms. Since the organic farming sector is 

comprised of diverse types of organic growers (ranging from small-scale direct 

market producers, through wholesale to large-scale operations producing for 

industrial processing enterprises), and since organic farmers have fewer tools at 

their disposal to influence their production environment to fit their crops, their 

variety needs differ significantly from those of their conventional counterparts 

(Drinkwater et al., 1995; Wolfe et al., 2008).

In the case of broccoli, at the start of the study it was known that some organic 

farmers’ desired traits were the same as those of conventional producers, 

such as drought tolerance, insect and disease resistance or high yield. Other 

characteristics were thought to be more important to organic producers than 

to conventional growers: for instance, vigorous growth and ability to perform in 

soils with potentially low or fluctuating mineralization rates of nutrients, or the 

ability to cover the soil and withstand weed competition by having less erect 

architecture than displayed by modern broccoli hybrids. The few studies to 

articulate the required cultivar traits for organic farming systems had focussed 

mainly on arable crops, especially cereals (Wolfe et al., 2008); only a few had 

dealt with desired vegetable crop traits (e.g. Osman et al., 2008, for onions). No 

studies had been published on the desired traits for organic broccoli or other 

Brassica crops.

Some studies comparing performance of genotypes in organic and 

conventional management systems had shown that for certain traits, cultivar 

rank varies between the two management systems (e.g. for winter wheat: 

Murphy et al., 2007; Baresel et al., 2008; Kirk et al., 2012; for lentils: Vlachostergios 

and Roupakias, 2008; for maize: Goldstein et al., 2012), others had shown no 

differences in ranking of performance (for maize: Lorenzana and Bernardo, 

2008; for cereals: Przystalski, 2008; for onions: Lammerts van Bueren et al., 

2012). The inconclusive results of these studies raise questions as to the need 

for cultivars to be bred with broad adaptability or specific adaptation in order 

to meet the requirements of regional organic management and end uses.
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1.3.3 Organic cultivar requirements for improved nutritional value

The genetic potential of organically-grown cultivars for high nutrient quality had 

been a concern for many years of the organic industry. Organic growers shared 

a general concern that modern elite cultivars (mostly F
1
 hybrids) might lack 

the nutritional quality of older open pollinated cultivars (Murphy et al., 2008). 

Indirect evidence supporting this argument had been published by Davis et al. 

(2004), who compared USDA nutrient content data for 43 garden crops, from 

their statistical records from 1950 to 1999. Statistically significant declines were 

noted for 6 nutrients (protein, calcium, potassium, iron, riboflavin, and ascorbic 

acid), with declines ranging from 6% for protein to 38% for riboflavin. Davis 

et al. (2004) attributed the decreases in nutrient content in part to changes in 

the cultivars used. Cultivars in 1950 had been bred to be adapted to specific 

regions and a relatively low input agriculture system, while the more modern 

varieties had been selected for yield, disease resistance, broad adaptation in 

high input agriculture systems, and for increased ‘shipability’ and shelf life. It was 

hypothesised that selection of cultivars for traits such as growth rate, yield, pest 

resistance, or other non-nutrient characteristics, might be subject to metabolic 

trade-offs that result in limitations in the cultivars’ abilities to incorporate soil 

minerals, transport them within the plant, or synthesize nutrients such as 

proteins, vitamins, and other phytochemicals (Morris and Sands, 2006).

The literature showed that concentrations of health-promoting nutrients in 

Brassicas depend on the cultivar, season and management system in which 

they were grown, including organic versus conventional conditions (Farnham 

et al., 2004; Charron et al., 2005a, 2005b; Meyer and Adams, 2008). It was widely 

accepted that genotype played an important role in determining the level of 

nutrients in a crop cultivar (Munger, 1979; Welch and Graham, 2004). What was 

unclear, however, was to what extent there is a genotypic effect and trade-offs 

between different nutritional compounds and whether the nutritional content 

of a cultivar was associated with certain genotypic classes, e.g. open pollinated 

versus F1
 hybrid. There was also no clear differentiation as to whether nutritional 

content in a crop was driven by genotypic class or whether it varies due to 

genotype by environment interaction. It was hypothesized that identification 

of growing conditions and genotypes that can provide products with various 

phytochemical content and putative disease-prevention activity could offer 
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value-added commercial opportunities to commercial seed producers, the 

food industry, and an added value for the organic seed market. 

Some studies published before the start of the work presented in this thesis had 

compared organically versus conventionally grown broccoli, in ‘market basket’ 

investigations, i.e. these studies were intended to reflect the nutritional quality 

of the crop as received in the consumers’ ‘basket’ of produce (Wunderlich et 

al., 2008; Koh et al., 2009). The studies did not consider cultivar, soil quality, 

irrigation, climate, harvest stage, or post-harvest practices. No field studies 

comparing organically grown versus conventionally grown broccoli for the 

form and concentration of various phytochemicals have been performed. 

A further limitation of many of the studies available at the start of our own 

work was that the number of cultivars studied was too small to generalize the 

results (Harker, 2004). While a few research studies had compared cultivars 

based on their release date, data on the cultivar and production system (soil 

quality, temperature, rainfall) was not available (Davis et al., 2004). No research 

had investigated how open pollinated and hybrid cultivars of broccoli grown 

in different regions, under organic and conventional production systems, may 

vary in performance for horticultural traits and phytochemical concentrations 

at the onset of this study.

1.3.4 Breeding for organic systems 

In addition to the fact that the organic sector remains of limited size, breeding 

for reliable varieties adapted to low-input, organic agriculture raises regulatory, 

technical and institutional issues that hitherto have not been discussed fully in 

the scientific literature. For instance, breeders interested in the organic market 

question whether direct selection under organic, low-input conditions is 

necessary to arrive at suitable cultivars. This would increase the breeding costs 

for conventional breeders because it would require maintaining two types of 

selection fields. Breeders alternatively could consider which traits to select in 

the specific target environment and which of the required traits are heritable 

independent of the environment, and therefore could select indirectly under 

conventional conditions. Could a breeding strategy for broccoli be developed 

in such a way that it combined selection under conventional systems in the 

earlier phases, with evaluation in organic systems of advanced breeding lines 

at a later stage of the breeding cycle? These models have been elaborated for 
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cereals (Murphy et al., 2007; Löschenberger et al., 2008; Wolfe et al., 2008) and 

for onion (Osman et al., 2008) but not for the Brassica vegetables.

Another issue of concern to breeders who aim to service the organic market 

is whether breeding under low-input and variable growing conditions might 

be less efficient, because of the expected lower heritability of quantitative 

traits. Similar discussions had been going on for selecting in and for low-

inputs conditions in Southern countries (e.g. Ceccarelli, 1996). Heterogeneous 

environments make it difficult to apply consistent selection pressure because it 

is often difficult to identify a single or a few superior genotypes across all sets of 

conditions. However, when the target system is characterized by heterogeneity 

of environmental conditions, varieties selected under high-yielding conditions 

may fail to satisfy farmers’ needs under low-input conditions (e.g. Murphy et 

al., 2007). Because heterogeneous environmental conditions are a feature of 

organic systems, some researchers have emphasized the value of alternative 

breeding models such as decentralized or participatory selection (e.g. Myers 

and Kean, 2007; Chable et al., 2008; Desclaux et al., 2008). The formal breeding 

industry has become more interested in breeding for the organic market over 

the course of the study presented in this thesis, providing opportunities to 

contribute evidence to inform these discussions. 

1.3.5 Breeding techniques

Breeding methods have evolved rapidly in recent years to service an expanding 

seed market. The organic sector has argued that several techniques used in 

conventional breeding programmes would not comply with the principles of 

organic agriculture (Lammerts van Bueren et al., 2007). Organic agriculture has 

philosophically and legally rejected the technology of genetic modification 

(GM), where GM organisms are defined as ‘organisms in which the genetic 

material has been altered in a way that does not occur naturally by mating 

and/or natural recombination’ (IFOAM, 2012). Under this definition of genetic 

modification protoplast fusion is also included, and is therefore not compatible 

with organic principles (Haring et al., 2009; Chable et al., 2012; Myers et al., 

2012). Protoplast fusion was used to introduce cytoplasmic male sterility 

(CMS) for use in Brassica hybrid breeding programs. CMS has not been found 

to naturally occur in Brassica species such as broccoli. In some cases, CMS 

replaced the older technique based on self-incompatibility for hybrid seed 
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production (Myers, 2014). Some breeding companies depend on the CMS 

technique in producing hybrid varieties and this influences their commitment 

to the organic sector. In the first decade of this century, organic grower groups 

in the US began developing their own regionally adapted open pollinated 

varieties in order to avoid purchasing varieties bred with techniques not in 

alignment with organic principles, and perhaps that were not appropriately 

adapted to their agro-ecosystems. Over the lifetime of our study discussion of 

the appropriate breeding techniques to use in organic breeding programs has 

featured predominantly in the European discourse (Rey, 2009). The issue in the 

future could have consequences for other parts of the world, including the US, 

especially in light of discussions at the IFOAM General Assembly in 2008 and in 

the National Organic Standards Board (NOSB), (the advisory board of the NOP) 

in 2013 where the role of CMS derived cultivars in organics was challenged 

(Rey, 2009; USDA NOP, 2013). A ban on certain breeding techniques in organic 

agriculture would have far reaching consequences for Brassicas, and would 

need to be considered in the analysis of an organic broccoli breeding strategy 

that is explored in this thesis. 

1.4 Research objectives, hypotheses and main research 
questions

The overall objective of the research reported in this thesis was to analyze 

regulatory and technical challenges in the organic seed and breeding sector, 

using broccoli as a model crop and the US as the main location. The research 

aimed to analyze the tension between farmers’ and seed companies’ interests 

that has been created by the evolving organic seed regulation, and provide 

ways forward to develop the organic seed regulation to support the principles 

of organic agriculture and future crop improvement. In order to translate the 

diverse constraints and needs of organic farmers and other stakeholders involved 

in the broccoli seed chain into a strategy for plant breeders, the horticultural 

and phytochemical performance of commercially available broccoli cultivars 

grown under organic and conventional farming conditions in different broccoli 

producing areas (Maine and Oregon, US) were analyzed. 
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1.4.1 Research hypotheses 

Hypothesis 1. An organic seed regulation is a necessary step toward an 

optimized organic seed sector.

Hypothesis 2. Cultivars bred for high input conventional growing conditions 

may not be optimal for organic farming systems.

Hypothesis 3. Organic production systems produce crops of higher nutritional 

value.

1.4.2 Research questions (RQs)

Research Question 1.  How do current and evolving organic seed regulations affect 

the organic seed and crop improvement system? 

This study traces how the evolution of organic seed regulation in the US, 

and in the EU and Mexico compared, has been guided by both formal policy 

development and by the informal interpretations, behaviours, actions and 

choices of the various stakeholders. Specifically, the main issues addressed are: 

(1) How do proposals for the wording and implementation of the US regulation 

constrain seed choices and give rise to unintended consequences?, (2) How 

have emergent organizations and procedures in the US responded to the 

tension between, on the one hand, sustaining seed differentiation to match 

the characteristics of local markets, organic production and agro-ecologies, 

and on the other, the narrowing of varietal choice in catalogued seed so as 

to expand commercial organic seed markets and encourage organic seed 

breeding?, (3) Why consensus on the content of formal organic seed policy has 

failed to develop in the US despite a high level of stakeholder engagement? 

How and why have the varying capacities of an increasing number of private 

and public stakeholders in the organic seed sector, each with specialized tasks 

and competencies, led to fragmentation rather than convergence of effort in 

the US?, (4) What are the implications of a lack of international organic seed 

regulatory harmonization for trade relations?, (5) What can different jurisdictions 

(US, EU and Mexico) learn from one another about each other’s normalization 

experience in developing domestic organic seed regulatory processes?, and (6) 
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How can the lessons learned be applied to support further global development 

of organic seed sector governance? 

Research Question 2.  Do currently available broccoli cultivars perform differently 

in organic compared to conventional production systems for horticulture traits?

In order to analyse to what extent present commercial broccoli cultivars 

sufficiently meet the diverse needs of organic management systems such 

as adaptation to low nitrogen input, mechanical weed management and no 

chemical pesticide use, and to propose the best selection environments for 

crop improvement for organic production we conducted field trials to address 

the following questions: (1) Do currently available broccoli cultivars perform 

differently for head weight and other horticulture traits in organic compared 

to conventional management systems in different regions and different 

seasons?, (2) Is the relative ranking of cultivars the same under organic and 

conventional conditions?, (3) Does heritability differ for certain traits under 

organic conditions compared to conventional conditions?, and (4) Under which 

growing conditions and in what locations would selection for broccoli cultivars 

for organic agriculture be most effective?

Research Question 3.  Do currently available broccoli cultivars perform differently 

in organic compared to conventional production systems for phytochemical traits?

In order to analyse to what extent present commercial broccoli cultivars differ 

in phytochemical concentrations when grown under organic and conventional 

conditions in different seasons and locations, and to identify differences 

in genotypic class performance for the concentration of phytochemicals 

associated with health promotion, the trials established to evaluate horticultural 

traits as described under research question 2 were harvested and analyzed 

for glucosinolates, tocopherols, and carotenoids by cultivar and by genotypic 

group. Specifically, we sought to address the following questions: (1) What is the 

impact on phytochemical variation of organic management system compared 

to other environmental factors including climatic region, season and their 

interactions [Genotype (G) x Environment (E) x Management System (M)]?, (2) 

Is there a significant difference in phytochemical content between different 

genotypes and genotypic classes (old and modern cultivars; open pollinated 
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and F
1
 hybrid cultivars; early and late maturing cultivars; and between different 

commercial seed sources)?, and (3) What is the best selection environment for 

a broccoli breeding program for enhanced phytochemical content? 

1.5 Research design and methodology

The study design (Figure 1.2) sought to integrate regulatory analysis and 

technical studies. The methodology for the study of organic seed regulation 

is presented first, followed by the methodology for the technical parts of the 

research.

Figure 1.2 Schematic overview of the research design
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1.5.1 Defining the current and evolving effects of organic seed regulation 

The methodology to address RQ1 was based on an in-depth case study of 

governance processes and normalization of the organic seed regulation in 

the US, using four principal methods: (1) preliminary analysis of stakeholder 

categories in the organic seed value chain in the US, (2) interviews with selected 

individuals and organizations in each of the identified stakeholder categories, 

(3) review of successive regulatory and policy documents and stakeholders’ 

written responses to these, and (4) participant observation at key policy 

meetings related to the organic seed regulation over the study period from 

mid-2007 to 2013. The case material was initiated by identification, analysis 

and categorisation of the stakeholders (i.e. the main public and private actors 

in the sector in 2007) in terms of their stakes, and their levels of interest in 

and influence directly and indirectly on the evolving organic seed regulation. 

Subsequently, semi-structured and structured interviews were conducted with 

selected individuals/organizations in each stakeholder category, in order to 

explore stakeholders’ perceptions of organic seed regulation in light of their 

respective roles in the process and of the opportunities or barriers to regulatory 

development, as well as to identify the actions they were taking to guide the 

course of regulatory development and enforcement. Narrative analysis of 

the unfolding perceptions and organizational developments was carried out 

by: (1) mapping participants’ changing concerns, concepts and contexts, (2) 

identifying key decision points in rule-setting and implementation processes 

from the stakeholders’ perspectives, (3) mapping emergent networks and 

coalitions of interest, and (4) by documenting how resources of various kinds 

were mobilized by the stakeholders in response to the changing understanding 

of the regulation.

To further address RQ1, the research built on the interviews, observations and 

analyses performed for the US organic seed sector to include the governance 

of the EU and Mexican organic seed regulatory systems. The EU was selected 

due to the depth of its organic seed regulatory evolution, and because it is 

also a primary organic market that is comparable to the US (the two regions 

combined comprise 97% of global organic revenue). Mexico was selected 

because its commercial agriculture system depends to a large extent on seed 

imported from the US and EU; because over 80% of its certified organic exports 

are destined for the US, and because Mexico, while in the process of defining its 
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own domestic organic  legislation and regulation practices may benefit from the 

experiences of its trading partners. The approach to this part of the study was 

designed to allow detailed process tracking and within-case analysis. The case 

material was collected from mid-2007 through 2013. In each case, interviews 

were conducted with individuals to explore stakeholders’ perceptions of the 

draft organic seed regulation, their respective role in the process, and their 

perceptions of opportunities for or constraints to regulatory development. The 

respondents who were identified through similar procedures as those outlined 

above for the US study. In all three jurisdictions, the respondents were asked 

to provide their perspectives on their respective organic seed regulations and, 

in the case of Mexico, also on the organic seed regulations in the countries to 

which they export organic product. The purpose was to reveal and compare 

the unfolding processes and interests that are shaping the emergent regulatory 

outcomes in each case throughout the study period. Relevant (grey) literature, 

expert reports and policy documents were reviewed for all three jurisdictions. 

Participant observation was carried out, in varying roles as researcher and 

stakeholder, at key organic seed meetings held in the US, the EU and Mexico 

throughout the study period.

1.5.2 Determining how currently available broccoli cultivars perform in 

 organic production systems compared to conventional growing  

 conditions with respect to horticultural and phytochemical traits 

To answer RQ2, 23 broccoli cultivars including open pollinated (OP) cultivars, 

inbred lines, and F1
 hybrids were included in the field trials. These cultivars were 

selected to encompass the varietal diversity used by organic and conventional 

growers in the targeted trial regions as well as to represent diverse genotypes 

and phenotypes that differed in their year of commercial introduction and the 

commercial seed company of origin. The cultivars were grown in paired organic 

and conventional fields at two US locations (Maine and Oregon) in fall and spring 

of the 2006-07 and 2007-08 growing seasons. Field quality traits were evaluated 

including head shape, head surface, head colour, bead size, bead uniformity, 

plant height and an overall plot quality rating based on overall appearance, 

head quality and uniformity of the entire plot. After harvest, five broccoli heads 

were evaluated for head weight and head diameter. Hollow stem and days to 

maturity were also evaluated. The genotype by environment by management 

system trial analysis included a total of 16 trials.
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The thesis is structured as follows: 

Chapter 1 introduces this thesis. It provides the context and justification for the 

research, background information on the importance, tensions and challenges 

of evolving an appropriate seed regulatory framework, and the implications 

for seed development and seed breeding in the organic sector. The problem 

addressed, research objectives, hypotheses and main research questions are 

stated. The research design and research methodology are presented for each 

part of the research.

Chapter 2 reviews and analyses the evolution of organic seed regulation 

in the US, as a model case of how challenges in a new regulatory area are 

being addressed. The study draws on formal interviews of key stakeholders, 

participant observation, and documents generated in the six-year period 

between mid-2007 and 2013. Analysis of the evolving interpretation of organic 

In order to answer RQ3, the broccoli heads derived from the field trials described 

for RQ2 were analysed for phytochemical compound concentrations. As plots 

approached maturity, five broccoli head tissue samples were harvested fresh 

from each subplot at each trial location and were composited into a single sample 

per replication. Each sample was analyzed for the glucosinolates (glucoraphanin, 

glucobrassicin, neoglucobrassicin), tocopherols (δ-, γ-, α- tocopherol), and 

carotenoids (lutein, zeaxanthin, β-carotene) by high-performance liquid 

chromatography (HPLC). For the genotype by environment by management 

system analysis, data analysis included analysis of the partitioning of variance, 

trait means, genotypic correlations, ratio of correlated response to direct 

response, stability analysis, GGE biplots and phenotypic correlations. For the 

phytochemical trait analysis, phytochemicals were analyzed per cultivar and 

per genotypic group. 

1.6 Outline of the thesis

The empirical core of the thesis is presented as four articles that report and 

analyse the findings of the studies outlined above. Figure 1.3 visualises the 

organisation of the thesis. 
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Figure 1.3 Schematic overview of the research design

seed regulation indicates that stakeholders in the seed sector have diverse 

interests; how they manifest their interests or direct their influence are shown to 

affect the evolution of the sector. New organizations, procedural arrangements 

and activities have emerged to support regulatory development, with both 

positive and negative results. Major findings are that the official guidance on 

the interpretation of the regulation has not been sufficiently decisive to prevent 

the spread of divergent interpretation and practices and that, as a consequence, 

the needs of a rapidly growing economic sector are not being met. The chapter 

concludes with lessons for key areas of regulatory interpretation and practice; 

and possible ways to make the governance of organic seed more effective are 

identified.

Chapter 3 analyses the evolution of organic seed regulation in the US, the EU and 

Mexico as model cases of how regulatory challenges in international organic 

agricultural policy-making are being addressed, based on a study conducted 

between mid-2007 and 2013. It reveals how growth of the organic sector is 
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hindered by regulatory imbalances and trade incompatibilities among these 

three countries, arising from divergent stakeholder interests along the organic 

seed value chain, and the varying capacity for self-organising governance 

of the seed sector in relation to each state’s regulatory role. Progress toward 

regulatory harmonisation in the organic seed sector among the three cases 

is compared. The chapter concludes with an assessment of the regulatory 

processes described and concludes with a synthesis of what the regions may 

learn from each other in the key areas of regulatory policy and practice.

Chapter 4 analyses whether the commercial broccoli cultivars available at the 

inception of the study adequately met the needs of organic management 

systems. This was studied by comparing horticultural trait performance of a 

set of 23 broccoli cultivars under two management systems (organic and 

conventional) in two regions of the US (Maine and Oregon), including Spring and 

Fall trials. On the basis of the genotype by environment by management system 

(GxExM) interaction analysis on the performance of the broccoli horticulture 

traits (eleven evaluated), recommendations for the best selection environments 

are made. 

Chapter 5 presents the results of analysis of phytochemical content of the 

broccoli cultivars grown in the organic and conventional field trials described 

in Chapter 4, to determine the genotype by environment by management 

system (GxExM) interaction effect on their content. The phytochemicals 

quantified included: glucosinolates (glucoraphanin, glucobrassicin, 

neoglucobrassin), tocopherols (δ-, γ-, α-tocopherol) and carotenoids (lutein, 

zeaxanthin, β-carotene). On the basis of the results, recommendations for 

selection environments are made. Results of the comparative performance of 

cultivars from different genotypic classes (open pollinated vs. F1
 hybrids, old 

versus new and commercial seed sources, difference commercial seed sources) 

also are presented. In addition, genetic correlation between horticulture and 

phytochemical traits and the potential trade-offs between traits and the 

implications for breeding are discussed.

Chapter 6 assesses the main findings of Chapters 1-5 in the light of the 

objectives, hypotheses and research questions of this study. Through the 

combined analyses of the organic seed regulatory studies and the field trials 

29335 Renaud.indd   20 06-06-14   12:31



General introduction

21

that determined the horticultural and phytochemical trait performance 

of broccoli cultivars grown under organic and conventional management 

systems, we synthesise and discuss our results in terms of the following five 

propositions: (1) Regulatory clarity is the foundation for organic seed sector 

development, (2) Organic management systems influence horticultural 

and phytochemical trait performance, (3) A crop ideotype can serve as a 

communication tool to arrive at an appropriate variety assortment, (4) Genetic 

variation is a requirement to develop optimized cultivars, and (5) Multiple 

seed system models contribute to organic sector growth.
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Abstract

This article reviews and analyses the evolution of organic seed regulation in 

the US, as a model case of how challenges in a new regulatory area are being 

addressed. The study draws on formal interviews of key stakeholders, participant 

observation, and documents generated in a six-year period between 2007 and 

2013. The article addresses three main issues: (1) how proposals for the wording 

and implementation of the regulation constrain seed choices and give rise to 

unintended consequences, (2) how emergent organizations and procedures 

have responded to the tension between sustaining seed differentiation to match 

the characteristics of local markets, organic production and agro-ecologies, and 

the narrowing of varietal choice in catalogued seed so as to expand commercial 

organic seed markets and encourage organic seed breeding, (3) why consensus 

on the content of formal seed policy has failed to develop despite a high level 

of stake holder engagement. The study revealed that the official guidance 

on the interpretation of the regulation has not been sufficiently decisive to 

prevent divergent interpretation and practices, and therefore the needs of a 

rapidly growing economic sector are not being met. The article concludes by 

drawing lessons for key areas of regulatory interpretation and practice, and by 

identifying possible ways to make organic seed governance more effective.

Keywords 

Organic seed regulation, organic agriculture, regulatory processes, stakeholder 

interests, United States (US)
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2.1 Introduction

The increasingly global scale of agricultural trade poses special challenges 

to new entrants into the commercial seed sector, with the 10 largest seed 

suppliers controlling 65.4% of the global market (Howard, 2009). As a result, 

breeders are focusing efforts on fewer crops and varieties. Organic producers’ 

seed needs are particularly poorly served by commercial breeders and seed 

markets (Lammerts van Bueren et al., 2002). Climate change and other threats 

to natural resources are bringing additional challenges to seed systems around 

the world. Agricultural policy makers and related stakeholders are seeking to 

create regulatory frameworks for seed which promote trade competitiveness 

and sustain or increase yield while increasing the options for agro-biodiversity 

and resilience in agricultural systems. The evolution of organic seed regulation 

in the United States (US), the world’s largest organic market, may be taken as an 

example of such efforts and is analysed here as a model case of how stakeholders 

define and protect their interests in the interpretation and implementation of 

regulatory requirements. 

In 2011, US organic sales reached $32 billion, growing at 8% over 2010 (OTA, 

2012), while US organic production acreage reached 2 million hectares by 

the same year (Willer and Kilcher, 2012). Although the organic seed sector 

underlying this market growth is increasing, organic growers continue to 

largely depend on conventionally produced seed (Dillon and Hubbard, 2011). 

In 2002, the United States Department of Agriculture (USDA) developed a 

domestic organic regulatory standard - the National Organic Program (NOP) 

to govern the US organic sector. The regulation includes a clause governing 

organic seed usage in certified organic farming systems (Section 205.204(a)) 

which prescribes the use of organic seed in an organic production system 

whenever such seed is commercially available (USDA AMS, 2002). According 

to the standards of the International Federation for Organic Agriculture 

Movements (IFOAM), ‘certified organic seed’ is defined as seed from varieties 

that may be derived from conventional breeding programs (excluding genetic 

engineering) which are produced under organic farming conditions for one 

growing season for annual crop species, and two growing seasons for perennial 

and biannual crop species (IFOAM, 2012). This article traces how stakeholders 

in the US have responded to efforts to govern the organic seed sector. Official 
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governmental guidelines as to how the regulatory clause should be interpreted 

and translated into practice have not been formally published. The steps for 

compliance have evolved in practice but harmonisation and transition toward 

100% compliance has been hindered by divergent interpretations and interests. 

Although the results of the study reported here indicate that stakeholders agree 

that organic seed usage is necessary, the question remains as to how to achieve 

this goal without forsaking the integrity of the organic production system by 

use of organically produced seed, profitability, maintaining biodiversity in 

production systems, and access to an appropriate and sufficient diversity of 

seed varieties. At stake is the assurance of an appropriate assortment of organic 

varieties in sufficient volume and suited to various organic farming conditions, 

without use of chemical herbicides, pesticides and fertilisers. In this perspective, 

the development of the organic seed regulation can be considered a stepping 

stone towards a seed industry that breeds well-adapted varieties which support 

optimized organic production systems. 

The central aim of this chapter is to analyse the development of organic seed 

regulation in the US over six years from 2007 through 2013 through the lens 

of historical institutionalism (Steimo, 2008; Hall and Taylor, 1996). This lens 

enables identification of patterns in social, political and economic behaviour 

over time. The study traces how the evolution of organic seed regulation in the 

US has been guided by both formal policy development and by the informal 

interpretations, behaviours, actions and choices of the various stakeholders. 

Specifically, three main issues are addressed: (1) how proposals for the wording 

and implementation of the regulation constrain seed choices and give rise to 

unintended consequences, (2) how emergent organizations and procedures 

have responded to the tension between sustaining seed differentiation to match 

the characteristics of local markets, organic production and agro-ecologies, and 

the narrowing of varietal choice in catalogued seed so as to expand commercial 

organic seed markets and encourage organic seed breeding, (3) why consensus 

on the content of formal seed policy has failed to develop despite a high level 

of stake holder engagement. The study also explores how the varying capacities 

of an increasing number of private and public stakeholders in the organic seed 

sector each with specialized tasks and competencies has led to fragmentation 

rather than convergence of effort. The dynamic relationships which have evolved 

between varying coalitions of interest and in the various networks that have 
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emerged have both shaped regulatory governance as well as challenged the 

expectation that the seed sector would self-organize under regulatory pressure. 

2.2 Materials and methods

The case study of organic seed regulation in the US is based on interviews with 

individuals and organizations defined as ‘stakeholders,’ the review of policy 

documentation, and on participant observation at key policy meetings related 

to the organic seed regulation over the study period. 

2.2.1 Stakeholder identification 

The case material was initiated by a typological analysis of stakeholders and 

categorisation by the principal researcher, following analytical procedures 

described in Reed et al. (2009) for the main public and private actors in the sector 

in 2007, in terms of their stakes, and their interests affected directly and indirectly 

by the evolving organic seed regulation. This procedure was informed by the 

principal researcher’s long experience of working in the US organic seed sector 

and knowledge of the stakeholders. The stakeholder identification process used 

in our research yielded seven stakeholder categories: organic certifiers, small-

scale organic growers, large-scale organic growers, organic food buyers, formal 

sector seed companies, non-profit organisations, and policy and legislative 

bodies. The preliminary analysis was further refined by sorting each stakeholder 

category by their influence on the organic seed sector (following Jiggins and 

Collins, 2003): (1) Primary: those who are directly affected, either positively or 

negatively, by organic seed regulations (2) Intermediate: the intermediaries in 

the delivery or execution of research, resource flows and activities, (3) Key: those 

with the power to influence or ‘kill’ activity, and their level of influence (low, 

intermediate, high) on the development of the US organic seed regulation. 

2.2.2 Stakeholder analysis

Subsequently, semi-structured and structured interviews were conducted to 

explore stakeholders’ perceptions of organic seed regulation in light of their 

respective roles in the process and of the opportunities or barriers to regulatory 

development, as well as to identify the actions they were taking to guide the 

course of regulatory development and enforcement. Twenty preliminary semi-
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structured interviews were held with individuals from each stakeholder category, 

using a checklist developed to ensure consistent coverage of the main themes 

discussed. The preliminary interviews were followed by 74 one-hour in-depth 

interviews (Kvale, 1996) with individuals or representatives of organizations, 

who were identified by the principal researcher and the respondents in the first 

round of interviews for their high level of influence within each stakeholder 

category. All stakeholders identified for interviews agreed to participate in 

the study. They included organic certifiers (n=8), small-scale organic growers 

(n=26), large scale growers (n=14), organic food buyers (n=5), representatives 

of formal seed companies who are involved in organic and/or conventional 

seed production (n=10), non-profit organization representatives (n=6), and 

policy and legislative body personnel (n=5) with regulatory influence. Each 

interview began by presenting to the respondent a written statement of the 

organic seed regulation, followed by exploration of a set of questions common 

to all respondents. These were complemented by questions appropriate to each 

stakeholder category’s specific interests. Information from the preliminary and 

in-depth interviews was recorded as written notes taken during or immediately 

after each interview. Qualitative analysis (Denzin and Lincoln 1994) of the notes 

was carried out manually, using (1) the tools of content analysis to identify, group 

and analyse the key concerns expressed by the respondents (Krippendorff, 

2004), and (2) the tools of discourse analysis (Patton, 1980), to identify key 

concepts and the interconnections between them, and the interconnections 

between the changing regulatory context and the discourse.

Tracking and analysis of organizational developments

Monitoring of the organic seed regulatory process continued through to 2013 

and included the collection and analysis of grey literature such as successive 

policy documents that were created and circulated by the stakeholders, and 

participant observation by the principal researcher who attended key meetings 

throughout the study period. Narrative analysis of the history of organizational 

developments was carried out by (1) mapping participants’ changing concerns, 

concepts and contexts, (2) identifying key decision points in rule-setting and 

implementation processes from the stakeholders’ perspectives, (3) mapping 

emergent networks and coalitions of interest, and (4) by documenting how 

resources of various kinds were mobilized by the stakeholders in response to 

the changing understanding of the regulatory requirements.
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2.3 Findings 

The findings are presented as historical narratives related to the following main 

themes: (1) the organic regulatory process in the US (Table 2.1), (2) stakeholder 

interests and stakes 2007-2013 (outlined in Table 1.2ab), and (3) the associated 

organizations and related contextual developments (outlined in Table 1.3). They 

are organised under sub-headings derived from the concerns introduced in the 

introduction and in the design of the study: (1) Rule-setting and implementation 

processes, (2) Contexts, concerns and concepts, (3) Emergent organisations and 

networks, and (4) Resource mobilisation.

2.3.1 Rule-setting and implementation processes 

As early as the Organic Foods Production Act of 1990 (OFPA, 1990); clause 7 U.S.C. 

6508 (a) of the OFPA recommended that US organic growers make responsible 

seed choices that complied to organic principles: 

“Seeds, Seedlings and Planting Practices - For a farm to be certified under this 

chapter, producers on such farm shall not apply materials to, or engage in 

practices on, seeds or seedlings that are contrary to, or inconsistent with, the 

applicable organic certification program.” 

In 2000, the first USDA National Organic Program (NOP) was published 

attempting to regulate the entire organic sector. It included a descriptive 

clause governing organic seed usage in a certified organic farming system, 

which subsequently was incorporated into the USDA NOP standard passed in 

2002 (Code of Federal regulations (CFR) Section 205.204(a)). The Organic Seed 

Regulation reads as follows:

“205.204 Seeds and planting stock practice standard.

(a) The producer must use organically grown seeds, annual seedlings, and 

planting stock: Except, that, (1) Non-organically produced, untreated seeds 

and planting stock may be used to produce an organic crop when an equiva-

lent organically produced variety is not commercially available: (2) Non-

organically produced seeds and planting stock that have been treated with a 

substance included on the National List of synthetic substances allowed for 

use in organic crop production may be used to produce an organic crop when 
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an equivalent organically produced or untreated variety is not commercially 

available.”

205.2 Commercially available – the ability to obtain a production input in an 

appropriate form, quality, or quantity to fulfil an essential function in a system 

of organic production or handling, as determined by the certifying agent in the 

course of reviewing the organic plan.”

The regulation did not provide protocols or allocation of roles or responsibilities 

for the interpretation of equivalent and commercially available seed. The 

subsequent steps taken in the official process are inventoried in Table 2.1.

Table 2.1 Summary timeline of key events and decision points in the interpretation of the USDA NOP 
Organic Seed Regulation 1990-present

Timeline Position Change Intended Impact/Function

November 28, 1990 OFPA signed into law as Title 21 of the 1990 
Farm Bill

US Organic Agriculture Law

December 22, 2000 USDA NOP published in the Federal Register Proposed US Organic 
Agriculture Rule

March 7, 2001 Commercial Availability: Docket Number 
TMD-00-02-FR

Definition of Commercial 
Availability

October 22, 2002 USDA NOP Final Rule implemented Approved US Organic 
Agriculture Standard

August 17, 2005 NOSB to NOP Recommendation:
Commercial Availability of Organic Seed

Organic Seed Guidance 
Document Version 1

November 30, 2007 NOSB to NOP Recommendation: Further 
Guidance on the Establishment of 
Commercial Availability Criteria

Organic Seed Guidance 
Document Version 2

April 3, 2008 NOSB JC & CAC Recommendation: Further 
Guidance on Commercial Availability of 
Organic Seed

Organic Seed Guidance 
Document Version 3

September 22, 2008 NOSB JC & CAC Recommendation: Further 
Guidance on Commercial Availability of 
Organic Seed

Organic Seed Guidance 
Document Version 4

November 19, 2008 Formal Recommendation by the NOSB to 
the NOP: Commercial Availability of Organic 
Seeds

Submitted Organic Seed 
Guidance Document to NOP

June 6, 2011 NOP Guidelines Released for Public Comment NOP Organic Seed Guidance 
Released for Public 
Comment

March 4, 2013 NOP Guidance: Seeds, Annual Seedlings, and 
Planting Stock in Organic Crop Production

NOP Final Organic Seed 
Guidance

Sources: USDA AMS, 2002; USDA NOSB 2001, 2005, 2007, 2008a; b; c; USDA NOP 2011, 2013
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The National Organic Standards Board (NOSB), a stakeholder board comprised

of organic farmers, organic processors, environmentalists, consumers, 

an organic retailer, an organic certification agent, and a scientist with 

recognized expertise in organic agriculture, has statutory powers which 

provide formal procedures for public notice and comment. It was set up to 

offer recommendations to the NOP to consider regarding interpretation and 

implementation of the national standard, yet their recommendations are not 

binding. In 2001, the NOSB submitted recommendations (NOSB, 2001) for the 

criteria and procedures that might be used for assessing organic seeds and 

planting stock. It assigned responsibility for documentation of commercial 

availability to certifiers (recorded through organic farm plans, as set out in 

CFR Section 205.201(a)(2) and verified by routine inspection processes). The 

determination of commercial availability of organic seed was based on the 

appropriate form, quality, and quantity criteria. The NOSB requested that the 

Accredited Certifiers Association (ACA), the organization representing organic 

certifiers in the US, develop procedures and capacity for their inspection 

processes to verify the availability of organic seeds and planting stock. The 

recommendations further laid out guidelines for interpretation of the organic 

seed rule, of which the clear definition of equivalency and type was identified 

as important for interpretation of the organic seed regulation: 

•	 Equivalency is defined as a variety exhibiting the same ‘type’ (such as the 

butterhead lettuce type) and similar agronomic characteristics such as 

insect and disease resistance when compared to the original varietal choice. 

•	 Type is defined by the Federal Seed Act of 1939 (7 U.S.C. 1551.) as either (A) 

a group of varieties so nearly similar that the individual varieties cannot be 

clearly differentiated except under special conditions, or (B) when used with 

a variety name. 

Subsequently, a subcommittee of the NOSB, the Joint Crops and Compliance, 

Accreditation, and Certification Committee (JC & CAC), was formed to further 

develop the recommendations. A revised version inclusive of public comment 

was submitted to the NOSB in 2005. The reissued recommendations stressed 

the need to ensure the consistent application of organic seed requirements 

(NOSB, 2005). A number of new requirements shifted more responsibility 
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for compliance to growers by stating that growers should justify to certifiers 

their need to use non-organic seed through a description of their site-specific 

agronomic conditions and/or marketing considerations. Furthermore, growers 

were required to provide written evidence to certifiers that they had contacted 

at least three organic seed suppliers before requesting non-organic seed, and 

to provide written description to certifiers of variety trials that had compared 

organic with non-organic seed of the requested variety. For their part, certifiers 

were required to annually evaluate the documentation from growers, enforce 

the organic seed requirement on growers and on commercial operations that 

purchased organic produce from growers, and file a report listing the seed 

varieties for which they had granted exceptions.

In 2007 and 2008, the NOSB released additional draft revisions of the guidance 

document successively broadened the allocation of responsibilities among the 

NOP, growers and the certifiers (ACAs) for enforcing compliance (NOSB, 2007; 

2008ab). The drafts proposed that the relevant information could be more 

effectively managed if certifiers were provided with a list of the non-organic 

seed the growers used, with details of any issues relating to the equivalency of 

organically grown and conventionally grown seed varieties, and information 

concerning the growers’ need for specific agronomic or market traits. The NOSB 

proposed that the information be passed to an independent third party for 

publication in a national database, and that certifiers maintain and submit upon 

request to the NOP copies of growers’ lists of seed varieties for the crop varieties 

permitted by each agency (NOSB, 2008ab). Failure to comply would place the 

certifiers in violation of their responsibility, rendering them liable to loss of their 

status as certifiers. In 2008, the NOSB approved the draft recommendations 

but requested that the committee further  ‘redistribute the burden’ of data 

collection and reporting to a broader stakeholder group. 

The final NOSB recommendations submitted to the NOP in 2008 included 

new language on the monitoring of an individual growers’ percentage use of 

organic seed as a tool for assessing ‘good faith effort’. Documentation of the 

levels of organic seed usage and evidence of improvement in the percentage 

versus total seed usage by the ACA’s clientele should be audited as part of the 

NOP accreditation review (NOSB, 2008c). The recommendations strengthened 

NOP’s role in training certifiers on the seed rule and on the recommendations. 
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However, in doing so, the recommendations indicated that certifiers might fail 

audits by not following the guidance or by not warning growers that two years’ 

of non-compliance in using available organic seed could result in the revocation 

of organic certification. In addition, the concept of a  ‘two-way national database’ 

maintained by an independent party was included, implying the need to 

establish a national database populated with organic seed availability, as well 

as organic growers’ varietal needs and quantities. 

In 2011, the NOP released its response to the 2008 NOSB final recommendations 

(NOP, 2011) supporting: (1) the role of certifiers in assessing the annual progress 

of growers in sourcing organic seed and in ensuring progress by comparing 

current source information to previous years, (2) the recommendation that 

certified operations must establish a documented procedure for sourcing 

organic seed which includes the identity of the seeds sought, the search methods 

used to source organic varieties, and that demonstrates the use of organic seed 

or the commercial unavailability of organic seeds, and (3) the recommendation 

that growers must demonstrate verification of sourcing seed from a minimum 

of three sources confirming that organic seed cannot be avoided because of 

the price of the seed. 

