
Proceedings of the HYDRALAB IV Joint User Meeting, Lisbon, July 2014  
 

1 

 

 

 

 

EXPLORING THE ROLE OF WAVE DRAG IN THE STABLE STRATIFIED OCEANIC 

AND ATMOSPHERIC BOTTOM BOUNDARY LAYER IN THE CNRS-TOULOUSE (CNRM-

GAME) LARGE STRATIFIED WATER FLUME 

Michal Kleczek (1), Gert-Jan Steeneveld (1), Alexandre Paci (2), Radiance Calmer (2), Anne Belleudy 

(2), Jean-Christophe Canonici (2), Frederic Murguet (2), Vivian Valette (2) 

 

(1) Wageningen University, The Netherlands, E-mail: Gert-Jan.Steeneveld@wur.nl 

(2) CNRM-GAME (UMR3589 METEO-FRANCE and CNRS), Toulouse, France, E-mail: 

alexandre.paci@meteo.fr 

 

This paper reports on a laboratory experiment in the CNRM-GAME (Toulouse) stratified 

water flume of a stably stratified boundary layer, in order to quantify the momentum transfer 

due to orographically induced gravity waves by gently undulating hills in a boundary layer 

flow. In a stratified fluid, a surface corrugation is towed with different speeds to cover a range 

of Froude numbers. PIV measurements are used to quantify the flow field which is divided in a 

mean flow, a wave component and turbulent component. In addition wave drag divergence 

over the boundary layer is investigated. The experimental results aim to improve formulations 

for turbulent heat and momentum transfer for use in numerical weather prediction, climate 

models and ocean models 

1. INTRODUCTION 

Understanding the stably stratified oceanic and atmospheric boundary layer is especially important for 

numerous environmental issues as for instance air quality (Neu, 1995), fog forecasting (Uematsu et al, 

2007), wind energy engineering (Smith, 2010; Storm, 2009), climate and ocean modelling (Sigmond, 

Kushner, Scinocca, 2007; Karlsson et al, 2008; Killworth & Edwards, 1999; Ott, Barth, Erofeev, 

2004). It is also of interest in the fields of marine ecology and biology (Gaylord et al, 2004). 

 

Despite previous research efforts, current understanding of the Stable Boundary Layer (SBL) in the 

atmosphere is rather poor and progress in the field slow (Beljaars & Holtslag, 1991; Cuxart, Holtslag, 

Beare et al, 2006; Holtslag, 2006). In addition, Numerical Weather Prediction (NWP) models still 

have a long way to go in correctly incorporating the SBL. Another hurdle towards better 

understanding of the SBL is the multiplicity of small-scale processes which may occur at the same 

time (Mahrt, 2007). Typically, polar winter climate is estimated 6K too warm and nocturnal winds are 

overestimated. Also, NWP models needs more drag than can be explained from turbulence field 

observations. Hence, it is desirable to study possibly overlooked physical processes, as orographically 

induced wave drag, suggested firstly in (Chimonas & Nappo, 1989) or (Teixeira & Grisogono, 2008). 

 

Recent oceanic research has similarly highlighted the importance of Bottom Boundary-Layer (BBL) 

dynamics on physical processes higher in the ocean’s water column (J. Xing & Davies, 2010; Ganju & 

Sherwood, 2010; Simarro et al, 2009). It was found that mixing, transport and fluid flow can be 

influenced by topography and dynamics in BBL, as well as water depth and internal wave generation. 

The effect of the ocean BBL on linear wave propagation has been analyzed in (Simarro et al, 2009). 

The results allowed (Simarro et al, 2009) to present an improved boundary- layer parametrization 

which takes into account the influence of gravity waves. Experimental BBL research in (Kushnir, 

2007), (Kushnir et al, 2007) and (Carr, Stastna, Davies, 2010) indicate the impact of friction and 

orographic wavelength on BBL development and behaviour. They found that orographically induced 

wave generation was a key process for the BBL momentum budget. In (Sutherland & Aguilar, 2006), 

Sutherland and Aguilar showed the importance of boundary-layer separation upon internal waves 

generated by flow over rough topography. Their experiment showed that the specific shape of 

topography is more important for wave generation than the momentum roughness. 
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Despite many field experiments for a range of BBL or SBL roughness, there is no quantitative 

explanation for all the processes that cause drag to the flow under stably stratified conditions. The 

behaviour of atmospheric stably stratified flows is still not represented or described well enough. 

