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Abstract

Background

The use of whole-genome sequence data can lead to higher acaurgemome-wide
association studies and genomic predictions. However, to benefit frome-gbobme
sequence data, a large dataset of sequenced individuals is neededtidmrden SNP
panels, such as the lllumina BovineSNP50 BeadChip and lllumina Boviis=dBChip, tq
whole-genome sequence data is an attractive and less expepmivach to obtain whole-
genome sequence genotypes for a large number of individuals than seguahc
individuals. Our objective was to investigate accuracy of immrtdtom lower density SNP
panels to whole-genome sequence data in a typical dataset for cattle.
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Methods

Whole-genome sequence data of chromosome 1 (1737 471 SNPs) for 114 Hroleteam
bulls were used. Beagle software was used for imputation fronBakeneSNP50 (313p
SNPs) and BovineHD (40 492 SNPs) beadchips. Accuracy was calcatated correlation
between observed and imputed genotypes and assessed by five-foldatidad®n. Three
scenarios S40, S60 and S80 with respectively 40%, 60%, and 80% of the indiasluals
reference individuals were investigated.

Results

Mean accuracies of imputation per SNP from the BovineHD panebjieesce data and frgm
the BovineSNP50 panel to sequence data for scenarios S40 and S80 @mgedTrto 0.83
and from 0.37 to 0.46, respectively. Stepwise imputation from the BovineSNH50 t
BovineHD panel and then to sequence data for scenario S40 improvedcgqoer SNP tp
0.65 but it varied considerably between SNPs.

Conclusions

Accuracy of imputation to whole-genome sequence data was genagdilfor imputatior
from the BovineHD beadchip, but was low from the BovineSNP50 beadchip. Séepwi
imputation from the BovineSNP50 to the BovineHD beadchip and then to se
substantially improved accuracy of imputation. SNPs with a low nahele frequency were
more difficult to impute correctly and the reliability of imption varied more. Linkage
disequilibrium between an imputed SNP and the SNP on the lower density panel, miaor alle
frequency of the imputed SNP and size of the reference group affected imput&tltmlitye

Background

One advantage of using whole-genome sequence data over genotypeSNPBor(single
nucleotide polymorphisms) panels for genome-wide association sty@G¥@sAS) and

genomic prediction is that polymorphisms causing genetic diffesenae be included in
whole-genome sequence data. Because the causative mutation is indegdadin linkage
disequilibrium (LD) between a SNP and the causative mutatiodymbination events is
not an issue. Accordingly, testing variants directly assatiatiéh a given trait is possible
and may lead to higher accuracy in GWAS and genomic predictionsoloreince there is
no decay in LD when using sequence data compared to traditionérssimed marker
panels, genomic selection across generations and across breeds may be ingprii&j. e

Costs to generate whole-genome sequence data are decrepsihyg Itais expected that, in
the next few years, whole-genome sequence data will be walgiyable for crops and
livestock, as is already the case for human studies [4]. DeSpmtdact that costs of
sequencing are decreasing, it is still expensive to sequarge numbers of individuals. A
less expensive approach to produce sequence genotypes for a labge otimdividuals is

to impute from lower density marker panels to whole-genome seqdeteeln this case, a
core set of individuals is fully sequenced, and the lower dengigtgges of the remaining
individuals will be imputed to whole-genome sequence genotypes usingetiuenced

individuals as reference [5-8].



However, using sequence data may not lead to higher accuracy in ggredictions and
GWAS if the accuracy of imputation to sequence data is too low. Accuracy of troputeas
studied in barley with 3200 SNPs [9], in maize with 35 000 SNPs [18hagep with 50 000
SNPs [11] and in cattle with 50 000 SNPs e.g. [12] and 777 000 SNP43.gaifhong
others. The general tendency in those studies was that the acotiragyutation increased
with an increasing number of SNPs on the lower density markel,padecreasing distance
between the imputed SNP and the nearest SNP on the lower derskgr panel, an
increasing minor allele frequency (MAF) of imputed SNPs, ameasing level of LD
(linkage disequilibrium), and an increasing number of close relabgggeen imputed and
reference individuals. In all those studies, imputation was done froruénsity panels to
higher density panels but not to whole-genome sequence data.

In contrast to crops and livestock, human sequence data are a&valablaccuracy of
imputation to sequence data has been investigated e.g.[14-16], which showed tlaalyafcur
imputation was influenced by reference group composition (e.g. sizpopulations
included), number of markers on the lower density marker panel, afddfidnputed SNPs.
Moreover, according to Let al. [16], these factors influenced accuracy of imputation
especially in the case of SNPs with a MAF below 0.05. For impuataf SNPs with a MAF
below 0.005, it was necessary that the reference group includedtdtaé@sndividuals and
for imputation of SNPs with a MAF between 0.005 and 0.05, only about 40%e @&NP
genotypes were imputed with 1200 individuals in the reference group.

Crop and livestock populations differ from human populations, in extent ofahd
population structure [17-19]. In cattle, effective population size of sodinddual breeds has
decreased rapidly to about 100 due to intense selection [19-21]. Consequienitycattle
breeds extends on relatively long distances. This is also trueaioy other domestic animal
and plant populations (e.g. dogs or barley), but not for human populations [17 A&) W
using whole-genome sequence data, differences in extent of LD andtmopstaucture may
affect imputation accuracies more in crop or livestock analyses than in humaresnalys

The objective of this study was to investigate the accuraaypmitation of genotypes from
SNP panels to whole-genome sequence data in a typical datakehestic animals and to
gain insights on the factors that affect accuracy of imputasiach as number of sequenced
individuals, number of SNPs on the lower density marker panel, locatdbMaAF of the
imputed SNPs. Because in practice true genotypes are unknowimpioikant to understand
the underlying factors that influence imputation accuracy. Holdteiesian cattle data
provided by the 1000 bull genomes project [22,23] was used in this study.

Methods

Genotypic data

Whole-genome sequence data of 114 Holstein Friesian bulls were mrdyidbe 1000 bull
genomes project (Run 2.0) [22,23]. Bulls that originated from Austi@bdaada, Denmark,
Finland, France, Germany, Sweden, The Netherlands, UK, and U34 deatified as key
ancestors of the global Holstein Friesian population. Each bulseggenced using lllumina
HiSeq Systems (lllumina Inc., San Diego, CA). Alignment, varieaiting, and quality
controls were done in a multi-breed population with sequenced Holsiesian, Fleckvieh,
Jersey, and Angus bulls as described by Daetwatleal. [22]. Variants used in our study



were SNPs and INDELs (both considered as SNPs here). Twcs dlfeland B) per SNP
were assumed with a value of 0, 1, or 2 for genotype AA, AB, qgrrB&pectively. To save
computing time and space, only SNPsBwos taurusautosome 1 (BTALl) were used. Similar
results were expected for other chromosomes.

