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The distinction between the stable genotype and the flexible phenotype was first 
introduced and coined by Wilhelm Johannsen in 1909 and is regarded as the cornerstone 
of classical genetics (Johannsen, 1909; Roll-Hansen, 2009). A more modern definition of 
phenotype is ‘the visible or otherwise measurable physical and biochemical characteristics 
of an organism, resulting from the interaction of genotype and environment’ (Henderson 
and Lawrence, 2000). Phenotypic traits can be classified into two groups based on their 
monogenic or polygenic inheritance pattern: qualitative and quantitative traits. Qualitative 
traits follow simple Mendelian inheritance and occur in distinct phenotypic classes within a 
population, in which the classes are defined by (combinations of) different alleles at a single 
locus. Examples in plants include flower colour and pea seed morphology, first described 
by Gregor Mendel. The influence of the environment on such traits is usually small and 
mostly negligible. Quantitative traits also follow Mendelian inheritance, but are defined 
by multiple genes, gene interactions and a larger effect of the environment, and therefore 
show a continuous variation in phenotypes. Examples of quantitative traits are numerous in 
plants, and vary from gene expression to metabolite levels and agronomical important traits, 
such as biomass, flowering time and reproductive success.

Natural variation within species can be exploited to associate phenotypic traits with genotypic 
variation. Arabidopsis thaliana has been adopted by the scientific plant community as the 
model species for such research as it combines a small genome size with a short generation 
cycle and despite being a self-fertiliser, it is suitable for out-crossing. Due to its widespread 
distribution across the earth, from sea level to high altitudes and from Northern Europe to 
New Zealand, Arabidopsis has adapted to a broad range of environments (Koornneef et al., 
2004; Weigel, 2012). The association between genotype and phenotype can be explored by 
growing different genotypes in the same environment. The phenotype is heavily dependent 
on the environment and, therefore, to unravel the genetic regulation of phenotypes, 
preferably different genotypes are also studied in different environments (Anderson et al., 
2014).

The genetic basis of the phenotype
Perhaps the most effective way to study the effect of a gene on a phenotype is through 
gene mutation, such as gene knockout and silencing, or through gene over-expression. 
The selective forces of nature have ensured that every gene has a function and each gene 
knockout should therefore show a phenotype under the appropriate circumstances (Lloyd 
and Meinke, 2012; Meinke, 2013). However, there are a number of exceptions in which 
a mutant will not show a phenotype. Gene redundancy or feedback regulation can mask 
the mutant phenotype, the mutant phenotype can be subtle and almost undistinguishable 
from wild-type, or the phenotype only becomes apparent under certain circumstances or in 
a certain genetic background (Lloyd and Meinke, 2012). Sometimes, gene over-expression 
may overcome such limitations.
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Alternatively, natural variation within species can be explored to investigate the genotype-
phenotype relationship. To that purpose, many different bi-parental mapping populations 
have been produced the last decades by crossing two divergent genotypes. Depending on 
the preferred type of population,  repeated back-crossing or self-fertilisation can generate 
immortal mapping populations, consisting of completely homozygous lines (Doerge, 2002). 
Although F2 populations can be valuable, immortal mapping populations such as recombinant 
inbred lines (RILs), near isogenic lines (NILs) and doubled haploids (DHs) are most often used 
to associate phenotypic traits with molecular markers in quantitative trait loci (QTL) analyses 
(Keurentjes et al., 2007). The advantage of immortal mapping populations compared to F2 
populations is that they can be replicated endlessly, greatly reducing the genotyping costs.

Recently, rapid advances in next-generation sequencing have enabled the comparison of 
hundreds of genotypes at the nucleotide level (Schneeberger and Weigel, 2011). Thirteen 
years since the release of the first Arabidopsis genome sequence (Kaul et al., 2000), another 
1048 Arabidopsis genomes have been resequenced (http://1001genomes.org) (Ossowski 
et al., 2008; Cao et al., 2011; Schneeberger et al., 2011; Long et al., 2013). The comparison 
of individual genomic sequences allows the identification of sequence variants between 
accessions at a single position. These so-called single nucleotide polymorphisms (SNPs) can 
be surveyed for an association with quantitative traits using genome-wide association (GWA) 
mapping (Nordborg and Weigel, 2008). GWA mapping is based on linkage disequilibrium 
(LD), the non-random association of alleles at different loci, and is in many aspects similar 
to classical (QTL) linkage mapping.

GWA studies have several advantages compared to the use of conventional bi-parental 
QTL mapping populations, such as recombinant inbred lines (RILs) and near-isogenic lines 
(NILs) (Keurentjes et al., 2007; Kooke et al., 2012; Korte and Farlow, 2013). First, the creation 
of RILs and NILs requires several generations of self-fertilisation and/ or backcrossing (in 
the case of NILs) to obtain homozygous lines. Natural accessions of Arabidopsis are in 
principle homozygous by nature although some heterozygosity may exist due to infrequent 
out-crossing (Tang et al., 2007). On the other hand, the time required to generate RILs or 
doubled haploids (DHs) has been substantially reduced due to the discovery of the haploid 
inducer mutant cenh3 that eliminates its own genome (Ravi and Chan, 2010). By crossing a 
heterozygous F1 plant – derived from a cross between two divergent accessions - with the 
cenh3 mutant, haploid plants are obtained that spontaneously produce DHs in the next 
generation. The recombination is slightly reduced, but allele frequency in DHs is similar 
to that in RILs, and they are well suited for QTL mapping (Seymour et al., 2012). Second, 
GWA studies profit from numerous recombination events that have accumulated during the 
long evolutionary history of Arabidopsis, providing an almost optimal resolution down to 
the gene level (Bergelson and Roux, 2010). Although LD decays on average already within 
10 kb (Kim et al., 2007), large LD regions, such as those regions that contain a selective 
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sweep, are present in Arabidopsis. QTL support intervals from RIL populations, however, are 
much larger, covering hundreds, if not thousands of genes, making candidate gene selection 
difficult. Third, the variation in GWA studies is based on a large number of accessions, which 
enables the identification of common alleles that have been established through natural 
selection. In bi-parental mapping populations the variation is limited to the segregation of 
alleles present in the two parents, and could thus lead to the identification of rare, large-
effect alleles, which may not be relevant in an evolutionary context (Rockman, 2012).

Nonetheless, GWAS suffer from the association of quantitative traits with false-positive SNPs 
and non-causal alleles, due to population structure within GWA populations. By correcting 
for genetic relatedness among the accessions, the problem of population structure and false-
positive associations is reduced, but could result in the rejection of false-negative (true) 
associations. Furthermore, genetic or allelic heterogeneity, different genes or alleles leading 
to the same phenotype, impedes the identification of causal alleles and common variants 
of small effect (Korte and Farlow, 2013). Moreover, power is substantially reduced in GWAS 
due to the segregation of multiple alleles at a single locus, while epistatic interactions are 
difficult to find due to the extremely high number of possible interactions in GWAS (Korte 
and Farlow, 2013). Nevertheless, GWA studies have contributed to the understanding of the 
genetic architecture underlying quantitative traits and the identification of genes involved 
in regulating such traits  (Baxter et al., 2010; Brachi et al., 2010; Chan et al., 2010b; Chan et 
al., 2010a; Li et al., 2010; Chan et al., 2011; Filiault and Maloof, 2012; Verslues et al., 2014). 

The role of the environment
Owing to their sessile nature, plants need to adjust their phenotype to fluctuations in the 
environment to optimize development and reproductive success. Plants are thus strongly 
influenced by their environment, and by means of mutation, recombination and natural 
selection, plants become adapted to the local conditions (Anderson et al., 2011; Long et 
al., 2013). A number of studies have shown adaptive clines of Arabidopsis to environmental 
conditions. Development and flowering-related traits are correlated with day length, 
latitude and longitude (Hancock et al., 2011; Samis et al., 2012; Debieu et al., 2013). 
Moreover, natural variation at a salt-tolerance locus, HKT1, associates with saline regions in 
Europe (Baxter et al., 2010) and natural variation in the defense locus GS-ELONG correlates 
geographically with the relative abundance of two specialist aphids (Zust et al., 2012), 
suggesting local adaptation through abiotic and biotic interactions. Local populations are 
then expected to outperform others in their native range, and indeed, in most cases local 
populations have increased fitness in the local habitat (Orr, 2005; Hereford, 2009; Fournier-
Level et al., 2011; Agren and Schemske, 2012).

The interaction between genotype and environment (GxE) may be investigated by studying 
multiple genotypes in different environments. Also transplant experiments in which 
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genotypes from at least two environments are exchanged between their native and non-
native environment might further assist in the understanding of the genetic regulation of 
local adaptation (Fournier-Level et al., 2011; Agren and Schemske, 2012; Savolainen et al., 
2013). Most studies find that genes involved in local adaptation are conditionally neutral, 
which means that increased fitness in the local environment does not reduce fitness in other 
environments (Anderson et al., 2011). However, some studies suggest that there is a trade-
off involved in local adaptation and that adapted plants outcompete others in their native 
range, but are outperformed elsewhere (Scarcelli et al., 2007; Todesco et al., 2010; Fournier-
Level et al., 2011; Ågren et al., 2013). This is well illustrated by a study on natural variation at 
the ACD6 locus in which allelic variation resulted in a trade-off between pathogen defense 
and reproductive success (Todesco et al., 2010). It has long been debated whether there is a 
trade-off between investment in defense and growth, in which it is assumed that investment 
in defense is costly (Herms and Mattson, 1992). Two recent studies on plant-herbivore 
interactions, however, show that not investment in metabolite quantity, but rather specific, 
inexpensive investment in metabolite quality increased plant fitness (Agrawal et al., 2012; 
Hare, 2012; Zust et al., 2012).

The ability of an organism to adjust its physiology and morphology in response to the biotic 
and abiotic environment is named phenotypic plasticity (Schlichting, 1986). The opposite of 
plasticity is called canalization or robustness, when the phenotype is unaltered in response 
to changes in the environment. Because different genotypes display variation in their 
degree of plasticity, phenotypic plasticity is thought to have a genetic basis (Ungerer et al., 
2003; Lacaze et al., 2009; Tetard-Jones et al., 2011). Increased plasticity may be adaptive 
in fluctuating environments (Agrawal, 2001). Even though possibly of value in changing 
environments, phenotypic plasticity might have a fitness cost due to plastic rather than 
fixed development in stable environments (DeWitt et al., 1998; Van Kleunen and Fischer, 
2005).

On top of genetics: epigenetics
The proportion of phenotypic variation in a population that is regulated by genetic effects can 
be estimated by the broad-sense heritability (H2). A high H2 indicates that a large proportion 
of the phenotypic variation can be ascribed to genetic loci and the interactions between 
them. Recently, there is an intense debate in human genetics about the disagreement 
between the high heritability found for human traits and diseases in GWA studies and 
the low percentage of genetic variation that can be explained by genetic loci (Manolio et 
al., 2009). Although not generally identified as such in plants (Brachi et al., 2011), missing 
heritability could potentially be a problem for quantitative traits in plants as well (Weigel, 
2012; Korte and Farlow, 2013). A number of studies relate the discrepancy between high H2 

and low explained variance to the complex genetic architecture of quantitative traits. If many 
genes of small effect or rare variants define the phenotype, they could remain unidentified 
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in GWAS (Gibson, 2010; Yang et al., 2010; Gibson, 2011; Yang et al., 2011; Zuk et al., 2012; 
Zuk et al., 2014). Alternatively, epigenetic variation might regulate a large percentage of the 
phenotypic variation independent of genetic variation (Manolio et al., 2009; Weigel, 2012).

Epigenetic inheritance is defined as the transfer of phenotypic changes to subsequent 
generations of cells or organisms realized by epigenetic modifications independent of DNA 
sequence variation (Jablonka and Raz, 2009). Epigenetic variation is most often associated 
with variation in chromatin marks including DNA methylation, histone modifications and 
small RNAs. Such epigenetic marks closely interact and together they determine gene 
expression, DNA repair, chromatin accessibility and chromosome organization (Cedar and 
Bergman, 2009; Jablonka and Raz, 2009). DNA methylation is the best studied epigenetic 
mark in plants and concerns the methylation of cytosine nucleotides in predominantly CG, 
but also in CHG and CHH islands (in which H represents any nucleotide except guanine) 
(Law and Jacobsen, 2010). DNA methylation in plants occurs mostly on transposons and 
other repetitive DNA sequences, although CG methylation is also present on single-copy 
genes (Schmitz et al., 2013b). Loss of methylation may cause transposable element (TE) 
mobilization and subsequent insertion in other parts of the genome (Bucher et al., 2012; 
Fedoroff, 2012), but methylation present in cis-regulatory regions may also alter gene 
expression (Richards, 2006). Epigenetic variants that cause phenotypic variation and that 
can be stably transmitted to future generations have been found in plants showing that 
epigenetic inheritance occurs in plants (Cubas et al., 1999; Manning et al., 2006; Martin et 
al., 2009).

To discriminate between genetic and epigenetic variation, three classes of epialleles have 
been proposed: obligate, facilitated and pure epialleles. Obligate epialleles are dependent 
on DNA sequence variation, while facilitated epialleles arise through a genetic modification 
such as TE insertion, but the maintenance is not dependent on genetic variation. Pure 
epialleles form independent of DNA sequence variation. The epialleles identified thus far 
are either obligate or facilitated epialleles, and although mitotically pure epialleles exist, 
meiotically pure epialleles have been suggested to exist but have not yet been confirmed 
(Schmitz and Ecker, 2012).

Epigenetic variation in DNA methylation can be induced through mutation of certain genes 
involved in epigenetic regulation, such as DDM1 and MET1, (Kakutani et al., 1996; Saze 
et al., 2003; Johannes et al., 2009; Reinders et al., 2009). Met1 mutants show an almost 
complete loss of DNA methylation and flower much later than wild-type plants (Saze et 
al., 2003). Ddm1 mutants have severely reduced levels of methylation and increased TE 
transcription and mobilisation, and they show clear developmental defects after repeated 
self-fertilisation (Kakutani et al., 1996; Tsukahara et al., 2009). Both mutants were crossed to 
Col-0 wild-type, backcrossed and repeatedly self-fertilised to create populations of isogenic 



Chapter 1

14

1

lines, coined epigenetic recombinant inbred lines or epiRILs, with differentially methylated 
regions across the genome (Johannes et al., 2009; Reinders et al., 2009). The epigenetic 
variation among the epiRILs was found to cause significant heritable variation in phenotypic 
traits in different environments (Johannes et al., 2009; Reinders et al., 2009; Latzel et al., 
2012; Zhang et al., 2013; Cortijo et al., 2014).

Epigenetic variation is present in nature and recent studies have investigated methylome 
variation in natural accessions and experimental populations of Arabidopsis, soybean and 
maize (Vaughn et al., 2007; Lister et al., 2008; Eichten et al., 2013; Schmitz et al., 2013a; 
Schmitz et al., 2013b). DNA methylome variation was found to be heritable and to exist both 
independent and dependent of DNA sequence variation (Schmitz et al., 2013b). Moreover, 
comparison of the methylation level in different Arabidopsis Col-0 lines propagated for 30 
generations through single seed descent, revealed numerous differentially methylated 
regions (DMRs) among the lines (Becker et al., 2011; Schmitz et al., 2011). This suggests 
that spontaneous epimutations can become fixed and that they may alter transcription 
and increase phenotypic diversity independent of genetic variation (Schmitz et al., 2011). 
Because epigenetic changes can regulate heritable phenotypic changes (Johannes et al., 
2009; Zhang et al., 2013) and epigenetic variation is present and heritable in nature (Eichten 
et al., 2013; Schmitz et al., 2013b), epigenetics might have adaptive value.

In contrast to genetic variation, however, epigenetic variation is reversible and it will therefore 
most likely not contribute to long-term evolutionary processes. It might be more important 
in phenotypic plasticity in fluctuating environments. Genetic mutations that cause increased 
plasticity are permanent and might thus reduce fitness in other environments. Loss or gain 
of DNA methylation, on the other hand, may be rapidly induced or reversed in the case of 
a changing environment. Indeed, both chemical and experimental demethylation increased 
phenotypic plasticity under various abiotic and biotic stresses (Tatra et al., 2000; Reinders 
et al., 2009; Bossdorf et al., 2010; Zhang et al., 2013). The plasticity was found to be highly 
heritable and profitable in terms of plant height and root:shoot ratio under drought (Zhang 
et al., 2013). Because genetic QTL studies also found high variation in plasticity among RILs 
(Ungerer et al., 2003; Lacaze et al., 2009; Tetard-Jones et al., 2011), phenotypic plasticity 
most likely has a genetic and epigenetic basis. This is further exemplified by a study on 
natural Arabidopsis accessions where chemically induced DNA hypomethylation caused 
differential phenotypic plasticity (Bossdorf et al., 2010).

Transgenerational epigenetic inheritance
Numerous studies have shown that epigenetic modifications can be triggered by exposure 
to different environmental conditions (Steward et al., 2002; Sung and Amasino, 2004; 
Hashida et al., 2006; Choi and Sano, 2007; Boyko and Kovalchuk, 2008; Chinnusamy and Zhu, 
2009; Lang-Mladek et al., 2010; Verhoeven et al., 2010; Grativol et al., 2012; Karan et al., 
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2012). A popular hypothesis states that these environmentally induced epigenetic changes 
can be inherited across generations and that they may be valuable in an evolutionary 
context, reviving Lamarckian soft inheritance (Richards, 2006). Indicative evidence in favor 
of this hypothesis was found (Molinier et al., 2006; Luna et al., 2012; Rasmann et al., 2012). 
Homologous recombination frequency was found to be substantially increased in unstressed 
progeny for multiple generations after stress exposure of the parental plants (Molinier et al., 
2006). Because there was no basis to expect DNA sequence variation between the plants, 
the signal was hypothesized to be epigenetic. Repetition of the experiment, however, did 
not confirm these results (Pecinka et al., 2009) and studies since then have not been able 
to univocally prove stress-induced transgenerational epigenetic inheritance. Most of these 
studies have focused on the immediate progeny of the stressed plants, and therefore 
epigenetic modification cannot be distinguished from maternal effects or environmental 
effects on the pre-meiotic cells (Pecinka and Scheid, 2012). Moreover, most studies did 
not look into the molecular mechanisms that may explain the variation and can actually 
not differentiate between DNA sequence variation and epigenetic variation. And finally, 
epigenetic variation correlating with stress exposure does not necessarily have to be causal, 
as the epigenetic variation may also be induced spontaneously, and not in response to 
stress (Becker et al., 2011; Schmitz et al., 2011). Nevertheless, all the above suggests that 
epigenetic modifications occur in nature, that they can be stable and heritable and that 
they affect the phenotype. However, it remains elusive whether environmentally induced 
epigenetic changes are pure epialleles, and not random, and whether they are transmitted 
to future generations (Paszkowski and Grossniklaus, 2011; Pecinka and Scheid, 2012; Heard 
and Martienssen, 2014).

Scope of the thesis
The relationship between genotype and phenotype is extremely complex and depends on 
the interaction between genotype, epi-genotype and the environment. In this thesis, we 
will use experimental and natural populations of Arabidopsis thaliana to gain insight into 
this complex regulation of the phenotype, which will be studied on the enzyme, metabolite 
and morphological trait level.

Chapter 2 describes the genetic architecture underlying quantitative morphological traits, 
such as flowering time, leaf length and plant height in a GWA study. The high heritability in 
this study did not correspond with the low explained variance by the significant loci, and 
suggests complex regulation. When the significance threshold was lowered, numerous 
candidate genes that had been previously linked to the phenotype were found, and suggest 
that missing heritability is hidden rather than missing.

Chapter 3 reviews the recent literature to determine to what extent temporal (biological 
clock, source-sink transitions), spatial (different cells, tissues), environmental and genetic 
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regulation contribute to metabolic organisation in plants.

Chapter 4 describes the genetic regulation of the complex, coordinated primary metabolic 
network in relation to plant biomass. GWA analysis was performed on biomass and a 
number of enzyme activities, structural components and metabolites of primary carbon 
and nitrogen metabolism. Numerous pleiotropic genes were found that regulate enzyme 
activity, metabolic content and plant biomass with opposite effects on metabolism and 
biomass, suggesting a trade-off between primary metabolism and biomass.

Chapter 5 describes the epigenetic regulation of morphology and phenotypic plasticity. 
Ninety-nine epiRILs of the ddm1-inherited epiRIL population were studied for morphological 
traits under control and saline conditions. DMR-based QTL mapping revealed many co-
locating QTLs for growth, morphology and plasticity, suggesting pleiotropic regulation via 
epigenetic modifications.

Chapter 6 describes the epigenetic regulation of plant secondary metabolism in leaves and 
flowers. A number of DMR-based QTLs were detected for glucosinolates and flavonoids in 
both flowers and leaves. Metabolic traits could predict plant growth and morphological 
traits, and many QTLs overlapped, suggesting pleiotropic epigenetic regulation.

Chapter 7 describes transgenerational inheritance of abiotic and biotic stress-induced 
epigenetic changes that affect gene expression, secondary metabolism, growth and 
morphology in non-stressed progeny. The abiotic, salt stress-elicited responses deviated 
distinctly from the biotic, methyljasmonate induced responses and suggest that the 
transgenerational signals are stress-specific.

Chapter 8 discusses the work presented in this thesis with particular attention for missing 
heritability, hard versus soft inheritance and trade-offs between metabolism and growth.
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Abstract
Missing heritability is a well-known phenomenon in human genome-wide association 
studies (GWAS) where the genetic information cannot fully explain the observed phenotypic 
variation. In the model plant species, Arabidopsis thaliana, the issue of missing heritability 
has not yet been addressed in great detail leading to the false assumption that most 
common phenotypic variation is explained by a relatively low level of common genetic 
variation. Here, we analysed 350 Arabidopsis accessions and found extensive variation and 
high heritabilities for different shoot morphological traits. Furthermore, some of the traits 
showed significant correlations with climatic factors. However, the number of significant 
genome wide associations was very low. The quantitative nature of these traits suggests 
that there are many loci contributing to the phenotype, each with a rather small effect 
which prevents them from exceeding the significance threshold. Genomic selection models 
were applied and they revealed different genetic architectures for the morphological traits 
with some traits being more complex than others. The complexity indicates that many loci 
of small effect contribute to the phenotypes and indeed when the significance threshold 
was lowered, numerous plausible candidate genes could be identified. These genes were 
analysed for function and sequence diversity and good indications that natural allelic 
variation in many of these genes contributes to phenotypic variation were obtained. ACS11, 
an ethylene biosynthesis gene underlying a QTL for the ratio between petiole and leaf length 
(PL/LL), was differently expressed between accessions and ectopically supplied ethylene 
abolished the difference in PL/LL between the accessions.
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Introduction
The natural phenomena of mutation and recombination that change the genetic code 
with each generation have given rise to the enormous genetic diversity between and 
within species. During evolution, plants have accumulated a vast number of molecular 
polymorphisms that enabled adaptation to a wide range of environments. With the recent 
innovations in genetic and genomic tools, the nucleotide diversity can be fully surveyed to 
find causal polymorphisms for many different phenotypes. This will allow the identification 
of molecular changes that provided evolutionary advantages and facilitate the search for 
solutions to feed a fast growing human population in a changing climate.

Through variation in performance, plants have adapted to different environments. Plant 
performance is directly determined by life history traits, such as flowering time, fecundity 
and growth rate, which in turn depend on genetics, morphology and physiology (Roff, 2007). 
Understanding the regulation of plant growth and morphology is therefore essential for the 
complete comprehension of plant performance and productivity. Arabidopsis thaliana has 
adapted to a wide range of environments and displays an extensive variety in morphological 
and growth-related phenotypes. Its small genome size, the publicly available genome 
sequences of over 1000 accessions and its short life cycle make A. thaliana an excellent 
model for the study of natural variation (Horton et al., 2012; Weigel, 2012).

Over the last decades, bi-parental mapping populations have been extremely valuable in 
the detection of QTLs responsible for trait variation between segregating progeny of two 
divergent parents (Alonso-Blanco and Koornneef, 2000; Koornneef et al., 2004; Alonso-
Blanco et al., 2005; Alonso-Blanco et al., 2009). Identifying the underlying genes, however, 
remains a laborious and time-consuming effort. Moreover, these QTLs explain the variation 
between two accessions, but this does not guarantee relevance in an evolutionary context 
as the QTLs might reflect rare alleles, and the full range of natural variation is not covered by 
such QTLs. Genome-wide association studies (GWAS) profiting from a wide allelic diversity 
and high resolution were expected to fill the gap between QTLs and candidate genes and 
at the same time lead to the identification of more evolutionary relevant variation (Atwell 
et al., 2010; Bergelson and Roux, 2010). GWAS already confirmed many of the previously 
identified genes in experimental mapping populations and mutant studies, but did not yet 
lead to the identification of many novel causal genes (Atwell et al., 2010; Brachi et al., 2010; 
Li et al., 2010; Todesco et al., 2010; Chan et al., 2011; Chao et al., 2012; Filiault and Maloof, 
2012; Sterken et al., 2012; Yano et al., 2013). 

The lack of detection power in GWAS might be caused by the extreme polygeneity and 
plasticity of quantitative traits with very small effect sizes contributing to missing heritability, 
as concluded from human GWAS (Yang et al., 2010; Gibson, 2011; Makowsky et al., 2011). 
However, the currently available large populations, dense genotyping and the advantage of 
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homozygous lines in the mainly self-fertilising species Arabidopsis, should greatly enhance 
the power of studies of polygenic traits.

Here we present the identification of novel candidate genes involved in plant growth and 
architecture through the application of GWA mapping in a population of 349 densely 
genotyped natural accessions of Arabidopsis. Relating the observed morphological 
differences between accessions to climatological data from their site of origin revealed that 
most traits were to a certain extent adaptive to climate. In line with this, most candidate 
genes contained non-synonymous single nucleotide polymorphisms (nsSNPs) and were 
subject to purifying selection. For the petiole to leaf length ratio, a QTL harboring ACS11, 
a gene involved in ethylene biosynthesis, was detected. We show that ACS11 is expressed 
in petioles and that nsSNPs in the gene define two distinct haplotypes, suggesting that 
ethylene is the signal causal for the phenotypic differences between the two haplotypes.

Results
Phenotypic variation
A collection of 349 natural accessions of Arabidopsis thaliana assembled to contain maximum 
genetic diversity and least population structure (Li et al., 2010; Horton et al., 2012) was 
analysed to assess the extent of natural variation in shoot morphology. The abbreviations 
for the morphological traits are listed in Supplemental Table 1. All analysed traits showed 
extensive phenotypic variation, not only globally, but also within geographical classes (Figure 
1). The least variation was found on the North American continent, most likely due to the 
recent introduction of the species and the relatively short period of adaptation (Platt et al., 
2010). Northern European accessions, mainly from Sweden, showed the greatest deviation 
from other geographical classes in terms of flowering time, rosette branching, plant height 
and petiole length.

Because most traits displayed different distributions in the analysed geographical classes 
it was examined whether the trait variation could be partly due to adaptation to the local 
climate. To investigate the relationships, climatological data from the collection site of 
the accessions was obtained (Kistler et al., 2001; New et al., 2002; Hancock et al., 2011). 
Because genetic polymorphisms may be strongly correlated with climate simply due to 
demographic history and genetic relatedness between accessions may bias the correlations, 
we used a correlation method that allows correction for population structure (Hancock et 
al., 2011). Specifically, a Mantel correlation matrix based on Spearman’s rank that controls 
for population structure was generated among the morphological traits and between the 
morphological traits and climatological data (Supplemental table 2 and 3).

First, the correlations among the morphological traits were compared. All inflorescence 
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related traits correlated moderately with flowering time (0.09 < r > 0.25, P < 0.001), which 
suggests that flowering time has a considerable impact on most other morphological traits 
(Supplemental table 2). The correlations are most likely caused by the requirement of 
long-term vernalisation to initiate flowering for some accessions. Strong correlations were 
also detected between leaf area and relative growth rate and among the leaf length traits. 
Comparison between Mantel correlations and uncorrected Spearman correlations revealed 

Figure 1. Boxplots showing statistical distribution of morphological traits divided over geographical 
origin based on the minimum (value > first quartile-1.5*IQR), first quartile, median, third quartile 
and maximum (value < third quartile+1.5*IQR). The blue dot indicates the mean value, while the 
orange stars depict suspected outliers (Tukey test). Abbreviations (nr of accessions): BNL, Belgium 
and The Netherlands (21); EUAS, Eastern Europe and Asia (56); FRA, France (61); GESU, Germany and 
Suisse (65); GB, Great Britain (48); NA, North America (30); NE, Northern Europe (47); SEAF, Southern 
Europe and Africa (19); ALL, all accessions (349, incl. 2 accessions from regions outside designated 
classes); LAbv, leaf area before vernalisation; LAav, leaf area after vernalisation; FT, flowering time; 
PL/LL, petiole to leaf length ratio; PL, petiole length; LL, leaf length; RB, rosette branching; MSB, main 
stem branching; PH1S, plant height at 1st silique; TPH, total plant height; RGRbv, relative growth rate 
before vernalisation; RGRav, relative growth rate after vernalisation.
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that the Mantel correlations are somewhat lower and even opposite for the correlation 
between relative growth rate before vernalisation and leaf area after vernalisation (Mantel 
r = 0.35, Spearman r = -0.36) showing that correction for population structure indeed 
influences the correlations among morphological traits.

Subsequently, the morphological traits were correlated to the climatological data. Flowering 
time, main stem branching and plant height at 1st silique correlated significantly with a 
number of different geographical and climatological factors, such as latitude, number of 
wet days, temperature, precipitation and ground frost (P < 0.05) (Supplemental table 3). 
Furthermore, day length and wind speed correlated significantly (P < 0.05) with a large 
number of morphological traits (i.e. FT, PL, PL/LL, RB and TPH). The correlations were 
generally low and when Bonferroni correction was applied, nearly all correlations were 
insignificant (P > 0.05). Uncorrected Spearman correlations were slightly higher than the 
Mantel correlations, especially for the correlation between latitude and flowering time 
(Mantel r = 0.09, Spearman r = 0.35), which indicates that population structure also has 
a major influence on these correlations. Nonetheless, the Mantel correlations were 
comparable to (Hancock et al., 2011) and are quite substantial in an evolutionary context. 
This analysis thus suggests that the variation in morphology is to a certain extent resulting 
from climate adaptations.

Heritability and GWAS
To determine to what extent the morphological variation is defined by the underlying 
genetic variation, broad-sense heritability (H2) and the marker-based heritability based on 
individual plant data (h2) were estimated. The H2 and h2 were calculated using ANOVA and 
the EMMAX mixed-model used for GWAS, respectively. The heritability estimates were very 
comparable between the two methods, although h2 was generally somewhat higher. The 
small difference in calculations is most likely caused by the sequence data that were lacking 
for ten accessions, which were therefore excluded from the heritability measurements in the 
marker-based estimation. h2 Ranged from 0.42 for relative growth rate before vernalisation 
to 0.93 for flowering time with the majority of traits having a heritability higher than 0.70, 
suggesting that most of the variation could be attributed to genetic variation (Supplemental 
table 4). Next, it was assessed whether significant associations could be detected between 
a set of approximately 200,000 genome-wide SNPs and the variation in morphological 
traits, using a linear mixed model that corrects for population structure (EMMAX). Using a 
stringent Bonferroni corrected threshold of –log10(P) = 6.6, only three significant SNPs could 
be detected, two for flowering time at the known flowering locus C (FLC) and one for rosette 
branching (Figure 2). The discrepancy between high heritability and a very low number 
of significantly associated SNPs might be due to a number of reasons. The linear mixed 
model, for instance, does not account for epistatic, GxE and epigenetic effects, which might 
contribute strongly to phenotypic variation (Gibson, 2011). Moreover, the model  might be 
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too conservative in applying Bonferroni corrected thresholds (Riedelsheimer et al., 2012) or 
wrongly correct for population structure (Filiault and Maloof, 2012). Furthermore, allelic (or 
genetic) heterogeneity (Johanson et al., 2000; Atwell et al., 2010; Barboza et al., 2013), a 
too small sample size (Korte and Farlow, 2013), rare alleles (Gibson, 2011) and high numbers 
of small-effect loci (Yang et al., 2010) might prevent the significant association of SNPs with 
variation in trait values. If many genes contribute to a phenotype the isolated effect of each 
gene is too small to exceed the stringent significance threshold. 

Genomic selection
To be able to assign much more of the genetic variation to the observed population variation 
in phenotypes, a genomic selection model was applied to all traits. Genomic selection (GS) 
models assign allele substitution effects to all markers for the prediction of trait values 
(Meuwissen et al., 2001). For all morphological traits, a genomic selection model on the 
effects of the 100,000 most informative SNPs was built that was capable of predicting the 
phenotype at high accuracy in cross validation (Supplemental figure 1). The heteroscedastic 
effect models, which allow the variance to be adjusted at each locus, explain between 
49% and 75% of the variation in the various traits (Supplemental figure 1) (Shen et al., 
2013). Although GS models are not intended for GWA locus identification, when the allele 
substitution effects were plotted, a visual pattern was observed emerging from the variance 
in the effect distribution for expected genetically less complex traits, such as flowering time 
versus complex traits, such as relative growth rate (Supplemental figure 2). These differences 
in distribution patterns were quantified and a dendrogram was constructed using UPGMA 
clustering, demonstrating the relative genetic complexity of all traits (Supplemental figure 
3). Individual marker contributions, as deduced from their effect-size, were lowest for 
the petiole/leaf length ratio and relative growth rate before and after vernalization in the 
models. Flowering time and total plant height, and to a lesser degree plant height at 1st 
silique and leaf area after vernalisation, are less complex than all other traits (Supplemental 
figure 3). Indeed, for flowering time, we found two SNPs above the Bonferroni threshold 
and a high number of loci above the –log10(P) = 4 threshold. The same was true for total 
plant height and plant height at 1st silique that have a much higher number of SNPs above 
the –log10(P) = 4 threshold than all other traits apart from flowering time. A high number of 
SNPs above the –log10(P) = 4 threshold indicates that a (relatively) large part of the genetic 
variance can be explained by a small number of SNPs provided that there is an equal amount 
of false-positives for each trait. The genomic inflation factors give a good indication of the 
expected false-positives for each trait, and for all traits the inflation factors were close to 1 
(between 0.99 and 1.1), which suggests indeed that an equal amount of false-positives can 
be expected for each trait (de Bakker et al., 2008). Overall, these results imply that much of 
the phenotypic variation can be explained by genetic diversity, but that the high number of 
contributing loci and their inherent small effect sizes hamper the significant association of 
individual loci in GWAS of complex traits.
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Candidate genes
The GS models demonstrate that most of the phenotypic variation can be explained by the 
additive effects of multiple SNPs. To locate the SNPs that cause the phenotypic variation, 
all SNPs that exceeded the arbitrary -log10(P) = 4 threshold, which is substantially above the 
“noise” level, were regarded as candidate SNPs. For all these SNPs, the LD support interval 
(r2 > 0.3) was determined and each gene was analysed within the support intervals for 
sequence diversity, function and expression profile using publicly available data. Based on 
this combined information a number of candidate genes for each trait were selected (Figure 
2, Supplemental table 5 & 6).

Two candidate genes for flowering time, FLC and DOG1, have previously been proven to 
be involved in the phenotype and have allelic variation explaining the phenotypic variation 
(Koornneef et al. 1994, Bentsink et al. 2006). Both genes were also detected in previous 
GWA studies (Atwell et al. 2009, Brachi et al. 2010). Analysis of further known flowering 
time genes yielded weak QTLs for FRI, TOR1, SVP and PHYB (Figure 2, Supplemental table 5). 

Three candidate genes for leaf area after vernalization, rosette branching and main stem 
branching, respectively ASN2, BRANCHED1 and BIL4 were previously shown to display 
knock-out phenotypes for the respective traits but natural allelic variation within the 
genes has not been reported before (Figure 2, Supplemental table 6; (Aguilar-Martinez 
et al., 2007; Yamagami et al., 2009; Gaufichon et al., 2013; Gonzalez-Grandio et al., 2013; 
Niwa et al., 2013). The recently released re-sequencing data from the Arabidopsis 1001 
genomes project enabled the comparison of the gene sequences of 530 accessions (http://
signal.salk.edu/atg1001/3.0/gebrowser). For a subset of these accessions (174) phenotypic 
information was obtained from our study allowing a detailed linkage analysis. Both ASN2 
and BIL4 have a non-synonymous polymorphism (nsSNP) within the gene which is in high 
LD (r2 > 0.3) with the most significant GWA SNP, while BRANCHED1 contains a nsSNP in 
low LD (r2 = 0.11) with the most significant GWA SNP in the LD region (Supplemental 
table 5). To determine whether natural selection had acted on these loci, we compared 
the nucleotide diversity between silent, synonymous sites and non-synonymous sites. For 
BRANCHED1 the nucleotide diversity was rather low (πT = 0.0027, Supplemental table 7) 
and the πnon/πsyn ratio (πnon/πsyn = 0.225, Supplemental table 7) was considerably lower than 
the neutral one to one ratio, suggesting that this locus is under purifying selection. This 
is further illustrated by a significant negative value for Tajima’s D (Dn = -2.187, P < 0.01, 
Supplemental table 7) at non-synonymous sites, which implies deviation from neutrality 
(Supplemental table 7). Accessions of the non-Col-0 BRANCHED1 haplotype developed on 
average 1.6 rosette branches more than accessions of the Col-0 haplotype. Within the non-
Col haplotype, accessions from the Czech Republic (0.39 vs. 0.09) and Spain (0.16 vs. 0.02) 
are highly overrepresented, indicating strong population structure, possibly due to adaptive 
mechanisms. Negative values for Tajima’s D statistic were also found for ASN2 and BIL4, 
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Figure 2. Manhattan plots for morphological traits. 
Orange color SNPs indicate SNPs (r2 > 0.3 with candidate SNP) mentioned in Supplemental table 5, 
green color SNPs are found for multiple traits, blue SNPs are important flowering genes PHYB, SVP, 
FRI and TOR1 in respective order on the genome. Abbreviations: LAbv, leaf area before vernalisation; 
LAav, leaf area after vernalisation; FT, flowering time; PL/LL, petiole to leaf length ratio; PL, petiole 
length; LL, leaf length; RB, rosette branching; MSB, main stem branching; PH1S, plant height at 1st 
silique; TPH, total plant height; RGRbv, relative growth rate before vernalisation; RGRav, relative 
growth rate after vernalisation.

most significantly at silent sites (Dsil = -2.294, P < 0.01 and Dsil = -1.864, P < 0.05 for ASN2 
and BIL4 respectively, Supplemental table 7). These findings suggest that allelic variation at 
these loci is responsible for the observed phenotypic variation. 

For eight other candidate genes strong evidence for purifying selection at non-synonymous 
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sites was detected (Dn < -2, P < 0.01, Supplemental table 7), while for another eighteen 
genes, selective pressure was moderate (Dn < -1.7, P <0.05, Supplemental table 7). For 
fifteen genes, substantial evidence from literature suggests that they play a role in the 
associated trait, although most of this evidence is circumstantial (Supplemental table 6). 
Nine of these genes contain one or more nsSNPs within the gene’s coding sequence (r2 > 
0.3) and another nine contain polymorphisms in the 1kb upstream promoter region (r2 > 
0.3). Three genes do not contain any nsSNP in LD with the GWA SNP, neither in the gene 
coding sequence nor in the promoter (Supplemental table 5). Many of the genes displayed 
signs of purifying selection, having a low πnon/πsyn ratio and a negative value for Tajima’s D 
statistic (Supplemental table 7). Twenty-nine other selected genes are members of gene 
families known to be involved in the regulation of the corresponding trait (Supplemental 
table 6). Two of these genes, CESA9 and NI, were selected for more than one trait. CESA9 
was selected for leaf area before and after vernalisation, while NI was selected for leaf area 
after vernalisation and relative growth rate after vernalisation (Supplemental table 6).
 
For the majority of candidate genes, either nsSNPs (61% of candidate genes) or SNPs in 
the 1kb upstream promoter region (51% of candidate genes) in LD (r2 > 0.3) with the most 
significant GWA SNP were identified (Supplemental table 5). For only 21% of the candidate 
genes, no nsSNPs or SNPs in the promoter regions in LD with the most significant GWA 
SNP could be identified. As SNPs in the UTR, introns and at synonymous sites may still play 
a role in determining gene expression or gene function, these candidate genes cannot be 
completely ruled out a priori. In conclusion, the strong enrichment in candidate genes for 
which independent additional indirect evidence of their involvement in the trait under 
study is available indicates that the GWA mapping approaches can greatly contribute to the 
selection of candidate genes. Moreover, these results show that genome-wide thresholds 
for GWA mapping are in general too stringent for the detection of small-effect loci controlling 
quantitative traits.

ACS11
To further validate our gene candidate discovery approach, an interesting QTL for the ratio 
between petiole length and leaf length (PL/LL) on the top of chromosome 4, coinciding with 
an ethylene biosynthesis gene, ACS11 (Figure 2), was analysed in more detail. ACS enzymes, 
forming homo-and heterodimers, are thought to catalyze the rate limiting step in ethylene 
biosynthesis converting S-adenosyl-L-methionine into 1-aminocyclopropane-1-carboxylate, 
the precursor of ethylene (Bleecker and Kende, 2000). Analyses of single, double and 
multiple acs mutants revealed that ACS enzymes play essential roles in leaf development, 
flowering time, disease resistance and ethylene production (Tsuchisaka et al., 2009).

ACS11 and its most significantly associated SNP are in strong LD with a large region of 140 
kB in which mainly transposable elements, pseudogenes and a number of small genes are 
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Figure 3. Haplotype of ACS11. 
(A) LD around the most significant  SNP associated with PL/LL ratio, close to AT4G08040, ACS11. The 
LD extends up to 140 kB. (B) Haplotypes observed in 174 phenotyped accessions within the 530 
re-resequenced accessions. The orange coloured SNPs are the most informative in relation to the 
phenotype. Both the yellow and orange SNPs are non-synonymous polymorphisms. All the other 
SNPs are either synonymous polymorphisms or located in introns. The nr indicates the total nr of 
accessions in each haplotype.
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located (Figure 3). Extensive LD is indicative of a selective sweep suggesting strong adaptive 
selection of allelic variation. Indeed, within the ACS11 coding region, five nsSNPs can be 
identified of which two are in high LD (r2 > 0.3) with the most significant GWA SNP (Figure 
3). The most informative SNP related to the PL/LL phenotype is located in the fourth exon, 
substituting a nonpolar glycine for a polar serine. Two other nsSNPs associated with a 
significant effect on the trait are located in the first exon, substituting proline (nonpolar) for 
threonine (polar) and in the fourth exon, substituting aspartic acid (negatively charged) for 
glycine (nonpolar). The nucleotide haplotype AGG, representing these three polymorphisms 
displays the highest PL/LL ratio and differs significantly from all other haplotypes (Figure 3). 
All accessions in the GWA population belonging to this haplotype originate from Sweden. 
In addition, further analysis of resequenced accessions not included in the GWA population 
(http://signal.salk.edu/atg1001/3.0/gebrowser) revealed a similar geographic distribution, 
with the exception of one accession originating from Finland.

These findings indicate a selective sweep in Scandinavian accessions suggesting an 
evolutionary advantage of altered PL/LL ratios at higher latitudes (Figure 1). If selection is 
limited to geographical regions this can result in strong population structure. Correcting for 
population structure, as done in the applied GWA model, can considerably reduce the GWA 
likelihoods and lead to false negative associations. Omitting population structure correction 
in the GWA model increased the significance of the ACS11 locus, exceeding the Bonferroni 
threshold (Figure 4A).

To determine the expression profile of ACS11, an ACS11::GUS reporter line (Tsuchisaka and 
Theologis, 2004) was analysed, revealing that ACS11 is indeed expressed in the mid vein 
of the petiole, and not in the leaf blade (Figure 4B). Subsequently, a subset of accessions, 
representing different haplotypes, was analysed for differences in gene expression 
(Supplemental table 8, Supplemental figure 4). Although no significant difference could 
be observed between the two most distinct haplotypes, variation in gene expression 
was detected (Supplemental figure 4). Accession var2-1, belonging to the AGG haplotype 
(Supplemental table 8), showed the highest expression, and accessions belonging to 
the non-Col haplotype, haplotype 0, at the most significant SNP (Chr. 4: Pos. 4888589, 
Supplemental table 8) on average expressed ACS11 at higher levels (P < 0.1) (Supplemental 
figure 4). Although these results indicate a role for transcriptional regulation, the lack of 
strong expression differences suggests that functional variation is a more likely explanation 
for the phenotypic differences. A T-DNA knockout of ACS11 was analysed and a minor but 
non-significant reduction in the PL/LL ratio was detected (Supplemental table 8). The non-
significance might be due to redundancy and/or the Col-0 genetic background. Indeed, the 
petiole length in an acs octuple mutant and in an ethylene insensitive mutant, ein2-1 (Alonso 
et al., 1999; Tsuchisaka et al., 2009) was significantly reduced, although concomitant with a 
similar reduction in leaf length (Supplemental table 8). Moreover, application of ethephon, 
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a compound that after application is quickly metabolised into ethylene, to the two most 
informative haplotypes suggests ethylene to be the signal explaining the variation in PL/LL 
ratios (Supplemental table 8, Figure 4C). Under controlled conditions, a significant difference 
(P < 0.0001) in PL/LL ratio between the two haplotypes was detected, which disappeared 3 
days after ethephon application (Figure 4C). Altogether, these findings suggest that ACS11 is 
the causal gene underlying a strong association with PL/LL ratios and that selective pressure 
favored the proliferation of accessions with high PL/LL ratios at Northern latitudes, either 
through altered expression or functional diversification.

Figure 4. ACS11 candidate gene confirmation.  
(A) Manhattan plot for PL/LL ratio from a linear GWAS model (LM). Grey, dashed bar indicates –
log10(P) = 4 threshold; red, dashed bar indicates Bonferroni threshold. (B) ACS11::GUS expression 
in 3-week old leaves. (C) Ethylene complementation experiment between two haplotypes. Treated 
plants were sprayed with 0.5mM ethephon. Results are shown 3 days after ethephon treatment. 
Haplotype 0 denotes the average of 10 accessions with 10 replicates of the G haplotype at the 4th 
nsSNP. Haplotype 1 denotes the average of 10 accession with 10 replicates of the A haplotype at the 
4th nsSNP.
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Discussion
Phenotypic and geographic variation
From this and other studies it is evident that extensive variation for morphological traits is 
present in natural populations of Arabidopsis thaliana. Interestingly, the extent of global 
natural variation is not much larger than the variation present within geographical regions, 
especially considering that the number of accessions per geographical class is about one 
tenth of the global set of accessions (Figure 1). Similar results were obtained for flowering 
related traits in French local populations compared with a global population (Brachi et al., 
2013). This argues for GWAS on regional populations in which the confounding effects of 
population structure and allelic heterogeneity are substantially reduced. Furthermore, 
the global population used in this study might not be optimal for gene identification in 
GWAS. The high number of alleles that segregate in this population with sometimes low 
allele frequencies cause a low detection power, which can result in relatively low –log10(P) 
values. The larger allelic diversity in a global population, however, also has its advantages. 
It, for instance, allows the comparison with climatic gradients. Moreover, fitness is 
enhanced through environmental adaptation at  loci that are polymorphic in the same 
environment (Fournier-Level et al., 2011). These loci do not necessarily affect fitness in 
other environments, suggesting a local genetic basis for adaptation. Such alleles can only be 
detected by comparing multiple local populations or considering a global scale of adaptation.

When comparing the phenotypic variation between the geographical classes, the North 
American accessions show the least variation for most of the phenotypes (Figure 1). As the 
species was introduced only about 300 years ago in North America, it had a much shorter 
time to migrate and evolve than its Eurasian counterparts (Platt et al., 2010). Although 
Arabidopsis is common across the entire North American continent, it shows much less 
haplotype diversity and weaker isolation by distance compared to accessions from Eurasia 
(Platt et al., 2010). The Northern European accessions showed the greatest deviation from 
all other classes, which is probably due to the requirement of vernalisation and long days to 
initiate flowering. Most developmental phenotypes are thought to be very dependent on 
this transition and FLC, a major flowering locus, impacts plant development by regulating a 
great number of developmental genes that are important throughout the plant’s life cycle 
(Deng et al., 2011). Moreover, it was recently found that the floral integrators FLC and FRI 
regulate stem branching in an epistatic manner (Huang et al., 2013). These observations 
explain to a large extent why most of the phenotypes in this study correlate well with 
flowering time.

Most of the phenotypes also showed significant correlations with climate variables suggesting 
that local adaptation is partly driven by climate (Supplemental table 3). There are many 
positive correlations between latitude, day length (spring) and many of the morphological 
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traits. This relationship is well explained by the delayed flowering time at Northern latitudes 
due to the vernalisation requirement and longer day lengths during spring (Hancock et al., 
2011). Moreover, the impact of cold temperatures and precipitation on the genetics of 
important flowering genes has also been reported before (Mendez-Vigo et al., 2013b). The 
correlation between latitude and day length (spring) with petiole length and the petiole to 
leaf length ratio is interesting in light of the geographical distribution of ACS11 haplotypes 
described here (Figure 3). Our findings suggest that a longer petiole to leaf length ratio 
is adaptive at higher latitudes. It is worthwhile to note here that mutations in the ACS 
gene family also affect FLC expression and flowering time (Tsuchisaka et al. 2009). Some 
mutations tend to induce flowering while others, concomitant with a decrease in ethylene 
production, seem to delay flowering. Besides the effect of ACS genes on flowering time, the 
number of branches is significantly reduced and plant height is significantly increased in the 
acs mutants (Tsuchisaka et al., 2009). 

Heritability
Most traits analysed thus far with GWAS in Arabidopsis such as flowering time and 
resistance/ avirulence interactions are to a large extent defined by one or a few genes 
and the questions of missing or hidden heritability have therefore not been addressed 
yet (Atwell et al., 2010; Brachi et al., 2010). Moreover, not many novel candidate genes 
that were not already previously identified in bi-parental populations or mutant studies 
were identified using GWAS. All phenotypes tested in this study were highly heritable 
with a heritability ranging from 0.42 for relative growth rate before vernalisation to 0.93 
for flowering time (Supplemental table 4). This is similar to or even slightly higher than 
the heritabilities measured in many bi-parental mapping populations for the same traits 
(Ungerer et al., 2002; Bandaranayake et al., 2004; Keurentjes et al., 2007). However, only a 
very limited number of candidate genes could be detected above the stringent Bonferroni 
threshold (Supplemental table 4, Figure 2). As all phenotypes tested here are likely to be 
highly polygenic, it appears that most of the effects of the underlying genes are too small 
to be captured in GWAS. As is the case in human GWAS, it is expected that the heritability 
is hidden rather than missing (Gibson, 2010). In the human field, most of the variation for 
human height can be explained by the additive effects of individual SNPs, showing that the 
common genetic variation is able to explain a large part of the variation for height (Yang 
et al., 2010). As plant phenotypes, due to the plant’s sessile nature, might be even more 
complex, we reasoned that similar mechanisms might explain the quantitative traits in 
the present study. Therefore, a genomic selection model explaining most of the genetic 
variation by a set of the most informative 100,000 SNP markers was adopted. Indeed, the 
predicted values from the GS model correlated well with the observed phenotypic values 
with correlations ranging from 0.48 to 0.75 for the heteroscedastic model (Supplemental 
figure 1). This indicates that a large percentage of the phenotypic variation can be explained 
by the additive effects of individual SNPs and the various resulting alleles. It does, however, 
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not give exclusive evidence for an infinitesimal model as part of the missing heritability can 
still be caused by rare alleles. However, given the strong adaptation to climate and long-
standing common genetic variation in Arabidopsis, we consider this option rather unlikely.

To illustrate this point, we lowered the significance threshold to the arbitrary –log10(P) = 4 
threshold, enabling the assignment of many strong candidate genes to a majority of QTLs 
(Supplemental table 5, 6 and 7). For flowering time, two previously confirmed genes were 
identified, FLC and DOG1, illustrating the validity of the approach (Koornneef et al., 1994; 
Bentsink et al., 2006; Atwell et al., 2010; Brachi et al., 2010). Besides these two genes, a 
number of weak QTLs were found for known flowering time genes. Although it is known 
that allelic variation exists around the FRI, SVP and PHYB loci, allelic heterogeneity within 
these loci or the rather small effect compared to other flowering time genes is likely to 
be the cause of the rather weak QTLs (Halliday et al., 1994; Johanson, 2000; Borevitz et 
al., 2002; Filiault and Maloof, 2012; Mendez-Vigo et al., 2013a). This further indicates that 
many genes impacting the phenotype have a too small effect to be captured significantly in 
GWAS. To overcome these difficulties, one could invest in local or larger GWAS populations 
to increase mapping power (Korte and Farlow, 2013).

An interesting QTL was found on chromosome 3 for rosette branching, where an association 
was found with the BRANCHED1 locus. BRANCHED1 is a signal integrator controlling bud 
outgrowth and arrest dependent on different hormonal pathways and important flowering 
time genes, such as FT and PHYB (Aguilar-Martinez et al., 2007; Gonzalez-Grandio et al., 
2013; Niwa et al., 2013). Homologs of BRANCHED1, known as TB1, are also present in rice, 
maize and sorghum and seem to be conserved among the angiosperms (Aguilar-Martinez 
et al., 2007). Good indications of purifying selection were found at this locus and a nsSNP 
in the first exon that converts isoleucine (nonpolar amino acid) to threonine (polar amino 
acid), possibly changing protein structure and function. The nsSNP was also found to be 
significantly associated with the phenotype, and it was overrepresented in accessions from 
the Czech Republic and Spain. Follow-up studies should show if the allelic variation at the 
locus is indeed responsible for the difference in phenotype, and whether it is maintained in 
local populations across the world.

For the majority of candidate genes significant negative values for Tajima’s D statistic were 
found, supported by a low nucleotide diversity πT and a low πnon/πsyn ratio, suggesting 
purifying selection at the locus. Note, however, that demographic history can dramatically 
skew natural diversity estimates, especially in Arabidopsis (Nordborg et al., 2005; Schmid et 
al., 2005). The values for Tajima’s D are substantially negatively skewed in this species and 
the results should therefore be taken with caution.

Interestingly, twenty-nine genes were found for which good indications exist that the gene 
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or gene family plays a role in the phenotype (Supplemental table 6). These results add to 
the body of evidence gathered from mutant studies in the reference accession Col-0 as 
allelic diversity might depend on the genetic background. Certain alleles might display 
similar functions in Col-0, but act differently in other accessions, playing a significant role 
in determining the phenotype. For example, it was found that SPATULA mutants in a Col-
0 background show an opposite phenotype as in a Ler background (Vaistij et al., 2013). 
Further studies using transformation, gene knockdown and expression analyses in different 
accessions are, therefore, needed to determine allelic diversity and gene function.

In depth analysis of a candidate gene: ACS11
An ethylene biosynthesis gene from the large ACS gene family, ACS11, was found to underlie 
the QTL for petiole to leaf length (PL/LL) ratio. We showed that ACS11 is expressed in petioles 
and that ethylene can nullify the differences in the petiole to leaf length ratio between two 
distinct haplotypes (Figure 4). From previous studies, it is known that ethylene can significantly 
influence petiole length and angle under different conditions and that ACS enzymes affect 
ethylene production (Tsuchisaka et al., 2009; van Zanten et al., 2009; Bours et al., 2013). All 
ACS genes are expressed in petioles, but only ACS2, 8 and 11 are differentially expressed 
between petiole and leaf (Bours et al., 2013). A T-DNA knockout of ACS11 results in a small, 
but non-significant reduction of the PL/LL ratio (Supplemental table 9). Possibly, other genes 
in the family take over the function of ACS11 abolishing the effect of the T-DNA knockout. 
Moreover, the ACS11 expression is rather low in Col-0 compared to other accessions making 
the study of a T-DNA knockout in the Col-0 background difficult. The petiole length in the acs 
octuple mutant and in the ein2-1 mutant was significantly reduced, although concomitant 
with a similar reduction in leaf length. Therefore, we could not find a difference in the PL/LL 
ratio in these mutants. Given that most ACS genes are expressed in the leaf blade and the 
petiole, a knockout of multiple ACS genes is expected to reduce the length of both petiole 
and leaf. Similar results were expected and found for the ethylene insensitive mutant, 
ein2-1. At the haplotype level, an 8% difference in PL/LL ratio between the AGG haplotype 
and the AAA haplotype was observed (Figure 3). Accessions with the AGG haplotype all 
originated from Sweden and PL/LL ratio correlated positively with latitude and day length 
(spring). Longer petioles might enhance light capture and aeration at higher latitudes, and 
thus provide plants with an adaptive advantage. A non-Col haplotype accession, var2-1, had 
the highest ACS11 expression, while accessions with a non-synonymous polymorphism in 
the last exon had on average a higher ACS11 expression. Although there is clear variation 
in ACS11 transcript abundance, it is likely that other mechanisms also play a significant role 
in the determination of the phenotype. Sequence variation within the exons gives rise to 
different amino acids, possibly changing protein structure and/ or function. Given that the 
ACS enzymes form homo –and heterodimers, the binding between the proteins might also 
be affected, leading to changes in ethylene production in petioles, and hence in petiole 
growth (Tsuchisaka et al., 2009).
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This study also presents a clear example of the consequences of correcting for population 
structure. Correcting for population structure does reduce the number of false positives 
in GWAS, but it could also lead to over-correction and the removal of false negative 
associations (Bergelson and Roux, 2010). Since the contrasting haplotype of ACS11 is only 
found at Northern latitudes, correction for population structure reduced the association 
significance of the QTL at the ACS11 locus (Figure 2 and Figure 4). Omitting the correction 
for population structure increased the QTL likelihood beyond the Bonferroni threshold. This 
advocates for the careful application of statistical correction models in biological studies 
as important findings might be overlooked if these are restricted to confined geographical 
regions.