According to linear theory, wave drag at surface is governed by Richardson number Ri , Froude 

number Fr and Scorer parameter, but still the shape of its divergence in practical situations is 

unknown. As a result, the role of small-scaled gravity waves is currently neglected in NWP models. 

This project focus on orographically induced wave drag (τwave ) and its influence on Boundary Layer 

dynamics. Theoretical and idealized model studies already shown that turbulent drag and wave drag 

may be of the same order of magnitude during weak flow conditions (Steeneveld et al, 2008), 

(Steeneveld, Nappo, Holtslag, 2009), but the shape of the divergence of τwave is unclear. The main 

objective of this experimental study is to determine the shape of divergence of τwave and to investigate 

the effects of orographically induced wave drag on boundary layer dynamics in general. The 

momentum and energy budget parametrization will be studied in order to take account of τwave . 

 

2. THE SCIENTIFIC OBJECTIVES 

The scientific purpose of the project is to quantify and describe the influence of wave drag caused by 

”relatively modest” orography on mixing and momentum budget behaviour in the SBL in order to 

obtain a better parametrization and understanding than what is currently available. Such a 

parametrization can then be used to improve existing oceanographic and atmospheric models in (very) 

stable conditions. In order to achieve the aims of the project, we planned the following objectivities: 

 to achieve stable conditions in the stratified water flume with surface corrugation in the 

bottom for relatively range Fr , Ri and the Scorer parameter 

 to measure mean velocity at several levels 

 to measure flow fluctuation u , w relative to the mean flow 

 to distinguish between turbulence and wave-based fluctuations 

 to evaluate linear theory of gravity waves and its impact on momentum budget 

 to observe the dependence of wave drag τwave with height 

 to quantify the impact of small-scale orographically induced gravity-wave drag on the 

dynamic development of the SBL 

 

3. MATERIAL AND METHODS 

Ideal conditions to develop theory and parametrization are hard to find in nature, both in the 

atmosphere and ocean. Therefore, idealized laboratory experiments will make a key contribution to 

furthering current understanding. Moreover, calculation of momentum and energy budget will be 

improved by laboratory results. A common challenge in the experiments is to set up and maintain 

stable density gradients and to measure fluxes in controlled stratified conditions. For that purpose, the 

CNRS/CNRM-GAME Toulouse stratified water flume is ideal since it has been designed specifically 

to investigate density stratified boundary layers. Another key aspect of that facility is its ability to 

generate stratified flow at very high Reynolds numbers, hence similar to those in the real ocean and 

atmosphere. Also, the facility is the longest, density stratified flume available in Europe and most 

likely in the world. A flume of a large length is essential for obtaining stationary conditions. In 

addition the CNRS/CNRM-GAME team has a good expertise on time- resolved density and velocity 

measurements in turbulent and stratified flows. 

 

The set-up (see Figure 1) allow for the first time a stratified boundary layer developing over a 

corrugated surface to be studied in the laboratory at high Reynolds number. The corrugation 

wavelength is 80cm and its height is 10 cm. These corrugations have been equipped with small blocks 

at their surface to increase the simulated boundary layer depth.  
 
Previous research showed that (Steeneveld et al, 2010) it was possible to simulate in this flume 

(stratified) boundary layers similar to atmospheric ones. Studying wave drag divergence requires wave 

breaking or saturation which will be obtained by larger flow speed close to the surface than aloft. Flow 
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velocities should range between 5 and 15 cm/s, with Brunt-Vaisala frequency of the order of 1 rad.s
-1

, 

creating turbulent boundary layer of the order of 0.1m. 