A set of sequence variants and genotypes that can be used toptetstion programs is
available at request via http://www.1000bullgenomes.com [23].

Imputation

Beagle 3.3.2 software [5] with default parameter settingsusad for imputation. No SNP
edits were performed prior imputation. For each individual, the mogdy lgenotypes were
used and they were assumed to be unphased, for both the reference anidrnvaals.
Moreover, it was assumed that all individuals were unrelated. Acgwf imputationr) was
calculated as the correlation between observed and imputed genoitgpated genotypes
were assessed by estimatedllele dosage, which had a value between 0 and 2 and was
calculated using posterior genotype probabilities as estimat&keagle: 0 * P(AA) + 1 *
P(AB) + 2 * P(BB). SNPs with fixed observed genotypes or edgdB-allele dosages for
one or more validation groups were removed. Accuracy of imputationddrgeeen -1
(opposite genotype imputed) and +1 (correct genotype imputed). An imoputatcuracy
with a value around 0 meant random imputation.

To assess imputation accuracy, five-fold cross validation wderperd. Individuals were
randomly divided in five groups, group 1 to 5, and each group was used asioralskt
once. For validation individuals, SNP genotypes for SNPs correspondirgg thiumina
BovineSNP50 BeadChip (lllumina Inc., San Diego, CA; 54 609 SNPs) or ifllum
BovineHD BeadChip (lllumina Inc., San Diego, CA; 777 962 SNPs) wéaeesl, while the
remaining SNPs on the sequence panel were masked.

Scenarios

To study the effect of nhumber of sequenced individuals on imputatiorraagcuhree
scenarios were considered: S80, S60, and S40. Reference group in sce3yrie60Sand
S40 contained 80% (all, except validation individuals), 60% and 40% of théduals,
respectively. In scenarios S40 and S60, the two or three following gnarpsdesignated as
reference group. For example for scenario S60, if individuals in gtoupre designated as
validation individuals, then individuals in group 2, 3, and 4 were designatesfemsnce
individuals.

According to VanRadest al.[13], accuracy of imputation from 3 K and 6 K panels to the
BovineHD beadchip was improved if the genotypes were imputeddittste BovineSNP50
and then to the BovineHD beadchip instead of directly to the BovineHD tipado study
if this stepwise imputation approach also improved accuracy of ingutétom the
BovineSNP50 beadchip to whole-genome sequence data, a stepwiseianpuéet studied
in scenario S40. Individuals in the two following groups were referemdi@iduals for
imputation to the BovineHD beadchip (step 1) and individuals in the teaqus groups
were reference individuals for imputation to whole-genome sequence(siefa 2). For
example, if individuals in group 2 were designated as validation indigidilen individuals
in group 3 and 4 were assigned to the reference group for step 1, anduialdiin group 5
and 1 were assigned to the reference group for step 2.



Factors that affect imputation accuracy

Factors that can influence imputation accuracy per SNP are nofmdeguenced individuals,
distance (in base pairs) and MAF difference between an imputBda8tlits nearest SNP on
the lower density marker panel, and MAF of imputed SNPs. MAF alsilated for each
SNP based on all 114 individuals. For graphical representation andstwailé the average
behavior of SNPs, SNPs were binned in groups of 1000 based on distarMdéF
(difference), and these binned SNPs were used to study imputation reliafjility (

To investigate the relationship between imputation reliabilityaf@NP and the factors that
may influence its value, a few simple functions were used. Adfinchaplotypes (and not
single SNPs) are used for imputation of missing SNPs, our dssumption was that
imputation reliability is based on LD between known and unknown SNPs, aneéaands
assumption was that MAF together with number of sequenced individudlsaffatt
imputation reliability.

Two functions were used to model LD between two SNPs: one was tasisgtance [24]
and one was based on difference in MAF [25]. The first functionritbescLD decay(r;s:%)
based on effective population si2ég( and distance of an imputed SNP to its nearest SNP on
the lower density marker panet (n Morgan):

) 1
Taist™ = .
4xNexc+1

Ne was assumed to be equal to 100 or 1000 and for distances, it wasdagsaind base-
pairs (1 Mb) are equal to 1 centiMorgan (cM) [26,27]. The second functiamilukes the
general upper limit for LO{r 4r2) based on difference in MAF between an imputed SNP
and its nearest SNP on the lower density marker panel (dMAF) [25]:

11— 4dMAF
TaMAF = S IMAF + 1

If two SNPs differ in MAF, LD between those SNPs is expected to be low [28,29].

These two functions do not account for the MAF of imputed SNPs or nushlbeference
individuals. With a low number of reference individuals, the probabiigay individuals carry
the rare allele of a SNP with a low MAF is lower, thus iasieg the number of reference
individuals may increase imputation reliability of this SNP. To knwwledge, there is no
theoretical function that describes the relationship between ingutatiability or LD and
MAF of imputed SNPs or number of reference individuals. Thereforepgirical function
was derived by fitting a Michaelis-Menten function [30] on the data:

o2 Voo * MAF,
K,, + MAF

wherery 2 is the imputation reliabilityymax is the estimate of the upper limit of -2 and
Km is the deflection point, i.e. the estimated MAF whgfz? = 1/2/max The Michaelis-
Menten function is often used in studies on enzyme kinetics thatiledbe rate of
enzymatic reactions based on substrate concentration [30]. This fuweisothosen because
of its simplicity (two meaningful parameters) and its agregnwveth the observed data



(starting from O, it increases rapidly at the beginning and pitioally approaches its
maximum).

The three functions mentioned each explain a part of the imputatiabiligy. For overall
imputation reliability(r,,¢,;*) the functions were multiplied:

2 2 2 2
Ttotal” = Vaist™ * Tamar™ * YmaF

In the functions fory;..2 andrgy, -2, the nearest SNP on the lower density marker panel was
used although it may not be the SNP that has the highest LD witimploiged SNP. To take
this into account, for each SN2 * ryuar> Was estimated for the five nearest SNPs on
the lower density marker panel and, for each imputed SNP, SNPseolower density
marker panel that had the highest value fgg,? * ryy4r® Were selected. Next, the
parameters/max and K, were estimated by fittingy, ,z2. Finally, 7,2 Was calculated and
imputed SNPs were grouped with 1000 SNPs into bins with similar svaliey,.,;*> and
plotted against the observedrom the sequence data.