Material and Methods
Plant growth conditions
Seeds from 350 natural accessions of Arabidopsis thaliana, collected worldwide and 
genotyped with 250K SNPs (Li et al., 2010; Horton et al., 2012), were sown on filter paper 
with demi water and stratified at 4˚C in dark conditions for 5 d. Subsequently, seeds were 
transferred to a culture room (16 h LD, 24˚C) to induce seed germination for 42 h. Three 
replicates per accession were transplanted to wet Rockwool blocks of 4 x 4 cm in a climate 
chamber (16 h LD, 125 µmol m-2 s-1, 70% RH, 20/18˚C day/night cycle). Two control accessions 
(Col-0 and Ler-1, each 10 replicates) were transplanted in the middle of the flooding table. 
All plants were watered daily for 5 min with 1/1000 Hyponex solution (Hyponex, Osaka, 
Japan). 19 Days after germination, all plants were moved to a cold room (12 h light, 4˚C) 
for 6 weeks for vernalisation. After the vernalisation period plants were transferred back 
to the same climate chamber in the same order, but divided over two tables to increase 
the growth space. For the confirmation of the ACS11 locus, 21 natural accessions (10 
replicates each) were grown, 10 accessions from each haplotype plus Col-0. Ten replicates 
of ACS11::GUS, acs11-1, acs octuple and ein2-1 were grown in the same conditions as listed 
above (Supplemental table 9).

Morphological traits and ethylene complementation
A variety of developmental traits were measured on all individual plants. Rosette photos for 
leaf area (LA) were taken 15, 19 (LAbv), 63 (LAav) and 68 DAG. Relative growth rate (RGR) 
was calculated using the following equation: (ln(LAx)-ln(LAy))/dt(x-y). RGRbv and RGRav were 
calculated between 19 and 15 DAG and 68 and 63 DAG, respectively. Flowering time (FT) 
was recorded as the time the first flower opened and photos were taken of individual plants 
two weeks after flowering. Plant height at the 1st silique (PH1S) was measured two weeks 
after flowering and total plant height at the end of the growth period (TPH). Branching 
was measured as the number of branches that were present on the main inflorescence 
(MSB) two weeks after flowering and as the number of rosette branches (RB) at the end of 
the growth period. Leaf length (LL) and petiole length (PL) were measured on photographs 
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taken from the longest leaf two weeks after flowering. For the confirmation of the ACS11 
locus, all plants were phenotyped daily. One leaf (the second leaf of the second whorl) 
of each plant was marked 3d prior to the start of the experiment without damage to the 
plant. Both petiole and leaf length were measured from 19 DAG with a caliper for one 
week. For the ethylene complementation experiment 3wk old rosettes were sprayed with 
0.5mM ethephon and 0.005% Tween-20. Control plants were sprayed with mock solutions 
that lacked the active component. Leaf and petiole length were measured daily for three 
consecutive days.

Climate Data
Climate data for each accession was obtained from the Climate Research Unit at the 
University of East Anglia. Data were extracted for 9 climate variables giving the average 
per month over a 30-year (1961-1990) period (New et al., 2002). From these 9 variables, 
most other variables were extracted. Day length (spring) and relative humidity (spring) 
from the origin of 306 accessions were obtained from the NCEP-NCAR climate re-analysis 
project (Kistler et al., 2001; Hancock et al., 2011) and the FAO GeoNetwork (http://fao.org.
geonetworks/srv/en/main.home).

Correlation analyses
A partial Mantel test was used to calculate the Spearman correlations between the 
morphological traits and between the morphological traits and climate variables correcting 
for population structure by using a kinship matrix based on the genome-wide SNPs as 
a covariate in the model (Mantel, 1967). Partial Mantel tests were conducted using the 
Ecodist package in R (Goslee and Urban, 2007). We assessed the significance by running 
1000 permutations on the dependent variable (Smouse et al., 1986).

Descriptive statistics
Coefficient of variation (CVG) was calculated as σG/X*100%.
The variance components for all the individual traits were used to calculate the broad-sense 
heritability, H2, in analysis of variance (ANOVA) according to the formula 

	 H2 = σ2
G/(σ2

G + σ2
E), with σ2

G = (MS(G) – MS(E))/r, σ2
E = MS(E), 	             (1)

where r is the number of replicates and MS(G) and MS(E) are the mean sums of squares for 
genotype and residual error, respectively. Narrow-sense heritability, h2, is defined as 

	 h2 = σ2
A/(σ2

G + σ2
E), 						                  (2)

which takes only the additive genetic effects (σ2
A) in account. Marker-based estimates of 

narrow-sense heritability can be obtained using the mixed models (3) and (4) defined below, 
which contain random genetic effects. The covariances between these effects are modeled 
by a genetic relatedness matrix (GRM) estimated from markers, which is called kinship 
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matrix K, with elements:

	

where p = 214051 is the total number of markers. The numbers xi,l denote the minor allele 
count at marker l for genotype i, and fl is the minor allele frequency at marker l.

A commonly used mixed model for quantitative traits is given by

	 yi = μ + Gi + Ei, 	 (i = 1,…,n)	 G ~ N(0, σ2
AK), Ei ~ N(0, σ2

E),	             (3)

where n = 350 is the total number of accessions, yi is the mean phenotypic value of accession 
i, μ is the intercept and G = (G1,…,Gn) is the vector of random effects,  which follows a N(0, 
σ2

AK) distribution. The random error effects Ei follow independent normal distributions with 
variance σ2

E. 

Model (3) is widely used for marker-based estimation of (narrow-sense) heritability of 
human traits (Yang et al., 2010) which are usually measured on cohorts of thousands of 
individuals. However for plant traits phenotyped on only several hundreds of genotypes it 
has been shown recently that such estimates can be very imprecise, and that accuracy is 
greatly improved if phenotypic data of genetically identical replicates (rather than means) 
are included in the mixed model. We therefore considered the following extension of model 
(3): 

	 yi,j = μ + Gi + Ei,j, 	 (i = 1,…,n, j = 1,….,r)	 G ~ N(0, σ2
AK), Ei,j ~ N(0, σ2

E).      (4)

r = 3 is the number of replicates, yi,j is the phenotypic response of replicate j of genotype i, μ 
is the intercept, G = (G1,…,Gn) is the vector of random genetic effects, and the errors Ei,j have 
independent normal distributions with variance σ2

E. σ
2

E Is the residual variance for a single 
individual. Estimates of σ2

A and σ2
E are obtained with the method of residual maximum 

likelihood (REML), and heritability is then estimated by h2
r = (σ2

A/ σ2
A + σ2

E) where σ2
A and 

σ2
E are based on all replicates. Note that in model (4), σ2

E is the residual variance for a single 
individual, whereas in model (3), it is the residual variance of a genotypic mean. Since our 
interest is in individual plant level heritability and not line-heritability, σ2

E in model (4) is 
indeed the variance parameter of interest (the use of model (3) would require multiplication 
of estimated residual variance by r). Both models (3) and (4) can only account for additive 
genetic effects; hence σ2

E includes also non-additive genetic effects, and the denominator 
σ2

A + σ2
E equals the total phenotypic variance.
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Genome-wide association mapping
GWA mapping on the morphological traits was performed on between 335 and 339 
accessions, because for some accessions we missed genotype data and others were removed 
before harvest. All accessions were genotyped with 214,051 SNPs of which 199,589 were 
used for GWA mapping after removal of SNP with MAF < 0.05.
In mixed-model based GWAS, the fixed marker effect xiβ is added to the model (3) above:

	 ŷi = μ + xiβ + Gi +Ei, 	 G ~ N(0, σ2
AK), Ei ~ N(0, σ2

E). 		              (5)

The term xi is the marker score, β is the marker effect and the genotypic effects G = 
(G1,…,Gn) follow a N(0, σ2

AK) distribution. GWA mapping was performed on the means. 
The covariances between these effects are modeled by a genetic relatedness matrix (GRM) 
estimated from markers, which is called K, kinship matrix.
 
Following the methodology of EMMAX (Kang et al., 2010), we first obtained REML estimates 
of the variance components σ2

A and σ2
E in model (3); given these estimates the significance 

of the marker effect β in (5) was tested for each SNP-marker in turn, using generalized 
least squares (GLS). REML estimates of the variance components were obtained with 
the commercial R-package ASREML (Butler et al., 2007) and for the GLS calculations the 
command-line program scan_GLS was used (Kruijer et al.,. in prep.). Estimates of narrow 
sense heritability based on model (4) were obtained with the R-package heritability (Kruijer 
et al.,. in prep.).

Genomic selection
For the construction of genomic selection models for each trait, the markers were ranked 
high to low according to their correlation with the quantitative trait data, using custom 
scripts in R. The 100,000 highest ranking markers were used to construct heteroscedastic 
models using the bigRR library (Shen et al., 2013). The similarity in the distribution of effect 
sizes in all models was quantified by calculating pairwise the Euclidian distance over the first 
five moments (R-library moments). A trait-complexity dendogram was constructed from the 
distance matrix of the moments using UPGMA clustering (R-library hclust).

Sequence analysis
All sequences from the re-sequenced Arabidopsis accessions were obtained from 
http://1001genomes.org/. For 525 accessions, 2012 nucleotide variation files compared 
to Col-0 (TAIR10) were downloaded. Custom Perl scripts were developed to determine 
positions with an allele frequency > 2% (SNPs must be shared by more than 11 accessions). 
Another Perl script parsed these positions per accession and outputs either a 1 or 0 for 
compliance or no compliance with Col-0. The resulting data is stored as data frames (.csv 
file) on disk. In order to calculate the LD, required data is extracted from the .csv files with 
the gnu program ‘cut’ in order to slice out the region of interest. The sliced data frame is 
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read into R (R Development Core Team, 2012) and column wise the LD (r² or correlation 
coefficient) can be determined by invoking the R function ‘cor()’ followed by a quadratic 
operation. In order to ‘annotate’ the genome with SNP polymorphisms we applied the tool 
Snpeff (Cingolani et al., 2012). With the output of this tool, which is stored in a mySQL 
database we are able to predict the effect of each mutation. Both the output of this tool and 
the LD scores are made available to the user via a web interface (in house access only). The 
user can calculate the LD in any region on the genome and is performed on the fly. 

Nucleotide diversity analysis
Nucleotide diversity was measured with Tajima’s π (Tajima, 1983) using DnaSP software 
version 4.0 (Rozas et al., 2003). ∏ was calculated for all sites, synonymous, non-synonymous 
and silent sites (synonymous plus non-coding sites) for each candidate gene. For deviation 
from neutrality, we tested using Tajima’s D statistic (Tajima, 1989) and Fu & Li’s D and F 
statistic (Fu and Li, 1993) using DnaSP version 4.0 (Rozas et al., 2003).

GUS assays
ACS11::GUS lines were grown for three weeks and complete plants were harvested in 50 
ml tubes containing cold acetone (4°C) for 20 minutes, washed twice with rinsing solution 
(50mM NaPO4, pH 7.2, 0.5mM K3Fe(CN)6 and 0.5mM K4Fe(CN)6), and then placed in staining 
solution (50mM NaPO4, pH 7.2, 0.5mM K3Fe(CN)6, 0.5mM K4Fe(CN)6 and 2mM X-Glc. The 
plants were vacuum-infiltrated twice for 30s and then wrapped in aluminum foil and 
incubated at 37°C for 24h. Then, the staining solution was removed, plants were rinsed 
twice with water and then 30% ethanol was added to the plants. To completely remove 
the chlorophyll, this was followed by washes with graded ethanol series from 30 to 98% 
ethanol. Then, individual leaves were photographed.

Quantitative Real-Time PCR
RNA extraction was performed as described in (Onate-Sanchez and Vicente-Carbajosa, 
2008). Remaining DNA was removed using RNA-free DNase I (Qiagen). cDNA synthesis was 
performed using the iScript cDNA synthesis Kit (Bio-Rad). For each qPCR, 5 µl of sample, 10 
µl of iQ SYBR Green Supermix (Bio-Rad) and 0.5 µl of each primer (10mM) were mixed and 
MQ was added to a total volume of 20 µl.  The RT-PCR was performed on the MyiQ (Bio-
Rad). The program was started with a cycle of 95°C for 3 min and then 50 cycles of 15s at 
95°C and 1 min at 60°C followed by a cycle of 95°C for 1 min and, one cycle at 55°C for 1 min 
and then 80 cycles at 55°C for 10s, raising the temperature by 0.5°C each cycle. The primers 
used are listed in Supplemental table 10.

Normalisation
RefGenes in Genevestigator was used to find neutral reference genes. The top twenty 
reference genes from leaf material were chosen and then checked for their stability in 
petiole tissue. The four highest scoring genes were selected. Additionally, UBQ10 was used 
(Hong et al., 2010). All reference genes are listed in Supplemental table 10, together with 
the primers used in RT-PCR. Bestkeeper was used to select the most stable reference genes 
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from the set of 5 genes, and these were then used to normalize the RT-qPCR data.
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Supplemental table 1. Trait abbreviations.
Trait Description
LAbv Leaf are before vernalisation, 19 days after germination
LAav Leaf area 1 day after vernalisation, 63 days after germination
FT Flowering time
PL/LL Petiole length/ leaf length ratio
PL Petiole length
LL Leaf length
RB Rosette branching
MSB Main stem branching
PH1S Plant height 1st silique
TPH Total plant height
RGRbv Relative growth rate before vernalisation
RGRav Relative growth rate after vernalisation

Supplemental table 2. Mantel correlation matrix based on Spearman (top-right) and their respective 
P-values (left-bottom) between morphological traits with kinship as a covariate in the model. 
Numbers shown in the heatmap are partial correlation coefficients (x100%). LAbv, leaf area before 
vernalisation; LAav, leaf area after vernalisation; FT, flowering time; PL/LL, petiole to leaf length ratio; 
PL, petiole length; LL, leaf length; RB, rosette branching; MSB, main stem branching; PH1S, plant 
height at 1st silique; TPH, total plant height; RGRbv, relative growth rate before vernalisation; RGRav, 
relative growth rate after vernalisation.
r2 LAbv LAav FT PL/LL PL LL RB MSB PH1S TPH RGRav RGRbv
LAbv x 0.61 0.05 0.04 0.05 0.07 0.00 0.03 0.01 0.04 0.04 0.26
LAav 0.001 x 0.04 0.05 0.05 0.07 0.04 0.01 0.02 0.02 0.08 0.35
FT 0.016 0.042 x 0.10 0.24 0.25 0.13 0.22 0.09 0.16 0.02 0.03
PL/LL 0.044 0.01 0.001 x 0.55 0.11 -0.01 0.01 0.01 0.07 0.02 0.04
PL 0.009 0.008 0.001 0.001 x 0.56 0.01 0.07 0.02 0.15 0.01 0.05
LL 0.003 0.002 0.001 0.001 0.001 x 0.01 0.09 0.02 0.14 0.04 0.11
RB 1.000 0.017 0.001 0.456 0.545 0.446 x 0.08 0.05 -0.01 -0.01 0.08
MSB 0.101 0.45 0.001 0.779 0.001 0.001 0.001 x 0.08 0.03 -0.02 0.01
PH1S 0.574 0.331 0.001 0.437 0.464 0.31 0.003 0.001 x 0.17 0.00 0.06
TPH 0.037 0.223 0.001 0.001 0.001 0.001 0.721 0.131 0.001 x 0.00 0.04
RGRav 0.074 0.001 0.346 0.366 0.582 0.136 0.761 0.279 0.922 0.999 x 0.06
RGRbv 0.001 0.001 0.165 0.021 0.017 0.001 0.001 0.579 0.004 0.056 0.008 x
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Supplemental table 3. Mantel correlation matrix based on Spearman (top) and their respective 
P-values (bottom) between climate variables (nr’s) and morphological traits with kinship as a 
covariate in the model. Numbers shown in the heatmap are partial correlation coefficients. Climate 
variables are: 1, latitude; 2, longitude; 3, number of wet days/year; 4, temperature in coldest month; 
5, temperature in warmest month; 6, mimimal sunshine (month with least hours of sunshine/ 
daylength; 7, maximal sunshine (month with most hours of sunshine/ daylength; 8, Precipitation 
in driest month; 9, precipitation in wettest month; 10, windspeed in m/s; 11, number of ground 
frost days/ year; 12, number of ground frost days in coldest month; 13, relative humidity in spring; 
14, Daylength in spring. LAbv, leaf area before vernalisation; LAav, leaf area after vernalisation; 
FT, flowering time; PL/LL, petiole to leaf length ratio; PL, petiole length; LL, leaf length; RB, rosette 
branching; MSB, main stem branching; PH1S, plant height at 1st silique; TPH, total plant height; 
RGRbv, relative growth rate before vernalisation; RGRav, relative growth rate after vernalisation.
r2 1 2 3 4 5 6 7 8 9 10 11 12 13 14
LAbv 0.04 0.00 -0.02 0.01 0.00 0.01 0.01 0.04 -0.03 0.02 0.00 -0.01 0.04 0.04
LAav 0.01 0.02 -0.02 0.03 0.01 0.01 0.04 0.04 0.00 0.00 0.00 0.02 0.00 -0.01
FT 0.09 -0.04 -0.05 -0.06 -0.03 0.00 -0.04 -0.01 -0.02 0.10 -0.04 -0.05 0.14 0.06
PL/LL 0.08 0.00 -0.01 0.00 0.00 0.03 -0.03 0.03 0.02 0.06 -0.01 -0.02 0.13 0.12
PL 0.05 -0.02 0.00 -0.02 0.01 0.02 0.01 0.03 0.02 0.06 -0.02 -0.03 0.10 0.06
LL 0.00 -0.03 -0.01 -0.03 -0.01 -0.01 0.00 -0.01 -0.01 0.05 -0.04 -0.04 0.02 0.00
RB 0.03 0.03 -0.01 0.01 -0.01 0.04 -0.01 0.00 0.03 0.03 -0.01 0.00 0.02 0.02
MSB -0.01 -0.04 -0.05 -0.04 -0.05 -0.04 -0.05 -0.02 -0.05 0.01 -0.04 -0.04 -0.02 -0.02
PH1S -0.01 -0.06 -0.07 -0.06 -0.06 -0.04 -0.06 -0.05 -0.02 0.02 -0.05 -0.05 0.01 0.02
TPH 0.06 -0.01 -0.02 0.00 -0.02 0.01 -0.05 -0.01 -0.01 0.04 0.00 -0.01 0.08 0.03
RGRbv 0.01 -0.01 -0.01 0.01 -0.01 0.01 -0.01 0.01 0.01 0.00 0.00 -0.01 0.02 -0.02
RGRav 0.00 -0.07 0.00 -0.03 0.00 -0.01 -0.02 0.05 0.02 0.03 -0.01 -0.03 0.03 0.01
P 1 2 3 4 5 6 7 8 9 10 11 12 13 14
LAbv 0.085 0.892 0.375 0.635 0.991 0.582 0.632 0.126 0.231 0.347 0.857 0.724 0.125 0.116
LAav 0.748 0.373 0.435 0.116 0.706 0.613 0.123 0.14 0.869 0.981 0.951 0.432 0.906 0.71
FT 0.001 0.096 0.043 0.018 0.306 0.896 0.164 0.64 0.578 0.001 0.078 0.019 0.001 0.018
PL/LL 0.002 0.962 0.709 0.866 0.899 0.228 0.193 0.228 0.429 0.002 0.632 0.396 0.001 0.001
PL 0.015 0.542 0.971 0.495 0.792 0.335 0.691 0.292 0.358 0.001 0.369 0.202 0.001 0.03
LL 0.954 0.293 0.687 0.169 0.584 0.623 0.907 0.738 0.611 0.005 0.038 0.067 0.473 0.985
RB 0.111 0.252 0.785 0.531 0.762 0.05 0.736 0.882 0.175 0.048 0.468 0.95 0.316 0.253
MSB 0.636 0.148 0.035 0.052 0.04 0.105 0.039 0.321 0.049 0.755 0.078 0.014 0.444 0.489
PH1S 0.639 0.03 0.006 0.009 0.022 0.13 0.009 0.026 0.369 0.182 0.029 0.005 0.538 0.502
TPH 0.015 0.737 0.455 0.914 0.379 0.722 0.078 0.697 0.698 0.028 0.966 0.641 0.002 0.244
RGRav 0.897 0.021 0.97 0.185 0.907 0.869 0.481 0.106 0.463 0.117 0.793 0.197 0.369 0.796
RGRbv 0.804 0.565 0.714 0.675 0.532 0.827 0.707 0.554 0.653 0.875 0.814 0.666 0.341 0.523
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Supplemental table 4. Genetic parameters for the population of 350 accessions.  
The overall average (AVG), minimum (MIN), maximum (MAX), median, broad-sense heritability (H2), 
marker-based heritability on individual plant data (h2) and coefficient of variation (CV) are given 
for all morphological traits. LAbv, leaf area before vernalisation; LAav, leaf area after vernalisation; 
FT, flowering time; PL/LL, petiole to leaf length ratio; PL, petiole length; LL, leaf length; RB, rosette 
branching; MSB, main stem branching; PH1S, plant height at 1st silique; TPH, total plant height; 
RGRbv, relative growth rate before vernalisation; RGRav, relative growth rate after vernalisation.
Trait AVG MIN MAX Median H2 h2 CV
LAbv 3.1 0.5 9.1 3.0 0.63 0.65 45.1
LAav 10.9 1.8 22.0 10.5 0.68 0.70 38.7
FT 22.5 3.7 57.0 20.7 0.95 0.93 41.0
PL/LL 0.3 0.1 0.5 0.3 0.60 0.61 16.6
PL 1.9 0.7 3.9 1.9 0.72 0.73 28.2
LL 6.4 3.5 11.0 6.4 0.73 0.73 17.2
RB 3.4 0.0 14.0 3.4 0.75 0.76 64.4
MSB 8.4 1.3 17.3 8.3 0.80 0.81 34.8
PH1S 24.1 6.0 39.0 25.0 0.75 0.76 23.1
TPH 56.5 19.3 83.0 56.7 0.81 0.83 16.0
RGRbv 0.3 0.2 0.4 0.3 0.40 0.42 10.8
RGRav 0.2 0.1 0.3 0.2 0.79 0.81 24.9

Supplemental figure 1. Coefficient of determination (r2) between predicted and observed values 
in repeated internal cross-validation for all morphological phenotypes in heteroscedastic genomic 
selection model based on 100,000 highest correlating SNPs. LAbv, leaf area before vernalisation; 
LAav, leaf area after vernalisation; FT, flowering time; PL/LL, petiole to leaf length ratio; PL, petiole 
length; LL, leaf length; RB, rosette branching; MSB, main stem branching; PH1S, plant height at 1st 
silique; TPH, total plant height; RGRbv, relative growth rate before vernalisation; RGRav, relative 
growth rate after vernalisation.



Chapter 2

58

2

Supplemental figure 2. Allelic effect sizes of the 100,000 most correlating SNPs in the heteroscedas-
tic genomic selection model. LAbv, leaf area before vernalisation; LAav, leaf area after vernalisation; 
FT, flowering time; PL/LL, petiole to leaf length ratio; PL, petiole length; LL, leaf length.



GWAS morphology

59

2

Supplemental figure 2 continued. Allelic effect sizes of the 100,000 most correlating SNPs in the 
heteroscedastic genomic selection model. RB, rosette branching; MSB, main stem branching; PH1S, 
plant height at 1st silique; TPH, total plant height; RGRbv, relative growth rate before vernalisation; 
RGRav, relative growth rate after vernalisation.
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Supplemental figure 3. Trait-complexity dendogram constructed from the Euclidian distance matrix 
over the first five moments using UPGMA clustering. More complex traits branch off later. LAbv, leaf 
area before vernalisation; LAav leaf area after vernalisation; FT, flowering time; PL/LL, petiole to leaf 
length ratio; PL, petiole length; LL, leaf length; RB, rosette branching; MSB. main stem branching; 
PH1S, plant height at 1st silique; TPH, total plant height; RGRbv, relative growth rate before vernali-
sation; RGRav, relative growth rate after vernalisation.
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Supplemental table 5. List of candidate genes from GWAS for different morphological traits.  
The LD is calculated as the distance between the first and last marker where r2 > 0.3. AF=allele 
frequency, nsSNP=non-synonymous single nucleotide polymorphism. LAbv, leaf area before 
vernalisation; LAav leaf area after vernalisation; FT, flowering time; PL/LL, petiole to leaf length ratio; 
PL, petiole length; LL, leaf length; RB, rosette branching; MSB. main stem branching; PH1S, plant 
height at 1st silique; TPH, total plant height; RGRbv, relative growth rate before vernalisation; RGRav, 
relative growth rate after vernalisation.

Trait Locus Gene Abbre-
viation

Chr. Position LD (in 
kB)

AF LOD SNPs 
in 
gene

nsSNPs 
in gene

SNPs  
r2 > 0.3

nsSNP  
r2 > 0.3

SNPs in 
pro-
moter 
(1kb)

SNPs in 
pro-
moter 
r2 > 0.3

Labv At1G37130 NR2 1 14154860 24807 0.09 4.02 84 3 1 1 34 4
Labv AT2G21770 CESA9 2 9286277 40311 0.16 4.67 96 25 38 5 25 5
Labv AT5G20730 ARF7 5 7018204 43998 0.17 4.38 111 15 4 1 38 0
Laav At1G22650 NI 1 8015537 14330 0.33 5.51 62 5 17 1 2 2
Laav AT2G21770 CESA9 2 9286277 40311 0.16 4.27 96 25 38 5 25 5
Laav AT5G65010 ASN2 5 25981971 149300 0.17 4.19 18 3 1 1 10 0

AT5G65050 MAF2 59 3 12 1 25 3
FT AT2G18790 PHYB 2 8130188 29370 0.35 2.83 100 11 2 0 28 3
FT At2g22540 SVP 2 9581605 24693 0.17 2.40 79 0 7 0 30 8
FT AT4G00650 FRI 4 275349 27034 0.23 2.94 24 13 2 1 18 0
FT AT4G27060 TOR1 4 13581775 57929 0.35 3.99 97 27 75 22 37 12
FT AT5G10140 FLC 5 3188327 39950 0.21 7.36 105 0 4 0 28 0
FT At5G45830 DOG1 5 18603055 19856 0.42 6.14 53 17 (4) 6 1 19 0

At5G45890 SAG12 29 7 0 0 30 0
At5G45900 AFG7 21 4 0 0 6 0

FT AT5G63190 none 5 25359325 75411 0.16 5.87 35 3 20 2 8 2
AT5G63195 other RNA 7 7 4 4 0 0
AT5G63310 NDPK2 13 0 1 0 7 0
AT5G63320 NX1 18 3 (1) 3 1 0 0

PL/LL AT1G68550 CRF10 1 25721918 6 0.29 5.11 23 5 0 0 0 0
PL/LL AT4G08040 ACS11 4 4912600 141074 0.49 4.55 29 5 5 2 28 2
PL/LL AT5G10470 KCA1 5 3302831 14967 0.06 4.47 60 18(4) 2 1 11 0
PL AT1G68870 SOFL2 1 25883368 50707 0.49 4.96 13 2 6 1 1 0
PL AT2G13810 ALD1 2 5769361 3062 0.17 4.21 157 4 24 2 55 4
PL AT4G09800 RPS18C 4 6170856 21574 0.44 4.49 26 0 2 0 78 2
LL AT1G26355 SPIL1 1 9129489 15025 0.43 5.13 10 4(1) 0 0 12 0
LL AT1G53330 PPR family 1 19897982 5080 0.49 4.34 50 23 22 9 12 6
LL AT4G09800 RPS18C 4 6170856 21574 0.44 4.41 26 0 2 0 78 2
RB AT1G17440 CKX1/ EER4 1 5994488 96629 0.12 4.78 63 8(3) 3 0 7 1
RB At3g18550 BRANCHED1 3 6390880 2529 0.14 4.03 51 12(1) 0 0 29 0
RB AT5G35080 OS9 5 13355009 66821 0.1 7.13 27 4 7 2 55 0
MSB AT1G10870 AGD4 1 3625529 18161 0.08 4.27 164 8 1 0 9 0
MSB AT3G26570 PHT2;1 3 9757577 14292 0.48 4.47 64 12 31 3 50 5
MSB AT3G60530 GATA4 3 22371590 14042 0.2 4.71 25 5 0 0 0 0
MSB AT3G63300 FORKED1 3 23419198 103295 0.25 4.83 29 6 20 5 14 8

AT3G63310 BIL4 7 1 4 1 9 1
AT3G63440 CKX6 6 0 0 0 4 1
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AT3G63445 none 20 5(1) 8 2 (1) 0 0
MSB AT5G03250 none 5 775881 7806 0.09 5.32 96 7 7 1 49 2
MSB AT5G18400 DRE2 5 6093741 7388 0.4 4.28 66 6 39 5 6 0
PH1S AT1G24150 FH4 1 8546658 960 0.27 5.87 38 11 0 0 26 0
PH1S AT1G80330 GA3OX4 1 30197048 25003 0.12 4.37 21 6 8 3 48 8

AT1G80340 GA4H 15 9 2 0 21 2
PH1S AT2G35350 PLL1 2 14872965 35659 0.17 4.10 38 10 7 4 20 6
PH1S AT3G23590 RFR1 3 8475104 83923 0.07 5.75 56 10(3) 5 3(3) 42 2
PH1S AT4G09460 MYB6 4 5994574 NO LD 0.33 5.08 51 8 0 0 1 1
PH1S AT4G38970 FBA2 4 18166777 8909 0.12 4.86 42 0 1 0 15 2

AT4G38990 GH9B16 77 19(1) 25 7 40 2
TPH AT1G19485 WD40 1 6746695 48625 0.08 5.41 74 13 36 7 10 5
RGRbv AT1G04860 UBP2 1 1393031 50242 0.1 4.11 17 3 1 1 2 0

AT1G04920 SPS3F 13 3 1 0 1 0
RGRbv AT1G69410 ELF5A-3 1 26089498 11550 0.18 4.42 20 0 4 0 3 0
RGRbv AT1G78370 GSTU20 1 29484933 51656 0.07 4.19 42 4 4 1 37 4
RGRbv AT3G29320 PHS1 3 11252472 9221 0.38 4.21 189 33 2 1 91 3
RGRbv AT4G04770 ABC1/ LAF6 4 2428754 2643 0.23 4.57 47 8 19 4 75 0
RGRbv AT5G48380 BIR1 5 19605705 83140 0.15 4.28 49 8 2 0 22 0
RGRav AT1G08920 ESL1 1 2862409 130039 0.13 5.83 70 4 14 0 13 0

AT1G08930 ERD6 77 1 15 0 14 0
RGRav At1G22650 NI 1 8015537 14330 0.33 6.53 62 5 17 1 2 2
RGRav AT4G00430 PIP1;4 4 190004 296 0.37 4.49 73 0 0 0 75 0
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Supplemental table 6. Candidate genes from GWAS.  
Table gives information on gene function, published natural variation (allelic diversity) for the gene, 
proof of the phenotype in mutant analyzes (1 = phenotype is proven, 2 = phenotype indicated, 3 = 
phenotype related gene proven, 4 = phenotype related gene indicated) and references to published 
papers. LAbv, leaf area before vernalisation; LAav leaf area after vernalisation; FT, flowering time; PL/
LL, petiole to leaf length ratio; PL, petiole length; LL, leaf length; RB, rosette branching; MSB. main 
stem branching; PH1S, plant height at 1st silique; TPH, total plant height; RGRbv, relative growth rate 
before vernalisation; RGRav, relative growth rate after vernalisation.

Trait Locus Gene  
Abbreviation

Function Published  
allelic 
diveristy

Phe-
notype 
Proof

References

Labv At1G37130 NR2 Involved in nitrate assimilation. Over-expression 
increased protein content.

- 2 (Nejidat et al., 
1997)

Labv AT2G21770 CESA9 Cellulose synthase, related to CESA6 - 4 (Somerville, 
2006)

Labv AT5G20730 ARF7 Encodes an auxin-regulated transcriptional 
activator. Mutant has epinastic rosette leaves. 
Double mutant arf7 arf19 has small and epinas-
tic leaves

- 2 (Watahiki and 
Yamamoto, 
1997), (Okus-
hima et al., 
2005)

Laav At1G22650 NI Plant neutral invertase family protein - 4 (Xiang et al., 
2011)

Laav AT2G21770 CESA9 Cellulose synthase, related to CESA6 - 4 (Somerville, 
2006)

Laav AT5G65010 ASN2 Encodes asparagine synthetase - 1 (Gaufichon et 
al., 2013)

 AT5G65050 MAF2 One of a group of MADS box genes involved in 
control of flowering time.

+ - (Rosloski et al., 
2010; Rosloski 
et al., 2013)

FT AT2G18790 PHYB Red/far-red photoreceptor involved in the regu-
lation of de-etiolation.

- 1 (Halliday et al., 
1994)

FT At2g22540 SVP Encodes a nuclear protein that acts as a floral 
repressor and that functions within the ther-
mosensory pathway

+ 1 (Mendez-Vigo 
et al., 2013a)

FT AT4G00650 FRI Encodes a major determinant of natural varia-
tion in Arabidopsis flowering time

+ 1 (Johanson, 
2000)

FT AT4G27060 TOR1 Encodes a novel, plant-specific microtubule-as-
sociated protein that regulates the orientation of 
cortical microtubules and the direction of organ 
growth

- 2 (Shoji et al., 
2004)

FT AT5G10140 FLC MADS-box protein encoded by FLOWERING 
LOCUS C - transcription factor that functions as a 
repressor of floral transition and contributes to 
temperature compensation of the circadian clock

+ 1 (Koornneef et 
al., 1994)

FT At5G45830 DOG1 Encodes DOG1 (DELAY OF GERMINATION 1). A 
quantitative trait locus involved in the control of 
seed dormancy.

+ - (Bentsink et al., 
2006)

 At5G45890 SAG12 Senescence-associated gene 12 (SAG12) encod-
ing a cysteine protease influenced by cytokinin, 
auxin, and sugars

+ - (Balazadeh et 
al., 2008)

 At5G45900 AFG7 Component of autophagy conjugation pathway. 
Required for proper senescence

- - (Lenz et al., 
2011)

FT AT5G63190 none MA3 domain-containing protein, auxin-mediated 
signaling pathway. Homolog of ECIP1

- - (Lei et al., 
2011)
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 FT AT5G63195 other RNA Potential natural antisense gene, locus overlaps 
with AT5G63190

- -  -

 AT5G63310 NDPK2 Maintains intracellular dNTP levels except 
ATP.  Involved in phytochrome-mediated light 
signaling. Participates in auxin-regulated pro-
cesses, partly through the modulation of auxin 
transport.

- - (Choi et al., 
2005)

 AT5G63320 NPX1 Encodes NPX1 (Nuclear Protein X1), a nuclear 
factor regulating abscisic acid responses.

- - (Kim et al., 
2009)

PL/LL AT1G68550 CRF10 CYTOKININ RESPONSE FACTOR 10, encodes a 
member of the ERF (ethylene response factor) 
subfamily B-6 of ERF/AP2 transcription factor 
family

- 4 (Millenaar et 
al., 2005)

PL/LL AT4G08040 ACS11 encodes an aminotransferase that belongs to 
ACC synthase gene family structurally

- 3 (Tsuchisaka et 
al., 2009)

PL/LL AT5G10470 KCA1 Kinesin that binds cyclin-dependent kinase 
CDKA;1 as homodimer or as heterodimer with 
KCA2.

- 4 (Suetsugu et 
al., 2010)

PL AT1G68870 SOFL2 AtSOFL1 acts redundantly with AtSOFL2 as 
positive regulator of cytokinin levels and cyto-
kinin-mediated development.

- 2 (Zhang et al., 
2009)

PL AT2G13810 ALD1 AGD2-like defense response protein 1 (ALD1) - 2 (Song et al., 
2004) 

PL AT4G09800 RPS18C encodes a ribosomal protein S18C, a constituent 
of the small subunit of the ribosomal complex

- 2 (Vanlijsebe-
ttens et al., 
1994)

LL AT1G26355 SPIL1 SPIRAL1-LIKE1 belongs to a six-member gene 
family in Arabidopsis

- 3 (Nakajima et 
al., 2004)

LL AT1G53330 PPR family encodes a member of the pentatricopeptide 
repeat (PPR) gene family

- 2 (Kocabek et al., 
2006)

LL AT4G09800 RPS18C encodes a ribosomal protein S18C, a constituent 
of the small subunit of the ribosomal complex

- 2 (Vanlijsebe-
ttens et al., 
1994)

RB AT1G17440 CKX1/ EER4 Encodes one of two Arabidopsis proteins with 
similarity to the TBP-associated factor TAF12.  
Loss of function mutants show enhanced 
response to ethylene

- 4 (Kubo et al., 
2011)

RB At3g18550 BRANCHED1 Encodes a TCP transcription factor, closely 
related to teosinte branched1, arrests axillary 
bud development and prevents axillary bud 
outgrowth

- 1 (Gonza-
lez-Grandio et 
al., 2013; Niwa 
et al., 2013)

RB AT5G35080 OS9 Encodes a protein involved in the endoplasmic 
reticulum-associated degradation of glycopro-
teins

- - (Huttner et al., 
2012)

MSB AT1G10870 AGD4 A member of ARF GAP domain (AGD) - - (Min et al., 
2013)

MSB AT3G26570 PHT2;1 low affinity phosphate transporter - - (Versaw, 2002)
MSB AT3G60530 GATA4 Encodes a member of the GATA factor family of 

zinc finger transcription factors.
- - (Reyes et al., 

2004)
MSB AT3G63300 FORKED1 Encodes a pleckstrin homology domain- and 

DUF828-containing protein. Proposed to be a key 
component of the auxin canalization pathway.

- - (Hou et al., 
2010)

 AT3G63310 BIL4 Mediates cell elongation in brassinosteroid 
signaling

- 1 (Yamagami et 
al., 2009)

 AT3G63440 CKX6 It encodes a protein whose sequence is similar 
to cytokinin oxidase/dehydrogenase, which 
catalyzes the degradation of cytokinins.

- 4 (Werner et al., 
2003)
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 AT3G63445 none Potential natural antisense gene, locus overlaps 
with AT3G63440

- -  -

MSB AT5G03250 none Phototropic-responsive NPH3 family protein - -  -
MSB AT5G18400 DRE2 Cytokine-induced anti-apoptosis inhibitor 1, Fe-S 

biogenesis
- - (Bernard et al., 

2013)
PH1S AT1G24150 FH4 Encodes a group I formin. Localized to cell junc-

tions. Polymerizes actin. Binds profilin.
- 2 (Deeks et al., 

2010)
PH1S AT1G80330 GA3OX4 Encodes a protein with gibberellin 3-oxidase 

activity. The enzyme, expressed and purified in 
E.coli, was shown to catalyze the 3β-hydroxyla-
tion of GA20 into GA29

- 2,3 (Hu et al., 
2008; Barboza 
et al., 2013)

 AT1G80340 GA4H Encodes a protein with gibberellin 3 β-hydrox-
ylase activity. The protein was heterologously 
expressed in E. coli and shown to catalyze the 
hydroxylation of both GA9 and GA20.

- 2 (Mitchum et 
al., 2006)

PH1S AT2G35350 PLL1 Encodes a protein most similar to the POLTER-
GEIST locus. Double mutant analyzis of loss of 
function alleles indicate PLL1 functions redun-
dantly with POL to regulate meristem size and 
pedicel length. 

- - (Song et al., 
2006)

PH1S AT3G23590 RFR1 Encodes a protein shown to physically associate 
with the conserved transcriptional coregulatory 
complex, Mediator, and is involved in the regula-
tion of phenylpropanoid homeostasis

- 3 (Stout et al., 
2008)

PH1S AT4G09460 MYB6 Encodes myb6 DNA-binding protein - - (Li and Parish, 
1995)

PH1S AT4G38970 FBA2 Protein is tyrosine-phosphorylated and its 
phosphorylation state is modulated in response 
to ABA in Arabidopsis thaliana seeds.

- - (Lu et al., 
2012))

 AT4G38990 GH9B16 glycosyl hydrolase 9B16 - -  -
TPH AT1G19485 WD40-repeat Transducin/WD40 repeat-like superfamily 

protein
- 4 (Zhang et al., 

2008b)
RGRbv AT1G04860 UBP2 Encodes a ubiquitin-specific protease. - 4 (Vierstra, 2003)
 AT1G04920 SPS3F Encodes a protein with putative sucrose-phos-

phate synthase activity.
- 4 (Huber and 

Huber, 1996)
RGRbv AT1G69410 ELF5A-3 Encodes eIF5A-2, a putative eukaryotic transla-

tion initiation factor.
- 2 (Feng et al., 

2007)
RGRbv AT1G78370 GSTU20 Encodes glutathione transferase belonging to the 

tau class of GSTs.
- 2 (Chen et al., 

2007)
RGRbv AT3G29320 PHS1 Encodes a plastidic alpha-glucan phosphorylase. - 2 (Zeeman et al., 

2004)
RGRbv AT4G04770 ABC1/ LAF6 Encodes an iron-stimulated ATPase. A member 

of the NAP subfamily of ABC transporters.
- 2 (Nagane et al., 

2010)
RGRbv AT5G48380 BIR1 Encodes a BAK1-interacting receptor-like kinase 

named BIR1. Negatively regulates multiple plant 
resistance signaling pathways, one of which is 
the SOBIR1(AT2G31880)-dependent pathway.

- 2 (Wang et al., 
2011)

RGRav AT1G08920 ESL1 Encodes ESL1, a transporter for monosaccha-
rides.

- - (Yamada et al., 
2010)

 AT1G08930 ERD6 encodes a putative sucrose transporter whose 
gene expression is induced by dehydration and 
cold. 

- - (Kiyosue et al., 
1998; Xiang et 
al., 2011)

RGRav At1G22650 NI Plant neutral invertase family protein - 4 Xiang et al. 
(2011)

RGRav AT4G00430 PIP1;4 a member of the plasma membrane intrinsic 
protein subfamily PIP1.

- -  (Kinoshita et 
al., 1994)
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Supplemental table 7. Nucleotide diversity analyzis. ΠT = total nucleotide diversity, πns =nucleotide 
diversity at non-synonymous sites, πs = nucleotide diversity at synonymous sites and πsil = nucleotide 
diversity at silent sites. LAbv, leaf area before vernalisation; LAav leaf area after vernalisation; FT, 
flowering time; PL/LL, petiole to leaf length ratio; PL, petiole length; LL, leaf length; RB, rosette 
branching; MSB. main stem branching; PH1S, plant height at 1st silique; TPH, total plant height; 
RGRbv, relative growth rate before vernalisation; RGRav, relative growth rate after vernalisation.

Trait Locus Gene πT πns πs πsil πns/ 
πs 
ratio

Tajima's 
DT

Tajima's 
Dns

Taji-
ma's Ds

Taji-
ma's 
Dsil

Taji-
ma's 
Dns/Ds

D (Fu 
& Li)

F (Fu 
& Li)

Labv At1G37130 NR2 0.005 0.000 0.017 0.008 0.017 -1.5 -1.9 -0.8 -1.5 2.3 -5.0 -3.6
Labv AT2G21770 CESA9 0.004 0.001 0.007 0.005 0.162 -1.8 -1.8 -1.2 -1.8 1.5 -3.5 -3.0
Labv AT5G20730 ARF7 0.004 0.001 0.008 0.007 0.116 -1.0 -1.7 -0.9 -0.9 1.9 -2.1 -1.8
Laav At1G22650 NI 0.005 0.001 0.022 0.007 0.046 -1.4 -1.2 0.6 -1.3 -2.1 -3.8 -3.0
Laav AT2G21770 CESA9 0.004 0.001 0.007 0.005 0.162 -1.8 -1.8 -1.2 -1.8 1.5 -3.5 -3.0
Laav AT5G65010 ASN2 0.001 0.000 0.000 0.001 0.837 -2.3 -1.4 -2.0 -2.3 0.7 -6.1 -4.9
Laav AT5G65050 MAF2 0.003 0.001 0.001 0.003 0.875 -1.9 -2.4 -1.5 -1.8 1.6 -6.8 -4.8
FT AT2G18790 PHYB 0.005 0.001 0.017 0.009 0.040 -1.0 -1.7 -0.2 -0.8 8.5 -1.5 -1.4
FT At2g22540 SVP 0.005 0.000 0.004 0.005 0.024 -1.4 -1.8 -1.1 -1.4 1.6 -6.0 -4.0
FT AT4G00650 FRI 0.003 0.003 0.001 0.002 2.338 -2.2 -1.9 -2.2 -2.2 0.9 -4.9 -4.0
FT AT4G27060 TOR1 0.008 0.005 0.015 0.009 0.368 -0.1 0.6 1.9 -0.3 0.3 -3.7 -2.0
FT AT5G10140 FLC 0.004 0.000 0.002 0.004 0.110 -1.6 -2.0 -1.0 -1.6 2.1 -5.4 -3.8
FT At5G45830 DOG1 0.005 0.005 0.011 0.005 0.415 -1.7 -1.8 -0.7 -1.7 2.4 -4.0 -3.2
FT At5G45890 SAG12 0.004 0.002 0.007 0.005 0.335 -1.5 -1.1 -1.6 -1.5 0.7 -3.2 -2.7
FT At5G45900 AFG7 0.002 0.000 0.001 0.003 0.286 -2.1 -2.1 -1.9 -2.0 1.1 -6.7 -5.0
FT AT5G63190 none 0.003 0.001 0.003 0.005 0.188 -1.9 -1.8 -1.8 -1.9 1.0 -5.5 -4.0
FT AT5G63310 NDPK2 0.001 0.000 0.003 0.002 0.080 -2.0 -2.2 -1.2 -1.9 1.7 -5.9 -4.8
FT AT5G63320 NPX1 0.001 0.000 0.002 0.002 0.186 -2.4 -2.3 -1.6 -2.3 1.5 -9.3 -6.4
PL/LL AT1G68550 CRF10 0.002 0.000 0.007 0.002 0.073 -2.2 -2.1 -1.1 -2.1 1.8 -5.0 -4.2
PL/LL AT4G08040 ACS11 0.006 0.002 0.006 0.007 0.344 -1.7 -0.8 -1.1 -1.8 0.8 -3.2 -2.8
PL/LL AT5G10470 KCA1 0.002 0.001 0.002 0.002 0.585 -1.5 -1.2 -1.5 -1.6 0.8 -6.2 -4.4
PL AT1G68870 SOFL2 0.005 0.002 0.012 0.006 0.144 -0.1 -1.9 1.3 0.1 -1.4 -2.9 -1.8
PL AT2G13810 ALD1 0.011 0.001 0.006 0.013 0.146 -0.8 -2.0 -1.8 -0.7 1.1 -3.2 -2.2
PL AT4G09800 RPS18C 0.006 0.000 0.002 0.007 0.015 -2.1 -1.2 -1.9 -2.1 0.6 -4.8 -3.9
LL AT1G26355 SPIL1 0.005 0.002 0.000 0.006 5.484 -1.2 -1.7 -1.1 -1.1 1.6 -3.8 -2.9
LL AT1G53330 PPR family 0.011 0.006 0.027 0.013 0.227 -0.5 -0.6 0.1 -0.4 -5.5 -2.8 -1.8
LL AT4G09800 RPS18C 0.006 0.000 0.002 0.007 0.015 -2.1 -1.2 -1.9 -2.1 0.6 -4.8 -3.9
RB AT1G17440 CKX1/ EER4 0.004 0.001 0.009 0.006 0.113 -0.8 -0.7 0.3 -0.8 -2.3 -3.3 -2.4
RB At3g18550 BRANCHED1 0.003 0.001 0.004 0.003 0.225 -2.0 -2.2 -1.6 -1.9 1.4 -2.2 -2.5
RB AT5G35080 OS9 0.005 0.002 0.003 0.006 0.700 -1.6 -1.3 -1.9 -1.6 0.7 -4.4 -3.3
MSB AT1G10870 AGD4 0.007 0.001 0.010 0.009 0.129 0.1 -1.5 0.4 0.3 -3.5 -4.8 -2.4
MSB AT3G26570 PHT2;1 0.009 0.002 0.024 0.013 0.104 0.1 0.0 1.7 0.1 0.0 -2.4 -1.2
MSB AT3G60530 GATA4 0.006 0.001 0.014 0.007 0.096 -1.4 -1.4 -0.6 -1.4 2.4 -4.8 -3.5
MSB AT3G63300 FORKED1 0.004 0.002 0.005 0.005 0.442 -1.5 -1.1 -1.3 -1.6 0.9 -9.0 -5.6
MSB AT3G63310 BIL4 0.002 0.001 0.001 0.002 0.899 -1.8 -0.7 -1.6 -1.9 0.4 -6.0 -4.8
MSB AT3G63440 CKX6 0.002 0.002 0.001 0.002 1.306 -1.8 -0.6 -1.8 -2.0 0.3 -4.6 -3.8
MSB AT5G03250 none 0.010 0.001 0.032 0.016 0.043 -0.4 -1.4 0.8 -0.2 -1.8 -1.3 -0.9
MSB AT5G18400 DRE2 0.008 0.003 0.024 0.009 0.134 0.7 0.8 3.4 0.6 0.2 -1.1 -0.2
PH1S AT1G04860 UBP2 0.001 0.000 0.004 0.002 0.098 -2.1 -2.3 -1.4 -1.8 1.7 -5.4 -4.4



GWAS morphology

67

2

PH1S AT1G19485 WD40 0.005 0.002 0.007 0.007 0.332 -0.9 -1.3 -0.5 -0.8 2.6 -2.8 -2.0
PH1S AT1G24150 FH4 0.004 0.001 0.009 0.006 0.150 -1.3 -1.8 -0.7 -1.1 2.6 -3.7 -2.8
PH1S AT1G80330 GA3OX4 0.005 0.001 0.007 0.006 0.189 -1.7 -1.5 -0.1 -1.7 21.4 -4.3 -3.5
PH1S AT1G80340 GA4H 0.005 0.003 0.004 0.006 0.667 -2.2 -1.6 -1.4 -2.2 1.2 -9.3 -5.8
PH1S AT2G35350 PLL1 0.004 0.001 0.010 0.005 0.106 -1.0 -1.3 0.0 -1.0 -201.1 -5.0 -3.4
PH1S AT3G23590 RFR1 0.002 0.000 0.002 0.003 0.189 -2.4 -2.5 -2.2 -2.4 1.1 -8.3 -5.5
PH1S AT4G09460 MYB6 0.007 0.003 0.018 0.008 0.189 -2.0 -1.8 -0.9 -2.0 2.0 -3.7 -3.2
PH1S AT4G38970 FBA2 0.004 0.000 0.003 0.005 0.010 -1.0 -1.8 -1.4 -0.9 1.3 -4.8 -3.3
PH1S AT4G38990 GH9B16 0.016 0.009 0.024 0.018 0.350 -1.0 -0.9 -0.3 -1.0 3.0 -8.8 -4.8
TPH AT1G04920 SPS3F 0.001 0.000 0.002 0.001 0.120 -2.4 -2.4 -2.1 -2.4 1.1 -9.4 -6.7
RGRbv AT1G69410 ELF5A-3 0.003 0.000 0.001 0.003 0.007 -2.2 -1.1 -1.6 -2.2 0.7 -6.1 -4.7
RGRbv AT1G78370 GSTU20 0.009 0.002 0.026 0.012 0.064 -1.4 -1.4 0.4 -1.4 -3.1 -3.8 -2.8
RGRbv AT3G29320 PHS1 0.007 0.002 0.014 0.010 0.154 -2.0 -1.9 -1.4 -2.0 1.4 -6.2 -4.2
RGRbv AT4G04770 ABC1/ LAF6 0.011 0.001 0.021 0.017 0.069 -1.8 -1.1 -0.5 -1.8 2.4 -6.6 -4.3
RGRbv AT5G48380 BIR1 0.005 0.002 0.017 0.007 0.102 -1.7 -1.1 0.5 -1.8 -2.1 -8.7 -5.4
RGRav AT1G08920 ESL1 0.005 0.001 0.009 0.007 0.145 -1.7 -1.4 -0.2 -1.7 8.0 -9.3 -5.6
RGRav AT1G08930 ERD6 0.005 0.000 0.009 0.006 0.034 -1.8 -1.7 -0.6 -1.7 3.0 -8.7 -5.4
RGRav At1G22650 NI 0.005 0.001 0.022 0.007 0.046 -1.4 -1.2 0.6 -1.3 -2.1 -3.8 -3.0
RGRav AT4G00430 PIP1;4 0.013 0.001 0.020 0.015 0.031 -1.7 -1.7 0.0 -1.7 -190.8 -7.6 -4.7

Supplemental table 8. Accessions used in the ethylene complementation experiment. LL and PL 
were measured 22 DAG. Haplotypes based on initial analysis and highest candidate SNP. 4887214, 
48883127 and 4888589 indicate the position of the SNP on chromosome 4 in the ACS11 gene.
Accession details Leaf measurements Marker
NR CS nr Accession Haplotype LL PL PL/LL 4887214 4888317 4888589
1 CS28013 Alst-1 0 28.30 9.15 0.32 A A G
2 CS28759 Ting-1 0 23.70 9.07 0.38 A A G
3 CS28780 Tsu-0 0 32.00 13.70 0.43 A A G
4 CS28809 Wag-4 0 28.90 11.00 0.38
5 CS76093 Ba1-2 0 24.50 8.18 0.33 A G G
6 CS76101 Br-0 0 26.70 10.30 0.39 A A G
7 CS76265 TOU-I-6 0 26.90 10.50 0.39
8 CS76292 UKSW06-202 0 26.80 11.60 0.43
9 CS76296 Uod-7 0 21.60 9.44 0.44 A A G
10 CS76298 Var2-1 0 23.80 9.53 0.40 A G G
11 CS28128 Ca-0 1 25.30 6.23 0.25 A G A
12 CS28133 Cha-0 1 22.10 5.13 0.23
13 CS28252 Fi-1 1 28.10 8.01 0.29
14 CS28583 Old-1 1 27.30 7.46 0.27 C G A
15 CS28713 RRS-7 1 28.80 6.82 0.24 A A A
16 CS76116 Cvi-0 1 25.30 6.23 0.25 A A G
17 CS76125 Eden-2 1 22.10 5.13 0.23 C G A
18 CS76214 Pro-0 1 25.50 6.67 0.26 C G A
19 CS76293 Ull2-3 1 28.90 6.89 0.24 C G A
20 CS76301 Wei-0 1 27.00 6.77 0.25 C G A
21 CS76113 Col-0 1 21.30 6.81 0.32 A G A
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Supplemental figure 4. Expression level of different Arabidopsis accessions.  
Expression levels were normalized to the best 3 reference genes in BestKeeper, and finally normal-
ized to Col-0 (nr. 21). Light grey = accessions belonging to haplotype 0 and dark grey  = accessions 
belonging to haplotype 1. Accession nr’s are listed in Supplemental table 8.

Supplemental table 9. Differences in leaf length (LL), petiole length (PL) and the petiole to leaf length 
ratio (PL/LL) between wild type (WT), acs11-1 single mutant, acs octuple mutant and ein2-1.
Genotype LL PL PL/LL
WT 34.25 13.50 0.39
acs11-1 34.14 12.84 0.38
acs octuple 22.31 7.82 0.35
ein2-1 27.51 9.71 0.35

Supplemental table 10. Primers used for RT-qPCR.
Gene Locus ID Forward 5’-3’ Tm Reverse 5’-3’ Tm

ACS11 AT4G08040 CGACCGTGTTAAAGGTTTTG 60˚C GGAAAGCTTGGAGACCCATT 60˚C
GUT1 AT5G61840 CTCAGCAGCAAACATGTGGT 60˚C GAGCTGCGTTTTGATCTTCC 60˚C
GOX AT1G18610 AAGAGGCCAGCTATGTCGAA 60˚C GTTAACACCCAGAGGGTTGC 60˚C
HOP AT3G18380 ATACGCGGCATGGAAGATAC 60˚C GGTAACGGAGATGGAAGCAA 60˚C
RZF AT1G11020 GGAAGCTTGTTTCGCTCTTG 60˚C GGGGAGTGTAACTTCCGTGA 60˚C
UBQ10 AT4G05320 GGTTTGTGTTTTGGGGCCTTG 60˚C CGAAGCGATGATAAAGAAGAAGTTCG 60˚C
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Abstract
The metabolome is an integral part of a plant’s life cycle and determines for a large part 
its external phenotype. It is the final, internal product of chemical interactions, obtained 
through developmental, genetic and environmental input, and as such, it defines the state of 
a plant in terms of development and performance. Understanding its regulation will provide 
knowledge and new insights into the biochemical pathways and genetic interactions that 
shape the plant and its surroundings. In this review, we will focus on four dimensions that 
contribute to the huge diversity of metabolomes and we will illustrate how this diversity 
shapes the plant in terms of development and performance: (I) temporal regulation: the 
metabolome is extremely dynamic and temporal changes in the environment can have 
an immense impact on its composition; (II) spatial regulation: metabolites can be very 
specific, in both quantitative and qualitative terms, to specialized organs, tissues and cell 
types; (III) environmental regulation: the metabolic profile of plants is highly dependent 
on environmental signals, such as light, temperature and nutrients, and very susceptible to 
biotic and abiotic stresses; (IV) the biosynthesis, structure and accumulation of metabolites 
have a genetic origin, and there is quantitative and qualitative variation for metabolomes 
within a species. We will address the contribution of these dimensions to the wide diversity 
of metabolomes, and we will highlight how the multi-dimensional regulation of metabolism 
defines the plant’s phenotype.
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Introduction
Metabolism is an integral part of plant growth, development and performance. The many 
functions of metabolites include the formation of building blocks for the cell wall machinery, 
the regulation of  flux between source and sink tissues, the attraction of pollinators and 
the defense against pathogens and herbivores (Roitsch, 1999; Cosgrove, 2005; Allwood 
et al., 2008). Although the distinction is not always clear, most metabolites and their 
accompanying functions are usually assigned to primary or secondary metabolism. 
Metabolites that play a major role in cell maintenance, development and reproduction, 
such as amino acids, carbohydrates and organic acids, are generally referred to as primary 
metabolites (Kliebenstein, 2004; Fernie, 2007). Because these are essential to ensure proper 
development of the sessile plant, their biochemical diversity has been constrained during 
evolution. Yet, they are structurally extremely complex, under redundant gene regulation 
and fine-tuned by feedback mechanisms to ascertain plant survival in a wide range of 
circumstances (Matsuda et al., 2010). Secondary metabolites, on the other hand, have a 
wider range of chemical diversity but are less complex regulated and show a wider pattern 
of variation in chemical profiles, both in quantitative and qualitative terms (Keurentjes et 
al., 2006). It is thought that this large metabolic variation in secondary metabolites can be 
explained by the variety of interactions that different plants, or specific organs or tissues, 
have with their environment (Allwood et al., 2008). Their chemical structure can more 
easily be modified without drastic detrimental effects leading to newly formed compounds 
that could be advantageous in certain conditions. Natural selection, which is strong for the 
essential primary metabolites and more relaxed for secondary metabolites may thus have 
shaped the biochemical composition of plants. The secondary metabolites can be subdivided 
into 5 major groups based on their biosynthetic origin: polyketides, isoprenoids, alkaloids, 
phenylpropanoids and flavonoids (Oksman-Caldentey and Inze, 2004). These compounds 
have diverse roles, including those involved in biotic and abiotic stress responses, hormonal 
regulation, and to a lesser extent  in development (D’Auria and Gershenzon, 2005).