The NOP’s response added a section about the criteria and procedures for 

securing an exception to organic seed usage. The NOP’s response omitted: (1) the 

recommendation that certifiers be required to quantify the percentage increase 

in organic seed usage per year and to record varieties for which exceptions were 

permitted, (2) the recommendation that commercial purchasers of organic 

food crops require that suppliers who were contractually required to grow 

selected varieties use organically produced seed to grow those varieties, (3) the 

recommendation that growers perform on-farm trials to support exemption 

requests, and (4) the requirement for a ‘two-way’ organic seed sourcing 

database. A two month public comment period generated requests from several 

stakeholders reiterating reincorporation of the omitted content outlined above 

(OTA, 2011). On March 4, 2013 the NOP presented its final guidance on ‘Seeds 

Annual Seedlings, and Planting Stock in Organic Crop Production’ (NOP 5029), 

and none of the originally omitted sections of the guidance were reinstated 

(NOP, 2013).
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2.3.2 Contexts, concerns, and concepts

This section outlines the range of stakeholders’ concerns during the evolving 

US organic seed regulatory process, and their associated actions. Table 2.2a 

summarizes the various stakeholder categories, their level of influence and key 

concerns at the start of the official processes outlined above, while Table 2.2b 

indicates the subsequent shifts in stakeholders’ concerns which had taken place 

by the end of the study in 2013.

What is at stake for organic certifiers?

The initial stakeholder analysis identified certifiers as the most influential in 

the interpretation of organic seed regulation because they were assigned the 

greatest responsibility for enforcement of the evolving regulatory process 

- a process that the NOSB emphasised should be uniformly rigorous and 

transparent. Their responsibilities included: compelling growers to use organic 

seed, verifying grower diligence in organic seed sourcing and on-farm trial 

verification and sanctioning growers who fail to comply. With 49 USDA certified 

organic certification agencies based in the US, and with each certifier allowed 

to define its own procedure for granting exceptions, inevitably there was from 

the start considerable variance in certifier practices, especially in regard to 

documentation of exceptions, for which there is inconsistency among certifiers’ 

standards (Certifier interviews, 2007-2013). 

The NOSB recommended that during the inspection process, certifiers request 

a list of non-available organic seed varieties from growers. The ACAs’ publicly 

responded that certifiers do not have the capacity to document the varietal 

needs of growers or to record the gaps in organic seed supply (ACA, 2008). 

Interviews with certifiers further revealed that they do not necessarily trust their 

own ability to make exceptions because they do not have sufficient knowledge 

about organic seed availability and varietal performance (e.g. California 

Certified Organic Farmers (CCOF) interview, 2009). Other certification agencies, 

such as the Monterey County Certified Organics (MCCO), revealed that they 

certify organic seed companies and stay informed of their clients’ commercial 

certified organic varietal assortment (2013). The ACAs’ written response to the 

NOSB’s recommendations indicated that certifiers in fact did not want to be 

responsible for developing a compliance infrastructure for the organic seed 

industry through their work, nor did they support a measured percentage 
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Table 2.2a Summary of organic seed system stakeholders’ concerns, by category, based on a stakeholder 
typology, 2007-2009 (n=74)

Stakeholder 
Category

Stakeholder 
Type1

Level of 
Influence1

Key Concerns (2007-2009)
(Citation rate: number of respondents)

Organic 
Certifiers
(n=8)

Key High Lack of appropriate tools to regulate (n=8)
Lack of knowledge on specific varieties (n=7)
Reluctance to police the industry (n=5)
Costly addition to certification process (n=4)

Small-Scale 
Organic 
Growers 
(n=26)

Primary Low to High Fear of loss of genetic diversity (n=25)
Seed availability (n=21)
Seed quality (n=13)
Homogenization of the organic seed industry (n=11)
GMO Contamination (n=7)

Large-Scale 
Organic 
Growers
(n=14)

Primary Low to High Seed price (n=14)
Seed availability (n=13)
Seed quality (n=11)
Seed product form availability (various organic seed 
treatments) (n=10)

Organic Food 
Buyers
(n=5)

Intermediate Low Lack of knowledge on specific varieties (n=5)
Reluctance to limit supply with narrowing varietal 
choices (n=4)
More concerned with other farm inputs (fertilizers) 
and grower compliance (n=4)

Formal Seed 
Companies
(n=10)

Primary Low to High Varietal assortment (n=10)
Profitability (n=8)
Loss of conventional seed sales (n=6)
Organic seed production capacity (n=5)
Organic seed quality (seed borne diseases) (n=5)

Non-Profit 
Organizations 
(n=6)

Intermediate Low to High Lack of organic seed sourcing tools (n=4)
Diversity (n=4)
Lack of organic breeding programs (n=4)
Reluctance to corporate control of  process (n=3)
GMO contamination (n=2)
Growers not included in process (n=2)

Policy & 
Legislative 
Bodies  
(n=5)

Key High Seed availability and quality (n=5)
Appropriate allocation of roles and responsibilities for 
enforcement  (n=4)
Interpretive guidelines for enforcement (n=4)
Grower alienation (n=3)
Global organic seed and agriculture regulation (n=2)

Sources: Stakeholder Analysis (columns 1-3, 2007); content analysis of stakeholder interviews 
(column 4, 2007-2009).

1Notes to Table 2.2a b: Stakeholder categorization (Jiggins and Collins, 2003)

Stakeholder Type Definition Levels of Influence

Primary Those who are directly affected, either positively or negatively Low to High

Intermediate
The intermediaries in the delivery or execution of research, 
resource flows, and activities

Low to Intermediate

Key Those with the power to influence or ‘kill’ activity High
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Table 2.2b Summary of organic seed system stakeholders’ shift in concerns, by category, based on a 
stakeholder typology, 2013

Stakeholder 
Category

Shifts in Stakeholder Concerns by 2013

Organic Certifiers
(n=8)

Lack of a timely evaluation and quantification process for organic seed usage
Improvement in appropriate tools to interpret organic seed usage had been 
achieved
Lack of varietal knowledge persisted
Do not want to limit the variety assortment available to growers
Costs have been incurred for the development of tools to determine an organic 
growers attempts at sourcing organic seed

Small-Scale 
Organic Growers
(n=26)

Concern that enforced regulation will narrow genetic diversity persists
Recognize that organic seed availability is increasing year over year
Quality of organic seed available in the market has improved
Do not want big companies to control the organic seed market
Fear of GMO contamination persists

Large-Scale 
Organic Growers
(n=14)

Concern about seed price persists
Recognize that they must use some organic seed to reach minimum 
certification requirements
Continued lack of interpretative regulatory guidelines perpetuates non-organic 
seed use
Acknowledge that there is an increase in organic seed availability
Acknowledge that the quality of organic seed has improved
Acknowledge that there are now several organic seed treatment options on the 
market

Organic Food 
Buyers
(n=5)

Desire to know more about organic seed varieties available
Continued lack of knowledge concerning specific varieties
Enforcing grower compliance with use of permitted non-seed farm inputs

Formal Seed 
Companies
(n=10)

Interpretive organic seed regulatory guidelines for enforcement are required 
for investment
Difficult to determine which varieties to produce organically Profitability
Loss of conventional seed sales when varieties are produced organically as well
Need for increased acres in organic seed production and develop capacity to 
be successful
Organic seed quality (seed borne diseases) has improved, but still a risk

Non-Profit 
Organizations 
(n=6)

Lack of breeding programs for better adapted varieties
Limits to on-farm genetic diversity if growers are required to use organic seed only
Optimization of tools to identify organic seed availability such as the AOSCA 
database
Reluctance to the corporate seed industry controlling organic seed sector 
development
GMO contamination
Desire to have growers involved in the seed production, varietal trialling and 
breeding processes, not just the seed industry controlling the development of 
the organic seed sector

Policy & Legislative 
Bodies 
(n=5)

Finalization of NOP interpretive guidelines for enforcement imminent and will 
guide process
Seed availability and quality has improved
Appropriate allocation of roles and responsibilities within the chain have 
evolved over time
Grower alienation due to seed availability, price and limits to diversity persist
Harmonization of organic standards with major trading partners is being 
achieved

Sources: Stakeholder category (column 1, 2007); content analysis of documents reviewed and participant 
observation in key meetings informed the data in column 2, 2007-2013.
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increase in organic seed usage per year as a method to drive organic seed 

usage. However, some certifiers, such as Maine Organic Farming and Gardening 

Association (MOFGA), acknowledged that in practice a measured increase in 

seed usage per year was a commonly used technique to monitor organic seed 

usage improvements, and to ensure that ‘organic seed usage would come to 

fruition’ (MOFGA interview, 2007). 

The first formal quantification in US of organic seed usage by organic growers, 

reported in the State of Organic Seed (SOS) report published by the Organic 

Seed Alliance (Dillon and Hubbard, 2011) recorded that 60% of the growers 

surveyed had indicated that their organic certifier had requested that the grower 

make greater efforts to source organic seed. It further reported that certifiers 

were enforcing the use of the organic seed rule with increasing stringency and 

that sanctions had increased in the three years prior to the report’s publication. 

Examples of this enforcement were noted in 2010 when the first certification 

suspensions were enforced on two growers for use of chemically treated seed 

and lack of demonstrated attempt to source organic seed (USDA NOP Adverse 

Action List, January 2011).

What is at stake for organic growers? 

The interviews with organic growers (n=40) revealed that their main concern in 

relation to the organic seed rule was their perception that there was a limited 

quantity and diversity of quality organic seed varieties available in the marketplace. 

Production in the organic sector is spread across diverse agro-ecosystems, serving 

a diversity of markets and evolving enterprises. The range stretches from small-

scale diversified growers who, according to the interview respondents, require a 

wide varietal assortment to satisfy customers in local and niche markets, to large 

scale commercial growers who require large quantities of a more narrow but 

modern seed assortment to meet the needs of highly competitive commercial 

retailers serving markets spread across a large geographic area. Growers at both 

ends of the spectrum expressed a concern that the enforcement of the organic 

seed regulation could limit their choice of varieties, thereby forcing them to use 

varieties not appropriate for their farming system or markets, or to use seed of 

potentially lower quality, at a higher price. The ACA (and individual certifiers) have 

reported that their clients (i.e. growers) have had poor experiences with organic 

seed due to seed quality issues of low or poor germination or low yield (ACA, 2008).
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The SOS report (Dillon and Hubbard, 2011), which is based on responses from 

1,047 certified organic growers representing approximately 10% of US certified 

organic growers, found that on average, 52% of vegetable growers (survey 

question 5) and 72% of field crop growers (survey question 9) were using organic 

seed. The largest potential users of organic seed by volume were found to be 

the large scale baby lettuce and spinach leaf growers. However, respondents to 

our interviews in this group indicated that they were reluctant to move toward 

compliance with the organic seed rule because their seed costs comprise a 

relatively high percentage of their total expenses, related to high seeding rates 

and planting cycle frequency (Grower interviews, 2007-2011). As a result, this 

group of growers has been requesting and securing regular exceptions from 

their certifiers. Even when organic seed for their standard crop varieties is 

available, they have an incentive to represent to their certifiers that the seed 

is not available (at all, or in sufficient quantity or on time), or that they have 

different requirements than the traits offered by commercially available organic 

seed varieties (Grower interviews, 2007-2011). Exceptions are sanctioned in part 

because certifiers are not confident in judging commercial availability (as stated 

above). Also, they are not aware of the planning time required for a grower to 

commit to contract organic production and to secure supply of large volumes 

of seed in a timely manner (Grower and Seed company interviews, 2007-2013).

Paradoxically, the growers we interviewed also revealed that while some 

growers perceived many impediments to the implementation of the organic 

seed regulation, they saw several positive developments as a result of the open 

nature of the regulation’s interpretation. Growers claimed to have become more 

aware of their varietal requirements and of their current and potential role in the 

organic seed chain. They have been actively engaged in performing on-farm 

trials to compare available organic varieties to their conventional untreated 

standards. To support growing demand, regional organic seed production 

cooperatives have also been established to fulfil seed requirements and provide 

growers with an additional income stream. 

What is at stake for organic food buyers?

The NOSB recommendations emphasized the significance of the role of 

organic buyers, defined as buyers of raw organic food products for the fresh 

and processing food markets, in the enforcement of the seed regulation. They 
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proposed that commercial buyers of organic products should also be subject 

to the organic seed requirement. Buyers whose organisations were certified as 

organic handlers, therefore, should require their suppliers of certified organic 

raw materials to use organic seed when commercially available. If the varieties 

were not available in organic form, the buyers should comply with the same 

documentation requirements as those required of a grower. Moreover, buyers 

who required their supplier to use a specific variety (proprietary or otherwise) 

should ensure that variety was available as ‘certified organic’ or assist in its 

production in organic form. However, in our study, the interviews with organic 

food crop buyers (n= 5) revealed that they were reluctant to become co-

enforcers of the organic seed regulation because this role would impose an 

additional administrative cost (Food buyer interviews, 2009). Their greatest 

concern was that they could not readily access information about the range 

of available organic seed varieties. The SOS survey found that in 2010, 28% of 

grower respondents did not use organic seed because their buyers required 

that, for product consistency reasons, they use a variety not available in organic 

form (Dillon & Hubbard, 2011). In our study, it was noted during a presentation 

on organic seed held at a national organic conference (Ecofarm, Pacific Grove, 

CA, 2011), food buyers in the audience stated that they wanted to be better 

informed about seed issues and availability (principal author’s meeting notes, 

2011). In another instance recorded in our study, Organic Valley, a Midwest 

US-based dairy cooperative, announced that its suppliers were expected by 

2015 to prove use of organic seed for all feed crops, and to supply certification 

that no genetically modified organisms (GMOs) had been detected (principal 

author’s meeting notes, 2010). Organic Valley further announced it would 

contribute financially to the launch of an organic, conventional, non-GMO field 

crop seed-sourcing database in collaboration with the Association of Official 

Seed Certifying Agencies (AOSCA) to support their suppliers in identifying 

appropriate seed sources (ASTA Meeting, Huntington Beach, CA, 2011).

What is at stake for the formal seed sector?

The interviews with stakeholders in the formal seed sector (n=10) revealed 

that they thought the organic seed rule enforcement could pose considerable 

problems for the development of the organic seed sector. Their primary 

contention was that the market was not prepared for enforcement because 

there was an insufficient supply of organic seed. The NOSB recommendations 
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noted that a major factor limiting wider use of organic seed was “an emerging 

organic seed industry that may, in certain cases, lack the diversity, quality, and 

quantity of organically grown seed to meet the needs of the organic production 

sector” (NOSB, 2008c). This conclusion was supported by the SOS survey which 

found that grower respondents ranked their reasons for not using organic seed 

as: (1) specific variety not available (77 %), (2) insufficient quantity of seed (50 %), 

(3) lack of desirable traits (46%), and (4) price (40%) (Dillon and Hubbard, 2011).

Currently, many seed companies still supply organic farmers with conventionally 

produced but post-harvest untreated seed. If the organic seed rule were to 

be consistently enforced, seed companies would need to produce their most 

requested varieties in organic form. Seed company respondents, however, 

indicated that if they were to invest in organically produced seed, it was in their 

interest that the rule be strictly enforced, without exceptions. Since then the on-

going discussions and inconsistent enforcement of the organic seed regulation 

has stimulated differing responses by seed companies. Respondents working 

for companies that had invested in producing proprietary conventional varieties 

in organic form (n=3) in order to support the ‘equivalent’ variety requirement, 

reported that they were in fact losing sales to lower-priced conventional varieties 

because of the lack of enforcement of the organic seed rule (Seed company 

interviews, 2007-2013). Members of companies that had decided to stay out of 

the organic seed market (n= 3) indicated that the market was not large enough 

for them to consider and potentially conflicted with other aspects of their 

business (e.g. because their business was associated with genetic engineering 

research or they had a chemical agriculture division). 

A respondent working for one seed company stated there was widespread 

dissatisfaction within the seed industry with the consequences of the continuing 

lack of formal endorsement of the recommended regulation for technical 

decision-making such as how to produce organic seed, how to avoid seed-

borne diseases without chemical treatments, how to manage weed competition 

without chemical herbicides, how to avoid lower yields in seed production, 

and how to select varieties appropriate for organic production systems (Seed 

company interview, 2009). Four of the 10 companies interviewed are recognized 

experts in conventional seed production. These respondents noted that not all 

conventional seed production norms are directly transferable to organic. For 
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instance, parent lines used to produce seed varieties may perform differently 

under organically managed soil conditions (e.g. with respect to flowering 

time), and the chemical tools used to enhance conventional seed yield and to 

control pests are not accepted in organic production systems (Seed company 

interviews, 2007-2009). 

Seed companies wishing to remain or become competitive in the organic 

market for their part face challenges regarding varietal availability, seed quality, 

seed quantity, and pricing. Respondents stressed that the seed market is now 

locked in a situation in which unpredictable exceptions to the organic seed 

regulation are stalling the evolution of the commercial organic seed market, 

though they emphasised differing aspects of this dilemma. The American Seed 

Trade Association (ASTA), the industry group representing the mainstream and 

predominantly conventional seed sector, initially assumed that the desired 

market evolution could be achieved by funding an organic seed database. By 

2004 ASTA was seeking to clarify the regulation, reporting that it had formally 

requested the NOP to endorse 100% closure to conventional seed exceptions in 

order for a viable market driven organic seed sector to develop (ASTA interview, 

2008). Individual seed company respondents had mixed views on the necessity 

of the database. One indicated satisfaction with the sales volume the company 

had achieved despite the lack of a database (Seed company interview, 2008). 

Another indicated that by supporting the database the company would, by 

default, become responsible for enforcement of the organic seed rule (Seed 

company interview, 2009). 

2.3.3 Emergent organisations and networks 

As organic seed sector stakeholders struggle to reach agreement on the 

interpretation and enforcement of an organic seed regulation, new organisations 

and networks have emerged to promote their interests and drive the process. 

Certifiers, growers, food buyers and seed companies have been drawn into 

organic seed rule enforcement processes, and into networks of interest around 

issues of seed availability, quality, quantity, and pricing. Table 1.3 lists the 

chronology and main functions of various organizations that have emerged 

in the changing context. Based on our interviews and participant observations 

the groups have been clustered in terms of those who: (1) track the issues 

that evolve with the changing regulatory landscape, (2) access information on 
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organic seed availability, (3) ensure that organic values shape the emergent 

policy and practice, (4) develop the market sector, (5) support the development 

of a diverse organic varietal assortment to meet organic grower needs, and (6) 

ensure the issue of organic seed remains at the forefront of policy and research 

discussions. All of these issues were considered by the respondents as integral 

to organic seed sector development, findings with respect to three of these 

clusters, (based on the high importance assigned to these by the respondents), 

are described below. 
 
Table 2.3 Summary of organizational developments in response to the organic seed regulation 
referenced in chapter

Project Organization Year 
Formed

Function

Public Seed Initiative Cornell University 2001 Participatory Plant Breeding and 
Variety Trialing in the US

Organic Committee 
Formed

American Seed Trade 
Association

2003 Organic Seed Committee Formed

Restore Our Seed Heritage Wheat 
Conservancy

2003 Participatory Plant Breeding and 
Selection – North East

Multiple Organic Seed Alliance 2004 Organic Seed Education and 
Advocacy

Organic Seed 
Partnership

Cornell University 2004 Participatory Plant Breeding, 
Selection and On-Farm Trialing – 
National

Organic Seed Database Organic Materials Review 
Institute

2005 Organic Seed Database

Save Our Seed Carolina Family Farm 
Stewardship

2005 Organic Seed Database, Seed 
Production Training

Family Farmer Seed 
Cooperative

Organic Seed Alliance 2008 Organic Seed Production Farmer 
Enterprise Development

Northern Organic 
Vegetable 
Improvement 
Collaborative

Oregon State University 2009 Participatory Plant Breeding and 
Variety Trialing in Northern US States

Seed Matters Clif Bar Family 
Foundation, Organic Seed 
Alliance, Center for Food 
Safety, Organic Farming 
Research Foundation

2010 Funding organic seed breeding and 
communication initiatives

State of Organic Seed 
Report

Organic Seed Alliance 2011 Report on State of Organic Seed in 
the US

Information Working 
Group

Organic Seed Alliance 2011 Developing national organic seed 
database through multi-stakeholder 
input process

Organic Seed Finder Association of Official 
Seed Certifying Agencies

2012 Re-launch organic seed database

Sources: Stakeholder Interviews (2007-2011); Podoll (2009); Dillon & Hubbard (2011), Hubbard (2012)
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Seed choices, organisational developments and unintended consequences 

The respondents identified transparency in the registration of organic seed 

availability as a key concern because it impacts enforcement, on-farm genetic 

diversity and overall market development strategies. The lack of effective 

information tools to source organic seed was identified as a major impediment 

to achieving the desired transparency. In 2003, as the economic potential of 

the organic market became more apparent, the ASTA formed a committee to 

respond to the draft seed regulation (ASTA interview, 2008). A year later, the 

ASTA approached the Organic Material Review Institute (OMRI) with start-up 

funding to establish a national database of all available certified organic seed 

varieties (ASTA meeting minutes, 2004). The goal of the OMRI database was to 

provide a single commercial listing of suppliers and a comprehensive register 

of the availability of organic seeds and planting stock. It was proposed that 

organic seed companies wishing to be listed on the database pay a small, 

one-time fee to OMRI but that the database would be free to the public. It 

would be designed to be searchable by crop, variety or company. The lack of 

formal organic seed regulatory guidelines by the NOP, however, prevented the 

database from securing sufficient interest (OMRI interview, 2008 and 2011) and, 

as the ASTA funding ran out, this initiative ended as a limited-use list of 15 well-

known organic seed sources and eventually closed in 2011. In 2005, the Carolina 

Farm Land Stewardship, an organic certification and education organization, 

funded the Save Our Seed project to create another database. The goal in this 

case was a free, publicly accessible list of available varieties that were certified 

organic, with supporting educational material for organic seed production. 

This initiative ceased toward the end of 2008 (Save Our Seed interview, 2008). 

In 2007, the Appropriate Technology Transfer for Rural Areas (ATTRA) service 

launched another database. It included 125 less commonly known sources of 

untreated, non-GMO and open-pollinated seed. In 2008, the OSA, too, launched 

a database listing 23 suppliers of organic seed (Colley and Baker, 2010). Still 

more databases were developed by certifiers, including California Certified 

Organic Farmers (CCOF) that prepared a database of 29 organic seed suppliers 

to support their own grower clients.

None of the databases were completely comprehensive nor were officially 

sanctioned by the NOP, and none fulfilled the NOSB recommendation for a 

‘two-way database’, although they did represent sincere stakeholder efforts to 
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promote transparency in organic seed supply. The most recent effort has been 

facilitated by OSA’s Information Working Group which focuses on organic seed 

availability, production and information sharing (Dillon and Hubbard, 2011). 

The working group invited broad stakeholder participation (representing eight 

diverse organic organizations, members of the private sector and growers) to 

develop the database. In collaboration with the Association of Official Seed 

Certifying Agencies (AOSCA), the “Organic Seed Finder,” a national organic seed 

database which is funded by participant use and donations was launched in 

October 2012 (Hubbard, 2012).  

Organizations supporting organic seed production

Organic seed production has become better structured as a range of new 

organisations emerge to produce seed for commercial use (Adam, 2005; 

MacDougall, 2005). One instance is the Family Farmers Seed Cooperative (FFSC) 

which was formed in 2008 as a farmer-owned enterprise working to improve 

varietal availability and quality to preserve open-pollinated (OP) varieties suited 

to organic production systems, and to develop capacity for quality maintenance 

and breeding of OP varieties. Another is the Saving Our Seed project, founded 

in 2003, as a seed production organization that focuses on conservation and 

training southeastern US farmers and extension agents in the production of 

organic and heirloom seed. Others include a coordinated programme of research 

and seed production training among a network of Southern organic farming 

organizations, crop improvement associations, foundation seed producers, 

small seed companies and growers. They are working together to increase the 

availability of regionally adapted, open-pollinated, certified organic seed, and to 

establish a well-functioning Southern seed network. These examples illustrate 

how a range of seed production and enterprise development initiatives have 

evolved to build the capacity of organic farmers to produce their own seed, 

develop small seed enterprises, develop regionally bred and adapted varieties, 

and ensure that their interests are met in the organic seed systems.

Organizations supporting on-farm trials and breeding for organic variety 

development

The OSA was established in 2004 and focuses on grower education and training 

and is the first organization dedicated exclusively to grower advocacy in the US 

organic seed sector. Other similar grant funded initiatives include the Public 
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Seed Initiative (2001), Restoring Our Seeds (2003), Organic Seed Partnership 

(2004) and Northern Organic Variety Improvement Coalition (2009). In 2010, 

Seed Matters, an industry-led foundation was set up to fund graduate research 

in organic plant breeding and associated breeding and organic seed education 

initiatives. The common purpose among these initiatives lies in training growers 

for a range of diverse agro-ecosystems and crops, and in on-farm breeding and 

organic seed production. Skills development includes management of variety 

trials, dissemination of organically available germplasm to new regions, training 

growers in on-farm breeding, developing new, organically-bred varieties 

through participatory plant breeding, and developing unique variety release 

mechanisms for the organic varieties bred through participatory processes. 

For a thorough review of US organic seed initiatives focusing on participatory 

approaches to organic plant breeding and varietal identification, see Podoll, 

(2009). 

2.3.4 Resource mobilization 

The diverse respondents consistently reported that the continuing regulatory 

ambiguity has hindered the growth of the organic seed sector. Because the 

regulatory process has remained open for interpretation and enforcement, many 

stakeholders indicated that they had either not participated in the evolution of 

the organic seed sector nor had mobilised resources to support development of 

the sector. Others have taken a pro-active role. For instance, the establishment 

of the OSA and the launch of the Seed Matters initiative were intended to guide 

developments which optimised organic values. In order to demonstrate the 

level of resources mobilized within the sector (and to identify opportunities for 

future funding), the OSA and Seed Matters inventoried organic seed funding 

initiatives. The resultant SOS report estimated that between 2002-2011 there 

had been 57 public initiatives in support of organic seed and breeding, funded 

to the sum of over $9,100,000, either through government or foundation grants 

(some project funding estimated through 2014). The report categorized these 

initiatives as follows: 30 breeding and variety trials ($6,800,000), 5 enterprise 

development projects ($288,000), 11 seed production research and education 

projects ($640,000), 5 systems development projects ($220,000), and 6 multi-

topic projects ($1,118,000) (Dillon and Hubbard, 2011). The majority were 

initiated by universities, non-profit organizations and farmer groups, but the 

major part of the funding came from government sources, namely in the form 
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of grants from the USDA’s Organic Research and Education Initiative (OREI) and 

the Sustainable Agriculture Research and Education (SARE). The major part of 

the funding was used to support breeding and variety trials. The results of the 

SOS Report and this study’s findings indicate that substantial funding has also 

supported the development of the various databases discussed above. 

The mobilisation of over $9 million may seem like a large sum, but it is valuable to 

note that it is estimated that the USDA funds conventional breeding initiatives 

at more than six times this level (Policy representative interview, 2012). Much of 

the funding for the organic sector has come from various divisions of the USDA 

(but not the NOP). That is, while it is the USDA NOP that mandates organic seed 

regulation and recommends an organic seed database, other organizations and 

divisions within the USDA are funding the regulatory execution. The majority 

of the funding is allocated for breeding and variety trials, processes typically 

performed by the private sector in the conventional seed sector.

2.4 Discussion and conclusions

Over time, whether through commitment to the integrity of organic principles 

and processes or through recognition of the economic potential of the sector 

or both new stakeholders have opted to engage in the process of interpreting 

and implementing the emergent regulatory regime and, through their active 

participation, to construct the de facto regulatory framework under which 

the industry is developing. Reganold et al. (2011) suggest in reference to the 

anticipated changes to the upcoming US Farm Bill that “technical obstacles are  

not the greatest barrier (to agricultural innovation). Change is rather hindered 

by the market structures, policy incentives, and uneven development and avail-

ability of scientific information that guide farmers’ decisions.” This judgment 

maps well the evolution of organic seed regulation in the US. The interdepen-

dence of market structures, policy and science, in the absence of regulatory 

clarity, has inhibited both technical capacity and market development in the 

sector. Organic seed regulation has been driven by a growing inter-dependence 

among initially independent protagonists such as the organic certifiers, small- 

and large scale growers, organic food buyers, seed production and breeding 

companies, non-profit organizations and government bodies engaged in the 
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sector. Klein and Winickoff (2011) also note that the organic regulatory process 

overall (not just seed) is drawing in an increasing number of stakeholders initially 

each in pursuit of their own agenda. Through their engagement their roles and 

expertise, the resulting regulatory procedures and structures are becoming 

legitimised and normalised in the ways that May and Finch (2009) describe 

their theory of normalization processes. These perspectives are considered in 

the next section in greater detail, and thereafter a review of lessons learned for 

future considerations.

2.4.1 Coalitions, governance and the rules of the game

DeLeon and DeLeon (2002) describe how in the process of policy implementa-

tion, coalitions of interest and influence emerge as governance networks in 

industrialized societies. These coalitions may be described as co-evolving 

relationships among stakeholders (Kickert et al., 1997) who are connected by 

exchanges of resources (such as technical guides on organic seed production 

in this case) and information (such as the organic seed database) which are 

mobilised because individually the stakeholders cannot attain their own goals 

without orchestrating collective action. These coalitions have been seen by 

some (e.g. Rhodes, 1996) as competing with and weakening the authority 

of the government, yet by others (e.g. Peters and Pierre, 1998) as providing 

the government with additional capacity for governance (as demonstrated in 

this case by multi-stakeholder initiatives to develop regional varietal testing 

networks). In this latter view, the government would continue to play a strong 

but new role: that of meta-governor of the ‘rules of the game’ that guide and 

guard the functioning and legitimacy of the networks. That is, the actions of 

governance networks are not independent of the state, they are circumscribed 

by and draw upon state power and resources. While networks might pursue 

some of their goals through private, non-governmental means, typically 

networks are attentive to the opportunities for accessing governmental 

funding and legitimacy (Meuleman, 2008). The US government’s position 

with respect to the organic seed regulation appears to be somewhat reliant 

on the expectation that the organic sector will self-organize around its 

interpretation, and be driven by, coalitions of interest, and thereby enhance 

the overall governance of the sector.
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However, our study indicates that the creation and stability of self-organizing 

governance networks is a challenging task, not least because the stakeholders 

each tend to seek through the networks the means primarily to achieve their 

own interests. Their commitment to shared goals for the sector as a whole can 

be weak, conditional and or change over time. The central question remains 

as to whether there is clarity as to who or what is driving regulatory closure. 

Some stakeholders risk losing the resources they have invested in contributing 

to organic seed related emergent governance networks because others have 

not fulfilled their commitments as expected. This dynamic is at play at various 

points in the processes described in this chapter such as when seed companies’ 

revealed frustration as organic growers continue to buy conventional untreated 

seed when an organic seed supply is available. The heavy involvement of non-

governmental stakeholders in the organic seed discourse, combined with the 

stalled formalization of the organic seed regulation, has created some confusion. 

A level playing field has not yet been achieved such as the sub-optimal allocation 

of risk that primarily rests on the certifiers’ interpretive responsibility. Considerable 

duplication of efforts remain demonstrated by the multiple unsatisfactory 

databases attempted. After more than ten years the final NOP guidance has not 

brought sufficient regulatory clarity and closure has not been achieved. 

On the basis of this study, the situation is interpreted as follows. Grower and seed 

sector stakeholder interests remain divergent driven by differences in market 

opportunity and their varying prioritization of profit, enterprise development, 

and biodiversity goals. The main tensions which divide stakeholders are: (1) 

organic versus commercial values, (2) consensus-building versus protest, and (3) 

market-led versus conservation and biodiversity concerns. Similar tensions are 

described also by Luttikholt (2007) with reference to the process of formulating 

IFOAM’s basic principles. The differences between stakeholders’ perspectives 

and interests have made it difficult to drive regulatory closure on the basis of a 

market-led business model, while the lack of closure constrains the willingness 

of commercial seed producers to make investment commitments. Waterman 

and Meier (1998) note that when stakeholders’ goals are not aligned, policy-

making tends to drift toward extended policymaker passivity. This may explain 

the NOP’s reluctance to formally endorse a clear regulatory framework and 

drive regulatory closure, suggesting that the government has not (yet) opted 

to take on the role of meta-governor.
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On the other hand, we note that while no single stakeholder, not even the 

government, can impose or control governance networks (Rhodes 1996), a 

government can seek to actively manage network governance, for instance, by 

creating institutions that facilitate interaction or lower the costs of engaging 

in network governance. A government also may develop various procedural 

and substantive instruments to support the particular policy process at hand. 

Procedural instruments, i.e. step-by-step processes to achieve an outcome or 

result, typically seek to manipulate the type, number, and relationships among 

networks, as well as the procedures for interacting with the government [such as 

the ‘Expert Groups’ used in the EU to determine allowance of exceptions to the 

use of organic seed (Döring et al., 2012). Substantive instruments outline what 

the government intends to do through stated plans of action, which are designed 

to influence the mix of goods and services provided through manipulating 

the behaviour of individual network actors (rather than that of the networks 

themselves). These instruments may include provision of incentives (e.g. taxes, 

grants), licenses, regulations, and information (e.g. via communication tools, 

education, training). Substantive instruments may have significant effects on 

how networks behave. For instance, the wording of a regulation may shape the 

preferences of stakeholders and the actions that they choose to collaborate on. 

Poor drafting of such instruments, as evidenced in the non-specific wording of 

the US organic seed regulation and the lack of clear definitions for equivalency 

and commercial availability, also may shape preferences and action, giving 

rise to unintended outcomes. Information-based instruments can strengthen 

shared norms and shape how objectives are formulated (e.g. by providing 

training manuals on organic seed production). Our research findings elucidate 

a comprehensive lack of governance to deploy sufficiently effective procedural 

and substantive instruments in a timely fashion and a failure to discover 

an effective mix of instruments for regulating the organic seed sector. The 

outcome does not meet expectation, and does not satisfy the aspirations or 

interests of the majority of the stakeholders. Our research indicates that the 

sector remains somewhat internally divided and the key stakeholders do not 

perceive themselves to share an overriding common interest to compel them 

to act in complete concert to develop an optimized organic seed sector, and 

arrive at regulatory closure. 
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2.4.2 Future considerations

Development of an organic seed sector is necessary to support the claims 

of organic agriculture and the realization of sustainable food systems. In the 

US case, important technical and institutional challenges remain. This study 

demonstrates that while access to a diverse assortment of organic varieties in 

sufficient volume, quality and at a competitive price is a major, shared concern 

among a diverse group of stakeholders, their markedly different interests in this 

objective have not always converged. The impetus to further the development 

of a broad assortment of organic varieties and a thriving organic seed market 

has stagnated in the absence of regulatory clarity. No individual stakeholder, 

organisation or network currently is capable of leading the process towards 

regulatory closure. 

This study suggests that the priority regulatory areas that need to be addressed 

to achieve closure would include: (1) clear, formally endorsed NOP guidance that 

communicates detailed criteria for enforcement and an appropriate allocation 

of responsibility among stakeholders in the interpretation and enforcement 

of the organic seed clause which includes set deadlines, measurable targets 

and reporting requirements, (2) modification and harmonization of the NOP 

definitions of equivalency and commercial availability criteria in order to 

enable certifiers to make better decisions regarding exceptions, (3) clarity on 

the sector-wide procedures for granting exceptions, and the steps required 

to move toward 100% crop-specific closure (for EU provisions, see Döring et 

al., 2012), (4) clarity on NOP-endorsed database requirements, funding and 

management, (5) subsidies and grant funding to support capacity-building for 

the informal and formal seed sector in organic seed production and breeding 

[as Stolze and Lampkin (2009) describe for the EU organic sector as a whole] 

and, (6) identification of an organic seed sector specific governance body with 

authority to inform the NOSB and NOP of the needs of the diverse organic seed 

sector stakeholders who are in support of overall sector development and clear 

regulatory interpretation.

Further challenges and opportunities lie ahead for the US organic seed sector 

in relation to its major organic trade partners. The EU for instance is progressing 

toward closing exceptions for use of conventional seed in specific crops across 

its member states, driven by a mix of well-chosen procedural and substantive 
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instruments such as clear regulatory language, mandatory member state 

databases, expert groups to oversee and guide exception allowances and 

funding schemes to stimulate organic seed production and breeding (Döring et 

al., 2012). Most recently, guidelines for organic variety development have been 

developed for those breeders that aim to distinguish themselves in the market 

that list breeding techniques that are considered to be non-compliant with 

organic values, e.g. in-vitro techniques and cytoplasmic male sterility derived 

through protoplast fusion (IFOAM, 2012). The advancement towards regulatory 

clarity, coordinated governance and organisation of the capacity of the organic 

seed sector in the EU, compared to the US, would give rise to a new trade issue 

between the EU, the U.S. and other jurisdictions if organic growers in the U.S. 

continue to be allowed to use conventional seed (Renaud et al., 2014). This issue 

is emerging as a shared regulatory concern. 
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Comparative Analysis of Organic Seed Regulation in the United States, 

European Union and Mexico

Erica N.C. Renaud, Edith T. Lammerts van Bueren, Janice Jiggins
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Abstract

The governance of seed in agriculture is a challenging global issue. This article 

analyses the evolution of organic seed regulation in the United States, the 

European Union and Mexico as model cases of how these challenges are being 

addressed, based on a study conducted between 2007 and 2013. It highlights 

how growth of the organic sector is hindered by regulatory imbalances and trade 

incompatibilities arising from divergent stakeholder interests along the organic 

seed value chain, and the varying capacity for self-organising governance of the 

seed sector in relation to the state’s regulatory role. Progress toward regulatory 

harmonisation in the organic seed sector among the three cases has been slow. 

The article concludes with an assessment of the regulatory processes described 

including what the regions may learn from each other and lessons for key areas 

of regulatory policy and practice.

Keywords 

Organic agriculture, organic seed regulation, harmonisation of standards, trade 

incompatibilities, United States (US), European Union (EU), Mexico
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3.1 Introduction

In the context of a rapidly growing global organic market, estimated at $63 

billion in 2011 (Willer and Kilcher, 2013) regulators have taken steps to bring 

order to the organic sector. This article deals specifically with the regulation 

of organic seed, a significant component of organic production systems. 

Although organic values and norms require organic farmers to use seeds that 

originate from organic production, the sector continues to depend largely 

on conventionally produced seed. Certified organic seed is defined by the 

International Federation for Organic Agriculture Movements (IFOAM) as seed 

from cultivars that may be derived from conventional breeding programs 

(excluding genetic engineering) and that are produced under organic farming 

conditions for one growing season for annual crop species, and two growing 

seasons for perennial and biannual crop species (IFOAM, 2012). Organic seed 

production is a challenge because use of synthetic chemical herbicides and 

pesticides are not allowed, and therefore adjustments to cultural techniques 

to achieve good quality seed are required. Evolving standards for organic 

agriculture worldwide are pushing the organic sector toward restricted use of 

conventional seed in favour of certified organic seed. Market recognition that 

the integrity of organic production systems begin with organic seed has caused 

organic seed production and seed sales to increase annually and new players in 

seed provision to enter the market (Döring et al., 2012). 

However, progress toward organic seed sector development has been slow to 

overcome both technical and institutional obstacles. An appropriate assortment 

in sufficient quantity of organic seed is not yet available. A procedure to allow 

continued use of conventionally produced seed is needed as a result (Groot 

et al., 2004, MacDougall, 2005). Many countries, including the United States 

(US) and the Europe Union (EU), have implemented a regulation to govern the 

production and use of organic seed. However, the regulations differ in the ways 

in which they support the development of the organic seed sector and in their 

procedures for obtaining exceptions for the use of organic seed. This article 

focuses on how divergent practices and interpretations among stakeholders 

of organic seed regulations in three jurisdictions have created new risks in 

seed supply and in international trade, that potentially limit further expansion 

of the sector within and between them. The importance of harmonization of 
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organic seed regulations between the US and EU is significant due to on-going 

trade negotiations between the regions. The three cases that are compared 

and contrasted are the US, EU and Mexico building on the work of Thommen 

et al., (2007) and Lammerts van Bueren et al., (2008) for the EU, and Renaud et 

al., (2014) for the US. 

The reasons why these three regions have been selected are first because 

demand for organic products in the US and the EU together account for 97% 

of the global revenue in organic products. The agricultural area under organic 

production is 2.0 million hectares in the US, 9.3 million hectares in the EU (Willer 

and Kilcher, 2013), and approximately 500,000 hectares in Mexico (Guzman 

Contro, 2009, Salcido, 2011). Mexico is included for three main reasons: (1) it 

depends to a large extent on import of organic seed from these two regions, (2) 

over 80% of Mexican organic exports are destined for the US market (Salcido, 

2011), where consumer demand for organic products is growing at a rate of 9% 

annually (OTA, 2013), and (3) because Mexico might benefit from the experience 

of others while in the process of developing its own federal organic regulation. 

