
USING ROS FOR AGRICULTURAL ROBOTICS
- DESIGN CONSIDERATIONS AND EXPERIENCES

Ruud BARTH1, Jörg BAUR2, Thomas BUSCHMANN2, Yael EDAN3, Thomas
HELLSTRÖM4, Thanh NGUYEN6, Ola RINGDAHL4, Wouter SAEYS6, Carlota

SALINAS5, Efi VITZRABIN3

1Greenhouse Horticulture, Wageningen University & Research Center, Droevendaalsesteeg 107
Wageningen, 6708 PB, the Netherlands

2Institute of Applied Mechanics, Technische Universität München, Boltzmannstr. 15, 85748
Garching, Germany

3Department of Industrial Engineering and Management, Ben-Gurion University of the Negev,
Beer Sheva, Israel

4Department of Computing Science, Umeå University, SE-901 87 Umeå, Sweden
5Centre for Automation and Robotics UPM-CSIC, Crta. Campo Real 0,2 Km, 28500 Arganda

del Rey, Spain
6KU Leuven, Department of Biosystems, Kasteelpark Arenberg 30, Leuven, Belgium

Abstract. We report on experiences of using the ROS middleware for development
of agricultural robots. We describe software related design considerations for all main
components in developed subsystems as well as drawbacks and advantages with the
chosen approaches. This work was partly funded by the European Commission
(CROPS GA no 246252).

Keywords: Agriculture, Robotics, ROS, Software development

1 Introduction

Modern robotics emphasizes how physical appearance, or morphology, is tightly
connected to truly intelligent behaviour (Pfeifer, Scheier 2001). Behaviour is viewed
as the result of sensors controlling actuators in an inseparable sensory-motor loop
mediated by the environment, under the control of an appropriate software system
(Billing et al. 2011). While this view emphasizes the importance of hardware, it also
indicates that flexibility and goal-directed intelligence primarily depends on
the piece of software that connects sensing with acting. Software is indeed what
�blows life� into otherwise dead robot hardware. Compared to hardware, software has
the great advantages of being small, lightweight, adaptable, and multipurpose.
Furthermore, software components often have complexity, degrees of freedom, and
dimensionality that by far exceed the sensors and actuators they are interfaced to.
Agricultural robots typically require software in several parts of the robots, and for
different purposes. Many sensors, such as laser scanners and cameras, often contain
embedded computers for data acquisition, data processing and communication.
Further data processing is typically performed in a separate computer running a
dedicated analysis program. Robot arms and grippers often contain low-level
controllers for control of joint angles. A dedicated top-level computer typically

RHEA-2014 509

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Wageningen University & Research Publications

https://core.ac.uk/display/29211943?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

contains driver routines for communication with sensors and actuators, and algorithms
for sensing, motion planning, motion control, gripping, and mission control. Several
generic tools have been proposed to support the development of robot software. So
called Robotic Development Environments (RDE), such as ROS (Quigley et al.
2009), MRDS (Jackson 2008), NAV2000 (Hellström et al. 2008), and Orca
(Makarenko et al. 2006) aim at simplifying interfacing to hardware and
communication between software components in a system. The ROS system provides
support for interfacing with sensors and actuators, communication between software
components, and also high-level modules for navigation and path planning. ROS has
become very popular in the last years, not least for academic research and
development. The main contribution of this paper is an analysis of design
considerations related to using ROS for development of, in particular agricultural,
robots. The work is based on experiences from software development within the
CROPS project (www.crops-robots.eu/), which aims at developing a number of robots
for agricultural and forestry use. The presented analysis and experiences may serve as
useful guidelines in similar development projects, both for deciding on appropriate
software tools, and for the actual software design work. Section 2 gives some
background to the CROPS project and the ROS system. In Section 3, software related
design considerations for all main subsystems in the developed CROPS robots are
described. Drawbacks and advantages with chosen approaches are identified and
compared to alternative approaches. In Section 4, experiences from the collaborative
development work are reported and discussed. Section 5 concludes the paper with a
summary and final discussion.