Due to recent advances in detection and annotation of metabolites, the field of plant 
metabolomics has seen a tremendous increase in popularity over the last decade. The 
huge, but relatively unknown natural diversity in plant metabolomes has found its way in 
applications as wide as medicinal science, breeding and food quality research. Nonetheless, 
only a very small part of the estimated more than 400.000 unique metabolites that the plant 
kingdom hosts has been discovered thus far (Oksman-Caldentey and Inze, 2004; Saito and 
Matsuda, 2010). This enormous source of unknown metabolites is currently being explored 
for many different quality traits (e.g. bioactive agents, fortified foods, commodity chemicals). 
With the advances made in mass spectrometry and NMR technologies, these molecules can 
be detected and identified at progressively increasing speed and sensitivity. Even though 
this has tremendously increased our fundamental knowledge of plant metabolites, we still 
have very little understanding of their functional roles, let alone their regulation.
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The metabolome is the final product of genetic and developmental control and environmental 
interactions, and as such provides a blueprint for plant growth and performance (Figure 
1). Understanding the regulation of the metabolome enables a better understanding of 
the biochemical pathways that control development. In this review, we will outline several 
different dimensions of metabolic regulation and link these to control of plant development 
and performance: (I) temporal regulation: the metabolic profile is highly dynamic and 
temporal changes, ranging from diurnal rhythms to transitional and seasonal changes can 
greatly affect this composition; this enables plants to adapt rapidly and often reversibly to 
changing conditions; (II) spatial regulation: like variation in time, metabolic accumulation 
may also vary spatially over developmental stages or be specific to certain organs, tissues 
or cell types; as such, they often determine the very specialized functions of organs; (III) 
environmental regulation: the flexibility in metabolic content is further illustrated by the 
dependency on environmental cues, such as light, temperature, nutrient availability, and 
biotic and abiotic stresses; in addition, many metabolites can act as internal or external 
signaling molecules and thus enable interactive communication with the environment; 
(IV) genetic regulation: finally, the metabolic biosynthesis routes are encoded in the plant 
genome and as such under genetic control; many instances are known where metabolic 
profiles are determined by the interaction of the local environment with the genetic make-
up of plants.

We will address the multi-dimensional regulation of plant metabolism in relation to 
growth, development and performance and highlight the distinct roles of both primary and 
secondary metabolism in these processes.

Temporal regulation of metabolism
The temporal regulation of plant metabolism is, besides the intrinsic developmental program, 
largely dependent on external factors. As the plant’s sessile nature impedes its escape 
from unfavorable environments, it has evolved a highly dynamic and flexible metabolism 
to cope with changing conditions. Some of these adaptive mechanisms are essential for 
the completion of the plant’s life cycle and have an autonomous or genetic origin. These 
include transitional changes, e.g. from a vegetative to a reproductive stage, and specific 
responses to long periods of extreme circumstances, e.g. drought, cold or low light. Others 
become entrained by the environment through repeated cycling, such as seasonal changes 
and diurnal rhythms of light and temperature. Importantly, many interactions between the 
different regulatory mechanisms can be observed. In this section, we will highlight the role 
and regulation of the metabolome during these temporal fluctuations.

As plants depend on external energy and structural resources like carbohydrates their 
growth and development is largely tied to their photosynthetic capacity. The formation of 
many primary metabolites directly depends on the availability of light and their abundance 
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therefore cycles over day and night periods. Such diurnal cycles are often mistaken with 
circadian rhythms but their regulation is mechanistically different. Circadian rhythms are, 
although entrained by day-night differences, controlled by the internal biological clock and 
maintain cycling even in the absence of diurnal rhythms.  The separation of a day in periods of 
light and darkness, following Earth’s rotation and consequent facing towards the sun, has led 
to the evolution of biological clocks that phase metabolism and growth with these repetitive 
cycles. Although the circadian clock shows strong resemblance in regulation and features 
among all organismal kingdoms, it has most likely evolved independently, suggesting major 
adaptational benefits (Young and Kay, 2001). Indeed, the accurate corresponding between 
the internal circadian clock and the external diurnal rhythms increases photosynthesis, 
vegetative growth and fitness in Arabidopsis thaliana (Michael et al., 2003; Dodd et al., 
2005).

Although there are strong indications that many diurnal oscillating metabolites are regulated 

Figure 1. The multi-dimensional regulation of plant metabolism. 
The interplay between temporal, spatial, environmental and genetic factors determines the quantita-
tive and qualitative profile of a plant’s metabolome.
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through circadian function (Harmer et al., 2000), detailed studies on the temporal regulation 
of large sets of metabolites are scarce. In a study on cold acclimation in Arabidopsis, most 
sugars, but also many organic and amino acids, showed diurnal rhythms in their abundance 
with the majority of these compounds being circadian regulated (Espinoza et al., 2010). 
The precise timing between the circadian clock and diurnal rhythms, related to higher 
growth rates, might be achieved through complex biochemical networks, providing major 
adaptational benefits (Dodd et al., 2005; Espinoza et al., 2010). Exemplary, starch, the major 
storage molecule in the plant kingdom, is linearly degraded during the night to ascertain 
the continuation of vegetative growth in dark conditions. At dawn, 95% of the total starch 
reserves is, each day, broken down to support metabolism and normal growth (Smith and 
Stitt, 2007). Interestingly, a sudden, significant decrease in the length of the light period is 
followed by immediate modifications in the rate of starch breakdown as such that there 
is a constant supply of starch during the unexpected, prolonged night (Graf et al., 2010) 
suggesting that plants hold a timing mechanism, anticipated on the previous dawn, to 
optimize plant growth and productivity (Graf and Smith, 2011). The significant role that 
the clock plays in these processes is even better exemplified by a recent study in which 
the light-dark (LD) cycle was either extended or shortened (Graf et al., 2010). When the LD 
cycle was prolonged to 28 h, starch was exhausted too soon, while a reduced LD cycle of 20 
h caused significant remains of starch at dawn. In both situations, plants maintained a 24 h 
growth cycle, which was most likely controlled through the circadian clock. Additionally, the 
authors showed that the unbalance between the LD cycle and the circadian cycle caused a 
significant reduction in growth. Moreover, in a wide range of Arabidopsis accessions, plant 
biomass is negatively correlated with starch content at the end of the day and at the end of 
the night (Cross et al., 2006; Sulpice et al., 2009). This implies a complex interplay between 
carbon allocation and the clock, such that the photosynthetic products are optimally used 
during the day, and starch during the night, to acquire the highest growth rates.

Many genes encoding enzymes for primary carbon metabolism are controlled by the circadian 
clock as their rhythmic expression continued under continuous light cycles (Harmer et al., 
2000; Lu et al., 2005). It is, therefore, tempting to speculate that the optimal allocation 
of carbon during day and night, and hence maximum growth rates, are controlled by the 
circadian clock. Illustratively, both maltose and sucrose are highly correlated with the rate 
of starch degradation during different day/night regimes and especially maltose sustained 
an oscillating pattern under continuous light conditions (Lu et al., 2005). Interestingly, 
recent findings suggest that the circadian clock not only regulates metabolism, but is in turn 
regulated by metabolic changes (Dalchau et al., 2011). Exogenous supplied sucrose affects the 
functioning of the circadian clock, most profoundly in dark conditions when the endogenous 
sucrose content is low. Moreover, exogenous sucrose modulates the period of the clock and 
has a minor effect on the expression of circadian clock associated genes (Knight et al., 2008). 
Additionally, a study comparing polymorphic loci in circadian oscillation and metabolomics 
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showed that AOP2, which encodes a biosynthetic glucosinolate enzyme, altered circadian 
clock regulation (Kerwin et al., 2011), suggesting a bidirectional relationship between 
metabolism and clock oscillation. These results altogether show the interconnectivity 
and complex regulation between metabolism and the clock to optimize carbon allocation 
and growth. The circadian control and the metabolic feedback mechanisms highlight the 
importance of its accurate phasing with diurnal cycles for optimal plant performance.

Although quite different from the reversible diurnal patterns, transitional changes in plants, 
such as seed germination and flowering, are thought to be controlled by the clock through 
the sensing of shifts in day length and temperature to match the timing of the response 
with most optimal conditions (Gould et al., 2006; McWatters and Devlin, 2011). Transitions 
are accompanied by major changes in metabolic composition, of which particularly the role 
of primary metabolites again is important and best studied. A first and major transition in a 
plant’s life cycle is germination. The transformation of a dormant seed into a photosynthetic 
active seedling is accompanied by the conversion of storage compounds into essential 
building blocks and energy carriers. Upon imbibition, there is a strong increase in hexose 
sugars followed by a large change in gene transcription (Fait et al., 2006; Howell et al., 2009). 
Subsequently, most primary metabolites acquire a stable metabolic state which is more 
or less enhanced for 24 h after exposure to light and inductive temperature (Allen et al., 
2010). Thereafter, there is a major metabolic switch in which many metabolites are being 
consumed to form building blocks and energy carriers. Sucrose, for example, was found 
to decrease throughout the developmental period, and interestingly, many transcripts 
were highly correlated with sucrose levels, indicating metabolic regulation of transcript 
abundance. The causality in these cases is difficult to prove, and it is likely that there is a 
very complex feedback regulation between metabolic status, gene transcription and the 
environment to maximize germination vigor. Many of the distinct phases in a germinating 
seed can be characterized by these transient metabolic profiles (Fait et al., 2006), indicative 
of the flexibility of the metabolome towards different temporal needs (Figure 2). 

The development from a vegetative to a reproductive state also leads to massive changes in 
metabolic content for which it is not always clear whether this is causal for, or a result of the 
transition (Giakountis and Coupland, 2008). The cell division in the shoot apical meristem, 
indicative of the transition to flowering, is preceded by an essential shift in the level of 
sucrose, induced by a long or displaced short day (Lejeune et al., 1993; Corbesier et al., 
1998). Moreover, many late and early flowering mutants, have a flowering time similar to 
wild type when grown on media containing sucrose (Araki and Komeda, 1993; Roldan et 
al., 1999). Additionally, mutants defective in trehalose-6-phosphate synthase are unable 
to flower (van Dijken et al., 2004). In contrast, flowering is delayed in plants growing on 
medium with added glucose or sucrose (Zhou et al., 1998; Ohto et al., 2001; Gibson, 2005). 
These studies indicate a significant role for sugars and related metabolites in floral transition 
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which is likely dependent on circadian timing.

Because of the strong interconnectivity of metabolic networks, feedback mechanisms 
to optimally canalize resources, are often observed (Arsenault et al., 2010), explaining 
the comprehensive metabolic shift of reproductive transitions.  An important but often 
neglected transition is the shift of tissues form sink to source or vice versa. A clear example 
is the formation of tap roots in biennial plants, which act as sinks in their first year and as 
source in their second (Godt and Roitsch, 2006). The preferential allocation of resources 
to a specific tissue can have large consequences for other plant parts and can even affect 
overall growth and development (van Heerden et al., 2010). More subtle is the gradual 
transition of leaves from sink to source tissues (Jeong et al., 2004). In annual species, this 
is often accompanied with progressive senescence and a re-allocation of substrates to 
reproductive organs. In perennial species, however, leaves function as sinks only during 
their development, but upon maturity serve as sources which remain vivid throughout the 
growing season. In contrast to annuals, which are driven much more by their developmental 
program, perennials react predominantly on environmental cues (Brenes-Arguedas et al., 

Figure 2. Temporal accumulation patterns of metabolites. 
Many metabolites show transient or discrete accumulation patterns during plant development. 
The intensity gradients indicate the extent of accumulation within a specific developmental stage. 
(A) Qualitatively tissue-specific accumulation of metabolites in seeds; (B) Quantitatively develop-
ment-specific accumulation of metabolites during the transition to flowering. Similarly, metabolic 
accumulation could be quantitatively tissue-specific or qualitatively development-specific, or due to 
an interaction of tissue and developmental specificity (e.g. only in leaves at a specific developmental 
stage).
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2006). Seasonal changes in light quality and temperature tremendously influence diurnal 
rhythms and have a major impact on metabolic changes in perennial species (Hoffman et 
al., 2010). These metabolic changes underlie much of the differences in growth between 
seasons (Richardson et al., 2009), even in evergreens (Ceusters et al., 2010). Nonetheless, 
many transcriptional regulators of developmental control are conserved over annual and 
perennial species, and it remains to be seen how this relates to their metabolic signatures 
(Brunner and Nilsson, 2004; Zhang et al., 2011). Plants show a remarkable adaptation of 
their metabolic composition to temporal changing conditions and needs. Some of these are 
abrupt and irreversible, while others are reoccurring and reversible. It is evident, however, 
that the different responses are tightly interlinked and should be considered in relation to 
each other.

Spatial regulation of metabolism
Plants are modular organisms that consist of a wide variety of organs, tissues and cell types. 
Each of these different entities is characterized by a unique and specific developmental 
program which is also reflected in their metabolic composition. Due to technical constraints 
however, metabolic studies have thus far mainly focused on convoluted plant parts such 
as shoots and roots, neglecting the differences in tissues and cell types within these plant 
organs. Fortunately, technological advances in micro-dissection, fractionation techniques, 
analytical sensitivity and bioinformatics have allowed the focus of metabolism to shift 
towards the detection of metabolites in specialized organs and cell types (Fernie, 2007).

A number of studies have reported on relationships between plant development and 
metabolic status of different plant organs such as leaves, roots, flowers, seeds and fruits. In 
relatively few studies, different organs were also compared to each other (Brown et al., 2003; 
Desbrosses et al., 2005; Velasco et al., 2008; Matsuda et al., 2009; Malik et al., 2010; Matsuda 
et al., 2010; Moing et al., 2011). These studies illustrated that plants are able to synthesize 
large numbers of different metabolites of which some are more general and accumulating in 
many tissues, while others are very specific for distinct tissues. The particular accumulation 
of metabolites suggests specialized functions in different stages of a plant’s development 
(Sergeeva et al., 2004). Primary metabolites, for instance, can be traced back in most tissues 
with mainly quantitative differences, indicating essential functions of carbohydrates. This is 
consistent with their major role in plant growth and development making them essential 
constituents of every cell type (Matsuda et al., 2010). Secondary metabolites, on the other 
hand, have a much wider chemical diversity and range of functions, and are often very specific 
to certain plant tissues. For example, benzoyloxylated glucosinolates and proanthocyanids 
are only found in seeds, while certain terpenes are specific for flower tissues (Reichelt et al., 
2002; Chen, 2003; Debeaujon et al., 2003). The cost effective accumulation of metabolites 
in a tissue-dependent manner enables the plant to invest valuable resources economically 
in growth and development and as such contributes to increased fitness and competitive 
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ability (Brown et al., 2003; Kliebenstein et al., 2005).

In this respect, it is not surprising that leaves, serving general supportive functions from 
simple basic structures contain the most basal metabolic expression profile, while flowers 
accumulate the largest number of specific metabolites (Matsuda et al., 2010). Flowers, as the 
complex prime organs for reproductive success, serve more specialized functions to improve 
plant fitness, like attracting pollinators and securing anthesis from external influences. 
Even the different organs within flowers (e.g. sepal, petal, stamen, pistil and receptacle) 
show a distinctive secondary metabolism, highlighting the importance of the metabolic 
profile in supporting organ structure and function (Hanhineva et al., 2008). Apparently, the 
developmental stage of plants and the state of their tissues is reflected in the metabolic 
signature of its compartments. This is effectively demonstrated by the accumulation and 
degradation of metabolites following tissue specialization during fruit development and 
ripening (Moco et al., 2007; Moing et al., 2011). That said, metabolic composition does 
not always depend on de novo biosynthesis and catabolism but can also result from re-
allocation of compounds. Young leaves, for example, have a very distinct glucosinolate 
profile compared to senescent, older leaves, presumably because of re-allocation to ensure 
protection of the inner rosette from feeding by herbivores (Brown et al., 2003). 

On a deeper level, metabolic differences can also be observed between specific cell types and 
even organelles in isolated tissues and organs (Schad et al., 2005; Holscher and Schneider, 
2007). Laser micro-dissection is an effective technique to in situ separate different cell types 
and organelles. Using laser micro-dissection, the accumulation of terpenoids was found to be 
differently regulated in cortical resin ducts and cambial zone tissue in white spruce (Abbott 
et al., 2010), while two phenolic compounds, effective in bark beetle defense,  were found in 
stone cells of Norway spruce (Li et al., 2006). In Arabidopsis, laser micro-dissection revealed 
metabolic compositions of the cytosol, vacuole, mitochondria and plastid. Consistent with 
earlier findings, many secondary metabolites were predominantly localized in the vacuole 
(storage) and cytosol (synthesis), while primary metabolites, crucial for biochemical pathway 
regulation, were detected in all compartments (Krueger et al., 2011).

Overall, spatial regulation of metabolism appears to have a great influence on the metabolic 
profile of different plant species. Moreover, even within individuals, the metabolic 
constitution mirrors developmental stage and function of the plant’s parts list. When 
describing a plant’s metabolic status caution should therefore be taken with respect to 
different organs and cell types within the studied species.

Environmental regulation of metabolism
The sessile nature of plants obligates it to adapt to its natural local environment. Plants 
depend on the radiation from the sun and nutrients from the soil for the process of 
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photosynthesis and the consequent acquirement of energy and resources to continue 
growth and development. The slightest change in environmental circumstances requires 
the re-arrangement of photosynthetic assimilates and metabolites to re-establish the plant 
in its new environment. Cold acclimation, for example, leads to immediate modifications 
in carbon metabolism towards the protection of proteins and membranes from freezing 
damage (Hannah et al., 2006; Kaplan et al., 2007). Likewise, plants anticipate rapidly on 
changes in nutrient status and light quality. Phosphorus deficiency, for instance, reprograms 
carbohydrate metabolism towards the more efficient organic acids and amino acids to reduce 
phosphorus consumption (Huang et al., 2008) while changes in the R:FR light ratio, possibly 
due to overshadowing of neighboring plants, increase the content of soluble metabolites 
and cell wall constituents (Mazzella et al., 2008). The accumulation of plant metabolites, and 
especially secondary metabolites, is strongly affected by environmental variation in light, 
nutrients, temperature and biotic and abiotic stresses and has been extensively reviewed in 
recent years (Kliebenstein, 2004; Allwood et al., 2008; Guy et al., 2008; Sanchez et al., 2008; 
Amtmann and Armengaud, 2009; Bundy et al., 2009; Dicke et al., 2009). We will, therefore, 
emphasize the general patterns observed during metabolic studies and the environmental 
influence on the spatiotemporal regulation of metabolism.

Environmental cues can shift the delicate balance between primary and secondary 
metabolites or steer their formation in certain directions. For the biosynthesis of secondary 
metabolites, products of primary metabolism, such as amino acids, often function as their 
substrates or as co-factor or ligand in enzymatic reactions (Logemann et al., 2000; Broeckling 
et al., 2005). An increased activation of secondary metabolism due to environmental changes 
will thus almost certainly modify the primary metabolism. Upon nitrogen deprivation, for 
example, a reduction in transcript accumulation of major genes in photosynthesis and 
chlorophyll synthesis occurs while transcripts involved in secondary metabolism increase 
(Scheible et al., 2004). Likewise, potassium (K+) deficiency leads to an increase in the levels 
of oxylipins and glucosinolates, possibly for the protection against herbivores that prey on 
the herbivore-attractive sugar and amino acid-rich, K+-deficient leaves (Troufflard et al., 
2010). Additionally, drought stress decreases both growth and carbon assimilation, while  
increasing secondary metabolism (Hale et al., 2005).

The most well-known examples shifting the balance between primary and secondary 
metabolism, however, can be observed with plant-herbivory and plant-pathogen interactions. 
Feeding by various herbivores can induce different volatiles, and leaf consumption leads to 
temporal expression profiles of different metabolites (Thaler et al., 2002; Kant et al., 2004). 
The interactions between plants and their pests consequently result in the biosynthesis of 
many different secondary compounds, such as glucosinolates, toxins and volatile compounds 
(Pichersky and Gershenzon, 2002; Wittstock and Gershenzon, 2002; Arany et al., 2007). 
Plant competition for light on the other hand, results in increased carbon allocation towards 
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the growing parts of the plant to enable rapid growth, and would thus favor an increase in 
primary metabolites (Kozuka et al., 2005). Interestingly, the metabolic changes during plant 
competition have only rarely been studied (Mazzella et al., 2008). Nevertheless, different 
environmental circumstances evoke different effects on the balance between primary and 
secondary metabolism. In nature, however, plants are constantly competing with neighbors 
for light and are simultaneously stressed by herbivores and pathogens, which leads to a 
trade-off in metabolic investment between growth and defense (Herms and Mattson, 1992). 
The evolutionary consequences of this trade-off are summarized in Box 1.

Notwithstanding the above, it should be noted that most changes in primary and secondary 
metabolism are restricted to certain tissues and are not a general response within the plant. 
For example, in response to feeding,  the trichomes on leaves of Tithonia diversifolia become, 
in contrast to other cell types, very rich in sesquiterpene lactones which are repellent to 
patch larvae (Ambrosio et al., 2008). Moreover, secondary metabolites (mainly salicylic acid, 
phytoalexins and antioxidants) accumulate to much higher levels in infected than in healthy 
leaf tissue (Simon et al., 2010). Similar results were obtained from a study of the symbiotic 
relationship between ryegrass and Neotyphodium lolii with specific increases in peramine, 
mannitol and oligopeptides in infected cells (Cao et al., 2008). That tissue specific responses 
are not limited to biotic interactions is shown by a significant difference in carbon allocation 
between the upper and lower section of expanding internodes of sunflower under low R:FR 
concomitant with an increase in growth in the upper part (Mazzella et al., 2008).

The detection and identification of metabolites specifically expressed in plant tissues 
during exposure to different stresses holds great promises for their beneficial use in human 
nutrition and health (Dixon and Sumner, 2003; Hall et al., 2008). A number of studies 
have reported on the qualitative and/or quantitative increase in nutritional compounds 
upon perturbation. Health promoting glucosinolates effectively arrest herbivore feeding 
and have accumulated to large amounts and chemical diversity in specific species due 
to the constant evolutionary arms race between insects and plants (Kliebenstein, 2004). 
Furthermore, isoflavonoids accumulate in response to microbial or insect compounds and 
have anti-carcinogenic and antioxidant activities (Dixon and Sumner, 2003). The production 
of metabolic compounds can be actively controlled by invoking a desired response after 
application of a certain treatment. This is demonstrated by growth at high temperature 
which significantly decreases the isoflavanoid content in soybean seeds (Tsukamoto et al., 
1995). In contrast, exposure of St John’s wort to high temperature increases, among other 
secondary metabolites, the hyperforin concentration in leaves, which was shown to have a 
calming effect on depressions (Zobayed et al., 2005). The use of untargeted metabolomics 
and the subsequent identification of molecules in environmental metabolomics are, 
therefore, expected to increase the number of beneficial metabolites for human nutrition 
and health as well as a wide range of other purposes.
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BOX. 1

Trade-off between growth and defense
Plants invest most of their resources in growth related metabolism to maximize reproductive 
success and out-compete neighboring plants but at the same time have to maintain 
necessary defenses to ensure survival in presence of pathogens and herbivores. The trade-
off between these two mutually excluding processes is known as the growth differentiation 
balance hypothesis (Herms and Mattson, 1992). When plants invest in secondary 
metabolism and defense, those resources are diverted from the production of vegetative 
tissues, and the expected growth is decreased. This hypothesis is supported by the universal 
down-regulation of photosynthesis-related genes upon biotic attack from different agents 
(Bilgin et al., 2010). Moreover, when plants are challenged by competition with neighbors 
and herbivores simultaneously they invest more resources towards fast growth (and 
competition) than to disease prevention (Izaguirre et al., 2006; Ballare, 2009). When plants 
sense a shift in the R:FR ratio of the light, due to competition with neighbors, a signal-
transduction pathway is activated which enhances the shade-avoidance syndrome (Smith 
and Whitelam, 1997) resulting in increased growth of petioles and internodes. At the same 
time, the inactivation of phytochromes upon low R:FR signals causes a strong reduction in 
sensitivity for jasmonate, an important hormone in response to disease defense (Moreno 
et al., 2009). Plants that display the shade avoidance syndrome are less resistant to insects, 
have fewer trichomes and a higher C:N ratio indicating fast growth (McGuire and Agrawal, 
2005).

Notwithstanding the afore mentioned, nutrient and water deprivation have a larger 
impact on  growth than on the process of photosynthesis and in some environments more 
resources can thus be invested in differentiation, without a direct cost on growth (Stamp, 
2004). Another strategy to ensure survival at lower costs is to make use of induced defenses 
upon biotic interaction (Baldwin, 1998; Cipollini, 2004). Indeed, fast  growers show lower 
constitutive defense, and higher induced defense (Van Zandt, 2007). Moreover, trade-offs 
can be observed between plant competition, growth rate and constitutive defense reactions 
(Kempel et al., 2011). Better competitors, but not faster growers, show lower constitutive 
and higher induced defense responses. Especially plants from nutrient-limiting or stressful 
environments, grow slower, invest more in constitutive defense, and are less attractive 
to herbivores (Endara and Coley, 2011). Additionally, priming of induced defenses has a 
relatively low cost on plant growth rate compared to induced direct defense, but significantly 
increases disease resistance, such that priming maximizes fitness in disease prone areas 
(van Hulten et al., 2006). These studies show that fast growth does not necessarily increase 
disease risks but that plants have evolved different strategies to cope with multiple stresses, 
which most likely contributed to species diversity.
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Another interesting observation is that the timing of the environmental cue affects the 
metabolic response of the plant both qualitatively and quantitatively. The impact of many 
environmental signals, from cold to shade avoidance appears to be gated by the circadian 
clock (Salter et al., 2003; Fowler et al., 2005). Benzene, isoprene (e.g. terpene) and fatty acid 
derived volatile emissions are all controlled by the circadian clock and their accumulation 
pattern is dependent on environmental signals (Loughrin et al., 1994; Loivamaki et al., 2007; 
Roeder et al., 2007; Arimura et al., 2008). Herbivore-injured cotton plants emit terpenoids 
signals to attract enemies of the herbivorous insect. Interestingly, cotton plants have a 
varying volatile blend during the day with some compounds following a circadian rhythm 
and possibly herbivore activity, while others being continuously released during the day, 
independent of the timing of herbivore feeding (Loughrin et al., 1994). Remarkably, the 
temporally varying volatile blends of plants also affects the hiding behavior of nocturnal 
larvae (Shiojiri et al., 2006). Exposure of caterpillars in the light to the nocturnal volatile blend 
of corn plants resulted in larvae behavior as under dark conditions. Similarly, benzenoids, 
monoterpenes and sesquiterpenes are emitted in the night to attract nocturnal pollinators 
(Roeder et al., 2007), while isoprenes accumulate during the day to prevent thermal and/ 
or oxidative stress (Loivamaki et al., 2007). Additionally, methyl benzoate accumulation in 
petal tissue of snapdragon is regulated by the circadian clock to ensure high emission in the 
presence of bumblebees at day time, while in tobacco and petunia, which are pollinated by 
nocturnal insects, accumulation peaks during the night (Kolosova et al., 2001). This nicely 
shows the interaction between the environment, the temporal and the spatial accumulation 
of metabolites in different plant species.

Genetic regulation of metabolism
An often-overlooked aspect of plant metabolism is genetic diversity in biosynthesis and the 
regulation thereof. As mentioned, the diversity in plant metabolites is immense. This is true 
for individual plants, but even more so for the whole plant kingdom. Each of the estimated 
400.000 plant species is predicted to have at least one or two unique metabolites in addition 
to the more common compounds, rendering the metabolic diversity in the plant kingdom 
inherently huge (Saito and Matsuda, 2010). Because the biosynthesis and accumulation of 
metabolites has a genetic origin, it is not surprising that quantitative and qualitative variation 
in these metabolites can be observed between but also within species (Keurentjes, 2009). 
This natural genetic diversity represents the phenotypic output of historical adaptations 
in plant molecular physiology and behavior towards environmental constraints (Rockman, 
2008). Since plant metabolism is heavily entwined with plant performance, unraveling the 
genetic basis of metabolism will provide a better understanding of the biochemical nature 
and regulation of the metabolome, and eventually plant development, adaptation and 
growth.

Although some successes to elucidate and modify biochemical pathways for metabolic 
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engineering of beneficial properties have been reported, many attempts were hampered by 
a lack of knowledge on the control of biochemical pathways (Trethewey, 2004). Following 
these efforts, experimental genetic mapping populations are used for a targeted analysis 
of particular metabolic traits, such as glucosinolates and soluble oligosaccharides in 
Arabidopsis seeds and flavonoid biosynthesis in Poplar (Bentsink et al., 2000; Kliebenstein et 
al., 2001; Morreel et al., 2006). The use of natural variation within species in such targeted 
analyzes enables the identification of candidate genes for rate-limiting enzymatic steps 
in biochemical pathways or the genetic regulation thereof. Nonetheless, the majority of 
the metabolome is still unexplored and many metabolites still need to be identified, let 
alone their function in plant performance. Because many of the relationships between 
metabolites and plant development have yet to be established and hence the uncertainty of 
which compounds to target, untargeted approaches have become in vogue (Keurentjes et 
al., 2006; Schauer et al., 2006). The objective of the untargeted approach is to find genetic 
factors with regulatory functions in biochemical pathways without a priori knowledge of the 
metabolic composition of the sampled population. These genetical metabolomics studies 
can be combined with transcriptomics and proteomics to investigate the intermediate steps 
in the relationship between genotype and phenotype (Wentzell et al., 2007; Keurentjes et 
al., 2008; Fu et al., 2009). As exemplified in the previous sections, a huge variation exists in 
metabolic profiles at different developmental stages, tissues or cell types, and conditions 
and natural variation in genotypic interactions with each of these factors has been observed 
(Kliebenstein et al., 2001; Wentzell et al., 2008; Wentzell and Kliebenstein, 2008; Eduardo et 
al., 2010; Schilmiller et al., 2010).

As an extension of analysing natural variation in experimental populations other approaches 
such as genome-wide association (GWA) mapping are currently being explored (Keurentjes 
et al., 2011). GWA mapping is rapidly developing as a new tool in plant science to associate 
phenotypic characteristics with genetic markers to elucidate chromosomal regions explaining 
variation in complex traits (Atwell et al., 2010). It makes use of the long evolutionary history 
and the wide variation of species and its accumulated recombination events within natural 
populations to an extent that enables mapping at the gene level (For a review see Bergelson 
and Roux, 2010). To date, only a very limited number of studies applied GWA mapping on 
metabolites. In Arabidopsis, a targeted analyzis of 43 glucosinolates in 96 wild accessions 
revealed a number of significant associations (Chan et al., 2010a), including two major loci 
previously identified in experimental populations (Kliebenstein et al., 2001; Keurentjes et al., 
2006). Illustratively, not all previously identified causal genes were detected, demonstrating 
the complementary value of the two approaches as was also observed for other traits and 
species (Buckler et al., 2009; Brachi et al., 2010). In an untargeted approach using the same 
GWA population in different environments the most profound findings were the validation 
of the complex, quantitative nature of the metabolome and the strong environmental 
component in its genetic regulation (Chan et al., 2010b). Although many metabolites 
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correlated over the two environments, only one was significantly associated to the same 
genomic region in both environments, suggesting a very strong environmental impact on 
the genetic regulation of metabolism. This is in line with previous findings and favors studies 
from different environments, or from field conditions with multiple signals perceived by the 
plant simultaneously, to provide a more robust understanding of genetical metabolomics 
(Bergelson and Roux, 2010). Strikingly, the phenotypic diversity in metabolites was smaller 
in the set of 96 natural accessions than in an experimental population derived from a cross 
between two accessions indicating that, due to the lack of selective forces, the control on 
metabolism is loosened in artificial populations (Chan et al., 2010b).

Finally we note on the natural epigenetic variation in species such as differential DNA 
methylation, chromatin structure and histone modification (Vaughn et al., 2007; Zhang 
et al., 2008a). As both epigenetic regulation and the metabolome are prone to strong 
environmental regulation, epigenetic regulation could prove to be a very important 
determinant of metabolic status (Sung and Amasino, 2004; Chan et al., 2010b). Epigenetic 
regulation can be effectively studied in experimental mapping populations exploiting 
epigenetic differences in population individuals (Johannes et al., 2009; Reinders et al., 
2009), but thus far no such studies have been reported for metabolic analyzes.

The multi-dimensional regulation of metabolism in relation to plant 
development and performance
As the metabolome specifies the state of the plant in terms of development and performance, 
its predictive power can be used in breeding strategies. In a number of studies this lowdown 
has been used to determine the relationship between growth rate, biomass and metabolism 
in different natural variants (Cross et al., 2006; Schauer et al., 2006; Meyer et al., 2007; 
Lisec et al., 2008; Sulpice et al., 2010). Although individual metabolites occasionally show 
a weak correlation between accumulation and plant biomass (Sulpice et al., 2009), the 
predictive power of a group of metabolites is much higher (Meyer et al., 2007). Most of 
these metabolites are associated with central carbon metabolism and stress responses, 
both of great importance to the regulation of plant growth (See BOX 1). The majority of the 
metabolites in central carbon metabolism have a negative correlation with growth, implying 
that these metabolite pools are consumed at high growth rates. This is supported by the 
observation of positive correlations between enzyme activities in primary metabolism and 
rosette biomass, indicating that higher flux rates increase the formation of structural end 
products to enhance growth (Cross et al., 2006). Interestingly, high correlations between 
enzyme activities and biomass, do not always match with metabolite accumulation (Sulpice 
et al., 2010), illustrating the complexity of the regulation of plant metabolism. Additional 
evidence for the link between growth and metabolism comes from genetic analyses in which 
a strong co-regulation of biomass formation and metabolite accumulation was observed 
(Lisec et al., 2008).
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As illustrated in the previous sections, plant metabolism is extremely complex and highly 
dynamic, and can only be fully understood by taking into account all the components 
that contribute to its complexity. The metabolome is highly variable on a spatiotemporal 
scale, strongly influenced by the environment and to a great extent determined by genetic 
constraints (Macel et al., 2010). The different impact of all these factors on the plant’s 
metabolism is best exemplified by studies on glucosinolates (Wentzell and Kliebenstein, 
2008; Burow et al., 2010). Glucosinolate accumulation depends on developmental stage, 
tissue type, planting density and genotype (Wentzell and Kliebenstein, 2008). Moreover, 
significant interactions between these different factors are abound. This suggests that the 
multi-dimensional regulation of glucosinolate accumulation modifies defense strategies 
to maximize the efficiency towards changing risks of herbivory (in time and space) and to 
increase the overall fitness of the plant (Wentzell and Kliebenstein, 2008; Burow et al., 2010). 
Since the investments in defense (mainly secondary metabolites) suggest a negative effect 
while investments in central carbon metabolism (primary metabolites) have a strong 
positive effect on plant growth and fitness, this argues for comparative studies of primary 
and secondary metabolism and their relation to plant growth rate and fitness in different 
environments. In this respect, differences might be expected between species with different 
growth strategies (see BOX1).

Acknowledgements
We acknowledge support from the Netherlands Organization for Scientific Research (JK) and 
the Centre for Biosystems Genomics (RK, JK). We thank W.F.H. Kooke for composing the 
figures.



Chapter 3

88

3

References
Abbott E, Hall D, Hamberger B, Bohlmann J (2010) Laser microdissection of conifer stem 

tissues: isolation and analyzis of high quality RNA, terpene synthase enzyme activity and 
terpenoid metabolites from resin ducts and cambial zone tissue of white spruce (Picea 
glauca). BMC plant biology 10: 106.

Allen E, Moing A, Ebbels TM, Maucourt M, et al(2010) Correlation Network Analyzis reveals 
a sequential reorganization of metabolic and transcriptional states during germination and 
gene-metabolite relationships in developing seedlings of Arabidopsis. BMC systems biology 4

Allwood JW, Ellis DI, Goodacre R (2008) Metabolomic technologies and their application to the 
study of plants and plant-host interactions. Physiologia plantarum 132: 117-135.

Ambrosio SR, Oki Y, Heleno VC, Chaves JS, et al (2008) Constituents of glandular trichomes of 
Tithonia diversifolia: relationships to herbivory and antifeedant activity. Phytochemistry 69: 
2052-2060.

Amtmann A, Armengaud P (2009) Effects of N, P, K and S on metabolism: new knowledge gained 
from multi-level analyzis. Current Opinion in Plant Biology 12: 275-283.

Araki T, Komeda Y (1993) Flowering in darkness in Arabidopsis thaliana. Plant Journal 4: 801-811.
Arany AM, Jong TJ, Kim HK, Dam NM, et al (2007) Glucosinolates and other metabolites in the 

leaves of Arabidopsis thaliana from natural populations and their effects on a generalist and 
a specialist herbivore. Chemoecology 18: 65-71.

Arimura G, Kopke S, Kunert M, Volpe V, et al (2008) Effects of feeding Spodoptera littoralis 
on lima bean leaves: IV. Diurnal and nocturnal damage differentially initiate plant volatile 
emission. Plant physiology 146: 965-973.

Arsenault PR, Vail D, Wobbe KK, Erickson K, et al (2010) Reproductive Development 
Modulates Gene Expression and Metabolite Levels with Possible Feedback Inhibition of 
Artemisinin in Artemisia annua. Plant physiology 154: 958-968.

Atwell S, Huang YS, Vilhjalmsson BJ, Willems G, et al (2010) Genome-wide association study 
of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465: 627-631.

Baldwin IT (1998) Jasmonate-induced responses are costly but benefit plants under attack in 
native populations. Proceedings of the National Academy of Sciences of the United States of 
America 95: 8113-8118.

Ballare CL (2009) Illuminated behaviour: phytochrome as a key regulator of light foraging and plant 
anti-herbivore defence. Plant, cell & environment 32: 713-725.

Bentsink L, Alonso-Blanco C, Vreugdenhil D, Tesnier K, et al (2000) Genetic analyzis of seed-
soluble oligosaccharides in relation to seed storability of Arabidopsis. Plant physiology 124: 
1595-1604.

Bergelson J, Roux F (2010) Towards identifying genes underlying ecologically relevant traits in 
Arabidopsis thaliana. Nature Reviews Genetics 11: 867-879.

Bilgin DD, Zavala JA, Zhu J, Clough SJ, et al (2010) Biotic stress globally downregulates 
photosynthesis genes. Plant, cell & environment 33: 1597-1613.

Brachi B, Faure N, Horton M, Flahauw E, et al (2010) Linkage and Association Mapping of 
Arabidopsis thaliana Flowering Time in Nature. PLoS genetics 6

Brenes-Arguedas T, Horton MW, Coley PD, Lokvam J, et al (2006) Contrasting mechanisms 
of secondary metabolite accumulation during leaf development in two tropical tree species 
with different leaf expansion strategies. Oecologia 149: 91-100.



Multi-dimensional regulation of metabolism

89

3

Broeckling CD, Huhman DV, Farag MA, Smith JT, et al (2005) Metabolic profiling of Medicago 
truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. 
Journal of experimental botany 56: 323-336.

Brown PD, Tokuhisa JG, Reichelt M, Gershenzon J (2003) Variation of glucosinolate 
accumulation among different organs and developmental stages of Arabidopsis thaliana. 
Phytochemistry 62: 471-481.

Brunner AM, Nilsson O (2004) Revisiting tree maturation and floral initiation in the poplar 
functional genomics era. New Phytologist 164: 43-51.

Buckler ES, Holland JB, Bradbury PJ, Acharya CB, et al (2009) The Genetic Architecture of 
Maize Flowering Time. Science 325: 714-718.

Bundy JG, Davey MP, Viant MR (2009) Environmental metabolomics: a critical review and future 
perspectives. Metabolomics 5: 3-21.

Burow M, Halkier BA, Kliebenstein DJ (2010) Regulatory networks of glucosinolates shape 
Arabidopsis thaliana fitness. Current Opinion in Plant Biology 13: 348-353.

Cao M, Koulman A, Johnson LJ, Lane GA, et al (2008) Advanced data-mining strategies for the 
analyzis of direct-infusion ion trap mass spectrometry data from the association of perennial 
ryegrass with its endophytic fungus, Neotyphodium lolii. Plant physiology 146: 1501-1514.

Ceusters J, Borland AM, Ceusters N, Verdoodt V, et al (2010) Seasonal influences on 
carbohydrate metabolism in the CAM bromeliad Aechmea 'Maya': consequences for 
carbohydrate partitioning and growth. Annals of Botany 105: 301-309.

Chan EK, Rowe HC, Hansen BG, Kliebenstein DJ (2010a) The complex genetic architecture of 
the metabolome. PLoS genetics 6: e1001198.

Chan EK, Rowe HC, Kliebenstein DJ (2010b) Understanding the evolution of defense metabolites 
in Arabidopsis thaliana using genome-wide association mapping. Genetics 185: 991-1007.

Chen F (2003) Biosynthesis and Emission of Terpenoid Volatiles from Arabidopsis Flowers. The Plant 
Cell Online 15: 481-494.

Cipollini D (2004) Stretching the limits of plasticity: Can a plant defend against both competitors 
and herbivores? Ecology 85: 28-37.

Corbesier L, Lejeune P, Bernier G (1998) The role of carbohydrates in the induction of flowering 
in Arabidopsis thaliana: comparison between the wild type and a starchless mutant. Planta 
206: 131-137.

Cosgrove DJ (2005) Growth of the plant cell wall. Nature reviews. Molecular cell biology 6: 850-
861.

Cross JM, von Korff M, Altmann T, Bartzetko L, et al (2006) Variation of enzyme activities and 
metabolite levels in 24 Arabidopsis accessions growing in carbon-limited conditions. Plant 
physiology 142: 1574-1588.

D'Auria JC, Gershenzon J (2005) The secondary metabolism of Arabidopsis thaliana: growing like 
a weed. Current Opinion in Plant Biology 8: 308-316.

Dalchau N, Baek SJ, Briggs HM, Robertson FC, et al (2011) The circadian oscillator gene 
GIGANTEA mediates a long-term response of the Arabidopsis thaliana circadian clock to 
sucrose. Proceedings of the National Academy of Sciences of the United States of America 
108: 5104-5109.

Debeaujon I, Nesi N, Perez P, Devic M, et al (2003) Proanthocyanidin-accumulating cells in 
Arabidopsis testa: regulation of differentiation and role in seed development. The Plant cell 
15: 2514-2531.



Chapter 3

90

3

Desbrosses GG, Kopka J, Udvardi MK (2005) Lotus japonicus metabolic profiling. Development 
of gas chromatography-mass spectrometry resources for the study of plant-microbe 
interactions. Plant physiology 137: 1302-1318.

Dicke M, van Loon JJ, Soler R (2009) Chemical complexity of volatiles from plants induced by 
multiple attack. Nature chemical biology 5: 317-324.

Dixon RA, Sumner LW (2003) Legume natural products: understanding and manipulating complex 
pathways for human and animal health. Plant physiology 131: 878-885.

Dodd AN, Salathia N, Hall A, Kevei E, et al (2005) Plant circadian clocks increase 
photosynthesis, growth, survival, and competitive advantage. Science 309: 630-633.

Eduardo I, Chietera G, Bassi D, Rossini L, et al (2010) Identification of key odor volatile 
compounds in the essential oil of nine peach accessions. Journal of the science of food and 
agriculture 90: 1146-1154.

Endara M-J, Coley PD (2011) The resource availability hypothesis revisited: a meta-analyzis. 
Functional Ecology 25: 389-398.

Espinoza C, Degenkolbe T, Caldana C, Zuther E, et al (2010) Interaction with Diurnal and 
Circadian Regulation Results in Dynamic Metabolic and Transcriptional Changes during Cold 
Acclimation in Arabidopsis. Plos One 5

Fait A, Angelovici R, Less H, Ohad I, et al (2006) Arabidopsis seed development and germination 
is associated with temporally distinct metabolic switches. Plant physiology 142: 839-854.

Fernie AR (2007) The future of metabolic phytochemistry: larger numbers of metabolites, higher 
resolution, greater understanding. Phytochemistry 68: 2861-2880.

Fowler SG, Cook D, Thomashow MF (2005) Low temperature induction of Arabidopsis CBF1, 2, 
and 3 is gated by the circadian clock. Plant physiology 137: 961-968.

Fu J, Keurentjes JJB, Bouwmeester H, America T, et al (2009) System-wide molecular evidence 
for phenotypic buffering in Arabidopsis. Nature genetics 41: 166-167.

Giakountis A, Coupland G (2008) Phloem transport of flowering signals. Current Opinion in Plant 
Biology 11: 687-694.

Gibson SI (2005) Control of plant development and gene expression by sugar signaling. Current 
Opinion in Plant Biology 8: 93-102.

Godt D, Roitsch T (2006) The developmental and organ specific expression of sucrose cleaving 
enzymes in sugar beet suggests a transition between apoplasmic and symplasmic phloem 
unloading in the tap roots. Plant Physiology and Biochemistry 44: 656-665.

Gould PD, Locke JCW, Larue C, Southern MM, et al (2006) The molecular basis of temperature 
compensation in the Arabidopsis circadian clock. The Plant cell 18: 1177-1187.

Graf A, Schlereth A, Stitt M, Smith AM (2010) Circadian control of carbohydrate availability for 
growth in Arabidopsis plants at night. Proceedings of the National Academy of Sciences of 
the United States of America 107: 9458-9463.

Graf A, Smith AM (2011) Starch and the clock: the dark side of plant productivity. Trends in plant 
science 16: 169-175.

Guy C, Kaplan F, Kopka J, Selbig J, et al (2008) Metabolomics of temperature stress. Physiologia 
plantarum 132: 220-235.

Hale BK, Herms DA, Hansen RC, Clausen TP, et al (2005) Effects of drought stress and nutrient 
availability on dry matter allocation, phenolic glycosides, and rapid induced resistance of 
poplar to two lymantriid defoliators. Journal of chemical ecology 31: 2601-2620.



Multi-dimensional regulation of metabolism

91

3

Hall RD, Brouwer ID, Fitzgerald MA (2008) Plant metabolomics and its potential application for 
human nutrition. Physiologia plantarum 132: 162-175.

Hanhineva K, Rogachev I, Kokko H, Mintz-Oron S, et al (2008) Non-targeted analyzis of spatial 
metabolite composition in strawberry (Fragariaxananassa) flowers. Phytochemistry 69: 2463-
2481.

Hannah MA, Wiese D, Freund S, Fiehn O, et al (2006) Natural genetic variation of freezing 
tolerance in Arabidopsis. Plant physiology 142: 98-112.

Harmer SL, Hogenesch LB, Straume M, Chang HS, et al (2000) Orchestrated transcription of 
key pathways in Arabidopsis by the circadian clock. Science 290: 2110-2113.

Herms DA, Mattson WJ (1992) The dilemma of plants - to grow or defend. Quarterly Review of 
Biology 67: 283-335.

Hoffman DE, Jonsson P, Bylesjo M, Trygg J, et al (2010) Changes in diurnal patterns within the 
Populus transcriptome and metabolome in response to photoperiod variation. Plant Cell and 
Environment 33: 1298-1313.

Holscher D, Schneider B (2007) Laser microdissection and cryogenic nuclear magnetic resonance 
spectroscopy: an alliance for cell type-specific metabolite profiling. Planta 225: 763-770.

Howell KA, Narsai R, Carroll A, Ivanova A, et al (2009) Mapping Metabolic and Transcript 
Temporal Switches during Germination in Rice Highlights Specific Transcription Factors and 
the Role of RNA Instability in the Germination Process. Plant physiology 149: 961-980.

Huang CY, Roessner U, Eickmeier I, Genc Y, et al (2008) Metabolite profiling reveals distinct 
changes in carbon and nitrogen metabolism in phosphate-deficient barley plants (Hordeum 
vulgare L.). Plant & cell physiology 49: 691-703.

Izaguirre MM, Mazza CA, Biondini M, Baldwin IT, et al(2006) Remote sensing of future 
competitors: impacts on plant defenses. Proceedings of the National Academy of Sciences of 
the United States of America 103: 7170-7174.

Jeong ML, Jiang H, Chen HS, Tsai CJ, et al (2004) Metabolic profiling of the sink-to-source 
transition in developing leaves of quaking aspen. Plant physiology 136: 3364-3375.

Johannes F, Porcher E, Teixeira FK, Saliba-Colombani V, et al (2009) Assessing the Impact of 
Transgenerational Epigenetic Variation on Complex Traits. PLoS genetics 5

Kant MR, Ament K, Sabelis MW, Haring MA, et al (2004) Differential timing of spider mite-
induced direct and indirect defenses in tomato plants. Plant physiology 135: 483-495.

Kaplan F, Kopka J, Sung DY, Zhao W, et al (2007) Transcript and metabolite profiling during cold 
acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression 
with modifications in metabolite content. The Plant journal : for cell and molecular biology 
50: 967-981.

Kempel A, Schadler M, Chrobock T, Fischer M, et al (2011) Tradeoffs associated with 
constitutive and induced plant resistance against herbivory. Proceedings of the National 
Academy of Sciences of the United States of America 108: 5685-5689.

Kerwin RE, Jimenez-Gomez JM, Fulop D, Harmer SL, et al (2011) Network quantitative trait 
loci mapping of circadian clock outputs identifies metabolic pathway-to-clock linkages in 
Arabidopsis. The Plant cell 23: 471-485.

Keurentjes JJB (2009) Genetical metabolomics: closing in on phenotypes. Current Opinion in Plant 
Biology 12: 223-230.

Keurentjes JJB, Fu J, de Vos CH, Lommen A, et al (2006) The genetics of plant metabolism. 
Nature genetics 38: 842-849.



Chapter 3

92

3

Keurentjes JJB, Sulpice R, Gibon Y, Steinhauser MC, et al (2008) Integrative analyzes of 
genetic variation in enzyme activities of primary carbohydrate metabolism reveal distinct 
modes of regulation in Arabidopsis thaliana. Genome biology 9: R129.

Keurentjes JJB, Willems G, van Eeuwijk F, Nordborg M, et al (2011) A comparison of 
population types used for QTL mapping in Arabidopsis thaliana. Plant Genetic Resources 9: 
185-188.

Kliebenstein DJ (2004) Secondary metabolites and plant/environment interactions: a view through 
Arabidopsis thaliana tinged glasses. Plant Cell and Environment 27: 675-684.

Kliebenstein DJ, Kroymann J, Brown P, Figuth A,et al (2001) Genetic control of natural 
variation in Arabidopsis glucosinolate accumulation. Plant physiology 126: 811-825.

Kliebenstein DJ, Kroymann J, Mitchell-Olds T (2005) The glucosinolate-myrosinase system in an 
ecological and evolutionary context. Current Opinion in Plant Biology 8: 264-271.

Knight H, Thomson AJW, McWatters HG (2008) Sensitive to freezing6 integrates cellular and 
environmental inputs to the plant circadian clock. Plant physiology 148: 293-303.

Kolosova N, Gorenstein N, Kish CM, Dudareva N (2001) Regulation of circadian methyl 
benzoate emission in diurnally and nocturnally emitting plants. The Plant cell 13: 2333-2347.

Kozuka T, Horiguchi G, Kim GT, Ohgishi M, et al (2005) The different growth responses of the 
Arabidopsis thaliana leaf blade and the petiole during shade avoidance are regulated by 
photoreceptors and sugar. Plant & cell physiology 46: 213-223.

Krueger S, Giavalisco P, Krall L, Steinhauser MC, et al (2011) A Topological Map of the 
Compartmentalized Arabidopsis thaliana Leaf Metabolome. Plos One 6

Lejeune P, Bernier G, Requier MC, Kinet JM (1993) Sucrose increase during floral induction in 
the phloem sap collected at the apical part of the shoot of the long-day plant Sinapis alba L. 
Planta 190: 71-74.

Li P, Sioson A, Mane SP, Ulanov A, et al (2006) Response diversity of Arabidopsis thaliana 
ecotypes in elevated [CO2] in the field. Plant molecular biology 62: 593-609.

Lisec J, Meyer RC, Steinfath M, Redestig H, et al (2008) Identification of metabolic and biomass 
QTL in Arabidopsis thaliana in a parallel analyzis of RIL and IL populations. The Plant journal : 
for cell and molecular biology 53: 960-972.

Logemann E, Tavernaro A, Schulz WG, Somssich IE, et al (2000) UV light selectively coinduces 
supply pathways from primary metabolism and flavonoid secondary product formation in 
parsley. Proceedings of the National Academy of Sciences of the United States of America 97: 
1903-1907.

Loivamaki M, Louis S, Cinege G, Zimmer I, et al (2007) Circadian rhythms of isoprene 
biosynthesis in grey poplar leaves. Plant physiology 143: 540-551.

Loughrin JH, Manukian A, Heath RR, Turlings TCJ, et al (1994) Diurnal cycle of emission of 
induced volatile terpenoids herbivore-injured cotton plants. Proceedings of the National 
Academy of Sciences of the United States of America 91: 11836-11840.

Lu Y, Gehan JP, Sharkey TD (2005) Daylength and circadian effects on starch degradation and 
maltose metabolism. Plant physiology 138: 2280-2291.

Macel M, Van Dam NM, Keurentjes JJB (2010) Metabolomics: the chemistry between ecology 
and genetics. Molecular ecology resources 10: 583-593.

Malik MS, Riley MB, Norsworthy JK, Bridges W, Jr (2010) Glucosinolate profile variation of 
growth stages of wild radish (Raphanus raphanistrum). Journal of agricultural and food 
chemistry 58: 3309-3315.



Multi-dimensional regulation of metabolism

93

3

Matsuda F, Hirai MY, Sasaki E, Akiyama K, et al (2010) AtMetExpress development: a 
phytochemical atlas of Arabidopsis development. Plant physiology 152: 566-578.

Matsuda F, Yonekura-Sakakibara K, Niida R, Kuromori T, et al (2009) MS/MS spectral tag-
based annotation of non-targeted profile of plant secondary metabolites. The Plant journal : 
for cell and molecular biology 57: 555-577.

Mazzella MA, Zanor MI, Fernie AR, Casal JJ (2008) Metabolic responses to red/far-red ratio 
and ontogeny show poor correlation with the growth rate of sunflower stems. Journal of 
experimental botany 59: 2469-2477.

McGuire R, Agrawal AA (2005) Trade-offs between the shade-avoidance response and plant 
resistance to herbivores? Tests with mutant Cucumis sativus. Functional Ecology 19: 1025-
1031.

McWatters HG, Devlin PF (2011) Timing in plants--a rhythmic arrangement. FEBS letters 585: 
1474-1484.

Meyer RC, Steinfath M, Lisec J, Becher M, et al (2007) The metabolic signature related to high 
plant growth rate in Arabidopsis thaliana. Proceedings of the National Academy of Sciences 
of the United States of America 104: 4759-4764.

Michael TP, Salome PA, Yu HJ, Spencer TR, et al (2003) Enhanced fitness conferred by naturally 
occurring variation in the circadian clock. Science 302: 1049-1053.

Moco S, Capanoglu E, Tikunov Y, Bino RJ, et al (2007) Tissue specialization at the metabolite 
level is perceived during the development of tomato fruit. Journal of experimental botany 
58: 4131-4146.

Moing A, Aharoni A, Biais B, Rogachev I, et al (2011) Extensive metabolic cross-talk in 
melon fruit revealed by spatial and developmental combinatorial metabolomics. The New 
phytologist 190: 683-696.

Moreno JE, Tao Y, Chory J, Ballare CL (2009) Ecological modulation of plant defense via 
phytochrome control of jasmonate sensitivity. Proceedings of the National Academy of 
Sciences of the United States of America 106: 4935-4940.

Morreel K, Goeminne G, Storme V, Sterck L, et al (2006) Genetical metabolomics of flavonoid 
biosynthesis in Populus: a case study. The Plant journal : for cell and molecular biology 47: 
224-237.

Ohto M, Onai K, Furukawa Y, Aoki E, et al (2001) Effects of sugar on vegetative development 
and floral transition in arabidopsis. Plant physiology 127: 252-261.

Oksman-Caldentey KM, Inze D (2004) Plant cell factories in the post-genomic era: new ways to 
produce designer secondary metabolites. Trends in plant science 9: 433-440.

Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for 
pollinator attraction and defense. Current Opinion in Plant Biology 5: 237-243.

Reichelt M, Brown PD, Schneider B, Oldham NJ, et al (2002) Benzoic acid glucosinolate esters 
and other glucosinolates from Arabidopsis thaliana. Phytochemistry 59: 663-671.

Reinders J, Wulff BBH, Mirouze M, Mari-Ordonez A, et al (2009) Compromised stability of 
DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes 
& Development 23: 939-950.

Richardson AD, Hollinger DY, Dail DB, Lee JT, et al (2009) Influence of spring phenology on 
seasonal and annual carbon balance in two contrasting New England forests. Tree physiology 
29: 321-331.



Chapter 3

94

3

Rockman MV (2008) Reverse engineering the genotype-phenotype map with natural genetic 
variation. Nature 456: 738-744.

Roeder S, Hartmann AM, Effmert U, Piechulla B (2007) Regulation of simultaneous synthesis 
of floral scent terpenoids by the 1,8-cineole synthase of Nicotiana suaveolens. Plant 
molecular biology 65: 107-124.