The US formalized its national organic standard in 2002, the EU in 1991, and 

Mexico in 2006 (USDA AMS, 2002, EU, 1991, 2007, SAGARPA, 2006). The EU first 

sought to achieve harmonization at member state level in a 2007 regulatory 

revision (Michelson, 2009). The US and the EU harmonized their general organic 

standards in 2012 in order to enhance transatlantic trade and align practices 

(Haumann, 2012), while Mexico is still in the process of formalizing its domestic 

regulations (SAGARPA, 2013). The current organic regulations in the three cases 

each include a clause that requires organic seed usage in certified organic 

farming systems but they have not (yet) been able to establish a level playing 

field. An international task force on harmonization and equivalence in organic 

agriculture (UNCTAD et al., 2009) has examined select technical components 

of domestic regulatory and trade regimes. Other researchers have carried out 

cross-country comparison of organic farming policies among EU member state 

(e.g. Michelson, 2009, Moschitz and Stolze, 2009), and of the trade impacts of 

non-harmonization (e.g. De Frahan and Vancouteren, 2006, Disdier et al., 2008). 

However, these studies do not provide insight into the regulatory processes at 

work or address the differences in regulatory regimes governing organic seed. 
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Regulation is about determining priorities and avoiding undesired trade-offs in 

relation to the formulation, interpretation and enforcement of standards and 

practices that balance public and private interests. Studies based on economic 

models of the regulatory trade-offs in self-organising markets tend to focus 

on questions of efficiency, firm size or pricing, such as the work of Cuniberti 

et al., (2000), while sociological studies tend to focus on analysis of the values 

expressed by particular markets (e.g. Reynolds, 2000). Trade theorists, for their 

part, are interested in issues such as science-informed risk management in 

trade relations, the transaction costs of a regulatory practice, the discovery of 

legitimate standards that are the least trade-distorting, and dispute settlement 

(e.g. Josling et al., 2004). Such models have not yet been related to the field of 

international organic seed trade. However, the concerns of this study are more 

pragmatic: to reveal and analyse the processes that create or remove obstacles 

to harmonization in organic seed use in, and trade relations among, the three 

jurisdictions treated in this chapter, through empirical observation of evolving 

regulatory standards and interpretations. 

May and Finch (2009) explain such processes of ‘implementing, embedding 

and integration’ of policy regulation in terms of ‘normalization process theory’ 

that emphasizes the contingent and normative factors that promote or inhibit 

enactment of complex interventions in a field of practice. This study provides 

the opportunity to contrast the ‘normalization’ experiences of the organic 

seed sector in the US, EU and Mexico and to identify where the differences 

are creating new barriers to international trade in organic seed. To deepen the 

understanding of the findings, the chapter examines the interactions between 

the ethical principles espoused by the organic sector, and the norms that in 

practice are shaping and steering the regulatory process, through the lens 

of meta-governance. The discussion continues in the light of the academic 

literature on governance (e.g. Peters and Pierre, 1998, Meuleman, 2008, Bell 

and Hindmoor, 2009) that outlines the role of self-organizing networks in 

meta-governance. Whether such networks compete with or are independent 

of the state, and whether there are contexts in which the state might seek to 

impose or manage governance networks or to work collaboratively with them 

by deploying appropriate policy instruments, is discussed. Lessons are drawn 

from the analysis and discussion that may advance the interests of the organic 

sector as a whole.
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3.2 Methodology

The case material to support this research was collected from mid- 2007 

through 2013. The description of the US organic seed sector builds on Renaud 

et al. (2014), which offers an in-depth analysis of the development of the sector. 

The US study was initiated by identification of stakeholder categories, the key 

stakeholders within each category, and the interests affected directly and 

indirectly by the evolving organic seed regulation (Reed et al., 2009). Interviews 

were conducted with individuals drawn from each stakeholder category to 

explore stakeholders’ perceptions of the draft organic seed regulation, their 

respective role in the process, and their perceptions of opportunities for or 

constraints to regulatory development. Seventy-four in-depth interviews 

(Kvale, 1996) with individuals and representatives of organizations, identified by 

their high level of influence within each stakeholder category, were conducted. 

The stakeholder categories identified were organic certifiers (n=8), organic 

growers (n=40), organic food buyers (n=5), representatives of formal seed 

companies involved in organic and/or conventional seed production (n=10), 

administrative personnel (n=5), and non-profit organization representatives 

(n=6) with influence. The information from the  interviews was recorded and 

analysed manually by means of qualitative analysis, by applying content 

analysis (Patton, 1980), and discourse analysis (Krippendorff, 2004). The 

findings from these analyses are presented here in narrative form, in order to 

reveal the unfolding processes and interests that are shaping the emergent 

regulatory outcomes in each case.

The material for analysis of the organic seed sector in the EU (drawing on Döring 

et al., 2012) and in Mexico is based also on interviews with selected stakeholders 

in the organic seed sector (in the EU, n=12; and in Mexico, n=15), who were 

identified through similar though less rigorous procedures as those outlined 

above for the US study. In all three jurisdictions, the respondents were asked 

to provide their perspectives on their respective organic seed regulations, and 

in the case of Mexico, also on the organic seed regulations in the country to 

which they export organic product. Responses were provided both in narrative 

form and, for specific questions, also on a rank order. The questions included: 

(1) What are the primary motivations for you(r) organization to support the 

development of the organic seed sector? Ranking options here were: ecological 

seed production, financial, farmer livelihood, biodiversity (genetic), imminent 
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regulation enforcement, other. (2) What do you(r) organization perceive needs to 

be done to close the loop in organic seed usage in an organic agriculture system? 

Ranking options here were: clear regulatory enforcement, national organic 

variety trial program, crop group quota targets on organic seed use, sanctioned 

database, training in organic seed production, definition of equivalency, other, 

and (specifically for Mexico) allowance of untreated organic seed importation. 

Relevant grey literature, expert reports and policy documents were reviewed 

for all three jurisdictions as no peer reviewed literature on organic seed 

regulation in the case study countries has been published. The first two authors 

participated, in varying roles as researchers and stakeholders, in key organic seed 

meetings held in the US, the EU and Mexico throughout the study period. The 

methodology emphasises the importance of within-case analysis and detailed 

process tracing. Finally, the case material from each jurisdiction is compared 

(George and Bennett, 2005). 

3.3 Developments in organic seed regulation

3.3.1  The US case

In 2002 the United States Department of Agriculture (USDA) developed a 

domestic organic regulatory standard to govern the US organic sector, the 

National Organic Program (NOP). The standard includes a clause governing 

organic seed usage in certified organic farming systems (Section 205.204(a)) 

that prescribes the use of organic seed in organic production systems whenever 

such seed is commercially available (USDA AMS, 2002). Interpretations of the 

seed clause, and the development of monitoring tools for compliance, have 

evolved through successive guidance documents issued by a statutory authority 

charged with oversight of implementation, the National Organic Standards 

Board (NOSB), to the NOP. However, because after twenty years’ of consultation 

and re-drafting of recommendations, no official endorsement by the NOP of the 

NOSB’s recommendations has emerged, and because the framing legislation 

provides neither deadlines nor penalties for non-compliance, divergent 

interpretive practices have emerged. The main findings and analysis of these 

developments are discussed in detail in Renaud et al. (2014), and summarized 

briefly below. A chronology of the main events is outlined in Table 3.1.
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Table 3.1 Summary of key events in the evolution US organic seed regulation 1990-present

Timeline Regulatory Position Change Outcome

November 28, 1990 OFPA signed into law as Title 21of  the 1990 
Farm Bill

US Organic Agriculture 
Law

December 22, 2000 USDA NOP standard published in the Federal 
Register

Proposed US Organic 
Agriculture Rule

March 7, 2001 Commercial Availability: Docket Number TMD-
00-02-FR

Definition of Commercial 
Availability

October 22, 2002 USDA NOP standard approved Approved US Organic 
Agriculture Standard

August 17, 2005 NOSB to NOP Recommendation:
Commercial Availability of Organic Seed

Organic Seed Guidance 
Document Version 1

November 30, 2007 NOSB to NOP Recommendation: Further 
Guidance on the Establishment of Commercial 
Availability Criteria

Organic Seed Guidance 
Document Version 2

April 3, 2008 NOSB JC & CAC Committee Recommendation: 
Further Guidance on Commercial Availability of 
Organic Seed

Organic Seed Guidance 
Document Version 3

September 22, 2008 NOSB JC & CAC Committee Recommendation: 
Further Guidance on Commercial Availability of 
Organic Seed

Organic Seed Guidance 
Document Version 4

November 19, 2008 Formal Recommendation by the NOSB to the 
NOP:
Commercial Availability of Organic Seeds

Submitted Organic Seed 
Guidance Document 
Version 5

June 13, 2011 NOP Guidance released for public comment NOP Guidance proposal

March 4, 2013 NOP Guidance: Seeds, Annual Seedlings, and 
Planting Stock in Organic Crop Production

NOP Final Organic Seed 
Guidance

Source: Adapted from Renaud et al., 2014.

The NOP’s standard and NOSB’s guidelines assign primary responsibility for 

enforcement of the organic seed clause to organic certifiers (NOSB, 2008 a 

b c). The certifiers are required to ensure growers have attempted a rigorous 

organic seed sourcing process, and that growers increase their organic seed 

usage year-on-year. Growers for their part are assigned responsibility for 

demonstrating clearly the steps that they have taken to source organic seed, 

through on-farm variety trials, and by documenting why they might not have 

used organic seed. Growers’ principal concerns relate to the availability of 

quality seed and of sufficient quantities of a diverse assortment of organic seed 

varieties. Growers are concerned also that in general certified organic seed 

costs more than conventional seed. Price, however, is not taken into account 

in the exemptions permitted by the regulation (USDA AMS, 2002). If growers 

use conventional instead of organic seed, they must justify in their Organic 

Systems Plan that the seed traits and characteristics of the conventional seed 
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are not available in organic form. While data contained in the plans have 

the potential to inform the organization of organic seed supply, procedural 

differences among certifiers with respect to the review and enforcement of 

the plans has led to significant inconsistencies (Renaud et al. 2014). A residual 

level of regulatory enforcement responsibility has been allocated to organic 

food buyers, who are supposed to monitor the seed usage of their suppliers, 

particularly if the buyer’s contract specifies a particular variety. According to 

our interviews, in practice such monitoring is considered by the buyers to be 

a costly administrative expense that is often avoided. In addition, food buyers 

may face a conflict of interest based on the varieties they want and the quality, 

characteristics, price or volume of the organic seed available to produce the 

variety (Dillon and Hubbard, 2011).

The lack of a comprehensive organic seed database lies at the heart of many 

of the tensions that have emerged. NOSB’s guidance documents indicate that 

a database should list the availability of varieties aligned to certified organic 

growers’ trait preferences, and the equivalent conventional seed options (in the 

case that an organic seed variety is not yet commercially available). At least 

eight organizations have created, or attempted to create, a database to ensure 

transparency in the claims made about organic seed varietal availability. To date 

(end 2013), none of the databases have achieved comprehensive coverage 

and none has been officially endorsed by the NOP. The Organic Material 

Review Institute’s (OMRI) attempt was the most ambitious, aiming to provide 

a comprehensive national database for all growers and certifiers in the US. 

However, a lack of clarity about who should bear the cost of registering and 

organizing the information and, in the opinion of many stakeholders, because 

the initial fee for using the database was set too high, from the beginning 

OMRI’s ability to mobilize long-term funding for the initiative was undermined. 

In 2012, drawing on OMRI’s experience, a multi-stakeholder initiative to re-

launch the database was coordinated by the Organic Seed Alliance (OSA) in 

collaboration with the database host organization Association of Official Seed 

Certifying Agencies (AOSCA) that emphasizes the importance of attaining NOP 

endorsement to ensure its success (Hubbard, 2012). All our respondents have 

recognized that without a fully endorsed and populated database requests for 

exceptions to the organic seed rule will persist and will discourage organic seed 

producers from meeting the demand, thereby sustaining the pressure to grant 
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exemptions, an impasse that undermines the integrity and limits the potential 

growth of the US organic sector, see Table 3.2.

In the absence of a strong convergence of interests at the national level, new 

organizations with a regional focus have emerged to help manage local seed 

concerns. Their scope variously includes the testing of organic seed varieties 

with farmers, supporting participatory breeding (e.g. Organic Seed Alliance), 

the development of local organic seed production (e.g. Family Farmers Seed 

Cooperative), and the pursuit of funding for preparation and maintenance 

of organic seed lists or databases (e.g. OMRI, AOSCA). Although over 100 US 

seed production companies have developed niche markets in organic seed, 

the expansion of the seed sector remains challenged by the lack of reliable 

information about the requirements of organic growers for desired varieties. 

Nevertheless, several stakeholder groups have demonstrated a willingness to 

engage in the concerted development of the organic seed sector (Podoll, 2009, 

Renaud et al., 2014). Others, such as large-scale commercial baby lettuce leaf 

and spinach growers in California, where seed costs form a relatively large part 

of their cost structure, have less incentive to proceed toward compliance. 
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Table 3.2 US Stakeholder perspectives on an organic seed database (n=74)

Stakeholder 
category

Stakeholder 
type1

Stakeholder 
level of 
influence1

Perspective on Organic Seed Database

Organic 
Certifiers
(n=8)

Key High -Valuable tool for certifiers to assist in the 
interpretation of a growers attempt at sourcing 
organic seed in the inspection process
-An organic seed database would make assessing an 
organic growers attempt at sourcing organic seed 
more efficient and less costly

Small-Scale 
Organic 
Growers
(n=26)

Primary Low to High -Valuable tool to identify possible organic seed 
sources commercially available that are unknown to 
the grower
-Growers should not be limited to database sources 
for production operation use as many rare and 
unusual varieties are not available in organic form. Do 
not want to limit on-farm genetic diversity.

Large-Scale 
Organic 
Growers
(n=14)

Primary Low to High -Valuable tool to identify possible organic seed 
sources commercially available that are unknown to 
the grower.
-Growers should not be limited to database sources 
for production operations as many varieties used by 
commercial growers are not grown organically or are 
produced under longer term contracts.

Organic Food 
Buyer
(n=5)

Intermediate Low -Potentially valuable tool to identify sources of 
organic seed to support contracts and ensure 
compliance of organic seed regulation guidance.
-Do not want to be limited by varieties available on 
the database because the varieties may not meet 
contract requirements.

Formal Seed 
Companies
(n=10)

Primary Low to High -Valuable tool if all companies with organic seed 
participate and keep availability updated.
-Excellent nearly free marketing and promotion 
opportunity.
-Potential to gather information on varieties that 
growers would like organically, but are not available.
-Unnecessary costly and timely uploading process.
-Do not want to participate if the company has 
a conventional untreated seed division as it will 
jeopardize their sales.

Non-Profit 
Organizations 
(n=6)

Intermediate Low to High -A two-way organic seed database is a stepping stone 
towards transparency of what varieties are available 
in organic form as well as those that are not available.
-A needed tool in order to set derogations/exception 
by crop group and to set timelines.
-Valuable to a broad stakeholder range in the organic 
seed chain.

Policy & 
Legislative 
Body 
(n=5)

Key High -Valuable tool to demonstrate availability and 
support organic certifiers, growers and food buyers in 
identifying availability.
-Will include in guidelines, but not make it 
mandatory.

Sources: Stakeholder analysis (columns 1-3, 2007); stakeholder interviews and participant observation 
(column 4, 2007-2013). Adapted from Renaud et al., (2014).
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1Notes to Table 3.2: Stakeholder categorization (Jiggins and Collins, 2003)

Stakeholder Type Definition Levels of Influence

Primary Those who are directly affected, either positively or negatively Low to High

Intermediate The intermediaries in the delivery or execution of research, 
resource flows, and activities

Low to Intermediate

Key Those with the power to influence or ‘kill’ activity High

The spread of compliance responsibilities among growers, certifiers, and buyers 

remains contentious. The fact that the guidance recommendations have not 

achieved sufficient consensus and compliance to be endorsed by the NOP seems 

indicative that the government still expects this emerging economic sector to 

self-organize. The case study findings indicate that while an increasing number 

of private actors have come to the negotiating table to represent their various 

interests, the lack of a common agenda, and of policy instruments, such as an 

endorsed national organic seed database that would encourage advancement 

toward regulatory compliance at the national level, has allowed increasing 

dissent and fragmentation. In the absence of a central coordinating body with 

authority to drive toward compliance the diverse stakeholders in the organic 

sector, the conventional seed sector, and in the government, the interested 

parties continue to observe and act in response to each other (Renaud et al., 

2014).

3.3.1 The EU case

The development of the organic seed sector in the EU differs significantly 

from the US experience. State actors have demarcated clearly stakeholders’ 

roles and responsibilities, set deadlines for compliance, and established 

procedures for monitoring and for penalizing non-compliance. In 1991 the 

European Commission (EC) established an EU-wide organic standard, followed 

by revisions in 2009 (Council Regulation European Economic Community (EEC) 

No 834/2007). In 1999, an amended regulation was adopted, specifying that 

organic growers, with exceptions as outlined in Commission Regulation (No 

1452/2003), by 31 December 2003 must use organic seed. The responsibility for 

enforcement lies with the national governments of each of the 27 EU member 

states, coordinated by government representatives of each member state 

in the Standing Committee Organic Farming (SCOF). The regulation further 

stipulates that governments must host an online database listing the available 

organic varieties and their suppliers, including the identification of exception 

allowances, and that they are responsible for supplying the EC with an annual 
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report of the exceptions granted in the member state. The timeline for the 

chronology of events in the EU case is outlined in Table 3.4.

The European Seed Association (ESA) in 2002 carried out an assessment of seed 

companies’ capacity to deliver the requisite quantities of organic seed by the end 

of the following year, concluding that it should be possible for seed companies 

to do so. However, the assessment also showed that despite overall availability, 

and in the quantities required, organic growers of particular crops in certain 

regions would in fact not be able to access all of their seed requirements in 

organic form by the deadline. Thus the regulation was amended again to allow 

exceptions on request so that growers could use conventional seed provided 

the seed was not chemically treated and organic seed was not available. The 

perspective of different seed company stakeholder types on the potential for 

achieving 100% organic seed is outlined in Table 3.3. Most member states base 

exceptions on the following categories: (1) no exception for species and sub-

species with enough acceptable assortment of varieties available in organic form, 

(2) case-by-case authorization for exceptions for those species and sub-species 

with some varieties available in organic form but not a sufficient assortment 

of the main varieties required in the organic sector, (3) general exception for 

species and sub-species without any (appropriate) varieties available in organic 

form (Thommen et al. 2007).

Several member states have supported regulatory implementation by 

developing tools for database development, communicating availability criteria, 

and encouraging closure to exceptions for certain crop groups (Thommen et 

al. 2007, Lammerts van Bueren et al., 2008, Döring et al., 2012). Some member 

states, such as The Netherlands and Denmark, use formalized expert groups 

to identify which species and (sub) species are allocated to each of the 

above-noted exception categories. Expert group advice in these countries, in 

combination with approval by their respective Ministries of Agriculture, informs 

exception approval or disapproval by the member state’s certification body. 

The composition of expert groups, and the method of analysis used to evaluate 

exceptions, is unique to each member state. For example, some member states 

allow grower representatives to participate in expert groups together with 

seed producers and advisors. Others do not, believing growers may influence 

exception allowances in their favour. Still others, including Germany and 
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Switzerland (noting that Switzerland is not part of the EU but an associated 

European country), do not work with exception categories at all, preferring to 

consider all requests on a case-by-case basis, using publicly available variety 

equivalence lists for each species and (sub) species (Thommen et al., 2007).

Table 3.3 European seed company perspectives on prospects for regulatory closure in the EU (n=7)

Seed company 
category

Stakeholder 
type1

Stakeholder 
level of 
influence1

Key concerns relating to the organic seed market 
and prospects for achieving regulatory closure

Conventional 
seed companies 
(n=2)

Intermediate Low No commitment to support regulatory closure.
Market is too small to invest in.
See no added value in organically produced seed.
Fear for loss of conventional seed sales.
Conflicts with GMO and chemical agriculture 
divisions.
No infrastructure to support organic certification 
requirements.

Conventional 
seed companies 
with an organic 
division
(n=3)

Primary Med to high Market is evolving and professional organic 
growers require their professionally bred varieties.
Regulatory enforcement and derogation rigor 
required.
Harmonization among member states needed.
More transparent access to grower varietal 
requirements.
Fear for loss of conventional seed sales and trade-
offs in profitability.
Organic seed production and breeding capacity.
Organic seed quality (seed borne diseases and 
vigour).

Organic seed 
companies 
(n=2)

Primary High Market opportunity is there.
Market requires varieties bred for organic 
production systems.
Regulatory enforcement and derogation rigor 
required.
Harmonization among member states processes.
Value of biodiversity needs to be considered in 
varietal assortment.
Organic seed quality (seed borne diseases and 
vigour).
Organic seed production and breeding capacity.

Sources: Stakeholder analysis (columns 1-3, 2007); Content analysis of stakeholder interviews (column 4, 
2007-2013).1 Stakeholder typology, definition and level of influence, see Table 1 Notes.

Encouraged by the rigour of the procedures for the granting and reporting of 

exceptions, there are several on-going efforts by both public and private actors 

to achieve 100% organic seed use, beginning with a limited range of crops. 

BioSuisse, a Swiss certification body, has created a fund to address the price 

difference between organic and conventional seed. If a grower needs to use 
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conventional seed because there is no comparable variety in organic form, the 

grower pays the difference in the cost of the seed into a fund that supports 

organic seed-breeding and multiplication, such as variety trials (Thommen 

et al., 2007). In The Netherlands, a government-funded project has provided 

the opportunity for growers to organize in national crop groups and, for crops 

with low availability of organic seed, to communicate their organic variety 

needs to breeders and seed companies (Lammerts van Bueren et al., 2008). 

This initiative, in combination with yearly publication of varietal exception 

requests by the national organic certifier, has helped seed companies in The 

Netherlands to identify appropriate varieties for which a secure organic market 

exists (Raaijmakers and Ter Berg, 2012). 

In the case of the EU, clear enforcement guidelines have accompanied organic 

seed regulation. As a result, various crops (such as cucumber and lettuce) in  

several member states, including Denmark, France, The Netherlands and  

Sweden, are now closed to exceptions. The most comprehensive movement 

toward 100% compliance has been achieved in the more affluent north-western 

member states; others remain challenged by domestic policies and trade 

imbalances (e.g. due to lack of a national vegetable seed industry) that continue 

to prevent access to organic seed for certain crops. Growers in some countries, 

including Portugal, Estonia and Bulgaria, continue to have limited access to 

organic seed that meets the volume, quality and varietal requirements for 

primary crop groups, and so they continue to use predominantly conventional 

seed (Alonso and Rundgren, 2011). According to our respondents, and a study 

by Döring et al. (2012), despite differences in progress among EU member states, 

the EU organic seed regulation has stimulated the organic seed sector through 

clear allocation of enforcement responsibility to the national governments 

of member states, by requiring that each member state maintain a national 

seed sourcing database, and by requiring the submission of an annual report 

on exceptions to a central coordinating authority. The EC Agriculture & Rural 

Development website (2013), which collates all EU databases, lists over 300 

organic seed suppliers throughout the EU (e.g. 80 in Germany, 30 in The 

Netherlands, and 26 in France). Döring et al. (2012) note, however, that further 

effort is needed to harmonize annual reports, encourage wider recourse to 

appropriately constituted national expert groups, enhance communication 

and cooperation between member states in order to achieve a level playing 
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field for exporters, and to develop cross-compliance with national and EU-

wide legislation related to biodiversity conservation and the conservation of 

landraces (FSO, 2010).

Table 3.4 Summary of key decisions and events in the evolution of the European organic seed regulation

Timeline Regulatory Position Change Outcome

1991 Council Regulation (EEC) No 2092/91 EU Organic standard implemented

1999 Council Regulation (EC) No 1804/1999 EU standard amended with derogation to 
enforce organic seed usage by December 
2003

2002 EU commission to perform organic 
seed evaluation

Reform of 1999 Council Regulation (EC) No 
1804/1999

2003 Commission regulation (EC) No 
1452/2003

Retracted December 2003 derogation closure 
date. Requirement for all EU countries to 
establish national organic seed databases 
and annual derogation granting report for full 
availability disclosure.

2003 Formation of the European Consortium 
for Organic Plant Breeding (ECO PB)

Organization formed with the goal to 
harmonize EU members processes on organic 
seed databases and annual reports

2004 EC Organic Seed Regime 2004 Started implementing the derogation regimes 
for organic seed

2007 EU project EEC 2092/91 Organic 
Revision

Project included a report with revisions to 
the original organic standard including the 
section on organic seed

2008 ECO PB Position Document on Cross 
Country Regional agreements on 
derogations

Set goal to identify 5 crops that in the coming 
3-5 years to work towards reductions in 
derogations or in category 1 list

2008 Motion on banning protoplast fusion 
at the IFOAM General Assembly 
accepted

Proposed ban on varieties derived from and 
use of protoplast fusion in organics

2009 ECO-PB Position Document on 
protoplast fusion

Requested that national databases indicate 
varieties derived from protoplast fusion

2009 Council Regulation (EC) No 834/2007 Revised EU Organic Standard

2009 Council Regulation (EC) No 889/2008 Revised of organic seed regulation

2010 IFOAM Standards for Organic Breeding 
under consultation

IFOAM included standards for organic 
breeding and defined the breeding 
techniques compatible with organic values

2012 IFOAM Final Document IFOAM definition of organic plant breeding 
finalised

2012 ECO PB Meeting ECO PB met on EU organic seed expansion and 
developed strategic framework

Sources: Doring et al., 2012, EC, 2007; 2009, Gibbons, 2008, IFOAM, 2012, Lammerts van Bueren et al., 
2007; 2008, Rey et al., 2009, Wilbois, 2006.
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3.3.3 The Mexico case

Mexico first sought to regulate the organic sector in 1997, with the publication 

of an Official Standard NOM-037-FITO-1995. However, the regulations were 

not enforced and the standard was officially cancelled in 2010. In 2006, the 

government enacted the Organic Products Law that required all organic 

products to be certified in accordance with an international organic standard 

(SAGARPA, 2006). This laid the foundation for a series of draft regulations that 

have been negotiated with Mexico’s main trading partners in organic products, 

such as the US and the EU, published on 1 April 2010, and subsequently approved 

by the Mexican Federal Commission of Regulatory Improvement (COFEMER, 

2010). Following further approval of the drafts by the Sanitary, Food Safety and 

Food Quality National Service (SENASICA), Mexico’s ‘Guidelines for the Organic 

Operation of Agricultural and Animal Production Activities’ were released 

in 2010. The guidelines required the use of organic seed in certified organic 

agriculture systems (Section 3, “SEED or PROPAGATION MATERIAL” Article 41-

43). Notably, there was no provision for exception for the use of conventional 

untreated seed (SENASICA, 2010). The organic regulation was redrafted in 2012. 

It withdrew the 100% organic seed use requirement. The revised draft permitted 

the use of conventional treated seed if the chemical treatment was been  

“washed-off” (Article 35, SAGARPA, 2012b). The final Mexican Organic 

Regulations retained Article 35 and was published on 29 October 2013 

(SAGARPA, 2013). 

The stakeholder interviews and participant experience suggest that the US 

regulatory regime arguably has had greater impact on the organic sector in 

Mexico than the efforts to develop effective domestic law, because the major 

part of Mexico’s organic crop production is exported to the US market and must 

therefore meet the requirements of the US organic regulation. Conventional 

seed treatments, for instance, are not permitted under either US (or EU) organic 

regulations. Mexican organic growers in fact face a unique challenge. In the 

US, organic growers have access to diverse organic seed sources and the 

opportunity to secure exceptions to the use of organic seed. In Mexico, there is 

a limited domestic supply of organic seed and the major part of the seed used in 

Mexico is supplied mainly by companies based in the US and the EU. The organic 

sector in Mexico has become dependent on the importation of organic seed 

from foreign companies and on seed regulation and certification standards in 

their main export markets.
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Further complications have arisen. The imported seed must be accompanied by 

an organic certificate issued by a certification agency recognized by Mexico’s 

Ministry of Agriculture, Livestock, Rural Development, Fisheries and Food 

(SAGARPA) (Sonnabend, 2010), as outlined in the Organic Products Law of 2010 

(COFEMER, 2010). In addition, imported seed is subject to the phytosanitary 

requirements outlined in Mexico’s Federal Phytosanitary Law (NOM-006-

FITO-1995), that requires imported seed to be treated with a particular chemical 

seed treatment. Because such treatments are not permissible in organic systems, 

an alternative treatment has been proposed that complies with the letter and 

intention of Mexico’s Federal Phytosanitary Law. However, the treatment is 

consistent neither with the phytosanitary requirements of Mexico’s primary 

organic trading partners, nor proven effective as a blanket phytosanitary control 

for all crops or all diseases. 

Considering the severity of restrictions placed on the Mexican organic sector 

by foreign organic seed regulations and the phytosanitary restrictions on 

seed importation, stakeholders have been encouraged to seek other ways 

forward. Exception grants from SAGARPA are available for growers who 

solicit a grower-specific importation permit, thus allowing them to import 

seed directly and avoid a seed distributor, and to work directly with the 

authorities to authenticate potential phytosanitary risks. This has resulted in 

inconsistent certification standards with respect to enforcement of the seed 

importation process. Mexican growers are also importing seed from their own 

supplier networks, encouraging use of seed that is not certified organic and 

of conventional seed treated chemically (that might or might not be washed 

off ). Moreover, organic growers continue to receive exception to the seed 

rule even when organic seed is available. The testing of imported seed for 

acceptability also has numerous loopholes. For instance, inspectors might or 

might not divulge the test criteria, and might or might not choose to exercise 

their discretionary authority to label a seed lot as unacceptable (thus requiring 

that it be sent back to the country of origin at the grower’s expense, or be 

surrendered to the inspector for destruction) (Dunkle, 2011). However, and 

even more significantly, industry stakeholders report the growing practice 

of furtive acquisition of conventional seed (for organic purposes) that might 

or might not be treated in accordance with phytosanitary requirements, 

resulting in the growing illegal movement of seed into and around Mexico. 
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We examine these points in more detail below, with reference to a particular 

case.

The Mexican company Horticola Camarillos S.A. de C.V. was certified as 

complying with the organic certification requirement of the US by producing 

an Organic Farm Plan that stated the farm’s seed use. Upon review, the 

company was found to have used treated seed for one crop, to have insufficient 

documentation for another crop, and to have violated a USDA NOP rule for 

seed treatment and phytosanitary requirements applicable in the US. Organic 

grower Isidro Camarillo Zavallo, General Manager of Carmarillo, argued (in 2010 

during his appeal against loss of certification status) that compliance with US 

regulations requires Mexican growers to break the laws of Mexico. He reported 

that practices routinely include purposefully deceptive packaging, absent or 

inaccurate labelling, and ambiguous responses to the different phytosanitary 

requirements of trade partners. He further stated that it was the company’s 

effort to comply with US regulations that had caused their certification to come 

into question. The organic certifier, the Organic Crop Improvement Association 

(OCIA), denied the appeal and cancelled Camarillo’s certification for three years, 

on the grounds that evidence was lacking that chemical treatment of imported 

seed is compulsory in Mexico, and that USDA NOP regulations may not be 

circumvented to meet organic regulatory requirements outside the US (USDA 

Marketing Service, APL-027-08).

The contradictions posed by differing phytosanitary requirements have been 

an issue between Mexico and the US for some time. Before 2009 Mexico had 

approved, on a restrictive basis, a limited number of alternative seed treatments 

for phytosanitary purposes that were also approved under the NOP. These 

included ‘Natural II’, an Agricoat product (approved in 2005), and importation 

of untreated organic seed that was accompanied by phytosanitary certification 

based on seed testing and post-entry quarantine inspections (approved in 

2008). The Natural II allowance was cancelled in 2008, because the product 

had not been approved by the Mexican Federal Commission for the Protection 

Against Sanitary Risk (COFEPRIS), and because any new treatment proposed 

for use in organic agriculture requires prior COFEPRIS approval. US companies 

seeking COFEPRIS approval of seed treatments subsequently reported that the 

data submission requirements were unclear and that the approval process was 
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a restraint to trade, being both cumbersome and long (seed company inter-

view, 2010). Only in 2011 did SAGARPA accept that the approval of new organic 

seed treatment options no longer required the prior approval of COFEPRIS. 

The option of allowing importation and use of untreated seed if accompanied by 

the appropriate certification was described in Article 89 of the original Mexican 

Organic Products Law (COFEMER, 2007). The law provided for an exception 

when a seed importer presented technical or scientific evidence demonstrating 

an alternative to the required chemical treatments. In 2009, a biological seed 

treatment called T-22 (Trichoderma harzarianum) was approved for organic seed 

and the option to import organic untreated seed was removed. Use of T-22 

proved problematic from the start because the company that had exclusive 

manufacturing rights was unable to meet the initial demand. In addition, 

inconsistent enforcement of what counts as acceptable seed continued at 

Mexico’s borders. The minimum dosage rates for seed treatment were set at a 

high level, not all crops were approved for T-22 treatment, some seed producers 

encountered germination problems, and research analyses found only limited 

evidence to support the claim that T-22 prevented seed-borne diseases  

(Cummings et al., 2009). Since 2009 the number of crops approved for T-22 

treatment has expanded from the original list of just six crops (although some 

crops remain excluded). In 2012, two new organic seed treatments were approved 

by SAGARPA to support the entry of organic seed into Mexico (SAGARPA, 2012ac). 

However, these treatments were originally not commercialized for application 

on seed in the US and were not permitted on all crops. By the end of 2013, 

these seed treatments were allowed on a select group of crops (Actinovate: 14; 

Mycostop: 9). In Table 3.5 the key decisions and events in the evolution of the 

Mexico organic and phytosanitary regulations are summarized.

In summary, three preliminary comments on the organic regulatory situation 

in Mexico can be made. First, Mexican organic growers are burdened with the 

costs of multiple organic certifications, additional phytosanitary treatments, 

and of securing complex import permissions, that place them at significant dis-

advantage compared with US and EU growers, who produce for the same mar-

kets. Secondly, certifiers and sellers in Mexico, if they wish to stay in business, 

in practice are forced to break the laws of either or both the seed’s country of 

origin and of the destination markets for organic products. This significantly 
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reduces the potential for trade while significantly increasing the potential for 

movement of diseased seed within Mexico. Thirdly, Mexican organic produc-

tion nonetheless continues to grow at a rate of 20-30% annually, involves more 

than 130,000 growers, and covers more than 500,000 hectares of land (Guzman 

Contro, 2009) despite the complications documented above.

Table 3.5 Summary of key decisions and events in the evolution of the Mexico organic and 
phytosanitary regulations

Timeline Regulatory Position Change Outcome

1995 Mexican Phytosanitary Regulation NOM-
006-FITO-1995 published

Mandatory chemical seed treatment imposed

1997 Mexico official organic standard NOM-
037-FITO-1995published

Mexico’s first organic standard proposal

2005 Natural II an organic seed treatment 
approved

First organic treatment permitted for seed 
entry into Mexico

Feb 7, 
2006

Organic Products Law published Mexico Organic Product Law

June 
2008

Approval of importation of organic 
untreated seed

Use of organic untreated seed allowed

2008 Approval for use of Nature II organic 
seed treatment retracted

Entry of organic seed treated with Natural II 
banned

2009 Allowance of importation of organic 
untreated seed retracted

Entry of organic untreated seed banned

2009 Approval of T-22 as only method for 
organic seed importation

Entry of organic seed with T-22 treatment 
approved

2009 Approval of hot water treatment for seed 
importation

Entry of six crops treated with hot water

2009 AMSAC Organic Seed Committee formed Committee formed to identify new methods 
for organic seed entry

April 1, 
2010

Organic Products Law approved by 
COFEMER

Mexico Organic Regulation approved

May 11, 
2010

Cancellation of Mexico organic standard: 
NOM-0337-FITO-1995

Mexico’s initial organic standards cancelled

May 25, 
2010

Mexico Organic Regulations draft 
published by SENASICA

Draft Mexico Organic Regulations published 
(includes a requirement that growers use 
100% organic seed)

June 
2010

Dutch agricultural delegation met with 
SAGARPA

The Netherlands and Mexico seek a bilateral 
agreement on seed trade

July 2010 Organic certifiers organize a multi-
stakeholder meeting on organic seed 
importation into Mexico

Multi-stakeholders share with government 
authorities the impact of conflicting organic 
and phytosanitary requirements on their 
operations.

Aug 
2010

US government inter-agency group 
including the USDA (NOP, APHIS, FAS, 
AMS) and OTA meet in the US with 
SAGARPA to develop bilateral agreement 
on seed importation issue

US authorities seek to create a strategy for 
bilateral agreement on (organic) seed trade 
with Mexican authorities
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Oct 2011 ASTA hosts multi-stakeholder meeting 
with US and Mexican government 
authorities to develop a strategy on seed 
importation

Authorities on agricultural trade brought 
together by ASTA to develop strategy for 
organic seed importation

Aug/Nov, 
2012

Approval of Mycostop and Actinovate 
treatments for seed importation

Entry of organic seed with Mycostop and 
Actinovate seed treatments

Nov 14, 
2012

SAGARPA submits revised draft of 
Mexico Organic Regulations to COFEMER 
for review after public comment

Revised draft of Mexico Organic Regulation 
submitted for review (includes requirement 
that growers use organic seed if commercially 
available or use of conventional treated seed 
with treatment washed off)

Nov 30, 
2012

COFEMER provides response to 
SAGARPA’s draft regulation

COFEMER requests clarification on organic 
seed section of regulation

Feb 8, 
2013

AMSAC revitalizes Organic Seed 
Committee

Committee revitalized to develop strategy on 
organic seed issue

July 6, 
2012

Approval of more crops treated with 
Mycostop and Actinovate

Mycostop and Actinovate approved for 9 and 
14 species, respectively.

Oct 29, 
2013

Mexican Organic Regulation recorded in 
the Federal Register

Approved Mexican Organic Regulations 
(retains requirement that growers use organic 
seed if commercially available or use of 
conventional treated seed with treatment 
washed off)

Sources: COFEMER, 2006, 2007, 2010, 2012, Dunkle, 2011, Guzman Contro, 2009,SAGARPA, 2009, 2010, 
2012abc; 2013, SENASICA, 2012, Salcido, 2011, Sonnabend, 2010, Content analysis of policy documents 
(2007-2013).

3.4 Contrasts and comparisions

This section first reports and analyses the study findings concerning the 

evolution of the organic seed regulatory harmonization among EU member 

states. The US and EU regulatory processes then are compared. It is suggested 

that the US might learn from the EU process a number of important lessons. 

Finally, an analysis is made of how the Mexico organic regulatory process is 

stifled by conflicting phytosanitary requirements that impede development of 

the sector in relation to its main trade partners.  

3.4.1 Challenges in the harmonization of organic seed regulation among  

 EU member states

Achievement of a comprehensive EU-wide database for all crops and varieties for 

which sufficient organic seeds are available and exceptions are not permitted, 

is considered by all our respondents and participants in the meetings observed 

Table 3.5 (continued)

Timeline Regulatory Position Change Outcome
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in this study to be a realisable objective. It remains a shared goal although 

differences in legal languages, eco-climate zones, and agricultural and cultural 

traditions continue to pose challenges. The emergent regulatory regime 

combines a strong, clear, enforceable framework at the level of the EU with 

flexibility in interpretation and implementation at the level of each member 

state. Additional initiatives undertaken to enable and encourage greater 

harmonization of interpretation are proving helpful. For instance, in 2004, the 

EC funded an inventory and analysis of member states’ organic seed policies The 

report of this study (Thommen et al., 2007) highlighted variance in interpretation 

of the term ‘non availability of an appropriate variety’ as a criterion for exception 

to the organic seed rule. It further recommended the EU-wide use of a standard 

check-list to define the appropriateness of an assortment of varieties for a (sub) 

species, and this has been adopted.

The European Consortium for Organic Plant Breeding (ECO-PB) has evolved 

alongside the regulatory developments documented. Since 2003 it has 

assumed responsibility for organizing joint meetings of stakeholders from 

member states, approximately two times a year, to share experiences and 

develop regulatory recommendations and practices (Wilbos, 2006, Lammerts 

van Bueren et al., 2008, Rey et al., 2009). The authority of decisions made at ECO-

PB meetings has been recognized by member state governments, and several 

SCOF members regularly attend, to better understand sector-wide problems 

and to collaborate on finding ways forward. The meetings serve to reinforce 

member states’ commitment to achieving zero exceptions, while highlighting 

the lessons of experience, for example, that strict compliance with the seed 

regulation can be a barrier to access to newly marketed crop varieties. Although 

the EU regulation currently allows growers to use conventional seed to trial 

new varieties on a small scale, if the crop is listed in the ‘no exception’ category 

for annual crops, growers have to wait at least a year before the organic seed 

of the desired variety is produced and on the market. In order to follow-up 

new developments without delay, The Netherlands has introduced a ‘flexibility 

rule’ that allows their growers to use conventionally produced but chemically 

untreated seed of a new crop variety for one year for annual crops, or two years 

for biannual crops, provided that a seed producer agrees to start organic seed 

production of the requested variety (Lammerts van Bueren et al., 2008). The 

ECO-PB joint meetings have identified also the lack of interest of certain seed 
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companies, which are primary seed suppliers for particular crops, in pursuing 

organic seed production. ECO-PB members have recommended in response 

that official organic seed variety trials should not include the varieties produced 

by companies that are not interested in pursuing organic seed production. It 

was argued that this also would stimulate growers to learn about the organic 

varieties that are offered by other companies more committed to organic seed 

supply (Lammerts van Bueren et al. 2008, Rey et al., 2009). The EU case suggests 

that progress toward regulatory harmonization among EU member states is a 

product not only of the bottom-up commitment of stakeholders in the organic 

sector to achieve a common goal, but also of strong support and direction 

from national authorities and the EC. ECO-PB members themselves draw the 

lesson that the EC should seek stricter and more coordinated management 

of exception criteria among member states, as well as a common format for 

the national reports on exceptions so that the reports can be used to compare 

progress in regulatory implementation and to improve trade (Lammerts van 

Bueren et al., 2008, Döring et al., 2012). 