2 Background

2.1 The CROPS robots

Currently there is a high demand to automate labour in modern greenhouses,
orchards, plantations and forests. The availability of a skilled workforce that accepts
repetitive tasks is decreasing rapidly. Furthermore, the climate conditions of the
working environment in greenhouses are harsh. The resulting increase in labour costs
and reduced capacity puts pressure on the economic viability of the greenhouse
sector. A major objective in the CROPS project is to develop scientific know-how for
a highly configurable, modular and clever carrier platform that includes a modular
manipulator and intelligent tools (sensors, algorithms, sprayers, grippers) that can be
easily installed onto the carrier and are capable of adapting to new tasks and
conditions. Several technological demonstrators are developed for high value crops
like greenhouse vegetables, fruits in orchards, and grapes for premium wines. The
robotic platform will be capable of site-specific spraying (targets spray only towards
foliage and selective targets) and selective harvesting of fruit (detects the fruit,
determines its ripeness, moves towards the fruit, grasps it and softly detaches it).
Another objective in CROPS is to develop techniques for reliable detection and
classification of obstacles and other objects to enable successful autonomous
navigation and operation in plantations and forests. The agricultural and forestry
applications share many research areas, primarily regarding sensing and learning
capabilities. The description in this paper will focus on the development of the sweet-
pepper harvesting robot and the apple-harvesting robot in CROPS.

510 RHEA-2014

2.2 ROS

In the CROPS project, most software development has been done using the ROS
(Robot Operating System) environment (Quigley et al. 2009), with programming
done in C++. ROS manages parallel execution of software modules, denoted nodes,
and administrates Ethernet based communication between nodes (message passing).
ROS also supports transparent physical relocation of nodes such that computer intense
program modules easily can be moved to a separate computer. This is particularly
useful during system development since several research groups can easily connect
their respective computers to a working system.
The concept software components (Szyperski 2002) is based on the idea that software
should be developed by gluing prefabricated components together. Each component
should be stand-alone with a well-defined interface, and not depend on others to
work. An example is two components for image analysis that can be interchanged
without modifying any other code. Our implementation work has been guided by this
design philosophy, which is also supported by the three major communication
methods in ROS. The most common method is denoted publish-subscribe or event-
driven communication. Nodes that are interested in data subscribe to the relevant
topic, and nodes that generate data publish to the relevant topic. With this method,
nodes are not aware of whom they are communicating with, and data generation and
usage are synchronized in time. A second communication method, denoted request-
reply communication is supported via so called services, and may be used if
information is needed before the execution of a node should continue. A node sends a
request to another node, which replies with the requested data. This method is similar
to a regular function call. A third method, denoted actions, is used when a node needs
to wait for or supervise another node to complete a task. A relevant example is
manipulator motion. By using actions, the calling node gets feedback from the
manipulator node during motion, and is thereby able to cancel the motion or take
other actions if necessary.

3 Technical aspects on and experiences from using ROS

In CROPS, ROS is used to construct software for a number of subsystems for sensing,
perception, manipulator control, mission control, and system framework. Design
considerations, with a specific focus on the use of ROS, are described and discussed
in separate subsections below for each subsystem.

3.1 Sensing

The sensory subsystem is composed of two devices, a high-resolution colour CCD
camera and a time-of-flight (ToF) camera. Additionally, two virtual sensors and a
sensory system controller are provided. A virtual sensor is a software unit that acts
like a sensor and internally retrieves and combines data from other physical, or
virtual, sensors. One virtual sensor is a multispectral system with data acquisition
achieved by a combination of a controlled filter wheel and a CCD camera (RGB and
monochrome format). Another virtual sensor is the RGB-D system, performing data
registration between a CCD camera (RGB format) and a ToF device (amplitude data,
confidence map and point cloud data). Use of the virtual sensor concept allows a