Roitsch T (1999) Source-sink regulation by sugar and stress. Current Opinion in Plant Biology 2: 
198-206.

Roldan M, Gomez-Mena C, Ruiz-Garcia L, Salinas J, et al (1999) Sucrose availability on the 
aerial part of the plant promotes morphogenesis and flowering of Arabidopsis in the dark. 
Plant Journal 20: 581-590.

Saito K, Matsuda F (2010) Metabolomics for functional genomics, systems biology, and 
biotechnology. Annual review of plant biology 61: 463-489.

Salter MG, Franklin KA, Whitelam GC (2003) Gating of the rapid shade-avoidance response by 
the circadian clock in plants. Nature 426: 680-683.

Sanchez DH, Siahpoosh MR, Roessner U, Udvardi M, et al (2008) Plant metabolomics reveals 
conserved and divergent metabolic responses to salinity. Physiologia plantarum 132: 209-
219.

Schad M, Mungur R, Fiehn O, Kehr J (2005) Metabolic profiling of laser microdissected vascular 
bundles of Arabidopsis thaliana. Plant methods 1: 2.

Schauer N, Semel Y, Roessner U, Gur A, et al (2006) Comprehensive metabolic profiling 
and phenotyping of interspecific introgression lines for tomato improvement. Nature 
biotechnology 24: 447-454.

Scheible WR, Morcuende R, Czechowski T, Fritz C, et al (2004) Genome-wide reprogramming 
of primary and secondary metabolism, protein synthesis, cellular growth processes, and the 
regulatory infrastructure of Arabidopsis in response to nitrogen. Plant physiology 136: 2483-
2499.

Schilmiller A, Shi F, Kim J, Charbonneau AL, et al (2010) Mass spectrometry screening 
reveals widespread diversity in trichome specialized metabolites of tomato chromosomal 
substitution lines. The Plant journal : for cell and molecular biology 62: 391-403.

Sergeeva LI, Vonk J, Keurentjes JJB, van der Plas LH, et al (2004) Histochemical analyzis 
reveals organ-specific quantitative trait loci for enzyme activities in Arabidopsis. Plant 
physiology 134: 237-245.

Shiojiri K, Ozawa R, Takabayashi J (2006) Plant volatiles, rather than light, determine the 
nocturnal behavior of a caterpillar. Plos Biology 4: 1044-1047.

Simon C, Langlois-Meurinne M, Bellvert F, Garmier M, et al (2010) The differential spatial 
distribution of secondary metabolites in Arabidopsis leaves reacting hypersensitively 
to Pseudomonas syringae pv. tomato is dependent on the oxidative burst. Journal of 
experimental botany 61: 3355-3370.

Smith AM, Stitt M (2007) Coordination of carbon supply and plant growth. Plant Cell and 
Environment 30: 1126-1149.

Smith H, Whitelam GC (1997) The shade avoidance syndrome: Multiple responses mediated by 
multiple phytochromes. Plant Cell and Environment 20: 840-844.

Stamp N (2004) Can the growth-differentiation balance hypothesis be tested rigorously? Oikos 107: 
439-448.



Multi-dimensional regulation of metabolism

95

3

Sulpice R, Pyl ET, Ishihara H, Trenkamp S, et al (2009) Starch as a major integrator in the 
regulation of plant growth. Proceedings of the National Academy of Sciences of the United 
States of America 106: 10348-10353.

Sulpice R, Trenkamp S, Steinfath M, Usadel B, et al (2010) Network analyzis of enzyme 
activities and metabolite levels and their relationship to biomass in a large panel of 
Arabidopsis accessions. The Plant cell 22: 2872-2893.

Sung SB, Amasino RM (2004) Vernalisation and epigenetics: how plants remember winter. Current 
Opinion in Plant Biology 7: 4-10.

Thaler JS, Farag MA, Pare PW, Dicke M (2002) Jasmonate-deficient plants have reduced direct 
and indirect defences against herbivores. Ecology Letters 5: 764-774.

Trethewey RN (2004) Metabolite profiling as an aid to metabolic engineering in plants. Current 
Opinion in Plant Biology 7: 196-201.

Troufflard S, Mullen W, Larson TR, Graham IA, et al (2010) Potassium deficiency induces the 
biosynthesis of oxylipins and glucosinolates in Arabidopsis thaliana. BMC plant biology 10: 
172.

Tsukamoto C, Shimada S, Igita K, Kudou S, et al (1995) Factors affecting isoflavone content in 
soybean seeds - changes in isoflavones, saponins, and composition of fatty-acids at different 
temperatures duringseed development. Journal of agricultural and food chemistry 43: 1184-
1192.

van Dijken AJ, Schluepmann H, Smeekens SC (2004) Arabidopsis trehalose-6-phosphate 
synthase 1 is essential for normal vegetative growth and transition to flowering. Plant 
physiology 135: 969-977.

van Heerden PDR, Donaldson RA, Watt DA, Singels A (2010) Biomass accumulation in 
sugarcane: unravelling the factors underpinning reduced growth phenomena. Journal of 
experimental botany 61: 2877-2887.

van Hulten M, Pelser M, van Loon LC, Pieterse CM, et al (2006) Costs and benefits of priming 
for defense in Arabidopsis. Proceedings of the National Academy of Sciences of the United 
States of America 103: 5602-5607.

Van Zandt PA (2007) Plant defense, growth, and habitat: A comparative assessment of constitutive 
and induced resistance. Ecology 88: 1984-1993.

Vaughn MW, Tanurdzic M, Lippman Z, Jiang H, et al (2007) Epigenetic natural variation in 
Arabidopsis thaliana. Plos Biology 5: 1617-1629.

Velasco P, Soengas P, Vilar M, Cartea ME, et al (2008) Comparison of glucosinolate profiles in 
leaf and seed tissues of different Brassica napus crops. Journal of the American Society for 
Horticultural Science 133: 551-558.

Wentzell AM, Boeye I, Zhang ZY, Kliebenstein DJ (2008) Genetic Networks Controlling 
Structural Outcome of Glucosinolate Activation across Development. PLoS genetics 4

Wentzell AM, Kliebenstein DJ (2008) Genotype, age, tissue, and environment regulate the 
structural outcome of glucosinolate activation. Plant physiology 147: 415-428.

Wentzell AM, Rowe HC, Hansen BG, Ticconi C, et al (2007) Linking metabolic QTLs with 
network and cis-eQTLs controlling biosynthetic pathways. PLoS genetics 3: 1687-1701.

Wittstock U, Gershenzon J (2002) Constitutive plant toxins and their role in defense against 
herbivores and pathogens. Current Opinion in Plant Biology 5: 300-307.

Young MW, Kay SA (2001) Time zones: A comparative genetics of circadian clocks. Nature Reviews 
Genetics 2: 702-715.



Chapter 3

96

3

Zhang JZ, Ai XY, Sun LM, Zhang DL, et al (2011) Transcriptome profile analyzis of flowering 
molecular processes of early flowering trifoliate orange mutant and the wild-type [Poncirus 
trifoliata (L.) Raf.] by massively parallel signature sequencing. BMC genomics 12: 63.

Zhang X, Shiu S, Cal A, Borevitz JO (2008) Global analyzis of genetic, epigenetic and 
transcriptional polymorphisms in Arabidopsis thaliana using whole genome tiling arrays. 
PLoS genetics 4

Zhou L, Jang JC, Jones TL, Sheen J (1998) Glucose and ethylene signal transduction crosstalk 
revealed by an Arabidopsis glucose-insensitive mutant. Proceedings of the National Academy 
of Sciences of the United States of America 95: 10294-10299.

Zobayed SMA, Afreen F, Kozai T (2005) Temperature stress can alter the photosynthetic 
efficiency and secondary metabolite concentrations in St. John's wort. Plant Physiology and 
Biochemistry 43: 977-984.



Multi-dimensional regulation of metabolism

97

3



98



General introduction

C
ha

pt
er

 1

99

GWA mapping and genomic 
prediction reveal the genetic 
architecture of quantitative traits 
in Arabidopsis thaliana

C
ha

pt
er

 2

Authors:

Rik Kooke1,2,3, Frank Becker2, Ralph Bours1, André Kuhn1, Henri van der Geest3, 
Willem Kruijer4, Jaap Buntjer5, Timo Doeswijk5, José Guerra5, Harro J. Bouw-
meester1, Dick Vreugdenhil1,3 and Joost J.B. Keurentjes2,3

1 Laboratory of Plant Physiology, Wageningen University, the Netherlands
2 Laboratory of Genetics, Wageningen University, the Netherlands
3 Centre for Biosystems Genomics, Wageningen Campus, the Netherlands
4 Biometris, Wageningen University, the Netherlands
5 Keygene, Wageningen, the Netherlands

Multi-dimensional regulation 
of metabolic networks shaping 
plant development and 
performance

C
ha

pt
er

 3

Authors:

Rik Kooke1,2,3 and Joost J.B. Keurentjes2,3

1 Laboratory of Plant Physiology, Wageningen University, the Netherlands
2 Laboratory of Genetics, Wageningen University, the Netherlands
3 Centre for Biosystems Genomics, Wageningen Campus, the Netherlands

Journal of Experimental Botany (2012) 63(9), pp 3353-3365
doi: 10.1093/jxb/err373

GWA mapping reveals pleiotropic 
regulation of plant primary 
metabolism and biomass 
formation

C
ha

pt
er

 4

Authors:

Rik Kooke1,2,3, Corina Fusari4, Willem Kruijer5, Armin Schlereth4, Ronan 
Sulpice4,6, Dick Vreugdenhil1,3, Mark Stitt4 and Joost J.B. Keurentjes2,3

1 Laboratory of Plant Physiology, Wageningen University, the Netherlands
2 Laboratory of Genetics, Wageningen University, the Netherlands
3 Centre for Biosystems Genomics, Wageningen Campus, the Netherlands
4 Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 
Germany 
5 Biometris, Wageningen University, the Netherlands
6  National University of Galway, Plant Systems Biology, Galway, Ireland



Chapter 4

100

4

Abstract
Plant primary metabolism is a coordinated, complex and flexible network of processes that 
are regulated at multiple levels to integrate signals from different tissues, developmental 
cues and the environment. The genetic basis of this network can be explored by analysing 
the abundance of its individual components, such as chlorophyll, protein and amino acids, 
organic acids and non-structural carbohydrates and the enzymes that catalyse metabolic 
reactions leading to these products. Here, we report strong connectivity among different 
components together with moderate to high variation and heritability. Genome-wide 
association (GWA) mapping was applied to unravel the genetic architecture of each of the 
traits and to find genes involved in regulating specific and multiple pathways of primary 
metabolism. Among the candidate regulators, a number of structural genes for enzymes 
involved in metabolic conversions were identified. The metabolic analyses were integrated 
with plant biomass formation to identify pleiotropic regulators of enzyme activity, metabolite 
abundance and plant growth. Two genes involved in stress tolerance were identified with 
opposite effects on biomass formation and accumulation of primary metabolites suggesting 
that slow growing plants maintain high levels of non-structural carbohydrates and proteins 
as a resource that can rapidly be used in the case of stress. Another pleiotropic gene, XXT2, 
with opposite effects on primary metabolism and biomass formation was identified and is 
involved in xyloglucan formation and cell expansion, again indicating that slower growth is 
related to a higher or less efficient investment in primary metabolism.
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Introduction
Primary carbon and nitrogen metabolism are directly associated with plant growth as they 
provide the essential building blocks for cell division, maintenance and expansion. Plant 
growth is determined by interconnected transcriptional and biochemical networks that are 
fine-tuned by the environment, the circadian clock and developmental cues. To disentangle 
this complex, polygenic regulation the individual components of central carbon and nitrogen 
metabolism, such as chlorophyll, protein and amino acids, organic acids and sugars, and the 
enzymes involved in this metabolic network need to be studied in concert. In contrast to 
transcriptional programs, protein content and enzyme activity are less susceptible to short 
term environmental changes and are the outcome of gene translation, post-translational 
modifications and protein turnover, and as such might be better predictors for plant growth 
(Gibon et al., 2004; Stitt and Gibon, 2013). Unravelling the regulation of primary metabolism 
will, therefore, further improve the understanding of the regulation of plant growth.

Natural variation within species has been widely explored to decipher the genotype-
phenotype relationship in model and crop species. Arabidopsis thaliana has for decades 
been an outstanding model species for the study of natural variation due to its genetic 
adaptation to several natural habitats worldwide and its extensive variation in morphology, 
metabolism and growth (Alonso-Blanco et al., 2009). Moreover, there is abundant natural 
variation in Arabidopsis for the activities of enzymes and levels of primary metabolites 
(Causse et al., 1995; Mitchell-Olds and Pedersen, 1998; Sergeeva et al., 2004; Cross et 
al., 2006; Meyer et al., 2007; Keurentjes et al., 2008; Sulpice et al., 2009; Sulpice et al., 
2010). These studies provided important insights into the interrelatedness of the primary 
metabolic network and growth. Starch turnover and total protein content are integrated 
components of the metabolic status and are strongly connected with biomass formation 
(Sulpice et al., 2009). A strong negative correlation between starch accumulation at the 
end of the day and biomass formation suggests that fast growing accessions use their 
carbohydrate pools more efficiently for growth (Cross et al., 2006; Sulpice et al., 2009). The 
significant negative correlation between total protein content and biomass formation is 
related to the investment of protein into enzymes, mainly Rubisco, for the photosynthetic 
machinery (Sulpice et al., 2010). Although there is no strong correlation between the levels 
of individual enzymes and biomass, the proportion of total protein invested in enzymes is 
significantly positively correlated with biomass (Sulpice et al., 2010).

Strong relationships have been detected among enzymes and among metabolites and 
between carbon and nitrogen metabolism, but weak connectivity was found between 
enzymes and metabolites (Cross et al., 2006; Sulpice et al., 2009; Sulpice et al., 2010). A 
lack of strong connectivity between metabolite content and enzyme activities suggests that 
coordinated enzyme activities mainly determine the pathway flux, leaving the intermediary 
metabolites levels unaltered and that maximum enzyme activities are not necessary to 
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enhance flux and metabolite levels (Kacser and Acerenza, 1993). It may also reflect the 
complex interaction between enzyme activity, metabolite levels and metabolic flux, in which 
the impact of an increase in enzyme activity on the level of a given metabolite depends on 
pathway topology and the thermodynamic structure of the pathways (Sulpice et al., 2010).

To analyse the genetic regulation of enzyme levels, metabolite abundance and biomass 
in more detail, natural variation can be used to identify QTLs that explain part of the 
variation. Moreover, it may reveal whether the different metabolic components are 
regulated pleiotropically and whether the activity of enzymes is regulated in cis or in 
trans.  A number of studies have analysed recombinant inbred lines (RILs) to establish a 
link between primary metabolism and biomass. Biomass QTLs significantly associate with 
a higher number of metabolic QTLs than expected by chance, providing evidence for the 
close link between metabolism and growth (Lisec et al., 2008). Moreover, enzyme activity 
appears to be regulated at multiple loci, both in cis and in trans, and complex regulatory 
networks can be constructed between genes, enzymes and metabolites (Keurentjes et al., 
2008). The identification of genes implicated in the regulatory networks has, however, been 
limited by a dearth of recombination in experimental populations and the strenuousness of 
fine-mapping. In addition, the variation in bi-parental populations is restricted to only two 
genotypes and, importantly, increased variation due to segregation of parental alleles in 
the RIL population provides little evidence for natural selection in an evolutionary context.

Genome-wide association studies (GWAS) profit from the long evolutionary history of 
Arabidopsis. Through both out-crossing and self-fertilization, this species combines a high 
allelic diversity with low levels of linkage disequilibrium (LD) over the entire genome. High-
density genotyping and sequencing has resulted in a mapping resolution close to the gene, 
or even nucleotide level (Bergelson and Roux, 2010; Korte and Farlow, 2013). A number 
of recent studies employed GWAS to analyse both primary and secondary metabolite 
accumulation (Chan et al., 2010; Chan et al., 2010; Chan et al., 2011; Riedelsheimer et 
al., 2012; Verslues et al., 2014). These studies confirmed the involvement of many genes 
previously identified in reverse genetics or QTL studies but also resulted in the detection of 
many additional gene candidates involved in the regulation of metabolic variation.

In the present study, the levels of chlorophyll, protein, amino acids, organic acids, sugars 
and 17 enzymes of primary metabolism were analysed together with the formation of plant 
biomass in 350 natural accessions of Arabidopsis. The metabolites and enzymes showed 
strong connectivity within and between metabolic pathways, suggesting a highly coordinated 
regulation of primary metabolism that is strongly integrated with plant growth regulation. 
The main objective of this study is to identify novel genes involved in primary metabolism 
that influence plant growth, and to further elucidate the underlying genetic architecture 
of complex traits. GWA analysis on all individual traits confirmed the polygenic regulation 



GWAS metabolism

103

4

of primary metabolism and identified a number of variable structural genes and many 
pleiotropic regulators. The pleiotropic regulation was not confined to individual metabolic 
pathways, but, as suggested by the strong connectivity between pathways, was involved 
in the regulation of enzyme and metabolite levels and biomass. Many pleiotropic genes 
had opposite effects on biomass formation and primary metabolism and were involved in 
resistance to stress or cell expansion.

Results
Natural variation in primary metabolism
A global population of 350 natural accessions of Arabidopsis thaliana was grown under 
optimal conditions to determine the extent of variation in a large number of structural 
components, metabolites and enzymes involved in nitrogen and carbon metabolism (see 
supplemental table 1 for a full list of traits). All traits showed a normal distribution of trait 
values divided over multiple phenotypic classes (Figure 1). The level of variation in the 
population, given by the genetic coefficient of variation (CVG) was rather small (< 20%) for 
total amino acids (AA) and the  structural components chlorophyll A and B (ChlA, ChlB) and 
total protein (Prot), but larger for sugars (AVG = 31.9%), organic acids (AVG = 29.5%) and 
enzyme activities (AVG = 32.9%) (Table 1). This pattern is consistent with previous studies 
that estimated variation in the same traits in natural and experimental populations (Cross 
et al., 2006; Keurentjes et al., 2008; Sulpice et al., 2010; Sulpice et al., 2013). Although CVG 

values are generally larger in the present study, probably because of the larger population 
size, all studies detected low variation for structural components and amino acids and a 
larger variation in sugars and organic acids, and especially enzyme activities.

To give a rough estimate of the variation that can be ascribed to genetic factors and to 
additive genetic factors, the marked-based narrow-sense heritability, h2, was calculated 
(Table 1). The h2 was extremely low for the enzymes glucose-6-phosphate 1-dehydrogenase 
(G6PDH) and glucokinase (GK) which illustrates that most of the detected variation for 
these enzymes is most likely due to biological variation. This is in strong contrast to previous 
studies which reported high heritabilities for these enzymes (Keurentjes et al., 2008; Sulpice 
et al., 2010). For the other enzymes, however, the h2 averaged at 0.24 and compared well 
to previous analyses (Keurentjes et al., 2008; Sulpice et al., 2010). For biomass, structural 
components, sugars and organic acids, h2 values ranged from 0.14 for glucose (Glu) to 0.77 
for malate (Mal) with most traits displaying a h2 higher than 0.4.

For the structural components and amino acids, the CVG was rather small, which suggests 
that the level of these compounds are relatively well conserved and similarly regulated in 
different accessions. The h2 for these traits, however, was moderate to high, indicating that 
the low level of variation that is present is most likely caused by genetic factors. Biomass, 
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organic acids, sugars and most enzymes were found to have moderate to high variation and 
heritability, suggesting that natural genetic variation is a major causal factor for phenotypic 
variation in these traits.

Table 1. Descriptive statistics. 
The population average (AVG), standard deviation (SD), minimum (Min), maximum (Max), genetic 
coefficient of variation [CVG] and broad-sense heritabilities (H2) are shown for all traits. Trait 
abbreviations can be found in supplemental table 1.
Classification Trait Units AVG SD Min Max [CVG] H2 h2

Biomass FW g.plant-1 0.3 0.1 0.1 0.7 42.2 0.57 0.56

Structural 
components

ChlA mg.g-1 FW 1.3 0.1 1.0 1.7 9.3 0.39 0.40
ChlB mg.g-1 FW 0.3 0.0 0.3 0.4 7.2 0.16 0.17
Prot mg.g-1 FW 11.8 1.5 7.7 16.3 12.4 0.34 0.31

AA
NO3 µmol.g-1 FW 123.8 13.7 81.2 161.9 11.0 0.46 0.46
AA µmol.g-1 FW 25.1 4.9 14.8 44.3 19.5 0.51 0.49

Sugars

Fru µmol.g-1 FW 2.9 1.0 1.0 6.8 34.2 0.18 0.22
Glu µmol.g-1 FW 4.3 1.9 1.4 12.3 43.4 0.30 0.31
G6P µmol.g-1 FW 243.6 44.1 131.4 380.4 18.1 0.30 0.30
Suc µmol.g-1 FW 1.9 0.5 0.4 3.5 28.5 0.14 0.14
Starch µmol.g-1 FW 53.0 18.7 11.1 129.5 35.3 0.41 0.40

Organic acids
Fum µmol.g-1 FW 13.6 4.5 2.8 24.6 33.2 0.67 0.67
Mal µmol.g-1 FW 9.3 2.4 4.7 18.0 25.9 0.76 0.77

Sucrose 
breakdown

FK nmol.min-1.g-1 FW 208.1 94.4 21.9 646.6 45.3 0.09 0.08
GK nmol.min-1.g-1 FW 232.4 132.5 5.2 967.2 57.0 0.13 0.05
Ainv nmol.min-1.g-1 FW 679.8 187.4 112.4 1520.1 27.6 0.56 0.56
Ninv nmol.min-1.g-1 FW 169.7 52.9 52.0 482.5 31.2 0.27 0.30

Glycolysis and 
Respiration

G6PDH nmol.min-1.g-1 FW 588.1 297.1 65.3 2802.9 50.5 0.00 0.04
FBP nmol.min-1.g-1 FW 178.5 83.4 2.9 572.5 46.7 0.08 0.10
FUMA nmol.min-1.g-1 FW 3266.9 1337.1 506.1 7324.7 40.9 0.10 0.14

Calvin- 
Benson Cycle

iRUB nmol.min-1.g-1 FW 3955.4 960.5 1122.1 6471.0 24.3 0.13 0.18
mRUB nmol.min-1.g-1 FW 4608.3 925.2 2506.7 7306.0 20.1 0.06 0.09

Sucrose 
synthesis

UGP nmol.min-1.g-1 FW 7128.4 1410.2 2894.2 12356.0 19.8 0.43 0.43
PGM nmol.min-1.g-1 FW 7645.5 1724.8 1526.0 11403.9 22.6 0.11 0.15
cPGI nmol.min-1.g-1 FW 692.1 172.3 162.9 1735.6 24.9 0.25 0.28
tPGI nmol.min-1.g-1 FW 1037.5 229.5 157.7 1612.7 22.1 0.19 0.23

Starch  
synthesis

AGP nmol.min-1.g-1 FW 1354.0 290.2 329.7 2450.9 21.4 0.34 0.36
pPGI nmol.min-1.g-1 FW 346.3 126.2 0.0 754.4 36.4 0.05 0.10

Nitrogen 
metabolism

NRVm nmol.min-1.g-1 FW 423.1 96.1 161.4 744.9 22.7 0.25 0.27
NRVs nmol.min-1.g-1 FW 242.2 60.8 86.9 429.4 25.1 0.33 0.34
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Figure 1. Frequency distribution of trait values for all lines.
The unit for the structural components (ChlA, ChlB, Prot) is mg.g-1 FW. Amino acids (AA), NO3, sugars 
and organic acids are expressed in μmol.g-1 FW. Enzyme activities are expressed in nmol.min-1.g-1 
FW. Abbreviations for all traits are listed in Supplemental table 1.
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Primary metabolism is a highly coordinated network
To evaluate the connectivity between traits a Spearman rank correlation matrix was built. 
First, the relationship between biomass and the primary metabolic traits was investigated 
(Figure 2A). Biomass correlated strongly and negatively with all enzyme activities, which is in 
disagreement with a previous study in which only a few weak correlations between enzymes 
and biomass were detected (Sulpice et al. 2010). This may be partly caused by the far higher 
population size of the present study (350 vs. 129 accessions). The weakest correlation in our 
study was between biomass and fructose-1,6-biphosphate phosphatase (FBP) (rs = -0.18, P 
< 0.05), while the strongest correlation was between biomass and nitrate reductase (NRVs) 
(rs = -0.51, P < 0.0001) (Figure 2A). Especially, enzymes related to nitrogen metabolism, such 
as the nitrate reductase, and sucrose synthesis, such as UDP-glucose pyrophosphorylase 
(UGP), phosphoglucomutase (PGM) and phosphoglucose isomerase (PGI), correlated 
strongly with biomass (Figure 2A). Besides enzyme activities, total leaf protein, total amino 
acids, chlorophyll A, glucose-6-phosphate (G6P), starch, sucrose (Suc) and malate correlated 
negatively with biomass (P < 0.05). Several of these metabolites, and in particular starch, 
also correlated negatively with biomass in a smaller panel of 129 accessions (Sulpice et al., 
2009). Nitrate (NO3) and fumarate (Fum) (P < 0.05) correlated positively with biomass. The 
strong correlations between biomass, metabolites and enzymes provides further evidence 
that primary metabolism is tightly linked to plant growth. The correlations further suggests 
that the fast conversion of most primary metabolites enhances plant development in terms 
of biomass and that optimisation of these primary metabolic pathways may substantially 
enhance plant growth.

All correlations between the activities of different enzymes were positive and most were 
highly significant (P < 0.0001) (Figure 2D). This confirms, in a much larger population, 
the conclusion of Sulpice et al., 2010. Very strong correlations were observed among the 
enzymes involved in sucrose synthesis, the Calvin-Benson cycle, starch synthesis and nitrogen 
metabolism (0.32 < r < 0.85, P < 0.0001) suggesting a highly coordinated enzyme network 
connecting different metabolic pathways. Interestingly, these enzymes also correlated 
strongly with the major end products of the primary metabolic pathways: total protein, total 
amino acids, G6P, starch and sucrose (Figure 2C). The correlations among metabolites were 

Figure 2. Spearman’s rank correlations of trait values.
(A) Correlations (r) and corresponding adjusted P-values using Bonferroni correction between bio-
mass and all analysed traits in primary metabolism. (B) Correlations between structural components, 
amino acids, sugars and organic acids (right top) and corresponding adjusted P-values using Bonfer-
roni corrections (bottom left). (C) Correlations between structural components, amino acids, sugars 
and organic acids (horizontal) and enzyme activities (vertical). (D) Correlations between enzyme 
activities (right top) and corresponding adjusted P-values using Bonferroni corrections (bottom left). 
Trait abbreviations are listed in Supplemental table 1.
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weaker than among enzymes, but nitrate strongly correlated negatively with most other 
metabolites (Figure 2B). Interestingly, nitrate also correlated negatively, and in most cases 
significantly, with enzyme activities (Figure 2C). This suggests either that fast conversion of 
nitrate results in the accumulation of protein, amino acids, sucrose, starch and G6P, or that 
rapid accumulation of protein, amino acids and sugars results in faster assimilation of nitrate. 
Although stronger correlations were detected between enzyme activities and metabolite 
accumulation, the emerging picture of a highly coordinated, integrated metabolic network 
shows very strong resemblance to previously reported results (Sulpice et al., 2010).

Genome-wide association analysis of primary metabolism
To identify the genes involved in primary carbohydrate metabolism that are causal for the 
observed variation, the individual trait values were subjected to genome-wide association 
(GWA) mapping of 215k SNP markers using a mixed model that accounts for population 
structure (Figure 3). All SNPs that were above the –log10(P) = 3 threshold were considered 
as possible candidate SNPs.

In general, associations were much weaker than those observed for gene-for-gene 
interactions in disease resistance or for other monogenic traits (Atwell et al., 2010; Baxter 
et al., 2010), suggesting polygenic regulation of primary metabolism. However, a strong 
association with UDP-glucose pyrophosphorylase activity (UGP) was identified on the top of 
chromosome three, accompanied by numerous weaker associations, indicating quantitative 
genetic regulation at multiple loci (Figure 3). These associations are in strong agreement with 
a previous QTL analysis in a RIL population and another GWA study on primary metabolism 
(Keurentjes et al., 2008; Chan et al., 2010).

The differences in h2 and CV observed for the various traits were reflected in the GWA profiles. 
Traits with higher h2 and CVG values displayed on average a higher number of significant 
associations. Structural components, for example, showed low variation and the lowest 
number of significant associations, while glucose-6-phosphate 1-dehydrogenase matched 
extremely low h2 values with a low number of significant associations (Supplemental table 
2). Across all traits, h2 and CVG were positively correlated with the number of SNPs above 
–log10(P) = 3 and –log10(P) = 4 (Supplemental table 3).

Based on GWA significance, minor allele frequency, linkage disequilibrium (LD) and gene 
function, 46 genes were selected as candidate genes explaining part of the observed 
variation (Table 2).

Identification of structural genes for enzymes and metabolites
In a number of cases, strong evidence suggests that natural variation in structural genes 
contributes to variation in enzyme activity, although in general indirect regulation was 
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observed. Among the selected genes in our study, UGP1 (AT3G03250) is located within the 
LD interval of the strongest association for UDP-glucose pyrophosphorylase activity, while 
ATBETAFRUCT4 (AT1G12240) is located within the LD interval of an association with acid 
invertase (Ainv) activity on chromosome 1. Furthermore, FUM1 (AT2G47510) and FUM2 
(AT5G50950) were selected as candidates explaining variation in fumarase (FUMA) activity 
and fumarate, respectively (Table 2). This is in good agreement with a QTL analysis in an 
experimental population in which a number of structural genes were suggested to underlie 
the detected QTLs (Keurentjes et al., 2008).

The structural gene for UDP-glucose pyrophosphorylase, UGP1 (AT3G03250) was previously 
reported in a QTL analysis of a Ler x Cvi RIL population and simultaneous expression QTL 
analysis indicated that cis-regulatory variation in the promoter regulates the variation 
in UDP-glucose pyrophosphorylase activity (Keurentjes et al., 2008). The most strongly 
associated SNP for UDP-glucose pyrophosphorylase activity in our GWA analysis is located 
in the promoter region, 1 kB upstream of the UGP1 coding sequence (CDS). The recently 
released re-sequence data of Arabidopsis (http://1001genomes.org/) revealed no non-
synonymous polymorphisms (nsSNP) within the exons of the UGP1 gene, further indicating 
that cis-regulatory variation in the UGP1 promoter is likely causal for variation in UDP-
glucose pyrophosphorylase activity.

For acid invertase activity, the most strongly associated SNP on top of chromosome 1 was 1 
kB upstream of the first exon of the structural gene ATBETAFRUCT4 (AT1G12240). Although 
one nsSNP was in LD (r2 = 0.36) with this associated SNP, possibly causing altered protein 
function, gene expression variation in earlier studies (Keurentjes et al., 2008) and the high 
association within the promoter region strongly suggest that cis regulatory variation in 
expression is also causal for the variation in acid invertase activity.

FUM2, which encodes the cytosolic fumarase (Pracharoenwattana et al., 2010) was 
previously selected as a candidate gene explaining differences in  fumarate accumulation 
in an mQTL analysis of a RIL population between Col-0 and C24 (Lisec et al., 2008) and cis-
regulatory expression variation was suggested to be the most likely cause for trait variation 
(Brotman et al., 2011). This is supported by the high amount of polymorphisms in the FUM2 
promoter and the observation that no nsSNPs are in strong LD with the most significant SNP 
for fumarate. In our study, the most significantly associated SNP for fumarase was detected 
11 kB upstream of the FUM1 gene, but was in LD (r2 > 0.4) with two nsSNPs at the second 
and third amino acid of the first exon. Amino acids 2 to 8 in the first exon are predicted 
to form a beta sheet (http://ppopen.rostlab.org/) in secondary protein structure and the 
amino acid polymorphisms might, therefore, change the function of the protein. Although 
expression variation cannot be ruled out a priori, protein structure modification due to non-
synonymous polymorphisms seems more likely causal for the natural variation in fumarase 
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Figure 3. GWA profiles for all traits. 
Manhattan plots for all traits with light and dark grey indicating different chromosomes. X-axis 
displays the chromosomes y-axis displays –log10(P-value),. SNPs with –log10(P-value) > 3 are 
indicated in black and SNPs that are listed in Table 2 (candidate gene list) are depicted in red. Trait 
abbreviations are listed in Supplemental table 1.
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activity. Moreover, the observation that FUM1 was not identified in any expression study 
further indicates regulation at the protein level.

Table 2. Candidate gene list.
Selected candidate genes for one or multiple traits. Abbreviations used: ID, alias name (TAIR); SNP, 
most significantly associated single nucleotide polymorphism (marker); Chr, chromosome number; 
Pos, position (TAIR10); trait, trait for which LOD score is provided; –log10(P-value); FDR, false 
discovery rate; MAF, minor allele frequency.
Trait Gene ID Description SNP Chr Pos Trait LOD FDR MAF
UGP AT3G03250 UGP1 Putative UTP--glucose-1-

phosphate uridylyltrans-
ferase 2

m81737 3 748476 UGP 8.96 0.00 0.33

Ainv AT1G12240 ATBETA-
FRUCT4

Beta-fructofuranosidase m7011 1 4152530 Ainv 6.56 0.01 0.49

AT1G62710 BETA-VPE Vacuolar-processing en-
zyme beta-isozyme

m38695 1 23227304 Ainv 7.50 0.00 0.25

AT1G79550 PGK cytosolic phosphoglycerate 
kinase

m51104 1 29926013 Ainv 4.95 0.12 0.06

AT3G58940 F-box/rni-like superfamily 
protein

m121114 3 21781567 Ainv 4.73 0.14 0.25

AT4G15530 PPDK pyruvate orthophosphate 
dikinase

m142924 4 8873185 Ainv 4.90 0.13 0.31

Ninv AT5G44560 VPS2.2 Vacuolar protein sorting-as-
sociated protein 2-2

m196411 5 17949858 Ninv 4.59 0.24 0.45

FUMA AT2G47510 FUM1 Fumarate hydratase 1 
(mitochondrial)

m80197 2 19499948 FUMA 4.04 0.70 0.25

AGP AT4G18240 SS4 starch synthase 4 m145997 4 10084281 AGP 4.03 0.57 0.4
tPGI AT3G58530 - F-box protein m120898 3 21647418 tPGI 4.00 0.78 0.33

AT3G58560 CCR4.1 Carbon catabolite repressor 
protein 4-like 1

m120905 3 21650806 tPGI 4.18 0.78 0.32

NO3 AT1G61100 - disease resistance protein 
(TIR class)

m36904 1 22511771 NO3 4.93 0.57 0.25

near to 
AT5G67420

LBD37 Encodes a LOB-domain 
protein involved in N me-
tabolism and affecting leaf 
morphogenesis

m213929 5 26920288 NO3 4.45 0.76 0.10

near to 
AT5G67500

VDAC2 Voltage-dependent anion 
channel

m213999 5 26944169 NO3 3.90 0.76 0.10

ChlA AT1G33590 - leucine-rich repeat (LRR) 
family protein

m21733 1 12179085 ChlA 6.34 0.09 0.35

Prot AT5G49630 AAP6 Amino Acid Permease 6 m201708 5 20143984 Prot 3.86 0.84 0.23
AA AT3G60860 DHDPS1 dihydropicolinate synthase 

involved in lysine biosyn-
thesis

m122359 3 22487340 AA 5.02 0.85 0.2

Glu AT1G27340 - F-box only protein 6 m16354 1 9497278 Glu 4.28 0.70 0.11
Starch AT5G12080 MSL10 mechanosensitive channel 

of small conductance-like 
10

m167893 5 3907429 Starch 4.69 0.87 0.10
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Trait Gene ID Description SNP Chr Pos Trait LOD FDR MAF
Fum AT1G68600 - Aluminum activated malate 

transporter family protein
m44349 1 25759849 Fum 4.18 0.91 0.23

AT3G28860 ABCB19 ATP binding cassette B19 m100994 3 10877824 Fum 4.37 0.85 0.15
AT5G50950 FUM2 Fumarate hydratase 2 m202682 5 20719861 Fum 4.10 0.91 0.30

NRVs 
NRVm

AT5G01540 LECR-
KA4.1

Lectin-domain containing 
receptor kinase A4.1

m161250 5 217923 NRVs 5.60 0.22 0.35

AT5G01550 LECR-
KA4.2

Lectin-domain containing 
receptor kinase A4.2

AT5G01560 LECR-
KA4.3

Lectin-domain containing 
receptor kinase A4.3

Ninv 
Ainv

AT1G27720 TAF4B TBP-associated factor 4B m16610 1 9643865 Ninv 5.81 0.16 0.42

cPGI 
tPGI

AT4G11460 CRK30 putative cysteine-rich 
receptor-like protein kinase 
30

m137560 4 6966308 cPGI 5.93 0.14 0.06

iRub 
mRub 
PGM 
cPGI 
tPGI 
NRVm

AT5G37260 CIR1 MYB fam transcription 
factor Circadian 1

m188153 5 14754311 iRub 4.95 0.90 0.27

mRub 
cPGI 
PGM 
tPGI 
NRVs

AT5G64813 LIP1 light insensitive period 1 m211982 5 25912160 PGM 4.84 0.91 0.49

Glu 
Fru

AT5G35360 CAC2 biotin carboxylase subunit m185972 5 13586045 Glu 4.64 0.70 0.35

Fru 
Ninv 
Ainv

AT3G49430 SRp34a Putative Pre-mRNA splicing 
factor SF2

m115042 3 18332175 Ninv 6.27 0.11 0.13

Fru 
Ninv 
cPGI

AT4G23060 IQD22 A negative regulator of GA 
response, plays a role in the 
regulatory network among 
the GA, calcium and auxin 
pathways

m150426 4 12086182 Fru 4.63 0.52 0.19

AGP 
Fum

AT4G25420 GA20OX1 Gibberellin 20 oxidase 1 m152026 4 12995479 AGP 3.97 0.59 0.20

G6P 
AA 
Ninv 
cPGI 
tPGI

AT2G33150 "KAT2 
PKT3"

3-ketoacyl-coa thiolase 3 
(peroxisomal)

m72459 2 14050281 G6P 6.05 0.10 0.13

AA 
FW 
Prot 
Starch 
G6P 
UGP

AT5G50720 HVA22E HVA22-like protein e/relat-
ed to ABA responses

m202544 5 20633709 Prot 5.67 0.43 0.18
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Trait Gene ID Description SNP Chr Pos Trait LOD FDR MAF
FW 
Prot 
mRub 
NRVs 
NRVm 
PGI

AT5G46740 UBP21 ubiquitin-specific protease 
21

m199255 5 18968187 NRVs 4.23 0.43 0.07

FW  
Prot  
AA  
G6P  
Mal  
Fum  
Ainv  
Ninv  
FK  
GK  
cPGI  
tPGI

AT4G14140 DMT2 DNA methyltransferase 2 m141079 4 8150011 Ainv 5.43 0.08 0.06
AT4G14165 - F-box family protein-like 

protein
m141133 4 8175186 Ainv 5.26 0.08 0.08

AT4G14342 SF3B5 splicing factor 3B subunit 5 m141306 4 8254521 Fum 4.26 0.28 0.06
AT4G14368 RCC1 regulator of chromosome 

condensation repeat-con-
taining protein

m141380 4 8274507 Ainv 8.44 0.00 0.08

AT4G14400 ACD6 ankyrin repeat-containing 
protein

m141496 4 8297892 Fum 4.66 0.52 0.12

AT4G14420 - HR-like lesion-inducing 
protein-like protein

m141532 4 8303999 Ainv 5.76 0.06 0.10

AT4G14430 IBR10 indole-3-butyric acid 
response 10

m141541 4 8306682 Fum 4.82 0.59 0.09

AT4G14440 HCD1 3-hydroxyacyl-CoA dehy-
dratase 1

AT4G14530 - hypothetical protein m141623 4 8343754 Ainv 6.36 0.02 0.07
"FW / 
Prot 
AGP /
AA 
cPGI/ 
tPGI 
PGM 
UGP"

AT4G02500 XXT2 xyloglucan 6-xylosyltrans-
ferase (XXT2)

m126422 4 1095217 AGP 5.75 0.16 0.49

Pleiotropic regulation of primary metabolism
Because of the high interconnectivity between the components of the primary metabolic 
network, further analysis aimed at identifying central pleiotropic regulators affecting 
enzyme activity, metabolite content and biomass. Among the list of 46 candidate genes for 
specific components, 24 genes were selected for multiple traits with sometimes opposite 
effects between traits (Table 2, Supplemental table 4). The large majority of these genes, 
18 out of 24, were found for metabolic traits in multiple primary metabolic pathways. 
Sixteen candidate genes in eight LD intervals were selected explaining both variation in 
metabolite accumulation and enzyme activities and four of these eight LD intervals also 
contained SNPs highly associated with variation in biomass, suggesting extensive pleiotropic 
regulation (Supplemental table 4). One of the proposed pleiotropic genes is the abscisic acid 
(ABA) and stress-inducible HVA22E gene (Chen et al., 2002) that exerted opposite effects 
on biomass formation and protein content, G6P, starch and UGP activity (Supplemental 
table 4). Higher expression or functional diversity of HVA22E might induce abiotic stress 
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resistance concomitant with a decrease in biomass. The major pleiotropic QTL at the center 
of chromosome 4 was highly associated (-log10(P) > 3) with biomass, total leaf protein, total 
amino acids, G6P, malate, fumarate and seven enzymes (fructokinase, glucokinase, neutral 
inverstase, acid invertase, UDP-glucose pyrophosphorylase, cytosolic phosphoglucose 
isomerase and nitrate reductase), and moderately associated (-log10(P) > 2) with sucrose, 
phosphoglucomutase and total phosphoglucose isomerase. This QTL is most likely explained 
by the recently described and validated ACCELERATED CELL DEATH 6 (ACD6) locus. Natural 
variation at this locus results in pleiotropic effects on pathogen and herbivore defense 
and vegetative growth and fitness (Todesco et al., 2010). It is conceivable that through its 
large effect on plant growth, the metabolic status of the plant is also altered. Resources for 
primary metabolism and growth might be redirected towards plant defense in accessions 
with different natural variants of this locus. As in our study biomass was previously reported 
to be significantly reduced in accessions with the non Col-0 haplotype (Todesco et al., 2010). 
Indicative of a selective sweep, LD around the strongest associated polymorphism extends 
as far as 192 kB, and numerous nsSNPs were detected within the ACD6 locus and other 
genes within the LD interval (http://signal.salk.edu/atg1001/3.0/gebrowser.php). While 
it cannot be excluded that polymorphisms that are in LD with ACD6 are responsible for 
the widespread changes, the simplest explanation is that the widespread changes are a 
pleiotropic response to variation in ACD6. The large amount of nsSNPs in the ACD6 gene 
suggests that changes in the protein sequence, rather than changes in the promoter, explain 
the differences in trait values between the haplotypes. This is supported by the earlier study 
in which the coding sequence of Est-1 (non Col-0 haplotype) was fused to the Col-0 promoter. 
Subsequent transformation of the acd6-2 mutant with this chimeric construct revealed an 
Est-1-like phenotype (Todesco et al., 2010). While biomass and fumarate content were 
significantly reduced in our study, all other traits displayed higher values in accessions of the 
non Col-0 haplotype (Supplemental table 4). This result complies with the correlation matrix 
across all traits and suggests that plants with low biomass invest more in enzyme activities 
and metabolites. This suggests that primary metabolites are maintained at high levels in 
plant cells as a carbon source that can be metabolized rapidly into secondary metabolites 
in the presence of pathogens (Bolton, 2009). Further studies investigating how secondary 
metabolism is affected in these plants and how infection by pathogens affects both primary 
and secondary metabolism are needed to address questions on the regulation and function 
of ACD6 in plant metabolism, defense and growth.

A xyloglucan xylosyltransferase is involved in the regulation of plant biomass formation
Another major pleiotropic QTL explained observed variation in biomass formation, protein 
content, and ADP-glucose pyrophosphorylase (AGP), UGP and total PGI activity with a 
maximum -log10(P) value of 5.75 for AGP activity (Table 2, Figure 4, Supplemental table 
4). This QTL is located on the top of chromosome 4 in close proximity of the XXT2 locus, 
encoding a xyloglucan xylosyltransferase that is important for xyloglucan biosynthesis (Figure 
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4) (Cavalier et al., 2008). Xyloglucans are embedded between the cellulose microfibrils 
to strengthen the cell wall, but they are also involved in loosening of the cell wall during 
expansion (Park and Cosgrove, 2012). Therefore, xyloglucan xylosyltransferases are thought 
to play a significant role in plant growth. Interestingly, biomass was significantly increased 
in the non Col-0 haplotype accessions while the enzyme activity levels and total protein 
content were significantly reduced (Supplemental table 4). A region of extensive LD (110 Kb; 
r2 > 0.3) surrounding the XXT2 locus contains 28 other genes and two transposable elements 
(Figure 4, Supplemental table 5). Knock-out studies of XXT2 and its paralogue XXT1 have 
previously confirmed their function in xyloglucan formation, and biomass formation was 
significantly reduced in the xxt1/xxt2 double mutant (Cavalier et al., 2008). No nsSNPs could 
be identified in the coding sequence of the XXT2 gene (http://signal.salk.edu/atg1001/3.0/
gebrowser.php) suggesting that cis-regulatory variation in the promoter explains the 
difference between the haplotypes. Indeed, very strong LD (r2 > 0.8) was observed between 
the most significantly associated SNP and three polymorphisms in the 1 kB upstream 

Figure 4. GWA SNPs around XXT2 locus at chr 4.
Enlarged association (-log10(P)) between SNPs at chr 4 (1044010-1153954 bp) and AGP (dark blue), 
FW (green), tPGI (light blue), Protein (red) and UGP (purple). The LD interval on chr 4 is based on 
LD information from resequenced accessions. A schematic representation of the genes in the chr 4 
interval is represented below the x-axis. XXT2 (AT4G025000) is encircled with a blue box, the other 
two genes encircled with a red box indicate the genes on the boundary of the LD interval.
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promoter region, possibly modifying transcription factor binding sites, and consequently 
gene expression. To determine whether natural selection acts on this locus, nucleotide 
diversity and Tajima’s D statistic were assessed on all available resequenced accessions 
in Arabidopsis (http://1001genomes.org/). Nucleotide diversity for this locus is extremely 
low (πT = 0.00835, πns = 0.00004 and πs = 0.024) as is the ratio between non-synonymous 
and synonymous sites (πns/ πs = 0.002), which suggests that this locus is under purifying 

Figure 5. The effect of XXT knockout mutants on primary metabolism. 
The orange boxes indicate amino acids, organic acids and sugars, the light blue boxes indicate the 
structural components, the green box indicates biomass and the purple boxes indicate the enzyme 
activities. The squared boxes with three circles indicate the effects of the single and double mutants 
on the attached trait. If all knockouts exert a similar effect on the trait compared to the WT, the box 
is colored light red (increased values compared to WT) or light blue (decreased values compared 
to WT). The left top circle in each squared box indicates whether the effect of the xxt1 mutant is 
significantly different from WT, the right top circle indicates the significance of the effect of the xxt2 
mutant and the bottom circle indicates the significance of the effect of the xxt1xxt2 mutant. Darker 
red or blue indicates increased significance. Blue is decreased compared to WT, red is increased com-
pared to WT. Trait abbreviations are listed in Supplemental table 1.
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selection. Moreover, Tajima’s D statistic was significantly negative at non-synonymous sites 
(TD = -2.05, P < 0.05) further suggesting purifying selection at the XXT2 locus.

Because the detected QTL explained variation in biomass formation, protein content, and 
the activity of a number of enzymes in this study, the effect of single and double knockout 
mutants of XXT1 and XXT2 was studied on all the previously analysed metabolites, enzymes 
and biomass. A double knockout of XXT1 and XXT2 exerted the largest effect on all traits, 
followed by the single knockout of XXT1 (Figure 5, Supplemental table 6 and 7). The activity 
of enzymes in sucrose synthesis was heavily reduced in all mutants, but most pronounced in 
the double mutant coinciding with a strong reduction in biomass. Most enzymes in sucrose 
breakdown and starch synthesis also displayed significantly lower activities in the double 
mutant and the xxt1 single mutant. Furthermore, levels of total amino acids, maximal 
Rubisco and nitrate reductase activity were reduced, while fructose-1,6-biphosphate 
phosphatase activity, fructose, malate and fumarate content were increased in the mutants. 
Due to the knock-out of both xyloglucan xylosyltransferases, the activity of the majority of 
enzymes was coordinately down-regulated and this suggests lower investment in xyloglucan 
for the cell wall, and consequently reduced growth.

Discussion
Genetic regulation of primary metabolism
Genome-wide associating mapping has rapidly become a standard procedure in genetic 
studies but was so far not applied in a systematic analysis of enzyme activities, structural 
components and important metabolites of primary metabolism in relation to plant growth. 
The study reported here contributes to the substantial body of research that has investigated 
these relationships in natural and experimental populations leading to the identification of a 
number of (possible) regulator genes of central metabolism (Meyer et al., 2007; Keurentjes 
et al., 2008; Lisec et al., 2008; Sulpice et al., 2009; Sulpice et al., 2010; Brotman et al., 2011; 
Sulpice et al., 2013; Sulpice et al., 2014). The present study benefited tremendously from 
the rapid identification of candidate genes due to highly improved resolution in GWAS 
compared with QTL mapping studies (Bergelson and Roux, 2010). Moreover, the recent 
re-sequencing of hundreds of Arabidopsis accessions greatly increases the ability to locate 
candidate causal SNPs. It further enables the identification of pleiotropic regulators as 
different traits associate directly with unique SNPs instead of large QTL regions with possibly 
multiple different regulators. Finally, the associations are based on natural variation within 
a global population, established through mutation, recombination and adaptation providing 
strong evidence for natural selection and biological relevance.

The regulation of enzyme activity and metabolite accumulation appears to be complex 
and our results strongly suggest polygenic regulation of primary metabolism, in agreement 
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with previous studies (Keurentjes et al., 2008; Chan et al., 2010). This includes polygenic 
regulation of enzyme activities, which using the methods of this study, are a proxy for protein 
abundance. For most traits, unique and shared associations could be identified, suggesting 
specific and pleiotropic regulation of enzyme activity, metabolite accumulation and biomass, 
respectively. Compelling evidence indicates that natural variation in the activity of certain 
enzymes is partly regulated by cis-variation in structural genes, in strong agreement with 
previous studies (Keurentjes et al., 2008; Brotman et al., 2011). A strong association with 
UDP-glucose pyrophosphorylase activity was detected at the UGP1 locus. Because no amino 
acid changing polymorphisms could be identified in the coding sequence, this suggests 
transcriptional regulation of UGP1 activity, which is in agreement with previous UDP-glucose 
pyrophosphorylase activity QTL and UGP expression QTL (eQTL) analyses (Keurentjes et al., 
2008). Moreover,  a QTL for starch content was detected at the same position in the Bay-0 x 
Sha RIL population, for which UGP1 was proposed to be the underlying regulator (Calenge 
et al., 2006). Nonetheless, we did not observe a high association with starch accumulation 
at the UGP1 locus and Bay-0 and Sha share the same haplotype for the SNP most strongly 
associated with UDP-glucose pyrophosphorylase activity, suggesting that there must be a 
different regulator of starch content. In addition to UGP1, also UGP2 encodes a structural 
gene of UDP-glucose pyrophosphorylase, but UGP2 transcription is almost undetectable in 
mature leaves and very low in young leaves compared with UGP1 (Meng et al., 2009). In 
addition, in two recent knock-out studies, the ugp1 single mutant caused a much larger 
reduction in UDP-glucose pyrophosphorylase activity than in the ugp2 mutant, 74% and 
15%, respectively, whereas UDP-glucose pyrophosphorylase activity was further reduced 
in the ugp1/ugp2 double mutant (Meng et al., 2009; Park et al., 2010). Moreover, although 
both single mutants did not show abnormal vegetative or reproductive development, the 
ugp1/ugp2 double mutant showed reduced plant growth and male sterility, providing 
strong support for a redundant and important function of the UGP genes in plant growth 
and development (Park et al., 2010). The low contribution of UGP2 in most accessions might 
have prevented the detection of significant associations at this locus. The redundancy in 
function could imply that UGP2 plays a more important role in accessions with low expression 
of UGP1. This was indeed demonstrated in a QTL study in a RIL population in which a very 
strong UGP1 QTL was accompanied by a weaker UGP2 QTL with opposite effect, suggesting 
that UGP2 is up-regulated if UGP1 is lower or not expressed (Keurentjes et al., 2008).

Structural gene variation also associated with variation in enzyme activities of acid invertase 
and fumarase and the metabolite fumarate. Natural variation for acid invertase activity 
associated with the structural gene ATBETAFRUCT4, which was identified earlier in two QTL 
studies on the Ler x Cvi RIL population (Sergeeva et al., 2006; Keurentjes et al., 2008). In 
the first of the latter two studies, mutant analysis of the ATBETAFRUCT4 gene confirmed a 
QTL with pleiotropic effects on vacuolar acid invertase activity and root length (Sergeeva 
et al., 2006). In the second study, the detection of a cis-eQTL suggested that variation in 
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the promoter region altering gene expressions was responsible for the variation in enzyme 
activity (Keurentjes et al., 2008). Interestingly, the structural gene FUM2, encoding the 
biosynthesis enzyme cytosolic fumarase, was associated with variation in the accumulation 
of the metabolite fumarate, but not with variation in activity of fumarase itself. This might 
be because the FUM2 QTL involves subtle changes in substrate specificity or because 
the cytosolic enzyme FUM2 represents only a small part of the total fumarase activity 
in Arabidopsis (Pracharoenwattana et al., 2010). Indeed, a moderate non-significant 
but suggestive association could be detected for fumarase activity at the FUM2 locus, 
coinciding with moderate suggestive associations with total amino acids, biomass, G6P, 
starch, malate and several enzymes (acid invertase, glucose-6-phosphate 1-dehydrogenase, 
UDP-glucose pyrophosphorylase, phosphoglucomutase and phosphoglucose isomerase). 
This is in agreement with a knock-out study of FUM2, in which fumarase activity and 
also amino acids, malate and starch were significantly altered in the fum2 knock-out 
mutant (Pracharoenwattana et al., 2010). QTL analysis in the Col-0 x C24 RIL population 
also identified a QTL for fumarate at the FUM2 locus (Lisec et al., 2008) and mutant and 
expression studies showed that transcriptional variation is most likely causal for the variation 
in fumarate content (Brotman et al., 2011). FUM1 was not indicated previously in studies on 
natural variation as a candidate gene for the regulation of fumarase activity and attempts 
to isolate homozygous FUM1 knock-outs have failed (Pracharoenwattana et al., 2010). Our 
study suggests, however, that natural variation in fumarase activity is partly regulated by cis 
polymorphisms in the coding sequence of FUM1.

Pleiotropic regulation of primary metabolism
After GWA analyzis of enzymes and metabolites, several examples of pleiotropic regulation 
within the same and different metabolic pathways were observed. Interestingly, natural 
variation in a cell wall-modifying enzyme, XXT2 was found to have opposite effects on 
biomass and primary metabolism. Particularly, activities of enzymes involved in sucrose 
and starch synthesis were strongly altered in accessions of different haplotype at this locus. 
Xyloglucan xylosyltransferases (XXTs) are required for the transfer of xylose from UDP-
xylose to xyloglucan oligosaccharides during the biosynthesis of xyloglucan (Faik et al., 
2002). Xyloglucans are important for strengthening and loosening plant cell walls during 
cell expansion (Park and Cosgrove, 2012) and are therefore thought to play a significant 
role in plant growth (Cosgrove, 2005). Previous studies of the XXT gene family, with five 
functional members in Arabidopsis, have shown that xylosyltransferases are important 
for the formation of xyloglucan and that two members of this family, XXT1 and XXT2 have 
redundant functions (Cavalier et al., 2008; Vuttipongchaikij et al., 2012). The xxt1 and xxt2 
single mutants exhibit a slight decrease in xyloglucan content, but the double mutant lacks 
detectable levels of xyloglucan and is significantly impaired in its mechanical properties 
(Cavalier et al., 2008).
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Because of the redundancy between XXT1 and XXT2, we pursued the GWA analysis with a 
knockout study on xxt1, xxt2 and the xxt1/xxt2 double mutant (all in the Col-0 background). 
The xxt2 knockout contained significantly increased levels of fumarate and fructose, and 
reduced activity of PGM.  Although a QTL for PGM activity was detected at the position 
of the XXT2 locus in the GWA study, no QTLs were detected for fructose or fumarate. The 
xxt1 mutant exhibited a phenotype which was more in line with the results from the GWA 
study, displaying reduced activity of many enzymes in sucrose and starch metabolism. The 
xxt1/xxt2 double mutant, however, showed a much more pronounced phenotype with 
significant modifications in activity of most of the enzymes involved in sucrose and starch 
metabolism but also of nitrate reductase and Rubisco. Furthermore, starch and amino acid 
content were significantly reduced, while fructose increased, as was the case for the single 
mutants. Biomass was significantly reduced in the double mutant, confirming observations 
in a previous study (Cavalier et al., 2008).

Given the redundancy of the XXT genes, it is clear from both the GWA and the knockout 
study that there is a strong relationship between the two genes involved in xyloglucan 
formation, plant growth and sucrose and starch metabolism. These findings suggest that 
feedback regulation exists between the genetic regulators of non-structural carbohydrate 
metabolites, such as fructose, sucrose and starch, and structural carbohydrate metabolites 
and cell wall-synthesizing enzymes that are involved in cell wall physical properties and may 
influence cell expansion.