Results

Whole-genome sequence data

BTAL is the largest bovine chromosome and contains approximately 1@fp10n the
current 1000 bull genomes dataset, 1737 471 SNPs (of which 5.5% weEd dNWere
called on BTA1 based on a multi-breed population. Of these SNPs, 768%ed variation
within the 114 Holstein Friesians. The BovineSNP50 and BovineHD paoeisimced
respectively 3514 and 46 499 SNPs on BTA1, however, not all these SN®$fownd in the
sequence data. For the BovineSNP50 panel, 3132 SNPs (0.18% of the SNP®quémnee
data) and the BovineHD panel, 40 492 SNPs (2.33% of the SNPs in the sedpt@)ceere
found in the sequence data. Figure 1 presents a Venn diagram of thersawhSNPs on
BTAL in the two lower density marker panels and in the whole-gersegeence data and
numbers of overlapping SNPs.

Figure 1 Number of SNPs on BTA 1Venn diagram showing number of SNPs on BTAL in
the two lower density marker panels (BovineSNP50 and BovineHD) and in whole-genome
sequence data and overlapping numbers.

Accuracy of imputation

Mean accuracy of imputation per SNP was assessed by crafstival For imputation from
the BovineSNP50 beadchip to sequence data, it ranged between 0.3Mé&ros840 and
0.46 for S80, and for imputation from the BovineHD beadchip to sequenceitdatiaged
between 0.77 for scenario S40 to 0.83 for S80 (Table 1). Standard devratiges from
0.36 to 0.37 for imputation from the BovineSNP50 beadchip, and from 0.27 to 0.29 for
imputation from the BovineHD beadchip. In comparison to direct imputatiom fihe
BovineSNP50 beadchip to sequence data, stepwise imputation from the Bdvbte&iNthe
BovineHD beadchip and then to sequence data improved accuracyPéro&N0.28 to 0.65
for scenario S40. However, it was still lower than the accucdcynputation from the
BovineHD panel to sequence data (0.77). Accuracy per SNP for stepwputation was
found to be similar to the product of imputation accuracies for the two steps.



Table 1 Mean accuracy of imputation per SNP

Mean SD  Minimum Maximum Nb SNPs
S80 BovineHD 0.83 0.27 -0.43 1.00 744 896
BovineSNP50 0.46 0.37 -0.54 1.00 768 907
S60 BovineHD 0.81 0.27 -0.37 1.00 736 216
BovineSNP50 0.43 0.36 -0.58 1.00 780 388
S40 BovineHD 0.77 0.29 -0.33 1.00 739 859
BovineSNP50 0.37 0.36 -0.40 1.00 764 439

2-step Step 1l 0.83 0.15 -0.17 1.00 32880
Step 2 0.77 0.29 -0.33 1.00 739 859
Overall 0.65 0.30 -0.41 1.00 764 912

Mean, standard deviation (SD), minimum and maximum accuracy of athipufper SNP on

BTAL for different combinations of scenarios and lower density maréeels; for scenario
S40, accuracy of stepwise imputation is also shown for step 1 (EBNPEO to BovineHD),

step 2 (BovineHD to sequence), and overall; number of SNPs used liggesnare presented
in the last column.

Mean accuracy of imputation per individual was higher than meamraxy per SNP. For
imputation from the BovineSNP50 panel and from the BovineHD panel to seqdatace
mean accuracies ranged from 0.78 for scenario S40 to 0.95 for S80, an@.8®rfor
scenario S40 to 0.95 for S80, respectively (Table 2). Reasons fdiftbisnce are discussed
below. For imputation from either of the lower density marker pastdadard deviation was
0.04 for all scenarios. As for accuracy per SNP, imputation ancyer individual was
improved with stepwise imputation from the BovineSNP50 beadchip to seqdatecdor
scenario S40 and reached a value similar to the product of imputation accuraciels step.

Table 2Mean accuracy of imputation per individual
Mean SD Min Max Nb SNPs

S80 BovineHD 0.95 0.04 0.70 0.97 744 896
BovineSNP50 0.80 0.04 0.61 0.85 768 907
S60 BovineHD 0.94 0.04 0.70 0.97 736 216
BovineSNP50 0.79 0.04 0.61 0.85 780 388
S40 BovineHD 0.93 0.04 0.69 0.96 739 859
BovineSNP50 0.78 0.04 0.60 0.85 764 439
2-step Step 1 0.92 0.07 0.53 0.99 32 880
Step 2 0.93 0.04 0.69 0.96 739 859
Overall 0.86 0.07 0.53 0.95 764 912

Mean, standard deviation (SD), minimum and maximum accuracy of ingutaer
individual on BTAL for different combinations of scenarios and loweritdemsarker panels;
for scenario S40, accuracy of stepwise imputation is also showtefof §BovineSNP50 to
BovineHD), step 2 (BovineHD to sequence), and overall; number of SNBSarsenalyses
are presented in the last column.

Factors that influence imputation accuracy

The range of variation for imputation accuracies per SNP wgs [dable 1). In Figures 2
and 3, this variation is illustrated for all SNPs on BTA1 for sgers80. More SNPs had an
accuracy above 0.5 for imputation from the BovineHD than from the BoOMIRBS
beadchip. However, even with imputation from the BovineHD panel, SNi?»s §ome



regions of the genome were still imputed with low accuracy. é&@mple, around the
position 75.16 Mb there is a region in which the distance between imputed ShNPSNPs

on the BovineHD panel is large and for which imputation was diffidtigure 3B). This

region contained SNPs that are on the BovineHD panel, but since thagtddgregate in
the sequence data, no genotypes were available.

Figure 2 Accuracy of imputation from the BovineSNP50 beadchip on BTAlLocation on
BTAL versus accuracy of imputation from the BovineSNP50 beadchip to whole-genome
sequence data for scenario S80; each green dot represents a SNP; osaaigeldaie
locations of SNPs of the BovineSNP50 beadchip.