  

4. RESULTS 

Figure 2 shows turbulence generated over a corrugated surface (ocean floor or ground) in an 

exploratory experiment (visualization of fluorescent dye in a vertical laser sheet). Figure 3 presents the 

preliminary results of an experiment with a towing speed of 9 m/s. At the top the hills are visible. 

Flow speed increases with height from the surface and the stream lines nicely follow the orography in 

this case. In the right panel, a wake is visible between the hills and the flow is detached from the 

orography. Even at the higher levels the streamlines are smooth and follow roughly the orography. 

The vertical velocity (Figure 3, right panel) follows a structure with upward flow just before the hills 

and a downward component behind the hills. This structure propagates upward creating wave crests at 

higher levels and skewed relative to the surface, similar to prediction of linear theory.  Preliminary 

density profiles (not shown) suggests a typical Brunt Vaisala frequency of 0.57 rad.s
-1

 before the run 

which persists during the run, indicating that a stratified boundary layer has been successfully 

simulated.  Experiments with a smaller towing speed indicate wave dissipation (not shown). 

 

Figure 1 Experimental set-up 
 

 

 
 

Figure 2 Turbulence generated over a model representing a corrugated surface (ocean floor or ground) 

in an exploratory experiment (visualization of fluorescent dye in a vertical laser sheet). 

 

 

 
 

Figure 3 Observed horizontal flow speed and stream lines (left panel).Observed vertical flow velocity 

(right panel). 
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5. CONCLUSIONS 

A stratified boundary layer flow over regularly undulating orography have been successfully simulated 

for the first time in the laboratory at high Reynolds number. The experiments conducted in the 

CNRS/CNRM-GAME Toulouse large stratified water flume show an adequate wave propagation and 

boundary layer development. Preliminary results indicate that wave drag divergence has been 

observed in a subset of the runs. Further analysis will explore more deeply the vertical variation of the 

wave drag flux and the turbulent momentum flux with height. 

 

ACKNOWLEDGEMENT 

The experiments described in this publication were supported by the European Community's Seventh 

Framework Programme through the grant to the budget of the Integrating Activity HYDRALAB IV 

within the Transnational Access Activities, Contract no. 261520. This document reflects only the 

authors’ views and not those of the European Community. This work may rely on data from sources 

external to the HYDRALAB IV project Consortium. Members of the Consortium do not accept 

liability for loss or damage suffered by any third party as a result of errors or inaccuracies in such data. 

The information in this document is provided ‘‘as is’’, and no guarantee or warranty is given that the 

information is fit for any particular purpose. The user thereof uses the information at its sole risk and 

neither the European Community nor any member of the HYDRALAB IV Consortium is liable for 

any use that may be made of the information.  

REFERENCES 

Beljaars, A.C.M and Holtslag, A.A.M. 1991. Flux parameterization over land surfaces for atmospheric 

models. J. Appl. Meteor., 30, 327-341 

Carr, M., Stastna, M., Davies, P.A., 2010. Internal solitary wave-induced flow over a corrugated bed. 

Ocean Dynamics, 60, 1007-1025 

Chimonas, G. and Nappo, C.J. 1989. Wave drag in the planetary boundary layer over complex terrain. 

Bound.- Layer Meteor., 47, 217-232 

Cuxart, J., Holtslag A.A.M., Beare R.J. (and many contributing authors) 2006. A single-column model 

intercomparison for a stably stratified atmospheric boundary layer Bound.-Layer Meteor., 118, 273-

303 

Ganju, N.K,. Sherwood C.R. 2010. Effect of roughness formulation on the performance of a coupled 

wave, hydrodynamic, and sediment transport model. Ocean Modelling, 33, 299-313  

Gaylord, B., Reed, D.C., Washburn, L., Raimondi, P.T. 2004. Physical-biological coupling in spore 

dispersal of kelp forest macroalgee. J. Marine Systems, 49, 19-39 

Holtslag, A.A.M. 2006. GEWEX Atmospheric Boundary-Layer Study (GABLS) on stable boundary 

layers, Bound.-Layer Meteor., 118, 243-246  

Karlsson, J., Svensson, G., Teixeira, J., Cardoso S. 2008. The transition from stratus topped to trade-

wind cumulus topped marine boundary layer in global climate models. 18th Symp. Bound. Layers 

Turb., Stockholm, Sweden. 