Integration of the primary metabolic pathways and plant growth
Unexpectedly, strong negative correlations between enzyme activities and plant biomass 
were observed. From previous studies on primary enzyme metabolism, it was anticipated 
that higher enzyme activities would better catalyse the metabolic conversions and hence 
result in increased plant growth (Sulpice et al., 2010). Large accessions were previously 
suggested to more rapidly metabolise the intermediate metabolic products of nitrogen 
and carbon metabolism into structural carbohydrates and protein to support growth 
(Poorter et al., 2013). In agreement with this, strong negative correlations between biomass 
and sucrose, starch, G6P, protein and amino acid contents were reported (Sulpice et al., 
2009; Sulpice et al., 2010; Sulpice et al., 2013). The strong negative correlations between 
enzyme activities and biomass in the present study appear at first sight to differ from these 
earlier findings. They might be the result of the analysis of different genetic resources, but 
also increased resolution due to the larger population size. This would suggest that the 
relationship between plant metabolism and growth is highly plastic and context dependent 
(Sulpice et al., 2013). In particular, the negative correlation between biomass and protein 
content is much stronger (rs = -0.63) than in previous studies (rs = -0.31) (Sulpice et al., 2010).

The negative correlations between enzyme activities and biomass formation in the present 
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study might be a result of the very strong negative correlation between biomass and total leaf 
protein. Protein synthesis and turnover are energy-demanding processes that represent a 
major cost during plant growth (Hachiya et al., 2007), and reducing maintenance respiration 
may substantially increase plant biomass (Amthor, 1984). Maintaining low leaf protein 
levels has been suggested to allow plants to use their starch reserves more efficiently for 
growth (Stitt et al., 2010). Both leaf protein and amino acid content correlate strongly with 
most enzyme activities, and a shift of investment from other proteins to enzyme synthesis 
is positively correlated with biomass (Sulpice et al., 2010). When the enzyme activities 
were expressed relative to the protein level, the negative correlations with biomass were 
strongly reduced, lost or even became positive (Supplemental table 8). Most interestingly, 
the negative correlation with Rubisco, representing approximately 30 to 40% of total leaf 
protein (Farquhar et al., 2001), became positive, indicating that investment of a relatively 
larger portion of total leaf protein in Rubisco can enhance growth. This resembles the trend 
seen in earlier studies for photosynthesis proteins (Sulpice et al., 2010). Alternatively, slow 
growing plants might have over-invested resources in enzymes such that it does not increase 
pathway flux, and leads to a decrease in growth (Kacser and Acerenza, 1993) .

Higher enzyme activities might be maintained in smaller plants to sustain higher levels of 
sugars, protein and amino acids in fluctuating or adverse environments suggesting a trade-
off between the rate of protein turnover in changing conditions and plant growth (Bolton, 
2009) (Stitt et al., 2010). In this light, it is interesting to discuss the stress-related genes 
ACD6 and HVA22E, which were both significantly associated to variation in biomass, total 
leaf protein, amino acids, G6P and the activity of enzymes in sucrose metabolism. ACD6 is 
involved in resistance to a broad range of pathogens (Todesco et al., 2010), while HVA22E 
is involved in responses to abiotic stresses, such as cold and salinity (Chen et al., 2002). 
Investment in higher protein and sugar levels due to polymorphisms in these genes might 
lead to enhanced tolerance at the expense of rapid growth. Interestingly, from the accessions 
that have the highest protein levels and lowest biomass in our study, most are originating 
from harsh environments such as Scandinavia and Northern-Russia. This indicates that these 
accessions most likely experience stressful situations in which slow growth and increased 
defense might be preferred. Further studies are needed to test different haplotypes and 
knockout mutants of both genes for plant growth, defense, primary metabolism and fitness 
in different biotic and abiotic environments.

An alternative explanation for the negative correlation between plant biomass and enzyme 
activity might be much simpler, and related to the time of harvest. Larger plants might have 
reduced relative growth rates compared to smaller plants at the developmental stage they 
were harvested and, therefore, they might have down-regulated their central metabolism 
leading to reduced enzyme activities.
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Overall, the results correspond well with previous extensive studies on primary metabolism 
in natural and experimental populations (Meyer et al., 2007; Keurentjes et al., 2008; Lisec 
et al., 2008; Sulpice et al., 2010). Our study confirmed the tight link between primary 
metabolism and plant growth (Meyer et al., 2007; Lisec et al., 2008; Sulpice et al., 2010) 
as both enzyme activities and metabolic content correlated strongly with plant biomass. 
Moreover, coordinated changes were observed in the enzyme activities with strong 
correlations within and between metabolic pathways, suggesting metabolic flux regulation 
through concerted regulation of the primary metabolic pathways instead of regulation 
through rate-limiting steps (Sweetlove et al., 2008; Stitt et al., 2010). This view is supported 
by genetic studies in which individual “rate-limiting” enzymes were found to contribute little 
to metabolic flux (Morandini, 2009), as well as more detailed studies of enzymes involved 
in photosynthesis showing that control is distributed between enzymes (reviewed in Stitt et 
al., 2010).

Material & Methods
Plant growth conditions
Seeds from 350 natural accessions of Arabidopsis thaliana, collected worldwide (Li et al., 
2010; Horton et al., 2012), were sown on filter paper with demi water and stratified at 
4˚C in dark conditions for 5 d. Seeds were then transferred to a culture room (16 h LD, 
24˚C) to induce seed germination for 42 h. Six replicates per accession were transplanted 
to wet Rockwool blocks of 4 x 4 cm in a climate chamber (10 h SD, 125 µmol m-2 s-1, 20°C 
day/18°C night, 70% RH). Three replicates were planted in consecutive order on the left 
table, the other three on the opposite end of the right table. All plants were watered daily 
for 5 min with 1/1000 Hyponex solution (Hyponex, Osaka, Japan). Plants were weighed (FW) 
and harvested in two replicate pools of three plants after 37 d within 2 h time at the end of 
the light period. The pooled samples were used as two replicate samples for metabolic and 
enzymatic assays.

Enzyme and metabolite assays
Chemicals were purchased as described by (Gibon et al., 2004). Total protein was assayed 
using the Bradford method (Bradford, 1976). Starch, Glu, Fru, Suc, and total amino acids 
were determined by enzymatic assays in ethanolic extracts of 20 mg frozen plant material 
as described by Cross et al., 2006 and Mal and Fum as described by Nunes-Nesi et al., 2007. 
Assays were performed in 96-well microplates using a Janus pipetting robot (Perkin-Elmer). 
Absorbances were determined using a Synergy, an ELX-800, or an ELX-808 microplate 
reader (Bio-Tek). For all the assays, two technical replicates were determined per biological 
replicate. Samples were randomized within and between plates and reference material was 
included in each plate as an internal control.

For enzyme measurements, 20 mg of powdered frozen material were extracted by mixing 
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with extraction buffer (Nunes-Nesi et al., 2007). AGP, SPS, fumarase, INV, GK, FK, FBP, G6PDH 
and NR were determined as described by Gibon et al., 2004, Rubisco as described by (Sulpice 
et al., 2007), cytosolic PGI and plastidic PGI as described by Weeden and Gottlieb, 1982, 
PGM was assayed as described by Manjunath et al., 1998. UGP was assayed as described 
Keurentjes et al., 2008. Enzyme activities were expressed on a fresh weight basis (nmol min-
1 g-1 FW).

Descriptive statistics
Histograms of trait values were made using EXCEL. Spearman’s rho and Pearson’s r correlation 
coefficients were determined using SPSS 21 using a two-tailed significance test. 
Coefficient of variation (CVG) was calculated as σG/X*100%.
The variance components for all the individual traits were used to calculate the broad-sense 
heritability, H2, in analysis of variance (ANOVA) according to the formula 

	 H2 = σ2
G/(σ2

G + σ2
E), with σ2

G = (MS(G) – MS(E))/r, σ2
E = MS(E), 	             (1)

where r is the number of replicates and MS(G) and MS(E) are the mean sums of squares for 
genotype and residual error, respectively. Narrow-sense heritability, h2, is defined as 

	 h2 = σ2
A/(σ2

G + σ2
E), 						                  (2)

which takes only the additive genetic effects (σ2
A) in account. Marker-based estimates of 

narrow-sense heritability can be obtained using the mixed models (3) and (4) defined below, 
which contain random genetic effects. The covariances between these effects are modeled 
by a genetic relatedness matrix (GRM) estimated from markers, which is called kinship 
matrix K, with elements:

	

where p = 214051 is the total number of markers. The numbers xi,l denote the minor allele 
count at marker l for genotype i, and fl is the minor allele frequency at marker l.

A commonly used mixed model for quantitative traits is given by

	 yi = μ + Gi + Ei, 	 (i = 1,…,n)	 G ~ N(0, σ2
AK), Ei ~ N(0, σ2

E),	             (3)

where n = 350 is the total number of accessions, yi is the mean phenotypic value of accession 
i, μ is the intercept and G = (G1,…,Gn) is the vector of random effects,  which follows a N(0, 
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σ2
AK) distribution. The random error effects Ei follow independent normal distributions with 

variance σ2
E. 

Model (3) is widely used for marker-based estimation of (narrow-sense) heritability of 
human traits (Yang et al., 2010) which are usually measured on cohorts of thousands of 
individuals. However for plant traits phenotyped on only several hundreds of genotypes it 
has been shown recently that such estimates can be very imprecise, and that accuracy is 
greatly improved if phenotypic data of genetically identical replicates (rather than means) 
are included in the mixed model. We therefore considered the following extension of model 
(3): 

	 yi,j = μ + Gi + Ei,j, 	 (i = 1,…,n, j = 1,….,r)	 G ~ N(0, σ2
AK), Ei,j ~ N(0, σ2

E).      (4)

r = 3 is the number of replicates, yi,j is the phenotypic response of replicate j of genotype i, μ 
is the intercept, G = (G1,…,Gn) is the vector of random genetic effects, and the errors Ei,j have 
independent normal distributions with variance σ2

E. σ
2

E Is the residual variance for a single 
individual. Estimates of σ2

A and σ2
E are obtained with the method of residual maximum 

likelihood (REML), and heritability is then estimated by h2
r = (σ2

A/ σ2
A + σ2

E) where σ2
A and 

σ2
E are based on all replicates. Note that in model (4), σ2

E is the residual variance for a single 
individual, whereas in model (3), it is the residual variance of a genotypic mean. Since our 
interest is in individual plant level heritability and not line-heritability, σ2

E in model (4) is 
indeed the variance parameter of interest (the use of model (3) would require multiplication 
of estimated residual variance by r). Both models (3) and (4) can only account for additive 
genetic effects; hence σ2

E includes also non-additive genetic effects, and the denominator 
σ2

A + σ2
E equals the total phenotypic variance. 

Genome-wide association mapping
GWA mapping was performed on 328 accessions for FW and between 321 and 326 
accessions for metabolites and enzymes, because for some accessions we missed genotype 
data and others were removed before harvest. All accessions were genotyped with 214,051 
SNPs of which 199,589 were used for GWA mapping after removal of SNP with MAF < 0.05.
In mixed-model based GWAS, the fixed marker effect xiβ is added to the model (3) above:

	 ŷi = μ + xiβ + Gi +Ei, 	 G ~ N(0, σ2
AK), Ei ~ N(0, σ2

E). 		              (5)

The term xi is the marker score, β is the marker effect and the genotypic effects G = 
(G1,…,Gn) follow a N(0, σ2

AK) distribution. GWA mapping was performed on the means. 
The covariances between these effects are modeled by a genetic relatedness matrix (GRM) 
estimated from markers, which is called K, kinship matrix.
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Following the methodology of EMMAX (Kang et al., 2010), we first obtained REML estimates 
of the variance components σ2

A and σ2
E in model (3); given these estimates the significance 

of the marker effect β in (5) was tested for each SNP-marker in turn, using generalized 
least squares (GLS). REML estimates of the variance components were obtained with 
the commercial R-package ASREML (Butler et al., 2007) and for the GLS calculations the 
command-line program scan_GLS was used (Kruijer et al.,. in prep.). Estimates of narrow 
sense heritability based on model (4) were obtained with the R-package heritability (Kruijer 
et al.,. in prep.).

Sequence analysis
All sequences from the re-sequenced Arabidopsis accessions were obtained from 
http://1001genomes.org/. For 525 accessions, 2012 nucleotide variation files compared 
to Col-0 (TAIR10) were downloaded. Custom Perl scripts were developed to determine 
positions with an allele frequency >2% (SNPs must be shared by more than 11 accessions). 
Another Perl script parsed these positions per accession and outputs either a 1 or 0 for 
compliance or no compliance with Col-0. The resulting data is stored as data frames (.csv 
file) on disk. In order to calculate the LD, required data is extracted from the .csv files with 
the gnu program ‘cut’ in order to slice out the region of interest. The sliced data frame is 
read into R (R Development Core Team, 2012) and column wise the LD (r² or correlation 
coefficient) can be determined by invoking the R function ‘cor()’  followed by a quadratic 
operation. In order to ‘annotate’ the genome with SNP polymorphisms we applied the tool 
Snpeff (Cingolani et al., 2012). With the output of this tool, which is stored in a mySQL 
database we are able to predict the effect of each mutation. Both the output of this tool and 
the LD scores are made available to the user via a web interface (in house access only). The 
user can calculate the LD in any region on the genome and is performed on the fly. 

Nucleotide diversity analysis
All sequences from the re-sequenced Arabidopsis accessions were obtained from http://
signal.salk.edu/atg1001/3.0/gebrowser.php. Nucleotide diversity was measured with 
Tajima’s π (Tajima, 1983) using DnaSP software version 4.0 (Rozas et al., 2003). ∏ was 
calculated for all sites, synonymous, non-synonymous and silent sites (synonymous plus 
non-coding sites) for each candidate gene. For deviation from neutrality, we tested using 
Tajima’s D statistic (Tajima, 1989) using DnaSP version 4.0 (Rozas et al., 2003).
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Supplemental table 1. Trait abbreviations
Classification Trait Description
Biomass FW Fresh weight 

Structural 
components

ChlA Chlorophyll A
ChlB Chlorophyll B
Prot Protein

Amino acids
NO3 Nitrate
AA Amino acid

Sugars

Fru Fructose
Glu Glucose
G6P Glucose-6-phosphate
Suc Sucrose
Starch Starch

Organic acids
Fum Fumurate
Mal Malate

Sucrose 
breakdown

FK Fructokinase
GK Glucokinase
Ainv Acid invertase
Ninv Neutral invertase

Glycolysis and 
Respiration

G6P-
DH

Glucose-6-phosphate-dehydroge-
nase

FBP cytosolic Fructose biphosphatase
FUMA Fumarase

Calvin-Benson 
Cycle

iRUB initial Rubisco
mRUB maximum Rubisco

Sucrose  
synthesis

UGP UDP glucose pyrophosphorylase
PGM Phosphoglycerate mutase
cPGI cytosolic Phosphoglucose isomerase
tPGI total Phosphoglucose isomerase

Starch  
synthesis

AGP ADP-glucose pyrophosphorylase
pPGI plastid Phosphoglucose isomerase

Nitrogen 
metabolism

NRVm nitrate reductase Velocity maximal
NRVs nitrate reductase Velocity selective
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Supplemental table 2. Descriptive statistics.
Genetic parameters for the population of 350 accessions. The classification in different metabolic 
classes, the trait abbreviations, the genetic coefficient of variation (CVG), marker-based heritability 
(h2), number of SNPs above a certain -log10(P-value) and the maximum -log10(P-value) are given for 
each trait.
    nr of SNPs > -log10(P)
Classification Trait [CVG] h2 >3 >4 >5 >6 >7 >8 MAX 
Biomass FW 42.2 0.56 218 26 5 0 0 0 5.55

Structural 
components

ChlA 9.3 0.40 195 6 1 1 0 0 6.34
ChlB 7.2 0.17 141 6 1 1 0 0 6.39
Prot 12.4 0.31 177 18 2 0 0 0 5.67

AA
NO3 11.0 0.46 198 23 2 0 0 0 5.09
AA 19.5 0.49 225 20 1 0 0 0 5.02

Sugars

Fru 34.2 0.22 259 27 2 1 0 0 6.89
Glu 43.4 0.31 195 20 0 0 0 0 4.92
G6P 18.1 0.30 257 36 7 1 0 0 6.05
Suc 28.5 0.14 176 7 0 0 0 0 4.67
Starch 35.3 0.40 180 10 0 0 0 0 4.78

Organic acids
Fum 33.2 0.67 212 18 4 0 0 0 5.69
Mal 25.9 0.77 249 26 0 0 0 0 4.79

Sucrose 
breakdown

FK 45.3 0.08 263 30 5 0 0 0 5.51
GK 57.0 0.05 232 31 2 0 0 0 5.94
Ainv 27.6 0.56 245 52 17 5 2 1 8.44
Ninv 31.2 0.30 274 53 9 1 0 0 6.27

Glycolysis and 
Respiration

G6PDH 50.5 0.04 164 17 4 0 0 0 5.54
FBP 46.7 0.10 201 18 3 0 0 0 5.48
FUMA 40.9 0.14 218 24 0 0 0 0 4.91

Calvin-Benson 
Cycle

iRUB 24.3 0.18 216 15 1 0 0 0 5.34
mRUB 20.1 0.09 168 10 1 0 0 0 5.07

Sucrose  
synthesis

UGP 19.8 0.43 253 54 18 9 4 4 8.96
PGM 22.6 0.15 198 11 1 0 0 0 5.92
cPGI 24.9 0.28 226 30 8 0 0 0 5.93
tPGI 22.1 0.23 230 24 1 0 0 0 5.83

Starch  
synthesis

AGP 21.4 0.36 234 34 11 0 0 0 5.75
pPGI 36.4 0.10 234 27 1 0 0 0 5.05

Nitrogen 
metabolism

NRVm 22.7 0.27 192 17 0 0 0 0 4.97
NRVs 25.1 0.34 227 32 7 0 0 0 5.64
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Supplemental table 3. Spearman correlation between genetic coefficient of variation, marker-based 
heritability and nr of SNPs above -log10(P-value) > 3 or 4, and their corresponsing P-values.
 nr of SNPs 

above -log10(P)
[CVG] h2 > 3 > 4

[CVG] * -.306 .185 .131
h2 .100 * .245 .245

nr of SNPs 
above -log10(P)

> 3 .328 .192 * .804
> 4 .490 .192 .000 *
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Supplemental table 4. Pleiotropic regulator genes.
For each pleiotropic gene is given the gene identifier (ID from TAIR), the locus, the most significantly 
associated SNP (marker(s)), the chromome number and position of the marker (TAIR10) and the 
-log10(P-value) (LOD) and effect size at the significant marker for all traits. The sign of the effect 
indicates whether the trait in accessions with the Col-0 allele at the specific marker is up-regulated 
(positive sign) or down-regulated (negative sign).

Gene ID XXT2 ACD6 KAT2
Locus AT4G02500 AT4G14400 AT2G33150
marker 126422 126422 141380 141380 141513 141513 72459 72459
Chromsome 4 4 4 4 4 4 2 2
Position 1095217 1095217 8274507 8274507 8301059 8301059 14050281 14050281

Classification Trait -log10(P) Effect -log10(P) Effect -log10(P) Effect -log10(P) Effect
Biomass FW 4.21 -0.03 4.36 0.05 3.40 0.03 2.01 0.03

Structural 
components

ChlA 0.92 0.01 0.14 0.00 0.15 0.00 0.10 0.00
ChlB 0.65 0.00 0.03 0.00 0.01 0.00 0.47 0.00
Prot 3.43 0.30 3.27 -0.52 3.35 -0.34 2.56 -0.37

AA
NO3 1.56 -1.73 0.64 1.72 0.85 1.33 2.16 3.13
AA 2.23 0.79 4.95 -2.17 3.33 -1.10 3.13 -1.40

Sugars

Fru 0.25 0.03 0.63 -0.12 0.57 -0.07 1.74 -0.20
Glu 1.13 0.19 0.41 0.17 0.53 0.13 1.37 -0.32
G6P 1.45 5.45 4.56 -19.08 4.50 -11.98 6.05 -18.41
Suc 1.45 0.07 1.47 -0.12 2.44 -0.10 2.16 -0.12
Starch 1.57 2.44 0.33 -1.40 1.93 -3.07 0.88 -2.42

Organic acids
Fum 0.03 -0.02 5.18 2.05 3.31 1.01 0.04 -0.05
Mal 0.98 0.23 1.57 -0.55 3.20 -0.54 1.79 -0.50

Sucrose 
breakdown

FK 0.32 3.76 3.83 -37.01 1.47 -13.05 1.45 -16.50
GK 0.00 -0.06 1.79 -33.11 4.02 -33.46 0.05 1.66
Ainv 0.00 -0.11 8.44 -113.14 2.33 -34.64 0.83 -23.29
Ninv 0.62 3.72 4.64 -23.14 3.23 -12.01 3.90 -17.51

Glycolysis and 
Respiration

G6PDH 0.91 25.46 0.64 -37.15 1.33 -38.24 0.93 -38.34
FBP 0.78 6.76 0.08 1.91 0.28 3.49 0.00 0.09
FUMA 0.72 102.90 1.00 -226.75 1.02 -146.03 0.35 -87.22

Calvin-Benson 
Cycle

iRUB 2.52 167.51 0.55 -109.12 1.08 -110.30 1.43 -172.98
mRUB 2.03 133.05 0.09 -22.52 1.06 -102.79 1.80 -184.03

Sucrose  
synthesis

UGP 4.15 330.22 2.11 -389.34 3.21 -315.83 2.31 -341.76
PGM 3.27 348.99 1.09 -315.47 2.76 -355.88 2.30 -416.26
cPGI 2.81 32.60 3.67 -65.57 2.79 -35.49 3.08 -49.65
tPGI 3.86 52.09 2.44 -69.47 2.65 -46.19 3.18 -67.60

Starch  
synthesis

AGP 5.75 81.52 0.22 -15.77 0.29 -12.51 0.59 -28.62
pPGI 1.76 18.06 0.11 -3.61 0.74 -11.13 1.18 -20.31

Nitrogen 
metabolism

NRVm 1.23 10.74 1.62 -22.54 3.04 -20.85 1.18 -15.24
NRVs 1.66 8.16 0.92 -9.75 1.57 -8.76 1.08 -9.00
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Supplemental table 4 continues. 
Gene ID HVA22E IQD22 UBP21
Locus AT5G50720 AT4G23060 AT5G46740
marker 202544 202544 150426 150426 150428 150428 199255 199255
Chromsome 5 5 4 4 4 4 5 5
Position 20633709 20633709 12086182 12086182 12087455 12087455 18968187 18968187

Classification Trait -log10(P) Effect -log10(P) Effect -log10(P) Effect -log10(P) Effect
Biomass FW 3.96 0.04 0.51 0.01 2.32 0.03 3.18 -0.05

Structural 
components

ChlA 2.21 -0.03 0.93 -0.01 2.29 -0.03 0.95 0.02
ChlB 0.38 0.00 0.14 0.00 0.69 0.00 0.17 0.00
Prot 5.67 -0.54 0.71 -0.14 2.61 -0.40 3.04 0.55

AA
NO3 0.25 0.60 0.51 1.03 1.36 2.51 0.05 -0.22
AA 4.10 -1.50 0.39 -0.30 2.18 -1.19 0.76 0.75

Sugars

Fru 0.32 -0.05 4.63 -0.30 2.52 -0.26 0.22 -0.06
Glu 0.55 -0.15 2.20 -0.37 2.12 -0.45 0.38 0.17
G6P 3.20 -11.77 0.20 -1.56 1.97 -10.26 0.87 7.54
Suc 1.66 -0.09 0.31 -0.03 1.16 -0.09 1.56 0.14
Starch 3.40 -5.19 0.05 -0.19 1.67 -3.89 0.95 3.37

Organic acids
Fum 1.17 0.65 0.02 -0.02 0.38 -0.33 0.10 -0.13
Mal 2.89 -0.62 0.56 -0.19 1.89 -0.54 0.67 0.34

Sucrose 
breakdown

FK 1.23 -13.06 1.62 -15.32 2.35 -24.06 1.12 19.02
GK 0.95 -15.29 0.13 -3.20 0.60 13.62 0.56 -17.11
Ainv 1.98 -38.40 0.20 6.63 0.93 -26.61 0.13 6.97

Ninv 1.78 -10.13 1.83 -9.49 4.14 -19.10 0.31 4.23

Glycolysis and 
Respiration

G6PDH 0.15 -8.04 0.00 0.24 0.88 -40.08 1.18 61.70
FBP 0.13 2.14 0.17 2.66 0.17 -3.16 0.09 2.27
FUMA 0.30 -69.77 0.29 -64.09 0.39 -99.64 2.23 414.78

Calvin-Benson 
Cycle

iRUB 0.74 -101.38 0.06 11.23 1.43 -185.07 1.90 279.75
mRUB 1.09 -116.35 0.60 75.37 0.23 -45.07 3.66 382.32

Sucrose  
synthesis

UGP 3.11 -374.93 0.05 -13.88 1.68 -297.42 2.56 477.88
PGM 1.83 -328.72 0.10 33.14 0.87 -236.51 3.71 731.08
cPGI 1.72 -32.40 0.62 -14.86 3.77 -58.69 3.25 66.80
tPGI 2.19 -50.03 0.21 -8.44 2.26 -58.37 4.22 104.15

Starch  
synthesis

AGP 2.55 -68.89 1.00 -35.32 2.30 -74.78 0.86 49.34
pPGI 1.42 -21.08 0.22 4.82 0.02 0.51 1.78 34.56

Nitrogen 
metabolism

NRVm 0.83 -11.01 0.05 0.96 1.28 -16.99 3.67 40.22
NRVs 0.94 -7.54 0.16 1.71 1.87 -13.57 4.23 27.25
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Supplemental table 4 continues. 
Gene ID LIP1 CIR1 CAC2 CRK30
Locus AT5G64813 AT5G37260 AT5G35360 AT4G11460
marker 211982 211982 188153 188153 185972 185972 137560 137560
Chromsome 5 5 5 5 5 5 4 4
Position 25912160 25912160 14754311 14754311 13586045 13586045 6966308 6966308

Classification Trait -log10(P) Effect -log10(P) Effect -log10(P) Effect -log10(P) Effect
Biomass FW 1.29 -0.01 1.21 -0.01 0.66 -0.01 2.05 -0.04

Structural 
components

ChlA 0.65 0.01 0.12 0.00 1.15 -0.01 0.02 0.00
ChlB 0.05 0.00 1.02 0.00 0.70 0.00 0.60 0.00
Prot 1.50 0.19 1.77 0.23 0.63 0.11 2.13 0.46

AA
NO3 0.78 -1.10 0.57 -0.97 1.75 1.93 1.54 -3.51
AA 0.78 0.40 0.11 0.09 0.40 0.25 2.15 1.54

Sugars

Fru 1.70 0.14 0.08 -0.01 3.37 -0.21 0.16 0.05
Glu 0.24 0.06 0.19 0.06 4.64 -0.47 0.15 -0.08
G6P 1.70 6.08 1.60 6.43 0.14 -0.95 2.74 16.26
Suc 0.82 0.05 2.72 0.11 0.25 0.02 0.85 0.09
Starch 0.87 1.65 1.05 2.05 0.07 -0.21 0.28 1.41

Organic acids
Fum 0.02 0.02 0.05 0.04 2.31 -0.76 0.72 -0.69
Mal 2.10 0.38 1.78 0.37 0.33 0.11 1.27 0.55

Sucrose 
breakdown

FK 0.80 7.51 0.88 9.07 0.31 3.85 0.21 5.42
GK 0.10 -1.85 0.06 1.42 0.50 7.78 0.04 -1.81
Ainv 1.21 20.74 0.13 3.95 0.02 -0.59 0.87 33.23

Ninv 1.78 7.58 1.02 5.77 0.10 0.89 1.88 15.66

Glycolysis and 
Respiration

G6PDH 1.44 34.43 0.32 13.39 0.08 3.57 2.46 99.87
FBP 0.37 -3.91 1.15 9.87 0.41 -4.37 0.47 -9.47
FUMA 2.30 220.09 0.96 138.47 0.07 -15.49 1.58 348.45

Calvin-Benson 
Cycle

iRUB 1.93 143.60 4.95 272.19 0.20 28.14 0.59 129.33
mRUB 3.69 188.67 4.95 254.10 0.18 -23.77 0.21 52.81

Sucrose  
synthesis

UGP 2.36 238.35 0.87 137.65 0.02 -5.66 1.13 299.60
PGM 4.84 438.11 4.09 438.95 0.24 -59.61 2.00 526.37
cPGI 3.74 38.15 3.23 38.21 0.07 -2.12 5.93 98.30
tPGI 4.09 53.67 3.99 57.79 0.02 -0.83 3.86 103.90

Starch  
synthesis

AGP 2.97 56.46 2.71 58.55 0.21 9.03 1.20 64.43
pPGI 1.70 17.64 1.70 19.19 0.11 2.16 0.13 5.13

Nitrogen 
metabolism

NRVm 2.89 18.28 3.34 21.74 0.03 0.45 1.64 25.94
NRVs 3.21 12.18 1.90 9.75 0.21 1.87 2.07 18.75
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Supplemental table 4 continues. 
Gene ID GA20OX1 LECRKA4.3 SRp34a TAF4B
Locus AT4G25420 AT5G01560 AT3G49430 AT1G27720
marker 152026 152026 161250 161250 115042 115042 16610 16610
Chromsome 4 4 5 5 3 3 1 1
Position 12995479 12995479 217923 217923 18332175 18332175 9643865 9643865

Classification Trait -log10(P) Effect -log10(P) Effect -log10(P) Effect -log10(P) Effect
Biomass FW 1.11 0.02 2.40 -0.02 0.03 0.00 1.04 -0.01

Structural 
components

ChlA 2.45 -0.02 0.01 0.00 1.04 -0.02 1.36 0.01
ChlB 0.46 0.00 0.17 0.00 0.28 0.00 1.10 0.00
Prot 0.46 -0.10 2.12 0.23 0.75 -0.17 1.43 0.17

AA
NO3 0.46 0.90 0.02 0.05 0.34 0.86 0.75 -1.04
AA 1.85 -0.84 1.62 0.65 1.57 -0.92 0.75 0.37

Sugars

Fru 0.40 -0.06 1.31 -0.12 3.62 -0.31 0.72 0.07
Glu 2.07 -0.34 1.21 -0.21 0.36 -0.12 0.46 0.10
G6P 0.51 -3.21 1.60 5.90 1.72 -8.86 2.09 6.59
Suc 0.58 -0.04 0.83 0.05 0.30 -0.03 0.06 0.01
Starch 2.70 -4.05 0.45 -1.03 0.58 -1.78 0.07 0.18

Organic acids
Fum 3.11 -1.05 0.41 -0.23 0.85 0.57 0.03 -0.02
Mal 0.90 -0.26 0.32 0.10 1.35 -0.42 2.65 0.41

Sucrose 
breakdown

FK 0.47 -6.26 0.78 7.64 0.54 -8.32 0.31 3.65
GK 0.15 3.49 0.18 3.38 0.14 -3.84 0.51 7.61
Ainv 0.42 11.69 0.01 -0.44 4.40 -65.65 3.99 40.45

Ninv 0.72 -4.97 1.06 5.49 6.27 -22.61 5.81 14.25

Glycolysis and 
Respiration

G6PDH 0.84 -29.88 0.21 8.50 0.57 -27.32 0.33 12.14
FBP 0.82 -8.46 1.09 8.72 0.46 -6.80 0.09 -1.12
FUMA 0.97 -152.34 1.79 190.76 1.11 -200.81 1.13 134.05

Calvin-Benson 
Cycle

iRUB 1.19 -126.29 0.21 28.55 0.24 -46.07 1.18 100.26
mRUB 1.40 -130.68 0.81 76.51 0.56 -83.38 0.55 56.04

Sucrose  
synthesis

UGP 1.60 -223.49 0.86 125.96 0.49 -120.49 1.47 169.13
PGM 1.38 -248.71 0.86 153.13 0.86 -219.96 0.92 152.48
cPGI 1.84 -29.92 1.12 18.33 2.34 -42.09 1.57 21.47
tPGI 1.76 -38.94 1.04 23.35 1.70 -46.16 1.33 25.93

Starch  
synthesis

AGP 3.97 -79.50 0.61 20.29 1.64 -57.05 0.82 23.69
pPGI 0.44 -8.21 0.17 3.14 0.17 -4.61 0.57 7.96

Nitrogen 
metabolism

NRVm 2.25 -18.77 4.16 22.68 0.56 -8.98 1.45 11.39
NRVs 1.32 -8.43 5.60 16.71 0.14 -1.80 0.76 4.61



Chapter 4

138

4

Supplemental table 5. Genes in LD interval of XXT2.
For each locus is given the gene identifier (ID) and description of the gene (TAIR). XXT2 (At4G02500) 
is colored in grey.
Locus Gene ID Description
AT4G02350 SEC15B exocyst complex component sec15B
AT4G02360  Protein of unknown function, DUF538
AT4G02370  Protein of unknown function, DUF538
AT4G02380 SAG21 senescence-associated gene 21
AT4G02390 PP poly(ADP-ribose) polymerase
AT4G02400  U3 ribonucleoprotein (Utp) family protein
AT4G02410  Concanavalin A-like lectin protein kinase family protein
AT4G02420  Concanavalin A-like lectin protein kinase family protein
AT4G02430 SR34b RNA-binding (RRM/RBD/RNP motifs) family protein
AT4G02440 EID1 F-box family protein
AT4G02450  HSP20-like chaperones superfamily protein
AT4G02460 PMS1 DNA mismatch repair protein, putative
AT4G02470   
AT4G02480  AAA-type ATPase family protein
AT4G02490  transposable element gene
AT4G02500 XXT2 UDP-xylosyltransferase 2
AT4G02510 TOC86 translocon at the outer envelope membrane of chloroplasts 159
AT4G02520 GSTF2 glutathione S-transferase PHI 2
AT4G02530  chloroplast thylakoid lumen protein
AT4G02540  Cysteine/Histidine-rich C1 domain family protein
AT4G02550   
AT4G02560 LD Homeodomain-like superfamily protein
AT4G02570 CUL1 cullin 1
AT4G02580  NADH-ubiquinone oxidoreductase 24 kDa subunit, putative
AT4G02590 UNE12 basic helix-loop-helix (bHLH) DNA-binding superfamily protein
AT4G02600 MLO1 Seven transmembrane MLO family protein
AT4G02610  Aldolase-type TIM barrel family protein
AT4G02620  vacuolar ATPase subunit F family protein
AT4G02630  Protein kinase superfamily protein
AT4G02640 BZO2H1 bZIP transcription factor family protein
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Supplemental table 6. The effect of the xxt1, xxt2 and xxt1/xxt2 mutants on all traits.  
For each trait is given the unit of measurement and the trait value for respectively wild-type Col-0 
(WT), the xxt1, xxt2 and xxt1/xxt2 mutant. Significantly different trait values from WT are encircled 
with a thick box (Table S7). Significance scores (LSD-corrrected, P <0.05) for pair-wise comparisons of 
trait values between WT and xxt1, xxt2 and xxt1/xxt2 mutants.
  Trait value P-value between WT and
Trait Units WT xxt1 xxt2 xxt1xxt2 xxt1 xxt2 xxt1xxt2
FW g.plant-1 0.38 0.41 0.44 0.30 0.82 0.46 0.00
ChlA mg.g-1 FW 0.99 1.04 1.02 0.98 0.31 0.43 0.93
ChlB mg.g-1 FW 1.00 1.00 1.02 0.98 0.76 0.57 0.40
Prot mg.g-1 FW 1.00 1.04 0.95 1.01 0.30 0.12 0.74
NO3- µmol.g-1 FW 1.02 1.05 1.00 0.94 0.61 0.64 0.18
AA µmol.g-1 FW 1.05 1.02 1.05 0.91 0.74 0.91 0.09
Fru µmol.g-1 FW 0.76 1.15 1.18 1.07 0.02 0.01 0.05
Glu µmol.g-1 FW 0.97 1.06 0.92 0.91 0.53 0.73 0.68
G6P µmol.g-1 FW 1.14 0.95 1.00 1.05 0.26 0.39 0.60
Suc µmol.g-1 FW 1.01 1.01 1.05 0.94 0.95 0.63 0.34
Starch µmol.g-1 FW 1.05 1.05 1.00 0.85 0.90 0.49 0.01
Fum µmol.g-1 FW 0.85 1.03 1.05 0.99 0.11 0.08 0.19
Mal µmol.g-1 FW 0.86 1.05 1.06 1.00 0.14 0.13 0.29
FK nmol.min-1.g-1 FW 225 155 210 156 0.01 0.53 0.01
GK nmol.min-1.g-1 FW 85 89 101 75 0.84 0.40 0.60
Ainv nmol.min-1.g-1 FW 643 539 596 564 0.01 0.21 0.04
Ninv nmol.min-1.g-1 FW 153 128 142 131 0.06 0.39 0.10
G6PDH nmol.min-1.g-1 FW 705 756 702 663 0.70 0.98 0.75
FBP nmol.min-1.g-1 FW 95 92 120 112 0.89 0.11 0.26
FUMA nmol.min-1.g-1 FW 4356 3786 4546 4059 0.31 0.73 0.59
iRub nmol.min-1.g-1 FW 11551 11655 12702 10336 0.91 0.22 0.20
mRub nmol.min-1.g-1 FW 14488 13045 14192 11774 0.07 0.69 0.00
UGP nmol.min-1.g-1 FW 8960 7190 8564 7519 0.00 0.18 0.00
PGM nmol.min-1.g-1 FW 10077 9091 9501 8610 0.02 0.14 0.00
SPS nmol.min-1.g-1 FW 328 259 324 263 0.00 0.76 0.00
cPGI nmol.min-1.g-1 FW 1165 1097 1159 1010 0.16 0.90 0.00
tPGI nmol.min-1.g-1 FW 1481 1349 1432 1323 0.03 0.40 0.01
AGP nmol.min-1.g-1 FW 1317 1050 1226 1057 0.22 0.81 0.25
pPGI nmol.min-1.g-1 FW 317 252 274 313 0.22 0.26 0.94
NRVm nmol.min-1.g-1 FW 884 789 842 817 0.16 0.52 0.32
NRVs nmol.min-1.g-1 FW 455 419 428 385 0.35 0.48 0.08
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Supplemental table 7. Spearman correlations (rs) and adjusted P-values with Bonferroni correction 
between biomass formation (FW) and enzymes expressed on a protein basis. Trait abbreviations are 
listed in Supplemental table 1.
 FW
Trait rs P-value
FK -0.18 0.02
GK -0.13 0.32
Ainv -0.02 1.00
Ninv -0.16 0.05
G6PDH -0.15 0.09
FBP 0.01 1.00
FUMA -0.04 1.00
iRub 0.00 1.00
mRub 0.12 0.53
UGP -0.09 1.00
PGM -0.03 1.00
cPGI -0.16 0.07
tPGI -0.17 0.04
AGP -0.02 1.00
pPGI -0.12 0.56
NRVm -0.16 0.05
NRVs -0.21 0.00
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Abstract
Epigenetics is receiving growing attention in the plant science community and is likely to 
contribute to improvements in crop growth and productivity in the coming years. Epigenetic 
modifications are thought to play a particularly important role in fluctuating environments. 
It is hypothesized that epigenetics contributes considerably to plant phenotypic plasticity 
because epigenetic modifications, in contrast to DNA sequence changes, are more likely 
to be reversible. The population of ddm1-2 derived epigenetic recombinant inbred 
lines (epiRILs) in Arabidopsis thaliana is well-suited for studying this hypothesis as DNA 
methylation differences are maximized and DNA sequence variation is minimized in this 
population. Here we report on the extensive variation in plant growth and morphology in 
neutral and saline conditions detected among the epiRILs. Variation in most traits was highly 
heritable and epigenomic regions could be associated with the differences in phenotypes. 
Plant performance, in terms of branching and leaf area, was both reduced and enhanced by 
different QTLs in the ddm1-2 inherited epigenotype. The experimentally induced variation 
was found to affect salinity tolerance and phenotypic plasticity. The variation in plasticity 
associated significantly with certain genomic regions in which the ddm1-2 inherited 
epigenotype caused an increased sensitivity to environmental changes.  Many of the QTLs 
for morphology and plasticity overlapped suggesting major pleiotropic effects. Moreover, 
methylation differences in the promoter region of a salt tolerance gene, HIGH-AFFINITY K+ 
TRANSPORTER 1 (HKT1), associated significantly with leaf area in the epiRILs. These findings 
indicate that epigenetics contributes substantially to natural variation in plant growth and 
morphology, especially under stress conditions.
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Introduction
Epigenetics is thought to be one of the reasons why genome-wide association studies fail 
to explain a substantial part of the heritable variation within species (Johannes et al., 2008; 
Bergelson and Roux, 2010; Korte and Farlow, 2013). DNA methylation, together with other 
chromatin modifications, is most often associated with silencing of transposable elements 
(TEs), and when present in cis-regulatory regions, with reduced gene expression. Although 
DNA methylation and de-methylation may occur spontaneously during development and in 
response to a changing environment, epigenetic patterns can be stably inherited through 
mitosis and meiosis, and could thus play a significant role in evolutionary processes (Rapp 
and Wendel, 2005; Richards, 2006; Baubec et al., 2010; Eichten et al., 2013). When genetic 
resources are exhausted or genetic diversity within species is low, epigenetic variation could 
become an important resource for optimizing plant yield (Hauben et al., 2009; Mirouze and 
Paszkowski, 2011; Springer, 2013). 

Stressful environments can cause both hypomethylation and hypermethylation of DNA 
concurrent with up- or down-regulation of gene expression in different plant species 
(Steward et al., 2002; Hashida et al., 2006; Chinnusamy and Zhu, 2009; Grativol et al., 2012). 
In tobacco, oxidative stress, but not biotic stress, caused demethylation in promoter and 
coding regions of a glycerophosphodiesterase-like protein (GPDL) coinciding with induced 
GPDL expression (Choi and Sano, 2007). Moreover, there is a good correspondence between 
DNA methylation, histone modification and gene expression changes in both Arabidopsis 
and rice in response to salt stress (Bilichak et al., 2012; Karan et al., 2012). Through altered 
gene expression, DNA methylation may thus influence plant growth and development in 
stressful environments.

The genome-wide effects of epigenetic modifications on growth and development under 
stressful conditions have rarely been studied in detail. One of the main reasons is that the 
study of natural epigenetic variation is complicated due to the large contribution of DNA 
sequence variation to phenotypic variation within species. However, recently developed 
genome-wide bisulphite sequencing in natural and experimental populations of Arabidopsis 
and maize may open up new opportunities for studying epigenetic natural variation (Eichten 
et al., 2013; Schmitz et al., 2013b; Schmitz et al., 2013a). In addition, epigenetic recombinant 
inbred lines (epiRILs) provide an effective way to circumvent sequence variation. Two such 
epiRIL populations have been created in Arabidopsis by crossing wild-type Col-0 with 
the epigenetic DNA methylation mutants ddm1-2 or met1 in the same Col-0 background 
(Johannes et al., 2009; Reinders et al., 2009). Loss of DDM1 results in a substantial reduction 
in DNA methylation and an increase in TE transcription and, although rare, transposition of  
TEs (Tsukahara et al., 2009). Loss of MET1 results in almost complete loss of CG and non-CG 
methylation. The epiRIL populations consist of nearly isogenic lines (the ddm1-2 and met1 
mutations have been eliminated by backcrossing and segregation in the F2 progeny) with 
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stretches of DNA being differentially methylated that can be tested in multiple experiments 
and environments.

The ddm1-2 derived epiRIL population has been analyzed for a number of growth-related 
morphological traits in both neutral and stressful conditions (Johannes et al., 2009; Reinders 
et al., 2009; Latzel et al., 2012; Zhang et al., 2013). The observed variation among the lines 
was found to be highly heritable, and recently, specific differentially methylated regions 
(DMRs)  were shown to act as epigenetic quantitative trait loci accounting for most of the 
heritable variation in flowering time and root length (Cortijo et al., 2014). Besides phenotypic 
variation, phenotypic plasticity is an important property that can be induced or repressed 
through DNA methylation, as was recently demonstrated in epiRILs (Bossdorf et al., 2010; 
Mirouze and Paszkowski, 2011; Zhang et al., 2013). Phenotypic plasticity is defined as the 
ability of a genotype to express alternative phenotypes in different environments (Schlichting, 
1986). Phenotypically plastic genotypes are able to display a variety of phenotypes, in both 
morphology and physiology, in response to changes in the environment and as such can 
have improved growth and reproduction (Lacaze et al., 2009). It has been proposed that this 
plasticity is hidden in wild-type plants through DNA methylation, and when unlocked, could 
be valuable for the improvement of crop production in unfavorable conditions (Mirouze and 
Paszkowski, 2011). Indeed, phenotypic plasticity in response to drought and nutrient stress 
is significantly increased in epiRILs and this increase is heritable, indicating that it could be 
subjected to selection (Zhang et al., 2013).

In the present study, a population of 99 ddm1-2 derived epiRILs was grown under favorable 
and moderately saline conditions. The population was analyzed for a range of plant growth 
and morphology-related traits under both conditions. Ample variation between the epiRILs 
for all traits tested was observed and this variation was found to be highly heritable. We 
show here that experimentally-induced hypomethylation of chromosomes can render 
plants more sensitive to environmental variation and more plastic in their responses. DMR-
based QTL mapping revealed many co-locating QTLs controlling growth, morphology and 
plasticity that coincided with previously published epigenetic QTLs for flowering time and 
root length, suggesting pleiotropic regulation via epigenetic mechanisms.

Results
Phenotypic characterization: Morphological traits
To assess the impact of DNA methylation on phenotypic variation in shoot growth and 
morphology, 99 epiRILs and their parents, Col-0 and ddm1-2, were analysed under neutral 
and moderately saline (25mM NaCl) conditions. Under saline conditions, plants were smaller, 
flowered later, produced fewer branches and had shorter internodes and inflorescence 
lengths (Figure 1A). The Col-0 parent was less affected by moderately saline conditions 
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than its ddm1-2 counterpart in almost all traits (Figure 1A, Figure 3), which indicates that 
DNA hypomethylation, as is the case in ddm1-2, leads to higher sensitivity of plants to 
environmental perturbations. This conclusion is further strengthened by the observation 
that ddm1-2 flowered earlier than Col-0 under favorable conditions, but later under saline 
conditions. Furthermore, for almost all traits Col-0 resembled the epiRIL population mean 
more than ddm1-2, which provides evidence for a stable heritable basis in the epiRILs as it 
agrees with the expected segregation from a back-cross scheme used for the population 
design (Johannes et al., 2009). Substantial variation between epiRILs was observed for each 
of the analysed traits although the range of variation was similar under optimal and saline 
conditions (Table 1). Projected leaf area varied by a factor five, whereas more than two 
weeks difference occurred between the earliest and latest flowering epiRIL. A two-fold 
difference in total plant height was observed and some lines were heavily branched, while 
others had almost no lateral branches (Figure 1A).

A Spearman rank correlation matrix was constructed to compare the growth and morphology-
related traits across the two conditions. Leaf area correlated very well between neutral and 
saline conditions (rLA20 = 0.84), implying that fast growing epiRILs under control conditions 
also grew fast under saline conditions (Figure 2). Large plants produced more main stem 

Table 1. Descriptive statistics for the morphological traits measured in the epiRIL population. 
Abbreviations used: AVG ± SEM is population average ± standard error of the population mean; VG 
is among-genotype variance; VE is residual variance; H2 is broad-sense heritability calculated as VG/
(VG + VE); CVG is coefficient of genetic variation calculated as √(VG )/X̅*100% where X̅ is the population 
mean; LA20, leaf area after 20 days; RGR, relative growth rate; FT, flowering time; AIL, average 
internode length; RB, rosette branching; MSB, main stem branching; PH1S, plant height 1st silique; 
TPH, total plant height.
Trait  nr of lines AVG ± SEM [VG] [VE] [H2] [CVG]

LA20
C 96 118.84 (3.20) 981.2 1164.8 0.46 26
S 97 101.13 (2.57) 638.3 1011.7 0.39 25

RGR
C 96 0.21 (0.00) 0.00027 0.00158 0.14 8
S 97 0.22 (0.00) 0.00030 0.00170 0.15 8

FT
C 97 40.67 (0.32) 10.0 9.5 0.51 8
S 93 43.61 (0.37) 12.6 16.5 0.43 8

RB
C 97 9.70 0.52) 26.5 54.7 0.33 53
S 93 1.51 (0.21) 4.2 9.8 0.30 136

MSB
C 97 5.15 (0.12) 1.4 1.0 0.58 23
S 93 5.35 (0.11) 1.2 1.8 0.40 20

AIL
C 97 2.48 (0.06) 0.3 0.4 0.46 22
S 93 1.77 (0.04) 0.1 0.2 0.34 20

PH1S
C 97 12.11 (0.17) 2.9 5.1 0.37 14
S 93 9.13 (0.17) 2.6 5.7 0.31 18

TPH
C 97 35.37 (0.33) 10.5 13.8 0.43 9
S 93 30.19 (0.30) 8.3 23.4 0.26 10
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branches and acquired higher inflorescence heights, which suggests that these plants are 
also superior in terms of reproductive success (Clauss and Aarssen, 1994). Large plants, 
however, showed a much lower relative growth rate than small plants later in development, 
deduced from the highly negative correlation between leaf area  and relative growth 
rate twenty days after germination (rcontrol = -0.46, rsalt = -0.48) (Figure 2). All traits showed 
significant positive correlations between neutral and saline conditions. These correlations, 
ranging from 0.33 for total plant height to 0.74 for main stem branching, were, however, 
much lower than for leaf area, suggesting differential regulation of traits under control and 
saline conditions (Figure 2).

Phenotypic characterisation: Plasticity
Phenotypic plasticity was measured for all epiRILs as the absolute difference in average 
trait values between control and saline conditions. For all traits except relative growth rate, 
ddm1-2 showed higher plasticity levels than Col-0, with values predominantly matching 
the highest and lowest quartile of the population range distribution, respectively (Figure 
1B). These findings suggest that experimentally-induced DNA hypomethylation augments 
phenotypic plasticity. Moreover, some epiRILs showed increased trait values under saline 
conditions whereas others showed decreased trait values further indicating that epiRIL 
variation can alter the response to saline conditions (Figure 3).

The coefficient of variation (CVG) was calculated for each epiRIL in both environments to 
quantify the within-line variation due to residual variation and developmental stability 
(Sangster et al., 2008). For most traits the average CVG was higher under saline than under 
control conditions, indicating reduced stability in the saline environment (Figure 1C). 
CVG values of the Col-0 parent again predominantly matched the lower quartiles of the 
population distribution further supporting the suggestion that DNA methylation buffers 
phenotypic plasticity (Figure 1C).

Figure 1. Boxplots of epiRIL variation and phenotypic plasticity.
(A) Boxplots showing variation within epiRIL population. (B) Boxplots showing distribution of pheno-
typic plasticity for all epiRILs. (C) Boxplots showing distribution of the coefficient of variation (CVG) 
for the within-line variation for all epiRILs. The blue dot indicates the Col-0 parent value, the red dot 
indicates the ddm1-2 parent value, the orange dot indicates the average value of all epiRIL lines and 
the black stars indicate suspected outliers (Tukey). Abbreviations used: LA20, leaf area after 20 days; 
RGR, relative growth rate; FT, flowering time; AIL, average internode length; RB, rosette branching; 
MSB, main stem branching; PH1S, plant height 1st silique; TPH, total plant height; C, control; S, 
saline.
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QTL analysis for morphological traits
To quantify to what extent the phenotypic variation among the epiRILs was heritable, broad-
sense heritability (H2) was estimated. In general, moderate to high heritability values were 
observed, averaging at 0.37 and ranging from 0.14 to 0.58 for relative growth rate and main 
stem branching, respectively (Table 1). The H2 for all traits, with the exception of relative 
growth rate, was higher under control than under saline conditions (across all traits, 0.41 
and 0.33, respectively).

Previously, a genetic map was constructed for the epiRILs using differentially methylated 
regions (DMRs) as physical markers (Colome-Tatche et al., 2012). We employed this map 
to search for quantitative trait loci (QTL) that could account for the heritable variation in 
the morphological traits. For most traits, at least one QTL was detected. In total, 14 and 17 
QTLs were detected under control and saline conditions, respectively (Figure 4, Table 2). The 
number and strength of QTLs varied between different traits and conditions with a maximum 
of five QTLs detected for leaf area under control conditions and main stem branching under 

Figure 2. Spearman’s rho correlations and their respective P-values among morphological traits. 
The upper right panel shows the Spearman correlations, the lower left panel shows the significance 
values. Significant correlations in the upper right panel are in bold and encircled by a thick box. 
Abbreviations used: LA20, leaf area after 20 days; RGR, relative growth rate; FT, flowering time; AIL, 
average internode length; RB, rosette branching; MSB, main stem branching; PH1S, plant height 1st 
silique; TPH, total plant height.
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saline conditions. Many QTLs were detected for multiple traits and under both conditions, 
indicating that these loci had pleiotropic effects independent of the growing conditions.

Twelve different QTL regions associating with one or more morphological traits could be 
assigned. Six of these regions were identified in both environments (QTL 2, 3, 4, 9, 10 and 
14), while three QTLs were uniquely detected under control (QTL 6, 11 and 15) or saline 
(QTL 7, 8 and 12) conditions (Figure 4, Table 2). The similarities in QTL profiles of the neutral 
and saline conditions reflected the correlations between the two conditions. Traits with 
lower correlations showed higher numbers of unique QTLs (Figure 2 and 4). Significant 
LOD scores ranged from 2.6 for relative growth rate under saline conditions to 12.5 for 
average internode length under control conditions, explaining 12% or 46.4% of the variance, 
respectively. Large-effect QTLs, explaining more than 20% of the variance, were detected 
for leaf area, main stem branching and average internode length in neutral and saline 
conditions, representing two pleiotropic loci on chr 1 and 4. Although most QTLs displayed 
positive effects, 9 out of 31 QTLs displayed negative effects, indicating that ddm1-2 inherited 

Figure 3. Reaction norm plots for all morphological traits tested in epiRIL population. 
The blue line denotes Col-0, the red line denotes ddm1-2, the orange lines denote the highest 
negative effect lines and the green lines denote the highest positive effect lines (in some cases least 
negative). Abbreviations used: LA20, leaf area after 20 days; RGR, relative growth rate; FT, flowering 
time; AIL, average internode length; RB, rosette branching; MSB, main stem branching; PH1S, plant 
height 1st silique; TPH, total plant height.
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epigenotypes can both reduce and enhance plant morphological trait values. Positive-effect 
QTLs were detected for plant height, flowering time and main stem branching, while solely 
negative-effect QTLs were detected for rosette branching and average internode length. 
Opposite-effect QTLs were detected for leaf area and relative growth rate, indicating that 
effects are locus dependent rather than trait specific. For a number of pleiotropic QTLs (QTL 
3, 4, 9 and 14) opposite effects were observed for different traits which was supported by 
the negative correlation between these traits (Figure 2, Table 2). The ddm1-2 inherited

Figure 4. Epi-QTL plots for morphological traits tested in epiRIL population under control (black line) 
and saline (red line) conditions. LOD threshold was calculated using 1000 random permutations with 
α 0.05 as the genome-wide type I error level. The highest LOD threshold between the two conditions 
was used as LOD threshold in the figure and for determination of significance. Abbreviations used: 
LA20, leaf area after 20 days; RGR, relative growth rate; FT, flowering time; AIL, average internode 
length; RB, rosette branching; MSB, main stem branching; PH1S, plant height 1st silique; TPH, total 
plant height.
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epigenotype in the QTL 3 region, for instance, was associated with decreased main stem 
branching but with increased rosette branching and internode length. Even though H2 values 
were high, no significant QTLs were detected for total plant height under both controll and 
saline conditions. Similarly, no QTLs were detected for flowering time and relative growth 
rate under control conditions and rosette branching under saline conditions. The QTLs 
for flowering time did however resemble the highly significant QTL profiles from another 
epiRIL study (Cortijo et al., 2014), and might have gone undetected because of the smaller 
population size used here.

Table 2. QTLs detected in the epiRIL population for morphological traits.  
The 1.5 LOD support interval is used. Co-factor indicates position of co-factors. The explained 
variance is calculated according to the following formula: EV (%) = (1-10(-2*LOD/n))*100% where LOD is 
LOD score for the particular trait and n is number of epiRILs (R/QTL FAQ). The effect (%) is calculated 
as effect size (a) divided by mean (x 100%).Abbreviations used: M, morphology; CV, coefficient of 
variation; PP, phenotypic plasticity; C, control; S, saline; LA20, leaf area after 20 days; RGR, relative 
growth rate; FT, flowering time; AIL, average internode length; RB, rosette branching, MSB, main 
stem branching; PH1S, plant height 1st silique; TPH, total plant height.

nr Trait
Morphology (M) or 
Plasticity (PP or CV) Treatment QTL Chr LOD

Support  
interval (cM) Co-factor

Explained 
variance (%)

Effect 
(%)

1 LA20 CV C 1 1 5.5 0-8 MM1 (1;0), 
MM707 (5;3.6)

24.1 -13.8

2 LA20 M C 2 1 7.9 15-28 MM7 (1;16.4) 32.8 13.4
3 LA20 M S 1 6.8 12-28 MM7 (1;16.4) 28.7 12.3
4 PH1S M C  1 2.7 12-28 - 12.9 4.1
5 RB CV S 3 1 2.7 14-59 - 12.5 17.1
6 LA20 CV C 1 2.7 23.2-60 MM1 (1;0), 

MM707 (5;3.6)
12.8 -14.7

7 AIL PP - 1 4.1 37-46 MM5 (1;13.5), 
MM7 (1;16.4), 
MM123 (1;41.1)

18.7 -29.4

8 FT M S 1 2.9 31-51 - 13.4 3.1
9 RB M C 1 4.1 35-45 MM123 (1;41.1) 18.7 -22.7
10 RB PP - 1 4.2 35-44.8 MM123 (1;41.1) 18.9 -22.1
11 MSB M C 1 10.1 38-44.8 MM123 (1;41.1), 

MM661 (4;12.2)
39.6 12.3

12 MSB M S 1 7.6 37-54 MM123 (1;41.1) 31.7 9.8
13 AIL M C  1 12.5 40-44.8 MM123 (1;41.1) 46.4 -13.3
14 LA20 M C 4 1 4.8 50-105 MM7 (1;16.4) 21.3 13.1
15 LA20 M S 1 3.7 50-106 MM7 (1;16.4) 16.8 12.0
16 RGR M S 1 2.6 50-103 - 12.0 -2.4
17 AIL M S 1 3.0 70.1-101 MM551 (4;1.7) 13.8 -7.4
18 TPH CV C 5 2 2.8 0-13.8 - 13.1 -19.2
19 LA20 CV S  2 4.0 3-9.9 MM330 (2;7) 18.1 -13.9
20 LA20 M C 6 2 2.7 13.8-50 MM7 (1;16.4) 12.5 -8.3
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QTL analysis for phenotypic plasticity
Large differences were observed in the CV and phenotypic plasticity (PP) values between 
epiRILs and thus QTL mapping was subsequently performed on these traits. For PP, two 
QTLs were detected, one pleiotropic QTL on chr 1, explaining approximately 19% of the PP 
variation for internode length and number of branches from the rosette, and a second QTL 
on chr 5 explaining approximately 13% of the PP variation in rosette branching (Table 2). 
Both QTLs co-located with the identified QTLs for morphological trait variation, implying 
that the regulation of PP is governed by the same loci (Figure 2, Table 2). Eight QTLs were 
detected explaining the variation observed in CV, of which two coincided with the chr 1 QTL 
for PP. Two QTLs were pleiotropic and one QTL for relative growth rate was also detected 
for morphological trait variation (Table 2). Interestingly, a QTL was found for the CV of total 
plant height, for which no QTLs could be found for morphological variation, most likely 
due to the large within-line variation. The majority of CV and PP QTLs showed negative 
effect signs, illustrating that the ddm1-2 inherted epigenotypes increase plant sensitivity to 
environmental variation.