Figure 3 Accuracy of imputation from the BovineHD beadchip on BTAL. (A)for the

complete BTAL1(B) for the region between 70 and 85 Mb on BTAL. Location on BTA1

versus accuracy of imputation from the BovineHD beadchip to whole-genome sequence data
for scenario S80; each green dot represents a SNP; orange dots at —1 ares|lot&INPs of

the BovineHD beadchip.

Figure 4 shows the mean imputation reliability versus distand¢hetmearest SNP on the
BovineHD beadchip for the three scenarios. Imputation reliabilitypiation accuracy
squared) decreased with increasing distance between imputedrNfearest SNP on the
BovineHD panel. This decrease in imputation reliability follotws tlecay in LD, described
asry;s 2 for Ne = 1000. Even at very small distances, the observed imputatiohiliglizs
lower thanry;.,.2. In addition to this distance effect, reference group size haffent. Since
imputations from the BovineHD and BovineSNP50 panels showed similarnsatfer
distance and all other factors, only the results for the imputation the BovineHD panel
are shown.

Figure 4 Distance to the nearest SNP on the BovineHD beadchip versus mean

imputation reliability. Distance to the nearest SNP on the BovineHD beadchip versus mean
imputation reliability for imputation from the BovineHD panel to whole-genomeaesgce

data on BTAL for the three scenarios (S40, S60, and S80); SNPs were grouped in bins of
1000 SNPs with similar distance; the predicted(kl.?) was calculated with assumed
effective population sizeNg) of 100 (dashed line) and 1000 (solid line).

The difference in MAF between imputed SNPs and their neareBs SN the BovineHD
beadchip determines the maximum LD between two SNPs. Figwsbo®s this MAF
difference versusyy.r? and versus mean imputation reliability for imputation from the
BovineHD beadchip for all three scenarios. For differences A Melow 0.05, imputation
reliability was belowry,, 42, Which was in agreement with expectation based on maximum
LD. For larger differences in MAF, observed imputation relitds were above estimations
from ryyar?. This pattern implies that other SNPs than only the nearest @NEhe
BovineHD panel influenced imputation reliability.

Figure 5 Differences in MAF with the nearest SNP on the BovineHD beadchip veus

mean imputation reliability. Differences in MAF between imputed SNP and the nearest
SNP on the BovineHD beadchip versus predictedt,l} ,-2) and versus mean imputation
reliability for imputation from the BovineHD panel to whole-genome sequence d&&Ain

for the three scenarios (S40, S60, and S80); SNPs were grouped in bins of 1000 SNPs with
similar MAF differences.




The effect of MAF of imputed SNPs on imputation reliability l®wn in Figure 6, with a
Michaelis-Menten curve fitted for each scenario separal@lgutation reliability increased

with increasing MAF. This increase in imputation reliabilitgsumore pronounced at a MAF
below 0.2. The estimated value for the upper limitypfr? (Vmay Was 1.01 (SE = 0.007) for
scenario S40, 0.98 for S60 (SE = 0.005), and 0.95 (SE = 0.004) for S80. The maxioaim va

of ry4r? at the maximum MAF value (MAF = 0.5) was 0.881 for scenario S40, 0.893 for
S60, and 0.886 for S80. The estimated MAF whgn-? = 1/2/max O at the deflection point

Km was equal to 0.073 (SE = 0.002) for scenario S40, 0.049 (SE = 0.001) for S60 and 0.036
(SE =0.001) for S80.

Figure 6 Effect of MAF of imputed SNP and number of reference individuals on

reliability of imputation. Combined effect of MAF of imputed SNPs and scenario (S40,
S60, and S80) on reliability of imputation from the BovineHD beadchip to whole-genome
sequence data on BTAL; SNPs per scenario were grouped in bins of 1000 SNPsilaith sim
MAF; for each scenario a Michaelis-Menten function was fitted.

Figure 7 shows the overall estimation of imputation reliability,{;%>, Ne = 1000) against
observed imputation reliability for the three scenarios (S40, S60, B8@)estimated,, ;>
followed the observed reliabilities closely, although the estidnatg,;> were higher than
the observed reliabilities. At low,.,;?, the observed imputation reliability deviated more
from estimated,.,;%. In particular, scenarios with a higher number of individuals stHowe
larger observed imputation reliabilities compared to the estimatggef .

Figure 7 Overall prediction of imputation reliability versus observed imputation

reliability. Overall prediction of imputation reliabilityy(.,,%, Ne= 1000) plotted against
observed imputation reliability for imputation from the BovineHD panel to whalemge

sequence data on BTAL for three scenarios (S40, S60, and S80); SNPs were grouped in bins
of 1000 SNPs with similat, ;2.

Discussion

Imputation from the lower density panel

Our objective was to investigate accuracy of imputation from the lower &R panels to
whole-genome sequence data in Holstein Friesian cattle. Acooramputation was defined
as the correlation between observed genotypes and the impihele dosages. Mean
accuracy of imputation per SNP to whole-genome sequence dataqwakto 0.46 with
0.18% of SNPs known (BovineSNP50), and 0.83 with 2.33% of SNPs known (BovineHD).
We chose to use the correlation between observed and imputed genotypemdure
accuracy of imputation, whereas most studies used percentage eftlgoimputed SNPs.
Compared to correlation between observed and imputed genotypes, percérdagectly
imputed SNPs does not account for the (low) MAF of imputed SNPscéssary condition
for correlation between two random variables is that both variagtesv variation.
Therefore, SNPs with fixed observed genotypes or estinBatdidle dosages for one or more
validation groups were removed. This might have caused a positivanbtag results,
because of removal of monomorphic loci with poor imputation. In other stiedgps
[11,13,31], criteria such as MAF greater than 0.01 were used in détayqaiocedures. If
this type of criteria had been applied to the sequence data istumly, a large number of



SNPs (987 514) would have been removed, which is similar to what occuttedhe
criterion chosen here.

Previous studies showed that increasing the number of close relaétween imputed and
reference individuals increased imputation accuracy [9-11,32]. Therssgléulls in this
study were key ancestors of the global Holstein Friesian populatid in general, were not
very closely related. In fact, in some cases, they were chosen toittle asldted as possible,
in order to maximize sequencing effort of unique chromosome segm&ngenomic
relationship matrix [33] was constructed based on SNPs found on Bi¥&Ut 90% of the
off-diagonals were below 0.125 and 0.5% were above 0.5 (results not showrgctioepr
these sequenced bulls will be used as reference individuals toeirgpobtypes of other
individuals in the current population, which might be their progeny beratise closely
related individuals. Therefore, it is expected that, in practicputation accuracies will be
higher than those estimated in this study.