In describing collective action and policy compliance in the organic food 

industry, Lee (2009) suggests that complexity typically emerges at the level 

of self-organizing networks as they seek to mobilize their members toward 

compliance with a common goal to meet regulatory requirements. Lee further 

suggests that those responsible for meta-governance of the regulatory regime 

on the other hand seek uniformity and a level playing field among the interested 

parties. The EU case suggests that it is the willingness to engage in and provide 

support for learning from experience that has assisted the process of normalizing 

regulatory requirements among member states. The EU’s experience further 

suggests the importance, and perhaps the necessity of a central body that 

takes responsibility for developing and applying appropriate substantive and 

procedural policy instruments that provide incentives, penalties and support 

for compliance. We suggest in the next section that the regional example of 

harmonization amongst member states in the EU offers lessons that potentially 

might have larger policy impact worldwide. 

3.4.2 The US and EU compared 

In both the EU and the US there are numerous stakeholders, with diverse inte-

rests, who none the less want to ensure that the principles of organic agriculture 
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are considered in the process of developing and implementing an effective 

regulatory regime (Klein and Winekoff, 2009). In the EU the normalization of  

these principles into regulatory practice was assigned to member states (Padel 

et al., 2009), operating within common, clear and enforceable regulatory 

standards. In the US, responsibility for enforcing compliance with organic 

principles has been spread among stakeholder categories (organic certifiers, 

growers, buyers), thereby creating potential for conflicts of interest and diverse 

interpretation of principle into practice.

Because the EU chose to regulate the use of organic seed through a formal 

amendment to its existing organic standard, accompanied by a deadline for 

compliance, the processes of implementing, embedding and integrating 

seed regulation into organic practices (assisted, for instance, by the databases 

and expert groups) has been able to move at a faster pace and with broader 

stakeholder compliance than in the US. We have identified in the content and 

discourse analyses five main contributing factors: (1) Most US respondents 

recognized the necessity for the information that only a database can provide. 

The database initiatives have been funded and organized by diverse coalitions 

of stakeholders rather than by a governmental authority such as the NOP. 

The reliance by the state on self-organizing initiatives has resulted in multiple 

databases using different criteria and serving different clients, thereby reinforcing 

fragmentation rather than the harmonization of the sector. (2) Maintenance 

of the US databases is currently reliant on the continuation of grants, and the 

uploading of varieties into a database is reliant on the willingness of companies 

to pay for inclusion. This has resulted in competition for financial support and 

market advantage. (3) The EC requires that each member state submit on time 

national annual reports on organic seed exceptions. The US regime makes no 

such provision for reporting, thus monitoring of progress toward regulatory 

compliance is not possible. (4) EU member states have developed common 

guidelines for types of exception and for the practices and procedures of 

exception review committees. The US has no appropriate procedural instruments 

in place for formal monitoring of exceptions and organic seed usage. The onus 

is placed primarily on the interpretation of independent certifiers, growers 

and buyers. (5) Several EU member states have developed Expert Groups to 

advise regulatory bodies and certifiers in their decision-making regarding 

exceptions. The US relies completely on stakeholders to oversee the integrity 
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of the exception procedure. Overall, our analysis suggests that the US, in the 

near to medium term, will not be able to approach 100% compliance with the 

organic seed regulation for any crop group, while this is in prospect for many 

crop groups within the EU. 

3.4.3 Mexico, US and EU experience compared

The disharmony between the phytosanitary standards of Mexico and the 

US places significant non-tariff barriers to trade on seed companies as well 

as on growers who directly import seed. Compliance with Mexico’s current 

regulations not only requires an investment in a seed treatment with limited 

phytosanitary capacity but may actually be contributing to the movement 

and use of inferior and/or diseased seed. As awareness of Mexico’s regulatory 

dilemma spreads, international organic certifying bodies are responding by 

imposing more frequent and stricter inspections, increasing the risk that Mexican 

growers will lose the certification that allows them to produce for their main 

markets. State authorities within Mexico have engaged with the development 

of organic seed regulations but have failed to harmonize their respective 

efforts, resulting in a regulatory confusion that hinders rather than supports the 

evolution of the sector. Self-organizing networks have emerged to exploit the 

opportunities for production and trade within and across state borders but they 

operate in the margins of legality, dampening the future growth prospects of 

individual producers and the sector as a whole. An overview of Mexican organic 

seed system stakeholder category types, their level of influence and their key 

concerns are identified in Table 3.6. 

Mexico also remains in default of its obligations as a signatory of the Interna-

tional Plant Protection Convention (IPPC) of the Food and Agriculture 

Organization (FAO). The IPPC regulations require partner countries/regions to 

uphold phytosanitary standards compliant with trade standards. Recognized 

national phytosanitary services under the IPPC include phytosanitary controls 

such as field inspections, seed testing, seed treatments, and phytosanitary 

certification on the basis that procedures are compliant with IPPC regulations. 

The organic seed rules and standards of most EU member states and the US 

comply with the IPPC standards (IPPC, 1952); Mexico remains one of only three 

countries in the world that requires a blanket chemical treatment under its 

phytosanitary regulation of imported seed.
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The prospects for harmonization of organic policies and regulatory regimes 

between the EU and the US on the other hand are influenced by the fact that the 

EU acknowledges UPOV ’91 (the International Convention for the Protection of 

New Plant Varieties, 1991) that governs and protects breeders’ rights worldwide. 

The EU’s interpretation of the Convention’s requirements has led to a common 

catalogue containing each marketed variety in the EU that has met the criteria 

of Distinctness, Uniformity and Stability (DUS) and that has been tested to assess 

the variety’s Value for Cultivation and Use (VCU). The compulsory registration 

and release system in the EU set up to provide protection to farmers against 

the potential purchase of poor quality seed of questionable varieties, makes 

illegal the marketing of seeds from unregistered varieties, including seeds 

grown and traded amongst farmers. In contrast the US’ strict seed labelling 

and testing laws prescribe that seed packaging labels include information on 

the crop, variety name, percentage germination and purity. It does not enforce 

such strict varietal testing and registration procedures as in the EU case (Chable 

et al., 2012). In consequence of these differences, EU seed companies tend 

to handle fewer varieties than their US counterparts, who are able to release 

and market varieties more easily. The more limited assortment of registered 

varieties available to growers in the EU, combined with more rigorous organic 

seed standards, has forced organic growers to learn how to cope with a smaller, 

more regulated assortment than continued use of conventional untreated seed 

would allow (Bocci, 2009). By contrast, the organic sector in the US continues to 

operate under light regulatory guidance that has allowed more frequent and 

continued recourse to conventional untreated seed, in a context in which a large 

portfolio of varieties is available and new varieties are brought easily to market. 

These conditions in themselves impose significant barriers to development of a 

single US-wide organic database. In the absence of stronger state involvement 

in the development and enforcement of the regulatory framework, and a clearer 

allocation of authority and responsibility in partnership with the various self-

organizing networks that have emerged, it seems likely that the US will not be 

able to deploy appropriate procedural and substantial regulatory instruments 

to compete on level terms with the EU organic sector for some time.

The regulatory differences that now exist between the EU and the US raises the 

question of how trade relations between the two continents might develop. 

For instance, what are the implications for trade in organic products if the EU 
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achieves 100% organic seed for certain crops and the US does not? On the one 

hand, organic growers in the US would be able to produce crops at lower cost 

by not having to use organic seed and would have a broader genetic diversity 

to choose from. Growers in the EU would continue to pay more for their seed 

than their US counterparts but also have access to a greater variety of organic 

seed. Because the integrity of the organic value chain is what safeguards its 

market position, US growers might find an increasing number of markets closed 

to them. 

There is no certainty that market-led competition would be sufficient to drive 

the regulatory regimes of the US, the EU and Mexico toward convergence 

(Ogus, 1995) and there is no overarching governance body that could compel 

harmonization. The stakeholders in our study nonetheless are attempting to 

formulate a better-coordinated response to the dilemmas highlighted in this 

article. The Mexican Seed Trade Association (AMSAC) in 2009 set up its own 

task force to identify legitimate ways for organic untreated seed to be imported 

into Mexico. The American Seed Trade Association’s (ASTA) organic committee 

has been working with the Animal and Plant Health Inspection Service (APHIS) 

under the USDA to identify priority crops and potential seed-borne disease risks, 

testing procedures and treatments, as the basis for proposing to SAGARPA a risk 

assessment procedure that could secure entry of untreated seed of sufficient 

phytosanitary quality (ASTA, 2011), and form the basis of a bi-lateral trade 

agreement. The Dutch government in 2010 sent a broadly composed organic 

stakeholder delegation to Mexico to discuss trade-related issues and determine 

next steps. The Dutch stakeholders carried out a risk analysis of potential seed-

borne diseases and treatments of the major organic export crops, in order to 

demonstrate to SAGARPA that Dutch seed intended for export to Mexico meets 

international phytosanitary standards and to develop a bilateral agreement for 

organic seed importation. Ad hoc groups of growers and other stakeholders 

have met in both Mexico and the US to facilitate progress on these issues. Could 

multilateral institutions evolve to take into consideration the compatibility 

of global organic and phytosanitary standards? The signing of an organic 

equivalency arrangement between the EU and the US (15 Feb 2012) might 

offer new opportunities for resolving the tensions in organic seed regulation 

(Haumann, 2012), although phytosanitary issues fall outside this agreement and 

into the realm of the North American Plant Protection Organization (NAPPO). 
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An overview of the comparative progress that each jurisdiction has achieved in 

regards to instrument development as of the end of 2013 is outlined in Table 3.7.

Table 3.7 Instruments influencing the success of achieving 100% organic seed usage, and their status in 
the US, EU & Mexico1 (2013).

Instruments influencing organic seed 
sector development

Stakeholders’ 
perception of level of 

influence
US EU Mexico

National (or regional) Organic Standard High   

Organic Seed Regulation High   

Interpretive Seed Regulatory Guidelines High    --

Organic Seed Database High In process   --

Deadline for Compliance High  --   --

Derogation or Exception Process Medium  --   --

Expert Groups Medium  --   --

Annual National Reports Medium  --   --

Phytosanitary Restrictions Medium  NA  NA 

Organic Seed Production Activities Med-High    --

Organic Plant Breeding Program Medium    --

Compulsory Variety Registration Process Low  NA   NA

Sources: Content analysis of stakeholder interviews (n=96) and document analysis and participant ob-
servation (2007-2013). 

Notes: 
       instrument is in force in particular region; In process – instrument is under development in partic-

ular region; --  instrument is not yet in process in particular region; NA – instrument does not apply 
to particular region 

1 Mexico organic regulations published October 29, 2013 with scheduled enforcement April 29, 2014.

3.5 Conclusions

Developing an organic seed market is an iterative process that requires time. 

Clear governance of the processes that lead towards regulatory closure has 

the potential to hasten the transition rate and increase the chances of success. 

Trade-distorting practices and procedures that have emerged in and between 

the regulatory regimes addressed in this article are weakening the prospects 

of achieving the goal of 100% organic seed usage in the organic sector’s 

major markets. Stakeholders in the US are locked in an institutional impasse 

that perpetuates inconsistent regulatory interpretation and enforcement 

among stakeholders who have not been able to organize among themselves 
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an effective form of meta-governance. In the EU, member state governments 

under the overall guidance of the EC have assumed responsibility for defining, 

enforcing, communicating and supporting a clearly-defined regulatory policy 

that is achieving significant if not yet universal progress through an effective 

form of meta-governance. A commitment to learning from experience and 

incremental adoption of emergent best practice is helping stakeholders to 

address the remaining challenges. In Mexico the net effect of disparate initiatives 

by stakeholders has been to restrict access to organic seed, increase production 

costs, encourage the illegal movement of potentially diseased seed, and increase 

the risks of loss of certification and the potential to trade with the US and the 

EU. The lack of harmonization among regulatory standards and enforcement 

in different jurisdictions is a problem that affects the organic agriculture sector 

worldwide. In the absence of change in regulatory performance, there are 

likely to be more violations of organic standards, increased underground trade 

in potentially diseased seed, and an overall lack of appropriate varieties for 

organic farmers. 
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Broccoli cultivar performance under organic and conventional management 

systems and implications for crop improvement

Erica N.C. Renaud, Edith T. Lammerts van Bueren , M. João Paulo, Fred A. van Eeuwijk, 

John A. Juvik, Mark G. Hutton, James R. Myers

(Crop Science, Vol. 54, July-August 2014, DOI: 10.2135/cropsci2013.09.0596) 

Abstract

To determine if present commercial broccoli cultivars meet the diverse needs 

of organic management systems such as adaptation to low nitrogen input, 

mechanical weed management and no chemical pesticide use, and to propose 

the selection environments for crop improvement for organic production, 

we compared horticultural trait performance of 23 broccoli (Brassica oleracea 

L. ssp. italica) cultivars (G) under two management (M) systems (organic 

and conventional) in two regions of the USA (Oregon and Maine), including 

spring and fall trials. In our trials, location and season had the largest effect 

on broccoli head weight with Oregon outperforming Maine and fall trials 

outperforming spring plantings. M main effects and G × M interactions were 

often small but G × M × E (location and season) were large. Cultivars with both 

greater head weight and stability under conventional conditions generally had 

high head weight and stability under organic growing conditions, although 

there were exceptions in cultivar rank between management systems. Larger 

genotypic variances and somewhat increased error variances observed in 

organic compared to conventional management systems led to repeatability 

for head weight and other horticultural traits that were similar or even higher 

in organic compared to conventional conditions. The ratio of correlated 

response (predicting performance under organic conditions when evaluated in 

conventional conditions) to direct response (predicted performance in organic 

when evaluated under organic conditions) for all traits was close to but less than 

1.0 with the exception of bead uniformity. This would imply that in most cases, 

direct selection in an organic environment could result in a more rapid genetic 

gain than indirect selection in a conventional environment.

Keywords 

Crop growth and development, other crop management, plant and 

environment interactions, sustainable agriculture, crop genetics

29335 Renaud.indd   102 06-06-14   12:31



Broccoli crop improvement

103

4.1 Introduction 

Continued growth in demand in the organic sector has spurred an increase in 

organic crop production area in the United States (US) with over two million 

hectares in 2011 (Willer and Kilcher, 2012). The seed industry is challenged to 

satisfy the demands of organic agriculture, and often does not understand the 

special requirements of an unfamiliar agricultural system that is characterized 

by a greater diversity of requirements and criteria compared to conventional 

management (Mäder et al., 2002). Organic farms often differ substantially from 

non-organic counterparts in the complexity of their crop rotations, number 

of crops, production area, and market outlets. Organic farmers refrain from 

using synthetically derived chemical inputs and rely largely on biological self-

regulatory processes to maintain yield leaving fewer tools to manage crop 

production environments (Messmer et al., 2012; Wolfe et al., 2008). Thus, organic 

farmers need cultivars that are stable across a range of conditions, rather than 

varieties that are high yielding under optimal conditions, but prone to lose that 

yield advantage due to disease susceptibility or an inability to utilize available 

nutrients efficiently (Lammerts van Bueren et al., 2002). 

Broccoli, a significant crop in organic agriculture due to its market demand 

as well as its nutritional contribution to the USA diet (Verkerk et al., 2009), 

was grown on 743,088 production acres (300,717 ha) and generated U.S. 

$47,629,515 in sales in 2011 (USDA NASS, 2012). The main conventional 

fresh market broccoli production areas in the USA are California and Arizona. 

Broccoli cultivars in the USA have been bred primarily for the agro-climatic 

requirements of these regions. Secondary commercial broccoli producing areas 

are Maine and Oregon which are characteristically cool continental and cool 

Mediterranean type climates, respectively and differ significantly from those 

of California and Arizona. Organic production in the USA is comprised of small 

acreages scattered across the country in a broad range of environments to 

service local and diverse food markets (USDA ERS, 2008; USDA NASS, 2012). 

These producers are dependent on the commercial cultivar assortment 

available that were developed predominantly for California and Arizona. The 

production environments for Oregon and Maine may be more representative 

of the growing conditions faced by organic growers located at higher latitudes 

on the east and west coasts.
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Broccoli producers in the USA need cultivars that exhibit heat tolerance, 

head stability, and uniform maturation in the field, while others are seeking 

extended harvest from side-shoot development (Heather et al., 1992; Farnham 

et al., 2011a,b; Myers et al., 2012). Some desired traits in organic management 

are shared with conventional producers, such as drought tolerance, insect 

and disease resistance and high yield. Other cultivar characteristics that are 

more important to organic producers include vigorous early growth, waxy 

leaves, ability to perform in soils with potentially low or fluctuating nutrient 

mineralization rates, and the ability to compete with weeds (Lammerts van 

Bueren et al., 2002; Lammerts van Bueren and Myers, 2012; Lammerts van 

Bueren et al., 2012). This is particularly important in broccoli due to its relatively 

high nitrogen requirement and shallow fine root system, which limits its ability 

to take up water and nutrients (Pasakdee et al., 2005; Sajeemas et al., 2006; 

Myers et al., 2012). Most studies investigating traits needed for organic farming 

systems have focussed on field crops such as cereals (e.g. Murphy et al., 2007; 

Löschenberger et al., 2008; Prsystalski, 2008; Wolfe et al., 2008; Annicchiarico 

et al., 2010; Reid et al., 2009, 2011; Kirk et al., 2012; Koutis et al., 2012), with few 

conducted on vegetable crops (Osman et al., 2008; Lammerts van Bueren et 

al., 2012; Myers et al., 2012). None of these studies have evaluated commercial 

cultivars of broccoli across multiple regions or seasons for agronomic 

performance under organic conditions.

Some studies comparing performance of genotypes in organic and conventional 

management systems have shown that for certain traits, cultivar rank varies 

between the two management systems (e.g. for winter wheat: Murphy et 

al., 2007; Baresel et al., 2008; Kirk et al., 2012; for lentils: Vlachostergios and 

Roupakias, 2008; for maize: Goldstein et al., 2012), while others have shown 

no differences in ranking performance (for maize: Lorenzana & Bernardo, 2008; 

for cereals: Prsystalski, 2008; for onions: Lammerts van Bueren et al., 2012). The 

results of these studies have profound implications for organic variety selection 

and breeding strategies and raise questions as to the need for cultivars to be 

bred with broad adaptability or specific adaptation for the requirements of 

regional organic management. Two different outcomes have been identified. 

First, some studies showed cultivar performance varies between management 

systems with significant differences in ranking, and in some cases low genetic 

correlations for lower heritability traits (e.g. Kirk et al., 2012; Murphy et al., 2007), 
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resulting in the recommendation that cultivars intended for organic agriculture 

should be selected only under organic conditions. Secondly, other studies 

indicated that rankings in cultivar performance between management systems 

were similar with high genetic correlations, suggesting that breeding can be 

conducted under conventional conditions, with the caveat that advanced 

breeding lines can be tested under organic conditions for less heritable traits 

(e.g. Löschenberger et al., 2008; Lorenzano and Bernardo, 2008). 

The vegetable seed industry has not developed broccoli cultivars selected 

for performance in organic management systems. As a result, a collective of 

public breeders and organic growers have attempted to develop bioregionally 

bred broccoli cultivars for organic systems (see Northern Organic Vegetable 

Improvement Collaborative; www. http://eorganic.info/NOVIC). In the interim, 

this leaves no choice but for organic growers to use cultivars bred under 

conventional conditions for many crops (Lammerts van Bueren and Myers, 

2012). While seeds of some cultivars are produced under organic conditions, 

the majority of organic producers are using conventionally produced and post-

harvest untreated seeds (Dillon and Hubbard, 2011). With the private sector 

becoming more interested in breeding for the organic market, many questions 

arise as to what are the highest priority traits, what is their heritability under 

variable, sometimes low-input organic growing conditions, and what is the 

most appropriate selection environment. In order to better understand how 

and whether broccoli cultivars perform differently under organic conditions 

and to determine whether selection under organic growing conditions is 

necessary to service the needs of growers in diverse regions, a large genotype × 

environment × management (G × E × M) study with 16 field trials was established 

in Oregon and Maine to evaluate a diverse set of cultivars, trialled under organic 

and conventional management. The study aimed to address the following 

questions: (1) do currently available broccoli cultivars perform differently for 

head weight and other horticulture traits in organic compared to conventional 

management systems in different regions and different seasons; (2) is the relative 

ranking of cultivars the same under organic and conventional conditions; (3) 

does heritability differ for certain traits under organic conditions compared to 

conventional conditions; and (4) under which growing conditions and in what 

locations would selection for broccoli cultivars for organic agriculture be most 

effective?
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4.2 Material & methods

4.2.1 Plant Material

Twenty-three broccoli cultivars including open pollinated (OP) cultivars, inbred 

lines, and F
1
 hybrids were included in the field trials Table 4.1). These cultivars 

were selected to encompass varietal diversity in the targeted trial regions by 

organic and conventional growers as well as to represent diverse genotypes 

and phenotypes that differed in their year of commercial introduction and the 

commercial seed company of origin.

4.2.2 Field Trial Locations

The cultivars were grown paired organic and conventional fields at two 

U.S. locations [Maine (ME)-Monmouth (Latitude 44.2386oN, Longitude 

70.0356oW; elevation 61 masl); Oregon (OR)-Corvallis (Latitude 44.5647oN, 

Longitude123.2608oW; elevation 76 masl)] in fall and spring during 2006-

07 and 2007-08 growing season. The paired organic and conventional fields 

within each location had similar soil types (ME: Woodbridge Fine Sandy Loam; 

OR organic: Malabon Silty Clay Loam, OR conventional: Chenalis Silt Loam) 

and comparable climatic conditions (one degree day or less between sites and 

negligible precipitation differences). In ME both the conventional and organic 

trials were at University of Maine Cooperative Extension, Highmoor Farms 

Research Station and adjacent to one another. The OR conventional field trials 

were located at the Oregon State University Vegetable Research Station and at a 

local organically managed commercial farm within 5 km and with a comparable 

elevation (<50 foot) for the organic field trials. Both organic trial sites had been 

managed organically for over five years and were mature organically managed 

production systems at the onset of the study. 

4.2.3  Field Design

Field trials consisted of the 23 broccoli cultivars arranged in a randomized 

complete block design with three replicates under both organic and 

conventional management at ME and OR locations during 2007-08 growing 

season. An individual treatment plot contained 36 plants that were planted in 

three rows of 12 plants at 46 cm equidistant spacing within and between rows. 

In 2006, only 18 of the 23 cultivar entries were established in the OR and ME 

field trials, and there were only two replicates in the OR organic 2006 field trial. 
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Field trials were conducted during three consecutive years (2006-2008) over 

two growing seasons that included two fall (2006, 2007) and two spring trials 

(2007, 2008). 

Table 4.1 Overview of broccoli cultivars, showing origin and main characteristics, included in paired 
organic - conventional field trials 2006-2008.

Cultivar Abbreviation Origin Cultivar 
type†

Date of 
market entry

Maturity 
classification‡

Arcadia ARC Sakata F
1

1985 L

B1 10 B11 Rogers F
1

1988 M

Batavia BAT Bejo F
1

2001 M

Beaumont BEA Bejo F
1

2003 L

Belstar BEL Bejo F
1

1997 L

Diplomat DIP Sakata F
1

2004 L

Early Green EGR Seeds of Change OP 1985 E

Everest EVE Rogers F
1

1988 E

Fiesta FIE Bejo F
1

1992 L

Green Goliath GRG Burpee F
1

1981 M

Green Magic GRM Sakata F
1

2003 M

Gypsy GYP Sakata F
1

2004 M

Imperial IMP Sakata F
1

2005 L

Marathon MAR Sakata F
1

1985 L

Maximo MAX Sakata F
1

2004 L

Nutribud NUT Seeds of Change OP 1990 E

OSU OP OSU Jim Myers, OSU OP 2005 E

Packman PAC Petoseed F
1

1983 E

Patriot PAT Sakata F
1

1991 M

Patron PAN Sakata F
1

2000 M

Premium Crop PRC Takii F
1

1975 E

USVL 048 U48 Mark Farnham, USVL Inbred not released L

USVL 093 U93 Mark Farnham, USVL Inbred not released M

† Cultivar Type: F1: hybrid; OP: Open Pollinated; Inbred.
‡ Maturity Classification: E: Early; M: Mid; L: Late.

4.2.4  Field Management

The primary management differences between the organic and conventional 

field trial sites are outlined in Table 4.2, which describes the management 
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system and regionally appropriate fertility application tools, and the applied 

supplemental irrigation for the area of study. Cropping history and rotation are 

outlined per location. Mechanical and hand weed management were practiced 

for all sites. Baseline soil sampling for basic soil characteristics was performed 

as subsampling within plots, per trial site location prior to the start of each 

seasonal trial at the time of trial planting. Soils were analysed for pH, labile 

(available) N (ppm) and Particulate Organic Matter (POM), a measure of longer 

term available nitrogen taken pre-fertilization (N/kg soil). There were no pest 

control applications in organic fields. In the conventional trials diazinon was 

used for control of radish maggot and carbaryl (Sevin) was used for flea beetle 

control.

4.2.5 Weather

Weather data was collected from the two regional meteorological stations 

relative to the field experiments in Maine and Oregon to include maximum 

/minimum temperatures and precipitation per day for each trial duration. 

Growing degree days (GDD) were calculated per trial by taking the average of 

the daily maximum and minimum temperatures minus the base temperature 

for broccoli (4.4oC) across each trial period (Maynard and Hochmuth, 2007). 

4.2.6 Field Data Collection

As plots approached maturity they were evaluated three times a week for 

broccoli heads that had reached commercial market maturity (approximately 

10 to 12 cm in diameter for most of the cultivars while retaining firmness as 

an indicator of maturity) and were evaluated for quality traits. Field quality 

evaluations were measured on a 1 to 9 ordinal scale. Traits included head shape 

(1 = flat shape; 9 = high dome shape), head surface (1 = very uneven; 9 = smooth 

head), head color (1 = pale green; 9 = dark green), bead size (1 = large beads; 

9 = small beads), bead uniformity (1 = not uniform; 9 = excellent uniformity), 

plant height (mean measurement of height of plant from base of stalk to tips of 

leaves in cm) and an overall plot quality rating (1 = poor overall performance; 

9 = excellent overall performance) based on overall appearance, head quality 

and uniformity of the entire plot. Five broccoli heads were trimmed to a uniform 

length of 18 cm from the crown to stalk at maturity. For each of the five heads, 

head weight (g) and head diameter (cm) was measured. To determine average 

head weight (HW) the mean was taken of the sum of the five individual head 
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weight measurements. Head diameter was measured on and averaged for five 

randomly harvested heads from each plot. Hollow stem was evaluated on a 1 to 

9 scale (1 = many hollow stems to 9 = no hollow stems). Maturity was measured 

based on days to harvest (DTH) from the date seedlings were transplanted. 
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4.2.7 Statistical Analysis

Various linear mixed models were used for the analysis of trait variation. Our 

approach was comparable to that of Lorenzana and Bernardo (2008). All linear 

mixed models were fitted in GenStat 15 (VSNi, 2012). The models can be 

formulated informally as:

Response = environment + replicate within environment + genotype + genotype 

by environment interaction + error

More formally we can write the general form of our mixed models as 

y = E + R(E) + G + G × E + e,

with the individual terms in the formal model corresponding to those in the 

informal model just above it. Depending on the analysis, the terms included in 

E (the environments) varied. For the most general analysis, E contained all main 

effects and interactions of Season (S), Location (L) and Management (M). Thus, 

in that case 

E = S + L + S ×L + M + S ×M + L ×M + S ×L ×M and G ×E = G ×S + G ×L + G ×S 

×L + G ×M + G ×S ×M + G ×L ×M + G ×S ×L ×M,

where the combination of S, L and M defined individual trials. The term S 

(Season) contained a combination of year (2006, 2007, 2008) and season 

within year (spring, fall). Effectively, there were only four year by season within 

year combinations included: fall 2006, spring 2007, fall 2007, spring 2008). For 

convenience, in our general model, we fitted one factor  ‘Season’  to cover the four 

trialing periods. However, other model formulations are possible. For example, 

we can define a factor ‘Year’ with two levels (level 1 = fall 2006 + spring 2007; 

level 2 = fall 2007 + spring 2008) and factor ‘Season’ with two levels (spring, 

fall). The main effects of these factors ‘Year’ and ‘Season’ plus their interaction 

covers the same variation as the original factor ‘Season’ with four levels.  We used 

this second formulation in analysis per location to obtain a more fine grained 

interpretation of the variation.
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All terms were assumed to be normally distributed with a proper variance. For 

ease of interpretation and to allow straightforward comparisons between traits, 

the variance components were reported as coefficients of variation, which is 

standard deviations as a percentage of the trait mean, i.e.,

CV=100  V ⁄ x  ̅ ,

with V the variance for a particular model term and xx the trait mean. Repeatability 

(analogous to broad sense heritability, but for unrelated genotypes) was 

calculated from the variance components as:

H = V
G

 / (V
G

 + V
GL

/nL + V
GS 

/nS + V
GM 

/nM + V
GLS 

/(nL.nS) + V
GLM 

/(nL.nM) 

+ V
GSM 

/(nS.nM) + V
GLSM 

/(nL.nS.nM) + V
e 

/(nL.nS.nM.nR),

where the variance components correspond to the terms in the mixed model 

above. The terms nL, nS, nM and nR represent the number of locations (2: Maine 

and Oregon), number of ‘seasons’ (4: Fall 2006, Spring 2007, Fall 2007, Spring 

2008), management (2; organic and conventional), and replicates (2 or 3). 

The above model and repeatability was simplified when performing analyses 

per location, or per management regime. For the first situation, analysis for 

Oregon and Maine separately, we omitted all terms that contain L. For the second 

situation, analysis for organic and conventional management separately, we 

omitted all terms containing M. 

To calculate genotypic means across all conditions, the general model defined 

above was used, but the genotypic main effect was assumed to be fixed instead 

of random. Similarly, genotypic means per location and management system 

were obtained by assuming fixed genotypic main effects as well as the relevant 

environmental effects (L, M) and their interactions (G × L, G × M). These means 

were used to calculate correlations and for box plots and biplots (procedure 

dbiplot in GenStat). Pairwise comparisons between means were performed using 

GenStat procedure VMCOMPARISON. Correlations on the basis of genotypic 

means were referred to as genetic correlations. 
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To study correlations between conventional and organic conditions at the fine 

grained level of location by trialing period combinations, we used Spearman’s 

rank correlations, because we were especially interested in rank changes.

A further comparison of conventional and organic conditions was performed 

by evaluating stability of performance versus mean performance for the set of 

varieties. Genotypic (in)stabilities under organic and conventional conditions 

were calculated as the variance for individual genotypes across all trials in the 

system.

Correlated Response theory (Falconer and Mackay, 1996) was used to assess the 

feasibility of selection for organic conditions (the target environment) under 

conventional conditions (the selection environment). The ratio of correlated 

response (for organic conditions using conventional conditions), CR, to direct 

response (for organic conditions in organic conditions), DR, can be used to 

decide whether it is possible to use selection under conventional conditions for 

improvement in organic systems; it was calculated as the product of the genetic 

correlation between organic and conventional systems (r
G
) and the ratio of the 

roots of conventional and organic repeatabilities ( and  respectively):

CR/DR=r
G

 H
C   

⁄ H
O

.

Ratios smaller than 1 indicate that it is better to select under organic conditions 

when the aim is to improve the performance in organic conditions. 

4.3 Results

4.3.1 Partitioning of variance components

We fitted variance components models for all traits, where we report these 

variance components as coefficients of variation (CV’s). We do not report the 

significance of the variance components as almost all components were found 

to be significant by likelihood ratio tests, even for components that were 

close to zero. The information on the variation is best considered through the 

magnitude of the variance components and not through significance tests.
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For head weight across all trials in both locations (L, Oregon versus Maine), we 

found that at the environmental level Season (four trialing periods) described 

the largest portion of the total variance (34%), followed by L with a CV of 18% 

(Table 4.3). Management system (M, Organic versus Conventional) main effect 

was small (< 2%), but the three-way interaction (L×S×M) had a CV of about 11%. 

Genotype main effect (G) was 13%, and genotype interactions with L and S (14% 

and 9%, respectively), were larger sources of variation for head weight than 

G×M at 4%. The CV for the four-way interaction G×L×S×M was 11%. This large 

interaction was due to trial specific effects, because attempts to reduce the 

complexity of this interaction by ignoring years (so focussing on spring versus 

fall) or ignoring season within year (so focussing on year itself ) failed (results 

not shown). 

For days to maturity, the L×S interaction accounted for the largest source of 

variation (23%) followed by L and G main effects of 10 and 7%, and the three-

way interaction G×L×S (8%). M main effect and its interaction with G was absent 

(0%), and other two- and three-way interactions were small. The largest source of 

variation for bead size was G as well as three- and four-way interactions (G×L×S 

and G×L×S×M). There was no L main effect for this trait. For the overall quality 

rating, sources of variation were distributed among G and L main effects and G, 

L and S interactions. For eight of 11 traits analysed the contribution of variation 

described by four-way interactions compared to other interaction terms in 

the model was relatively large. For this reason, we performed a partitioning 

of variance component analysis at each location and season within location 

to analyse the contribution of management system to variation at these trial 

levels (data not shown).

We performed variance components analyses for the separate locations Maine 

and Oregon to more closely examine the partitioning of the variation conditio-

nal on location. At the trial location level (Maine and Oregon), the partitioning 

of variance for head weight showed the same pattern as across all trials; trialing 

period was important as S contributed to the largest source of variation, followed 

by Y×S interactions (data not shown). For other traits such as bead size, again 

trialing period effects as S and Y effects were most important. For maturity, the Y 

effect in Maine accounted for the largest source of variation, but not in Oregon. 

With the higher means for head weight in Oregon (347 g) compared to Maine 
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(261 g) the genotypic effect for most traits was larger in Oregon compared to 

Maine. As with the overall analysis, the M main effect was zero or small. Among 

M interactions the largest source of variation was associated with G×Y×S×M 

in both Maine and Oregon, with variances generally larger in Oregon (data 

not shown). When trials were analysed by S and L separately, M main effect 

was also not significant for head weight and most traits; only in Maine Fall did 

the M have a large effect on plant height (data not shown). When trials were 

analysed at the paired trial level per L, S, and Y level, we found that the G × M 

interaction was often significant (53 of 72 interactions (74%) for nine traits x 

eight environments). For head weight, seven of eight trials showed significant 

G × M interaction, while all additional traits also showed significance in G × M 

interaction in five to seven of the eight trial combinations (data not shown). 

4.3.2 Comparison of head weight and other horticulture traits over the  

 environments 

Location, Season, Management System Overall

Results across all S, L, and M system trials for Oregon showed a significantly 

higher overall head weight compared to Maine trials, (Figure 4.1a). Mean head 

weight of broccoli cultivars in the Fall trials was significantly higher than in the 

Spring trials for all L, S and M combinations (Fall 397 g; Spring 214 g), (Figure 

4.1b). In the Fall, the magnitude of the difference in head weight between 

Oregon (474 g) and Maine (321 g) were much larger than the difference in 

Spring (Oregon 225 g versus Maine 202 g). Organically produced broccoli (head 

weight overall 315 g) performed as well as conventionally produced broccoli 

(296 g) (Figure 4.1c). Head weight across all organic trials had a wider range and 

greater variance among cultivars compared to conventional trials. An overview 

of location and season mean head weight are presented in Figure 4.1d. 
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Figure 4.1 Comparison of broccoli cultivars for average head weight (g). A. grown across all trials in two 
trial locations (Maine & Oregon) (2006-2008). B. between seasons (Fall/Spring) across trials (2006-2008). 
C. between two management systems (Organic versus Conventional) across all trial locations and 
seasons (2006-2008), and D. comparing performance in (Maine/Oregon) across both seasons (Fall/
Spring) and management systems (conventional/organic) and years (2006-2008).

Horticulture trait means

Head diameter demonstrated the same pattern as head weight with broccoli 

from Oregon Fall trials having significantly larger head size than those from 

Spring trials (Table 4.4). Days to maturity for broccoli cultivars grown in Fall trials 

in Oregon (average 76 days) were significantly longer than in Spring (average 

58 days) trials, whereas in Maine the days to maturity for Fall (74 days) were 

comparable to Oregon while the results of the Spring trials for Maine (91 days) 

were longer than Oregon. Bead size ranking for Fall trials averaged 5.2 compared 

to 6.4 in Spring trials in both locations, indicating larger beads were observed 

in Fall trials compared to Spring in both Locations and Management systems. 

The same pattern was demonstrated for bead uniformity. Hollow stem had the 

highest incidence in Oregon Fall, while Oregon Spring and Maine trials were 

comparable. Plant height for broccoli cultivars grown in Oregon Fall trials were 

significantly taller than the Oregon Spring trials and Maine trials across Seasons, 

which agrees with the Oregon Fall head weight results (Table 4.4).
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Table 4.4 Trait means of plant and head characteristics of 23 broccoli cultivars grown across four pair 
combinations of location (Maine/Oregon), season (Fall/Spring) two-years combined and management 
system (Conventional/Organic), 2006-2008§§. 

Horticulture Trait

Maine Overall 
trait 

mean
Fall Spring

C SE O SE C SE O SE

Head Weight (g) 303.9 d 4.6 335.9 e 5.2 203.4 ab 3.8 198.1 a 3.9 260.3

Head Diameter (cm) 11.6 c 0.1 12.8 e 0.1 12.2 d 0.1 12.0 d 0.1 12.1

Maturity† 76.9 e 0.6 71.7 c 0.4 89.9 f 0.9 92.9 g 0.8 82.9

Head Shape‡ 5.4 b 0.1 4.9 a 0.1 5.4 c 0.1 5.4 b 0.1 5.3

Head Surface§ 5.2 b 0.1 5.2 a 0.1 5.0 a 0.1 4.9 a 0.1 5.1

Head Color¶ 6.6 d 0.1 6.3 c 0.1 5.7 c 0.1 5.9 c 0.1 6.1

Bead Size# 5.2 a 0.1 5.3 de 0.1 6.5 de 0.1 6.7 e 0.1 5.9

Bead Uniformity†† 6.4 e 0.1 6.2 de 0.1 6.0 c 0.1 6.0 c 0.1 6.1

Hollow Stem‡‡ 7.9 c 0.2 7.3 b 0.1 8.4 d 0.1 8.8 e 0.0 8.1

Plant Height (cm) 28.7 a 0.3 36.7 b 0.3 38.4 c 0.3 39.6 d 0.3 35.8

Overall Quality§§ 5.6 d 0.1 6.0 e 0.1 5.7 d 0.1 5.6 d 0.1 5.7

Horticulture Trait

Oregon Overall 
trait 

mean
Fall Spring

C SE O SE C SE O SE

Head Weight (g) 462.5 f 8.3 478.8 f 8.5 212.4 b 3.3 238.7 c 4.5 348.1

Head Diameter (cm) 14.6 f 0.2 14.8 f 0.2 10.5 a 0.1 10.8 b 0.1 12.7

Maturity† 76.7 e 0.4 75.3 d 0.4 56.5 a 0.1 58.6 a 0.1 66.7

Head Shape‡ 4.8 a 0.1 4.7 a 0.1 5.3 b 0.1 5.2 b 0.1 5.0

Head Surface§ 5.8 c 0.1 5.2 b 0.1 5.6 c 0.1 5.2 ab 0.1 5.4

Head Color¶ 4.8 a 0.1 5.1 ab 0.2 5.4 b 0.1 5.3 b 0.1 5.2

Bead Size# 5.0 a 0.2 5.7 b 0.2 6.3 cd 0.1 6.1 c 0.1 5.8

Bead Uniformity†† 5.1 b 0.2 4.4 a 0.2 6.4 e 0.1 6.0 cd 0.1 5.5

Hollow Stem‡‡ 4.3 a 0.2 4.6 a 0.3 7.8 c 0.1 7.6 bc 0.2 6.1

Plant Height (cm) 72.7 g 0.7 70.2 g 1.3 44.6 e 0.4 48.1 f 0.4 58.9

Overall Quality§§ 5.2 c 0.1 4.9 bc 0.1 4.6 ab 0.1 4.3 a 0.1 4.7

†Maturity: days from transplant to harvest (DTH); ‡Head Shape: (1-9 ranking with 1 = flat shape; 9 = high 
dome shape); §Head Surface: (1-9 ranking with 1 = very uneven; 9 = smooth head); ¶Head Color: (1-9 
ranking with 1 = pale green; 9 = dark green); #Bead Size: (1-9 ranking with 1 = large beads; 9 = small 
beads); ††Bead Uniformity: (1-9 ranking with 1 = not uniform; 9 = excellent uniformity); ‡‡Hollow Stem: 
(1-9 ranking with 1 = many hollow stem; 9 = no hollow stem); §§Overall quality: (1-9 ranking with 1 = 
poor overall performance; 9 = excellent overall performance).