Table 2. continues.

nr Trait
Morphology (M) or 
Plasticity (PP or CV) Treatment QTL Chr LOD

Support  
interval (cM) Co-factor

Explained 
variance (%)

Effect 
(%)

21 RGR M S 7 3 2.6 3-32 - 12.3 2.7
22 RGR CV C  3 2.8 3-31 - 13.0 -12.7
23 MSB M S 8 3 3.3 48.3-58 MM123 (1;41.1) 15.3 7.0
24 MSB M C 9 4 5.5 3.4-25 MM123 (1;41.1), 

MM661 (4;12.2)
24.0 11.4

25 MSB M S 4 2.8 0-17 MM123 (1;41.1) 13.2 8.6
26 AIL M C 4 2.8 1-21.5 MM123 (1;41.1) 13.2 -10.6
27 AIL M S 4 6.0 1-11 MM551 (4;1.7) 25.9 -9.7
28 RB CV S  4 2.8 0-21.5 - 12.9 18.2
29 LA20 M C 10 4 2.7 18-50 MM7 (1;16.4) 12.7 11.0
30 LA20 M S 4 4.2 33-52 MM7 (1;16.4) 18.8 12.4
31 MSB M S 4 3.5 18-37 MM123 (1;41.1) 16.2 8.2
32 PH1S M S  4 3.2 17-42 - 14.6 7.0
33 PH1S M C 11 4 3.2 43-58 - 14.7 5.5
34 LA20 M S 12 4 2.7 53-80 MM7 (1;16.4) 12.7 8.6
35 LA20 CV C 13 5 4.5 1-16 MM1 (1;0), 

MM707 (5;3.6)
20.0 -11.5

36 LA20 M C 14 5 2.8 25-62 MM7 (1;16.4) 12.9 10.9
37 FT M S 5 2.6 37-56 - 12.2 3.1
38 MSB M C 5 3.1 25-47.4 MM123 (1;41.1), 

MM661 (4;12.2)
14.5 8.8

39 MSB M S 5 2.6 0-45 MM123 (1;41.1) 12.2 7.8
40 AIL M S  5 3.0 16-41 MM551 (4;1.7) 13.9 -6.7
41 RB M C 15 5 3.2 59-65.9 MM123 (1;41.1) 14.7 -30.0
42 RB PP -  5 2.7 58-65.9 MM123 (1;41.1) 12.8 -27.2
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An epigenetic basis for pleiotropic QTLs
The QTL mapping results suggest that the variation for growth, morphology and plasticity is 
to a large extent due to DNA methylation differences in the epiRILs. Although, DNA sequence 
variation because of transposable element transposition cannot be ruled out on the basis 
of our results. However, the major pleiotropic QTLs found in our study coincide with six QTL 
intervals detected in an epigenetic QTL mapping study on flowering time and root length in 
which the QTL intervals for both traits were evaluated for transposable element insertions 
(Cortijo et al., 2014) (Figure 5). The few transposable element insertions that were found in 
the QTL intervals of the latter study were weakly associated, but not causal for the heritable 
variation, suggesting epigenetic regulation of flowering time and root length (Cortijo et al., 
2014). Most importantly, it suggests that the overlapping QTLs found in our study are also 
epigenetically regulated, confirming the pleiotropic regulation by epigenetic mechanisms. 
It further gives strong supportive evidence for the epigenetic regulation of plasticity as six 
out of twenty-one overlapping QTLs were found for plasticity parameters. The remaining 
QTL intervals that did not coincide with the study of Cortijo et al., 2014 might be specific for 
the traits in our study and will have to be examined for transposable element insertions in 
future studies to confirm that these QTLs are regulated epigenetically.

The pleiotropic QTL interval on chr 4 includes the HIGH-AFFINITY K+ TRANSPORTER 1(HKT1) 
gene which is involved in Na+ uptake by the root and Na+ unloading from the xylem sap (Lin 
et al., 2004; Ren et al., 2005; Davenport et al., 2007; Baxter et al., 2010). Recently, DNA 
hypomethylation in the promoter region of HKT1 was shown to induce HKT1 expression 
and increase salt sensitivity (Baek et al., 2011). Therefore, the methylation levels in the 

Figure 5. Overlap between QTLs found in our study and the validated epigenetic QTL for flowering 
time and root length in (Cortijo et al., 2014). Light grey bars indicate the five chromosomes of 
Arabidopsis, and the black box surrounding the chromosomes indicates the QTL intervals in (Cortijo 
et al., 2014). The colored lines indicate the QTL support intervals for the different traits. Different 
colors indicate in which conditions the QTLs were found: black, neutral conditions; red, saline 
conditions; green; coefficient of variation (CV) in neutral conditions; purple, CV in saline conditions; 
blue, phenotypic plasticity (PP). Abbreviations used: LA20, leaf area after 20 days; FT, flowering time; 
AIL, average internode length; RB, rosette branching; MSB, main stem branching; PH1S, plant height 
1st silique; TPH, total plant height.
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promoter region of the HKT1 gene and the HKT1 gene body were compared between the 
epiRILs in our study. Differentially methylated regions (DMRs) were observed at the end of 
the gene body and about 2.5 - 3 kb upstream of the gene (Figure 6A). Moreover, low gene 
expression variation was found between ddm1-2 and Col-0, which was more pronounced 
around the DMR at the 3’ end of the gene (Figure 6B). Interestingly, when the methylation 
profile of the two DMRs were compared with the morphological trait values, the first DMR 
in the promoter associated significantly with leaf area, and stronger in saline conditions 
(Pcontrol < 0.05, Psalt < 0.01) (Figure 6C). These findings suggest that DNA methylation in the 
promoter region of HKT1 regulates HKT1 expression and plant growth, especially under 
saline conditions. To observe whether the epiRIL DMRs are also present in nature, the epiRIL 
DMRs were compared to DMRs found in natural populations (Cortijo et al., 2014). Although 
DMRs were found in natural accessions at the HKT1 locus, they did not overlap with the 
DMRs in our study.

DMR-based QTL analysis of epistasis 
In the previous sections, it was outlined that morphological traits and phenotypic plasticity 
are to a large extent controlled by epigenetic loci. Because quantitative traits can be 
additively or epistatically regulated by different genetic factors (Kliebenstein et al., 2001) 

Figure 6. Methylation and expression variation at the HKT1 locus.
(A) DNA methylation of Col-0 (bars) at 53 methylation probes in and around the HKT1 gene. Three 
kb promoter region is shown in red; gene body is shown in blue; Arbitrary scaling reflects Col-0 
methylation: values between -1 and -0.2 indicate unmethylated regions; values between -0.2 and 0.2 
indicate intermediate methylation; value between 0.2 and 1 indicate methylated regions. Ddm1-2 
was completely unmethylated at all tested probes. (B) HKT1 expression variation between Col-0 and 
ddm1-2 (bars) at 53 probes in and around the HKT1 gene. Three kb promoter region is shown in red; 
gene body is shown in blue. (C) Difference in leaf area (LA) in mm2 in control and saline conditions 
between methylated (Col-0) and hypomethylated (< -0.2) (ddm1-2) epiRILs at the position of the 
DMR 2.6 kb before the HKT1 gene.
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this might also hold for epigenetic regulation. To test for epistatic interactions, pairwise 
comparisons were made among all loci and the interaction-effect (LODi) was estimated 
as the difference between the LOD-score of an additive model (LODa – not including 
interactions) and a full model (LODf) (Table 3) (Broman and Sen, 2009; Manichaikul et al., 
2009). Significant epistatic interactions were found between the loci on chr 4 and chr 5 for 
leaf area under saline conditions and the loci on chr 1 and chr 3 for the phenotypic plasticity 
parameter, CV, for total plant height under control conditions (Table 3). Interestingly, the 
interacting loci on chr 4 and chr 5 for leaf area fall within the QTL-support intervals of the 
QTLs for flowering time and root length reported by (Cortijo et al., 2014), providing strong 
evidence for epigenetic regulation of the epistatic interaction.

Discussion
DNA methylation affects plant growth and productivity
In the present study, we show that ddm1-2 induced DNA hypomethylation can give rise to a 
wide variety of highly heritable phenotypes with the exception of flowering time and total 
plant height for which no QTLs were detected under control conditions, most likely due to 
low levels of variation, which is in accordance with previous studies (Johannes et al., 2009; 
Zhang et al., 2013; Cortijo et al., 2014). Strong epigenetic QTLs were, however detected for 
flowering time in a previous epigenetic QTL study on 123 epiRILs and these QTLs resembled 
the QTL profiles in our study of 99 epiRILs (Figure 5) (Cortijo et al., 2014). When linkage 
tests of the flowering time QTL markers on chr 1,4 and 5 from the previous study (Cortijo 
et al., 2014) were applied to our flowering time data, a highly significant association on chr 
1 (P < 0.01) in neutral conditions was detected. In saline conditions the QTLs on chr1 and 5 
could be confirmed. These results indicate that the lack of genome-wide QTL detection for 
flowering time may simply be the result of reduced statistical power due to a lower number 
of epiRILs tested. For the other traits, high heritabilities were accompanied by strong 

Table 3. Testing for epistatic interactions by pairwise comparisons between loci in a two-dimensional 
two-QTL model (Broman & Sen, 2009). The full model, LODf, in the two-QTL model includes the main 
effects of the two loci and their interaction, the additive model, LODa, only includes the main effects 
of the two loci, and the epistatic model, LODi, tests specifically for interaction effects between the 
two loci (LODi = LODf -  LODa). For full details of the models: see text, Material & Methods. LODs for 
the two-QTL model were found significant above an arbitrary threshold based on Broman and Sen, 
2009: (LODf, LODav1, LODi) = (6.0, 5.0, 4.0).

Phenotype Morphology (M) or 
Plasticity (PP or CV) Treatment

Comparison 
between loci on 
chromosome:

Position of 
loci:

LOD score

1st Chr 2nd Chr Pos1f Pos2f LODf LODa LODi

TPH CV C 1 3 23 101 6.5 2.1 4.3
LA20 M S 4 5 41 38 10.6 5.9 4.7
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epigenetic variation resulting in the detection of multiple QTLs, more or less similar to genetic 
variation, heritability and number of QTLs found in conventional RIL populations (Ungerer 
et al., 2002; Bandaranayake et al., 2004; Keurentjes et al., 2007). For most traits, QTLs had 
positive additive effect signs, i.e. these loci increased trait values in the wild-type Col-0 
background. However, negative effect-QTLs were also detected, e.g. for leaf area, rosette 
branching and average internode length, indicating that ddm1-2 induced hypomethylation 
of genomic DNA can both reduce and enhance plant growth. Although the occurrence of 
trait variation due to transposable element remobilization after demethylation cannot be 
excluded, the strong overlap of most QTLs with the epigenetic QTLs found by Cortijo et al., 
2014 suggests that these morphological traits are regulated by epigenetic mechanisms. This 
study thus significantly contributes to the increasing body of literature that suggests an 
important role for epigenetics in variation of plant growth and morphology.

DNA methylation can alter salinity tolerance
DNA hypomethylation could theoretically both increase and decrease salinity tolerance 
depending on genotype and site of methylation in the genome. In wheat seedlings, for 
example, chemical induction of DNA hypomethylation enhanced biomass and the activity 
of antioxidant enzymes under salt stress conditions in two different cultivars (Zhong et al., 
2010). DNA hypomethylation was higher in one of the cultivars, concomitant with increased 
activity of the antioxidant enzymes. Genetic induction of hypomethylation through the 
ddm1-2 mutation, however, reduced salinity tolerance to some extent in Arabidopsis 
seedlings (Yao et al., 2012). Opposite effects between genetic and chemical induction of 
hypomethylation were also observed for flowering time in Arabidopsis (Yaish et al., 2011). In 
our study, different lines of evidence illustrate that DNA hypomethylation decreased growth 
and reproductive success – in terms of branching and plant height (Clauss and Aarssen, 
1994) - under saline conditions. For most traits, the wild-type Col-0 performed better than 
the population mean of the hypomethylated epiRILs under saline conditions. Furthermore, 
the QTL on chr 2, of which the hypomethylated allele increased leaf area under control 
conditions, was not observed under saline conditions. And, all leaf area QTLs detected 
under saline conditions had positive additive effect signs, reflecting higher trait values for 
Col-0 alleles.

That DNA methylation can enhance growth under saline conditions is further exemplified by 
our study on HKT1, a salt tolerance gene involved in Na+ uptake by the root and Na+ unloading 
from the xylem sap as revealed by QTL, GWAS and mutant studies (Lin et al., 2004; Ren et al., 
2005; Davenport et al., 2007; Baxter et al., 2010). In our studies, a QTL on chr 4, relatively 
close to the HKT1 gene, was found in both conditions but with a stronger effect in the saline 
environment. This could potentially mean that the tolerance towards saline conditions by 
HKT1 is controlled by expression differences due to cis-regulatory epigenetic modifications. 
Methylation and low transcript variation were found at the HKT1 gene (Figure 6 A and B), 
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and methylation differences in the promoter region of HKT1 associated significantly with 
leaf area in the epiRILs, especially under saline conditions (Figure 6C). In another study, DNA 
hypomethylation in the promoter region of HKT1 was shown to induce HKT1 expression and 
increase salt sensitivity (Baek et al., 2011). Consistent with our results, a small putative RNA 
target region about 2.6 kb upstream of the HKT1 gene is heavily methylated in Col-0 (Baek et 
al., 2011). Cytosine methylation in the small RNA region was removed in the met1-3 mutant, 
coinciding with higher HKT1 expression and increased salt sensitivity (Baek et al., 2011). 
These findings correspond with our results and suggest that HKT1 expression is regulated by 
DNA methylation variation in the promoter region affecting plant growth, especially under 
saline conditions. Further studies are, however needed to prove that methylation variation 
in the promoter of HKT1 is causal for the QTL in our studies (Richards, 2006). Comparison 
of DMRs between the epiRILs and 138 natural accessions of Arabidopsis revealed that 
approximately 30% of the epiRIL DMRs are present in nature (Cortijo et al., 2014). Although 
natural DMRs were found around the HKT1 gene, they did not overlap with the epiRIL DMRs 
of our study.

An important observation in our study was the epistatic interaction between the two loci on 
chr 4 and chr 5 for leaf area, detected solely under saline conditions.  Although interactions 
among epigenetic features have not been reported in earlier studies, our results clearly 
indicate that the regulation of complex traits may depend on the methylation status at 
multiple loci. DNA hypomethylation at one locus may for instance lead to the enhanced 
expression of a transcription factor whose functioning depends on the DNA methylation 
status of an unlinked target locus. The effect signs of both QTLs and their interaction are 
positive indicating that methylation at the two interacting loci increased growth under 
saline conditions. 

DNA hypomethylation amplifies phenotypic plasticity
In many cases temporary adaptation to stressful conditions is beneficial for plants in 
fluctuating environments (Rando and Verstrepen, 2007). DNA mutations are irreversible and 
might thus be contra productive in such environments, whereas epigenetic modifications 
could be rapidly induced and reversed. Phenotypic plasticity, or the ability of a species 
to display different phenotypes according to variation in the environment, is, therefore, 
hypothesized to be (partly) controlled via epigenetic means (Schlichting, 1986; Mirouze 
and Paszkowski, 2011). This is supported by the differentially increased phenotypic 
plasticity after chemically induced DNA hypomethylation in several Arabidopsis accessions, 
suggesting that genotypes and epigenotypes may interact to define plasticity (Bossdorf et 
al., 2010). In the present study, phenotypic plasticity was greatly enhanced in the majority 
of epiRILs, implying that variation in DNA methylation profiles contributes substantially 
to plastic responses in changing conditions. We would like to emphasize here that the 
variation in plasticity is most likely due to stable heritable variation, and not due to plastic 
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de novo variation in the epiRILs (Richards et al., 2010). Similar results were obtained in 
drought and nutrient stress experiments, in which phenotypic plasticity was much higher 
in epiRILs than in the Col-0 wild-type and highly heritable (Zhang et al., 2013). In our study, 
large variation was detected in the plasticity response of the epiRILs to moderate salinity 
and three QTLs were mapped related to phenotypic plasticity (PP). Two out of three QTLs 
coincided with the QTL intervals of a previous study (Cortijo et al., 2014) indicating that 
part of the variation can be explained by epigenetic modifications. All PP QTLs coincided 
with QTLs explaining variation in the same morphological traits under control conditions. 
This indicates that the regulatory gene(s) underlying the QTLs are sensitive to variation 
in the environment and that modification of methylation profiles determines to some 
extent plasticity (Lacaze et al., 2009). In rice, a mutation in a gene leading to increased 
DNA methylation on repetitive sequences and decreased histone acetylation resulted in 
high expression variation in different environments, illustrating the regulation of phenotypic 
plasticity through epigenetic processes (Zhang et al., 2012). The regulation of phenotypic 
plasticity is thus most likely controlled through a complex regulatory network of epigenetic 
and genetic factors, depending on environment and development.

Besides environmental plasticity, within-line variation (Sangster et al., 2008) under both 
conditions was surveyed for epigenetic regulation. The level of within-variation among 
epiRILs was significantly associated with certain genomic regions. Most of the trait variation 
QTLs did not overlap with the trait value QTLs, which indicates that different loci explain the 
variation within and between lines. For relative growth rate and total plant height, no QTLs 
were detected under control conditions, but QTLs were detected explaining differences in 
the level of variation within lines. This suggests that the biological variation or developmental 
stability within lines was higher than the epigenetic variation between lines but that part of 
the within-line variation is controlled through epigenetics.

In conclusion, the majority of plasticity and stability QTLs showed negative effect signs 
suggesting that DNA hypomethylation increases environmental sensitivity. In many GWAS 
and QTL analyses, high variation is often observed between replicates of isogenic lines 
which could be due to subtle environmental differences. As outlined in this study the 
differences in within-line variation detected in such genetic resources might be due to 
epigenetic components that control the level of susceptibility of plants to small changes in 
the environment.

Material and methods
Plant growing conditions and trait descriptions
Seeds from 99 epiRILs and their parents, Col-0 and ddm1-2, all in the Arabidopsis thaliana 
Col-0 genetic background were sown on filter paper with demi water and stratified at 4˚C 
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in darkness for 5 d. Subsequently, seeds were transferred to a climate room (16 h light, 
24˚C) to induce seed germination for 42 h.  Seventeen replicates of each epiRIL and parental 
line were completely randomized transplanted to wet Rockwool blocks of 4 x 4 cm under 
both control and saline conditions (different flooding tables in same chamber) in a climate 
chamber (16 h light, 125 µmol m-2 s-1, 70% RH, 20/18˚C day/night cycle). All plants were 
watered every morning for 5 min with 1/1000 Hyponex solution (Hyponex, Osaka, Japan) 
supplemented with (salt) or without (control) 25mM NaCl. Plants were photographed from 
above each hour for the entire growth period (until leaves started to overlap) to analyse 
leaf area after 20 days (LA20) and relative growth rate. Relative growth rate was calculated 
as RGR = ln(LA20)-ln(LA17)/d where LA20 is leaf area after 20 days, LA17 is leaf are after 17 
days and d is the number of days between the two time points. At 28 days after germination, 
the first plants started to flower and flowering time (FT) was recorded for five pre-defined 
replicates out of the seventeen. Two weeks after flowering, main stem branching (MSB), 
rosette branching (RB), plant height at 1st silique (PH1S), total plant height (TPH) and 
average internode length (AIL) were measured for these five replicates.

Descriptive statistics
Spearman’s rho correlation coefficient was determined using SPSS 21 using a two-tailed 
significance test. Boxplots were made using EXCEL 2010 based on the minimum (phenotypic 
value>first quartile-1.5*IQR), first quartile, median, third quartile and maximum (phenotypic 
value<third quartile+1.5*IQR). The interquartile range (IQR) is the difference between the 
upper (third quartile) and lower quartiles (first quartile). Suspected outliers were classified as 
phenotypic values above the minimum and maximum. Phenotypic plasticity was calculated 
as the absolute difference in means between the two conditions. Coefficient of variation 
(CVG) was calculated as √(VG )/X̅*100%; Broad sense heritability (H2) was calculated as VG/
(VG+VE) where VG is genetic variation, VE is environmental variation and X̅ is the population 
average. Reaction norm plots were made using EXCEL 2010 based on the phenotypic values 
from neutral and saline conditions. 

MQM mapping
QTL mapping was performed with multiple QTL mapping (MQM) implemented in the R/
QTL software (Arends et al., 2010; Joosen et al., 2012). Co-factors were assigned to 42 out 
of the 126 markers based on the genetic map position and preliminary composite interval 
mapping (CIM) on the data. Backward elimination was used to remove cofactors that did 
not contribute to the fit of the model. MQM mapping was performed on each trait and 
each treatment separately and the results were compared to standard interval mapping, 
using Haley Knott regression (Haley and Knott, 1992). Thousand random permutations were 
generated for each phenotype to determine the LOD significance threshold with α = 0.05 
as the genome-wide type I error level. For Table 2 and Figure 4, the LOD threshold was 
determined for both neutral and saline conditions and the highest LOD threshold of both 
conditions was used for the significance determination. The explained variance per QTL 
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was calculated as EV (%) = (1-10(-2*LOD/n))*100 where LOD is the LOD score for the particular 
phenotype and n is the number of epiRILs (R/QTL FAQ).

Calculation of methylation scores around HKT1
Probe-level methylation data was obtained from the MeDIP tiling arrays that were available 
for 123 epiRILs and the founder parents. The methylation calls were previously determined 
for each probe on these arrays using a Hidden Markov Model (Colome-Tatche et al., 2012). 
Based on these results, posterior probability for probe i to be unmethylated or methylated 
was calculated by post(Pi = U) and post(Pi = M), respectively. Using this, the methylation 
level of probe I was defines as ML – post(Pi = U)*(-1) + post(Pi = M)*1 (For further details, 
see Cortijo et al., 2014).

Calculation of expression differences between parental lines around HKT1
Whole-genome expression profiling was performed using a custom NimbleGen tiling array, 
as previously described (Pontier et al., 2012; Cortijo et al., 2014). DNA samples from the two 
parental lines were reverse-transcribed, differentially labelled and then co-hybridized on 
the tiling array in a dye-swap design. The resulting data were log transformed and averaged 
over the two experiments. Quantile normalization was applied to the averaged WT and 
ddm1-2 data to bring both data sets to a common scale. Expression differences in the 
HKT1 region were subsequently calculated as log2(ddm1-2)-log2(WT). The log2 expression 
difference of each annotation unit was defined as the probe of the unit with the maximum 
log2 expression difference. In case of gene promoters the unit was given the maximum log2 
expression difference of the probes of the corresponding gene body (Cortijo et al., 2014).

Two-dimensional two-QTL genome scans
Two-QTL genome scans were performed using the scantwo function in the R/QTL software 
(Broman and Sen, 2009; Manichaikul et al., 2009; Arends et al., 2010). The output gives the 
results for five different QTL models: LODf, LODa, LODfv1, LODav1 and LODi. The QTL positions 
used for the models can differ between the interaction models (LODf, LODfv1 and LODi) and 
the additive models (LODa, LODav1). In the full model, LODf, main effects and interaction 
effects are included, whereas in LODa only the main effects are given. The interaction 
model, LODi, is the difference between LODf and LODa (LODi = LODf – LODa) testing for the 
significance of epistatic interactions. LODfv1 compares the full model to the maximum single 
QTL model (LODfv1 = LODf – LODQTLmax in which LODQTLmax is the highest LOD of the two QTL 
(loci)) including interactions between the QTLs, whereas LODav1 compares the additive 
model to the largest single-QTL model (LODav1 = LODa – LODQTLmax) excluding interactions. 
LODs are found significant above an arbitrary threshold based on (Broman and Sen, 2009): 
(LODf, LODfv1, LODa, LODav1, LODi) = (6.0, 5.0, 5.0, 2.5, 4.0).
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Abstract
The high diversity and flexibility of plant secondary metabolism allows plants to live in a 
constantly changing environment. Although the link between environment and epigenetic 
regulation of gene expression is well studied, only a few studies deal with the relationship 
between epigenetics and plant metabolism. In the present study, a subset of the Arabidopsis 
epiRIL population, consisting of differentially methylated lines derived from a cross between 
the hypomethylated ddm1-2 mutant and Col-0 was analyzed for secondary metabolites in 
both leaves and flowers using an untargeted LC-MS-based metabolomics approach. There 
was abundant metabolite variation in both leaves and flowers across the lines, showing that 
epigenetics can add an extra dimension to the regulation of metabolism. Many metabolites 
showed strong correlations with each other and several QTLs were found for a small subset of 
the metabolites. The majority of these epigenetically regulated metabolites were identified 
as glucosinolates and flavonoids, and several candidate genes involved in their biosynthesis 
and metabolism were assigned. A number of morphological QTLs that were measured in 
the same population overlapped with metabolic QTLs, and a significant correlation existed 
between some morphological traits and specific metabolites. Furthermore, different sets 
of metabolites, including metabolites for which QTLs were found, could accurately predict 
morphological traits. These results suggest that the loci underlying the QTLs are involved in 
the regulation of both morphology and secondary metabolism.
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Introduction
Plants possess a huge metabolic diversity to enhance survival and reproduction. Metabolites 
are essential for plant growth and development, for responses to stress and for signalling 
between organs. Moreover, plants deploy their metabolome to interact with all kinds of 
organisms for mineral exchange, to attract and repel insects and to compete for resources 
below -and aboveground with other plants (Allwood et al., 2008; Kegge and Pierik, 
2010). This wide diversity of metabolites can be further explored due to recent and on-
going innovations in plant metabolomics and can yield interesting insights for metabolic 
engineering, pharmaceutical research and plant breeding (De Vos et al., 2007; van der Hooft 
et al., 2013).

Plant metabolism is tightly fine-tuned towards changes in the environment, in order to 
support plant growth, defense, morphology and reproduction. The metabolome is the 
final outcome of cellular regulatory processes, and as such it incorporates all molecular, 
genetic, protein and feedback regulation that is involved in plant development (Kooke 
and Keurentjes, 2012). The metabolome is thus closest to the phenotype and can be 
used as a predictor or biomarker for plant growth, stress and development. Furthermore, 
unraveling the regulation of metabolic pathways might reveal regulators of plant growth 
and morphology. Most studies have focused on the link between primary metabolism and 
plant morphology as primary metabolites form most of the building blocks for plant growth 
(Schauer et al., 2006; Meyer et al., 2007; Sulpice et al., 2010; Sulpice et al., 2013). Plant 
secondary metabolites, on the other hand, are thought to be more diverse, more tissue -and 
development-specific and mostly involved with responses to changes in the biotic or abiotic 
environment (Keurentjes et al., 2006). Therefore, the metabolic profile needs to be highly 
plastic. Plants that invest more in secondary metabolism are thought to be better adapted 
to environmental changes, but as a consequence can invest less in growth and morphology 
(Herms and Mattson, 1992). For these reasons, plant secondary metabolism might have a 
comparable impact on growth and morphology-related traits as primary metabolism.

Epigenetic inheritance is the study of heritable changes in gene expression or cellular 
phenotype that are not caused by changes in the underlying DNA sequence, but are induced 
by variation in chromatin components including DNA methylation, histone modifications 
and small RNAs (Jablonka and Raz, 2009). The epigenetic chromatin marks are most often 
associated with the silencing of transposable elements (TEs) and repeat elements. However, 
when present in cis-regulatory regions, epigenetic chromatin marks could also affect gene 
expression. Loss of methylation is usually reset each generation by small RNAs to protect 
the genome against deleterious TE activity (Teixeira et al., 2009), but when the maintenance 
of silencing becomes independent of small RNAs, hypomethylation could lead to stable epi-
alleles (Bond and Baulcombe, 2014). And such epi-alleles can be successfully passed on to 
future generations, and can thus be of evolutionary significance (Rapp and Wendel, 2005). 
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So far, research into epigenetic regulation of plant metabolism is limited. In the ice plant, 
Mesembryanthemum crystallinum, hypermethylation was observed after salt stress, which 
caused a shift from C3-photosynthesis to CAM metabolism (Dyachenko et al., 2006). 
Furthermore, carotenoid biosynthesis and lutein content in Arabidopsis were found to be 
under strict control of SDG8, a chromatin modifying methyltransferase enzyme (Cazzonelli 
et al., 2009). Other studies reported convincing evidence for epigenetic roles in proline, 
folate and myo-inositol biosynthesis (Zhang et al., 2012; Latrasse et al., 2013; Zhang et al., 
2013). In view of the strong interaction of both epigenetics and secondary metabolism with 
the environment, a strong link between epigenetics and secondary metabolism may be 
expected. Although not yet established in plants, such a link between secondary metabolism 
and epigenetics has been reported in other organisms. In Aspergillus nidulans, mutants of 
histone de-acetylases showed increased gene expression and elevated levels of secondary 
metabolites (Shwab et al., 2007). Moreover, a strong connection was found between 
secondary metabolism and light-regulated development, both regulated via epigenetic 
mechanisms in the same organism (Bayram et al., 2008).

Recently, an epigenetic Recombinant Inbred Line (epiRIL) population of Arabidopsis 
thaliana was created through crossing of  wild-type Col-0 with ddm1-2, a mutant impaired 
in the methylation of transposable elements and repeat elements (Johannes et al., 2009). 
Subsequent back-crossing to Col-0 and repeated self-fertilization created a population of 
genetically identical lines with differentially methylated chromosomes in the isogenic Col-0 
background. This population can be studied in multiple experiments and environments, and 
could therefore be suitable for studying the epigenetic regulation of secondary metabolism. 

In the present study, 96 epiRILs and their parents, wild-type Col-0 and ddm1-2, were 
compared for their secondary metabolite profiles using untargeted LC-QTOF-MS of both leaf 
and flower tissues. The variation in the relative abundance of all metabolites detected was 
subsequently associated, through QTL analyses, to epigenetic variation in DNA-methylation, 
and QTLs could be assigned to different chromosomal regions. The metabolic data were 
also compared to morphological data on growth, flowering, plant height and branching. 
Some of the metabolic QTLs co-located with the morphological QTLs, and different sets of 
metabolites could be used to predict the different morphological phenotypes.

Results
LC-MS analysis of leaf and flower tissue
To evaluate the effect of epigenetic variation on plant secondary metabolism, aqueous-
methanol extracts of rosette leaves and flower heads from 96 epiRILs and the parents of 
the population, Col-0 and ddm1-2, were analyzed by an essentially untargeted LC-QTOF 
MS based metabolomics approach in negative electrospray ionization mode. This method 
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is particularly suited for the analysis of semi-polar metabolites including glucosinolates, 
hydroxycinnamates, flavonoids and various other phytochemicals (De Vos et al., 2007; van 
der Hooft et al., 2012). In both tissues, qualitative and quantitative variation in metabolite 
accumulation could be observed among the epiRILs. In the leaves, 8955 reproducible mass 
signals corresponding to 216 reconstructed metabolites (mass clusters) were retrieved, 
using a Metalign- and MSClust-based untargeted data processing workflow (Tikunov et 
al., 2012). The average coefficient of variation of the leaf metabolites was 52%, ranging 
from 2 to 206% (Figure 1). Comparison of leaf metabolites between the parents showed 
that nine metabolites were only detected in Col-0, while sixteen were uniquely detected in 
ddm1-2. In the flowers, 6738 mass signals were extracted corresponding to 179 metabolites 
with an average coefficient of variation of 29% ranging from 2% to 191% (Figure 1). Fifteen 
metabolites were only detected in Col-0 flowers, while nine metabolites were only detected 
in ddm1-2 flowers. The qualitative differences between the parental lines were in most 
cases also observed in the segregating epiRILs, both in leaves and in flowers.

Strong correlations between metabolites were detected in both tissues but much weaker 
correlations occurred between metabolites from the different tissues. Although the total 
number of correlated metabolites was quite similar between leaves and flowers, the 
proportion of negative correlations was much higher in leaves than in flowers (43% over 7%, 
respectively) (Figure 2), suggesting a stronger competition for resources in leaves than in 
flowers, possibly because of the dual role of leaves as both sink and source tissue. Flowers 
show a much more coordinated regulation of metabolite accumulation which might be 

Figure 1. Frequency distribution of coefficient of variation (%) for all 216 leaf (light grey) and 179 
flower (dark grey) metabolites detected in the Col-0 x ddm1-2 epiRIL population using untargeted 
LC-QTOF-MS-based metabolomics.
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caused by the tight developmental control and specific function of this tissue. Although the 
metabolic analyses for leaf and flower tissue were not performed on the same plants, there 
were some significant correlations between leaf and flower metabolites (9%, r > 0.2, P < 0.05) 
with the majority of them being negative (79%, r < -0.2, P < 0.05) (Figure 2). This illustrates 
the metabolic separation in tissue types and their functionally different roles, demanding 
distinct phytochemical profiles. The wide range of variation in metabolites between the wild 
type and demethylated parent of the population as well as between population individuals 
suggests that the methylation status is important for tissue-specific metabolic control.

QTL analysis for leaf and flower metabolites
To get a better understanding of the regulation of plant metabolism within the epiRIL 

Figure 2. Correlation matrix of detected metabolites in epiRIL population. Pearson correlation be-
tween metabolites is indicated by color intensity from -1 (blue) to 1 (red).
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population, QTL analysis was performed on all metabolites using a genetic map based on 
differentially methylated regions (DMRs) as physical markers within the epiRIL population 
(Colome-Tatche et al., 2012). In total, 36 QTLs were identified of which ten were detected in 
the leaves and twenty-six in the flowers (Figure 3, Table 1). Many of the QTLs overlapped and 
thirteen different chromosomal regions could be assigned divided over the five chromosomes 
(Table 1). Four of these regions were shared among leaf and flower metabolites, while two 
were specific for the leaf metabolites and seven for the flower metabolites. A subset of 
these metabolites for which QTLs were detected could be annotated, based on matching 
accurate masses and retention times with an in-house developed Arabidopsis metabolite 
library. Most flower metabolites were either glucosinolates or flavonoids (Supplemental 
table 1 and 2). For most of the compounds, QTLs could only be detected in flowers although 
for quercetin-3-O-hexoside (a flavonoid), D-gluconic acid and a feruloyl malate-coniferyl 
alcohol conjugate, QTLs could only be detected in leaves. For dihydroxybenzoic acid xyloside 
III, QTLs were identified in both leaves and flowers (Table 1). For four flavonoids, two QTLs 
were detected on chr 1 and one on chr 4. The glucosinolate QTLs were detected at different 
positions in the genome and in several cases different glucosinolates were found to be 
associated with the same genomic region. Interestingly, the QTLs for dihydroxybenzoic acid 
xyloside III were associated to different genomic regions in leaves (chr 5) than in flowers (chr 
3), which suggests that the accumulation of this metabolite is differently regulated between 
these two tissues. Significant LOD scores ranged from 2.49 for the unidentified compound 
number 1537 to 4.81 for 1-methoxy-3-indolmethyl glucosinolate, both found in flowers. 
Seventeen of the thirty-six QTLs had a negative effect sign, which indicates that ddm1-2 
induced hypomethylation of these QTLs had a positive effect on the metabolite content. In 
contrast, all glucosinolate QTLs had a positive effect sign, resulting in increased glucosinolate 
levels in lines with the Col-0 allele. These QTL analyses suggest that DNA methylation plays a 
prominent role in regulating tissue-specific accumulation of secondary metabolites.

Epigenetic regulation of metabolic pathway genes
The most likely candidates for differential epigenetic regulation of the metabolic pathways 
are the structural and regulatory genes, and genes encoding modifying enzymes involved 
in these pathways. All genes involved in metabolism, modification and biosynthesis 
underlying the QTLs were therefore analysed for differences in methylation status, gene 
expression and transposon insertion between Col-0 and ddm1-2 using public databases 
(http://genomes.mcdb.ucla.edu/AthBSseq/) (Stroud et al., 2013). Candidate genes involved 
in corresponding metabolic pathways were found for all glucosinolates and flavonoids 
identified (Table 2). Identical QTLs were found for different glucosinolates, which suggests 
that the underlying gene regulates the accumulation of glucosinolates upstream in the 
pathway or through catalysing the same enzymatic side-chain modification. The C4 (and 
C8) aliphatic glucosinolates were found to be controlled by a QTL located at the end of 
chr 5, which might be caused by MYB28 which is essential for the biosynthesis of aliphatic 
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Table 1. QTL overview for all metabolic QTLs in leaves (L) and flowers (F) of the epiRIL population. 
Tissue indicates leaf (L) or flower (F) tissue; QTL indicates the QTL nr; Chr, chromosome; LOD, QTL 

LOD score.
Metabolite 
nr Tissue QTL Chr LOD

Support  
interval (cM)

Explained 
variance (%) Effect Metabolite

1200 L 1 1 3.6 0-11.7 16.3 0.10 quercetin-3-O-hexoside
1584 L 2 1 3.6 6-26 16.7 -0.28
1544 F 1 3.2 14-29 14.9 0.06 7-methylthioheptyl glucosinolate
1443 F 1 3.9 20-36 17.6 -0.13
1438 F 1 3.8 20-36.5 17.2 -0.13
1537 F 3 1 2.5 29-55 11.7 0.14
1429 F 1 3.5 38-45.9 16.2 -0.10 kaempferide 3-glucoside
1421 F 1 3.1 37-54 14.5 -0.11 kaempferol-deoxyhexoside
1584 L 4 2 2.5 0-9 11.8 -0.29
2205 L 2 2.7 0-10.4 12.6 -0.16
1221 F 2 2.7 0-14 12.8 0.11 9-Methylsulfinylnonyl glucosinolate
403 F 2 3.3 2-15 15.0 -0.06 D-Gluconic acid + GSSG
1619 F 5 2 2.7 15-33 12.7 -0.04
1468 F 6 3 3.0 22-36 14.0 -0.09 feruloyl malate conferyl alchohol
707 F 3 4.4 29-38 19.6 -0.10 dihydroxybenzoic acid xyloside III
1584 L 7 3 2.9 36-51 13.3 -0.31
939 F 3 2.7 36-77 12.5 0.12 4 or 5-Hydroxy-3-indolylmethylgluco-

sinolate
1206 F 8 4 3.1 0-14 14.5 0.05 1-Methoxy-3-indolylmethyl glucosi-

nolate
709 F 4 3.4 5-17 15.5 0.09
715 F 4 4.1 5-18 18.5 0.11 4 or 5-Hydroxy-3-indolylmethylgluco-

sinolate
486 F 9 4 3.2 4-28 14.9 0.07
622 F 4 2.8 4-29 13.3 0.09 4-methylsulfinylbutyl glucosinolate
1534 F 4 2.8 4.5-29 13.0 0.01
532 F 4 4.1 12-21 18.6 0.06
2272 L 10 4 3.6 23-45 16.3 -0.35
1971 L 4 4.0 24-45 18.2 -0.39
2077 L 4 4.0 24-45 18.2 -0.39
1379 F 11 4 2.9 61-81 13.5 0.13 Kaempferol 3-O-glucoside
2321 L 12 5 2.7 24-50 12.8 -0.41
767 L 5 2.5 31-65.9 11.8 -0.11 dihydroxybenzoic acid xyloside III
1206 F 5 4.8 40-43 21.4 0.06 1-Methoxy-3-indolylmethyl glucosi-

nolate
1390 F 5 3.3 35-59.9 15.2 0.10 Hexyl glucosinolate
1537 F 13 5 3.4 47.4-65 15.7 0.15
759 F 5 3.1 51-65 14.3 0.15 4-methylthiobutyl glucosinolate
1680 F 5 3.6 50-63.6 16.3 0.10 8‐Methylthiooctylglucosinolate
758 F 5 2.9 51-65.9 13.6 0.07 4-methylthiohydroxybutyl glucosi-

nolate
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glucosinolates (Beekwilder et al., 2008). Furthermore, MYB28 was detected previously 
as candidate gene in a QTL study for aliphatic glucosinolate content and transcript level 
of genes involved in aliphatic glucosinolate biosynthesis in the Bay x Sha RIL population 
(Sonderby et al., 2007; Wentzell et al., 2007). There was a small difference in the methylation 
profile between Col-0 and ddm1-2 which may affect MYB28 expression and thus aliphatic 
glucosinolate content (http://genomes.mcdb.ucla.edu/AthBSseq/) (Stroud et al., 2013). The 
major QTL for the accumulation of indole glucosinolates was detected on chr 4 and might 
be representing CYP83A1 monooxygenase, REF2, which is involved in aliphatic glucosinolate 
biosynthesis but when mutated significantly increases indole glucosinolate levels (Hemm, 
2002). The indole glucosinolate content was higher in the Col-0 background of the epiRIL 
population, which would be in agreement with reduced expression of REF2. The gene is 
indeed hypomethylated in ddm1-2 (http://genomes.mcdb.ucla.edu/AthBSseq/) which could 
result in increased expression and a reduction in indole glucosinolate content. Moreover, 
REF2 also has other functions in secondary metabolism and might thus also be involved 
in regulation of the unknown metabolites for which the QTLs co-located on chr 4 (Hemm, 
2002). Another interesting candidate gene is UGT74B1 (AT1G24100) which is located in the 
QTL interval for 7-methylthioheptyl glucosinolate on chr 1 and is involved in glycosylation 
of glucosinolates (Table 2). This gene was found to have small methylation differences 
between Col-0 and ddm1-2 (http://genomes.mcdb.ucla.edu/AthBSseq/). For the flavonoids, 
an interesting candidate gene was found for kaempferide-3-glucoside and kaempferol-
deoxyhexoside, UGT78D1 (AT1G30530), which is involved in flavonol aglycone biosynthesis 
(Jones et al., 2003). The 5’end of the gene was found to be differently methylated between 
Col-0 and ddm1-2 (http://genomes.mcdb.ucla.edu/AthBSseq/). These findings suggest that 
a large part of the variation in metabolite levels, detected within the epiRIL population, can 
be explained by differences in the methylations status. This is particularly true for the highly 
abundant chemical families of glucosinolates and flavonoids for which likely candidate 
genes could be assigned.

Correlation between metabolism and morphology
Besides leaf and flower metabolism, a series of morphological traits were analysed for 
all epiRILs and the parents on different plants grown in the same experimental set up. It 
was subsequently investigated to what extent the metabolite levels correlate with the 
morphological traits and whether they may be used as trait markers. To get more insight 
into these relationships, pairwise correlations were calculated between each metabolite 
and the morphological traits using Spearman’s rank correlation. Two hundred eighty eight 
significant correlations (rs > 0.2, P < 0.05) were detectedd between leaf metabolites and 
morphological traits (Figure 4). Of these correlations, 155 were negative and 127 were 
positive. Significant positive correlations were detected between leaf metabolites showing a 
QTL and flowering time (i.e. time to flower), and mostly negative correlations were detected 
between the leaf metabolites showing a QTL and leaf area and relative growth rate (Table 5). 
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When we compared the percentage of metabolites with a QTL that significantly correlated 
with a morphological trait to the percentage of significant correlations among all metabolites 
with that morphological trait, we found a significant over-representation of the metabolic 
QTLs that correlate with leaf area (P(χ2) < 0.05, Table 3). This suggests that there is a strong 
relationship between these metabolites and leaf area, and that they are both affected by 
the underlying epigenetic regulation.

For the flower metabolites, a total of 202 correlations were found of which 115 were 

Figure 4. Correlation matrix between morphological traits and leaf and flower metabolites. Pearson 
correlation between metabolites and morphological traits is indicated by color intensity from -1 
(blue) to 1 (red).
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Table 3. Spearman correlation between leaf (L) and flower (F) metabolites and morphological traits.  
Only metabolites for which a significant QTL was detected were taken into account. P(χ2) gives the 
chi square P-value for the chance that the number of observed correlations does not deviate from 
the expected number of significant correlations among all metabolites.

Metabolite nr Tissue FT LA20 RGR MSB PH1S TPH AIL
767 L -0.10 0.03 -0.16 -0.01 -0.16 -0.21 -0.04
1200 L 0.21 0.10 -0.21 0.17 -0.04 -0.19 -0.17
1584 L -0.03 -0.24 0.09 -0.13 -0.05 -0.10 0.09
1971 L -0.04 -0.08 0.20 -0.06 -0.04 -0.01 0.05
2077 L 0.01 -0.25 0.30 0.02 0.00 -0.03 -0.01
2205 L 0.06 -0.08 0.14 0.09 0.12 -0.01 0.06
2272 L -0.03 -0.24 0.31 -0.01 0.00 -0.02 0.02
2321 L -0.08 -0.07 0.25 -0.06 0.08 0.09 0.13

P (χ2) L 0.30 0.01 0.27 * * * *

Metabolite nr Tissue FT LA20 RGR MSB PH1S TPH AIL
403 F -0.14 0.08 -0.01 0.00 0.12 0.05 0.09
486 F 0.13 0.17 0.09 0.24 0.17 0.12 -0.18
532 F 0.01 0.07 0.13 0.07 0.08 0.07 -0.07
622 F 0.09 0.16 0.11 0.25 0.12 0.14 -0.25
707 F 0.06 -0.17 0.18 0.05 -0.02 -0.19 -0.06
709 F 0.24 0.13 0.05 0.29 0.17 0.08 -0.23
715 F 0.27 0.16 0.02 0.31 0.17 0.07 -0.25
758 F 0.14 0.22 -0.02 0.20 0.24 0.18 -0.09
759 F 0.18 0.22 -0.05 0.21 0.23 0.20 -0.08
939 F 0.06 0.18 -0.05 0.17 0.03 0.04 -0.21
1206 F 0.40 0.19 -0.05 0.35 0.24 0.04 -0.23
1221 F 0.07 0.11 0.17 0.16 -0.05 0.03 -0.27
1379 F -0.31 0.15 0.21 -0.18 -0.17 0.01 0.08
1390 F 0.10 0.28 0.08 0.35 0.14 0.15 -0.28
1421 F -0.43 -0.07 0.27 -0.35 -0.28 -0.04 0.20
1429 F -0.40 -0.01 0.25 -0.33 -0.23 0.03 0.22
1438 F -0.30 -0.07 0.30 -0.21 -0.21 0.03 0.07
1443 F -0.31 -0.07 0.29 -0.22 -0.20 0.03 0.08
1468 F 0.11 -0.08 0.33 0.05 -0.02 -0.05 -0.10
1534 F -0.15 0.00 0.04 0.01 -0.06 0.01 -0.10
1537 F 0.12 0.36 -0.10 0.29 0.02 0.07 -0.36
1544 F -0.06 0.22 -0.04 0.03 0.19 0.17 0.08
1619 F -0.16 0.19 -0.11 0.01 -0.04 -0.02 -0.03
1680 F -0.09 0.19 0.06 0.06 0.10 0.17 -0.02

P (χ2) F 0.26 0.10 0.11 0.00 0.00 0.33 0.00
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positive and 87 were negative. Interestingly, flowering time showed a high number of 
positive correlations with leaf metabolites but a high number of negative correlations 
with flower metabolites. Although solely based on the correlations, this could suggest that 
early flowering plants grow fast (small negative correlation between flowering time and 
leaf area after 20 days) and invest more in flower metabolism, while late flowering plants, 
grow slower and invest more in leaf metabolism. This point is strengthened by the high 
number of negative correlations between relative growth rate and leaf metabolites, and the 
high number of positive correlations between relative growth rate and leaf area with flower 
metabolites.

Both positive and negative correlations were observed between flower metabolites for 
which a QTL was detected and morphological traits. The highest negative correlation was 
found between flowering time and kaempferol-deoxyhexoside with a linear correlation 
of -0.43, explaining roughly 18% of the total variation for flowering time (Table 3). The 
highest positive correlation (r = 0.4) was found between flowering time and 1-methoxy-3-
indolmethyl glucosinolate, explaining roughly 16% of the total variation in flowering time 
(Table 3). When we compared the percentage of metabolites with a QTL that significantly 

Figure 5. Metabolic prediction with Random Forest for morphological traits showing the correlation 
(r2) between the predicted and observed values in the test set (20% of all epiRILs) based on the 
training set (80% of all epiRILs) The light grey bar represents the metabolic predictions using all 
metabolites with a significant QTL, the dark grey bar represents the metabolic prediction for the 
20 best predictive metabolites with a significant QTL and the black bar represents the metabolic 
prediction for the 20 best predictive metabolites from all measured metabolites.



Chapter 6

182

6

correlated with a morphological trait to the percentage of significant correlations among 
all metabolites with that morphological trait, we found a significant over-representation of 
the metabolic QTLs that correlate with main stem branching, plant height at 1st silique and 
average internode length (P(χ2) < 0.05). This suggests that these metabolites are strongly 
connected to the morphological traits and that they might be regulated by the same 
epigenetic mechanisms.

Table 4. The importance (higher value corresponds to higher importance) of the metabolic variables 
in Random Forest estimated in the training set and used to estimate the correlation in the validation 
set for all metabolites with a QTL.
Metabolite nr Tissue Metabolite FT LA20 RGR MSB PH1S TPH AIL
767 L dihydroxybenzoic acid xyloside III 227 191 396 146 146 249 131
1200 L quercetin-3-O-hexoside 176 146 225 200 116 150 138
1584 L 121 277 129 158 114 152 148
1971 L 126 130 121 138 140 169 144
2077 L 128 403 204 166 294 183 173
2205 L 116 198 158 211 165 207 304
2272 L 110 248 218 169 349 255 142
2321 L 83 134 216 71 105 135 219
403 F D-Gluconic acid + GSSG 235 124 102 217 226 417 188
486 F 122 135 137 152 379 307 162
532 F 126 119 152 92 140 136 118
622 F 4-methylsulfinylbutyl glucosinolate 85 123 100 187 160 162 213
707 F dihydroxybenzoic acid xyloside III 115 255 94 109 243 443 137
709 F 222 139 174 245 179 169 214
715 F 4 or 5-Hydroxy-3-indolylmethylglucosinolate 226 149 155 306 220 182 224
758 F 4-methylthiohydroxybutyl glucosinolate 89 136 159 113 185 183 134
759 F 4-methylthiobutyl glucosinolate 128 211 156 149 299 333 135
939 F 4 or 5-Hydroxy-3-indolylmethylglucosinolate 152 201 172 172 146 213 177
1206 F 1-Methoxy-3-indolylmethyl glucosinolate 427 199 139 435 214 230 436
1221 F 9-Methylsulfinylnonyl glucosinolate 91 109 149 96 171 127 391
1379 F Kaempferol 3-O-glucoside 266 194 146 253 267 136 158
1390 F Hexyl glucosinolate 241 271 125 462 220 318 201
1421 F kaempferol-deoxyhexoside 750 293 582 481 360 119 295
1429 F kaempferide 3-glucoside 415 168 156 281 170 79 430
1438 F 273 159 273 257 256 129 146
1443 F 399 175 197 308 205 92 132
1468 F feruloyl malate conferyl alchohol 84 256 869 77 170 149 97
1534 F 283 286 87 147 144 209 153
1537 F 231 465 218 293 174 210 457
1544 F 7-methylthioheptyl glucosinolate 120 266 104 98 230 222 212
1619 F 128 249 143 106 139 191 89
1680 F 8‐Methylthiooctylglucosinolate 75 123 121 92 122 151 185
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Predictive power of metabolites for morphology
To further investigate the relationship between secondary metabolism and morphology, the 
predictive power of epigenetically regulated metabolite content on the morphological traits 
was analysed with Random Forest, a multivariate regression method that can be used for 
metabolic prediction (Carreno-Quintero et al., 2012). First, we only used the metabolites for 
which a QTL was detected in Random Forest. On average, the metabolites for which a QTL 
was detected could explain 11% of the variance of the morphological traits, with a minimum 
of 4% for total plant height and a maximum of 15% for main stem branching (Figure 5). These 

Table 5. The importance (higher value corresponds to higher importance) of the metabolic variables 
in Random Forest estimated in the training set and used to estimate the correlation in the validation 
set for the 20 best predictive metabolites with a QTL.
Metabolite nr Tissue Metabolite FT LA20 RGR MSB PH1S TPH AIL
767 L dihydroxybenzoic acid xyloside III 279 303 468 331
1200 L quercetin-3-O-hexoside 240 306 271
1584 L 363 211 204
1971 L 181 242
2077 L 185 468 271 228 383 248 258
2205 L 263 229 276 273 384
2272 L 331 292 228 435 323
2321 L 287 311
403 F D-Gluconic acid + GSSG 322 298 296 508 264
486 F 218 472 404 245
532 F 173 210
622 F 4-methylsulfinylbutyl glucosinolate 269 250 282
707 F dihydroxybenzoic acid xyloside III 324 328 537
709 F 280 244 312 262 238 282
715 F 4 or 5-Hydroxy-3-indolylmethylglucosinolate 290 239 383 314 265 292
758 F 4-methylthiohydroxybutyl glucosinolate 246 247 259
759 F 4-methylthiobutyl glucosinolate 198 265 238 241 368 415
939 F 4 or 5-Hydroxy-3-indolylmethylglucosinolate 205 250 244 235 286 252
1206 F 1-Methoxy-3-indolylmethyl glucosinolate 484 293 480 278 292 505
1221 F 9-Methylsulfinylnonyl glucosinolate 198 264 483
1379 F Kaempferol 3-O-glucoside 308 230 191 290 357 226
1390 F Hexyl glucosinolate 322 344 556 307 421 272
1421 F kaempferol-deoxyhexoside 782 369 624 572 431 386
1429 F kaempferide 3-glucoside 490 232 208 346 234 515
1438 F 363 215 347 314 322
1443 F 496 272 255 378 276
1468 F feruloyl malate conferyl alchohol 390 936 251
1534 F 313 367 283 219
1537 F 286 559 315 386 238 274 512
1544 F 7-methylthioheptyl glucosinolate 334 299 299 298
1619 F 176 325 265
1680 F 8‐Methylthiooctylglucosinolate 264
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values correspond to an average correlation of 0.28 with a minimum correlation of 0.16 and 
a maximum correlation of 0.35. The variable importance, which signifies the importance of 
a variable for classifying the data, showed that the metabolites with the highest correlation 
with a certain morphological trait were also the most important variables in the Random 
Forest selection (Table 4). As many of the metabolites only contributed marginally to the 
prediction, it was tested whether the twenty most important metabolites for which a QTL 
was detected could predict a higher percentage of the variance for the morphological 
traits. The average explained variance increased to 15% (r = 0.39) with a minimum of 5% 
(r = 0.17) for total plant height and a maximum of 22% (r = 0.45) for leaf area (Figure 5). 
The individual importance of each of the metabolites increased (Table 5). Especially, the 
variable importance of feruloyl malate coniferyl alcohol for relative growth rate (VIP=936) 
was exceptionally high. Finally, it was investigated to what extent the morphological 
traits can be predicted by Random Forest by taking the 20 metabolites with the highest 
importance values out of all metabolites (Table 6). The correlation increased significantly 
to an average explained variance of 33% (r = 0.58) with a minimum value of 17% (r = 0.36) 
for plant height at 1st silique and a maximum value of 46% (r = 0.67) for leaf area (Figure 
5). The finding that these metabolites explain more of the variance for morphological traits 
than the twenty metabolites, for which a QTL was detected, might seem counter-intuitive. 
This is most likely due to the high correlations between the metabolites with a QTL and, 
therefore, their individual importance in classification is reduced. Interestingly, feruloyl 
malate coniferyl alchohol was also the best predictor for relative growth rate among all 
metabolites (Table 6). These analyses show that different sets of metabolites are important 
for different morphological traits. Unraveling the epigenetic regulation of these metabolites 
might assist in understanding the epigenetic regulation of morphology.