SNPs used in this study were called in a larger multi-breed pgaputhan the 114 Holstein

individuals included here. Ideally, to better mimic the reality arsvar the question on how
many individuals need to be sequenced, the number of reference inldivided in the three

scenarios should also be used for variant calling. This is impaitacd the set of individuals
used for variant calling influences the called genotypes and dheref bias might be

introduced in this study. However, we expect that the effect orethdts is small, because
we disregarded SNPs that did not show variation in either tieeerefe or validation set.
These are also SNPs that will not be called if only the Biolshdividuals are used for
variant calling. Another deviation from a real situation is that,ifnputation, we assumed
that the called genotypes from the sequence data were true ggomshile it would have

been more correct to use the probabilities of inferred genotypestlisequence data as
starting point for imputation. Therefore, imputation accuraciesnatd in this study may

differ slightly from accuracies obtained from “true genotypes”.

Mean imputation accuracy per SNP from the BovineSNP50 panel t@sgkeaobme sequence
data was below 0.46. Our results showed that an alternative approacisirige stepwise
imputation from the BovineSNP50 to the BovineHD panel and then to sequdacealda
yielded high accuracies of imputation. For example, in scenario Selfaay of the stepwise
imputation was higher (0.65) than that of direct imputation from ther@SNP50 beadchip

to sequence data (0.37) or even than that of direct imputation frorBavieeSNP50
beadchip in scenario S80 (0.46). Such a high accuracy with the stegppssach was
unexpected, because less information was available in the refesehcin the two-step
approach, 20% of the individuals had genotypes similar to those of the Bo\#5€ panel
(validation individuals), 40% had genotypes similar to those of the Bovinekiel
(reference individuals step 1), and 40% had sequenced genotypes ¢efabviduals step

2). Whereas, in scenario S80, with direct imputation from the BoviR&8Npanel to
sequence data, all reference individuals (80% of all individuals) ljeeseed genotypes.
VanRaderet al.[13] found an increase in imputation accuracy of about 2% when imputation
was done from 3000 SNPs to 50 000 SNPs and then to 777 000 SNPs compared to direc
imputation from 3000 SNPs to 777 000 SNPs. Although less information istise@ason
why there is this increase in imputation accuracy is not.dié@avever, one reason could be
that the imputation algorithm has problems with selecting thecohaplotypes since there
are multiple possible matches between sequence haplotypes and a R&G0e&plotype,
whereas there are less possible matches when BovineHD genatgmetded in between. In



this case, there is a higher probability of selecting the lange haplotypes in the first step,
and the short range haplotypes in the second step, which increases accuracy ebmmputat

In cattle, many individuals with BovineHD genotypes are availdliéing those individuals
to impute BovineSNP50 genotypes to BovineHD genotypes may incrbeasacturacy
gained in the first step, which would result in even higher acasahen using the two-step
approach than those obtained here. In some species, this is notti& sEadisario because no
high-density marker panel is available yet, i.e. for pig. Dmyiah these high-density panels
and re-genotyping individuals can be expensive, especially if the ehdsgmaimpute to
sequence genotypes. In a scenario in which no high-density panel a&bkyail might be
more cost effective to sequence additional animals and use thsteapproach by masking
part of the SNPs of the individuals used for the first imputatiep. Sthis will mimic a high-
density marker panel, and according to the results reported hereyehal imputation
accuracy would be higher than that obtained by direct imputationtfredower density SNP
chip. An improvement of this step-wise approach could be to use informatical
individuals in the reference population in both steps instead of usiintiigference sets as
was done in this study, to mimic dairy cattle breeding practic the former case, the
expected advantage is that all the genotype information will beahlailn the last step,
while with disjoint datasets, the masked genotype information of thais in the first step
is not used in the second step. Moreover, it would be interestimydstigate the use of
more than two steps because there may be an optimum number dbsteash the highest
accuracy.

In genomic selection, it is important to know the imputation accysacyndividual, because
there is a direct relation with the accuracy of genomic ptiedi [34] and therefore the
response of selection. In the present study, mean imputation acqeaandividual was
higher compared to mean imputation accuracy per SNP, which veaseplsrted by Mulder
et al. [34]. They argued that allele frequencies bias imputation acgyer individual and
suggested to subtract mean genotype per SNP from observed anddimpeottypes. We
tested this hypothesis and showed it had a small effect @.enétan accuracy of imputation
from the BovineHD panel per individual in scenario S80 decreased gnyOd to reach
0.90. After standardization for the genotype variance per SNP, mearaay of imputation
per individual in scenario S80 decreased furthermore to 0.87. This staedamean
accuracy per individual is still higher compared to the meanracgyper SNP, however, the
remaining bias is small and might be explained by a correlé@ween imputations of
markers within a haplotype within an individual [34].

Imputing SNPs with a low MAF

Using whole-genome sequence data for genomic prediction and GWiAt8ressting because
the actual polymorphisms that cause genetic differences anetipthyeincluded in the data
e.g. [1-3]. The distribution of allele frequencies of causal nartatis not known, but it is
hypothesized that those mutations may have a low MAF [1]. To e#écuinputation
accuracy, all SNPs with fixed observed genotypes or estinBatdieéle dosages for one or
more validation groups were removed. The remaining numbers of SNBsegpario and per
SNP chip are in Table 1. In the case of imputation from the Bovingt2l in scenario S80,
744 896 SNPs remained and 992 575 SNPs were removed from the dampetsdible that
removing these SNPs without changing the allele dosage afféetedsults. Of the removed
SNPs, 40.6% had a MAF of 0, which could have been easily imputed W% accuracy,
56.1% had a MAF between 0 and 0.1and their imputation accuracy could havaffeeted



by their low MAF only, and the remaining 3.3% had a MAF above Ohi¢glwcould have
been difficult to impute for other reasons than their low MAF. Howeas unlikely that
these 3.3% SNPs could affect the average imputation accuracy nfatomarkers because
of their small number. Although many loci with a low MAF in the aled genotypes were
removed, among the remaining SNPs those with a lower MAF were difbeelt to impute
correctly and the reliability of imputation varied more thantfa SNPs with a higher MAF.
These findings may potentially limit the benefit of using impueglience data for genomic
prediction and GWAS. However, decay in imputation reliability for SMRh a lower MAF
was smaller in the scenarios with more reference individbals those with less reference
individuals, which confirms results with human data [5]. In largeesieference populations,
there is more chance to have multiple allele copies to constnecthaplotypes [16].
Moreover, Howieet al. [35] showed that a multi-population reference panel can improve
imputation accuracy for SNPs with a low MAF, because a low-&eqy allele in one
population can be more frequent in another population. Since it is edpgkatein the near
future, more individuals from more different breeds will be sequemcedtile, it is assumed
that imputation accuracy of SNPs with a low MAF will improve.