RHEA-2014 511

multi-sensor framework to be easily adapted to various hardware configurations. The
control system for the filter wheel and the DAQ card for image acquisition are hosted
in the real-time framework xPC Target*, which communicates with ROS via TCP
messages. Low-level control of the system is implemented in the real-time platform
with ad hoc libraries programmed in C language, and high-level control integrated in
a ROS node. The TCP messages transmit parameters and commands required for
controlling and monitoring motion and data acquisition tasks of the sensory
subsystem.
Each camera is implemented as a ROS node that provides facilities to dynamically
reconfigure camera parameters without having to restart the node, as well as services
for some parameters such as acquisition mode, exposure time, pixel format and
integration time. Data acquired by each camera, and status of the acquisition, is
transferred by publishing messages, instead of using request-reply services, as several
subscribed nodes might require the same information. The sensory system controller
node is in charge of controlling image acquisition, configuration of parameters, and
filter wheel motion. The services of the camera nodes allow the sensory system
controller to set specific hardware configurations required to generate data for the two
virtual sensors. Synchronous image acquisition is achieved when the controller
publishes a specific trigger message. This trigger message is sent when the filter
wheel reaches a requested position. The motion to the next target position is sent as
soon as the cameras data are successfully acquired.

3.2 Perception

Perception is the process of transforming sensor data to a higher level of abstraction.
The perception architecture is illustrated in Figure 1. Each virtual sensor provides
feature data. For detection of both apples and peppers several virtual sensors (e.g.
NDI space, texture, colour normalization) are used.

Figure 1. Perception framework

* QNX (www.qnx.com)

512 RHEA-2014

The sensor fusion block includes the following series of blocks that provide one
output based on several feature data inputs. Split sub images � splits the image
into several parts depending on variance in lighting conditions and information from
other sensors. Calculate threshold � calculates the threshold for the sub image, and
then decides on the existence of an object according to the threshold. Feature
classifier � decides for each pixel, for each sensor if it belongs to an object (e.g.,
fruit) or not. Object unification � unifies close pixels marked as object into one
object from different sensors. Classifier � classifies each object to its proper class
(e.g., if it is a fruit or not). This task is performed with adaptive weighting fusion.

Each virtual sensor node sends feature data by a published message (2D matrix, with
several dimensions according to the feature data) so that the sensor fusion node
continuously receives updated data. The output of the sensor fusion node includes
data on all detected fruit. Apples are represented by a sphere (X,Y,Z center
coordinates in image coordinate system and radius in cm). Peppers are represented by
a truncated cone (X,Y,Z and radius for upper and lower circles of the truncated cone).
The output data is published continuously as a message since several clients need this
information.

This modular framework was chosen to simplify integration of new virtual sensors, if
and when they become available. Full implementation was conducted in ROS and in
Matlab. The parallel implementation in Matlab enabled faster development and
evaluation of algorithms. Since this project was characterized by algorithm
development in parallel to development of the overall operational system it was
important to have an independent tool which provides modularity and extensive
toolboxes for rapid development. Once algorithms were finalized, transfer over to
ROS was straightforward.

3.3 CROPS Manipulator

For robot actuation, low-level motor control and an interface to the joint sensors are
required. Furthermore, for robot motion, the application of real time systems is very
common. This allows for synchronized and predictable joint movement and gives the
possibility to implement high-level control algorithms. Although ROS is not a real-
time framework, there are several standard approaches to combine real time processes
with ROS. First, one can use a standard PC with Ubuntu and ROS installed. With
extension cards, low-level communication to the actuators can be provided. With a
real time extension for Linux, it is possible to control the motors or communicate with
the motor controllers. The advantage with this approach would be a very good
integration of the software with ROS. However, even though real-time performance
of Linux can be improved with the RT-Preempt patch, jitter and latency are still sub-
optimal. A second approach is a real-time operating system with support for ROS.
One can either implement a custom interface or integrate the ROS communication
interface as an application, running on the real-time operating system (e.g. with the
ROS package rosserial). For a more detailed discussion on this topic, refer to
(Bouchier, 2013). Figure 2 shows the solution chosen for the CROPS manipulator.
The hardware system consists of a real-time control unit running the commercial

RHEA-2014 513

operating system xPC Target�. The xPC is integrated with Matlab/Simulink and
includes several hardware drivers enabling fast integration and testing. The realtime
system handles control and low-level communication with manipulator joints and
end-effectors. The hardware system communicates with ROS using custom
implemented UDP messages, allowing monitoring and control of the manipulator.
Since this is the only interface to the rest of the system, all ROS parameters and
messages required for robot motion must be sent to the real time system by
transforming them into UDP messages, and status messages from the real time system
must be transformed back into ROS messages for monitoring. This requires additional
programming effort. From our experience this is the main drawback of this approach.
An advantage is the full support and good documentation from the company
MathWorks, as well as independence from the middleware ROS. Safety features, like
self-collision checks and inverse kinematic algorithms are implemented on the real
time control unit. Custom interfaces to ROS high level functionality, like the motion
planning library MoveIt (http://moveit.ros.org/), are provided.