Overlap between mQTLs and morphological QTLs
To study whether the same genomic regions can explain part of the variation for metabolism 
and morphology, the QTL profiles of all metabolites and morphological traits were aligned 
(Figure 6). All morphological QTLs overlapped with different mQTLs and most of the 
metabolites with overlapping QTLs were also highly correlated with the morphological 
traits (Figure 6, Tables 3 and 7). For example, leaf area correlated with both the unknown 
metabolite number 1584 and 7-methylthioheptyl glucosinolate for which a QTL was detected 

Table 6. The importance (higher value corresponds to higher importance) of the metabolic variables 
in Random Forest estimated in the training set and used to estimate the correlation in the validation 
set for the 20 best metabolites. Given next to the RF importance is the spearman correlation 
between metabolite and morphological trait. Metabolites for which QTLs were detected in leaf 
tissue are highlighted in green, in flower tissue in purple. Metabolite numbers are given under 
morphological trait.
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FT T RF Sp LA20 T RF Sp RGR T RF Sp AIL T RF Sp
846 L 298 0.40 591 L 289 -0.31 757 L 387 -0.28 801 L 286 0.11
850 L 323 -0.07 611 L 287 -0.30 773 L 358 -0.27 1265 L 273 -0.16
903 L 347 0.06 779 L 586 0.24 779 L 471 -0.35 1437 L 483 -0.26
906 L 274 -0.10 983 L 215 0.04 823 L 287 -0.26 2005 L 298 -0.29
955 L 430 0.39 1078 L 330 0.27 1078 L 294 -0.28 2013 L 255 0.12
965 L 488 0.44 1090 L 308 0.26 1279 L 312 -0.30 2163 L 368 0.13
1005 L 367 0.42 1132 L 393 0.16 1455 L 245 -0.27 2300 L 283 0.14
1025 L 226 -0.20 1253 L 275 0.24 2163 L 284 0.19 2306 L 365 -0.29
1158 L 360 0.14 1579 L 397 -0.36 2272 L 252 0.31 660 F 369 -0.16
1510 L 238 0.45 1584 L 267 -0.24 68 F 259 0.19 682 F 302 0.24
1650 L 269 0.36 2077 L 392 -0.25 99 F 268 0.02 801 F 348 0.19
1852 L 284 0.23 698 F 425 0.32 130 F 355 0.00 1206 F 348 -0.23
1920 L 258 0.30 733 F 251 0.30 217 F 285 -0.01 1221 F 315 -0.27
2036 L 272 0.14 1335 F 407 -0.22 1335 F 295 0.34 1335 F 347 0.20
682 F 456 -0.31 1400 F 265 -0.06 1374 F 392 0.30 1382 F 372 0.21
1184 F 427 -0.31 1421 F 322 -0.07 1421 F 330 0.27 1384 F 265 0.01
1206 F 339 0.40 1537 F 383 0.36 1468 F 687 0.33 1386 F 284 0.18

1421 F 301 -0.43 1600 F 290 0.15 1590 F 240 -0.19 1429 F 305 0.22
1522 F 292 -0.31 1715 F 222 0.28 1744 F 260 -0.01 1448 F 265 -0.04
1550 F 247 -0.22 1806 F 239 0.07 1817 F 265 0.07 1537 F 392 -0.36

MSB T RF Sp PH1S T RF Sp TPH T RF Sp
481 L 384 0.16 102 L 219 -0.18 301 L 272 -0.12
1078 L 289 0.25 301 L 265 -0.18 326 L 260 -0.32
1132 L 352 0.24 526 L 260 -0.14 526 L 355 -0.13
1437 L 284 0.21 591 L 476 -0.15 591 L 388 -0.14
1455 L 288 0.16 611 L 384 -0.17 611 L 480 -0.21
1510 L 269 0.24 788 L 302 0.05 779 L 275 -0.23
2005 L 332 0.33 1090 L 312 0.08 788 L 291 -0.09
2306 L 369 0.40 1451 L 320 0.16 838 L 323 -0.28
698 F 454 0.29 1516 L 313 0.04 1068 L 233 -0.07
709 F 221 0.29 1630 L 357 0.14 1143 L 240 -0.19
715 F 269 0.31 1939 L 390 0.12 1516 L 244 -0.15
733 F 314 0.26 2272 L 354 0.00 1565 L 324 -0.01
1206 F 337 0.35 698 F 268 0.07 1630 L 238 0.16
1214 F 335 -0.30 720 F 266 -0.16 384 F 487 -0.08
1382 F 333 -0.30 759 F 298 0.23 403 F 357 0.05
1386 F 332 -0.30 1421 F 394 -0.28 707 F 318 -0.19
1390 F 339 0.35 1545 F 277 -0.22 759 F 300 0.20
1421 F 345 -0.35 1552 F 353 -0.06 1390 F 328 0.15
1528 F 407 0.37 1671 F 312 -0.05 1454 F 357 -0.25
1537 F 302 0.29 1724 F 347 0.11 1550 F 372 0.11
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on chr 1 (Tables 3 and 7). Furthermore, plant height at 1st silique correlated significantly 
with the two other unknown metabolites, number 1443 and 1438 (Tables 3 and 7). For the 
second QTL on chr 1, a similar observation was made as two flavonoids and the unknown 
metabolite number 1537 correlated significantly with both main stem branching and average 
internode length (Tables 3 and 7). These results suggest that the genes underlying the QTLs 
are involved in the regulation of both the metabolic and morphological traits.

Table 10. Overlap between mQTL and morphological QTLs among the 5 chromosomes. 
Abreviations: L, leaf; F, flower; M, morphology.

Trait Phenotype Chr

Support 
interval 
(cM) LOD

Explained 
variance (%) Effect Metabolite

1584 L 1 6-26 3.6 16.7 -0.28
1544 F 1 14-29 3.2 14.9 0.06 7-methylthioheptyl glucosinolate
1443 F 1 20-36 3.9 17.6 -0.13
1438 F 1 20-36.5 3.8 17.2 -0.13
LA20 M 1 15-28 7.9 32.8 13.4
PH1S M 1 12-28 2.7 12.9 4.1
1537 F 1 29-55 2.5 11.7 0.14
1429 F 1 38-45.9 3.5 16.2 -0.10 kaempferide 3-glucoside
1421 F 1 37-54 3.1 14.5 -0.11 kaempferol-deoxyhexoside
MSB M 1 38-44.8 10.1 39.6 12.3
AIL M 1 40-44.8 12.5 46.4 -13.3
1619 F 2 15-33 2.7 12.7 -0.04
LA20 M 2 13.8-50 2.7 12.5 -8.3
1206 F 4 0-14 3.1 14.5 0.05 1-Methoxy-3-indolylmethyl glucosinolate
709 F 4 5-17 3.4 15.5 0.09
715 F 4 5-18 4.1 18.5 0.11 4 or 5-Hydroxy-3-indolylmethylglucosinolate
486 F 4 4-28 3.2 14.9 0.07
622 F 4 4-29 2.8 13.3 0.09 4-methylsulfinylbutyl glucosinolate
1534 F 4 4.5-29 2.8 13.0 0.01
532 F 4 12-21 4.1 18.6 0.06
MSB M 4 3.4-25 5.5 24.0 11.4
AIL M 4 1-21.5 2.8 13.2 -10.6
2272 L 4 23-45 3.6 16.3 -0.35
1971 L 4 24-45 4.0 18.2 -0.39
2077 L 4 24-45 4.0 18.2 -0.39
LA20 M 4 18-50 2.7 12.7 11.0
2321 L 5 24-50 2.7 12.8 -0.41
767 L 5 31-65.9 2.5 11.8 -0.11 dihydroxybenzoic acid xyloside III
1206 F 5 40-43 4.8 21.4 0.06 1-Methoxy-3-indolylmethyl glucosinolate
1390 F 5 35-59.9 3.3 15.2 0.10 Hexyl glucosinolate
LA20 M 5 25-62 2.8 12.9 10.9
MSB M 5 25-47.4 3.1 14.5 8.8
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Discussion
Epigenetic variation can have a profound impact on plant secondary metabolism
This is the first study in plants to focus on the role of DNA methylation in the regulation 
of secondary metabolism. The metabolic variation due to epigenetic variation observed in 
the present study was moderate to large, and this suggests that epigenetics could be an 
important factor in determining plant phenotypic variation, also within natural populations 
(Figure 1). In flowers, glucosinolates were the most variable metabolites showing substantial 
variation and differential epigenetic regulation revealed by the different QTLs. It is well-
known that the accumulation of glucosinolates is tissue-specific and under tight control by 
genetic factors, development and environment (Wentzell and Kliebenstein, 2008). In the 
present study, an extra dimension of epigenetic regulation was revealed in the complex 
regulation of glucosinolate content in flowers. Both aliphatic and indole glucosinolates, 
derived from methionine and tryptophan respectively, were at least partly under epigenetic 
control (Table 2).

One recent study also points towards a role for epigenetics in the regulation of glucosinolate 
metabolism (Rasmann et al., 2012). The authors showed that mutants dysfunctional in 
small RNA biogenesis with no other obvious phenotypic effects had significantly reduced 
amounts of glucosinolates in their leaves and these glucosinolate levels were not increased 
upon caterpillar feeding, in contrast to those in wild-type Col-0 (Rasmann et al., 2012). The 
authors further suggested that altered gene expression through siRNA signaling can be 
maintained in future generations via DNA methylation.

Other major metabolic QTLs in the flowers were related to flavonoid content, specifically 
to flavonol glycosides. Flavonoid glycosides have been shown to be implicated in several 
different processes such as virulence, UV-protection, biotic stress resistance, flowering, 
pigmentation, nodulation and the regulation of auxin transport (Shirley, 1996; Graham, 
1998). Flavonol glycosides consist of an aglycone, such as quercetin and kaempferol, and 
sugars, such as hexoses, pentoses and deoxyhexoses. Depending upon their complexity, 
flavonol glycosides are found throughout the plant or in specific plant tissues (Saito et al., 
2013). Here, one QTL was found for quercetin-3-O-hexoside accumulation in the leaves and 
three QTLs were found for different flavonoids in the flowers (Table 2). A few genome-wide 
expression profiling studies have suggested epigenetic regulation of flavonoid biosynthesis. 
In methylation mutants as well as F1 hybrids in Arabidopsis, respective up –and down-
regulation of flavonoid biosynthesis genes was found together with altered methylation 
states (Kurihara et al., 2008; Shen et al., 2012). Furthermore, in maize, tissue-specific 
pigmentation by the anthocyanin-type of flavonoids was found to be controlled through 
DNA methylation (Cocciolone et al., 2001).
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Trade-off between metabolism, growth and reproduction
The long-standing growth/defence hypothesis states that investments in secondary 
metabolism and defense go at the expense of growth and reproduction (Herms and Mattson, 
1992). Recently, it was found that the production of glucosinolates in leaves is negatively 
correlated with relative growth rate and knock-out mutants in the glucosinolate pathway 
were found to outperform Col-0 wild-type, providing evidence to support this hypothesis 
(Paul-Victor et al., 2010; Zust et al., 2011). In the present study, similar observations were 
made as the majority of significant correlations (91%) between relative growth rate and 
leaf metabolite levels were negative, while 98% of the significant correlations between 
flowering time and leaf metabolite levels were positive. Early-flowering, fast growing plants 
thus seem to invest less in leaf metabolism. Furthermore, all leaf metabolite QTLs were 
found to have negative effects signs, which indicates that ddm1-2 induced hypomethylation 
increases the leaf metabolite content. If we assume that the higher accumulation of leaf 
metabolites is associated with increased defense to pathogens and herbivores, these results 
suggest that hypomethylation may induce the production of defense metabolites at the 
expense of growth.

Interestingly, early-flowering, fast growing plants were found to invest much more in 
flower metabolism. It has been noted that defense strategies in plants are expected to 
change before and after flowering (Briggs and Schultz, 1990; Herms and Mattson, 1992). 
The chemical defense theory suggests that the allocation of metabolites depends on the 
fitness costs associated with loss of the organ and the likelihood that the organ will be 
attacked (McKey, 1974). Flowers and seeds are the most important plant tissues in terms of 
fitness and should thus be well protected (McCall and Irwin, 2006). Indeed, glucosinolates 
in Arabidopsis are found in the highest concentrations in the reproductive organs, i.e. 
inflorescence, siliques and seeds (Brown et al., 2003). In the present study, it was found 
that all glucosinolate QTLs had positive effect signs, indicating higher glucosinolate levels in 
Col-0 than in ddm1-2, supporting the above studies (Table 2). It would be interesting to test 
whether these investments in flower defense metabolism go at the expense of seed set, 
seed size or silique size. Although this was not within the scope of this study, plant height 
and main stem branching correlated positively with leaf area, suggesting that larger plants 
also had a higher productivity. But this needs to be assessed more rigorously.

Metabolic prediction of plant morphology
To our knowledge, this is the first study in Arabidopsis to report on the relation between 
secondary metabolites and morphological traits. All morphological traits could be fairly well 
predicted using a set of the 20 most predictive metabolites. Different sets of metabolites 
were found to be important for different traits and metabolites with a QTL were found in 
each set. In a similar experiment using a RIL population between Col-0 and C24, a correlation 
of 0.58 between primary metabolites and biomass was reported (Meyer et al., 2007). In a 
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study on 97 natural accessions of Arabidopsis primary metabolites correlated with biomass 
under different conditions in the range of 0.21 - 0.58 (Sulpice et al., 2013). This is slightly 
lower than the correlation obtained in the present study between leaf area and the 20 best 
predictive metabolites (LA20 = 0.63). It must be noted here, however, that the other studies 
used partial least square regression and looked at true biomass, while the present study 
used random forest and leaf area. Our study indicates that secondary metabolites, which in 
contrast to primary metabolites are not directly associated with plant growth, can be good 
predictors - or biomarkers - for morphological and growth-related traits, and that prediction 
is at least comparable with prediction using primary metabolites.

The metabolome can be seen as the outcome of both genetic and epigenetic regulation, and 
as such it could be a good predictor for plant phenotypes, as shown in this study. It must 
be noted, however, that the metabolome is extremely flexible over time and the metabolic 
profile at any point in time cannot give a complete picture of a plant’s morphological 
phenotype. Moreover, the complete metabolome of a plant cannot be measured using one 
or even multiple metabolomics platform(s). Nevertheless, in hybrid maize the metabolic 
prediction accuracy (using 130 metabolites) was only slightly lower than genomic prediction 
accuracy (using thousands of SNPs) (Riedelsheimer et al., 2012).

The present study revealed by QTL analyses and multivariate correlation analyses that the 
tissue-specific accumulation of secondary metabolites is tightly linked to plant growth and 
morphology, and might be partly regulated by epigenetic mechanisms. Epi-allelic variation 
in the epiRIL population resulted in wide variation in secondary metabolites in both leaves 
and flowers, and the variation associated significantly with certain genomic regions that 
also explained epigenetic variation for growth and morphology. Pleiotropic epigenetic loci 
are therefore expected to underlie the QTLs and to be involved in the regulation of both 
secondary metabolism and morphology.

Material and Methods
Plant growth conditions and phenotyping
Seeds from 99 epiRILs and the parents, Col-0 and ddm1-2 (in the Col-0 background) were 
sown on filter paper with demi water and stratified at 4˚C in darkness for 5 d. Subsequently, 
seeds were transferred to a culture room (16 h light, 24˚C) to induce seed germination for 
42 h. Seventeen replicates per epiRIL and parent were completely randomly transplanted 
to wet Rockwool blocks of 4 x 4 cm in a climate chamber (16 h light, 125 µmol m-2 s-1, 70% 
RH, 20/18˚C day/night cycle). All plants were watered every morning for 5 min at 9am with 
1/1000 Hyponex solution (Hyponex, Osaka, Japan). Plants were photographed from above 
each hour for the entire growth period (until leaves started to overlap) to analyse LA and 
RGR. At 21 days after germination (DAG), six randomly selected replicates were harvested for 
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leaf tissue. At the time of flowering, the flower head was harvested for six other randomly 
selected replicates. For the other five replicates, (FT) was noted at the opening of the first 
flower. Two weeks after flowering, main stem branching (MSB), plant height at 1st silique 
(PH1S), total plant height (TPH) and average internode length (AIL) were measured for these 
five replicates (Chapter 5).

LC-QTOF-MS analysis of leaf and flower tissue
For both leaves and flowers, three replicates were pooled to make one representative 
sample. For the leaves, 0.05 g tissue was grinded and extracted using 200 μL aqueous 
methanol (methanol (94%), formic acid (0.125%) and demi-water) in 1.5 ml Eppendorf 
tubes. For the flower tissue, between 0.015 and 0.06 g tissue, depending on the sample, 
was grinded and extracted using tissue/methanol (methanol (94%), formic acid (0.125%) 
and demi-water) 0.01 g/100 μL, proportionally in 1.5 ml Eppendorf tubes. After addition of 
methanol, the eppendorf tubes were immediately vortexed. Subsequently, all samples were 
sonicated for 15 min and then centrifuged for 10 min. Supernatant was vacuum filtrated 
using 96-well protein filtration plates (Captiva 0.45mm, Ansys Technologies) and collected 
in 700ml glass cuvets in 96-well autosampler plates (Waters) using a Genesis worksystem 
(Tecan Systems).

Metabolic profiles of the prepared methanol extracts were obtained using reverse phase 
liquid chomatography combined with a quadrupole time of flight high-resolution mass 
spectrometer (LC-QTOF-MS) (De Vos et al., 2007). In short, 5 µl of extract was injected in 
an Alliance 2796 HPLC system equipped with a Luna C18 (150 x 2.0 mm, 3 µm) column 
(Phenomenex). Separation was performed using a linear gradient of 5% acetonitrile in 
ultrapure water (both acidified with 0.1% formic acid) to 35% acetonitrile in 45 min at a 
flow rate of 0.19 ml min-1. After detection of the compounds eluting from the column with a 
photodiode array detector (PDA; 200-700nm), negative electrospray ionization was applied 
and masses in the range of m/z 80 to 1500 were detected in a QTOF Ultima MS (Waters).
Metabolite profiles obtained were processed using Metalign software (www.metalign.nl) 
for baseline correction, noise estimation and ion wise mass spectral alignment. This resulted 
in 8955 mass signals for leaf samples and 6738 mass signals for flower samples. All masses 
with amplitudes above 100 in at least 10 samples were kept, resulting in 2334 masses for 
leaf samples and 1818 masses for flower samples. MSClust software (Tikunov et al., 2012) 
was used for clustering masses that originate from the same parent ion based on their 
corresponding retention times and intensity patterns over samples.  In the end, 216 mass 
clusters representing reconstructed metabolites were obtained for leaf samples and 179 for 
flower samples.

Identification of metabolites was based on matching the retention time and accurate masses 
of parent ions and their (in-source) fragment s with an in-house experiment-based database 
of previously reported Arabidopsis metabolites detected under the same chromatographic 
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conditions (van der Hooft et al., 2012). Masses not present in the in-house database were 
matched with masses present in other databases such as: the Dictionary of Natural Products 
(http://dnp.chemnetbase.com) and Metabolomics Japan (http://metabolomics.jp).

QTL mapping with R/QTL
QTL mapping was performed with multiple QTL mapping (MQM) implemented in the R/
QTL software (Arends et al., 2010; Joosen et al., 2012). Co-factors were assigned to 42 out 
of the 126 markers based on their physical cM position and preliminary composite interval 
mapping (CIM) on the data. Backward elimination was used to remove cofactors that did 
not contribute to the fit of the model. MQM mapping was performed on each trait and 
each treatment separately and the results were compared to standard interval mapping, 
using Haley Knott regression (Haley and Knott, 1992). Thousand random permutations were 
generated for each phenotype to determine the LOD significance threshold with 0.05 as the 
genome-wide type I error level.

Metabolic prediction of morphology
Random Forest (RF) was used to estimate the prediction of the morphological traits by the 
metabolite levels using the “randomForest” package in R (Breiman, 2001). Random Forest 
generates many decision trees, which are built using a deterministic algorithm. The trees are 
different owing to two factors. First, at each node, a best split is chosen from a random set 
of metabolites. Second, every tree is built using a bootstrap sample of the trait values. The 
out-of bag data (20% of the trait values) are then used to estimate the prediction accuracy. 
The overall prediction is then calculated by averaging over all the trees (ntree=1000). The r2 in 
Random Forest may be interpreted as a measure for predictive quality.
The variable importance is measured by the mean decrease in accuracy of a variable (in our 
case a metabolite). The more the accuracy of the random forest decreased due to addition 
of a single variable, the more important the variable is in classification. The variables with a 
large decrease in accuracy are more important for classifying the data.
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Supplemental table 1. Metabolic annotation, empirical formula and name for glucosinolates found 
in the epiRIL population.
Metabolite nr EF Name Other name
622 C12H22NO10S3 glucoraphanin 4-methylsulfinylbutyl glucosinolate
715 C16H20N2O10S2 hydroxyglucobrassicin I 4 or 5-hydroxy-3-indolylmethylglucosinolate
758 C12H23NO10S3 4-methylthiohydroxybutyl 

glucosinolate
4-methylthiohydroxybutyl glucosinolate

759 C12H23NO9S3 glucoerucin 4-methylthiobutyl glucosinolate
939 C16H20N2O10S2 hydroxyglucobrassicin II 4 or 5-hydroxy-3-indolylmethylglucosinolate
1206 C17H22N2O10S2 1-methoxy-3-indolylmethyl 

glucosinolate
1-methoxy-3-indolylmethyl glucosinolate

1221 C17H33NO10S3 glucoarabin 9-methylsulfinylnonyl glucosinolate
1390 C13H25NO9S2 hexyl glucosinolate aliphatic glucosinolate
1419 C17H22N2O10S2 1 or 4-methoxy 

glucobrassicin
4-methoxy-3-indolylmethyl glucosinolate

1544 C15H29NO10S3 7-methylthioheptyl glucosi-
nolate; S-Oxide derivative

7-methylthioheptyl glucosinolate

1680 C16H31NO9S3 glucoarabishirsuin 8‐methylthiooctylglucosinolate

Supplemental table 2. Metabolic annotation, empirical formula and name for flavonoids found in 
the epiRIL population.
Metabolite nr EF Name
1200 C21H20O12 quercetin-3-O-hexoside
1421 C21H20O10 kaempferol-deoxyhexoside
1429 C22H22O11 kaempferide 3-glucoside
1379 C21H20O11 kaempferol 3-O-glucoside
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Abstract
When plants germinate in similar environments as their parents, environmentally induced 
transgenerational inheritance of epigenetic modifications might provide the progeny with 
an evolutionary benefit. The evidence, however, for transgenerational inheritance remains 
elusive. Pure epialleles, epigenetically regulated alleles that are initiated and maintained 
independent of genetic variation, are rare and stress-induced transgenerational inheritance 
of epigenetic changes over more than one non-stressed  generation has not yet been proven. 
Here, we describe a study using sixty different lines derived from the same Arabidopsis 
thaliana ecotype Col-0 line by treatment of different plants for four generations under 
control, salt, mock or methyljasmonate (MeJA) conditions. Significant variation between the 
lines was detected at the transcript, metabolite and morphological trait level, and convincing 
evidence was found for both parental and transgenerational inheritance. When parents or 
grandparents were stressed with salt or methyljasmonate, stress-specific responses in gene 
expression, metabolite abundance and morphological and growth related traits were elicited 
in their progeny. For several traits, the stress-induced epigenetic changes were transmitted 
over more than one non-stressed generation, and they appear to be adaptive. Because all 
lines are derived from one common Arabidopsis founder line, epigenetic variation is most 
likely causal for the stress-induced transgenerational inheritance of trait variation.
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Introduction
Ever since land colonization, plants have become increasingly adapted to a wide range 
of environments though random genetic mutations, recombination, chromosome 
rearrangements and genome duplications (Koornneef et al., 2004; De Bodt et al., 2005; 
Schranz et al., 2006). Beneficial mutations in terms of fitness are naturally selected for 
throughout evolution and superior genotypes dominate the specific environment in 
which they thrive. Over shorter or longer periods of time, the environment may change 
and differently adapted genotypes can then invade such environments. If environmental 
changes are slow over long periods on an evolutionary timescale, genetic mutation is an 
efficient mechanism for adaptation. If, however, the environment is fluctuating or unstable 
in time, epigenetic modifications, which are heritable and reversible, might give plants an 
evolutionary adaptive advantage (Rando and Verstrepen, 2007).

Epigenetic inheritance is defined as cellular or organismal transgenerational inheritance 
of phenotypic variation that has a different origin than DNA sequence variation (Jablonka 
and Raz, 2009). This heritable phenotypic variation is produced through variation in DNA 
methylation, histone modification, chromatin remodelling and small RNAs. In plants, several 
meiotically stable epialleles have been found (Cubas et al., 1999; Stokes and Richards, 2002; 
Manning et al., 2006; Rangwala et al., 2006; Martin et al., 2009). In fact, the first natural 
morphological mutant functionally characterized in plants was an epigenetic mutant. 
A mutant in Linaria vulgaris, originally described by Linnaeus, displays radial instead of 
bilateral symmetric flowers due to hypermethylation of the CYCLOIDEA-like Lcyc gene, 
causing transcriptional silence (Cubas et al., 1999). Another natural, stable epigenetic 
mutant in melon determines the sexual fate of flowers through DNA methylation of CmWIP1. 
The epiallele depends on the insertion of a transposon that initiates and maintains DNA 
methylation (Martin et al., 2009). The latter example illustrates the genetic initiation and 
regulation of a meiotically stable epiallele and because most epialleles discovered so far 
are dependent on genetic initiation, it is debated whether there are in fact true, exclusively 
epigenetically regulated epialleles (Paszkowski and Grossniklaus, 2011; Becker and Weigel, 
2012; Pecinka and Scheid, 2012).

Besides genetic regulation of epialleles, the environment can also play an important role 
in the initiation of epigenetic modifications. The best studied example is probably the 
vernalisation-induced histone methylation of the flowering locus FLC. Upon cold exposure, 
FLC expression is progressively reduced and transcriptional repression is maintained after 
plants are returned to warmer temperatures (Michaels and Amasino, 1999; Sheldon et al., 
1999). The initial down-regulation of FLC is mediated by non-coding RNAs that catalyse the 
enrichment of tri-methylated histone H3 Lys (27) chromatin at the FLC locus upon exposure 
to cold temperatures (Heo and Sung, 2011). The enrichment of histone methylation at the 
FLC locus is strongly associated with transcriptional repression, and once plants are fully 
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vernalised, exposure to warmer temperatures initiates flowering. The epigenetic state of 
FLC is reset during reproductive development, and is thus not inherited to subsequent 
generations to ensure that progeny also undergo the vernalisation process (Choi et al., 
2009). However, a number of recent studies point to environmentally induced epigenetic 
modifications that are inherited to future generations (Molinier et al., 2006; Whittle et 
al., 2009; Boyko et al., 2010; Kathiria et al., 2010; Lang-Mladek et al., 2010; Verhoeven et 
al., 2010; Bilichak et al., 2012; Rasmann et al., 2012; Suter and Widmer, 2013). As seed 
dispersal is mostly local and a plant’s offspring thus experience a similar environments as 
its parents, the transfer of epigenetic modifications that enhance the offspring’s ability to 
survive under these environmental conditions seems plausible. The first study reporting 
on environmentally induced transgenerational epigenetic inheritance indicated that 
homologous recombination frequency (HRF) was increased in at least four generations 
of untreated progeny after exposure of parental plants to UV-C (Molinier et al., 2006). 
However, numerous studies, including an exact replication of the UV-C experiment, 
yielded contradicting results (Pecinka et al., 2009), indicating the difficulty of unequivocally 
establishing transgenerational epigenetic relationships.

Recently, three studies were reported in which biotic factors primed plants for disease 
resistance in multiple subsequent generations (Luna et al., 2012; Rasmann et al., 2012; 
Slaughter et al., 2012). One study concluded that untreated progeny of primed parents display 
an enhanced capacity in terms of defense related gene expression and disease resistance to 
infection with different pathogens (Slaughter et al., 2012). The primed state of the progeny 
did, however, not proceed to subsequent generations, suggesting a parental effect of priming 
rather than transgenerational inheritance of epigenetic modifications. In two other studies, 
the signal inherited over one non-stressed generation (Luna et al., 2012; Rasmann et al., 
2012). Using mutants in small RNA biogenesis, these studies further showed that progeny 
of mutants grown in the presence of the caterpillar Pieris rapae did not show enhanced 
resistance to caterpillar feeding, in contrast to Col-0 wild type progeny. This provides further 
evidence for an epigenetic signal that is possibly maintained in future generations via DNA 
methylation (Rasmann et al., 2012). Moreover, it was found that the chromatin structure 
of the promoter region of biotic stress responsive genes was changed in non-stressed 
progeny of stressed plants, and that hypomethylated mutants also showed increased 
resistance (Luna et al., 2012). It must be noted that the follow-up work was performed only 
on the direct progeny of stressed plants, which cannot rule out the effect of the maternal 
environment. It might be that the stress-induced epigenetic signals are either experienced 
by the reproductive organs themselves or are transmitted onwards from other cells, and 
are thus found back in the progeny (Kumar et al., 2013). Another issue in transgenerational 
inheritance is the high stochasticity in observed effects, illustrated by the high variation in 
transgenerational priming effects in wild radish, and often insufficient replication in other 
experiments (Agrawal, 2002; Pecinka et al., 2009; Pecinka and Scheid, 2012). Furthermore, 
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in several lines generated for 30 generations from the same Arabidopsis Col-0 founder line, 
stochastic methylome variation arose between the lines under neutral conditions, indicating 
that epimutations can also be gained spontaneously (Becker et al., 2011; Schmitz et al., 
2011). Because of these reasons and because most epialleles discovered so far are initiated 
by genetic mutations, the inheritance of epigenetic signals over more than one generation 
is still widely debated, and firm evidence for transgenerational inheritance of an exclusively 
and stable epigenetic mark is still missing (Paszkowski and Grossniklaus, 2011; Becker and 
Weigel, 2012; Pecinka and Scheid, 2012).

In the present study, Col-0 wild type plants were exposed to either stress or control treatments 
for three generations. Seeds from each generation and treatment were collected, stored and 
then grown simultaneously, again exposed to control or stress treatments. All plants were 
phenotyped for morphological characteristics, such as flowering time and plant height, and 
were analysed for secondary metabolites using UPLC-Orbitrap-FTMS. A selected number 
of lines were analysed using RNA sequencing to determine parental and transgenerational 
effects on gene expression.

Results
Experimental design
Col-0 plants derived from seeds of a single plant were either stressed with 50mM NaCl 
or 100μM methyljasmonate (MeJA), or control or mock treated for four generations, in all 
possible sequential combinations (Figure 1). Saline conditions were considered representative 
for abiotic stress whereas MeJA treatment mimics biotic stress. Methyljasmonate is a 
volatile, organic plant hormone that is involved in defence against various pathogens, and 
can be used as a chemical elicitor of defence responses. Seed batches were coded according 
to their treatment history over multiple generations. For instance, plants grown from seeds 
of a line that was control treated (C) in the first generation and were themselves salt-
stressed (S) in the second generation are coded CS, while plants grown from seeds of a line 
that was mock treated (M) in the first generation and MeJA-stressed (J) for the following 
two generation and its own generation, are coded MJJJ (Figure 1). Four different populations 
were derived based on the final treatment of each line. These populations are the C 
population, the S population, the M population and the J population corresponding to final 
treatment under control, saline, mock or MeJA conditions, respectively (Supplemental table 
1). Classification depends solely on the treatment in the final experiment, independent of 
the treatments in the earlier generations. The CS line thus belongs to the S population, while 
the MJJJ line belongs to the J population. In total, each population consists of 15 lines with 
different treatment histories and 60 different lines are considered altogether (Table 1). In 
each generation, seeds were dried after harvesting and stored at -80°C until use in the final 
experiment. In the final experiment, the 30 lines from the first, second and third generation 
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were sown in a completely randomized design. All 30 lines were grown either in C and S or 
in M and J conditions, creating 60 different lines in total (Figure 1).

Each line was analysed in the final experiment for variation in growth and morphology related 
traits and in secondary metabolites using untargeted UPLC-Orbitrap FTMS. A representative 
subset of the lines (CCCC, CSSC, SSCC, MMMM, MJJM and JJMM) was also analysed for 
gene expression with RNA sequencing. Different comparisons were made among the lines 
that are studied separately in the four populations (the C, S, M and J population). For all line 
comparisons, we thus only consider 15 lines per population (Table 1). In a first step, for both 
the morphological traits and the metabolic traits, the effect of different treatment histories 
is studied by comparing the average trait values of the 15 lines in each population (Between-
lines: Table 1). If there are significant differences between the lines, this suggests that the 
different treatment histories affect the trait values. However, these differences do not provide 
information regarding parental or transgenerational inheritance. Second, we compare the 
between-generation effects (Between-generations: Table 1). Although the lines were grown 
for four consecutive generations and in the final experiment in the same climate chamber 
and under the same conditions, the maternal environment might have been slightly different 
within each generation, and that might have caused morphological trait variation between 
lines of different generations, independent of previous stress treatment. Furthermore, 
growing plants for successive generations in the same climate chamber might habituate the 
plants to the conditions, either through maternal effects or stochastic epi-mutation, and this 
could affect the morphological trait values. Third, we compare the within-generation effects 
and differentiate parental, transgenerational and great transgenerational effects (Within-
generations: Table 1). Parental effects can be studied by comparing the progeny of control 

Figure 1. Experimental set-up. 
Col-0 plants were either stressed with salt or methyljasmonate, or control or mock treated in three 
subsequent generations: control (C), salt (S), mock (M) or methyljasmonate (J). Seeds of different 
lines from generation 1 to 3 were grown in a single final experiment again under either salt and 
control or mock and methyljasmonate conditions, simultaneously generating the fourth generation.
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treated and salt stressed parents, or progeny of mock treated and MeJA treated parents 
(e.g. CC vs SC or MMMM vs MMJM). Ten different comparisons can be made within each 
population by analysing the pair-wise comparisons between two lines (Parental effects: 
Table 1, each color represents a different pair-wise comparison between  a certain line 1 
and  a certain line 2 that are derived from a control (1) or a stressed (2) parent, respectively). 
Transgenerational effects can be investigated by comparing progeny of control treated and 
salt stressed grandparents, or progeny of mock treated and MeJA treated grandparents 

Table 1. Description of the possible comparisons among the 15 lines in each population (C, S, M and 
J population). The between-lines comparison tests for significant differences between the 15 lines 
of each population. The between-generation comparison tests for significant differences between 
generations possibly due to maternal effects of the climate chamber conditions that might have 
differed within the different generations. It compares for significant differences between generation 
1, 2, 3 and 4. The within-generation comparisons test for parental, transgenerational and great 
transgenerational effects. The between-line comparisons are used to look for significant differences 
between the 1’s and 2’s indicated with the same color. So, for parental effects, we analyse 10 specific 
comparisons for significance (e.g. CC vs SC in the C population and JMJ vs JJJ in the J population). 
For the transgenerational comparisons, we also study the between-line differences for significance 
between the 1’s and 2’s of the same color (e.g. CCC vs SCC in the C population and MMMM vs JJMM 
in the M population). For the great transgenerational comparison, we compare the between-line 
difference for significance between the orange 1 and 2 (e.g. CCCS vs SCCS in the S population and 
MMMM vs JMMM in the M population). The general comparisons are tested for parental effects by 
comparing the average of the light grey 1’s with the average of the grey 2’s, and for transgenerational 
effects by comparing the average of the light grey 1’s with the dark grey 2’s. Significance level for all 
tests: P < 0.05. Abbreviations: P, parental; T, transgenerational; G, great transgenerational.

Within-generations General
Generation Population Between- 

lines
Between- 
generations

P T G P T

1 C S M J 1 1
2 CC CS MM MJ 2 2 1 1

SC SS JM JJ 3 2 2
3 CCC CCS MMM MMJ 4 3 1 1 1 1 1

CSC CSS MJM MJJ 5 2 2
SCC SCS JMM JMJ 6 1 2 1 2
SSC SSS JJM JJJ 7 2 2 2

4 CCCC CCCS MMMM MMMJ 8 4 1 1 1 1 1 1 1 1
CCSC CCSS MMJM MMJJ 9 2 2
CSCC CSCS MJMM MJMJ 10 1 2 1 2
CSSC CSSS MJJM MJJJ 11 2 2 2
SCCC SCCS JMMM JMMJ 12 1 2 1
SCSC SCSS JMJM JMJJ 13 2 2
SSCC SSCS JJMM JJMJ 14 1 2 1 2
SSSC SSSS JJJM JJJJ 15 2 2 2



Chapter 7

206

7

(e.g. CCS vs SCS or MMMM vs JJMM) . Three different pair-wise comparisons can be made 
within each population (Transgenerational effects: Table 1, each color represents a different 
pair-wise comparison between a certain line 1 and a certain line 2 that are derived from a 
control (1) or a stressed (2) grandparent, respectively). Great transgenerational effects can 
be studied by comparing progeny of control treated and salt stressed great grandparents, 
and progeny of mock treated and MeJA treated great grandparents (e.g. CCCC vs SCCC or 
MMMJ vs JMMJ; great transgenerational effect in Table 1). And finally, general parental 
effects can be investigated by comparing the average trait values of all lines derived from 
control parents with the average trait values of all lines derived from salt stressed parents, 
and similarly for mock and methyljasmonate (Table 1: General Parental effect). General 
transgenerational effects can be studied by comparing the average trait values of all lines 
derived from control grandparents with the average trait values of all lines derived from 
salt stressed grandparents, and similarly for mock and methyljasmonate (Table 1: General 
Transgenerational effects).

Morphological traits 
Phenotypic characterisation
To investigate the effect of environmental stress on morphological traits, the average trait 
values of the four populations were compared. Exposure to saline conditions delayed 
flowering and reduced biomass, leaf length, plant height and total seed weight compared 
with control conditions (Figure 2). Exposure to methyl jasmonate also reduced biomass, leaf 
length and plant height and delayed flowering, but total seed weight was slightly increased 
(Figure 2). The morphological traits measured on the same plants showed strong correlations 
in all four populations. In the C, M and J populations, flowering time strongly positively 
correlated with plant height, leaf length and total seed weight, indicating that late flowering 
is advantageous in relation to plant size and reproductive success (Figure 3). Within the S 
population, however, flowering time strongly negatively correlated with total plant height, 
leaf length and total seed weight, indicating that early flowering in lines grown under saline 
conditions is beneficial in terms of plant size and reproductive success (Figure 3).

Between-lines effects
For all morphological traits in each population it was investigated whether the different 
treatment histories of the 15 lines resulted in significantly different trait values. Indeed, 
within all four populations significant effects of the treatment history were found for some 
of the morphological traits (Supplemental table 1). There were significant differences in leaf 
length between the lines in all populations, and in total seed weight between the lines in the 
C, M and J populations. Furthermore, total plant height in the C population, flowering time 
in the M population, and biomass and plant height 1st silique in the J population showed 
significant treatment effects between the lines. These initial analyses show that different 
treatment histories affect plant growth and morphology, but do not provide information 
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Between-generation effects
Significant between-generation effects were rare but were found between all generations 
and for all traits, except for total plant height (Supplemental table 2). In the C, S and 
J populations, there were only two significant between-generation effects, but in the M 
population, ten significant between-generation effects were detected (P < 0.05). The large 
majority of between-generation effects (69%) were found between lines grown in the first 
generation and lines grown in all other generations, where the smallest plants in size and 
height, and the lowest total seed weight were always found in the first generation, which 
indeed suggests that plants become habituated to the environmental conditions of the 

Figure 2. The average trait value of all plants from all generations in their respective environments: 
control (C), salt (S), mock (M), methyl jasmonate (J). FW, biomass; FT, flowering time (days after 
germination); PH1S, plant height at 1st silique; TPH, total plant height; LLL, largest leaf length; TSW, 
total seed weight.
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climate chamber. This is very useful information, because the parental and transgenerational 
comparisons only consider lines from the second, third and fourth generation. The 
differences between plants grown in the second, third and fourth generation do not show a 
general trend. Morphological trait values are sometimes higher in the previous generation, 
sometimes in the next generation. 

Within-generation effects
In all populations, significant parental and transgenerational effects were detected for 
different traits within different generations (Supplemental table 3, Figure 4), of which the 
most striking ones will be shortly discussed. Plant height at 1st silique, total plant height, leaf 
length and total seed weight all showed significant parental effects in the third generation 
in the C population (Figure 4 A and B, and Supplemental table 3; light grey vs grey). Progeny 
of stressed parents had reduced leaf length, shorter height and a lower total seed weight 
compared with progeny of unstressed parents. Furthermore, a significant transgenerational 
effect was found in the same population for total plant height between CCCC and SSCC 
where total plant height was reduced in the SSCC line (Figure 4B and Supplemental table 
3; light grey vs dark grey). In the J population, significant parental effects were detected 
in three comparisons in the fourth generation where the progeny of stressed parents had 
reduced plant height at the 1st silique (Figure 4C and Supplemental table 3). For some of the 
comparisons, the effects were also significant for total plant height, leaf length and total seed 

Figure 3. Spearman correlation matrices between morphological traits measured in a specific 
environment: control (C), salt (S), mock (M), methyl jasmondate (J). Spearman correlations are 
presented top-right of each figure, P-values are presented top-left of each figure (C, S, M and J). FT, 
flowering time; PH1S, plant height at 1st silique; TPH, total plant height; LLL, largest leaf length; TSW, 
total seed weight.
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Figure 4. Detection of significant (P < 0.05) differences between progeny of stressed and non-
stressed parents or grandparents in the third and fourth generation for morphological traits in 
different population. Light grey bar indicates progeny of unstressed parents, grey bar indicates 
progeny of stressed parents and dark grey bar indicates progeny of stressed (great) grandparents.
(A) Parental effects for largest leaf length (LLL), plant height at 1st silique (PH1S) and total seed weight 
(TSW) in the third generation in the C population. C, control; S, salt.
(B) Parental effects in the third generation and transgenerational effects in the fourth generation for 
total plant height (TPH) in the C population. C, control; S, salt.
(C) Parental effects in the fourth generation for PH1S in the J population. M, mock; J, 
methyljasmonate.
(D) Parental and transgenerational effects in the third and fourth generation for biomass formation 
(FW) in the S population. C, control; S, salt.
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weight (Supplemental table 3). In the S population, parental and transgenerational effects 
were detected for biomass in the third and fourth generation, where parental and (great) 
grand-parental stress treatment increased biomass in the stressed progeny (CCS vs CSS and 
SCS, and CCCS vs CSSS and SCCS) (Figure 4D and Supplemental table 3). These analyses 
show that parental and transgenerational effects can be observed, and they suggest that 
environmentally induced phenotypic effects can be inherited to future generations.

General effects
To test for general parental effects in each population, the mean value was calculated for 
all progeny derived from salt or MeJA stressed parents and compared with the mean value 
of all progeny derived from control or mock treated parents (Table 1). Three significant 
general parental effects were found, one in the S population and two in the J population 
(Supplemental table 4). Progeny in the S population flowered earlier when the parental 
plants were stressed, and as indicated above, early flowering seems to be beneficial for 
plants under saline conditions (Supplemental table 3 and 4). In the J population, the 
progeny of stressed parents flowered earlier and had reduced height compared to progeny 
of unstressed parents (Supplemental table 3 and 4). There were no significant general 
transgenerational effects.

The analyses above show that the environment can induce morphological trait variation 
that is passed on to future generations. Within the generations, convincing evidence was 
detected for parental and transgenerational effects, although limited to a number of traits, 
generations and populations. Transgenerational inheritance does not appear to be a general 
response, which might be caused by the different generation histories between lines that 
impede general comparisons.

Secondary metabolism
Biochemical characterisation
To investigate to what extent previous generation histories determine the biochemical 
composition of Arabidopsis, all lines were analyzed for secondary metabolites using 
untargeted UPLC-Orbitrap FT-MS. In total, 18,352 mass signals corresponding to 209 
metabolites were retrieved using Metalign and MSClust based untargeted data processing. 
Thirty-nine metabolites were partly or fully annotated within different secondary metabolic 
classes. Fifteen metabolites were identified as glucosinolates, thirteen as flavonoids, ten 

Table 2. Average metabolite levels (multiple ion count (MIC)) in each population: P-value comparing 
metabolite levels of C with S population and M with J population. P, adjusted P-value using 
Bonferroni correction; C, control; S, salt; M, mock; J, methyljasmonate. Orange color indicates 
flavonoids, blue color indicates glucosinolates, green color indicates isoprenoid and purple color 
indicates phenylpropanoids.
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Nr Candidate molecule C S P M J P
84 quercetin 7-O-rhamnoside 3-O-rhamnosyl-

glucoside
1243995 644760 0.000 754604 611465 0.000

95 kaempferol-3-O-(2-rhamnosylgluco-
side)-7-O-rhamnoside

6407702 5398578 0.000 5795455 5440110 0.001

102 quercetin x-O-rhamnoside y-O-rhamnoside II 99545 51201 0.000 103122 83223 0.000
112 quercetin x-O-glucoside y-O-rhamnoside 1542161 516278 0.000 1007767 476597 0.000
116 kaempferol-3-O-(glucosyl-1,6-glucoside)-7-O-

rhamnoside
25270 23273 1 22134 6067 0.000

124 quercetin 3-O-rhamnoside 7-O-rhamnoside 13552 189 0.000 6160 2145 0.000
128 kaempferol-3-O-gentiobioside-7-O-rhamno-

side + FA
70081 38466 0.000 50469 18023 0.000

142 isorhamnetin 3-O-glucoside 7-O-rhamnoside 73526 19196 0.000 79144 32101 0.000
147 quercetin 3-O-hexoside 62027 14547 0.000 44304 33047 0.000
168 methyl-quercetin-dideoxyhexoside 40277 5090 0.000 43434 15919 0.000
169 kaempferitrin 67856 72067 1 57665 86181 0.000
175 kaempferol 3-O-glucoside 49203 15561 0.000 39914 24178 0.000
222 kaempferol rhamnoside II 53421 26777 0.304 32013 7161 0.000
8 2-propenyl glucosinolate 407887 38262 0.000 353383 157612 0.000
16 3-butenylglucosinolate 0 373 1.000 0 666 0.047
19 2-propenyl glucosinolate 0 0 1 230 0 0.156
33 6-methylsulfinylhexyl glucosinolate 144200 131730 1 162173 201990 0.000
41 7-methylsulfinylheptyl glucosinolate 96397 98600 1 140498 299934 0.000
48 7-methylsulfinylheptyl glucosinolate 1037089 941850 1 1235232 1987467 0.000
49 4-methylthiobutyl glucosinolate 1045370 466095 0.000 1231307 818070 0.000
69 8-methylsulfinyloctyl glucosinolate 7647286 8525582 1 10022630 16273148 0.000
72 2-phenylethyl glucosinolate 217248 175260 0.004 199154 276432 0.000
77 4-methoxy-3-indolylmethyl-glucosinolate 2682990 2238215 0.001 3721396 4374128 0.000
97 9-ethylthiononyl glucosinolate 37020 101417 0.000 66158 133281 0.000
117 6-methylthiohexyl glucosinolate 47483 10655 0.000 88929 46367 0.000
163 heptyl glycosinolate 185598 200292 1 291248 335193 0.000
179 7-methylthioheptyl glucosinolate 375752 98170 0.000 657940 663073 0.726
210 8-methylthiooctyl glucosinolate 721922 290026 0.005 1501934 2189631 0.036
34 2-C-methyl-D-erythritol 1-O-beta-D-fructo-

furanoside 
274499 193781 0.000 248648 262941 0.003

43 dihydroxybenzoic acid glucoside I 9342 13981 0.050 17181 18808 0.452
52 dihydroxybenzoic acid xyloside II 373361 474076 0.000 493916 605082 0.000
56 hydroxyferulic acid glucoside I 114127 31834 0.000 71497 13832 0.000
67 hydroxyferulic acid glucoside II 46204 30989 0.000 48042 28339 0.000
140 sinapoyl quinic acid conjugate 14668 4060 0.000 15734 42668 0.000
150 sinapoyl malate I 12492359 11711910 0.180 12377492 11428927 0.000
152 trans-dihydrodehydrodiconiferyl alco-

hol-9-O-beta-D-glucoside
541600 421390 0.000 587008 764350 0.000

158 feruloyl malate coupled to coniferyl alcohol IV 496575 394623 0.000 393106 347090 0.000
174 feruloyl malate coupled to coniferyl alcohol II 21244 17688 1.000 2556 6281 0.002
180 dehydrodiconiferyl alcohol glucoside 207874 119836 0.000 170836 198701 0.000
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as phenylpropanoids and one as isoprenoid (Supplemental table 5). Glucosinolates are 
classified into aliphatic, aromatic or indole glucosinolates based on their biosynthesis from 
methionine, phenylalanine or tryptophan, respectively. Twelve glucosinolates were aliphatic 
glucosinolates, one was an aromatic glucosinolate and one was an indole glucosinolate 
(Supplemental table 6).

Next, the treatment effects on the metabolic traits were investigated. Under saline conditions, 
33% of the metabolites had significantly increased levels and 32% had significantly decreased 
levels compared to control conditions (P < 0.05). Upon methyljasmonate treatment, 35% of 
the metabolites had significantly increased levels and 24% had significantly decreased levels 
compared to mock treatment (Supplemental table 7). Interestingly, all flavonoid levels, except 
kaempferitrin decreased in both stress conditions, and the majority highly significantly (P < 
0.05); Table 2). Seven glucosinolates showed significant differences between control and 
saline conditions, and their levels all decreased under saline conditions (Table 2). However, 
upon methyljasmonate treatment, the levels of ten glucosinolates increased significantly, 
which fits with their function in biotic stress resistance (Table 2). The isoprenoid, 2-C-methyl-
D-erythritol 1-O-beta-D-fructofuranoside, decreased under saline conditions, but increased 
under methyljasmonate conditions (Table 2). The majority of phenylpropanoids decreased 
significantly upon salt treatment, but not upon methyljasmonate treatment (Table 2). These 
analyses show that biotic and abiotic stress elicit very different responses in phenylpropanoid 
and glucosinolate levels, but very similar responses in the flavonoid levels. Furthermore, the 
metabolites within each class respond rather similar to the different stresses.

Between-lines effects
For all metabolites, it was assessed whether the different generation histories among the 
15 lines in each population result in significantly different metabolite levels. Thirty-eight 
metabolites were significantly altered by the treatment history in the different populations. 
Twelve metabolites had significantly different levels between lines in the C population, 
three in the S population, eight in the M population and sixteen in the J population 
(Supplemental table 8). This indicates that the treatment history has a significant effect on 
metabolite accumulation, but it does not differentiate between-generation, parental and 
transgenerational effects. Therefore, in the following sections on between-generation, 
within-generation and general effects, we will elaborate on the effects of the treatment 
histories.

Between-generation effects
In total, 355 significant between-generation effects were detected for the metabolic traits 
of which about 50% were found between generation 1 and the other three generations. 
These effects are less important because the parental and transgenerational effects are 
only investigated in the second, third and fourth generation. The large majority (208) of 
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between-generation effects were detected in the C population (P < 0.05) (Supplemental 
table 9). This indicates that the maternal environment (climate chamber conditions) was 
most likely slightly different in the consecutive generations, and had a strong impact on the 
biochemical composition of plants grown in control conditions in the final experiment. The 
between-generation effects are lower in the S, M and J populations, suggesting that stress 
treatment, but also mock treatment in the M population, has in most cases a larger effect on 
the metabolite accumulation than the variation in maternal environments (climate chamber 
conditions).

Within-generation effects
In total, 484 significant parental and transgenerational effects were observed (Supplemental 
table 10). Most significant effects were parental effects observed in the fourth generation 
in all three populations, probably due to the higher number of comparisons. We did not 
increase the significance threshold for multiple testing, because stress-induced parental 
and transgenerational effects are not expected on all metabolite levels, but rather on 
a small subset, and these effects are actually expected to be small. Furthermore, a few 
very striking cases were detected where the same metabolite or a number of metabolites 
from the same metabolic class showed altered levels due to parental or transgenerational 
effects, sometimes in different generations. Some of these convincing observations will 
be shortly discussed here. In the C population, the levels of three aliphatic glucosinolates 
were significantly decreased in the fourth generation in progeny of stressed parents and 
grandparents, showing both parental and transgenerational inheritance (Figure 5A). In the M 
population, on the other hand, the levels of three flavonoids were significantly increased in 
the fourth generation in progeny of stressed parents, grandparents and great grandparents, 
again providing evidence for both parental and transgenerational inheritance (Figure 5B). 
Similarly, the levels of the unidentified metabolite number 146 were significantly increased 
in both the third and fourth generation in progeny of differently stressed ancestors (Figure 
5C). In the J population, two phenylpropanoids showed significantly different levels in the 
second, third and fourth generation in progeny of stressed parents, grandparents and great 
grandparents (Figure 5D). Furthermore, the accumulation of two unknown metabolites (nr 
130 and 132) in both the third and fourth generation was affected by different grandparental 
treatment (Figure 5E). These results show that in all different metabolic classes, both 
parental and transgenerational effects of previous generation treatments can be detected, 
both in the third and fourth generation for the same metabolites. This provides convincing 
evidence that some level of transgenerational inheritance also exists at the metabolic trait 
level.

General effects
To observe general parental and transgenerational effects among all lines, the mean value 
was calculated for all progeny derived from salt or MeJA-stressed parents or grandparents 
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and compared to the mean value of all progeny derived from control or mock-treated parents 
or grandparents (Table 1). There were more significant transgenerational effects (44) than 
parental effect (17). Twelve significant parental effects were found in the M population, 
three in the C population and two in the J population (Supplemental table 11). One of the 
metabolites in the M population was a phenylpropanoid, hydroxyferulic acid glucoside I. 
Twenty-four significant transgenerational effects were detected in the M population, fourteen 
in the J population, four in the S population and two in the C population (Supplemental table 
12). Among the metabolites with transgenerational effects in the M population were four 
aliphatic glucosinolates and one phenylpropanoid. The glucosinolate content in the mock-
treated progeny increased when the grandparents had been stressed with methyljasmonate 
(Figure 6), concomitant with the role that glucosinolates play in biotic stress resistance. 
Measured over all lines, however, two of these glucosinolates showed greatly reduced levels 
after MeJA treatment compared with mock treatment, while one glucosinolate had greatly 
increased levels and the other glucosinolate did not show different levels between the two 
treatments (Supplemental table 8). Interestingly, two of the four metabolites were also found 
to have maternal and transgenerational effects in the fourth generation of the C population 
where previous generational salt treatment reduced the glucosinolate levels, concomitant 
with the general effect of salt on these glucosinolates (Figure 5A). For metabolite number 3 
and 234, both general parental and transgenerational effects were observed, although for 
metabolite number 3, the parental and transgenerational effects were opposite in effect 
(Supplemental table 11 and 12). 

This large-scale untargeted metabolomics approach demonstrates that parental and 
transgenerational effects, although small, can be observed in the progeny of stressed and 
unstressed parents and grandparents. Because all the lines were derived from the same 
Col-0 parental line, epigenetic variation, and not DNA sequence variation is most likely 
responsible for the metabolic variation detected.

Figure 5. Detection of significant (P < 0.05) differences between progeny of stressed and non-
stressed parents or grandparents in the third and fourth generation for different metabolites in dif-
ferent population. Light grey bar indicates progeny of unstressed parents, grey bar indicates progeny 
of stressed parents and dark grey bar indicates progeny of stressed (great) grandparents.
(A) Parental (grey) and transgenerational (dark grey) effects on the levels of three glucosinolates 
in the fourth generation of the C population. (B) Parental (grey) and transgenerational (dark grey) 
effects on the levels of three flavonoids in the fourth generation of the M population. (C) Parental 
(grey) and transgenerational (dark grey) effects on the metabolite levels of unknown metabolite nr 
146 in both the third and fourth generation in the M population. (D) Parental (grey) and transgen-
erational (dark grey) effects on the levels of two phenylpropanoids in the second, third or fourth 
generation of the J population. (E) Transgenerational effects (dark grey) on the accumulation of two 
unknown metabolites with nr 130 and 132 in the third and fourth generation in the J population.
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RNA sequencing
To investigate whether the observed parental and transgenerational effects at the 
morphological and metabolic level can be explained by transcript variation, RNA sequencing 
was performed on three selected lines from the fourth generation of both the C and M 
population: CCCC, CSSC and SSCC, and MMMM, MJJM and JJMM. The SSCC and JJMM were 
selected to look at the transgenerational effect of salt and MeJA on the unstressed progeny 
and in both lines plants were stressed only during the first two generations. The CSSC and 
MJJM were selected to look into the parental effects of salt and MeJA on the unstressed 
progeny, and stress was applied for the two consecutive generations two and three.

Figure 6. The general effect of methyljasmonate (J) treatment or control treatment in the grandpa-
rental generation on the accumulation of four aliphatic glucosinolates in the unstressed progeny in 
the M population (P < 0.05). (A-D) Light grey bar represent unstressed progeny from unstressed (M) 
grandparents, dark grey bars represent unstressed progeny from stressed (J) grandparents.
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Salt experiment
First, the parental effects on transcript variation in the lines were studied. Seven genes were 
differentially expressed between the lines CCCC and CSSC with a significant FDR-adjusted 
P-value (FDR-P < 0.05) (Supplemental table 13). One of these genes, DELTA1-PYRROLINE-
5-CARBOXYLATE SYNTHASE 1 (P5CS1), is involved in salt stress responses (Strizhov et al., 
1997; Abrahám et al., 2003). Some of the other genes are involved in disease resistance or 
cell wall maintenance. If we allow a more loose significance level (FDR-P < 0.1), ten genes 
were found to be significantly differently expressed between the two lines. One more salt-
responsive gene, EARLY RESPONSE TO DEHYDRATION 6 (ERD6) (Yamada et al., 2010) and a 
cell wall maintenance gene were now found. Eight genes were up-regulated in the CSSC line, 
while two genes, among which the P5CS1 gene were down-regulated. The strongest down-
regulation was found for P5CS1, 1.6 (log2 = 0.7), while the strongest up-regulation was found 
for an EXS family protein gene, 2.3 (log2 = 1.2) (Supplemental table 13).

The transgenerational effect on transcript variation was quite similar to the parental effect, 
but much stronger. Fifty-two genes were significantly differently expressed between the 
lines SSCC and CCCC (FDR-P < 0.05) (Table 3). Fourty-nine genes were up-regulated in the 
SSCC line with a maximum up-regulation of 3.2 fold (log2 = 1.7) for ERD5, and three genes 
were down-regulated with a maximum down-regulation of 1.5 (log2 = 0.6). Interestingly, 
of the twenty genes that showed the highest expression differences between the parental 
lines, twelve genes were present in the top-30 genes of the transgenerationally differentially 
expressed genes (Table 3). This indicates that salt stress in previous generations both 
parentally and transgenerationally affects the expression of specific genes in the unstressed 
progeny. This further suggests a salt stress-induced epigenetic mechanism that controls the 
expression of certain genes or transcription factors.