Still, in species with a small number of sequenced individuals, imputation of SNPs M
MAF may remain an issue. In such a situation, it might be b=alketfo use another algorithm
for imputation, such as IMPUTE [8] or MaCH [7]. It is claimidt these methods perform
better compared to Beagle when the number of reference individdals [86,37] and for
SNPs with a low MAF [38]. All three methods use Hidden Markov modeisIMPUTE and
MaCH model genotypes on a set of haplotypes without clustering, ash&eagle uses
haplotype clustering strategies and therefore may miss ShtRsa low MAF [36,38].
Clustering strategies as in Beagle reduce computer timensmdory use compared to
IMPUTE and MaCH, which is an advantage when handling large datasets [37].

Imputation reliability per SNP

Although the assumption that the polymorphisms responsible for gendgceddes are
included in the dataset may be true for sequence data, for impeqeense data it is
important to know if polymorphisms are imputed correctly. Beagleutzes an allelic R
measure, which predicts accuracy of imputation per SNP. Allélis fRe squared correlation
between allele dosage of the most likely imputed genotype arld didsage of the true
imputed genotype [5] and the closer these are, the more actheataputation is for the
SNP. The correlation between the allelié Reasure from Beagle and true imputation
reliability that we calculated was equal to 0.79 for imputatiomfthe BovineHD beadchip
to sequence data in scenario S80 (results not shown). Of the 622 862 iBN&simates for
both measures, 67,2% showed a difference between the aftelie&sure from Beagle and
true imputation reliability of less than 0.1, although the maxindifference between both
measures was 0.78. This indicates that the alldiecnBasure provided by Beagle gives a
good indication of imputation reliability in general, although in spec#ises it may severely
underestimate imputation reliability.

In human studies, imputed genotypes did not result in a high incregsavar in GWAS
compared to lower density marker panels [31,39,40]. Therefore nifpisriant to understand
the underlying factors that affect imputation reliability andatce those factors into account
when imputing genotypes. An important factor that influences imputation reliabitite LD
between the imputed SNP and the SNP on the lower density mariadr phais may reduce
the advantage of using imputed sequence data for genomic predictioMéAS, @ompared



to true sequence data. The advantage with true sequence deddaskt of dependency on
LD between an SNP and the causal mutation in the sequence datajrgsthat the true

causal variant was accurately identified in the data. Ourtsesthlowed that successful
imputation of the causal mutation depended on the LD between the SKN€ lowér density

marker panel and the causal mutation. Hence, causal mutationsetipaiodly tagged by the
low-density SNP panel will also be difficult to detect for reliable imputation.

In the current Holstein Friesian population, the effective populatms isi estimated to be
around 100 [20,21]. However, Figure 4 shows that the decay in imputation@cbased on
a Ne of 1000 seemed more appropriate for our data thale af 100. Hayeset al [41]
reported that LD at very short distances is related to efeegidpulation sizes in the past,
while LD at longer distances is related to current effective adipul sizes. In our study, LD
was calculated on very short distances, which suggests thabrachisvalue should be used
for Ne rather than the current value of 100. Another reason for imputatiahiligf to decay
more quickly than that expected from the decay in LD based e @ 100 is that other
factors also affected imputation reliability, or that thedegtinteracted with respect to their
effect on accuracy. For example, when the SNP selected on theldngity panel and the
SNP in the sequence are close, their MAF may be comparable,aghihe distance between
them increases the difference in MAF may also increase. $iese factors, distance and
MAF, have a multiplicative effect, the decay in imputationatality is larger than that
expected from the decay in LD based oNeaof 100. This expectation is confirmed by the
resemblance between the combined functionsNerof 100 (results not shown) and the
combined functions faNe of 1000 (Figure 7).

Another factor that affected LD was the difference in MAF,chat first sight may be an
unexpected indicator for imputation accuracy, especially sinceotypps are used for
imputation. However, as shown in other studies [25,28,29] the differencalnddtermines
the mathematical upper limit of the LD between two SNPs. Aeme differences in MAF,
alleles at the different SNPs cannot match, even if the destagiwveen SNPs is small. For
example, the maximum possible correlation obtained for two random hiaaaples with a
MAF of 0.45 and 0.05, respectively, is 0.06. Thus, for two SNPs at the diatarce, LD
may differ and they may be in different haplotypes used fgutation. This could be
particularly important since the SNPs included in the SNP parelsch randomly selected
and generally have a high MAF.

Imputation reliability was also affected by the MAF of theouted SNPs and by the number
of sequenced individuals. Our results indicate that, if causaltiongahave a low MAF, a
large-sized reference group is required to impute those mutatiorectbprand to benefit
from using sequence data, which confirms previous reports [1,42]. Extiapa@éK, using

a power function (R= 0.999) showed that, with more than 500 reference individuals, the
increase in imputation reliability was expected to be smedlu{ts not shown). This agrees
with other cattle studies that used lower density markeratatashowed that, with more than
1000 reference individuals, the increase in imputation accuracypisctexi to be small
[12,32].

The goal of imputation is to assemble a large group of individualk pienotypic
information and sequence genotypes for genomic prediction or GWAS. Forr powe
calculations in GWAS, imputation reliability (not only overall imgtitin reliability but also
imputation reliability per SNP because of the variation betvg¢Rs) should be taken into
account when imputed genotypes are used [8]. Our results show tharfaribat estimate



LD based on distance only or on the difference in MAF betweemtpeted SNP and the
closest SNP on the lower density marker panel did not provide a goazhtiodi of
imputation reliability. When these functions were combined with an rezapiderived
function that corrects for MAF of the imputed SNPs and sizeefeference group, a much
better indication of imputation reliability was obtained but it wal not perfect (Figure 7).
The same functions also held for BTA29, even when using estimat¥sfoandK, based
on BTAL (results not shown). Hence within this population and datasqiredestions hold
across chromosomes, at least on average since bins of 1000 SNRsederndowever, these
functions could be further improved. For example, currently the functienbased on the
use of an individual SNP (the closest SNP or the SNP in highesf tli2 five closest SNPs)
to estimate imputation reliability, whereas a program like gkeaises haplotypes for
imputation. Moreover, instead of choosing the closest SNP, a moaetd8XIP might be in
higher LD with the imputed SNP. Therefore, using all SNPs or hgmstis likely to
estimate imputation reliability better than the functions used kMawever, taking all SNPs
into account or using haplotypes will make estimation more-tiomsuming and less generic
applicable. Further research using simulation is necessamnydstigate the generality of the
estimations and the obtained imputation reliability. However, owdysshows that the
functions described above provide a good indication of the factors fieat ahputation
reliability per SNP.