§§ Means followed by the same letter in the same row are not significantly different at the P < 0.05 level.
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4.3.3 Repeatability and genetic correlations

The repeatabilities for head weight, head diameter, hollow stem and overall 

quality ratings were higher for organic compared to conventional across trials 

(Table 4.5). For maturity, head color and head surface, repeatability levels in 

organic were equal or near equal to those in conventional. For head shape, 

bead size, bead uniformity and plant height repeatabilities were higher in 

conventional compared to organic. The genetic correlations between organic 

and conventional for most traits were generally high with the exception of 

bead uniformity, which showed the lowest genetic correlation (0.66). The ratio 

of correlated response to direct response for all traits was below 1 with the 

exception again of bead uniformity. When repeatabilities were calculated for F1
 

hybrids only, repeatabilities and correlated response were smaller in most cases, 

but the trends were similar (with the exception of overall and head diameter). 

4.3.4 Comparison of cultivar rankings for head weight and other traits  

 per cultivar

Spearman’s Rank Correlation

We wanted to investigate the comparison between organic and conventional at 

the most fine grained level and looked at correlations between the genotypic 

means for the eight location by trialing period combinations. For head weight, 

conventional and organic genotypic means were highly correlated. However, 

when the F
1 

hybrid genotype class was analyzed separately (minus the OPs 

and inbred lines), most M pairs were not significant, indicating change in rank 

between M in any given Y, L, S. Genotype rank was significantly correlated 

between management systems in Maine Spring 2008, and Oregon Spring 2007 

and 2008 but genotypic rank was not correlated in fall environments (Table 4.6). 
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Table 4.5 Repeatabilities (H), genetic correlations (r
A
) and ratio of correlated response to direct response 

(CR
org

/R
org

) for broccoli horticulture traits comparing organic versus conventional management systems 
over all trial season/location combinations (all cultivars and F

1
 hybrids only), 2006-2008.

All cultivars (F
1
s, OPs and inbreds) F1 hybrids only

Repeatability (H)
r

A
¶¶ CR

org
/R

org

Repeatability (H)
r

A
¶¶ CR

org
/R

org
C O C O

Head Weight (g) 0.78 0.85 0.91 0.87 0.60 0.68 0.73 0.69

Head Diameter (cm) 0.61 0.75 0.81 0.73 0.14 0.00 0.22 >1

Maturity† 0.79 0.80 0.98 0.97 0.81 0.86 0.98 0.95

Head Shape‡ 0.47 0.37 0.73 0.83 0.72 0.69 0.87 0.89

Head Surface§ 0.81 0.77 0.90 0.92 0.46 0.53 0.85 0.79

Head Color¶ 0.51 0.48 0.83 0.85 0.29 0.46 0.74 0.59

Bead Size# 0.77 0.67 0.82 0.88 0.69 0.64 0.71 0.73

Bead Uniformity†† 0.24 0.03 0.66 >1 0.09 0.23 0.65 0.42

Hollow Stem‡‡ 0.40 0.57 0.84 0.70 0.49 0.67 0.88 0.75

Plant Height (cm) 0.77 0.69 0.93 0.98 0.72 0.65 0.95 0.99

Overall Quality§§ 0.72 0.77 0.89 0.86 0.17 0.48 0.63 0.38

†Maturity: days from transplant to harvest (DTH).
‡Head Shape: (1-9 ranking with 1 = flat shape; 9 = high dome shape).
§Head Surface: (1-9 ranking with 1 = very uneven; 9 = smooth head).
¶Head Color: (1-9 ranking with 1 = pale green; 9 = dark green).
#Bead Size: (1-9 ranking with 1 = large beads; 9 = small beads).
††Bead Uniformity: (1-9 ranking with 1 = not uniform; 9 = excellent uniformity).
‡‡Hollow Stem: (1-9 ranking with 1 = many hollow stem; 9 = no hollow stem).
§§Overall quality: (1-9 ranking with 1 = poor overall performance; 9 = excellent overall performance).
¶¶r

A
: average genetic correlation between conventional and organic production systems across locations.

Table 4.6 Spearman’s rank correlation for head weight between paired conventional and organic sites 
within a location, season and year for the F

1
 hybrid subset (n=18) of broccoli cultivars.

Year
Maine Oregon

Fall Spring Fall Spring

2006 0.51 0.42

2007 0.24 0.15 0.33 0.69 ***

2008 0.69 *** 0.54 *
 
* Significant at P < 0.05; *** significant at P < 0.001.

We visualized the rank correlations of the individual cultivars between 

conventional and organic conditions at the location by season trial level in Table 

4.7a and b. The ranking of cultivars for head weight between Locations and 

Seasons differed by cultivar, cultivar type and maturity classification. Between 

the paired management system trials, some cultivars showed the same ranking 
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while others varied in rank. The open pollinated cultivars consistently ranked 

at the bottom, while a group of F
1
 cultivars displayed the greatest head weight 

across Management systems. 

In the Maine trials all cultivars from organic trials outperformed those grown in 

conventional trials for head weight. In the Fall trials four of the five top ranking 

cultivars were the same between the organic and conventional trials (‘Packman’, 

‘Fiesta’,  ‘Everest’ and ‘Green Goliath’), see Table 4.7a. ‘Green Magic’ was the top 

performing cultivar in organic but ranked 10th in conventional with a significant 

head weight difference between Management systems. In the Maine organic 

Spring trials there were more rank changes. The top two performing cultivars 

(‘Fiesta’  and  ‘Green Magic’), were the 7th and 8th ranked cultivars in conventional, 

while ‘Imperial’ ranked 3rd in both systems. The best performing cultivars 

under conventional (‘Marathon’,  ‘Nutribud’,  ‘Early Green’) did not perform 

comparatively well under organic (rank 11, 12 and 18, respectively)

The results for the Oregon Fall trials for head weight indicated that three of 

the five top performing varieties in both organic and conventional systems 

were the same: ‘Green Magic’, ‘Maximo’ and ‘Batavia’), see Table 4.7b. All three  

cultivars produced higher yields in the organic trials compared to the 

conventionally paired trial. ‘Imperial’ ranked #1 in conventional, while it ranked 

#6 in organic, and similar to the Maine trials, ‘Marathon’ ranked high in Oregon 

organic (#4) and much lower (#13) in conventional (significantly different 

than top two cultivars, ‘Imperial’ and ‘Green Magic’), with a significant head 

weight difference in cultivar performance between management systems. 

Conventional 5th and 6th ranked cultivars, ‘Belstar’ and ‘B1 10’ dropped in rank to 

9th and 11th in organic, respectively (significantly different from ‘Green Magic’, 

but not other cultivars in organic).
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4.3.5 Stability of genotype performance

The results of the stability analysis of a cultivars capacity to perform comparably 

across trial locations, and seasons in the different management systems 

for head weight indicated that under both management systems, ‘Belstar’,  

 ‘Batavia’, and ‘Green Magic’ were similar across environments (Figure 4.2a and b). 

‘Arcadia’ was highly stable across organic trials (ranked 5th), but less stable across 

conventional trials (ranked 11th). Because we were interested in the broccoli 

cultivars that provide both an acceptable yield and displayed stability across 

environments, we combined the analysis of head weight ranking with stability 

across environments, using 300g as a minimum threshold for weight and 15 g2

as a maximum threshold for stability (Figure 4.2a and b). In that quadrant 

the cultivars ‘Batavia’, ‘Belstar’ and ‘Green Magic’ had the highest combined  

stability and head weight across both management systems. In the top group 

of most productive and stable cultivars also ‘B1 10’ appeared in conventional 

trials (Figure 4.2a), and ‘Arcadia’ and ‘Everest’ in the organic trials (Figure 4.2b). 

The open pollinated and inbred cultivars ‘OSU OP’, ‘Nutribud’, ‘Early Green’ (OPs) 

and USVL 048 and 093 (inbreds) had the lowest head weight and least stability 

across trials. In the combined head weight and stability analysis, the F
1
 hybrid 

cultivar ‘Diplomat’ was in the bottom performing group overall.

4.3.6 Correlation among horticulture traits 

The correlation analysis between genotypic means across trials, separately 

for organic and conventional management system, shows that head weight 

was positively and highly correlated with head size, bead size, bead uniformity 

(conventional only), and overall quality (Table 4.8). Conversely, head weight was 

negatively correlated with head color, but it was not significant. There was a 

significant positive correlation for head shape and bead size in both systems. 

Overall quality was highly correlated across both management systems for head 

weight, head diameter, bead uniformity, head surface, and bead uniformity and 

in conventional systems for head shape and bead size. 
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Table 4.8 Genetic correlation of broccoli horticulture traits across organic and conventional trials (upper 
right of diagonal, organic; lower left of diagonal, conventional).

Horticulture 
Traits
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Head Weight 0.83 -0.18 0.30 -0.25 0.32 0.49 0.38 0.17 0.32 0.74

Head Diameter 0.76 -0.16 -0.10 -0.20 -0.12 0.33 0.31 -0.09 0.54 0.73

Hollow Stem -0.09 -0.05 0.01 -0.02 0.20 -0.01 0.12 0.07 -0.21 -0.03

Maturity 0.39 -0.06 0.16 -0.28 0.60 0.61 -0.09 0.07 -0.22 -0.04

Head Color -0.31 -0.26 -0.32 -0.29 0.15 0.02 0.29 0.15 0.32 0.16

Head Shape 0.42 -0.08 0.22 0.65 0.12 0.54 0.39 0.61 -0.10 0.37

Bead Size 0.66 0.29 0.10 0.66 -0.25 0.64 0.30 -0.04 0.13 0.39

Bead Uniformity 0.46 0.46 -0.16 -0.16 0.06 0.12 0.35 0.42 0.32 0.73

Head Surface 0.13 -0.02 0.25 0.11 0.33 0.59 0.05 0.25 0.14 0.42

Plant Height 0.19 0.41 -0.30 -0.24 0.35 -0.11 0.12 0.64 0.09 0.63

Overall Quality 0.64 0.55 -0.10 0.09 0.21 0.46 0.53 0.69 0.52 0.61
 
Values ≤  |0.40| are not significantly different from zero at the P < 0.05 level

4.4 Discussion

4.4.1 Relative importance of Management system, Location, and Season

Overall, our trials demonstrated that Location and Season, not Management 

System, are the largest source of environmental variation in broccoli cultivar 

performance. The significantly higher broccoli head weight from the Oregon 

trials compared to the Maine trials in both seasons as well as the overall 

higher broccoli head weight across all trials in the Fall compared to the Spring 

supported these findings. Higher head weight overall in the Oregon field trials 

could be explained by the climatic differences between Oregon and Maine 

with Oregon having more growing degree days than Maine in both Fall season 

trial years (Table 4.2). For many traits, Management system contributed only 

to variation at the three- and four-way interaction level, and these interactions 

constituted a large portion of the total variance in the model. Thus, genotype 

by management systems interactions did occur, but there were no overarching 

effects of management system apparent across locations and seasons. 
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One of the reasons for only the small magnitude of the Management system 

relative to other environmental factors on head weight could be the fact that 

on average over all trials, this trait did not significantly differ when cultivars 

were grown under organic and conventional conditions even though variances 

differed. This is in contrast with much of the literature [e.g. de Ponti et al. (2012) 

and Seufert et al. (2012)] who after reviewing comparative studies, concluded 

overall that organic yields were on average lower (reduction of 5-34%) compared 

to conventional. Their reviews suggested that when farms have been managed 

organically over a long period of time with consistent soil building practices, 

soil fertility increases due to higher levels of organic matter and improved water 

holding capacity and increased particulate organic matter (POM), can produce 

higher or comparable yields to conventionally produced crops. When comparing 

the soil quality of the Oregon and Maine trial locations, the soils at both of the 

conventional trial sites had higher levels of immediately available Nitrogen (N) 

compared to the organic sites at the time of trial implementation, but had lower 

POM levels indicating that their long term available N was less compared to 

the organic sites (Table 4.2). Our results in Oregon and Maine demonstrated 

that organic is not per se lower yielding compared to conventional. Broccoli 

grown under organic conditions in the spring, however, may be at more of 

a disadvantage due to slower nitrogen mineralization rates under cooler 

temperatures resulting in lower yields than conventional. This was shown in 

trials in Oregon where there were 100 fewer GDD in Spring 2008 compared to 

2007 and where organic yields were lower than under conventional conditions 

(Table 4.2). 

Despite comparable mean head weights between organic and conventional 

growing conditions, the overall range in head weight across cultivars was greater 

in organic than conventional across all trials, (Figure 4.1c) which represents a 

larger variance in organic compared to conventional. This difference in head 

weight variance was even more pronounced in the fall trials compared to the 

spring trials (Figure 4.1d). Ceccarelli (1994; 1996) in discussing barley breeding 

for marginal, low input and drought-prone environments indicated that such 

environments can be heterogeneous, and genetic variance can be greater 

compared to more homogeneous high input low stressed environments, and 

that by breeding solely under high input conditions, an opportunity to exploit 

genetic differences at lower input levels can be lost. While our organic trial 
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locations were not necessarily representative of the type of abiotic stresses 

described by Ceccarelli, the locations did exhibit the unique stresses of an 

organically managed heterogeneous environment. Such characteristics that 

define an organic management system and were representative of our broccoli 

trials included slow release of nutrients, plant defence against insect predation 

(e.g. flea beetles and aphids) without insecticides, and the additional weed 

pressure typically found in an organic management system without the use of 

synthetic herbicides. Ceccarelli proposes also that the environment of selection 

affects the pattern of responses of genotypes to varying environmental 

conditions. Repeated cycles of selection in a given type of environment will 

reduce the frequency of lines specifically adapted to other environments. Most 

of the cultivars evaluated in our trials were commercial F1
 hybrids originally 

selected for and used in high input conventional agriculture systems, while the 

remainder were OPs selected under organic/low input conditions and inbreds 

selected in South Carolina. The combination of F
1
 hybrids and OPs in the same 

trial may explain the broader range of variation observed for genotype 

performance when grown under organic conditions. Another aspect to be 

taken into account is that if hybrids alone are considered, the range of variation 

is narrowed as demonstrated in Table 4.6.

Our third major finding related to Management system is that only at the three- 

and four-way interaction level did Management system play a significant role. 

As such, it appeared that under our trial conditions there were G×M interactions 

within each trial combination but that organic management did not have a 

large impact on a seasonal or regional basis. In other words, there do not appear 

to be factors associated with organic systems that transcend regions and 

seasons, rather, each environment is different, and differences between organic 

and conventional systems are apparent on a local trial level. This observation is 

supported by the fact that when data were analysed within region and season, 

most paired trials at the individual Location, Season, Year level had Genotype 

by Management system interactions. 

4.4.2 Cultivar ranking and stability in Management systems

Our trial results demonstrated that across all locations and seasons, overall 

cultivar rankings were comparable (with some exceptions) for head weight 

between organic and conventional trials. Østergård et al. (2005) proposed 
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that not only yield as such but also yield stability across years and seasons are 

important breeding objectives for organic conditions. ‘Batavia’, ‘Belstar’ and 

‘Green Magic’  had the highest combined head weight and head weight stability 

in both management systems, while ‘Arcadia’ was one of the top performing 

cultivars in organic, but not in conventional trials. Not all cultivars that performed 

well in head weight were stable, such as ‘Maximo’. These examples demon-

strate that some cultivars may be more tolerant to abiotic and biotic stress than 

others, and therefore more suitable for organic management systems. A strong 

positive correlation of top performing cultivars between management systems 

was also found by Burger et al. (2008) for maize who recommended as a result of 

these findings that cultivar performance under conventional conditions could 

provide a good prediction for the average cultivar performance under organic 

conditions in a breeding program. They also recommended that the use of 

organic test sites would increase the chances of identifying broadly adapted 

genotypes when aiming at cultivars for both systems. 

To further examine the question of whether differences in ranking at 

the individual paired conventional and organic sites were significant, we 

performed Spearman’s rank correlation on cultivar performance between 

paired conventional and organic environments. Correlation coefficients were 

large and statistically significant as would be expected when mean genotype 

ranking was similar between management systems (data not shown). However, 

when correlation was performed on F1
s only

 
(leaving out the inherently lower 

yielding OPs and inbreds), significant correlation was observed in the trial 

combinations for Maine Spring 2008, and Oregon Spring 2007 and 2008, but 

not the other five trial combinations (Table 4.6). It is apparent that the significant 

correlations observed on the full set of cultivars was a function of hybrids always 

being higher yielding than OPs and inbreds, but a much weaker association 

was revealed within the hybrid sub-group. The weak correlation among 

hybrids is in agreement with the crossover interaction that was observed at a 

local level between management systems described above (Table 4.7a and b). 

Przystalski et al. (2008) analyzed performance of cereals grown under organic 

and conventional systems in multiple locations, and determined that despite 

high overall genetic correlation for yield and associated traits, there were 

exceptions on the individual cultivar ranking level that could be relevant to 

the selection process. For example, a cultivar that produced an average yield 
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under conventional conditions could perform among the top under organic 

conditions due to better weed competitive ability. In order not to overlook 

the best performing cultivars for organic management systems, they advised 

combining the cultivar ranking results from trials from both management 

systems (see also Reid et al., 2009 and 2011). 

In our trials the open pollinated cultivars were the lowest yielding and least 

stable across all trials. The small group of OPs in our trials tended to be early 

maturing and demonstrated a narrow harvest window at prime quality, which 

could have contributed to their lack of resilience to environmental variation. 

Duvick (2009) found that the heterosis in maize hybrids contributed to their 

overall vigour under stress conditions. However, the research of Ceccarelli 

(1996) and Pswarayi et al. (2008) in the case of barley indicated that modern 

cultivars were adapted to low stress, high yielding environments and did not 

always perform favourably in higher stress, marginal conditions. In the case of 

our trials, however, the organic management conditions were not necessarily 

low input stress conditions in the strictest sense, as mean head weights were 

comparable to conventional, and therefore high ranking hybrids were shared 

across environments with the exception of some that dropped their high 

ranking under organic conditions. We therefore must stress that we anticipate 

that results could be different when growing conditions are less favourable for 

crop growth.

4.4.3 Repeatability as affected by Management systems

Lammerts van Bueren et al. (2002) described organic growing conditions 

as heterogeneous and sometimes lower input environments compared to 

conventionally managed production environments where high levels of readily 

available nitrogen can mask variation in soil quality conditions. Higher variability 

in growing conditions under organic conditions may cause increased macro- and 

micro-environmental variance relative to the genotypic component, and result 

in lower heritabilities compared to more controlled conditions in high-input 

conventional farming conditions. In the present study, we were able to estimate 

the proportion of the genotypic variance relative to phenotypic variance, 

but because we did not have a genetically structured breeding population, 

could only estimate repeatability rather than broad sense heritability. The 

argument commonly used to support selecting in optimal environments is 
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that heritabilities are higher in high input environments compared to poor 

environments (Ceccarelli, 1994; 1996). In our trials, repeatabilities for head 

weight, head diameter, hollow stem and overall quality were higher for organic 

compared to conventional, while for the traits of maturity, head color, and 

head surface, repeatability levels between management systems were equal 

or near equal. It is recognized that these coefficients combine additive and 

non-additive genetic variance, and it would be anticipated that they would 

be much lower if the additive component was partitioned out. For the traits 

of head shape, bead size, and bead uniformity, repeatabilities were higher 

in conventional compared to organic, which could be explained by a more 

variable organic management environment. The traits with repeatabilities 

larger or equal in organic systems were those generally associated with growth 

and productivity, and probably under similar genetic control, whereas those 

with repeatibilities lower in organic compared to conventional are probably 

under separate genetic control. Higher heritabilities under organic conditions 

were also found by Burger et al. (2008) and Goldstein et al. (2012) for maize 

and for faba bean (Vicia faba) (Link and Ghaouti, 2012). They supported their 

findings with the following justifications, which can also explain our results: (1) 

with heterogeneous soils found in organic management systems the precision 

of experiments may be more impaired under stress (slow nutrient release) than 

under conventional high input conditions; (2) genetic variance may be greater 

under stress conditions than non-stress conditions, and (3) the high genetic 

variance in organic trials compensated for the high experimental error which 

produced comparable heritabilities between organic and conventional trials.

Trait repeatabilities alone are not sufficient to determine the optimum selection 

environment. Both estimates of genetic variance and repeatabilities are useful in 

predicting the response to selection in organic and conventional management 

systems. Estimates of the genetic correlation between performance of traits in 

the organic and conventional management systems is an indicator for the extent 

of G × M interaction. In our broccoli trials the genetic correlations between 

organic and conventional trials for the traits head weight, maturity, head shape, 

and plant height were high (>0.90) indicating that a differential response of 

the genotypes to the two management systems was largely absent. The ratio 

of correlated response to direct response for all traits was close to but below 

1.0 with the exception of bead uniformity. This would imply that in most cases, 

29335 Renaud.indd   132 06-06-14   12:32



Broccoli crop improvement

133

selection directly in an organic environment could result in more rapid genetic 

gain than indirect selection in a conventional environment, but because most 

repeatibilities were close to 1.0, indirect selection in a conventional environment 

would be nearly as effective as direct selection in an organic system. Also in our 

trials we found larger genetic variances (broader minimum-maximum ranges) 

compared to results under conventional management.

4.4.4 Breeding broccoli for organic systems

Determining whether broccoli cultivar development could better take place 

under organic or conventional management systems to develop cultivars 

optimized for organic agriculture is a complex proposition. Breeding in the 

target environment is most effective for organic systems, where G × E interaction, 

genetic diversity, and trait heritability are all taken into account (see e.g. Wolfe et 

al., 2008). Driven by the need for efficiency, commercial broccoli breeders often 

aim to reduce G × E interactions by selecting cultivars that are broadly adapted 

to the range of their target environments. However, from our data location and 

season and their interactions were the primary sources of variation identified 

for broccoli head weight and the other horticultural traits studied. This is 

supported by our observations that the general location- and season-specific 

trend for head weight interacted with the cultivar’s maturity class designation, 

where mid-to-late season cultivars were the highest ranking in Oregon in the 

Fall, while in Maine early-to-mid season cultivars were the highest ranking. In 

the Spring, best performing cultivars in both Maine and Oregon were in the 

mid-to-late season maturing class. When comparing cultivar performance 

between seasons and locations, we observed that the best performing early-

to-mid season cultivars in Spring trials and the mid-to-late season cultivars in 

Fall trials for Oregon were a different group of cultivars than those in Maine of 

the same maturity class. 

Greater heterogeneity in organic management systems and G × M crossover 

interaction observed on a local scale supports the idea that direct selection 

(under organic management) of cultivars for organic agriculture would benefit 

from evaluation in organic systems, particularly if the intent of the breeder is 

to develop cultivars that support local adaptation. Annicchiarico et al. (2012) 

found that the performance of lucerne (Medicago sativa) populations bred 

in the location of intended use were better performers on organic farms in 
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Northern Italy compared to cultivars that were bred outside of the intended 

region. Annicchiarico et al. (2010) also found that when comparing G × M to  

G × L, the effect of wheat selected for a specific bioregion outweighed the effect 

of breeding for management system for direct selection of yield. Specific to 

broccoli, Crisp and Gray (1984) reported that to develop cultivars for a specific 

season, populations from different maturity groups should be used to take 

advantage of high heritability in heading characteristics, head color and time 

of maturity.

The stability between the organic and conventional trials across most trials, 

and comparable heritability between systems for most traits, would suggest 

that selection for broccoli for organic systems would best be carried out under 

organic conditions. Lorenzano and Bernardo (2008) suggest that breeding for 

adaptation to organic production environments could be conducted under 

conventional conditions due to high correlations, with the caveat that advanced 

breeding lines be tested under organic conditions for less heritable traits such 

as yield. However, in our trials, there was significant crossover interaction at 

the individual trial level as well as low rank correlation when genotypic classes 

were separated in the ranking analysis. Considering these findings (and without 

taking costs into account), a separate organic regional, seasonal breeding 

program for broccoli can be effective. This is further supported by the fact 

that the ratio of correlated response to direct response in our trials for most 

traits was close to but below 1.0 implying that selection directly in an organic 

environment could result in more rapid genetic gain than indirect selection in 

a conventional environment. 

The large genotype variance observed in our organic trials relative to 

conventional trials indicated that the potential for breeding within an organic 

system may benefit cultivar development for both management systems. 

Because organic management systems do not use synthetic fertilizers and 

pesticides, the potential for a breeder to observe and select parent lines for 

nitrogen use efficiency, disease resistance and vigour, under organic systems 

may bring benefits to the breeding program. Due to the different management 

practices, locations and seasonal differences in organic farming across the 

US, such screening could provide additional information about breeding line 

performance, and support in determining which lines are most stable across 
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environments and in organic conditions. Burger et al. (2008) found with maize 

selection, that trialing advanced lines under conventional management after 

determining superior lines selected in organic systems, could also enhance 

conventional breeding as lines that tolerate stress in an organic management 

system may carry this performance over to stress conditions that can also occur 

under conventional systems. 

We want to stress that our study included predominantly modern broccoli 

cultivars selected for broad adaptability in conventional production systems, 

which does not fully show the potential of selection in breeding populations 

under organic management. Kirk et al. (2012) and Reid et al. (2011) both  

reported that direct selection in organically managed field conditions for 

genotypes targeted for organic agriculture offered advantages over indirect 

selection in conventionally managed field conditions for spring wheat because 

they found that breeding populations selected in organic environments had 

higher yields when grown organically, compared to conventionally selected 

populations that did not perform comparatively well. We therefore recommend 

that for further studies, early generation broccoli breeding lines and/or 

populations be compared to attain a better prediction of genetic correlations 

for organic, and to explore potential genetic changes that may occur when 

broccoli breeding lines are bred in the target environment from inception. 
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Abstract

Organic agriculture requires cultivars that can adapt to organic crop 

management systems without the use of synthetic pesticides as well as 

genotypes with improved nutritional value. The aim of this study encompassing 

16 experiments was to compare 23 broccoli cultivars for the content of 

phytochemicals associated with health promotion grown under organic and 

conventional management in spring and fall plantings in two broccoli growing 

regions in the US (Oregon and Maine). The phytochemicals quantified included: 

glucosinolates (glucoraphanin, glucobrassicin, neoglucobrassin), tocopherols 

(δ-, γ-, α-tocopherol) and carotenoids (lutein, zeaxanthin, β-carotene). For 

glucoraphanin (17.5%) and lutein (13%), genotype was the major source of 

total variation; for glucobrassicin, region (36%) and the interaction of location 

and season (27.5%); and for neoglucobrassicin, both genotype (36.8%) and its 

interactions (34.4%) with season were important. For δ- and γ- tocopherols, 

season played the largest role in the total variation followed by location and 

genotype; for total carotenoids, genotype (8.41-13.03%) was the largest source  

of variation and its interactions with location and season. Overall, 

phytochemicals were not significantly influenced by management system. We 

observed that the cultivars with the highest concentrations of glucoraphanin 

had the lowest for glucobrassicin and neoglucobrassicin. The genotypes with 

high concentrations of glucobrassicin and neoglucobrassicin were the same 

cultivars and were early maturing F1
 hybrids. Cultivars highest in tocopherols 

and carotenoids were open pollinated or early maturing F
1
 hybrids. We 

identified distinct locations and seasons where phytochemical performance 

was higher for each compound. Correlations among horticulture traits and 

phytochemicals demonstrated that glucoraphanin was negatively correlated 

with the carotenoids and the carotenoids were correlated with one another. 

Little or no association between phytochemical concentration and date of 

cultivar release was observed, suggesting that modern breeding has not 
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negatively influenced the level of tested compounds. We found no significant 

differences among cultivars from different seed companies.

Keywords 

Genotype × environment interaction, organic agriculture, Brassica oleracea, 

glucosinolates, tocopherols, carotenoids, breeding, health promotion

5.1 Introduction:

Organic food consumption is in part driven by consumer perception that 

organic foods are more nutritious and simultaneously less potentially harmful 

to human health (Saba and Messina, 2003; Stolz et al., 2011). Studies, such 

as Smith-Sprangler et al., (2012), have concluded that there is little evidence 

for differences in health benefits between organic and conventional products, 

but other studies have indicated that organic vegetables and fruits contain 

higher concentrations of certain plant phytochemicals associated with health 

promotion than those produced conventionally (Asami et al., 2003; Chassy et 

al., 2004; Brandt et al., 2011; Hunter et al., 2011; Koh et al., 2012). A number 

of these compounds are produced by plants in response to environmental 

stress or pathogen infection, providing a potential explanation of why 

concentrations of these compounds might be higher in plants grown in 

organic systems without application of pesticides (e.g. Crozier et al., 2006). In 

addition, higher phytochemical levels may be due to the effects that different 

fertilization practices have on plant metabolism. Synthetic fertilizers used in 

conventional agriculture are more readily available to plants than organic 

fertilizers (Bourn and Prescott, 2002). Nutrients derived from organic fertilizers 

need to be mineralized, and the availability of these nutrients depends on soil 

moisture, temperature and level of activity of soil organisms (Mäder et al., 2002). 

Conventional systems seek to maximize yields, resulting in a relative decrease 

of plant phytochemicals and secondary metabolites (Martinez-Ballaesta et al., 

2008; Meyer and Adam, 2008; Mozafar, 1993; Zhao et al., 2006). Correspondingly, 

compounds such as phenolics, flavonoids, and indolyl glucosinolates may be 

induced by biotic or abiotic stress (Dixon and Paiva, 1995; Kim and Juvik, 2011). 
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Broccoli is an abundant source of nutrients, including provitamin A (β-carotene), 

vitamin C (ascorbate), and vitamin E (tocopherol) (USDA Nutrient Database, 

2011). It is also a source of phytochemicals associated with health benefits and 

these include glucosinolates, carotenoids, tocopherols, and flavonoids (Brown et 

al., 2002; Kushad et al., 1999; Farnham et al., 2009). Verhoeven et al. (1996), Keck 

and Finley (2004) and Here and Büchler (2010), reported that diets rich in broccoli 

reduce cancer incidence in humans. Strong associations between consumption 

level and disease risk reduction exists for glucosinolates (anti-cancer), tocopherols 

(cardiovascular), and the carotenoids (eye-health) (Higdon et al., 2007). 

Sulfur containing glucosinolates are found in the tissues of many species of the 

Brassicaceae family. When glucosinolates are consumed, they are hydrolyzed 

into isothiocyanates (ITC) and other products that up-regulate genes associated 

with carcinogen detoxification and elimination. Aliphatic glucoraphanin (up to 

50% of total glucosinolates) and the indolylic glucosinolates, glucobrassicin and 

neoglucobrassicin are abundant in broccoli florets (Kushad et al., 1999; Brown 

et al., 2002; Schonhof et al., 2004). Glucoraphanin is hydrolyzed either by the 

endogenous plant enzyme myrosinase (Fenwick et al., 1983; Juge et al., 2007) or 

by gut microbes to produce sulforaphane, an ITC. The indole glucosinolates are 

tryptophan-derived in a similar but alternate biosynthetic pathway (Mithen et al., 

2000). The health promoting effects of the indolyl glucosinolates are attributed 

to indole-3-carbinol, a hydrolysis product of glucobrassicin, N-methoxyindole-

3-carbinol and neoascorbigen, hydrolysis products from neoglucobrassicin, 

and the catabolic products derived from alkyl glucosinolates. Clinical studies 

have shown that the glucosinolate hydrolysis products reduce the incidence 

of certain forms of cancer (e.g., prostate, intestinal, liver, lung, breast, bladder) 

(Wang et al., 2004; Hsu et al., 2007; Kirsh et al., 2007; Lam et al., 2010; Bosetti et al., 

2012; Wu et al., 2012). The lipophilic phytonutrients found in broccoli include the 

carotenoids lutein, zeaxanthin, ß-carotene, and tocopherols (forms of vitamin 

E) (Kopsell and Kopsell, 2006; Ibrahim and Juvik, 2009). In addition to their role 

as vitamins, these compounds are powerful antioxidants (Kurilich et al., 1999; 

Kurilich and Juvik, 1999). Consumption of vegetables high in tocopherols and 

carotenoids has decreased the incidence of certain forms of cancer (Mayne, 

1996). Lutein and zeaxanthin protect against development of cataracts and 

age-related macular degeneration (Krinsky et al., 2003). Tocopherols have also 

been associated with reduced risk of cardiovascular disease by preventing 
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oxidative modification of low-density lipoproteins in blood vessels (Kritchevsky 

et al., 1999). 

The genetic potential for high nutrient content has long been a concern of the 

organic industry in order to meet the expectations of organic consumers. This 

has often been manifested by questioning whether modern elite cultivars may 

have lower levels of nutritional content than older open pollinated cultivars. 

Indirect evidence supporting this argument comes from Davis et al. (2004), 

who compared USDA nutrient content data for 43 garden crops released 

between 1950 and 1999. Statistically significant decreases were noted for six 

nutrients (protein, calcium, potassium, iron, riboflavin, and ascorbic acid), with 

declines ranging from 6% for protein to 38% for riboflavin. Crop varieties in 

1950 had been bred to be adapted to specific regions and a relatively low 

input agriculture system, but contemporary cultivars are selected for yield, 

disease resistance, broad adaptation to high input agriculture systems, and for 

increased ‘shipability’ and shelf life. Traka et al. (2013) recommend breeding with 

greater genetic diversity when the goal is enhanced phytochemical contentby 

exploiting wild crop relatives. The genotype is important in determining the 

level of nutrients in a crop cultivar (Munger, 1979; Welch and Graham, 2004; 

Troxell Alrich et al., 2010). What is unclear, however, is whether the nutritional 

content of a cultivar is associated with certain genotypic categorization, e.g. 

old versus modern, open pollinated versus F1
 hybrid cultivars. In addition, there 

is no clear differentiation as to what extent nutritional content in a crop is 

determined by genotypic or by field management factors or by the interaction 

of both. Some studies comparing performance of genotypes in organic and 

conventional production systems have shown that for certain agronomic traits, 

cultivars perform differently between the two production systems (e.g. for 

winter wheat: Murphy et al., 2007; Baresel et al., 2008; for lentils: Vlachostergios 

et al., 2008; for maize: Goldstein et al., 2012), while others have shown no 

differences in ranking performance (for maize: Lorenzana and Bernardo, 2008; 

for onions: Osman et al., 2008; for cereals: Prsystalski et al., 2008). The results 

of these studies have profound implications for organic cultivar selection and 

breeding strategies and raise questions as to the need for cultivars to be bred 

with broad adaptability or specific adaptation for the requirements of regional 

organic production and for designing breeding programs that optimize 

phytochemicals in an adapted management system. 
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Previous studies comparing organically versus conventionally grown broccoli for 

nutritional quality have been ‘market basket’ (off-the-shelf ) studies (Wunderlich 

et al., 2008; Koh et al., 2009). Harker (2004) explained that the limitation of 

market basket studies is that they either have purchased the products from 

the store shelf and cannot relate differences to specific growing conditions or 

that the number of cultivars is too small to generalize the results. While other 

studies have compared cultivars from one production season time period to 

another, knowledge of the actual cultivar and production system (soil quality, 

temperature, rainfall) was not available (Benbrook, 2012; Davis et al., 2004). The 

concentrations and form of health-promoting nutrients in Brassica vegetables 

have been reported to vary significantly due to (1) genotype (cultivar and 

genotypic class) (Carlson et al., 1987; Kushad et al., 1999; Schonhof et al., 2004; 

Farnham et al., 2005; 2009; Ibrahim and Juvik, 2009; Wang et al., 2012; Traka 

et al., 2013), (2) environmental conditions such as season (Rosa et al., 2001; 

Vallejo et al., 2003ab; Charron et al., 2005ab; Aires et al., 2011), light (Brown 

et al., 2002), max/min temperature, irrigation (Pek et al., 2012; Schonhof et al., 

2007), (3) genotype by environment interactions (Brown et al., 2002; Farnham et 

al., 2004; Björkman et al., 2011); (4) management system including soil fertility 

(Robbins et al., 2005; Xu et al., 2010 ), organic versus conventional (Meyer and 

Adams, 2008; Naguib et al., 2012; Picchi et al., 2012), days to harvest (Vallejo et 

al., 2003ab), and (5) post-harvest management (Hansen et al., 1995; Tiwari and 

Cummins, 2013). Identifying specific growing conditions and genotypes that 

produce cultivars with varying phytochemical content and putative disease-

prevention activity could offer value-added commercial opportunities to the 

seed and food industry. 

In addition to research conducted on how broccoli genotypes, management 

system and environment interact for horticultural traits (Renaud et al., 2014), we 

address in this chapter the question of how do genotypes, management system 

and environment interact to determine the nutritional contributions of broccoli 

to the human diet. We studied the relative importance and interaction among 

genotypes (cultivars, genotypic classes) and environment {management system 

[M: organic (O) or conventional (C)], season (S, a combination of year and season 

within year, i.e., fall 2006, spring 2007, fall 2007, spring 2008), location (E)} in a 

set of 23 broccoli cultivars for floret glucosinolate, tocopherol and carotenoid 

concentrations grown under organic and conventional production systems 
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in two contrasting broccoli production regions of the US: Oregon and Maine. 

Specifically we addressed the following questions: (1) what is the impact of 

organic management system compared to the environmental factors including 

climatic region, season and their interactions [Genotype (G) x Environment (E) x 

Management System (M)]?, (2) is there a significant difference in phytochemical 

content between different genotypes and genotypic classes (old and modern 

cultivars; open pollinated and F
1
 hybrid cultivars; early and late maturing 

cultivars; and between different commercial seed sources)?, (3) what is the 

best selection environment for a broccoli breeding program for enhanced 

phytochemical content?

5.2 Materials & methods:

5.2.1 Plant Material and Field Trial Locations

Twenty-three broccoli cultivars including open pollinated (OP) cultivars, inbred 

lines, and F
1
 hybrids were included in field trials (Table 5.1). Cultivars were 

grown in a randomized complete block design with three replicates in Maine 

(ME)-Monmouth (Latitude 44.2386oN, Longitude 70.0356oW); and Oregon 

(OR)-Corvallis (Latitude 44.5647oN, Longitude123.2608oW)] with each location 

including organically (O) and conventionally (C) managed treatments. Plots 

contained 36 plants, planted in three rows of 12 plants at 46 cm equidistant 

spacing within and between rows. The 2006 trials had only 18 of the 23 entries, 

and the Oregon 2006 trial had only two replicates at the organic location. Field 

trials were conducted for three consecutive years with one production cycle in 

Fall 2006, two production cycles in Spring and Fall 2007 and one production 

cycle in Spring 2008. The primary management differences between the 

organic and conventional field trial sites are outlined in Supplemental Figure 

5.1, which describes the production system, soils, fertility applications, the 

applied supplemental irrigation, and weather conditions for the area of study. 

Further details of the field design are reported in Renaud et al. (2014).

5.2.2 Field Data Collection 

As plots approached maturity they were evaluated three times a week for 

field quality and broccoli heads that had reached commercial market maturity 

(approximately 10 to 12 cm in diameter for most of the cultivars while retaining 
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firmness). Field quality traits evaluated on a 1 to 9 ordinal scale included head 

color, bead size, and bead uniformity. Average head weight was determined by 

taking the mean of the five individual heads per plot. Head diameter averaged 

for five heads at harvest maturity from each plot. Maturity was based on days 

to harvest from transplanting date. Detailed procedures and horticulture trait 

performance data are reported in Renaud et al. (2014).

Table 5.1 Overview of commercially available broccoli cultivars, showing origin, main characteristics, 
included in paired organic - conventional field trials 2006-2008.

Cultivar Abbreviation Origin Cultivar 
Typea

Date of 
Market Entry

Maturity 
Classificationb

Arcadia ARC Sakata F
1

1985 L

B1 10 B11 Rogers F
1

1988 M

Batavia BAT Bejo F
1

2001 M

Beaumont BEA Bejo F
1

2003 L

Belstar BEL Bejo F
1

1997 L

Diplomat DIP Sakata F
1

2004 L

Early Green EGR Seeds of Change OP 1985 E

Everest EVE Rogers F
1

1988 E

Fiesta FIE Bejo F
1

1992 L

Green Goliath GRG Burpee F
1

1981 M

Green Magic GRM Sakata F
1

2003 M

Gypsy GYP Sakata F
1

2004 M

Imperial IMP Sakata F
1

2005 L

Marathon MAR Sakata F
1

1985 L

Maximo MAX Sakata F
1

2004 L

Nutribud NUT Seeds of Change OP 1990 E

OSU OP OSU Jim Myers, OSU OP 2005 E

Packman PAC Petoseed F
1

1983 E

Patriot PAT Sakata F
1

1991 M

Patron PAN Sakata F
1

2000 M

Premium Crop PRC Takii F
1

1975 E

USVL 048 U48 Mark Farnham, 
USVL Inbred not released L

USVL 093 U93 Mark Farnham, 
USVL Inbred not released M

a Cultivar Type: F
1
: hybrid; OP: Open Pollinated; Inbred.

b Maturity Classification: E: Early; M: Mid; L: Late.
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5.2.3 Broccoli Floret Samples and glucosinolate, tocopherol, and

 carotenoid analysis

In order to analyse nutritional compounds of the broccoli heads, the following 

procedure was  followed: As plots approached maturity, five broccoli head tissue 

samples were harvested fresh from each subplot at each trial location and were 

composited into a single sample per replication. The samples were frozen at -20oC 

and shipped in a frozen state to the University of Illinois, Urbana-Champaign 

where they were freeze-dried and assessed for nutritional phytochemicals. Each 

sample was analyzed for the glucosinolates (glucoraphanin, glucobrassicin 

and neoglucobrassicin), carotenoids (β-carotene, lutein, and zeaxanthin), and 

tocopherols (δ-, γ-, α- tocopherol) by high-performance liquid chromatography 

(HPLC) analysis using analytical protocols described in Brown et al. (2002) for 

glucosinolates, and Ibrahim and Juvik (2009) for tocopherols and carotenoids. 