Figure 2. Hardware and software architecture of the CROPS manipulator

3.4 System framework

A generic software framework for development of agricultural and forestry robots
was developed as part of the project (Hellström, Ringdahl 2013). The goal was to
provide generic high-level functionality and to encourage distributed and structured
programming, thus leading to faster and simplified development of robots. A
framework developed with similar goals is presented by Jensen et al. (2012).
Individual ROS nodes are able to respond to input, and can trigger other ROS nodes.
In theory this allows a chained collection of ROS nodes to perform complex
sequential tasks. However, building a program in such a way is not always
appropriate since coordination and core functionality then is mixed. Our solution is to

� MathWorks (http://www.mathworks.com)

514 RHEA-2014

use a general state machine to organize and control the order of execution; the
sequence of functionalities provided by the different ROS nodes. Each state
represents an algorithmic functionality to be performed by one or several ROS nodes.
The state machine manages and processes information returned from the ROS nodes,
and passes it along as input to other nodes when needed. The state can use any of
three available methods to communicate between nodes; publish-subscribe, request-
reply, or action (see Section 2.3). When certain conditions are met, for example when
computational results of the ROS nodes are reached, the state machine makes a
transition to one of the possible next states. Centralizing this transition mechanism to
a general system component simplifies implementation of user interfaces and error
handling functionality. A performance monitor constantly checks the status of the
software system. If an error is detected, an error handler decides on a suitable action,
such as resetting a node or stopping the system and alerting the user via an error
message in the graphical user interface (GUI). In addition to showing the status of the
system, the GUI is also used to start, pause and stop the state machine, and hence the
entire application.

3.5 Mission control

For a specific application, the algorithmic sequence to be executed is defined with a
flowchart, which can be directly translated into the state machine as described in the
previous section. In Figure 3, the flowchart for the CROPS sweet pepper robot is
shown. It contains three main functionalities: initialization, sensing and harvesting.
Note that there is a sub-state machine included for moving the manipulator. The state
machine based framework has proven to be useful for coordinating and sequencing of
operations. It logically arranges the computations to be performed by all ROS nodes
and thereby separates the coordination task from the actual computations.

4 Experiences from working with ROS

In general, ROS has worked to satisfaction, and it has simplified integration of
components implemented by different partners in the project. ROS provides useful
tools and libraries that support introspection, debugging, visualizing the state of the
robot system, and map based localization. ROS also provides seamless integration
with other popular open-source libraries such as OpenCV, PCL, and MoveIt, which
may add powerful capabilities to the robot.

However, as with any framework, it takes considerable time to learn how to use ROS,
its tools and additional libraries. An experienced problem is that new ROS versions
often lack full backwards compatibility and a lot of code normally has to be changed.
This makes ROS particularly problematic to use in commercial applications.
Therefore, we suggest switching to newer versions only after careful considerations
and testing.

Although ROS has its own set of standard message formats that cover most common
cases, customized message formats are sometimes required. They should follow the
defined messages description language and should be agreed upon by all partners and
approved by the responsible software architect.

RHEA-2014 515

ROS provides a possibility to maintain a stable publishing frequency of each message.
Choosing the most efficient frequencies requires careful considerations by all
involved partners.
Since ROS is a distributed system using messages to communicate between separated
nodes, debugging can sometimes be difficult. It is not always obvious why things do
not work, and in which node the error occurs. On the other hand, the distributed
approach simplifies development of individual components since they often can be
tested in isolation by simulating message communication with the rest of the system.
One initially overlooked decision was whether to use a 32 or 64-bit operating system.
Whenever possible, the nodes in our system include both 32 and 64-bit libraries such
that they can be used with both types of operating systems. However, some drivers
are available only as 32-bit libraries, and can therefore not be compiled on 64-bit
operating systems. Except for the mentioned problem, it is possible to have both 64
and 32-bit systems in a project, since ROS is able to communicate over the network
regardless of operating system type.