Obviously, imputation reliability does not rely only on LD, MAF, ancerehce group size.
Other factors, such as genotyping errors [36], or degree oforedatp between validation
and reference groups [9,10,32], are also important. It has been repottettithasing the
number of close relatives in the reference group increased egaframputation and that
this increase was more pronounced when the differences between fif8hiéts genotyped
in the validation and reference populations were large (such adiffaeences between
BovineSNP50 or BovineHD and sequence data) [10].

Conclusions

Accuracy of imputation to whole-genome sequence data was genagdilyor imputation
from the BovineHD beadchip, but was low for imputation from the BovineSN¥e&€@chip.
Stepwise imputation from the BovineSNP50 to the BovineHD beadchip aedjtence data
substantially improved accuracy of imputation. SNPs with a |dw&F were more difficult
to impute correctly and led to more variation in reliability ofputation. Functions that
estimate LD based on distance only or on the difference in MAkeket the imputed SNP
and the closest SNP on the lower density marker panel did not progm@dandication of
imputation reliability. However, when these functions were combindd am empirical
derived function that corrects for MAF of the imputed SNPs arwl &fi the reference group,
estimation of imputation reliability was greatly improved.

Competing interests

The authors declare that they have no competing interests.



Authors’ contributions

RvB participated in the design of the study, performed thistitat analyses, and drafted the
manuscript. MCAMB, MPLC, FAVE, and RFV participated in the des§ the study and
helped to draft the manuscript. BJH and IH contributed the genotypeAdiatauthors read
and approved the final manuscript.

Acknowledgements

The authors want to acknowledge the 1000 bull genomes consortium for providutatahe
John Hickey for his useful comments, and the Breed4Food project (prdgennisbasis
Dier”, code: KB-12-006.03-004-ASG-LR) for financial support.

References

1. Druet T, Macleod IM, Hayes BJoward genomic prediction from whole-genome
sequence data: impact of sequencing design on genotype imgiitn and accuracy of
predictions. Heredity2014,112:39-47.

2. Meuwissen THE, Goddard MEccurate prediction of genetic values for complex
traits by whole-genome resequencingsenetics2010,185:623-631.

3. Li Y, Sidore C, Kang HM, Boehnke M, Abecasis GEow-coverage sequencing:
Implications for design of complex trait association studiesGenome Re2011,21:940—-
951.

4. The 1000 Genomes Project Consortikn: integrated map of genetic variation from
1,092 human genomedNature2012,491:56—65.

5. Browning BL, Browning SR:A unified approach to genotype imputation and
haplotype-phase inference for large data sets of trios and ureged individuals. Am J
Hum Gene009,84:210-223.

6. Howie BN, Donnelly P, Marchini JA flexible and accurate genotype imputation
method for the next generation of genome-wide association studi¢’LoS Genef009,
5:€1000529.

7. Li Y, Willer CJ, Ding J, Scheet P, Abecasis @fRaCH: using sequence and genotype
data to estimate haplotypes and unobserved genotyp&Senet EpidemioR010,34:816—
834.

8. Marchini J, Howie B, Myers S, McVean G, DonnellyA°new multipoint method for
genome-wide association studies by imputation of genotypddat Genet2007,39:906—
913.

9. lwata H, Jannink J-LMarker genotype imputation in a low-marker-density panel with
a high-marker-density reference panel: accuracy evaluation irbarley breeding lines.
Crop Sci2010,50:1269-1278.



10. Hickey JM, Crossa J, Babu R, de los Campo$-detors affecting the accuracy of
genotype imputation in populations from several maize breedingrpgrams. Crop Sci
2012,52:654-663.

11. Hayes BJ, Bowman PJ, Daetwyler HD, Kijas JW, van derf \0k8d: Accuracy of
genotype imputation in sheep breed#Anim Genef012,43:72-80.

12. Druet T, Schrooten C, de Roos APMiputation of genotypes from different single
nucleotide polymorphism panels in dairy cattleJ Dairy Sci2010,93:5443-5454.

13. VanRaden PM, Null DJ, Sargolzaei M, Wiggans GR, Tooker ME, {®le&onstegard
TS, Connor EE, Winters M, van Kaam JBCHM, Valentini A, Van DoornBaialFaust MA,
Doak GA:Genomic imputation and evaluation using high-density Holstai genotypes.J
Dairy Sci2013,96:668—678.

14. Sung YJ, Wang L, Rankinen T, Bouchard C, Rao Bé&iformance of genotype
imputations using data from the 1000 Genomes projecHum Hered2012,73:18-25.

15. Fridley BL, Jenkins G, Deyo-Svendsen ME, Hebbring S, Freimuthilkzing genotype
imputation for the augmentation of sequence data?LoS ONE2010,5:e11018.

16. Li L, Li Y, Browning SR, Browning BL, Slater AJ, Kong X, Aponte, Mooser VE,
Chissoe SL, Whittaker JC, Nelson MR, Gelder Ehm Rerformance of genotype
imputation for rare variants identified in exons and flanking regions of genesPL0oS
ONE2011,6:€24945.

17. Goddard ME, Hayes BBapping genes for complex traits in domestic animals and
their use in breeding programmesNat Rev Gene2009,10:381-391.

18. Hamblin MT, Buckler ES, Jannink JPopulation genetics of genomics-based crop
improvement methods.Trends Gene2011,27:98-106.

19. The Bovine HapMap Consortiudenome-wide survey of SNP variation uncovers the
genetic structure of cattle breedsScience2009,324:528-532.

20. de Roos APW, Hayes BJ, Spelman RJ, Goddard INtikage disequilibrium and
persistence of phase in Holstein—Friesian, Jersey and Angustite. Genetics 2008,
179:1503-1512.