Glucosinolates in lyophilized floret tissue samples were extracted and analysed 

by HPLC using a reverse phase C18 column.  Three hundred mg samples of 

broccoli floret tissue were weighed out for extraction and the HPLC quantifica-

tion of the tocopherols and carotenoids.

5.2.4 Statistical Analysis

Various linear mixed models were used for the analysis of trait variation. We 

followed the same methodology as described in Renaud et al. (2014), which was 

comparable to the approach followed by Lorenzana and Bernardo (2008). For 

fitting the linear mixed models, GenStat 15 (VSNi, 2012) was used. The models 

followed the set-up:

y = E + R(E) + G + G×E + e.

Here y is the phytochemical response. Term E represents the environment in a 

very general sense, it includes all main effects and interactions of Season (S), 

Location (L) and Management (M). For analyses per location, the terms involving 

L were dropped. Similarly, for analyses regarding a specific management 

regime, the terms involving M were dropped. Term R(E) is the effect of replicate 

within environment, and there were two or three replicates in individual trials. 

G and G×E are genotype and genotype by environment interaction effects, 

respectively. Finally e is a residual.
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Variance components were reported as coefficients of variation, i.e., 

CV=100     V ⁄ x ̅ ,

with V the variance corresponding to specific effects and x ̅  the trait mean. 

Repeatability was calculated from the variance components in its most general 

form as 

H2 = V
G

 / (V
G

 + V
GL 

/nL + V
GS 

/nS + V
GM 

/nM + V
GLS 

/(nL.nS) + V
GLM 

/(nL.nM) 

+ V
GSM 

/(nS.nM) + V
GLSM 

/(nL.nS.nM) + V
e 

/(nL.nS.nM.nR)),

where the variance components correspond to the terms in the mixed model 

above. The terms nL, nS, nM and nR stand for the number of locations (2: Maine 

and Oregon), number of ‘seasons’ (4: Fall 2006, Spring 2007, Fall 2007, Spring 

2008), management (2; organic and conventional), and replicates (2 or 3).

Genotypic means were calculated by taking genotypic main effects fixed instead 

of random in the mixed models above. Pairwise comparisons between genotypic 

means were performed using GenStat procedure VMCOMPARISON. Correlations 

on the basis of genotypic means were referred to as genetic correlations. 

Genotypic stabilities under organic and conventional conditions were calculated 

as the variance for individual genotypes across all trials in the system.

To assess the feasibility of selection for organic conditions (the target environ-

ment) under conventional conditions, we calculated the ratio of correlated 

response (for organic conditions using conventional conditions), CR, to direct 

response (for organic conditions in organic conditions), DR, as the product of 

the genetic correlation between organic and conventional systems (r
G
) and the 

ratio of the roots of conventional and organic repeatabilities (and  respectively): 

CR/DR=r
G
H

C   
⁄H

O
.

A ratio smaller than 1 indicates that selection is better done directly under 

organic conditions when the aim is indeed to improve the performance in 

organic conditions. 
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5.3 Results

5.3.1 Comparison of phytochemicals means over the environments 

Glucosinolates

Across all trials, glucoraphanin levels were comparable between locations 

and seasons but were more variable at the individual location and season trial 

analysis level (Table 5.2). Glucoraphanin, glucobrassicin and neoglucobrassicin 

levels were comparable between organic and conventional treatments. 

Comparisons of organic versus conventional by location and season for the 

glucosinolate phytochemicals are presented in Supplemental Figure 5.1A, B, 

and C. Comparable levels of glucosinolates were observed in the organic - 

conventional  comparisons within locations and seasons. 

Tocopherols

Across trials compared regionally, Oregon had higher levels of all three 

tocopherols compared to Maine (Table 5.2, Supplemental Figure 5.2A, B and C). 

The tocopherols δ- and γ- were higher in Fall compared to Spring (Supplemental 

Figure 5.2A and B), but not so for α-tocopherol (Supplemental Figure 5.2C). 

Organic and conventional levels for all tocopherol concentrations were in the 

same range and not significantly different. When the three tocopherols were 

analysed by organic versus conventional within location and season, there were 

no clear significant differences in management system across the season and 

location combinations (Table 5.2, Supplemental Figure 5.2 A, B and C).

Carotenoids

Overall, Oregon had higher levels of lutein and β-carotene compared to 

Maine (Table 5.2, Supplemental Figures 3A and 3C) and comparative levels of 

zeaxanthin (Table 5.2, Supplemental Figure 5.3B). Spring produced higher levels 

of all carotenoids compared to Fall levels in contrast to the glucosinolates and 

the δ- and γ- tocopherol concentrations. There were no significant differences 

between organic and conventional for any carotenoid measured. When 

carotenoids were analysed by management system within location and season, 

β-carotene showed significantly lower levels in Maine in the Fall compared to 

other location and season combinations (Supplemental Figure 5.3A, B and C).
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Table 5.2 Trait means1 of phytochemicals of 23 broccoli cultivars grown across four pair combinations 
of location (Maine/Oregon), season (Fall/Spring) two-years combined and management system 
(Conventional/Organic), 2006-2008.

Maine Oregon

Fall Spring Fall Spring

2006-2007 
Combined

2007-2008 
Combined

Mean
2006-2007 
Combined

2007-2008 
Combined

Mean

C O C O C O C O

Glucoraphanin 5.31 e 3.77 bc 3.56 b 4.06 c 4.18 3.46 b 3.03 a 4.64 d 4.51 d 3.91

Glucobrassicin 1.06 b 0.90 a 1.45 c 1.33 c 1.19 5.14 f 5.51 g 2.24 d 2.70 e 3.90

Neoglucobrassicin 0.46 a 0.40 a 2.16 c 1.85 b 1.22 2.34 c 3.20 d 4.32 e 5.10 f 3.74

δ-Tocopherol 2.34 c 2.77 d 1.91 b 1.70 a 2.18 3.53 e 3.66 e 1.91 b 2.24 c 2.83

γ-Tocopherol 4.67 c 4.40 c 2.63 a 2.98 b 3.67 8.48 d 8.73 d 3.31 b 3.22 b 5.94

α-Tocopherol 25.83 a 27.33 a 38.61 b 40.51 bc 33.07 43.04 c 43.20 c 40.52 bc 42.25 c 42.25

Lutein 11.49 a 12.47 a 15.53 b 15.93 b 13.85 15.91 b 16.04 b 16.48 b 17.81 c 16.56

Zeaxanthin 0.81 a 0.83 ab 0.87 ab 0.88 b 0.85 0.83 ab 0.84 ab 1.02 c 1.02 c 0.93

β-Carotene 12.98 a 13.25 a 28.73 c 29.71 c 21.16 29.10 c 30.10 c 25.16 b 25.80 b 27.54

1 Values in the table are means. Means of the same letter in the same row are not significantly different 
at the P < 0.05 level.

5.3.2 Partitioning of variance components

Glucosinolates

For glucoraphanin across all trials in both regions, Genotype (G) main effect 

accounted for the largest proportion of variance, followed by G×L×S interaction 

(Table 5.3). There was no Management (M) main effect, but M contributed 

to the three (L×S×M and G×S×M) and four-way interactions (G×L×S×M). In 

contrast to glucoraphanin, Location (L) had the largest effect for glucobrassicin 

and neoglucobrassicin across all trials in both regions, followed by the L×S 

interactions. For neoglucobrassicin the S and G main effect was more important 

than for glucobrassicin. When trials were further partitioned by location, a G 

and S main effect was apparent for neoglucobrassicin in both locations; for 

glucobrassicin the S main effects was only apparent in Oregon and not in Maine 

(Supplemental Table 5.2ab). There was M main effect for glucobrassicin and 

neoglucobrassicin, but not for glucoraphanin, and no G×M interaction for all 

glucosinolates. 
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Tocopherols

For δ- and γ-tocopherol across all trials in both regions, the Season (S) main 

effect accounted for the largest proportion of variance (Table 5.3). In contrast 

the proportion of the variation associated with S for α-tocopherol across all 

trials was minor. For all three tocopherols there was minor to no M effect, but 

a large L main effect, being the greatest for γ-tocopherol. The G main effect 

showed a similar pattern to L. 

Carotenoids

For all three carotenoids across all trials in both regions, the G main effect 

described a significant component of total variance and was of largest influence 

for lutein (Table 5.3). The S main effect played an important role for zeaxanthin, 

and to a lesser extent for lutein but not for β-carotene. For all three carotenoids 

the L effect was minor, but the L x S interaction for β-carotene was relatively 

large and mostly associated with Maine (Supplemental Table 5.2a). There was 

no M main effect; only for β-carotene was there a small effect of the G × M 

interaction (mainly driven by Maine). 

5.3.3 Repeatability, genetic correlation and ratio of correlated response  

 to direct response

Organic versus conventional

In the present study, we were able to estimate the proportion of the genotypic 

variance relative to phenotypic variance, but because we did not have a 

genetically structured breeding population, we apply the term repeatability 

rather than broad sense heritability. Of the phytochemicals studied, 

repeatabilities for concentrations of seven of the nine were comparable or 

higher in organic compared to conventional systems (Table 5.4). Only for 

glucobrassicin and δ-tocopherol was repeatability under organic conditions 

lower than under conventional. In the analyses δ- and α-tocopherol had relatively 

low repeatabilities. The highest repeatabilities were for glucoraphanin (0.82-

0.84), neoglucobrassicin (0.75-0.76), γ- tocopherol (0.72-0.75), lutein (0.83-0.85) 

and zeaxanthin (0.76-0.77). Genetic correlations were high between organic 

and conventional for the glucosinolates, γ-tocopherol and lutein (0.84-0.95), 

while δ-tocopherol, α-tocopherol, zeaxanthin and β-carotene were lower (0.63-

0.77). The ratio of the correlated response to direct response for selection in the 

organic system was less than 1.0 for all traits. 
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By location and season

For the glucosinolates, glucoraphanin and glucobrassicin repeatability at 

each location, season and treatment trial were comparable and generally 

high (0.83-0.97) between organic and conventional trials, while no clear 

trend for neoglucobrassicin repeatabilities was observed between organic 

and conventional aside from being much lower than glucoraphanin and 

glucobrassicin (Supplemental Table 5.3).  For γ- and α-tocopherol, repeatabilities 

were comparable between organic and conventional, while for δ-tocopherol 

repeatabilities were comparable between systems or higher in conventional 

except for one paired trial. For the carotenoids, repeatabilities were comparable 

or higher in organic for all paired trials, while for lutein in seven of the eight paired 

trials organic was comparable or greater than conventional. Repeatabilities for 

zeaxanthin concentrations were comparable for six of the eight paired trials.

Table 5.4 Repeatabilities, genetic correlation and ratio of correlated response to direct response for 
broccoli phytochemicals comparing organic versus conventional management systems over all trial 
season/location combinations, 2006-2008.

Repeatability (H)
r

A
a CR

org
/R

org
b

C O

Glucoraphanin 0.84 0.82 0.84 0.83

Glucobrassicin 0.70 0.64 0.88 0.84

Neoglucobrassicin 0.75 0.76 0.94 0.94

δ-Tocopherol 0.50 0.42 0.73 0.66

γ-Tocopherol 0.75 0.72 0.95 0.93

α-Tocopherol 0.23 0.35 0.61 0.76

Lutein 0.83 0.85 0.93 0.94

Zeaxanthin 0.76 0.77 0.77 0.78

β-Carotene 0.62 0.72 0.63 0.68
 
a Average genetic correlation between conventional and organic production systems across locations.
b Ratio of correlated response to direct response.

5.3.4 Comparison of cultivar ranking for phytochemical concentration  

 and stability across trials

To determine trends in cultivars with both the highest concentration of 

phytochemical groups most stable across locations, seasons and production 

systems, phytochemical concentrations were plotted against stability per 

genotype across trials. A group of cultivars were identified as both highest 
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in concentration and most stable and are indicated in the highlighted ‘red 

circle’ per phytochemical (Figure 5.1A-I). For glucoraphanin, the same group 

of cultivars had both the highest concentrations and were the most stable 

across production systems (Figure 5.1A; Supplemental Table 5.4). While for 

glucobrassicin, a different set of cultivars had the highest concentrations across 

production systems (Figure 5.1B; Supplemental Table 5.5). Overall stability of all 

 cultivars across production system was less related to cultivar mean 

concentrations for glucobrassicin than for glucoraphanin. None of the cultivars 

with the highest concentration for neoglucobrassicin were in the top quartile 

for stability across trials; all cultivars with the highest neoglucobrassicin content 

were in the bottom half for stability (Figure 5.1C; Supplemental Table 5.6). 

Linear regression revealed a statistically significant association between higher 

concentrations of glucoraphanin and greater stability (Figure 5.3), but no such 

pattern was seen for any other glucosinolates. Some but not all cultivars that 

had the highest concentrations of α-tocopherol were among the top group 

for δ- and/or γ-tocopherol. There was no relationship between δ-tocopherol 

concentrations and stability, but both γ- and α- tocopherols had higher 

concentrations associated with greater stability (Figure 5.1D-F; Supplemental 

Tables 4.7-4.9). Open pollinated and early maturing cultivars had the highest 

and most stable concentrations for all carotenoids (Figure 5.1G-I; Supplemental 

Tables 4.10-4.12).

5.3.5 Comparison of phytochemical concentration by genotype

 classification 

The open pollinated and F1
 hybrid cultivars were compared across trials for each 

phytochemical analysed (Figure 5.2A). The levels of glucoraphanin in F
1
 hybrids 

tended to be higher than the open pollinated cultivars. But the inverse trend was 

observed for glucobrassicin, which was supported by the ranking and stability 

analysis where the F
1
 hybrids showed higher levels and more stability across 

trials than the open pollinated cultivars for glucoraphanin. The reverse was 

observed for glucobrassicin. For the carotenoids, the open pollinated cultivars 

had a significantly higher mean value of lutein and zeaxanthin and tended to 

be higher for β-carotene compared to the F
1
 hybrids.
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Based on the results of our field trials, the 23 cultivars of broccoli were grouped 

into three distinct maturity classes: Early (55-63 days); Mid (64-71 days); and Late 

(72-80 days) and analysed for the effect of the maturity class on phytochemical 

content (Figure 5.2B). For glucoraphanin, late maturing cultivars had significantly 

higher content levels, while for the carotenoids, early maturing cultivars tended 

to have higher concentrations and were significantly higher for lutein.

When cultivar performance between genetic material originating from two 

primary broccoli breeding companies was compared for phytochemical 

content there were no significant differences with the exception of lutein, 

where company 1’s cultivars had significantly higher concentrations than those 

of company 2 (data not shown). 

A negative correlation between the date of release and levels of glucobrassicin 

(R2= 0.21; p=0.03) (Figure 5.3) was observed, but no significant correlations for 

any other phytochemical were seen when 21 cultivars (the total set minus the 

two inbred lines) were analysed by their date of commercial release (1975-2005).

5.3.6 Correlation analysis among phytochemicals and horticulture traits

Phytochemical correlation across trials

Correlation among phytochemicals indicated that glucoraphanin was 

significantly negatively correlated to glucobrassicin (Table 5.5). Correlations 

between the glucosinolates and the tocopherols were not significant. 

Glucoraphanin and neoglucobrassicin were negatively correlated to all 

carotenoids but only lutein and glucoraphanin were statistically significant. 

Glucobrassicin demonstrated a positive trend with all carotenoids. No statistically 

significant correlations were observed within tocopherols. Δ-tocopherol 

was positively correlated, while γ-tocopherol was negatively correlated to 

all carotenoids. There were no significant correlations for α-tocopherol with 

carotenoids. All carotenoids were highly positively correlated with one another.
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Figure 5.2 A. Mean phytochemical content of broccoli F1 hybrids versus open pollinated cultivars, and 
B. Mean phytochemical content of early, mid- and late-maturing cultivars grown across all trials at two 
locations (Maine and Oregon), in two seasons (Fall and Spring) and in two management systems 
(Conventional and Organic) and conventional management systems. See Table 1 for key to cultivar F1 
hybrid versus open pollinated classification and maturity classification. 

Significance (* = P < 0.05, ** = P < 0.01, *** = P < 0.001).
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Figure 5.3 Regression of broccoli floret glucobrassicin concentrations on date of cultivar release for 23 
cultivars grown across all trials in two locations (Maine and Oregon), in two seasons (Fall and Spring), in 
two management systems (Conventional and Organic), 2006-2008.
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Phytochemical correlation to horticulture traits across trials

A correlation analysis was conducted for six horticulture traits, derived from 

the field study component of this research, Renaud et al. (2014), and the nine 

phytochemicals across trials. The results indicated that greater head weight and 

head diameter were significantly positively correlated with glucoraphanin and 

negatively correlated with glucobrassicin, δ-tocopherol and the carotenoids. 

Increasing days to maturity was positively correlated with glucoraphanin, and 

negatively correlated to carotenoids. Head color was significantly correlated 

with δ-tocopherol and the carotenoids, but not with glucosinolates or γ- and 

α-tocopherol. Bead size and bead uniformity were positively correlated with 

glucoraphanin, neoglucobrassicin and γ-tocopherol and negatively correlated 

with glucobrassicin and the carotenoids. 

Table 5.5 Correlations coefficients (r) for six horticultural traits and nine phytochemicals, calculated 
using data standardized across trials. Correlation results include means from 23 cultivars, across eight 
pair combinations of location (Maine/Oregon), season (Fall/Spring) and management system 
(Conventional/Organic), 2006-2008a.
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Head Weight

Head Diameter 0.81

Maturity

Head Color

Bead Size 0.63 0.69

Bead Uniformity 0.49 0.48

Glucoraphanin 0.47 0.44 0.43 0.63 0.51

Glucobrassicin -0.54 -0.50 -0.56 -0.64 -0.51

Neoglucobrassicin 0.58 0.48

δ-Tocopherol -0.55 0.49

γ-Tocopherol 0.43

α-Tocopherol

Lutein -0.65 -0.70 0.56 -0.69 -0.41 0.55 -0.54

Zeaxanthin -0.68 -0.43 -0.62 0.49 -0.64 0.60 -0.42 0.95

β-Carotene -0.53 -0.54 0.59 -0.48 0.50 -0.43 0.90 0.90

a For empty cells, r is not significantly different from zero (P < 0.05).
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5.3.7  Principal component biplot analysis: correlation between phyto 

chemicals and cultivars by production system

In the principal component analysis the first PC axis accounted for similar 

amounts of the total variation in both conventional and organic production 

systems (43.5% vs. 39.6%). The second PC axis showed a similar trend with 

17.02% for conventional and 16.93% for organic (Figure 5.4A and 4B). The first 

two PC axes together accounted for 60.53% and 56.57% of total variation for 

conventional and organic, respectively. The PCA biplot analysis supported 

our findings that carotenoids were highly associated across systems, while 

tocopherols were highly associated in conventional, but not in organic 

(tocopherols demonstrated the largest shift between production systems). 

Glucoraphanin and neoglucobrassicin were associated with one another, 

but not with glucobrassicin across production systems. Glucoraphanin was 

associated with α-tocopherol in organic, but not in conventional treatments. 

Glucobrassicin was associated with δ- and α- tocopherol in conventional, but 

not in organic treatments. δ-tocopherol had a higher association with the 

carotenoids in organic than conventional. The biplots show response of both 

cultivars and phytochemical traits to environment. Those cultivars close to the 

origin reveal little about the relationship of cultivars and trait vectors, whereas 

those located near the extremes of trait vectors are those with the highest (or 

lowest) values for those traits. 

5.4 Discussion:

5.4.1 Impact of organic management system compared to environmental

 factors on phytochemical content

Few studies have specifically compared the levels of health promoting 

compounds in Brassica vegetable species grown under organic and conventional 

production systems (Meyer and Adam, 2008; Naguib et al., 2012; Picchi et al., 

2012). To our knowledge, this investigation is the most comprehensive study 

with the broadest range of phytochemical compounds (9) and a diverse set 

of broccoli cultivars (23) over regions (2), and management systems (2), with 

Fall and Spring season trials (2 each). In this study organic versus conventional 

management systems contributed the smallest source of variation compared 

to genotype, region and season. Within the phytochemicals studied individual 
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compound concentrations responded differently. All compounds showed 

genetic variation, but also a substantial proportion of variance components 

were accounted for by high level interactions (Table 5.3; Supplemental Table 

5.2). While M main effect was generally small, it had a substantial contribution 

in three- and four-way interactions. In particular, many G×L×S×M interactions 

were large relative to other variance components. This indicates that for 

the phytochemicals, M did have an influence on G, but that there were no 

consistent patterns across locations and seasons that would have shown up 

as significant G×M. Rather in each season and location, the paired organic and 

conventional environments differed significantly from one another but each 

situation was unique. In contrast to many comparisons between organic and 

conventional production systems (De Ponti et al., 2012), it should be noted that 

in our trials, yields averaged over the years did not differ significantly between 

the organic and conventional management systems (Renaud et al., 2014).

Among the nine compounds, glucoraphanin was the most strongly influenced 

by genotype followed by lutein: supporting the findings of several other 

broccoli studies where variation in concentrations for glucoraphanin (Brown 

et al., 2002; Farnham et al., 2004; Charron et al., 2005ab) and lutein (Farnham 

and Kopsell, 2009; Ibrahim and Juvik, 2009) was primarily due to genotype. For 

γ-tocopherol, genotype was a large source of variation, but this compound was 

equally influenced by location and season (also found by Ibrahim and Juvik, 

2009). For glucobrassicin and neoglucobrassicin the location was the largest 

source of variation, but also L×S interaction was very influential, particularly for 

neoglucobrassicin, which is supported by Kushad et al. (1999) and Schonhof 

et al. (2004). Jasmonic acid, a signal transduction compound in plants, is 

up-regulated under conditions of plant stress, wounding, and herbivory. 

Increased endogenous levels or exogenous application of this compound (or 

methyl jasmonate) increases biosynthesis and transport of neoglucobrassicin 

to broccoli florets. This up-regulation was not observed for glucobrassicin 

biosynthesis (Kim and Juvik, 2011). This could explain why neoglucobrassicin 

was primarily under the control of Location and L×S interaction in our study. 

Season was the largest variance component for δ-tocopherol and zeaxanthin, 

which contrasts with the work of Ibrahim and Juvik (2009) who found genotype 

had the largest influence on these compounds, followed by genotype by 

environment interaction although this study was constrained by the fact that 
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Figure 5.4 Principal components biplot of phytochemicals (vectors) and 23 cultivars (circles) grown in 
four seasons in Oregon and Maine. A. Biplot for conventional production, B. Biplot for organic 
production. See Table 1 for cultivar name abbreviations. Trait abbreviations: GLR: Glucoraphanin; GLB: 
Glucobrassicin; NGB: Neoglucobrassicin; DTO: δ-tocopherol; GTO: γ-tocopherol; ATO: α-tocopherol; LUT: 
Lutein; ZEA: Zeaxanthin; BCA: β-Carotene.
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the experiment was conducted in only one location over two growing seasons. 

For the other compounds such as α-tocopherol and β-carotene, L×S and the 

G×L×S interactions were most important.

Overall we found high genetic correlations between glucosinolates in organic 

and conventional trials. When trial locations were analysed separately, M 

main effect was present for glucobrassicin and neoglucobrassicin. The 

mean concentrations of glucobrassicin and neoglucobrassicin in broccoli 

from Oregon organic trials had higher concentrations compared to Oregon 

conventional trials, while Maine trials were comparable between management 

systems (Table 5.2, Supplemental Figure 5.1A-C). These results can be 

explained by the larger environment effect on glucobrassicin and genotype 

by environment effect on neoglucobrassicin found in the variance component 

analysis indicating sensitivity of these compounds to abiotic and/or biotic 

stresses. Our location specific findings are supported by those of Meyer and 

Adam (2008) who performed a comparative study of the glucosinolate content 

of store bought organic and conventional broccoli and determined that the 

indolyl glucosinolates, glucobrassicin and neoglucobrassicin were significantly 

higher in the organically grown versus the conventionally grown. Evaluation of 

10 broccoli genotypes over two years by Brown et al. (2002) further supports 

our findings and those of Rosa and Rodrigues (2001), Vallejo et al. (2003), and 

Farnham et al. (2004), that variation in concentration for glucoraphanin was 

primarily due to genetic variation, while differences in glucobrassicin was 

due to environmental variation (e.g. season, temperature) and genotype by 

environment interaction. The significantly higher levels of glucobrassicin in 

Oregon in the Fall harvested trials compared to Maine could be attributed to 

the higher maximum temperatures and GDD in Oregon compared to Maine.

Compared to glucosinolates, there is substantially less research on the genotype 

by environment interaction of tocopherol and carotenoid phytochemical 

groups in broccoli, and no specific studies exploring the influence of organic 

production system. In our study, minor management system effect at the overall 

trial analysis level was observed for the tocopherols and for carotenoids, there 

was management system effect only for lutein in Oregon Spring trials. Picchi 

et al. (2012) also did not find differences in levels of carotenoids in cauliflower 

in organic versus conventional systems. In the tocopherols, there were no 
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significant differences in location, but for δ- and γ- tocopherol concentration 

levels were higher in the fall compared to the spring, while for α-tocopherol, 

concentration levels were higher in the spring compared to the fall. For the 

carotenoids, there were no significant location differences, however there was 

a seasonal trend that all carotenoids were higher in spring compared to fall. 

Ibrahim and Juvik (2009) found significant environmental variation among 

24 broccoli cultivars for carotenoids and tocopherols which they attributed 

to the stressful production environments. Factors explaining the genotype 

and genotype by environment interaction components of variation in the 

carotenoids and tocopherols could be clarified by the fact that environmental 

stimuli are both up- and down-regulating genes associated with carotenoid 

and tocopherol biosynthesis. There is evidence in the literature that there are 

coordinated responses of the carotenoid and tocopherol antioxidants in vivo. 

There was a reduction in rape seed (Brassica napus) tocopherol content in 

response to increased carotenoid levels due to over expression of the enzyme 

phytoene synthase (Shewmaker et al., 1999). This response could explain the 

negative correlation between γ- tocopherol concentration and the carotenoids 

observed in our trials.

5.4.2 Differences in phytochemical content between different genotypes

 and genotypic classes 

The partitioning of variance indicated that genotype was an important source of 

variation for all glucosinolates. The cultivar ranking and rank correlation analysis 

demonstrated that there was a pattern in genotype content of glucosinolates 

where cultivars with the highest concentrations of glucoraphanin had the 

lowest levels for glucobrassicin (Supplemental Figure 5.1A-C). In our trials, the 

range in glucoraphanin concentrations across cultivars was (1.15-7.02 µmol/g 

DW, Supplemental Table 5.4), while glucobrassicin was 1.46-3.89 µmol/g DW, 

Supplemental Table 5.5). Several of the cultivars with the highest concentrations 

of neoglucobrassicin were those that had the highest concentrations of 

glucobrassicin. Range in neoglucobrassicin concentrations across cultivars was 

0.68-4.54 µmol/g DW, Supplemental Table 5.6). In earlier studies, glucosinolate 

concentrations in broccoli have shown dramatic variation among different 

genotypes. Rosa et al. (2001) studied total glucosinolate levels in eleven cultivars 

of broccoli and found ranges from 15.2-59.3 µmol/g DW. Among 50 accessions 

of broccoli Kushad et al. (1999) found glucoraphanin content ranges from 0.8-
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22 mmol/g DW with a mean concentration of 7.1µmol/g DW, while Wang et al. 

(2012) found glucoraphanin content of five commercial hybrids and 143 parent 

materials ranging from 1.57-5.95 µmol/g for the hybrids and 0.06-24.17 µmol/g 

in inbred lines and Charron et al. (2005a) found ranges from 6.4-14.9 µmol/g DW. 

While the means in our study are somewhat lower, they are within the range 

of other studies.

A genotype effect was observed for tocopherols, but predominantly for 

γ-tocopherol. The PCA biplots (Figure 5.4AB) and the correlation analysis 

(Table 5.5) demonstrated the high positive correlations between δ-tocopherol, 

α-tocopherol and the carotenoids (α-tocopherol and β-carotene were also highly 

correlated in the Kushad et al. (1999) study. The cultivar relationship to different 

phytochemicals was represented in the biplots as well as in the cultivar content 

and stability analysis (Figure 5.1). Many cultivars with the highest concentrations 

in the tocopherols and carotenoids were open pollinated cultivars, inbreds and 

early maturing, older F1
 hybrids. Many of this same group were also relatively 

high in glucobrassicin concentrations. Kurilich et al. (1999) found that carotenoid 

and tocopherol concentrations among 50 broccoli lines were highly variable and 

primarily genotype dependent. Specifically, levels of β-carotene ranged from 

0.4-2.4 mg/100 g FW. Ibrahim and Juvik (2009) also found broad ranges for total 

carotenoid and tocopherol concentrations among 24 genotypes ranging from 

55-154 mg/g DW and 35-99 mg/g DW, respectively. Farnham and Kopsell (2009) 

studied the carotenoid levels of nine double haploid lines of broccoli. Similar 

to our findings, lutein was the most abundant carotenoid in broccoli ranging 

from 65.3-139.6 µg/g DM. The sources of variation for lutein were predominantly 

genotype, followed by environment and GxE interaction, which also supports 

our findings. No genotypic differences were found for β-carotene in Farnham 

and Kopsell (2009), which is in contrast to our findings. Overall, they found that 

most of the carotenoids measured were positively and highly correlated to one 

another as was observed in our study (Table 5.5). Kopsell et al. (2004) found lutein 

levels in kale of 4.8–13.4 mg/100 g FW where the primary variance components 

for both lutein and β-carotene were also genotype and season.

Our research aimed also to address the question whether the phytochemical 

content of broccoli cultivars is associated with certain genotypic classes, e.g. 

open pollinated vs. F1
 hybrids; older vs. newer cultivar releases; and between 
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commercial sources. Broccoli is typically a cross-pollinated, self-incompatible 

crop species and cultivars are either open pollinated and composed of 

heterogeneous genetically segregating individuals, or F
1
 hybrids produced 

by crossing of two homozygous inbred lines, resulting in homogeneous 

populations of heterozygous individuals. In the 1960’s virtually all broccoli 

grown was derived from OPs. By the 1990’s almost all commercial cultivars were 

hybrids (Hale and Farnham, 2007). 

In our trials with 18 F
1
 hybrids (released between 1975-2005) and 3 open 

pollinated cultivars (released from 1985-2005), we found several interesting 

trends related to genotype and genotypic class performance as it related to the 

three groups of phytochemicals. When analysing F
1
 hybrid and open pollinated 

cultivars, they also demonstrated different performance patterns depending 

upon the individual phytochemical or group of compounds analysed. When 

cultivars were ranked for content and stability per phytochemical, there 

were distinct trends for certain compounds such as late maturing, F
1
 hybrids 

outperforming early maturing F
1
 hybrids and open pollinated cultivars for 

glucoraphanin, while the inverse was found for glucobrassicin and all carotenoids 

studied. This analysis was further supported by the PCA biplots that showed 

a strong relationship for select cultivars to certain phytochemicals or groups 

of phytochemicals such as ‘OSU OP’ to the carotenoids. When the full set of 

cultivars was divided into F
1
 hybrid and open pollinated groups and the means 

compared by phytochemical, the results further supported the individual cultivar 

analysis where F
1
 hybrids had higher mean values for glucoraphanin than the 

open pollinated cultivars (Figure 5.2A). Clear cultivar performance differences 

were identified where early maturing versus late maturing cultivars performed 

differently depending upon the phytochemical (Figure 5.2B). We also found 

that late maturing cultivars had higher concentrations for glucoraphanin than 

early maturing lines (and the inverse for glucobrassicin and the carotenoids). 

Picchi et al. (2012) studied the quantity of glucosinolates of an early and late 

maturing cultivar of cauliflower grown in one conventional and three organic 

production systems, and found a significantly higher level of glucoraphanin 

in the later maturing cultivar compared to the early maturing cultivar in the 

organic production system. Another interesting trend was that cultivars with 

higher concentration levels for those phytochemicals whose expression is 

heavily influenced by environmental factors were not necessarily the most 
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stable across trial environments; as was the case with neoglucobrassicin, δ- and 

γ-tocopherol in our study. For traits where genotype played a more significant 

role in contributing to variation, cultivars with a higher concentration level 

tended to also be those that were most stable across environments as was seen 

for lutein and glucoraphanin concentrations.

No significant differences were found for cultivar performance in phytochemical 

concentrations between genetic materials originating from two distinct 

commercial sources, with the exception of lutein (data not shown). When the 

full set of broccoli cultivars were analyzed for a correlation between date of 

release and mean level of phytochemical content across trials, no significant 

correlation was found with the exception of a negative trend for glucobrassicin 

(Figure 5.3). Our data does not support the idea that modern breeding for high 

yield performance and disease resistance necessarily leads to a trade-off in 

level of phytochemicals. Previous reports examining the relationship between 

year of release and performance had focussed on wheat vitamin and mineral 

content (Murphy et al., 2008); Hussain et al. (2010); Jones et al. (2010), and mineral 

content in broccoli (Farnham et al., 2011). However these authors did not study 

phytochemical content and their results were equivocal on the question on 

an innate biological trade-off between increased yield and nutritional content. 

Not many studies have included two or more groups of phytochemicals. In 

our study with three phytochemical groups we found that phytochemicals 

demonstrating a negative correlation with one another (e.g. glucoraphanin with 

the carotenoids), showed an inverse cultivar response: e.g. cultivars with highest 

concentrations of glucoraphanin were the lowest in the carotenoids and vice 

versa. When both horticultural traits and phytochemicals were analysed for their 

phenotypic correlation, head weight was significantly and positively correlated 

with glucoraphanin and negatively correlated with δ- and α-tocopherol and the 

carotenoids. Farnham and Kopsell (2009) explained that negative correlations 

may occur as a result of increased biomass accumulation in a certain genotype 

that is not accompanied by increased carotenoid production, effectively 

lowering the carotenoid concentration in the immature broccoli florets when 

pigments are expressed. Comparatively, head color was highly correlated to the 

carotenoids and negatively correlated to the glucosinolates overall. The cultivar 
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‘OSU OP’ was explicitly bred for a dark green stem and head color, not only for a 

darker green dome surface but also for a dark green interior color between the 

florets of the dome and in the stem (personal communication, Jim Myers 2013). 

‘OSU OP’ was the highest in overall carotenoid concentrations across trials as it 

is known that carotenoids are correlated with chlorophyll concentrations and 

the intensity of green pigmentation (Khoo et al., 2011).

5.4.3 Perspectives on breeding broccoli for enhanced phytochemical

 content specifically for organic agriculture 

Our study included predominantly broccoli cultivars selected for broad 

adaptability in conventional production systems and not purposely bred for 

high phytochemical content nor for adaptation to organic agriculture. What 

we can conclude from our data is that there has been little change in levels 

of several phytochemicals over three decades of breeding. This may indicate 

genetic variation for phytochemicals is limited in elite germplasm, or it may be 

the result of the lack of selection tools for these traits. This may be changing 

with recent efforts to introgress high glucoraphanin from B. villosa to produce 

the high-glucoraphanin F1
 cultivar ‘Beneforté’ (Faulkner et al., 1998; Mithen et 

al., 2003; Traka et al., 2013). The seed industry needs to exploit known sources 

of variation in the genus Brassica to enhance levels of other health-promoting 

phytochemicals and to broaden the genetic diversity of commercial broccoli 

germplasm. Our finding of a strong correlation between dark green color 

and high carotenoid levels provides breeders with a simple and efficient 

means of increasing carotenoids. The three groups of phytochemicals studied 

contribute to health promotion in different ways. As these groups are related 

to different metabolic pathways selecting for one compound does not 

necessarily inadvertently improve the other compounds, and may even result 

in negative correlation as we have seen in our data between glucoraphanin 

and the carotenoids. Although these compounds belong to different metabolic 

pathways, their production may be coordinated through regulatory feedback 

loops, or the structural and/or regulatory genes controlling these pathways 

may be genetically linked. 

Designing a breeding program for broccoli high in glucosinolates would require 

the following considerations generated from our research: (1) Glucoraphanin 

is a highly genetically determined compound with minor location and season 
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main effects but with substantial G×L×S interaction., (2) Comparatively, 

glucobrassicin and neoglucobrassicin are more impacted by location and 

season and L×S interaction with highest glucobrassicin concentrations and 

largest range in our Oregon Fall trials and neoglucobrassicin highest in Oregon 

Spring trials., (3) Cultivar performance for glucoraphanin and glucobrassicin 

and neoglucobrassicin was negatively correlated indicating that there may be 

a trade-off between glucoraphanin on the one hand, and glucobrassicin and 

neoglucobrassicin on the other hand., (4) Selection for glucoraphanin without 

consideration of horticultural traits would probably result in larger headed 

and later maturing cultivars. Conversely, selection for smaller headed, early 

maturing cultivars would favor glucobrassicin and neoglucobrassicin at the 

expense of glucoraphanin. 

A breeding program for broccoli for high tocopherol content would require: (1) 

Overall the tocopherols were more season, location and L×S dependent and 

had lower overall repeatabilities compared to the glucosinolates. In a structured 

genetic population where additive genetic variance could be partitioned, 

narrow sense heritability would likely be low, and increasing tocopherol content 

would best be conducted with breeding methods suited to low heritability 

traits., (2) δ- and γ-tocopherols were both season dependent and fall grown 

broccoli had higher concentrations of these compounds across trials and a 

wider range of content levels, whereas levels of α-tocopherol were higher in 

spring but the range was comparable under both seasons. Thus, fall would be 

the preferred environment for breeding for these compounds., (3) There were 

no significant differences for location for δ- or γ-tocopherol, but the average 

levels of α-tocopherol levels were significantly higher in Oregon than Maine, 

suggesting greater potential for genetic gain in the Oregon environment.

If the goal is to design a breeding program for broccoli enhancing the levels 

of carotenoids it would require the following considerations: (1) For all three 

carotenoids studied, genotypic variation, particularly for lutein, was relatively 

more important than location and season., (2) However, zeaxanthin exhibited 

a large S (spring) and L×S interaction. For both β-carotene and lutein, spring 

grown broccoli had significantly higher levels than fall produced. Thus, selection 

for carotenoids would probably be more effective in spring than in fall., (3) Early 

maturing and small headed cultivars had higher levels of carotenoids. Since most 
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of the carotenoids are associated with the outer surfaces of the inflorescence, 

smaller broccoli heads with a greater surface area to volume ratio should show 

higher concentrations of these compounds., (4) Because carotenoids have high 

G main effect good germplasm sources as indicated in Figure 5.1 have high 

concentrations of carotenoids and demonstrated stability across environments. 

As all three carotenoids are highly correlated with one another, selecting for 

one should effectively select for all., (5) Selection for darker green colour more 

widely distributed throughout the tissues of the head should allow the breeder 

to relatively efficiently increase carotenoid content in broccoli.

In closing, we want to address the question of selecting in an organic or 

a conventional environment. The argument commonly used to support 

selecting in productive environments is that heritabilities are higher compared 

to resource poor environments (Ceccarelli, 1994; 1996). Organic is often 

considered a low-external input environment, resulting on average in 20% less 

yield compared to conventional production (De Ponti et al., 2012). Nevertheless, 

in our trials repeatabilities for some phytochemicals were higher or comparable 

to conventional (Table 5.3). Narrow sense heritabilities would be expected to 

be significantly lower. For those traits where repeatabilities were higher or 

comparable, direct selection under organic systems could enhance selection 

gain. In all cases, the ratio of correlated response to direct response was less 

than one suggesting that direct selection would allow more rapid progress than 

correlated selection. Our data on phytochemicals did not show a wider range of 

levels under organic conditions as we found for horticultural traits in the same 

trials (Renaud et al., 2014), however, in several cases, repeatabilities in organic 

production were higher than in conventional. 