Killworth, P.D., Edwards, N.R. 1999. A turbulent bottom boundary layer code for use in numerical 

ocean models. J. of Phys. Ocean., 29, 1221-1238  

Kushnir, V.M. 2007, Bottom Boundary Layer in the Black Sea: Experimental Data, Turbulent 

Diffusion, and Fluxes. Oceanology, 47, 33-41 

Kushnir, V.M., Hansen, E., Petrenko, L.A., Pavlov, V.K., Morozov, A.N., Stanichnyi, S.V., Fedorov, 

S.V, 2007. Currents and turbulent diffusion in the Bottom Boundary Layer of the Barents Sea. 

Physical Oceanography, 17, 278-295 

Mahrt L. 2007. Weak-wind mesoscale meandering in the nocturnal boundary layer. Env. Fluid Mech., 

7, 331-347 

Neu, U. 1995. A parameterization of the nocturnal ozone reduction in the residual layer by vertical 

downward mixing during summer smog situations using sodar data. Boundary-Layer Meteor., 

73,189-193.  

Ott, M.W., Barth, J.A., Erofeev, A.Y. 2004. Microstructure Measurements from a Towed Undulating 

Platform. J. of Atmos. and Oceanic Technology, 21, 1621-1632 



Proceedings of the HYDRALAB IV Joint User Meeting, Lisbon, July 2014  
 

5 

Sigmond, M., Kushner, P.J., Scinocca, J.F. 2007. Discriminating robust and non-robust atmospheric 

circulation responses to global warming J. of Geophys. Res. D: Atmos., D20121, 112  

Simarro, G., Orfila, A., Galn, A., Zarruk, G.A. 2009. Bottom friction effects on linear wave 

propagation. Wave Motion, 46, 489-497 

Smith, R.B. 2010. Gravity wave effects on wind farm efficiency. Wind Energy, 13, 2589 - 2607 

Steeneveld, G.J., Dobrovolschi. D., Paci, A., Eiff, O., Lacaze, L., Holtslag, A.A.M. 2010, Sensing the 

Stable Boundary Layer in a towing tank. 19th Symp. on Bound. Layer. Turb., Keystone, CO, USA 

Steeneveld, G.J., Holtslag, A.A.M., Nappo, C.J., van de Wiel, B.J.H., Mahrt, L. 2008. Exploring the 

role of small- scale terrain drag on stable boundary layers over land. J. Appl. Meteor. Clim., 47, 

2518-2530. 

Steeneveld, G.J., Nappo, C.J., Holtslag, A.A.M. 2009. Estimation of Orographically Induced Wave 

Drag in the Stable Boundary Layer during the CASES-99 Experimental Campaign. Acta Geophys., 

57, 857-881 

Storm, B., Dudhia, J,. Basu S., Swift, A., Giammanco, I. 2009, Evaluation of the weather research and 

forecasting model on forecasting low-level jets: implications for wind energy. Wind. Energy, 12, 81-

90 

Sutherland B.R. and Aguilar, D.A, 2006. Stratified Flow over Topography: Wave Generation and 

Boundary Layer Separation. WIT Trans. on Engin. Sci., 52, 317-326 

Teixeira, M.A.C. and Grisogono,B. 2008. Internal wave drag in stratified flow over mountains on a 

beta plane. Quart. J. Roy. Meteorol. Soc., 134, 11-19. 

Uematsu, A., Hashiguchi, H., Yamamoto, M.K., Dhaka, S.K., Fukao, S. 2007. Influence of gravity 

waves on fog structure revealed by a millimeter-wave scanning Doppler radar. J. Geophys. Res., 

D07207, 112  

Xing, J. and Davies, A.M. 2010, Effect of water depth and the bottom boundary layer upon internal 

wave generation over abrupt topography. Ocean Dynamics, 60, 597-616. 