Figure 3. Flowchart for the finite state machine of the sweet pepper application

Initialisation Sensing

Harvesting

Moving

moving moving

Coldboot

Homing

Ready

Go To Start
Position

systems Ready

homed

start

Move
Arm Aside

Move
Sensor Rig

Inside

Fruit
Detection

Move
Sensor Rig

Outside

Move
Arm Inside

Select Next
Fruit

Move Arm
To Visual

Servo Start

Arm Move
To Fruit

Harvest
Fruit

Arm Move
To Basket

reached reached

reached

found fruitreached

reached

systems not ready

homing

fruit selected reached

reached

harvestedreached

moving movingmoving

no fruit

moving moving

moving

Release
Fruit

released

all fruits picked

Check
Collision

Path
Planning

Error cleared

Application Start

check

no collision

to move

moving

516 RHEA-2014

5 Conclusions and discussion

ROS is a very popular tool for development of software for robots. This fact alone is
one of the biggest advantages with the system. Many manufacturers of hardware
components supply ROS drivers. To avoid problems with missing drivers from third
parties, it is advisable to use only 32-bit operating systems. The ROS user community
is highly active. Solutions to many experienced problems can often be found on the
ROS Wiki or elsewhere online.
Functionally, ROS normally does its job well. It does not support real-time response,
which depending on the application can be a disadvantage or not. The modular
approach makes is possible to develop time-critical components separately, with
interfaces to the ROS system. The time to learn ROS should not be underestimated.
To speed up the learning curve, using the tutorials on the ROS Wiki can be
recommended. Prior knowledge of programming in C++ or Python is a clear
advantage, if not a prerequisite.

References

Billing, E., Hellström, T. & Janlert, L. E. (2011). Robot learning from demonstration
using predictive sequence learning. In: Ashish Dutta (Ed.), Robotic systems:
applications, control and programming (pp. 235-250). Kanpur, India: IN-TECH.

Bouchier, P. (2013), Embedded ROS [ROS Topics], Robotics & Automation
Magazine, IEEE, vol.20, no.2, pp. 17-19, June 2013, doi:
10.1109/MRA.2013.2255491.

Hellström, T., Johansson, T., and Ringdahl, O. (2008), A Java-based Middleware for
Control and Sensing in Mobile Robotics. International Conference on Intelligent
Automation and Robotics 2008 (ICIAR�08), San Francisco USA, pp. 649-654,
2008.

Hellström, T. and Ringdahl, O. (2013), A software framework for agricultural and
forestry robots, Industrial Robot: An International Journal, Vol. 40, Issue 1, pp.
20-26.

Jackson, J. (2008), Microsoft robotics studio: A technical introduction, Robotics &
Automation Magazine, IEEE, 14, 82-87.

Jensen K., Nielsen, S.H., Larsen, M., Bøgild, A., Green, O. and Jørgensen, R.N.
(2012), FroboMind, proposing a conceptual architecture for field robots.
Automation Technology for Off-Road Equipment (ATOE), International
conference of agricultural engineering, CIGR-Ageng2012, pp. 8-12.

Makarenko, A., Brooks, A. and Kaupp, T. (2006), Orca: Components for Robotics, In
International Conference on Intelligent Robots and Systems (IROS), pp. 163-168,
Oct. 2006.

Pfeifer, R. and Scheier, C. (2001), Understanding Intelligence. MIT Press.
Cambridge, Massachusetts.

Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E.,
Wheeler, R., and Ng, A. Y. (2009), ROS: an open-source Robot Operating

RHEA-2014 517

System, In Proc. Open-Source Software workshop of the International
Conference on Robotics and Automation (ICRA).

Szyperski, C. (2002), Component Software: Beyond Object-Oriented Programming
(2nd ed.). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

518 RHEA-2014