To maximize efficiency in a breeding program, commercial breeders may 

seek to combine breeding for both conventional and organic markets, and a 

combination of strategies can be proposed. Some studies that utilized highly 

heritable (agronomic) traits, where cultivar yield performance ranked similarly 

between organic and conventional management systems and which had 

high genetic correlations, suggested that early breeding be conducted under 

conventional conditions, with the caveat that advanced breeding lines be tested 

under organic conditions for less heritable traits (e.g. Löschenberger et al., 2008; 

Lorenzano and Bernardo, 2008). In studies where cultivar yield performance 
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differed between management systems and there were significant differences in 

cultivar ranking, and in some cases low genetic correlations for lower heritability 

traits (e.g. Kirk et al., 2012; Murphy et al., 2007), these studies recommended 

that cultivars intended for organic agriculture be selected only under organic 

conditions. In our study of phytochemicals, we would recommend for organic 

purposes selection under organic conditions for the compounds where genetic 

correlations between organic and conventional were moderate. 
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Broccoli phytochemical content 
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Supplemental Figure 5.1Comparison of broccoli cultivars for glucosinolates (µmol/g DW) grown across 
all trials in two locations (Maine and Oregon), in two seasons (Fall and Spring), in two management 
systems (Conventional and Organic), and at the individual trial level, 2006-2008. A. Glucoraphanin, B. 
Glucobrassicin, C. Neoglucobrassicin
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Supplemental Figure 5.2 Comparison of broccoli cultivars for tocopherols (µmol/g DW) grown across 
all trials in two locations (Maine and Oregon), in two seasons (Fall and Spring), in two management 
systems (Conventional and Organic), and at the individual trial level, 2006-2008. A.  δ-tocopherol, B. 
γ-tocopherol, C. α-tocopherol. 
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Supplemental Figure 5.3 Comparison of broccoli cultivars for carotenoids (µmol/g DW) grown across 
all trials in two locations (Maine and Oregon), in two seasons (Fall and Spring), in two management 
systems (Conventional and Organic), and at the individual trial level, 2006-2008. A. Lutein, B. Zeaxanthin, 
and C. β-carotene.
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General Discussion

6.1 Introduction

The overall objective of the research reported in this thesis was to analyse inter-

related regulatory and technical challenges in the organic seed and breeding 

sector, using broccoli (Brassica oleracea var. italica) as a model crop and the US 

as the location. The research aimed to understand and analyse the tensions 

between farmers’ and seed companies’ interests that have been created by 

evolving organic seed regulations, and identify ways to develop a domestic 

and international organic seed regulation to better support organic agriculture 

in general and crop improvement in particular. However, in order to be able 

to translate the diverse crop requirements identified for stakeholders in the 

broccoli seed chain in the US into a strategy for plant breeders, the horticultural 

and phytochemical performance of commercially available broccoli cultivars 

had to be established. The research thus also studied the performance of 

broccoli cultivars grown under organic and conventional farming conditions in 

two contrasting broccoli producing areas (Maine and Oregon, US).

This chapter summarizes the main findings of the four component studies that 

address the objective. Then, by combining the findings of the organic seed 

regulatory studies and the field trials, a synthesis and discussion is provided 

based on the following five propositions: (1) Regulatory clarity is the foundation 

for organic seed sector development, (2) Organic management systems influence 

horticultural and phytochemical trait performance, (3) A crop ideotype can 

serve as a communication tool to arrive at an appropriate variety assortment, 

(4) Genetic variation is a requirement to develop optimized cultivars, and (5) 

Multiple seed system models contribute to organic sector growth.

6.2 Main findings

The current organic seed regulatory structure in the US does not optimally 

support organic seed sector development (Chapter 2). In the US case, the 

regulators are waiting for the non-governmental stakeholders to organize the 
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sector to comply with organic seed regulations. Self-organisation has been only 

partially achieved, and sector development is evolving too slowly to optimally 

support organic seed market growth. While other on-farm organic inputs are 

rigorously regulated (e.g. compost, manure), seed is seemingly not recognized 

by the regulators as an input (although it could be considered a foundational 

input). Regulators appear unsympathetic to the dilemma created for certifiers, 

growers and seed companies by the lack of clear regulatory language and failure 

to establish a clear process, procedures and timeline for achieving closure on 

interpretation, implementation and enforcement. At the same time the state of 

the US regulation has put the organic sector at risk of violating organic integrity. 

The regulatory ambiguity contributes to potential violations in the use of non-

acceptable seed and seed treatment inputs, and perpetuates inconsistency in 

certifier seed regulatory interpretation and enforcement. It has failed (so far) 

to establish a level playing field among stakeholders. The organic regulation 

has perpetuated a concern amongst the diverse stakeholder groups that 

strict enforcement would limit the varietal assortment (genetic diversity and 

farmers’ choice) available, increase grower costs and require seed companies 

to invest in a market that they consider relatively small or that they do not have 

the skills or resources to support (in regards to seed production or breeding). 

Simultaneously, however, the dynamic relationships that have evolved in the 

various networks that have emerged in response to the seed regulation, have 

shaped the unfolding process of regulatory governance. In spite of regulatory 

ambiguity, the seed sector is developing, and a broader variety assortment 

and larger quantities available of higher quality have become available. These 

developments however, are too slow to meet the growth in the organic sector 

and seed shortages and lack of a broad range of appropriate varieties continue 

to affect the sector. Conversely, the lack of an appropriate assortment is shown 

to be one of the root causes of stakeholders’ reluctance to push for 100% 

compliance with the US seed regulation. To enable to regulators to improve the 

regulatory guidance documents, the seed sector should communicate better 

the changes in organic seed availability and quality. 

In the second study (Chapter 3), when the US organic seed regulatory 

environment was compared to that of the EU and Mexico, delays in seed sector 

growth caused by regulatory ambiguity was found with each jurisdiction 

studied. The analysis identified important risks of non-tariff trade barriers in 
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the organic sector, arising from incompatible regulatory frameworks and the 

uneven progress in each case toward achieving 100% closure. Specifically, 

as the EU moves at a more steady rate toward 100% closure, there are both 

positive and negative implications for the US and Mexico. In the more mature 

EU regulatory environment, there is increasing investment in the organic seed 

sector with more cultivars produced and bred for the global organic market. 

Each region was shown to demonstrate varying capacity for self-organising 

governance of their seed sector in relation to the state’s regulatory role.  In the EU 

context, the work of the non-profit organisation, ECO-PB, has been instrumental 

in moving matters forward, combined with clear regulatory language and 

specification of the interpretive requirements (such as establishment of a 

database of all approved cultivars and their availability). These measures can 

be compared to the US, where the initiatives of non-profit organizations have 

attempted to interpret the regulations in ways that lack official sanction. Mexico 

is early in the process of outlining their organic seed regulation, and until now has 

functioned in response to EU and US requirements. The additional complexity 

of strict phytosanitary requirements that conflict with organic regulation has 

delayed progress in the organic seed sector in Mexico. 

This study demonstrated that progress toward regulatory harmonisation in 

the organic seed sector among the three cases studied has been slow, uneven, 

and motivated by varying levels of formal governance, corporate influence and 

stakeholder engagement. It is suggested that both the US and Mexico would 

benefit from the policy instruments that the EU member states have put in place 

to govern its organic seed sector, and from bringing to an end derogations 

that allow use of conventional seed. The instruments include implementation of 

national databases to provide an overview of available organic seed, and expert 

groups to annually assess available variety assortments in each crop group in 

order to compose categories of crops with sufficient quantity and diversity of 

seed available. All jurisdictions would benefit from analysing other aspects of 

their agricultural policy (e.g. phytosanitary regulation in Mexico) and how these 

measures potentially align or conflict with the evolving organic regulatory 

environment, in order to avoid impeding further regulatory developments and 

creating non-tariff barriers to market growth. 

29335 Renaud.indd   200 06-06-14   12:32



General Discussion

201

In the field trial and phytochemical testing component of this study (Chapters 

4 and 5), the aim was to determine if commercially available broccoli cultivars 

would perform differently (by trait performance, cultivar ranking and trait 

repeatability) in organic compared to conventional environments in order 

to identify appropriate cultivars for organic growers and the best selection 

environment for breeding for organic agriculture. Organic trial locations were 

intentionally selected on farms under long term organic management as 

less mature organic farms or those in conversion may more closely resemble 

conventionally managed farms. Our organic trials produced comparable 

head weight to the conventional trial locations, and therefore the level of the 

environmental stress that we hypothesized would affect trait performance and 

phytochemical content was minimal. For most traits, there was no management 

effect across environments. Management main effect was only identified 

at the per trial level, demonstrating that each individual location/season/

year combination constituted a unique environment, and that genotype 

by management system interactions resulted from different factors in each 

environment. In the partitioning of variance components across all trials 

location, season and its interactions were often the largest source of variation, 

followed by genotype main effect. While we did not see the trait performance 

differentiation between production systems, we did observe some individual 

varietal rank changes when performance of cultivars were compared between 

organic and conventional management, including changes in stability of 

performance (by head weight and by phytochemical concentrations) across 

trial environments. Larger genotypic variances in organic environments for 

horticultural but not phytochemical traits were observed, demonstrating the 

innate heterogeneity in the organic agricultural system and varietal response 

to such variation. Our results produced comparable or higher repeatabilities 

under organic and the ratio of correlated response to direct response for all 

traits was close to 1. The combined analysis of the repeatabilities and ratio of 

correlated response to direct response would suggest that selection in organic 

environments is equal or superior to selection in conventional environments. 

As with horticultural traits, management main effect did not play a significant 

role across trials in the phytochemical component of the trials (Chapter 5). At 

the individual compound level, genotype main effect was most important for 

glucoraphanin, neoglucbrassicin and the carotenoids, while glucobrassicin 
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and the tocopherols were more influenced by environment and various 

interactions. We identified distinct positive and negative trait correlations (e.g. 

glucoraphanin positively correlated with head weight and negatively correlated 

with carotenoids). For the content of the glucosinolates, glucobrassicin and 

neoglucobrassicin, the early maturing F
1
 hybrids and open pollinated varieties 

had the highest levels, while for glucoraphanin highest levels were found in the 

late maturing F
1
 hybrids. For traits that were strongly associated with genotype 

main effect (i.e. glucoraphanin and lutein) the cultivars with the highest 

concentrations of these compounds were also the most stable across trials. 

Season effect was greater compared to the location (Maine versus Oregon) effect 

for the phytochemicals compared to the horticulture traits (glucoraphanin being 

higher in fall environments; carotenoids higher in spring environments). Unlike 

the horticultural traits, phytochemical variances were not larger in organic 

compared to conventional growing conditions, but repeatabilities and the ratio 

of correlated response to direct response were similar, which would support the 

benefit of selecting in organic systems to optimize nutrition targeted breeding 

programmes. 

We can summarise our findings as follows. The three hypotheses stated at the 

start of the research reported in this thesis were: (1) An organic seed regulation 

is a necessary step toward an optimized organic seed sector, (2) Cultivars bred 

for high input conventional growing conditions may not be optimal for organic 

farming systems, and (3) Organic production systems produce crops of higher 

nutritional value. Hypothesis 1 and 2 were confirmed by our study. Hypothesis 

3 was not confirmed. We found that genotypic, location and season main effects 

were more important and that no major differences were found for nutritional 

value by management system. These findings are elaborated in section 6.3.
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6.3 Discussion of research findings

The five propositions introduced at the beginning of this chapter are now 

discussed in light of the research findings and relevant literature.

6.3.1 Regulatory clarity is the foundation for organic seed sector   

 development

This study brought to light the dilemma that organic regulation can help to 

push the sector toward 100% organic seed usage, and support the values of 

organic agriculture, but also that organic seed regulation can limit the available 

assortment of cultivars at least in the short term. Seed company representatives 

argue that, given the current ambiguity in the US in the organic seed regulation, 

there are economic restrictions to the number of cultivars that can be included 

in a company’s portfolio of certified organic seed. In the US, growers do not want 

their varietal assortment options limited through strict regulatory enforcement. 

They claim that biodiversity (both broader genetic background and cultivar 

diversity) is an important component within management practices to enhance 

stability and resilience in an organic agricultural system. Organic growers would 

rather have cultivars suited to their management system than adapt their 

management to cultivars. Under the IFOAM principles of organic agriculture 

this is expressed in the Principle of Ecology (Organic Agriculture should be 

based on living ecological systems and cycles, work with them, emulate them 

and help sustain them, see Table 1.1 in Chapter 1 (IFOAM, 2012). The interviews 

in this study also indicated that smaller-scale direct market growers tend to 

grow a larger range of crop species and are searching for a larger diversity of 

cultivars within each species to distinguish themselves in the market. Large-

scale growers grew a more limited number of crops and wanted access to the 

same cultivars as their conventional counterparts to adhere to the same strict 

market product conformities. Overall, the diversity of growers’ interests calls for 

making available a wide diversity of cultivars. A consideration for the evolution 

of the organic seed regulatory environment is how to attain a balance between 

stimulating growers to use organic seed without too strictly forcing limitations 

on the diversity of the crops/varieties they use. 

This study demonstrated that the full potential of an optimized organic seed 

sector cannot be realized without enhanced regulatory stipulations but also 
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that without an established organic seed market, there will be too little stimu-

lus for investment to breed cultivars better adapted to organic agriculture. 

The long term implications of on-going regulatory ambiguity (resulting in too 

many options for obtaining derogations for use of conventional seed) is that it 

frustrates commercial returns on investment in organic seed production and 

limits improvements in the capacities of seed companies to produce high quality 

organic seed. The EU has made the most progress (of the three jurisdictions 

studied) in moving toward 100% use of organic seed. One can still wonder 

whether the deliberate step by step approach that has occurred in the EU (where, 

in several member states, derogation options are closing for an increasing number 

of crops that already have a sufficient diversity of cultivars available in organic 

seed form), will be sufficient to secure 100% use of organic seed in all member 

states. Perhaps a more rigorous approach is needed, to ensure compliance across 

all member states, and this may be proposed in the EU in the near future. The 

European Commission (EC) recently revisited the overall organic standards and 

Der Spiegel, a leading German newspaper, has reported that the EC considers the 

number of options for achieving derogations that allow use of conventionally 

produced inputs to be a violation of the integrity of the organic sector, and is 

about to propose to drop the derogation option (Anonymous, 2014 ).

6.3.2 Organic management systems influence horticultural and

 phytochemical trait performance

An important aspect of developing a full assortment of organically appropriate 

cultivars is the question of which cultivars to have in the assortment. To answer 

that question one needs to understand how different organic management 

systems are compared to conventional systems and how cultivars perform in 

different systems. We first address whether the trial results in this study were 

representative for the organic sector. 

Fundamentally, organic agricultural systems are premised on the ecological 

functioning of its soils. Under IFOAM principles of organic agriculture this is 

expressed in the Principle of Health, referring to the interrelationship of healthy 

soils, plants and animals (IFOAM, 2012). According to Ugarte and Wander (2012) 

and as observed in our study, soil factors related to organic matter, microbial 

activity (abundance and diversity), and potential mineralizable nitrogen are 

often higher in farming systems with well managed organically fertilised soils 
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compared to mineral fertilised soils with water soluble nitrogen. In this study, 

the higher total nitrogen and higher potentially mineralizable nitrogen of 

the organic locations provided higher nitrogen availability compared to the 

conventionally managed trial sites. Soil levels of P and K in both management 

systems were adequate for good broccoli production (Greenwood et al., 2005, 

2006; Li et al., 2011). 

In this study, we found that the broccoli cultivars grown under organic 

management produced on average comparative yields (head weight) to 

those grown under conventional management. This is in contrast to much of 

the literature (de Ponti et al., 2012; Seufert et al., 2012) who after reviewing 

comparative studies concluded that overall organic yields were on average 

lower (a reduction of 5-34%) compared to conventional. The farms for the 

study were chosen intentionally for long-term organic management (>5 years) 

because of what earlier studies had revealed (Smukler et al., 2008; Knight et al., 

2010). The comparable yields between organic and conventional trials were 

also in contrast to what we anticipated, because such field comparisons had 

not yet been published in the literature for broccoli. 

This study did reveal a broader variance in trait performance under organic 

compared to conventional conditions, and certain cultivar trait rank changes. 

In certain trials (specifically in Oregon) some cultivars showed higher yields 

under organic than under conventional, as often experienced under organic 

conditions where mineralisation continues under warm fall conditions and 

favours nitrogen responsive cultivars. Broccoli grown under spring conditions 

may be at more of a disadvantage due to slower nitrogen mineralization rates 

under cooler temperatures affecting soil microbial activity resulting in reduced 

yields compared to conventional production fields. This was observed in trials 

in Oregon where there were 100 fewer growing degree days (GDD) in Spring 

in 2008 compared to 2007 and where organic yields were lower than under 

conventional conditions. This supports the argument of the organic sector 

that yield stability across various growth conditions is even more important for 

organic growers than for conventional growers who can support crop growth 

more easily with water soluble fertilisers. One of the organic plant breeding 

challenges identified from this study is the need to breed for better nitrogen 

use efficiency under cool spring conditions. 
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6.3.3 A crop ideotype can serve as a communication tool to arrive at an 

 appropriate variety assortment

Organic growers need to comply with organic regulations that require the 

seeds used in organic production systems are: (1) produced organically and, 

(2) comply with the permitted breeding methods (e.g. refraining from genetic 

engineering). In addition, seed producers need to ensure that seeds produced 

for the organic sector perform well under organic management practices, and 

meet the varietal needs of growers operating in diverse locations and producing 

for diverse end uses. For breeders to incorporate the right traits into a breeding 

program for organic agriculture, good communication between breeders and 

growers is needed. This study highlights the distinctive role of certifiers in the 

organic seed sector in determining the seed assortment. In the US the certifiers 

are positioned to play a central role in decisions concerning derogations but 

they lack expertise on required varietal traits to inform their decisions. In 

Europe, in an increasing number of countries, Expert Groups annually assess the 

available assortment, and use this information to guide derogation decisions. 

Thus, organic growers need also to communicate with certifiers about the 

cultivars they choose to use and the traits they require to fulfil their regulatory 

requirements to use certified organic seed. Under the IFOAM principles of 

organic agriculture this is expressed in the Principle of Fairness and in terms 

of this study is represented through the shared stewardship that farmers, 

breeders, certifiers and seed companies have in co-creating the organic seed 

sector (IFOAM, 2012).

An organic crop ideotype outlines the list of crop varietal traits required by 

organic growers for optimal cultivar performance in an organic production 

system. Defining an organic crop ideotype provides a useful format for 

growers and breeders to communicate  the required traits. Once an ideotype 

has been defined, growers can match their needs with the cultivars available, 

and breeders have a “blueprint” for cultivar development as e.g. described 

generally by Lammerts van Bueren et al. (2002) and more specifically for wheat 

by Löschenberger et al. (2008). An organic crop ideotype also can be used as 

a communication tool between growers and certifiers i.e. to communicate 

varietal differences that could support derogation requests. There are various 

methods for developing an organic crop ideotype. Annicchiarico and Filippi 

(2008a) performed variety trials and assessed the value of an index of a variety’s 
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suitability for organic systems for field pea in Northern Italy. Lammerts van 

Bueren et al. (2012) created a crop ideotype for onions through farmer field 

trials and Osman et al. (2008) through interviews with breeders. Wolfe et al. 

(2008) took the organic crop ideotype concept one step further and included 

the analysis of the marketplace and divided the ideotype into market segments 

for wheat by including the requirements of retailers and processors. 

Preferred traits identified

During the Oregon broccoli trials in July of 2007 and 2008, organic and 

conventional growers were invited to attend the variety trial locations and to 

identify their top five best performing cultivars. Farmers were also surveyed 

through a questionnaire for their preferred broccoli cultivar traits and their 

standard broccoli cultivar choice (Renaud et al., 2010). The organic growers 

tended to focus on fresh market production and thus sought broccoli cultivars 

that provided a primary harvest and a continued harvest with side-shoot 

development. While both the conventional and organic growers prioritized 

‘head size, head weight and overall yield’, conventional growers ranked 

‘uniformity in maturing’ and ‘capacity to harvest mechanically’ higher than 

their organic counterparts. The grower survey results indicated that the organic 

growers prioritized ‘abiotic stress resistance’ and ‘disease resistance’ higher than 

their conventional counterparts. Factors more important to organic than to 

conventional growers included broccoli cultivars with vigorous growth in soils 

with potentially low or fluctuating mineralization rates of nutrients, and the 

ability to tolerate weeds. In both the interviews and the field discussions, the 

organic growers expressed interest in knowing about the cultivars with higher 

levels of nutritional quality so that they could translate this information to their 

customer base and incorporate these cultivars into their production systems 

(Renaud et al., 2010). 

In addition to the interviews (Renaud et al. 2010; Chapter 2), the results of the 

field trials and a literature review were used to develop a broccoli crop ideotype 

trait list in which the relative importance of traits is compared between organic 

and conventional production systems. Traits identified can be grouped into 

three categories, based on the scoring (indicating importance for conventional 

and organic systems, respectively) shown in the last two columns of Table 6.1.
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Category 1: Traits of equal and high importance to both organic and 

conventional growers.

Traits that fell under this category included high head weight and high 

percentage harvestable yield, even maturity, and quality characteristics such as 

head firmness, smoothness and small, uniform bead size. Both sets of growers 

desired good field holding capacity in order to have some flexibility with their 

harvest schedules. 

Category 2: Traits of which importance varies by production scale, not 

production type.

Some traits identified depended upon the size of the growers’ production system 

such as large scale, mechanical or small scale production per crop and consider 

such traits in a diversified crop rotation. As conventional production consists of 

primarily large-scale growers moving towards mechanised harvest and aiming 

at both the fresh market and processing industries, traits related for mechanical 

harvest are more important than for a local, fresh market type. Many organic 

producers preferred flexibility in maturation and extended harvest from side-

shoot development (Myers et al., 2012). Large scale mechanical harvest requires 

uniform plants, high head placement in the plant and head maturity for a once 

over harvest. Processors have specific requirements concerning head diameter, 

dark uniform head- and stem colour and a crown cut type. 
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Category 3: Traits of greater importance for organic growers.

There is also category of traits that are not necessary different from traits of 

importance for conventional growers, but have a higher priority for organic 

growers compared to conventional growers such as resistance to biotic and 

abiotic stress. This is because organic growers refrain from chemical crop 

protectants and therefore need more emphasis on varietal characteristics 

related to abiotic and biotic stress tolerance. For some diseases, resistance is 

available such as for club root (Piao et al., 2009), downy mildew (Farnham et al., 

2002; Vicente et al., 2012), and black rot (Tonguc and Griffiths, 2004). However, in 

the case where breeding has not yet been conducted for the release of resistant 

cultivars other options can be applied. For example, hot water treatments are 

used for control of the seed borne diseases black leg and black rot in cultivars 

that are not resistant (Lammerts van Bueren et al., 2003). Where disease resistant 

cultivars are not available, certain morphological traits can reduce disease or 

pest incidence and compensate for use of chemical crop protectants. Examples 

are small beads and domed head shape that shed water more easily to prevent 

head rot (Myers et al., 2012). Osman et al. (2008) reported that for onions 

more erect leaves can shed water more easily reducing incidence of disease 

development. Another example of a morphological trait reducing ear disease 

incidence in cereals is in the length of the peduncle of wheat by selecting for 

cultivars that the ear rise above the leaf canopy and dries more rapidly after rain 

or morning dew (Löschenberger et al., 2008). Specific to Brassicas, epicuticular 

wax is another trait that can be manipulated to affect pest resistance where 

glossy leaves have shown less damage from lepidopteran pests, reduced 

tissue damage from thrips and but may contribute to more potential damage 

by flea beetles (Lammerts van Bueren et al., 2011). Also with respect to weed 

suppression certain morphological traits can replace the use of herbicides by 

choosing for more planophile and large leaf types that provide more shade to 

the soil and therefore better suppress weeds.

With respect to abiotic stress tolerance, traits are related to adaptation to low-

inputs of water and nutrients are of importance for organic growers. These traits 

relate to a reduced dependence on irrigation and an extensive root system to 

explore large soil volumes and improve capacity of nutrient uptake and use 

under cold spring conditions (see e.g. Messmer et al., 2012). As organic growers 
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often incorporated broccoli in their product assortment but are not located in 

optimal regions where broccoli is mainly bred for, growers were concerned with 

broccoli head development during hot summer periods (lack of vernalization, 

leafy heads). Because broccoli develops uneven-sized flower buds on its 

inflorescence when temperatures are above 24oC to 30oC (Heather et al., 1992), 

therefore this should be a breeding priority for non-temperate environments 

(Farnham and Björkman, 2011a and b).

Not all of the priority traits identified were evaluated in the field trial component 

of this study e.g. leaf attitude, floret extension, field holding capacity and post-

harvest quality were not studied. These traits should be prioritized in future 

breeding, with specific attention to their role in an organic production system 

compared to conventional. What we did learn from our study through analysing 

genetic correlations and GGE PCA Biplots (Chapter 4 and Chapter 5), was that 

broccoli head yield trials were not positively genetically correlated to head 

quality characteristics (head shape, bead uniformity). Therefore, if the goal is 

to breed for head firmness or bead uniformity, this can be achieved without 

relinquishing yield. As organic growers not only search for cultivars that fit 

in their management system but that also contribute to the resilience of the 

organic system, root system research for nutrient efficiency in broccoli should 

be explored.

Yield stability: the example of ‘Arcadia’

The results of the farmer surveys indicated that ‘Arcadia’ was the most 

commonly used cultivar by both organic and conventional growers. In the 

Oregon field evaluations, the both sets of growers also selected this cultivar 

as their preferred variety. When comparing these results to our own field trial 

results, we analysed trait performance and stability across trials to see why 

this cultivar performed successfully in this specific environment. Our results 

indicated that Arcadia was not a top yielder (a mid-ranking cultivar of the 23 

cultivars evaluated across trials, see Chapter 4), but in the top cluster for stability 

and demonstrated a consistent yield performance across seasons, years and 

management systems. The same trend was observed for the plant growth 

traits head diameter, head thickness, uniformity, head height, and leaf height. 

To dig deeper into why ‘Arcadia’ was a grower standard and to compare it to 

the more recently grower selected cultivars, ‘Green Magic’, and ‘Gypsy’, we 
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cross-examined trait performance and sought explanations for cultivar trait 

performance differences. The more recently released cultivars were higher 

yielding, earlier maturing, more uniform, had shorter plant/head placement 

architecture and had darker, and higher domed heads compared to ‘Arcadia’. 

These cultivars appeared to be more responsive to nitrogen availability, and 

produced larger heads and taller plants in organic compared to conventional 

trials, but developed very quickly and were prone to hollow stem. ‘Arcadia’ 

comparatively had a very high head placement in the plant facilitating ease of 

harvest and a flatter head shape (not preferred) and no incidences of hollow stem. 

For the trait overall quality,  ‘Arcadia' was a top performer in the Fall trials, but not 

in Spring trials. Overall quality appears to represent a group of characteristics 

including plant/head uniformity, vigor, and head quality as determined from 

our genetic correlations. ‘Green Magic’ had strong overall quality ratings in 

both seasons indicating the cultivar’s adaptation to cold conditions and early 

vigor under lower nitrogen conditions. In this study, there were five cultivars 

in the quadrant of greatest stability and highest head weight per production 

system (Chapter 4). Between production systems in the ranking by growers, 

of the five top performing hybrids, three overlapped and two were different. 

The example of  ‘Arcadia’  brings to light the importance of yield stability over 

yield per se for the growers that attended our field day. ‘Arcadia’ demonstrated 

a capacity to produce sufficiently high yielding heads across years of adequate 

head quality for their markets. It also brings to light the importance of the stage 

in which non-target location growers are exposed to new cultivars along the 

commercialization chain. The growers at our field day had never heard of  ‘Green 

Magic’,  yet it had been on the market for several years already.

Genotype class and breeding techniques 

In the context of this study, the analysis aimed at identifying commercial 

broccoli cultivars that might be suitable for organic agriculture, and in so doing, 

identify traits for crop improvement that would be translated into a breeding 

program to optimize broccoli for organic agriculture. Some organic farmers 

in our study indicated that they preferred cultivars that were open pollinated 

(OP) and provided harvestable side shoots after the primary inflorescence was 

harvested to service their market type. The majority of cultivars in our trials 

were single-harvest heading hybrids. Of the top cultivars identified for head 

weight, across locations, seasons and management system ‘Green Magic’ as 
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indicated was a top performer (see Chapter 4). ‘Green Magic’  is a hybrid cultivar 

for which seed is generated using a cytoplasmic male sterility, therefore it 

cannot be reproduced unless one has the maintenance inbred for the maternal 

parent nor is the genotype accessible to plant breeders. Comparatively, the 

OP cultivars in our trial were poorer performers than the hybrids studied in 

terms of horticulture trait performance (yield, stability and quality traits), but 

demonstrated value for select phytochemicals (e.g. carotenoids, glucobrassicin, 

neoglucobrassicin). OP cultivars are reproducible and can be used as crossing 

parental material in breeding programs. There is a desire within the organic 

sector to have access to reproducible seed. It was apparent from our study 

that attention to the improvement of OPs for horticulture traits has not been 

a priority for many years, but that they are of use as base for the development 

of nutritionally enhanced cultivars. An opportunity for future breeding could 

focus on improved OPs for horticultural traits and health promotion.

6.3.4 Genetic variation is a requirement to develop optimized cultivars

Genetic variation

Genetic variation is a requirement for effective plant breeding. Most of the 

cultivars included in this project were those used by growers at the onset of 

this research project. They were known to be predominantly cultivars selected 

for broad adaptability in conventional production systems and not purposely 

bred for high phytochemical content nor for adaptation to organic agriculture. 

Horticultural and phytochemical trait performance differences of the early 

maturing versus late maturing cultivars and between open pollinated and F1
 

hybrids demonstrated some clear patterns. When these analyses were restricted 

to the F
1
 hybrids only, the patterns were not as distinct in the phytochemical 

analysis. This leads to the conclusion that there has been little change in the 

concentrations of phytochemicals over three decades of breeding (the time 

span of cultivar release for the set of cultivars studied) suggesting that genetic 

variation for phytochemical content is limited in elite germplasm, or likely the 

result of a lack of selection for these traits. This may be changing with recent 

efforts to introgress high glucoraphanin content from the wild brassica species 

B. villosa to produce the high-glucoraphanin F
1
 cultivar ‘Beneforté’ (Traka et al. 

2013). However, the genetic diversity introduced into ‘Beneforté’  is not generally 

available to any breeders apart from the company that holds the exclusive 
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license for the cultivar. Diversity in a breeding program could be enhanced 

if sources of variation in the genus Brassica were exploited to enhance levels 

of health-promoting phytochemicals and to broaden the genetic diversity of 

commercial broccoli germplasm. A molecular marker survey of Brassica species 

could be useful to determine where high levels of genetic variation may exist that 

could be used to broaden the genetic base of existing Brassica crops. Enhancing 

both the genetic diversity of parental lines in conjunction with breeding for 

performance in various environments is needed by the broccoli industry. 

The value of genetic diversity in a breeding program could be taken a step 

further by considering breeding not for one cultivar at a time, but by considering 

the cultivar needs for an entire growing season in order to develop a broccoli 

assortment for each slot in a production cycle per region (a spring, summer, 

fall ‘seasonally slotted broccoli program’). Crisp and Gray (1984) reported that 

to develop broccoli cultivars for a specific season, populations from different 

maturity groups should be used to take advantage of high heritability in heading 

characteristics, head colour and time of maturity. Direct selection in organically 

managed field conditions for genotypes targeted for organic agriculture offers 

advantages over indirect selection in conventionally managed field conditions 

because breeding populations selected in organic environments have 

higher yields when grown organically, compared to conventionally selected 

populations that did not perform comparatively well (Kirk et al., 2011). In further 

studies, early generation broccoli breeding lines and/or populations should be 

compared to attain a better prediction of genetic correlations for organic, and 

to explore potential changes that may occur when broccoli breeding lines are 

bred in the target environment (location and season) from the initiation of the 

program. 

Effective utilization of genetic correlations in breeding for health promotion

When considering breeding targeted for consumers concerned with the health 

consequences of what they eat, genetic correlations integrating horticultural 

and phytochemical traits for crop improvement need to be considered. We 

found some positive correlations and some trade-offs that would apply to 

setting priorities in strategizing for breeding initiatives that target health 

promotion against cancer (glucoraphanin) and degenerative eye diseases (the 

carotenoids). Specifically, the genetic correlations from this study demonstrated 
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that head weight and diameter and late maturing cultivars were positively 

correlated with glucoraphanin. Head colour was positively correlated with the 

carotenoids, and positively correlated with early head maturation (particularly 

in the Spring). Because head and stem colour are important traits to processors, 

a cultivar could be bred for segmented heads (where the inflorescence divides 

into individual florets, e.g. broccolini) for early maturation and darker colour. 

Positive correlation between darker head colour and carotenoids may be 

a function of chloroplast density while a correlation between early maturity 

and darker heads may be related to N uptake and use efficiency. A breeding 

strategy for carotenoids would need to take into account the implications of 

known genetic correlations, contribution of seasonal influence and nitrogen 

use efficiency.

Selection environments

As stated in the introduction of this thesis, most studies that have investigated 

traits needed for organic farming systems have focussed on field crops such as 

cereals (e.g. Murphy et al., 2007; Löschenberger et al., 2008; Przystalski, 2008; 

Wolfe et al., 2008; Annicchiarico et al., 2010; Reid et al., 2009, 2011; Kirk et al., 2012; 

Koutis et al., 2012). Only a few studies had been conducted on vegetable crops, 

for instance for onion (Osman et al., 2008; Lammerts van Bueren et al., 2012), 

and that remains the case to date. From the trials performed in this study, the 

main effects of location and season described the largest source of variation in 

broccoli trait performance. For example, Oregon trials produced higher average 

head weights than Maine in both seasons, and the Fall trials produced higher 

head weights than Spring in both locations (highest overall head weights in 

Oregon Fall trials). Greater heterogeneity in the organic management systems 

and genotype by management crossover interactions were observed on a 

local per trial scale. This supports the idea that direct selection (under organic 

management) would potentially be beneficial for the development of cultivars 

for organic agriculture, particularly if the intent of the breeder is to develop 

cultivars for local adaptation. Burger et al. (2008) concluded that direct selection 

under organic conditions for complex traits such as yield is preferred, whereas 

indirect selection can be very efficient for highly heritable traits. Burger et al. 

discovered that although heritabilities in their trials with genetically broad 

populations of maize were assumed to be lower under organic farming due to 

higher experimental error rate, these were compensated by greater genotypic 
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variance evoked under organic conditions. This was also the case in the broccoli 

trials reported in this thesis.

6.3.5 Multiple seed system models contribute to organic sector growth

Organic production in the US is comprised of numerous small- and large- 

scattered acreages across the country producing under a broad range of 

environments and servicing multiple market types. Therefore, the assortment 

of broccoli cultivars required to meet the demands of the organic market place is 

diverse. As has been described, organic producers are presently dependent on the 

commercial cultivar assortment available that were developed predominantly 

for large-scale industrialized growers in California and Arizona. The breeding, 

selection and testing of these cultivars are performed in the target region, 

therefore organic growers (outside the target region) are not exposed to newly 

released cultivars until the release, distribution and commercialization stage 

of a breeding process (as seen in our study with grower awareness of  ‘Green 

Magic’).  In the context of what Ceccarelli et al. (2009) describe as the three major 

phases of a breeding process: (1) generating genetic variability, (2) selection and 

testing to identify superior recombinants within the genetic variability created 

in the first phase, and (3) release, distribution, and commercialization of new 

cultivars, the contribution of the present seed production and breeding models 

employed in the sector are now discussed. We further consider the implications 

in the event of regulatory closure. The four model scenarios presented are 

(Figure 6.1): (1) 100% conventional seed breeding and production companies 

(Model 1), (2) conventional seed breeding and production companies with an 

organic division (Model 2), (3) 100% organic seed breeding and production 

company (Model 3), and (4) farmer-led or non-profit organic breeding and 

production initiatives (Model 4). Finally, measures for enhancing each of the 

models presented are considered.
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Figure 6.1 Schematic of organic seed system models

The 100% conventional seed company indicated as Model 1 in Figure 6.1, 

services the organic market with conventional post-harvest untreated seed of 

a select group of specialized crops. Such companies are not motivated to breed 

or produce cultivars for the organic market for the most part because they have 

determined that the market size is too small and fragmented, and does not fit in 

their business philosophy (often being associated with chemical pest control or 

GMO testing and development). The service they presently provide the organic 

sector is to select high quality cultivars of typically a limited group of crops, 

in conventional post-harvest chemically untreated form. As their cultivars are 

not available as organic seed, they predominantly but not exclusively service 

the large-scale organic growers who can obtain derogations and who desire 

the specific varieties and traits available exclusively from such seed. If seed 

regulatory closure is to occur, these companies will need to determine if the 

market they service would be sufficiently large to deem investment in producing 

seed for that market. As they have no experience in producing organic seed, lack 
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knowledge of the certification process or background in defining organic crop 

ideotypes, they may not be inclined to participate and become full players in 

the organic seed market. 

The conventional seed company with an organic division indicated as Model 2  

in Figure 6.1, services the organic market with both conventional post-

harvest untreated and organic seed of a select subset of specialized crops. The 

strength of a conventional seed company with an organic division is that it has 

committed to the value of the organic market through its investments. As these 

companies have a breadth of genetic resources, modern breeding techniques, 

extensive trial grounds, seed reproduction capacity and strong marketing and 

sales departments to promote the commercialization of new cultivars, they 

are in turn able to provide quality cultivars to the marketplace with thorough 

technical support information. By screening of their breeding and commercial 

material on grown on organically managed land, they have the capacity to see 

trait differentiation in their material and define organic crop ideotypes for their 

crops. Their contribution to breeding for the organic market is indicated with a 

dotted line in Figure 6.1 because they predominantly screen their conventional 

material on organic land. At this time, they have a small amount of breeding 

initiatives directed at the organic market. In the US example, some of the 

breeder companies do not do direct sales of organic seed to the end user. Their 

varieties are distributed and marketed through seed dealers. The efforts that 

the seed companies in Model 2 invest in breeding and producing organic seed 

are often unknown to the organic sector because the dealer brands the seed. 

The biggest contribution that these companies make to the organic seed sector 

is the availability of good performing cultivars with high yield potential and 

disease resistance in organic form. As a result of their investment in cultivar 

development (predominantly hybrid), they tend to be higher priced and service 

the mid-to-large scale grower. The advantage of this model to the end user is 

the availability of a wider cultivar choice for both organic and conventional 

production. The limitation of this model is that because the organic sector is a 

smaller portion of their overall business, it is therefore of lesser market priority. 

If a comprehensive regulatory policy was to go into effect, these companies 

would be prepared to expand their organic varietal assortment, invest in more 

production capacity and increase the inclusion of high priority traits (see 6.3.3) 

in their overall breeding programs.
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The 100% organic seed companies indicated as Model 3 in Figure 6.1 are fully 

dedicated organic seed companies servicing only the organic market. They are 

not as large as the average conventional companies. They fulfil all steps in the 

seed production process (from basic seed to commercial seed) under organic 

conditions. In this model, the companies breed, produce and distribute organic 

seed with a value-based message compliant with organic principles. Often, they 

are performing all functions along the seed development chain, but with limited 

resources compared to a conventional breeding company. Their strength lies in 

their knowledge of the organic production system and market, and that they 

can provide a clear message to their customer. Their values resonate with those 

of their customer base, and their customer can comprehend the scale of their 

business model. The relationship is more personal in that the owner/founder 

is typically highly profiled in advertising and promotion (instead of seed 

technology). They are driven also by a concern for genetic diversity and farmer 

diversity and therefore they aim to offer a broad assortment of all crops to a 

range of grower types (but predominantly small). They supply the marketplace 

typically, but not exclusively, with improved and older open pollinated varieties 

cultivars or hybrids typically that are often developed in collaboration with 

university public breeding programs or purchased from company Model 2 

(indicated with dotted line to breeding). Their weakness can lie in the overall 

seed quality of their varieties due to limited genetic and financial resources 

for breeding and reproducing seed. If the seed regulation was enforced, these 

companies would continue to grow in their contribution to the sector. 

The Farmer-led organic seed breeder and producer, indicated as Model 4 in 

Figure 6.1 is representative of a more grassroots approach to organic seed sector 

development where independent grower or non-profit organizations dedicate 

themselves to breeding and producing organic seed independent of corporate 

affiliation. As described in Chapter 2, individual growers are producing their 

own seed and performing on-farm selection to develop cultivars selected for 

their specific environment. The seed they produce is either for individual use 

or for sale to growers typically within their own bioregion. These initiatives are 

typically motivated by a desire by these growers and organizations to develop a 

seed sector independent of corporate control, sustain biodiversity (genetic and 

cultivar), and that function outside the realm of patents that confer exclusive 

controls and proprietary rights. 
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The origins of Model 4 have already evolved into more complex and expanding 

breeding models where the individual seed producer/breeders described in 

this model have evolved into commercial entities and/or partnered with 

public breeding institutions to develop regional varieties. The Biodynamic 

sector in Switzerland and Germany, for example, has created models for self-

organization of organic seed breeding and production companies (e.g. Sativa 

and Bingenheimer Saatgut AG). In the US, participatory plant breeding models, 

such as NOVIC (which is also described in Chapter 2) where public breeders 

partner with farmers to develop public cultivars that are selected for site 

specificity and are open source. Comparable examples exist in Europe, e.g. the 

collaboration between breeding researchers of the French national agriculture 

research institute (INRA) in developing participatory approaches in regional 

cauliflower and broccoli breeding (Chable et al., 2008). The organic sector in 

the US could also look at adapting models that have been described for several 

crops in marginal agricultural regions in non-industrialized countries where 

breeders and farmers work more collaboratively in trait identification, selection 

and adoption to enhance the efficiency and relevancy of seed improvement 

(e.g. Manu-Aduening et al., 2006; Li et al., 2012; Reguieg et al., 2013). Potentially 

other models could exist, for example exchange of genetic material from 

company Model 2 with either Model 3 or 4 to conduct more regional screening 

and adaptation determination as well as more targeted commercialization of 

regionally selected varieties with organic growers in minor regions. 