21. Qanbari S, Pimentel ECG, Tetens J, Thaller G, Lichtner P fiSkR&riSimianer H:The
pattern of linkage disequilibrium in German Holstein cattle. Anim Gene010,41:346—
356.

22. Daetwyler HD, Capitan A, Pausch H, Stothard P, van BinsbergemsRduBn RF, Liao
X, Djari A, Rodriguez SC, Grohs C, Esquerré D, Bouchez O, RossiMrd] Klopp C,

Rocha D, Fritz S, Eggen A, Bowman PJ, Coote D, Chamberlain AJ, gord€&, VanTassell
CP, Hulsegge |, Goddard ME, Guldbrandtsen B, Lund MS, Veerkamp RF, BbibiAgr
Fries R, Hayes BJrhe 1000 bull genomes projeciNat GeneR014 . in press.

23.1000 Bull Genomes Project[http://www.1000bullgenomes.com].



24. Sved JALinkage disequilibrium and homozygosity of chromosome segments
finite populations. Theor Popul Bioll971,2:125-141.

25. Miller S:Sharp upper limit for r2 as a measure of linkage disequilidbum in multiple
marker maps. In Proceedings of the Gordon Research Conference “Quantitative Genetics
and Genomics”; 17-22 February 2013; Galvestaf13.

26. Gautier M, Faraut T, Moazami-Goudarzi K, Navratil V, FoyfipGrohs C, Boland A,
Garnier J-G, Boichard D, Lathrop GM, Gut IG, EggenGenetic and haplotypic structure
in 14 European and African cattle breedsGenetics2007,177:1059-1070.

27. Kim ES, Kirkpatrick BW:Linkage disequilibrium in the North American Holstein
population. Anim Gene009,40:279-288.

28. Lewontin RC:The detection of linkage disequilibrium in molecular segence data.
Genetics1995,140:377-388.

29. Mueller JC:Linkage disequilibrium for different scales and applicatons. Brief
Bioinform2004,5:355-364.

30. Johnson KA, Goody RS he original Michaelis constant: translation of the 1913
Michaelis—Menten paper.Biochemistryl913,201150).8264—-8269.

31. Hao K, Chudin E, McElwee J, Schadt Accuracy of genome-wide imputation of
untyped markers and impacts on statistical power for associatiostudies.BMC Genet
2009,10:27.

32. Zhang Z, Druet TMarker imputation with low-density marker panels in Dutch
Holstein cattle.J Dairy Sci2010,93:5487-5494.

33. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt @&dden PA,
Heath AC, Martin NG, Montgomery GW, Goddard ME, Visscher RBdmmon SNPs
explain a large proportion of the heritability for human height. Nat Gene2010,42:565—
569.

34. Mulder HA, Calus MPL, Druet T, Schrooten Ihputation of genotypes with low-
density chips and its effect on reliability of direct genmic values in Dutch Holstein
cattle. J Dairy Sci2012,95:876—889.

35. Howie B, Marchini J, Stephens [@enotype imputation with thousands of genomes.
G3 (Bethesda?011,1:457-470.

36. Browning SRMissing data imputation and haplotype phase inference for gemaoe-
wide association studiedHum Gene008,124:439-450.

37. Nothnagel M, Ellinghaus D, Schreiber S, Krawczak M, Franké Aomprehensive
evaluation of SNP genotype imputationHum Gene2009,125:163-171.

38. Pei YF, Li J, Zhang L, Papasian CJ, Deng H\Walyses and comparison of accuracy
of different genotype imputation methodsPL0oS ONE2008,3:e3551.



39. Pasaniuc B, Rohland N, McLaren PJ, Garimella K, Zaitlen N,, [Glpta N, Neale BM,
Daly MJ, Sklar P, Sullivan PF, Bergen S, Moran JL, Hultman CMhtenstein P,
Magnusson P, Purcell SM, Haas DW, Liang L, Sunyaev S, Pattersi@ Bakker PI, Reich
D, Price AL: Extremely low-coverage sequencing and imputation increases powéor
genome-wide association studieblat Gene012,44:631-635.

40. Huang L, Wang C, Rosenberg NAhe relationship between imputation error and
statistical power in genetic association studies in diverggpulations. Am J Hum Genet
2009,85:692—-698.

41. Hayes BJ, Visscher PM, McPartlan HC, Goddard M&vel multilocus measure of
linkage disequilibrium to estimate past effective populatn size. Genome Re2003,
13:635—-643.

42. Clark SA, Hickey JM, van der Werf JHJifferent models of genetic variation and
their effect on genomic evaluationGenet Sel Evd?011,43:18.



Sequence
(1,737,471)

BovineSNP50
(3,514)

Figure 1

BovineHD
(46,499)



Imputation accuracy
00 05 1.0

-0.5

-1.0

Figure 2

25

| | |
50 75 100

Location on chromosome (Mb)

|
125

150




AR TR

BRI o A ta
) AT

Aoeinooe uoneinduw

150

25

1

00

1

75

50

25

Mb)

(

hromosome

jononc

Locat

Aoeinooe uoneinduw

I

85

80

75

70

Mb)

(

hromosome

jonon c

Locat

Figure 3



<
b o
T
SN— Q
= ©°
S
© ©
= o
)
—
c <
2 o
—
1]
-
3 o
o
£
Q
o
Figure 4

X 5S40
A 860

| o s80

0

I I I I I
5,000 10,000 15,000 20,000 25,000

Distance to closest SNP on BovineHD (base—pairs)

30,000

1.0

00 02 04 06 0.8

Predicted LD



<Q
b
T
S—" Q
= ©
S
© «©
= o
)
S
c <
2 o
+—
1]
-
3 o
o
£
<
o
Figure 5

X S40 A S60 © S80 |

0.0

0.1

0.2 0.3

MAF difference

0.4 0.5

1.0

00 02 04 0.6 0.8

Predicted LD



1.0

T
S—" Q
= ©°
S
o] ©
= o
()
S
c <
2 o
+—
(1]
+—
3 o
o
£
Q
o
Figure 6

0.1

I I
0.2 0.3

Minor allele frequency

0.4

0.5




1.0

«Q

o
c\/l-\
=
=
=
9

S ©

© o
S
c
Q
=]
1]
+—
>
o

£ <

© o
()
>
S
()
[72]
o]
@)

AN

o

<Q

o

Figure 7

x §40
A 860
o S80

I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

Predicted imputation reliability (rtotalz)




	Start of article
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7