6.3.6 Outlook

The sustainability of current seed production for the major food crops on which 

global food security currently depends, is increasingly a matter of practical, 

professional and policy discussion. The work reported in this thesis indicates 

that the experience of the organic seed sector is relevant to these debates in 

important ways. In particular, conventional seed companies in the future may 

see advantage of having an organic division that might prove mutually inspiring 

and profitable, and traits of high priority for organic agriculture on the short-

term might be of benefit to conventional agriculture in the long run as they 

strive to develop cultivars with characteristics that contribute to sustainable 

production systems. 
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Summary

The overall objective of the research reported in this thesis was to analyse inter-

related regulatory and technical challenges in the organic seed and breeding 

sector, using broccoli (Brassica oleracea var. italica) as a model crop and the US as 

the location. Organic farm practices often differ substantially from conventional 

practices in refraining from chemical-synthetic inputs of fungicides, pesticides 

and mineral fertilisers, but also in the diversity of crop rotations, number of crops, 

production area, and market outlets. Organic farming systems are based on 

organically-derived inputs such as compost and animal manure and focus their 

management on stimulating long-term biological self-regulatory processes 

to achieve resilience for stable productivity. However, organic farmers have 

fewer options to intervene in the short-term when weather or soil conditions 

are not favourable for optimal crop growth. Therefore organic growers require 

cultivars with stable performance across variable growing conditions over 

years. Currently, organic farmers depend largely on cultivars bred for high 

external input conventional farming systems. Use of organic seed as a required 

farm input is a component in the overall organic certification process. Recent 

developments in the interpretation of organic seed regulation have created 

tensions between farmers and seed companies as to how to provide a sufficiently 

diverse assortment of cultivars suited for organic agriculture while meeting the 

requirements.

This research aimed to understand and analyse the tensions between farmers’ 

and seed companies’ interests that have been created by evolving organic 

seed regulations, and identify ways to develop a domestic and international 

organic seed regulation to better support organic agriculture in general and 

crop improvement in particular. However, in order to be able to translate the 

diverse crop requirements identified for stakeholders in the broccoli seed chain 

in the US into a strategy for plant breeders, the horticultural and phytochemical 

performance of commercially available broccoli cultivars had to be established. 

The research thus also studied the performance of broccoli cultivars grown 

under organic and conventional farming conditions in two contrasting broccoli 

producing areas (Maine and Oregon, US).The requirements of organic growers 

were investigated for cultivars that allowed optimization of their production 

system, and fulfilled consumer expectations for high nutritional value. The 
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results of the horticultural and phytochemical trait performance studies were 

translated into a crop improvement strategy for broccoli cultivars adapted 

to organic agriculture with enhanced phytochemicals by identifying the 

parameters of an organic broccoli crop ideotype.

Chapter 2 reviews and analyses the evolution of organic seed regulation in 

the US, as a model case of how challenges in a new regulatory area are being 

addressed. The study draws on formal interviews of key stakeholders, participant 

observation, and documents generated over a six-year period between 2007 

and 2013. The chapter addresses three main issues: (1) how proposals for 

the wording and implementation of the regulation constrain seed choices 

and give rise to unintended consequences, (2) how emergent organizations 

and procedures have responded to the tension between sustaining seed 

differentiation to match the characteristics of local markets, organic production 

and agro-ecologies, and the narrowing of varietal choice in catalogued seed 

so as to expand commercial organic seed markets and encourage organic 

plant breeding, (3) why consensus on the content of formal seed policy has 

failed to develop despite a high level of stakeholder engagement. The study 

revealed that the official guidance on the interpretation of the regulation has 

not been sufficiently decisive to prevent divergent interpretation and practices, 

and therefore the needs of a rapidly growing economic sector are not being 

met. The chapter concludes by drawing lessons for key areas of regulatory 

interpretation and practice, and by identifying possible ways to make organic 

seed governance more effective.

In the US case, the regulators are waiting for the non-governmental stakeholders 

to organize the sector to comply with organic seed regulations. Self-organisation 

has been only partially achieved, and sector development is evolving too slowly 

to optimally support organic seed market growth. While other on-farm organic 

inputs are rigorously regulated (e.g. compost, manure), seed is seemingly not 

recognized by the regulators as a significant input. At the same time the state of 

the US regulation has put the organic sector at risk of violating organic integrity. 

The regulatory ambiguity contributes to potential violations in the use of non-

acceptable seed and seed treatment inputs, and perpetuates inconsistency in 

certifier seed regulatory interpretation and enforcement. It has failed (so far) 

to establish a level playing field among stakeholders. The organic regulation 
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has perpetuated a concern amongst the diverse stakeholder groups that 

strict enforcement would limit the varietal assortment (genetic diversity and 

farmers’ choice) available, increase grower costs and require seed companies 

to invest in a market that they consider relatively small or that they do not have 

the skills or resources to support (in regards to seed production or breeding). 

Simultaneously, however, the dynamic relationships that have evolved in the 

various networks that have emerged in response to the seed regulation have 

shaped the unfolding process of regulatory governance. In spite of regulatory 

ambiguity, the seed sector is developing, and a broader cultivar assortment and 

larger quantities of higher quality seed have become available. 

Chapter 3 analyses the evolution of organic seed regulation in the United States, 

the European Union and Mexico as model cases of how challenges in global 

agricultural trade are being addressed. This study wasalso conducted between 

2007 and 2013. It highlights how growth of the organic sector is hindered 

by regulatory imbalances and trade incompatibilities arising from divergent 

stakeholder interests along the organic seed value chain, and the varying 

capacity for self-organising governance of the seed sector in relation to the 

state’s regulatory role. The main findings of the regulatory component were: 

(1) New organizations, procedural arrangements and activities have emerged 

in the US, EU and Mexico to support organic seed regulatory development, with 

both positive and negative results; (2) Official guidance on the interpretation of 

the regulation in the US has not been sufficiently decisive to prevent divergent 

interpretation and practice, and in consequence the needs of a rapidly growing 

economic sector are not being met; and (3) Growth of the organic seed sector 

is hindered by regulatory imbalances and trade incompatibilities within and 

between global markets. Progress toward regulatory harmonisation in the 

organic seed sector among the three cases has been slow. The chapter concludes 

with an assessment of the regulatory processes described including what the 

regions may learn from each other and lessons for key areas of regulatory policy 

and practice.

In the second study, when the US organic seed regulatory environment was 

compared to that of the EU and Mexico, delays in seed sector growth caused 

by regulatory ambiguity was found with each jurisdiction studied. The analysis 

identified important risks of non-tariff trade barriers in the organic sector, 
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arising from incompatible regulatory frameworks and the uneven progress in 

each case toward achieving 100% closure. Specifically, as the EU moves at a 

more steady rate toward 100% closure, there are both positive and negative 

implications for the US and Mexico. In the more mature EU regulatory 

environment, there is increasing investment in the organic seed sector with 

more cultivars produced and bred for the global organic market. Each region 

was shown to demonstrate varying capacity for self-organising governance of 

their seed sector in relation to the state’s regulatory role. In the EU context, the 

work of the non-profit organisation, ECO-PB, has been instrumental in moving 

matters forward, combined with clear regulatory language and specification 

of the interpretive requirements (such as establishment of a database of all 

approved cultivars and their availability). These measures can be compared 

to the US, where the initiatives of non-profit organizations have attempted to 

interpret the regulations in ways that lack official sanction. Mexico is early in the 

process of outlining their organic seed regulation, and until now has functioned 

in response to EU and US requirements. The additional complexity of strict 

phytosanitary requirements that conflict with organic regulation has delayed 

progress in the organic seed sector in Mexico. It is suggested that both the US 

and Mexico would benefit from the policy instruments that the EU member 

states have put in place to govern its organic seed sector, and from bringing 

to an end derogations that allow use of conventional seed. The instruments 

include implementation of national databases to provide an overview of 

available organic seed, and expert groups to annually assess available cultivar 

assortments in each crop group in order to compose categories of crops with 

sufficient quantity and diversity of seed available.

Chapter 4 sought to determine if present commercial broccoli cultivars met 

the diverse needs of organic management systems such as adaptation to low 

nitrogen input, mechanical weed management and no chemical pesticide use, 

and to propose the selection environments for crop improvement for cultivars 

best adapted to organic production. To achieve this, we compared horticultural 

trait performance of 23 broccoli (Brassica oleraceaL. ssp. italica) cultivars (G) 

under two management (M) systems (organic and conventional) in two regions 

of the USA (Oregon and Maine), including spring and fall trials. In our trials, 

location and season had the largest effect on broccoli head weight with Oregon 

outperforming Maine and fall trials outperforming spring trials. M main effects 
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and G × M interactions were often small but G × M × E (location and season) were 

large. Cultivars with both greater head weight and stability under conventional 

conditions generally had high head weight and stability under organic 

growing conditions, although there were exceptions in cultivar rank between 

management systems. Larger genotypic variances and somewhat increased 

error variances observed in organic compared to conventional management 

systems led to repeatability for head weight and other horticultural traits that 

were similar or even higher in organic compared to conventional conditions. The 

ratio of correlated response (predicting performance under organic conditions 

when evaluated in conventional conditions) to direct response (predicted 

performance in organic when evaluated under organic conditions) for all traits 

was close to but less than 1.0 with the exception of bead uniformity. This would 

imply that in most cases, direct selection in an organic environment could 

result in a more rapid genetic gain than indirect selection in a conventional 

environment. The combined analysis of the repeatabilities and ratio of 

correlated response to direct response would suggest that selection in organic 

environments is equal or superior to selection in conventional environments.

In Chapter 5 the topic of organic agriculture requiring cultivars that can adapt 

to organic crop management systems without the use of synthetic pesticides 

was built on from Chapter 4 by further exploring genotypes with improved 

nutritional value. The aim of this was to compare the 23 broccoli cultivars for 

the content of phytochemicals associated with health promotion grown under 

organic and conventional management in spring and fall plantings in two 

broccoli growing regions in the US. The phytochemicals quantified included: 

glucosinolates (glucoraphanin, glucobrassicin, neoglucobrassin), tocopherols 

(δ-, γ-, α-tocopherol) and carotenoids (lutein, zeaxanthin, β-carotene). For 

glucoraphanin (17.5%) and lutein (13%), genotype was the major source of total 

variation (numbers in parentheses are the percent of total variation accounted 

for by a main effect or interaction); for glucobrassicin, region (36%) and the 

interaction of location and season (27.5%); and for neoglucobrassicin, both 

genotype (36.8%) and its interactions (34.4%) with season were important. For δ- 

and γ- tocopherols, season played the largest role in the total variation followed 

by location and genotype; for total carotenoids, genotype (8.41-13.03%) was 

the largest source of variation and its interactions with location and season. 

Overall, phytochemicals were not significantly influenced by management 
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system. The cultivars with the highest concentrations of glucoraphanin had 

the lowest for glucobrassicin and neoglucobrassicin. The genotypes with 

high concentrations of glucobrassicin and neoglucobrassicin were the same 

cultivars and were early maturing F
1
 hybrids. Cultivars highest in tocopherols 

and carotenoids were open pollinated or early maturing F
1
 hybrids. Distinct 

locations and seasons where phytochemical performance was higher for each 

compound were identified. Correlations among phytochemicals demonstrated 

that glucoraphanin was negatively correlated with the carotenoids and the 

carotenoids were correlated with one another. Little or no association between 

phytochemical concentration and date of cultivar release was observed, 

suggesting that modern breeding has not negatively influenced the level of 

tested compounds. We found no significant differences among cultivars from 

different seed companies.

In the field trial component of these studies, the organic trial locations were 

intentionally selected to be farms under long term organic management as 

less mature organic farms or those in conversion may more closely resemble 

conventionally managed farms. Our organic trials produced comparable 

head weight to the conventional trial locations, and therefore the level of the 

environmental stress that we hypothesized would affect trait performance 

and phytochemical content was minimal. For most traits, there was no 

management effect across environments. Management main effect was only 

identified at the per trial level, demonstrating that each individual location/

season/year combination constituted a unique environment, and that 

genotype by management system interactions resulted from different factors 

in each environment. Larger genotypic variances in organic environments for 

horticultural but not phytochemical traits were observed, demonstrating the 

innate heterogeneity in the organic agricultural system and varietal response 

to such variation. 

As with horticultural traits, management main effect did not play a significant 

role across trials in the phytochemical component of the trials. At the individual 

compound level, genotype main effect was most important for glucoraphanin, 

neoglucbrassicin and the carotenoids, while glucobrassicin and the tocopherols 

were more influenced by environment and various interactions. We identified 

distinct positive and negative trait correlations (e.g. glucoraphanin positively 
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correlated with head weight and negatively correlated with carotenoids). For 

traits that were strongly associated with genotype main effect (i.e. glucoraphanin 

and lutein) the cultivars with the highest concentrations of these compounds 

were also the most stable across trials. Season effect was greater compared to 

the location (Maine versus Oregon) effect for the phytochemicals compared 

to the horticulture traits (glucoraphanin being higher in fall environments; 

carotenoids higher in spring environments). Unlike the horticultural traits, 

phytochemical variances were not larger in organic compared to conventional 

growing conditions, but repeatabilities and the ratio of correlated response to 

direct response were similar, which would support the benefit of selecting in 

organic systems to optimize nutrition targeted breeding programmes. 

Chapter 6 assesses the main findings of Chapters 1-5 in the light of the 

objectives, hypotheses and research questions of this study. Through the 

combined analyses of the organic seed regulatory studies and the field trials that 

determined the horticultural and phytochemical trait performance of broccoli 

cultivars grown under organic and conventional management systems, the 

results are synthesised and discussed in terms of the following five propositions: 

(1) Regulatory clarity is the foundation for organic seed sector development, (2) 

Organic management systems influence horticultural and phytochemical trait 

performance, (3) A crop ideotype can serve as a communication tool to arrive 

at an appropriate cultivar assortment, (4) Genetic variation is a requirement to 

develop optimized cultivars, and (5) Multiple seed system models contribute to 

organic sector growth.Specifically, the role of an organic crop ideotype(a list of 

crop varietal traits required by organic growers for optimal cultivar performance 

in an organic production system) is explored. The defining an organic crop 

ideotype provides a useful format for growers and breeders to communicate 

the required traits. Once an ideotype has been defined, growers can match their 

needs with the cultivars available, and breeders have a “blueprint” for cultivar 

development. An organic crop ideotype also can be used as a communication 

tool between growers and certifiers i.e. to communicate cultivardifferences that 

could support derogation requests. Through this study, we sought to define an 

organic crop ideotype for broccoli through grower and breeder interviews, field 

trials and phytochemical analysis. The results of these combined studies are 

translated into an outline of a broccoli crop ideotype to be used as a foundation 

for developing a broccoli breeding strategy for organic agriculture. An organic 
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broccoli breeding strategy must consider both the priority traits defined in a 

crop ideotype and the allowed breeding techniques in organic agriculture. A 

multi-prong market and breeding capacity approach must be considered to 

support a growing organic seed sector.

The sustainability of current seed production for the major food crops on which 

global food security currently depends, is increasingly a matter of practical, 

professional and policy discussion. The work reported in this thesis indicates 

that the experience of the organic seed sector is relevant to these debates in 

important ways. In particular, conventional seed companies in the future may 

see advantage of having an organic division that might prove mutually inspiring 

and profitable, and traits of high priority for organic agriculture on the short-

term might be of benefit to conventional agriculture in the long run as they 

strive to develop cultivars with characteristics that contribute to sustainable 

production systems and improved nutritional quality. 
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De algemene doelstelling van het onderzoek beschreven in dit proefschrift 

was om onderling samenhangende regelgeving en technische uitdagingen 

in de biologisch zaaizaad- en veredelingssector te analyseren, aan de hand 

van broccoli (Brassica oleracea var. italica ) als modelgewas en de Verenigde 

Staten (VS) als de locatie.  Biologische landbouwmethoden verschillen 

vaak aanzienlijk van gangbare praktijken door geen gebruik te maken van 

chemisch-synthetische gewasbeschermingsmiddelen en kunstmest, maar ook 

in de diversiteit van de vruchtwisseling, aantal gewassen, productie areaal, en 

afzetkanalen. Biologische landbouwsystemen zijn gebaseerd op hulpbronnen 

van biologische oorsprong zoals compost en dierlijke mest, en richten hun 

beheer op het stimuleren van lange termijn biologische, zelfregulerende 

processen ten behoeve van veerkracht voor stabiele productiviteit. Echter, 

biologische boeren hebben minder mogelijkheden om op de korte termijn 

in te grijpen als het weer of de bodemomstandigheden niet gunstig zijn voor 

een optimale gewasgroei. Daarom hebben biologische telers rassen nodig 

die onder variabele groeiomstandigheden en over verschillende jaren toch 

goed presteren. Momenteel zijn biologische telers grotendeels afhankelijk 

van rassen die veredeld zijn voor gangbare systemen met hoge inzet van 

externe hulpbronnen. Gebruik van biologisch zaad maakt een onderdeel 

uit van de vereisten van het totale biologische certificeringsproces. Huidige 

ontwikkelingen in de interpretatie van biologisch zaadregelgeving hebben 

tot spanningen geleid tussen telers en zaadbedrijven over de vraag hoe tot 

een voldoende gevarieerd assortiment van rassen te komen die passen bij de 

vereisten van de biologische landbouw.

Dit onderzoek was gericht op het begrijpen en analyseren van de spanningen 

tussen de belangen van telers en zaadbedrijven die ontstaan zijn in het 

ontwikkelingsproces rond de regelgeving voor biologisch zaaizaad, en op het 

identificeren van manieren om een nationale en internationale biologische 

zaadregelgeving te ontwikkelen die de biologische landbouw in het algemeen 

en de veredeling in het bijzonder beter ondersteunt. Echter, om de verschillende 

productvereisten zoals voor diverse actoren in de broccoliketen in de VS 

vastgesteld, te kunnen vertalen naar een veredelingsstrategie, moesten eerst de 

landbouwkundige prestaties en inhoudstoffen van commercieel beschikbare 
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broccolirassen worden beoordeeld. Het onderzoek richtte zich dus ook op het 

vergelijken van de rassen onder biologische en gangbare teeltomstandigheden 

in twee contrasterende broccoliteeltgebieden in de VS (Maine en Oregon). 

Raskenmerken zijn onderzocht die biologische telers belangrijk vinden om 

hun productiesysteem te optimaliseren en om aan de verwachtingen van 

consumenten voor hoge voedingswaarde te voldoen. De resultaten van het 

onderzoek naar de rasprestaties wat betreft de landbouwkundige eigenschappen 

en inhoudstoffen is vervolgens vertaald naar een veredelingsstrategie voor 

broccolirassen die beter aangepast zijn aan de biologische landbouw met 

verhoogde voedingswaarde door aan te geven welke parameters van belang 

zijn voor zo’n een biologisch gewasprofiel.

 

Hoofdstuk 2 bespreekt en analyseert de ontwikkeling van de biologische 

zaadregelgeving in de VS, als een voorbeeldcasus hoe de uitdagingen van een 

nieuw terrein voor de regelgeving worden aangepakt. De studie is gebaseerd 

op formele interviews met belangrijke stakeholders, participatieve observaties, 

en documenten die over een periode van zes jaar tussen 2007 en 2013 zijn 

verschenen. Het hoofdstuk bespreekt drie punten: (1) hoe voorstellen voor 

de formulering en uitvoering van de zaadregelgeving keuzes inperken en 

aanleiding geven tot onbedoelde gevolgen, (2) hoe nieuw opkomende 

organisaties en procedures hebben gereageerd op de spanning tussen 

enerzijds het behouden van verscheidenheid aan zaden die passen bij de 

lokale markten, bij de biologische productie en de regionale agro-ecologische 

verschillen, en anderzijds de mate waarin van het aangeboden rassenpakket 

wordt versmald opdat uitbreiding van de commerciële zaadindustrie mogelijk 

wordt en biologische plantenveredeling wordt aangemoedigd, (3) waarom het 

maar lukte consensus te creëren over de inhoud van het formele zaadbeleid, 

ondanks een hoge mate van betrokkenheid van belanghebbenden. De studie 

toonde aan dat de officiële richtlijnen voor interpretatie van de regelgeving 

niet voldoende duidelijk zijn geweest om uiteenlopende interpretaties en 

uitvoeringspraktijken te voorkomen, en er dus aan de behoeften van een snel 

groeiende economische sector niet werd voldaan. Het hoofdstuk sluit af met 

het trekken van lessen voor de belangrijkste thema’s rond de interpretatie en 

uitvoering van de regelgeving, en met het aangeven van mogelijke routes 

waarlangs sturing van biologisch zaaizaadontwikkeling effectiever kan worden.
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In het geval de VS, verwachten de beleidsambtenaren dat de niet-

gouvernementele actoren zelf de sector zullen organiseren om te voldoen aan 

biologische zaadregelgeving. Zelforganisatie is slechts gedeeltelijk bereikt, en 

de ontwikkeling van de sector verloopt te traag om optimale groei van een 

biologische zaadmarkt te ondersteunen. Terwijl andere biologische externe 

hulpbronnen strikt worden gereguleerd (bijvoorbeeld compost, mest), 

wordt zaad schijnbaar niet door de regelgevende instanties erkend als een 

belangrijke input. Tegelijkertijd leidt de huidige situatie rond de Amerikaanse 

regelgeving tot risico’s van schenden van de integriteit van de biologische 

sector. De onduidelijkheid rond interpretatie van de regelgeving draagt bij 

aan mogelijke overtredingen op het gebruik van niet-aanvaardbare zaden 

en zaadbehandelingen, en bestendigt inconsistentie bij de interpretatie 

en handhaving van de zaadregelgeving. Het is (tot nu toe) niet gelukt om 

een gelijk speelveld tussen belanghebbenden te creëren. De biologische 

zaadregelgeving heeft onder de diverse belanghebbende groepen niet de 

bezorgdheid kunnen wegnemen dat strikte handhaving zal leiden tot een 

beperking van het rassenassortiment (genetische diversiteit en keuzevrijheid 

van boeren), tot verhoging van telerskosten en tot het vragen van zaadbedrijven 

te investeren in een markt die zij beschouwen als relatief klein of waarvoor zij 

niet de kennis of middelen hebben om die te ondersteunen (met betrekking 

tot de zaadproductie of veredeling). Desalniettemin, hebben de dynamische 

relaties die zich ontwikkeld hebben in de verschillende ontstane netwerken in 

reactie op de zaadvoorschriften bijgedragen aan het uitrolproces rond beleid 

van de regelgeving. Ondanks de onduidelijkheid in de regelgeving ontwikkelt 

de zaadsector zich, en is een breder rassenassortiment en groter aanbod van 

kwalitatief beter zaad beschikbaar gekomen.

 

Hoofdstuk 3 vergelijkt de ontwikkeling van de biologische zaadregelgeving in 

de VS, de Europese Unie (EU) en Mexico als voorbeelden hoe de uitdagingen 

in de wereldwijde handel in landbouwproducten worden aangepakt. Ook 

deze studie werd uitgevoerd tussen 2007 en 2013. Het belicht hoe de groei 

van de biologische sector wordt belemmerd door onevenwichtigheden in de 

regelgeving en onverenigbare situaties in het handelsverkeer die voortvloeien 

uit uiteenlopende belangen van partijen door de hele waardeketen van 

biologische zaaizaad heen, en het variërende vermogen voor zelf-organiserende 

bestuur van de zaadsector in relatie tot de regulerende rol van de overheid. 
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De belangrijkste bevindingen rond de regelgevingsaspecten waren: (1) 

Nieuwe organisaties, procedurele regelingen en activiteiten zijn ontstaan in 

de VS, EU en Mexico ter ondersteuning van de verdere ontwikkeling van de 

regelgeving voor biologisch zaad, met zowel positieve als negatieve resultaten; 

(2) De officiële richtlijnen voor interpretatie van de regelgeving in de VS 

hebben niet voldoende handvaten geboden om uiteenlopende interpretaties 

en uitvoeringen te voorkomen, en als gevolg wordt niet voldaan aan de 

behoeften van een snelgroeiende economische sector; en (3) De groei van de 

biologische zaadsector wordt belemmerd door onbalans in de regelgeving en 

onverenigbare situaties in het handelsverkeer binnen en tussen wereldwijde 

markten. Vooruitgang in de richting van harmonisatie van de regelgeving in de 

biologische zaadsector tussen de drie voorbeeldlanden is traag. Het hoofdstuk 

wordt afgesloten met een beoordeling van de regelgevende processen met 

inbegrip van wat de landen van elkaar kunnen leren en welke lering getrokken 

kan worden voor de belangrijkste aspecten van het beleid rond de regelgeving 

en de uitvoering. 

In deze studie waarbij de Amerikaanse biologische zaadregelgeving 

is vergeleken met die van de EU en Mexico, zijn vertragingen in de 

zaadsectorontwikkeling, veroorzaakt door onduidelijkheden in de regelgeving, 

in elk rechtsgebied gevonden. De analyse identificeerde de belangrijke risico’s 

van handelsbelemmeringen in de biologische sector door importheffingen, als 

gevolg van onverenigbare regelgeving en de ongelijke ontwikkelingen om tot 

100% gebruik van biologisch zaaizaad te komen. Temeer daar de EU gestaag 

toewerkt naar 100% gebruik van biologisch uitgangsmateriaal, zijn er zowel 

positieve als negatieve gevolgen voor de VS en Mexico. Door de meer volwassen 

EU-regelgeving, wordt er meer geïnvesteerd in de biologische zaadsector met 

een toenemend aantal rassen dat geproduceerd wordt of veredeld voor een 

wereldwijde biologische markt. Elke van de drie voorbeeldlanden vertoonde 

een verschillend vermogen van zelf-organiserende bestuur van hun zaadsector 

in relatie tot de regulerende rol van de overheid. In EU-verband, is het werk 

van de non-profit organisatie European Consortium for Organic Plant Breeding 

(ECO–PB) instrumentaal geweest om de zaak vooruit te helpen, in combinatie 

met duidelijke taal in de regelgeving en specificatie van de interpretatieve 

eisen (zoals invoering van een database van alle goedgekeurde rassen en hun 

beschikbaarheid). Als men deze maatregelen vergelijkt met die in de VS, ziet 
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men dat daar initiatieven van non-profit organisaties hebben geprobeerd om 

de regelgeving op een bepaalde manier te interpreteren maar zonder officiële 

goedkeuring. Mexico staat aan het begin van het proces van vormgeven van hun 

biologische zaadregelgeving door steeds te reageren op de vereisten vanuit de 

EU en de VS. Bovendien hebben de gecompliceerde, strenge fytosanitaire eisen 

in Mexico, die strijdig zijn met de biologische regelgeving, de voortgang in de 

biologische zaadsector aldaar vertraagd. De suggestie wordt gedaan dat zowel 

de VS als Mexico zouden kunnen profiteren van de beleidsinstrumenten die 

de EU-lidstaten hebben ingevoerd om de biologische zaadsector te reguleren, 

en die toewerken naar het beëindigen van de mogelijkheid om ontheffing 

te verkrijgen voor gebruik van gangbaar zaad. De instrumenten bestaan uit 

implementatie van nationale databases om een overzicht van beschikbaar 

biologisch zaad te bieden, en instellen van expertgroepen die jaarlijks het 

beschikbare rassenassortiment voor elke gewasgroep beoordelen om tot 

categorieën van gewassen te komen met voldoende hoeveelheid en diversiteit 

van beschikbare zaden.

Hoofdstuk 4 richt zich op de vraag of huidige commercieel beschikbare 

broccoli rassen voldoen aan de uiteenlopende behoeften van biologische 

productiesystemen, zoals aanpassing aan lage stikstofgift, mechanische 

onkruidbestrijding en geen gebruik van chemische bestrijdingsmiddelen, en 

om tot aanbeveling van selectiemilieu’s te komen voor veredeling van rassen 

die optimaal aangepast zijn aan biologische productie. Om dit te bereiken, 

hebben we de landbouwkundige prestaties van 23 broccoli (Brassica oleracea 

L. ssp. italica) genotypen (G) onder twee management (M) systemen (biologisch 

en gangbaar) in twee teeltgebieden van de VS (Oregon en Maine) vergeleken, 

inclusief voor- en najaarsproeven. In onze proeven, hadden locatie en seizoen 

het grootste effect op de broccoli schermgewichten, die in Oregon hoger 

waren dan in Maine, en in het najaar hoger dan in de voorjaarsproeven. De 

effecten van managementsystemen en G × M interacties waren vaak klein, maar  

G × M × E (locatie en het seizoen) waren groot. Gemiddeld genomen hadden 

rassen met zowel een hoog schermgewicht als stabiliteit onder gangbare 

landbouwomstandigheden dat ook onder biologische teeltomstandigheden, 

hoewel er verschillen in rasvolgorde tussen beide productiesystemen voor 

kwamen. Grotere genetische variatie en enigszins verhoogde varianties van 

proefveldfouten die zijn waargenomen in de biologische productiesystemen 
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in vergelijking met gangbare systemen, leidden tot een herhaalbaarheid 

voor schermgewicht en andere landbouwkundige eigenschappen die 

vergelijkbaar of zelfs hoger waren in de biologische teelt dan in de gangbare 

teeltomstandigheden. De verhouding van gecorreleerde respons (voorspellen 

van prestaties onder biologische omstandigheden indien beoordeeld onder 

gangbare omstandigheden) tot directe respons (voorspelde prestaties voor 

biologische teelt indien beoordeeld onder biologische omstandigheden) voor 

alle eigenschappen was bijna, maar minder dan 1,0 met uitzondering van de 

uniformiteit van de bloemknoppen. Dit zou betekenen dat in de meeste gevallen 

directe selectie in een biologisch milieu kan leiden tot een snellere genetische 

vooruitgang dan indirecte selectie onder gangbare teelt. De gecombineerde 

analyse van de herhaalbaarheid en de verhouding van gecorreleerde respons tot 

directe respons suggereert dat de selectie onder biologische omstandigheden 

gelijk of beter kan zijn dan de selectie onder gangbare omstandigheden. 

In hoofdstuk 5 is voortgebouwd op de vraag van de biologische landbouw 

naar rassen die aanpast zijn aan biologische teeltsystemen zonder het gebruik 

van chemisch-synthetische bestrijdingsmiddelen (zie hoofdstuk 4) door de 

aandacht te richten op selectie van genotypen met verhoogde voedingswaarde. 

Het doel hiervan was om de 23 broccoli rassen te vergelijken voor inhoudstoffen 

met gezondheidbevorderende werking onder biologische en gangbare teelt 

in voorjaars- en herfst beplantingen in twee broccoli teeltgebieden in de VS. 

De gekwantificeerde inhoudstoffen omvatten: glucosinolaten (glucorafanine, 

glucobrassicine, neoglucobrassine), tocoferolen (δ-, γ-, α-tocoferol) en 

carotenoïden (luteïne, zeaxanthine, β-caroteen). Voor glucorafanine (17.5 %) 

en luteïne (13 %), was genotype de belangrijkste bron van de totale variatie 

(tussen haakjes zijn het percentage van de totale variatie verklaard door 

een hoofdeffect of interactie); voor glucobrassicine was teeltgebied (36 %) 

en de interactie van de locatie en het seizoen (27,5%) belangrijk; en voor 

neoglucobrassicine waren zowel genotype (6,8 %) als de interacties met het 

seizoen belangrijk. Voor δ- en γ-tocoferol speelde seizoen de grootste rol in 

de totale variatie, gevolgd door de locatie en genotype; voor het totaal aan 

carotenoïden was genotype (8,41-13,03 %) was de grootste bron van variatie 

en de interacties met de locatie en het seizoen. Over het algemeen werden 

deze inhoudstoffen niet significant beïnvloed door het managementsysteem. 

De rassen met de hoogste concentraties glucorafanine hadden de laagste 
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concentraties aan glucobrassicine en neoglucobrassicine. De genotypen met 

hoge concentraties glucobrassicine en neoglucobrassicine waren dezelfde 

vroegrijpende F1-hybriden. Rassen met de hoogste concentraties van tocofero-

len en carotenoïden waren zaadvaste rassen of vroegrijpende F1-hybriden. 

Specifieke locaties en seizoenen waar afzonderlijke inhoudstoffen het hoogst 

waren, zijn geïdentificeerd. Correlaties tussen inhoudstoffen toonden aan dat 

glucorafanine negatief was gecorreleerd met carotenoïden en carotenoïden 

onderling correleerden. Weinig of geen verband werd waargenomen tussen 

de concentratie van inhoudstoffen en de datum van marktintroductie van 

rassen, wat suggereert dat de moderne veredeling geen negatieve invloed 

heeft gehad op het niveau van de onderzochte inhoudstoffen. We vonden ook 

geen significante verschillen tussen de rassen van verschillende zaadbedrijven.

 

Voor de veldproeven van deze studies is opzettelijk gekozen voor biologische 

bedrijven die al lang onder biologisch beheer zijn omdat minder volwassen 

biologische bedrijven of die nog in omschakeling zijn meer op gangbare 

bedrijven lijken. Onze biologische proeven produceerden vergelijkbare 

schermgewichten als de gangbare proeflocaties, waardoor het niveau van 

abiotische stress, waarvan we hypothetisch stelden dat die van invloed zou 

zijn op de mate van expressie van de landbouwkundige eigenschappen en 

inhoudstoffen, minimaal was. Productiesysteem was alleen van invloed op 

individueel proefniveau, hetgeen laat zien dat elke individuele locatie/seizoen/

jaar combinatie een unieke milieu vormde, en dat genotype × productiesysteem 

interacties het gevolg waren van verschillende factoren in elke omgeving. 

Grotere genotypische verschillen in biologische productiesystemen werden 

voor landbouwkundige eigenschappen, maar niet voor inhoudstoffen 

waargenomen, hetgeen de intrinsieke heterogeniteit in de biologische 

landbouwsystemen en de respons van rassen op deze variatie liet zien.

Zoals wel met betrekking tot de landbouwkundige eigenschappen het geval 

was, speelde productiesysteem geen significante rol met betrekking tot het 

niveau van de inhoudstoffen. Op individueel niveau van de inhoudstoffen, was 

het genotype het meest bepalend voor glucorafanine, neoglucbrassicine en de 

carotenoïden, terwijl glucobrassicine en de tocoferolen meer beïnvloed werden 

door de milieuomstandigheden en diverse interacties. We identificeerden 

verschillende positieve en negatieve correlaties tussen eigenschappen (bijv. 
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glucorafanine was positief gecorreleerd met het schermgewicht en negatief 

gecorreleerd met carotenoïden). Voor eigenschappen die sterk geassocieerd 

waren met genotype (d.w.z. glucorafanine en luteïne) waren rassen met 

de hoogste concentraties van deze verbindingen ook de meest stabiele 

rassen over alle proeven. Seizoenseffecten waren groter dan de locatie-

effecten (Maine versus Oregon) voor de inhoudstoffen in vergelijking met 

de landbouwkundige eigenschappen (glucorafanine was hoger in de herfst; 

carotenoïden hoger in het voorjaar). Anders dan bij de landbouwkundige 

eigenschappen, was de variatie in concentraties van inhoudstoffen niet 

groter onder biologische dan onder gangbare teeltomstandigheden, 

maar herhaalbaarheid en de verhouding van gecorreleerde respons 

en directe respons was vergelijkbaar, hetgeen veronderstelt dat het 

selecteren onder biologische omstandigheden effectief kan zijn voor het 

optimaliseren van veredelingsprogramma’s gericht op voedingstoffen. 

Hoofdstuk 6 evalueert de belangrijkste bevindingen van de hoofdstukken 

1-5 in het licht van de doelstellingen, hypotheses en onderzoeksvragen 

van dit onderzoek. Door de gecombineerde analyses rond de biologische 

zaadregelgeving en de veldproeven die de landbouwkundige eigenschappen 

en niveau van inhoudstoffen van broccoli rassen onder biologische en 

gangbare teeltsystemen bepaalden, worden de resultaten samengevat en 

besproken aan de hand van de volgende vijf stellingen: (1) heldere regelgeving 

is de basis voor de ontwikkeling van de biologische zaadsector, (2) biologisch 

productiesystemen beïnvloeden landbouwkundige eigenschappen en 

niveau van inhoudstoffen van rassen, (3) een gewasideotype kan dienen als 

communicatie-instrument om te komen tot een geschikt rassenassortiment, 

(4) genetische variatie is een vereiste om optimale rassen te ontwikkelen, en 

(5) meerdere modellen voor zaaizaadsysteem dragen bij aan de groei van de 

biologische sector. In het bijzonder is de rol van een biologisch gewasideotype 

(een lijst van door biologische telers gewenste raskenmerken voor optimale 

rasprestaties in een biologisch productiesysteem) verkend. Het definiëren 

van een biologische gewasideotype levert een bruikbaar instrument voor 

telers en veredelaars om over de vereiste eigenschappen te communiceren. 

Zodra een ideotype is gedefinieerd, kunnen telers zorgen dat hun behoeften 

aansluiten bij beschikbare rassen, en hebben veredelaars een ‘blauwdruk’ voor 

de rasontwikkeling. Een biologisch gewasideotype kan ook worden gebruikt als 
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communicatiemiddel tussen telers en certificeerders, d.w.z. om rasverschillen 

te communiceren die een derogatieaanvraag kunnen ondersteunen. Door 

deze studie hebben we getracht een biologische gewasideotype te definiëren 

voor broccoli aan de hand van de beschikbare interviews met veredelaars 

en telers, de veldproeven en de analyses op inhoudstoffen. De resultaten 

van deze gecombineerde studies zijn vertaald naar een beschrijving van een 

broccoli gewasideotype om te worden gebruikt als basis voor het ontwikkelen 

van een broccoli veredelingsstrategie voor de biologische landbouw. Een 

biologische broccoli veredelingsstrategie moet rekening houden met zowel 

de geprioriteerde eigenschappen gedefinieerd in een gewasideotype en de 

toegestane veredelingstechnieken in de biologische landbouw. Zowel een 

veelzijdige markt als de veredelingsmogelijkheden moeten in beschouwing 

genomen worden om een groeiende biologische zaadsector te ondersteunen. 

De duurzaamheid van de huidige zaadproductie voor de belangrijkste 

voedselgewassen waarvan de mondiale voedselzekerheid momenteel 

afhankelijk is, is in toenemende mate een kwestie van praktische, professionele 

en politieke discussie. Het werk beschreven in dit proefschrift geeft aan dat de 

ervaring van de biologische zaadsector relevant is voor deze discussies in vele 

opzichten. In het bijzonder, kunnen gangbare zaadbedrijven in de toekomst 

voordeel zien in het hebben van een biologische afdeling die wederzijds 

inspirerend en winstgevend zou kunnen blijken; en eigenschappen met op de 

korte termijn een hoge prioriteit voor de biologische landbouw zouden ook 

op lange termijn de gangbare landbouw kunnen dienen als ze streven naar 

rassen met eigenschappen die bijdragen aan duurzame productiesystemen en 

verbeterde voedingskwaliteit.
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A bst ract
This t hesis is about t he regulat ory and t echnical challenges t o t he 
organic seed and breeding sect or. This st udy specifically explored t he 
mut ual influence of t he regulat ory environment for organic seed sec-
t or development in t he Unit ed St at es (US), Europe Union (EU) 
and Mexico, and t he ext ent t o which broccoli (Brassica oleracea var. 
it alica) cult ivars performed different ly under organic condit ions 
compared t o convent ional condit ions, measured by select ed hort icul-
t ural and phyt ochemical t rait s. Current ly, organic farmers depend 
largely on cult ivars bred for convent ional farming syst ems. However, 
organic farming pract ices oft en differ subst ant ially from conven-
t ional pract ices by refraining from using chemical input s. We in-
vest igat ed t he requirement s of organic growers for seed t hat allowed 
opt imizat ion of t heir product ion syst em, and fulfilled consumer 
expect at ions for high nut rit ional value. In addit ion, we discuss t he 
implicat ions for seed product ion and crop improvement. The field 
research was based on st akeholder int erviews, part icipant observat ion, 
document ary analyses, laborat ory analyses and paired field t rials (or-
ganic/convent ional) conduct ed in t wo cont rast ing regions, Maine and 
Oregon in t he US, over t wo seasons (spring, fall) and t wo years for a 
t ot al of 16 t rials wit h 23 cult ivars. The main findings of t he reg-
ulat ory component were: (1) N ew organizat ions, procedural arrange-
ment s and act ivit ies have emerged in t he US, EU and Mexico t o 
support organic seed regulat ory development, wit h bot h posit ive and 
negat ive result s; (2) Official guidance on t he int erpret at ion of t he 
regulat ion in t he US has not been sufficient ly decisive t o prevent 
divergent int erpret at ion and pract ice, and in consequence t he needs of 
a rapidly growing economic sect or are not being met; and (3) Growt h 
of t he organic seed sect or is hindered by regulat ory imbalances and 
t rade incompat ibilit ies wit hin and bet ween global market s. For 
t he field st udies t he main findings were: (1) In t he part it ioning 
of variance, locat ion and season had t he largest effect on broccoli head 
weight. For glucoraphanin and lut ein, genot ype was t he major source 
of t ot al variat ion; for glucobrassicin, region and t he int eract ion of 
locat ion and season; and for neoglucobrassicin, bot h genot ype and it s 
int eract ions wit h season were import ant. For δ- and δ- t ocoph-
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