Six of the significantly differentially expressed genes are annotated to be involved in salt 
stress responses and eight in responses to water deprivation. Genes involved in stress, 
abiotic stress and water deprivation were enriched in the top-25 differentially expressed 
genes (Table 4, P < 0.01). This suggests that the environmentally induced epigenetic 
mechanism is adaptive, and that these plants may perform better under saline conditions. 
Indeed, transgenerational effects are present in the third generation and maternal effects 
in the third and fourth generation for biomass in the S population (Figure 4D). Biomass of 
plants grown under stress conditions significantly increased when parents or grandparents 
were also stressed.

Interestingly, no significantly differently expressed genes were found between the CSSC and 
SSCC lines, further demonstrating that parental and transgenerational salt stress effects on 
gene expression are very similar.
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Table 3. Trans-generational effects salt: Top-30 differentially expressed genes 
Top-30 RNA sequencing results between CCCC and SSCC. Results are sorted on most significant 
P-value between CCCC and SSCC. Red-coloured gene descriptions are involved in responses to salt 
stress (TAIR). Blue-coloured genes are also found in CCCC-CSSC top-20 genes. FDR-P, FDR-adjusted 
P-value; Abbr., gene abbreviation.
 BaseMean BaseMean foldChange     
Gene id CCCC SSCC SSCC/CCCC P-value FDR-P Abbr. Description
AT4G30270 450.53 894.74 1.99 0 0 XTH24 MERI5B (meristem-5)
AT1G35350 161.85 478.87 2.96 0 1.00E-06   
AT1G56510 665.2 1150.09 1.73 0 0.00026 WRR4 WHITE RUST RESISTANCE 4
AT4G19530 1489.61 2637.43 1.77 0 0.002445  disease resistance protein
AT3G04210 2700.67 4044.17 1.5 1.00E-06 0.002832  disease resistance protein
AT4G19520 743.89 1170.17 1.57 1.00E-06 0.002832  disease resistance protein 
AT5G65730 972.06 1529.55 1.57 1.00E-06 0.002832 XTH6 xyloglucan:xyloglucosyl 

transferase
AT4G20260 2554.42 4261.95 1.67 1.00E-06 0.003291 PCAP1 DREPP plasma membrane
AT1G63860 133.94 258.83 1.93 1.00E-06 0.003704  ATP binding 
AT2G01190 220.19 372.58 1.69 3.00E-06 0.006044 PDE331 octicosapeptide
AT5G03120 208.84 466.19 2.23 3.00E-06 0.006044  unknown protein
AT2G48030 88.36 200.47 2.27 3.00E-06 0.006049  endonuclease
AT4G08930 180.46 328.78 1.82 3.00E-06 0.006049 ATAPRL6 ATAPRL6 (APR-like 6)
AT1G52290 440.02 687.9 1.56 4.00E-06 0.00622 PERK15 protein kinase family protein
AT5G65470 693.6 1188.33 1.71 4.00E-06 0.006674  unknown protein
AT5G35750 327.45 545.29 1.67 5.00E-06 0.006875 HK2 ARABIDOPSIS HISTIDINE 

KINASE 2
AT1G08930 1466.57 3046.44 2.08 5.00E-06 0.006972 ERD6 EARLY RESPONSE TO DEHY-

DRATION 6)
AT4G00970 191.65 348.75 1.82 7.00E-06 0.008588 CRK41 protein kinase family protein
AT3G59310 367.25 610.88 1.66 1.70E-05 0.020284  unknown protein
AT1G53430 490.69 984.06 2.01 1.80E-05 0.020375  leucine-rich repeat family
AT1G29660 3272.06 4777.55 1.46 3.40E-05 0.033774  GDSL-motif lipase
AT5G06530 1669.1 3314.61 1.99 3.40E-05 0.033774 AtABCG22 ABC transporter family 

protein
AT1G12110 1654.11 2495.1 1.51 3.60E-05 0.033774 NRT1.1 nitrate transmembrane 

transporter
AT1G23480 271.67 454.65 1.67 3.70E-05 0.033774 CSLA3 CELLULOSE SYNTHASE-LIKE A3
AT2G23600 1425.87 2096.8 1.47 3.80E-05 0.033774 MES2 ACETONE-CYANOHYDRIN 

LYASE
AT5G58670 486.71 806.66 1.66 3.80E-05 0.033774 PLC1 PHOSPHOLIPASE C1
AT3G30775 182.91 581.3 3.18 4.20E-05 0.035777 PRODH EARLY RESPONSIVE TO DEHY-

DRATION 5
AT1G66940 561.77 824.06 1.47 4.80E-05 0.038467  protein kinase-related
AT1G17990 295.33 508.46 1.72 5.10E-05 0.038467  12-oxophytodienoate reduc-

tase
AT3G60320 1170.98 2002.2 1.71 5.20E-05 0.038467  DNA binding
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MeJA experiment
Upon correction for multiple testing, no significantly differentially expressed genes were 
detected between the MJJM and MMMM lines, but fourteen genes were differentially 
expressed between JJMM and MMMM, which suggests that the transgenerational effect 
on transcript variation is larger than the parental effect (FDR-P < 0.05) (Supplemental 
table 14 and Table 5). Similar to salt stress, seven genes from the top-25 genes, based on 
the uncorrected P-value, between MJJM and MMMM were also present in the top-25 
genes between JJMM and MMMM. This indicates that MeJA application to parents and 
grandparents elicits a similar pattern of gene expression variation in the unstressed progeny. 
This further suggests that MeJA-induced epigenetic changes control the expression of 
specific genes or transcription factors. There was no overlap whatsoever in the differentially 
expressed genes of the unstressed progeny of salt stressed and MeJA treated grandparents, 
which suggests that Me JA and salt stress elicit different, specific, epigenetic changes.

Of the top-25 genes that were significantly differentially expressed between JJMM and 
MMMM, seven genes were detected that are involved in organ development (Table 
5). Interestingly, also FLAVONOL SYNTHASE1 (FLS1), which catalyzes the formation of 
flavonols from dihydroflavonols, was detected (Owens et al., 2008). It was in the top-5 of 
most significantly differentially expressed gene and was 1.51 (log2 = 0.59) times stronger 
expressed in JJMM than in MMMM (Table 5). In the metabolic study, three flavonoids were 
found that showed transgenerational effects (Figure 5B) and they all had higher levels in 
the transgenerationally stressed lines. This suggests that a transgenerational stress signal 
caused higher gene expression of FLS1 resulting in increased flavonoid content in the 
unstressed progeny. The strongest differentially expressed gene is QUA-QUINE STARCH 
(QQS), a gene involved in starch metabolism that has previously been linked to natural 
epigenetic regulation (Silveira et al., 2013) (Table 5).

Table 4. Over-representation of genes in certain biological processes.
AmiGO v1.8 was used to calculate GO enrichment. Sample frequency is number of genes involved in 
the process / total number of entered genes. TAIR gives the total number of genes in process/ total 
number of genes in Arabidopsis thaliana (from TAIR10).
Biological process P-value Sample frequency TAIR
Response to water deprivation 0.0000 8/30 (26.7%) 421/30320 (1.4%)
Response to water 0.0000 8/30 (26.7%) 428/30320 (1.4%)
Response to abiotic stimulus 0.0055 12/30 (40.0%) 2833/30320 (9.3%)
Response to stress 0.0068 14/30 (46.7%) 4030/30320 (13.3%)
Response to acid 0.0120 9/30 (30.0%) 1604/30320 (5.3%)
Response to inorganic substance 0.0377 8/30 (26.7%) 1417/30320 (4.7%)
Response to oxygen-containing compound 0.0580 10/30 (33.3%) 2459/30320 (8.1%)
Response to salt stress 0.0723 6/30 (20.0%) 780/30320 (2.6%)
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Table 5. Trans-generational effects JA: Top-25 differentially expressed genes 
Top-25 RNA sequencing results of differentially expressed genes between MMMM and JJMM. 
Results are sorted on most significant P-value between MMMM and JJMM. Red-colored gene 
descriptions are involved in responses to JA stress (TAIR). Blue-colored gene descriptions are involved 
in organ development. Purple-colored genes are also found in top-25 of MMMM and MJJM. FDR-P, 
FDR-adjusted P-value; Abbr., gene abbreviation.
 BaseMean BaseMean foldChange     
Gene id MMMM JJMM JJMM/

MMMM
P-value FDR-P Abbr. Description

AT3G30720 125.22 37.64 0.3 1.00E-06 0.013749 QQS QUA-QUINE STARCH
AT2G27310 186.54 103.87 0.56 3.00E-06 0.013749   F-box family protein
AT3G54820 105.37 189.76 1.8 3.00E-06 0.013749 PIP2D PLASMA MEMBRANE 

INTRINSIC PROTEIN 2;5
AT4G08150 47.32 120.7 2.55 3.00E-06 0.013749 KNAT1 KNOTTED-LIKE
AT5G08640 622.16 936.8 1.51 3.00E-06 0.013749 FLS1 FLAVONOL SYNTHASE
AT3G16460 311.67 175.17 0.56 5.00E-06 0.016376 JAL34 jacalin lectin family protein
AT3G63200 198.78 321.83 1.62 5.00E-06 0.016376 PLP9 PATATIN-LIKE PROTEIN 9
AT3G18000 455.29 692.7 1.52 7.00E-06 0.01902 XPL1 XPL1 (XIPOTL 1)
AT1G78000 178.5 93.02 0.52 1.00E-05 0.023971 SULTR1;2 SULFATE TRANSPORTER1;2
AT5G16250 237.03 366.08 1.54 1.00E-05 0.023971   unknown protein
AT1G60730 417.06 245.58 0.59 1.50E-05 0.030001   aldo/keto reductase family 
AT1G13710 23.85 66.7 2.8 1.60E-05 0.030001 KLU CYP78A5
AT1G18370 135.15 216.96 1.61 2.10E-05 0.038049 NACK1 HINKEL
AT3G17998 451.51 685.24 1.52 2.40E-05 0.039529 CPuORF30 Conserved peptide 

upstream open reading 
frame 30

AT3G15500 17.92 2.1 0.12 3.30E-05 0.050664 NAC3 NAC DOMAIN CONTAIN-
ING PROTEIN 55

AT2G45170 282.62 174.5 0.62 4.40E-05 0.057123 ATG8E AtATG8e
AT1G22590 305.84 147.17 0.48 4.50E-05 0.057123 AGL87 MADS-box family protein
AT4G13540 56.21 118.86 2.11 4.50E-05 0.057123   unknown protein
AT3G13960 25.2 57.51 2.28 4.70E-05 0.057123 GRF5 GROWTH-REGULATING 

FACTOR 5
AT5G15780 326.95 504.62 1.54 5.60E-05 0.062597   pollen Ole e 1 allergen and 

extensin family protein
AT5G23940 497.96 776.77 1.56 5.70E-05 0.062597 PEL3 embryo defective 3009
AT1G08920 216.21 136.43 0.63 6.30E-05 0.066792 ESL1 sugar transporter
AT4G23800 378.64 544.56 1.44 7.90E-05 0.079278 3xHMG-box2 high mobility group
AT2G24940 1502.03 1096.54 0.73 8.30E-05 0.080559 MAPR2 membrane-associated 

progesterone binding 
protein 2

AT5G39610 39.39 12.49 0.32 9.00E-05 0.082372 ORE1 NAC DOMAIN CONTAIN-
ING PROTEIN 6
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Discussion
Convincing evidence for transgenerational inheritance was produced at the transcript, 
biochemical and morphological plant level. When parents or grandparents were stressed 
with salt or methyljasmonate, specific responses in gene expression, metabolite abundance 
and morphological and growth-related traits were elicited in their progeny. Because all 
lines were derived from the same homozygous founder plant, the trait variation is most 
likely caused by epigenetic variation, and not due to DNA sequence variation. The results 
strongly indicate that the epigenetic signal is not stochastically produced, but is induced 
by the applied stresses. This is supported by a number of observations. First, seeds from 
different but identically treated plants were randomly sown in the next generation. The 
variation between lines is thus not the result of epigenetic modifications that arose in 
one, specific plant, but more likely, similar epigenetic signals that arose in multiple plants 
independently. It must be noted, however, that some of the plants died and others produced 
no or only a few seeds in the salt treatment, which obviously biased the random selection 
towards epigenetic modifications in high productive plants. Second, both parental and 
transgenerational effects of the same sign were found at all phenotypic levels. The clearest 
example was demonstrated by RNA sequencing where a strong overlap was detected in 
the effects of parental and grand-parental stress treatment on the differential expression 
of genes in the non-stressed progeny. Both parental and grandparental stress treatment 
induced transgenerational responses that increased or decreased the expression of the 
same genes in the non-stressed progeny. Third, at the metabolic level, transgenerational 
effects were detected in both the third and fourth generation for a number of metabolites, 
and general trans-generational effects measured over multiple lines were observed for 
glucosinolates and a phenylpropanoid, among others. Finally, the transgenerational signal 
induced by salt or methyljasmonate was specific for both stresses. In all four populations 
(C, S, M and J), salt and methyljasmonate increased the accumulation of metabolites from 
different chemical classes. In addition, different genes were significantly up-regulated in 
the progeny when grandparents had been stressed with salt or with methyljasmonate. 
There was no overlap between the two stresses. These results strongly suggest that 
abiotic and biotic stress elicit stress-specific epigenetic changes that are inherited to future 
generations. However, more studies are needed to prove that the transgenerational signal 
is an epigenetic signal, including analysing DNA methylation, chromatin and small RNAs 
and the molecular mechanisms that govern such responses. The most obvious candidate 
for the transgenerational epigenetic signal is DNA methylation, which can be induced by 
stress and can be stably inherited to future generations (Verhoeven et al., 2010). Therefore, 
the logical next step in proving stress-induced transgenerational inheritance will be whole-
genome bisulphite sequencing on selected lines. This will also allow differentiating between 
epigenetic and genetic polymorphisms.

If a transgenerational epigenetic mechanism exists, it may be adaptive in certain 
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environments. Plants and especially annual plants are quite likely to grow in the same 
environment as their parents and when a certain biotic or abiotic stress continues for 
several generations, transgenerational inheritance can be adaptive (Karban et al., 1999; 
Rando and Verstrepen, 2007). However, if the stress persists for much longer periods of 
time, stable, genetic polymorphisms that increase adaptation to the environment are 
most likely beneficial. Thus, in environments where conditions fluctuate, epigenetic 
modifications might be particularly adaptive, because, in theory, they can be reversed when 
the environment changes.

Research on transgenerational responses to salt stress showed that salt stress in previous 
generations can increase salt stress tolerance of progeny  (Boyko et al., 2010; Suter and 
Widmer, 2013). The increased tolerance of the progeny is most likely associated with 
epigenetic modifications because exposure to salt also increased DNA methylation and 
the methylome variation was maintained in non-stressed progeny concomitant with 
changes in gene expression (Boyko et al., 2010). However, the epigenetic responses were 
not transferred to further consecutive generations and the authors hypothesized that only 
repeated exposure to the same stress would maintain the transgenerational response over 
multiple generations (Boyko et al., 2010; Boyko and Kovalchuk, 2011). The non-stressed 
lines analysed with RNA sequencing in our study were derived from ancestors that had been 
exposed to stress for two consecutive generations, and we indeed detected differentially 
expressed genes that are involved in the response to salt. Most genes, however, were 
responsive to water deprivation, which indicates that the increase in external osmotic 
pressure due to salt stress probably had a larger effect on the phenotypes than the toxicity 
of the ions. Besides, many genes involved in cell wall maintenance, such as XTH24, XTH6 and 
CELLULOSE SYNTHASE LIKE A3 (CSLA3) were significantly up-regulated in SSCC compared to 
CCCC, indicating that the grand-parental stress treatment also had a significant effect on 
growth. We indeed observed trans-generational effects for biomass in the third generation 
and maternal effects in the third and fourth generation in the S population (Figure 3). Biomass 
of stressed plants was significantly increased when parents or grand-parents were also 
stressed, providing supportive evidence for this hypothesis. However, biomass formation 
and other morphological traits did not improve further when plants were stressed for more 
consecutive generations. This probably indicates that some level of stochasticity is present 
and that the epigenetic modifications may be reversed, even when stress is maintained.

Three independent studies on biotic stress and priming showed that progeny of stressed 
parents were better protected against pathogens and herbivores than progeny of non-
stressed parents (Luna et al., 2012; Rasmann et al., 2012; Slaughter et al., 2012). Caterpillar 
mass was significantly reduced on offspring of parents or grandparents that had been exposed 
to caterpillar feeding (Rasmann et al., 2012). Furthermore, repeated inoculations with 
virulent Pseudomonas syringae pv tomato DC3000 revealed transgenerational resistance 
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that was sustained over one non-stressed generation (Luna et al., 2012). These studies 
provide convincing evidence that the biotic stress-induced transgenerational responses can 
be inherited over one non-stressed generation, similar to our study. Herbivory  in previous 
generations increased gene expression of two JA-responsive gene, LIPOXYGENASE2 (LOX2) 
and ALLINE OXIDE SYNTHASE (AOS) (Rasmann et al., 2012). In our study, expression of these 
genes was not affected. Nevertheless, a number of other genes were differentially expressed 
between MMMM and JJMM, among which FLAVONOL SYNTHASE1 (FLS1), which catalyses 
the formation of flavonols from dihydroflavonols (Owens et al., 2008). Interestingly, three 
flavonoids were detected that had higher metabolite levels in non-stressed progeny of 
stressed as compared to non-stressed progeny of non-stressed grandparents. Flavonoids are 
beneficial for plants as stress protecting agents and for attraction of pollinators. Moreover, 
several insects are sensitive to flavonoids that may hence function as feeding deterrents 
(Treutter, 2006). Therefore, the increased accumulation of flavonoids could be beneficial in 
MeJA elicited defense. 

The strongest differentially expressed gene between JJMM and MMMM was QUA-QUINE 
STARCH (QQS), a gene involved in starch metabolism in leaves. RNAi-directed  silencing of 
this gene slightly increased starch levels at the end of the day (Li et al., 2009). QQS is a de 
novo, recently originated gene that is present in various Arabidopsis accessions, but not 
in any other sequenced species (Li et al., 2009; Silveira et al., 2013). Hypomethylation in 
different epigenetic mutants caused increased QQS expression (Jordan et al., 2007; Lister 
et al., 2008). Interestingly, QQS expression varies widely in natural accessions as well as in 
wild populations, and the level of expression correlates negatively with DNA methylation 
(Silveira et al., 2013). The DNA methylation and gene expression patterns can be stably 
inherited for several generations. Because we detected MeJA induced epigenetic changes in 
the expression of this gene and because MeJA mimics herbivore attack, herbivore pressure 
might affect the DNA methylation and expression of this gene. QQS was down-regulated in 
JJMM compared to MMM and might thus cause higher sugar levels. Increased investment in 
primary metabolism could be beneficial for plants in stressful environments where primary 
metabolites can be used as resources for defense responses (Bolton, 2009) (Chapter 4).
Stress-induced transgenerational inheritance was observed at the transcript, metabolite and 
morphological trait level. For several traits, the stress-induced changes were transmitted 
over two non-stressed generations, clearly demonstrating transgenerational inheritance. 
Furthermore, specific salt-responsive genes were up-regulated in non-stressed progeny of 
salt stressed parents and grandparents. The salt-elicited response clearly differed from the 
MeJA elicited response suggesting that the transgenerational signals are stress-specific. 
Because all lines were derived from a common founder line, epigenetic variation, and not 
DNA sequence variation is most likely causal for the transgenerational effects.
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Material and methods
Experimental Set-up
Seeds of Arabidopsis thaliana ecotype Col-0 derived from a single plant were sown on filter 
paper with demi water and stratified at 4˚C in darkness for 5 d. Thereafter, seeds were 
transferred to a culture room (16 h LD, 24˚C) to induce seed germination for 42 h. 80 replicate 
seedlings were transplanted to separate Rockwool blocks of 4 x 4 cm in a climate chamber 
(16 h light, 125 µmol m-2 s-1, 70% RH, 20/18˚C day/night cycle). The replicates were divided 
over four different treatment groups: control (C), salt (S), Mock (M) and methyl-jasmonate 
(J), each group consisting of 20 replicates. The C, M and J plants were watered every morning 
with 1/1000 Hyponex solution (Hyponex, Osaka, Japan). The S plants were watered each 
morning with 1/1000 Hyponex solution supplemented with 50mM NaCl. The C and S plants 
were watered in trays where the solution was removed after 5 min, the M and J plants were 
watered by a flooding system for 5 min. The J plants were sprayed bi-weekly with 100μM 
MeJA (5 μl MeJA in 218 μl 96% ethanol, and supplemented with 7.5 μl Silwet-77, added to 
a total volume of 50 ml with demi water), while the M plants were sprayed with the same 
solution lacking MeJA. Two weeks after flowering, the MeJA treatment was stopped. Seeds 
were harvested in batch per treatment at the end of the growth period and then left on 
the bench for 1 month. Subsequently, seeds were dried for 4 d at a relative humidity of 
20% and then either stored for further experiments in -80 ˚C or sown on filter paper for the 
experiment in the next generation. The C and S seeds were grown in both C and S treatment 
(CC, CS, SC and SS), while the M and J seeds were grown in both M and J treatment (MM, MJ, 
JM, JJ) (Figure 1). After seed-drying the exact same experiment was repeated again with the 
CC, CS, SC and SS seeds growing on C and S, and the MM, MJ, JM and JJ seeds growing on M 
and J (Figure 1). For the final experiment, all seeds from all treatment histories were taken 
from the -80°C and sown in the exact same circumstances in the same climate chamber, 
as previously mentioned in a completely randomized design per treatment group with 20 
replicates per line (Figure 1).

Morphological phenotyping
Nine out of twenty replicates were harvested twenty-five days after germination (25 DAG) at 
the end of the day for metabolomics and sequencing, and biomass (FW) was noted for each 
individually harvested plant. For the other eleven replicates, flowering time (FT) was noted 
at the time the first flower opened. Three weeks after flowering for each individual plant, 
plant height to the 1st siliques (PH1S), total plant height (TPH) and largest leaf length (LLL) 
were measured. At the end of the experiment, all seeds were harvested per individual plant 
and total seed weight (TSW) was measured. 

Untargeted metabolomics using UPLC-Orbitrap FTMS
Three individual replicates were pooled and grinded to make one replicate, and for each line 
there were in total three replicates. Metabolites were extracted in 75% methanol containing 
0.1% formic acid and 100 mg fresh weight of frozen powdered leaf material, as described in 
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Chapter 6.  After sonication and filtration, the extracts were subjected to untargeted LCMS-
based metabolomics, using an AQUITY UPLC (Waters) system coupled to a PDA detector 
(Waters) and an LTQ-Orbitrap FTMS hybrid mass spectrometer (Thermo). UPLC conditions 
and MS settings were as described (van Duynhoven et al., 2014). In short, 5 µl of extract 
was injected and compounds were separated using a 1.7µm AQUITY UPLC BEH C18 column 
(2.1*150 mm; Waters), held at 40˚C, and a linear 20 min-gradient from 5 to 35% acetonitrile 
(acidified with 0.1% FA) at a flow rate of 400 µl/min. An additional 15 min was used to wash 
and equilibrate the column before next injection. The MS analysis was carried out in ESI-
negative ionization mode at a source voltage of 4.5 kV. The spectra were collected at the 
mass range m/z 92-1200 at a resolution of 60,000 (FWHM at m/z 400) in centroid mode.
 
Untargeted processing of the raw data files was performed using Metalign software 
(Lommen, 2009). Sub-ppm mass accuracy enhancement was applied using both multiple 
internal lock masses, for scan by scan correction, and multiple external masses (PEG) for 
sample by sample correction (Lommen et al., 2011). The data file obtained was subsequently 
filtered for mass signals being present (i.e. signal to noise ratio > 3) in at least 3 samples and 
having an intensity of more than 1000 ions/scan in at least 1 sample, resulting in 18,352 
reproducible mass features. Finally, MSClust software (Tikunov et al., 2012) was used for 
clustering masses that originate from the same molecular ion based on their corresponding 
retention time and intensity patterns over samples, resulting in 209 metabolites.

RNA sequencing analysis
Total RNA was extracted from the same tissue and for the same three replicates per line 
as the metabolomics samples, but only for the lines CCCC, CSSC and SSCC, and MMMM, 
MJJM and JJMM using Qiagen’s RNeasy kit after a Qiagen DNase treatment. We used 50-
75 mg rosette tissue per sample and RNA concentration was checked with the Qubit 2.0 
fluorometer. Per sample 1 µg total RNA was used for RNA library preparation suitable for 
illumina HiSeq paired end sequencing according to TruSeq RNA™ Sample preparation LT 
protocol (Illumina Inc, San Diego CA, USA). In short, poly-adenylated RNA was captured 
using oligo dT beads followed by chemo-thermal fragmentation. Fragmented RNA was 
subsequently used for end repair, adaptor ligation, first and second strand cDNA synthesis 
and final library amplification following manufacturer’s protocol (Illumina). Final libraries 
were eluted in 30 µl elution buffer. Library quality was analysed using a Bioanalyzer 2100 
DNA1000 chip (Agilent Technologies) and quantified on a Qubit quantitation platform using 
Quant-iT PicoGreen (Invitrogen, Life Technologies). 
Indexed libraries were equimolar pooled and diluted to 6 pM for TruSeq Paired End v2 
DNA clustering on two flow cell lanes. Final sequencing was done on a HiSeq2000 platform 
using 101, 7, 101 flow cycles for sequencing paired end reads plus indexes reads. All steps 
for clustering and subsequent sequencing were carried out according to manufacturer’s 
protocol. Reads were split per sample by corresponding index demultiplexing using CASAVA 
1.8 software.
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The resulting sequence reads were checked for quality using FastQC 0.10.1 (Andrews, 
2010), and then quality-trimmed using CLC bio 6.0 (http://www.clcbio.com), and again 
checked for quality using FastQC (Andrews, 2010). BWA was used for mapping the reads 
to the Phi-X174 genome and the mapped reads were removed (Li and Durbin, 2009). 
The remaining reads were mapped to the Arabidopsis Col-0 (TAIR10) genome using CLC 
bio Genomics Server 5.0.1 (http://www.clcbio.com). Differential expression was finally 
determined using the Bioconductor DESeq R package v. 1.6.1 (Anders and Huber, 2010). The 
applications mentioned here are all integrated in an analysis pipeline developed by Applied 
Bioinformatics (Plant Research International, Wageningen). Gene ontology (GO) enrichment 
was analysed with AmiGO v. 1.8 (http://amigo1.geneontology.org/).

Statistics
Biomass (FW) values for the lines were transformed using the natural logarithm, and 
flowering time (FT) and total seed weight (TSW) values were transformed using the square 
root. All metabolite values for the lines were log10-transformed. Data were analysed in a 
generalized linear mixed model using restricted maximum likelihood estimation. Trait values 
were fixed effects; tray position in climate chamber was taken up in the model as random 
variable for the C and S population; individual plant positions (row and column) in the 
climate chamber were taken up as random variables in the M and J population. Significance 
(P < 0.05) was assessed for the fixed (trait value) effect between lines, and for the pair-
wise comparisons between individual lines. Significance of between-generation effects was 
assessed by comparing the average trait values between two generations. Significance of 
general parental effects was studied by comparing the average trait value of all progeny 
derived from stressed parents with the average trait value of all progeny derived from non-
stressed parents. Significance of transgenerational effects was assessed by comparing the 
average trait values of CCC and CCCC with the average trait values of SCC, CSCC and SSCC. 
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Supplemental table 1. Significance of between-lines effects.
P-value describing whether there are significant differences in morphological trait values between 
the lines in all four populations. FW, biomass; FT, flowering time; PH1S, plant height at 1st silique; 
TPH, total plant height; LLL, largest leaf length; TSW, total seed weight; n.s. not significant.
ANOVA C S M J
Trait P-value P-value P-value P-value
FW n.s. n.s. n.s. 0.042
FT n.s. n.s. 0.017 n.s.
PH1S n.s. n.s. n.s. 0.041
TPH 0.040 n.s. n.s. n.s.
LLL 0.021 0.008 0.007 0.024
TSW 0.006 n.s. 0.038 0.026
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Supplemental table 2. The significance of between-generation effects in all populations.
P-value describing whether there are significant between-generation effects in morphological trait 
values between specific generations in all four populations (C, S, M and J). FW, biomass; FT, flowering 
time; PH1S, plant height at 1st silique; TPH, total plant height; LLL, largest leaf length; TSW, total seed 
weight; n.s. not significant.
ANOVA  C S M J
Trait Generation P-value P-value P-value P-value
FW 1 vs 2 n.s. 0.015 n.s. n.s.
FW 1 vs 3 n.s. n.s. n.s. n.s.
FW 1 vs 4 n.s. n.s. 0.023 n.s.
FW 2 vs 3 n.s. n.s. n.s. n.s.
FW 2 vs 4 n.s. n.s. 0.005 n.s.
FW 3 vs 4 n.s. n.s. n.s. n.s.
FT 1 vs 2 n.s. n.s. n.s. 0.024
FT 1 vs 3 n.s. n.s. n.s. 0.002
FT 1 vs 4 n.s. n.s. n.s. n.s.
FT 2 vs 3 n.s. n.s. n.s. n.s.
FT 2 vs 4 n.s. n.s. n.s. n.s.
FT 3 vs 4 0.036 n.s. 0.046 n.s.
PH1S 1 vs 2 n.s. n.s. n.s. n.s.
PH1S 1 vs 3 n.s. n.s. 0.015 n.s.
PH1S 1 vs 4 n.s. n.s. n.s. n.s.
PH1S 2 vs 3 0.044 n.s. n.s. n.s.
PH1S 2 vs 4 n.s. n.s. n.s. n.s.
PH1S 3 vs 4 n.s. n.s. n.s. n.s.
TPH 1 vs 2 n.s. n.s. n.s. n.s.
TPH 1 vs 3 n.s. n.s. n.s. n.s.
TPH 1 vs 4 n.s. n.s. n.s. n.s.
TPH 2 vs 3 n.s. n.s. n.s. n.s.
TPH 2 vs 4 n.s. n.s. n.s. n.s.
TPH 3 vs 4 n.s. n.s. n.s. n.s.
LLL 1 vs 2 n.s. n.s. 0.001 n.s.
LLL 1 vs 3 n.s. n.s. 0.000 n.s.
LLL 1 vs 4 n.s. 0.003 n.s. n.s.
LLL 2 vs 3 n.s. n.s. 0.012 n.s.
LLL 2 vs 4 n.s. n.s. n.s. n.s.
LLL 3 vs 4 n.s. n.s. n.s. n.s.
TSW 1 vs 2 n.s. n.s. 0.043 n.s.
TSW 1 vs 3 n.s. n.s. 0.003 n.s.
TSW 1 vs 4 n.s. n.s. 0.033 n.s.
TSW 2 vs 3 n.s. n.s. n.s. n.s.
TSW 2 vs 4 n.s. n.s. n.s. n.s.
TSW 3 vs 4 n.s. n.s. n.s. n.s.
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Supplemental table 3. Within-generation effects between lines in all populations.
Square root transformed average trait values (FT and TSW), natural log-transformed average trait 
values (FW) and untransformed average trait values (PH1S, TPH, and LLL) are given for different lines 
with a significance letter (P < 0.05). Different letters mean statistically different trait values. Parental 
effects (grey) and trans-generational effects (dark grey) are shown relative to the lowest trait value 
(light grey). FW, biomass; FT, flowering time; PH1S, plant height at 1st silique; TPH, total plant height; 
LLL, largest leaf length; TSW, total seed weight.

CONTROL Treatment FW AVG
signficance 
(α = 0.05) FT AVG

signficance 
(α = 0.05) PH1S AVG

signficance 
(α = 0.05)

1 C 0.28 a 2.54 ab 12.77 abcd

2
CC 0.47 a 2.61 ab 13.71 ...d
SC 0.21 a 2.59 ab 13.46 ..cd

3

CCC 0.06 a 2.54 ab 13.85 ...d
CSC 0.23 a 2.43 a. 12.02 ab..
SCC 0.14 a 2.58 ab 13.05 abcd
SSC 0.34 a 2.55 ab 11.83 a...

4

CCCC 0.26 a 2.61 ab 13.38 .bcd
CCSC 0.50 a 2.64 ab 12.99 abcd
CSCC 0.06 a 2.67 .b 13.64 ...d
CSSC 0.16 a 2.65 .b 13.11 abcd
SCCC 0.17 a 2.68 .b 13.37 .bcd
SCSC 0.31 a 2.60 ab 13.26 abcd
SSCC 0.23 a 2.58 ab 12.16 abc.
SSSC 0.33 a 2.56 ab 13.04 abcd

CONTROL Treatment TPH AVG
signficance 
(α = 0.05) LLL AVG

signficance 
(α = 0.05) TSW AVG

signficance 
(α = 0.05)

1 C 47.38 abcd 38.27 ab... 0.59 abc..
2 CC 47.97 .bcd 41.55 abcde 0.62 abcde

SC 47.86 abcd 41.98 .bcde 0.64 .bcde
3 CCC 48.43 ..cd 40.89 abcde 0.62 abcde

CSC 46.71 ab.. 38.66 abc.. 0.58 ab...
SCC 48.57 ..cd 44.76 ....e 0.67 ....e
SSC 46.54 ab.. 38.26 ab... 0.56 a....

4 CCCC 48.66 ..cd 41.16 abcde 0.62 abcde
CCSC 47.78 abcd 42.59 .bcde 0.61 abcd.
CSCC 48.83 ..cd 43.13 ..cde 0.67 ...de
CSSC 47.92 abcd 41.75 .bcde 0.65 ..cde
SCCC 47.95 abcd 39.66 abcd. 0.61 abcde
SCSC 48.43 ..cd 44.07 ...de 0.64 .bcde
SSCC 46.37 a... 37.14 a.... 0.56 a....
SSSC 47.46 abcd 39.12 abc.. 0.64 .bcde
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Supplemental table 3 continues.

SALT Treatment FW AVG
signficance 
(α = 0.05) FT AVG

signficance 
(α = 0.05) PH1S AVG

signficance 
(α = 0.05)

1 S -1.40 abc.. 3.75 ab... 6.18 ab

2
CS -0.72 .bcde 4.06 ab... 6.63 ab
SS -0.72 .bcde 3.76 ab... 6.08 ab

3

CCS -1.60 a…. 4.13 .b… 6.76 ab
CSS -0.72 .bcde 4.02 ab... 5.29 a.
SCS -0.69 .bcd. 3.84 ab... 6.31 ab
SSS -1.62 a.... 3.64 ab... 7.22 .b

4

CCCS -1.42 ab… 4.17 .b… 6.42 ab
CCSS -1.00 abcd. 3.73 ab... 5.95 ab
CSCS -0.80 abcd. 3.66 ab... 6.10 ab
CSSS -0.66 ..cde 3.59 a…. 6.78 ab
SCCS -0.63 ...d. 3.80 ab... 6.62 ab
SCSS -0.80 abcd. 3.59 a…. 6.02 ab
SSCS -1.03 abcde 3.99 ab... 6.05 ab
SSSS -1.00 abcde 3.89 ab... 6.80 ab

SALT Treatment TPH AVG
signficance 
(α = 0.05) LLL AVG

signficance 
(α = 0.05) TSW AVG

signficance 
(α = 0.05)

1 S 18.68 ab... 18.96 a…. 0.11 a.
2 CS 19.27 ab... 21.50 ab.. 0.14 ab

SS 17.95 a.... 23.89 abcd 0.14 ab
3 CCS 19.55 ab... 20.81 ab... 0.15 ab

CSS 18.55 ab... 22.14 abc. 0.16 ab
SCS 19.97 ab... 22.68 abc. 0.16 ab
SSS 22.58 .b... 28.49 ...d 0.21 .b

4 CCCS 20.53 ab... 26.43 .bcd 0.16 ab
CCSS 19.71 ab... 27.19 ..cd 0.18 ab
CSCS 18.49 ab... 27.95 ..cd 0.15 ab
CSSS 22.60 .b... 27.10 ..cd 0.19 ab
SCCS 19.19 ab... 28.01 ..cd 0.17 ab
SCSS 19.45 ab... 23.06 abcd 0.20 ab
SSCS 16.96 a.... 23.02 abcd 0.12 ab
SSSS 18.85 ab... 22.07 abc. 0.17 ab
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Supplemental table 3 continues.

MOCK Treatment FW AVG
signficance 
(α = 0.05) FT AVG

signficance 
(α = 0.05) PH1S AVG

signficance 
(α = 0.05)

1 M -0.10 ab... 2.43 abc 11.96 a…

2
MM -0.19 a.... 2.62 .bc 13.09 abc
JM 0.03 abcde 2.80 ..c 12.66 ab..

3

MMM 0.22 .bcd. 2.56 .bc 13.39 .bc
MJM 0.04 abcd. 2.63 ..c 13.16 abc
JMM -0.03 abc.. 2.64 ..c 13.44 .bc
JJM 0.10 abcde 2.80 ..c 12.81 ab..

4

MMMM 0.29 ..cde 2.67 ..c 12.64 ab..
MMJM 0.18 .bcde 2.64 ..c 14.14 ..c
MJMM 0.33 ...de 2.52 .bc 12.47 ab..
MJJM 0.28 ..cde 2.23 ab. 12.61 ab..
JMMM 0.11 abcd. 2.67 ..c 12.78 ab..
JMJM 0.26 .bcde 2.09 a…. 12.56 ab..
JJMM -0.04 abc.. 2.44 abc 12.92 abc
JJJM 0.22 .bcde 2.69 ..c 12.56 ab..

MOCK Treatment TPH AVG
signficance 
(α = 0.05) LLL AVG

signficance 
(α = 0.05) TSW AVG

signficance 
(α = 0.05)

1 M 45.14 ab. 34.84 a.... 0.52 a....

2
MM 46.68 abc 38.91 ..cde 0.61 .bcd
JM 47.21 .bc 41.49 ...de 0.59 abc..

3

MMM 47.24 .bc 38.77 ..cde 0.61 .bc..
MJM 46.91 abc 39.07 ..cde 0.61 .bcd
JMM 46.99 .bc 37.09 abc.. 0.60 .bc..
JJM 45.63 ab. 37.83 abc.. 0.59 abc..

4

MMMM 44.83 a.. 35.08 ab... 0.54 ab...
MMJM 48.53 ..c 41.51 ....e 0.68 ..d.
MJMM 45.79 ab. 38.06 abcd. 0.57 abc..
MJJM 46.40 ab. 36.24 abc.. 0.57 abc..
JMMM 46.25 ab. 37.12 abc.. 0.59 abc..
JMJM 46.51 ab. 37.60 abc.. 0.56 abc..
JJMM 47.25 .bc 38.57 .bcde 0.61 .bcd
JJJM 46.11 ab. 37.96 abcd. 0.63 ..cd
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MEJA Treatment FW AVG
signficance 
(α = 0.05) FT AVG

signficance 
(α = 0.05) PH1S AVG

signficance 
(α = 0.05)

1 J -0.18 .bcd. 3.24 a.... 12.53 .bc..

2
MJ -0.40 abcd. 3.58 abc.. 11.97 abc..
JJ -0.21 .bcd. 3.53 ab... 11.32 ab...

3

MMJ -0.79 a.... 3.68 abc.. 12.32 abc..
MJJ -0.10 ..c.. 3.46 ab... 12.39 abc..
JMJ -0.39 abcde 4.06 ..c.. 11.76 abc..
JJJ -0.35 .bcde 3.59 abc.. 12.98 .bc..

4

MMMJ -0.03 ..cde 3.44 ab... 12.94 .bc..
MMJJ -0.59 ab... 3.48 ab... 10.58 a....
MJMJ -0.13 ..cde 3.81 .bc.. 13.18 ..c..
MJJJ -0.15 ..cde 3.44 ab... 10.62 a....
JMMJ -0.04 ..c.. 3.64 abc.. 12.91 .bc..
JMJJ -0.36 .bcde 3.25 a.... 10.70 a....
JJMJ -0.19 .bcd. 3.55 ab... 11.93 abc..
JJJJ -0.16 ..c.. 3.50 ab... 12.31 abc..

MEJA Treatment TPH AVG
signficance 
(α = 0.05) LLL AVG

signficance 
(α = 0.05) TSW AVG

signficance 
(α = 0.05)

1 J 45.57 abc.. 32.09 abc.. 0.61 abc..

2
MJ 45.28 a.... 33.04 abcd. 0.62 abc..
JJ 44.94 a.... 32.35 abc.. 0.63 abcd.

3

MMJ 45.69 abc.. 31.15 ab... 0.58 ab...
MJJ 45.89 abc.. 32.78 abcd. 0.63 .bcd.
JMJ 45.08 a.... 36.41 ..cde 0.62 abc..
JJJ 47.89 .bc.. 38.11 ....e 0.70 …d.

4

MMMJ 45.38 a.... 34.49 abcde 0.62 abc..
MMJJ 44.67 a.... 31.45 ab... 0.60 abc..
MJMJ 45.82 abc.. 32.40 abc.. 0.57 ab...
MJJJ 45.74 abc.. 32.20 abc.. 0.64 .bcd.
JMMJ 48.03 ..c.. 37.09 ...de 0.67 ..cd.
JMJJ 43.69 a.... 31.04 a.... 0.55 a....
JJMJ 45.61 abc.. 34.67 abcde 0.63 abcd.
JJJJ 45.45 ab… 35.49 .bcde 0.63 .bcd.
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Supplemental table 4. Significance of general parental effects.
P-value describing whether there are significant parental effects in morphological trait values 
between the lines in all four populations. FW, biomass; FT, flowering time; PH1S, plant height at 1st 
silique; TPH, total plant height; LLL, largest leaf length; TSW, total seed weight; n.s. not significant.
ANOVA C S M J
Trait P-value P-value P-value P-value
FW n.s. n.s. n.s. n.s.
FT n.s. 0.035 n.s. 0.022
PH1S n.s. n.s. n.s. 0.029
TPL n.s. n.s. n.s. n.s.
LLL n.s. n.s. n.s. n.s.
TSW n.s. n.s. n.s. n.s.

Supplemental table 5. Overview of metabolic compounds.  
Question mark indicated by (*) mean that the metabolite belongs to the metabolic class, but it 
might be a different metabolite. The metabolite that is shown is the most likely metabolite based on 
membership, retention time and molecular mass.
Nr Candidate molecule Metabolic class Chemical formula
84 quercetin 7-O-rhamnoside 3-O-rhamnosylglucoside Flavonoid C33H40O20
95 kaempferol-3-O-(2-rhamnosylglucoside)-7-O-rhamnoside Flavonoid C33H40O19
102 quercetin x-O-rhamnoside y-O-rhamnoside II Flavonoid C27H30O15
112 quercetin x-O-glucoside y-O-rhamnoside Flavonoid C27H30O16
116 kaempferol-3-O-(glucosyl-1,6-glucoside)-7-O-rhamnoside Flavonoid C33H40O20
124 quercetin 3-O-rhamnoside 7-O-rhamnoside Flavonoid C27H30O15
128 kaempferol-3-O-gentiobioside-7-O-rhamnoside + FA Flavonoid C33H40O20
142 isorhamnetin 3-O-glucoside 7-O-rhamnoside Flavonoid C28H32O16
147 quercetin 3-O-hexoside Flavonoid C21H20O12
168 methyl-quercetin-dideoxyhexoside Flavonoid C28H32O15
169 kaempferitrin Flavonoid C27H30O14
175 kaempferol 3-O-glucoside Flavonoid C21H20O11
222 kaempferol rhamnoside II Flavonoid C21H20O10
8 2-propenyl glucosinolate Glucosinolate C10H17O9S2N1
16 3-butenylglucosinolate Glucosinolate C11H19O9S2N1
19 2-propenyl glucosinolate Glucosinolate C10H17O9S2N1
33 6-methylsulfinylhexyl glucosinolate Glucosinolate C14H27O10S3N1
41 7-methylsulfinylheptyl glucosinolate Glucosinolate C15H29O10S3N1
48 7-methylsulfinylheptyl glucosinolate Glucosinolate C15H29O10S3N1
49 4-methylthiobutyl glucosinolate Glucosinolate C12H23O9S3N1
69 8-methylsulfinyloctyl glucosinolate Glucosinolate C16H31O10S3N1
72 2-phenylethyl glucosinolate Glucosinolate C15H21O9S2N1
77 4-methoxy-3-indolylmethyl-glucosinolate Glucosinolate C17H22O10S2N2
97 9-ethylthiononyl glucosinolate Glucosinolate C17H33O10S3N1
117 6-methylthiohexyl glucosinolate Glucosinolate C14H27O9S3N1
163 heptyl glycosinolate Glucosinolate C14H27O9S2N1
179 7-methylthioheptyl glucosinolate Glucosinolate C15H29O9S3N1
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Supplemental table 5 continues.
Nr Candidate molecule Metabolic class Chemical formula
210 8-methylthiooctyl glucosinolate Glucosinolate C16H31O9S3N1
43 dihydroxybenzoic acid glucoside I Phenylpropanoid C13H16O9
52 dihydroxybenzoic acid xyloside II Phenylpropanoid C12H14O8
56 hydroxyferulic acid glucoside I Phenylpropanoid C16H20O10
67 hydroxyferulic acid glucoside II Phenylpropanoid C16H20O10
140 sinapoyl quinic acid conjugate Phenylpropanoid C37H46O21
150 sinapoyl malate I Phenylpropanoid C15H16O9
152 trans-dihydrodehydrodiconiferyl alcohol-9-O-beta-D-glucoside Phenylpropanoid C26H34O11
158 feruloyl malate coupled to coniferyl alcohol IV Phenylpropanoid C24H26O12
174 feruloyl malate coupled to coniferyl alcohol II Phenylpropanoid C24H26O12
180 dehydrodiconiferyl alcohol glucoside Phenylpropanoid C26H32O11
34 2-C-methyl-D-erythritol 1-O-beta-D-fructofuranoside Isoprenoid C11H22O9

Supplemental table 6. Overview of glucosinolates.
Nr Metabolite name Other name Derived from
8 2-propenyl glucosinolate sinigrin Methionine
16 3-butenylglucosinolate gluconapin Methionine
19 2-propenyl glucosinolate sinigrin Methionine
33 6-methylsulfinylhexyl glucosinolate glucohesperin Methionine
41 7-methylsulfinylheptyl glucosinolate glucoibarin Methionine
48 7-methylsulfinylheptyl glucosinolate glucoibarin Methionine
49 4-methylthiobutyl glucosinolate glucoerucin Methionine
69 8-methylsulfinyloctyl glucosinolate glucohirsutin Methionine
72 2-phenylethyl glucosinolate gluconasturtiin Phenylalanine
77 4-methoxy-3-indolylmethyl-glucosinolate 1 or 4-methoxyglucobrassicin Tryptophan
97 9-ethylthiononyl glucosinolate 9-ethylthiononyl glucosinolate Methionine
117 6-methylthiohexyl glucosinolate 6-methylthiohexyl glucosinolate Methionine
163 heptyl glycosinolate heptyl glycosinolate Methionine
179 7-methylthioheptyl glucosinolate 7-methylthioheptyl glucosinolate Methionine
210 8-methylthiooctyl glucosinolate 8-methylthiooctyl glucosinolate Methionine
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Supplemental table 7. Number of metabolites present in each population and number of 
metabolites significantly increased in one population compared to the other. P-values are adjusted 
P-values using Bonferroni correction. C, control; S, saline; M, mock; J, methyljasmonate.
 Population Number of metabolites  

Total 209

Present in

C + S 192
C 195
S 202
M + J 199
M 203
J 202 Percentage

Significantly (P < 0.05) higher in

C vs S 62 32%
S vs C 64 33%
M vs J 48 24%
J vs M 69 35%

Supplemental table 8. Significance of between-lines effects.
P-value describing whether there are significant differences in metabolic trait values between 
the lines in all four populations. C, control population; S, salt population; M, mock population; J, 
methyljasmonate population; n.s., not significant.
Trait  Metabolite C S M J

P-value P-value P-value P-value
14  0.031 n.s. 0.024 n.s.
38  n.s. n.s. n.s. 0.033
40  n.s. 0.047 n.s. n.s.
46  0.024 n.s. n.s. n.s.
52 dihydroxybenzoic acid xyloside II n.s. n.s. n.s. 0.005
54  0.023 n.s. n.s. n.s.
56 hydroxyferulic acid glucoside I n.s. n.s. 0.047 n.s.
57  n.s. 0.028 n.s. n.s.
64  n.s. n.s. n.s. 0.041
70  n.s. n.s. 0.039 n.s.
99  0.033 n.s. n.s. n.s.
102 Quercetin x-O-rhamnoside y-O-rhamnoside II n.s. n.s. n.s. 0.043
103 0.015 n.s. n.s. n.s.
109  n.s. n.s. n.s. 0.003
130  n.s. n.s. n.s. 0.008
144  n.s. n.s. n.s. 0.034
146  n.s. n.s. 0.004 n.s.
149  n.s. n.s. n.s. 0.003
156  n.s. n.s. 0.046 n.s.
158 feruloyl malate coupled to 4-O-8 coniferyl alcohol IV n.s. n.s. n.s. 0.008
160  n.s. n.s. 0.043 n.s.
163 heptylglycosinolate n.s. n.s. n.s. 0.014
168 methyl-quercetin-dideoxyhexoside n.s. 0.048 n.s. n.s.



Transgenerational stress inheritance

239

7

Supplemental table 8 continues.
171  0.043 n.s. n.s. n.s.
178  n.s. n.s. n.s. 0.008
180 Dehydrodiconiferyl alcohol glucoside 0.036 n.s. n.s. n.s.
182  n.s. n.s. n.s. 0.022
184  n.s. n.s. n.s. 0.004
188  n.s. n.s. n.s. 0.009
192  n.s. n.s. 0.047 n.s.
193  n.s. n.s. n.s. 0.031
198  0.035 n.s. n.s. n.s.
223  n.s. n.s. 0.000 n.s.
239  0.041 n.s. n.s. n.s.
241  n.s. n.s. n.s. 0.028
243  0.033 n.s. n.s. n.s.
244  0.026 n.s. n.s. n.s.
245  0.045 n.s. n.s. n.s.

Supplemental table 9. Number of significant between-generation effects in all populations.
Between-generation effects were separately tested between each two generations (P < 0.05). C, 
control population; S, salt population; M, mock population; J, methyljasmonate population.
Generation C S M J Total
1 vs 2 28 35 5 3 71
1 vs 3 24 2 10 16 52
1 vs 4 22 5 15 4 46
2 vs 3 46 0 3 15 64
2 vs 4 12 0 7 4 23
3 vs 4 76 0 13 10 99
Total 208 42 53 52 355

Supplemental table 10. Number of significant parental, trans-generational and great grand-parental 
effects in different generations. Within-generation effects were separated into parental, trans-
generational and great grand-parental effects depending on the generation in which stress was 
applied, and tested for significance (P < 0.05). Given are the numbers of significant effects. Great 
transgenerational effects are CCCC vs SCCC, CCCS vs SCCS, MMMM vs JMMM and MMMJ vs JMMJ. C, 
control; S, salt; M, mock; J, methyljasmonate.
  Population
Effect Generation C S M J Total
Parental 2 1 0 2 8 11

3 8 125 9 30 172
4 49 6 37 50 142

Trans-generational 3 6 1 8 36 51
4 19 1 35 14 69

Great Trans-generational 4 18 0 19 2 39
Total all 101 133 110 140 484
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Supplemental table 11. General parental effects on the metabolite levels in the C, M and J 
populations. No effects were detected in the S-population. Significance of the parental affects (P 
< 0.05) and the log(metabolite abundance) average of the progeny between unstressed parents 
(C or M parents) and stressed parents (S or J parents). Nr corresponds with metabolite number. 
SEM=standard error of the mean. n.s., not significant., blue nr 56=hydroxyferulic acid glucoside I.
 C-population M-population J-population
Nr P-value C- 

parents
S- 
parents

SEM P-val-
ue

M-par-
ents

J-par-
ents

SEM P-value M-parents J-par-
ents

SEM

3     0.044 5.96 5.93 0.017     
27     0.003 4.85 4.92 0.023     
56     0.014 4.81 4.93 0.045     
57     0.019 4.34 4.68 0.140     
80     0.043 5.92 6.01 0.043     
105 0.039 1.81 2.26 0.212         
129     0.017 3.13 2.22 0.363     
136 0.021 4.35 4.43 0.031         
153 0.032 4.49 4.63 0.062         
159     0.001 3.26 2.17 0.313     
223     0.018 2.48 1.88 0.242     
233     0.032 4.36 4.18 0.083     
234         1.4 4.51 4.40 0.055
237         1.4 4.63 4.53 0.048
239     0.042 5.44 5.31 0.065     
243     0.035 5.14 4.98 0.071     
251     0.014 4.62 4.40 0.087     

Supplemental table 12. General trans-generational effects on the metabolite levels in the C, S, M 
and J populations. Significance of trans-generational effects (P-value < 0.05) and the log(metabolite 
abundance) average of both progeny between unstressed grandparents (C or M-grandparents) 
and stressed grand-parents (S or J- grandparents). Nr corresponds with metabolite number. SEM = 
standard error of the mean. C-GP, C-grandparents; S-GP, S-grandparents; M-GP, M-grandparents; 
J-GP, J-grandparents; C, control; S, salt; M, mock; J, methyljasmonate; n.s., not significant. 

C-population S-population M-population J-population
Nr P C-GP S-GP SEM P C-GP S-GP SEM P M-GP J-GP SEM P M-GP J-GP SEM
3 n.s. n.s. 0.049 5.93 5.99 0.03 n.s.
12 n.s. n.s. 0.036 4.78 4.92 0.06 n.s.
14 n.s. n.s. 0.003 5.88 5.98 0.03 n.s.
33 n.s. 0.045 5.03 5.17 0.04 n.s.
34 n.s. 0.016 5.32 5.21 0.03 n.s. n.s.
40 n.s. n.s. 0.047 4.17 3.09 0.49 n.s.
44 n.s. 0.047 5.07 4.74 0.10 n.s. n.s.
45 n.s. n.s. 0.009 5.34 5.39 0.02 n.s.
49 n.s. n.s. 0.021 5.93 6.18 0.10 n.s.
51 n.s. n.s. n.s. 0.050 5.00 5.20 0.06
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Supplemental table 12 continues.
C-population S-population M-population J-population

Nr P C-GP S-GP SEM P C-GP S-GP SEM P M-GP J-GP SEM P M-GP J-GP SEM
52 n.s. n.s. 0.028 5.71 5.61 0.04 n.s.
71 n.s. 0.04 4.84 4.77 0.02 n.s. n.s.
74 n.s. n.s. 0.039 4.93 5.24 0.14 n.s.
91 n.s. n.s. 0.019 4.63 4.78 0.06 n.s.
96 n.s. n.s. 0.005 5.40 5.55 0.04 n.s.
103 0.044 4.91 4.82 0.04 n.s. n.s. n.s.
104 n.s. n.s. 0.005 5.13 4.68 0.13 n.s.
106 n.s. n.s. n.s. 0.021 4.16 4.27 0.03
109 n.s. n.s. n.s. 0.030 5.28 5.53 0.07
117 n.s. n.s. 0.038 4.67 5.02 0.15 n.s.
130 n.s. n.s. n.s. 0.014 5.32 5.52 0.05
131 n.s. n.s. 0.043 4.83 4.68 0.07
132 n.s. n.s. n.s. 0.026 4.33 4.50 0.05
135 n.s. n.s. 0.008 5.47 5.57 0.03
144 n.s. n.s. n.s. 0.019 6.53 6.62 0.02
145 n.s. n.s. n.s. 0.036 4.88 5.01 0.04
146 n.s. n.s. 0.039 4.01 4.16 0.06
148 n.s. n.s. n.s. 0.044 4.79 5.04 0.08
156 n.s. n.s. 0.004 4.94 4.64 0.09 0.011 4.89 5.08 0.04
160 n.s. n.s. 0.003 5.53 5.67 0.04
166 n.s. 0.031 4.49 4.34 0.04 n.s.
172 n.s. n.s. n.s. 0.012 4.73 5.02 0.07
179 n.s. n.s. 0.040 5.59 5.88 0.13
183 n.s. n.s. 0.033 3.32 4.27 0.40
188 n.s. n.s. n.s. 0.004 4.92 5.02 0.02
207 n.s. n.s. 0.016 4.84 4.38 0.17 0.038 5.01 5.27 0.08
209 n.s. n.s. n.s. 0.033 4.83 4.98 0.04
210 n.s. n.s. 0.031 5.94 6.24 0.13
219 n.s. n.s. 0.018 4.16 2.81 0.50
232 n.s. n.s. n.s. 0.013 4.26 4.61 0.09
234 n.s. n.s. 0.035 4.64 4.31 0.14
244 n.s. n.s. 0.027 4.51 4.60 0.04
245 0.045 4.91 4.82 0.04 n.s. n.s.
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Supplemental table 13. Parental effects salt: Top-25 differentially expressed genes.
Top-25 RNA sequencing results between CCCC and CSSC. Results are sorted on most significant 
P-value between CCCC and CSSC. Grey-coloured gene descriptions are involved in responses to salt 
stress (TAIR). FDR-P, FDR-adjusted P-value; Abbr., gene abbreviation.
 Base-

Mean
Base-
Mean

fold-
Change

    

Gene id CCCC CSSC CSSC/
CCCC

P-value FDR-P Abbr. Description

AT1G35350 161.85 371 2.29 0 0.000486   
AT1G56510 665.2 1096.98 1.65 0 0.000486 WRR4 WHITE RUST RESISTANCE 4
AT3G04210 2700.67 3929.95 1.46 0 0.002345  disease resistance protein
AT4G30270 450.53 782.95 1.74 0 3.90E-05 XTH24 meristem-5
AT4G19520 743.89 1102.19 1.48 8.00E-06 0.033208  disease resistance protein
AT2G36885 431.65 273.36 0.63 1.00E-05 0.033208  unknown protein
AT2G39800 2065.05 1304.74 0.63 1.00E-05 0.033208 P5CS1 DELTA1-PYRROLINE-5-CARBOXY-

LATE SYNTHASE 1
AT1G23480 271.67 440.95 1.62 2.20E-05 0.061178 CSLA3 CELLULOSE SYNTHASE-LIKE A3
AT1G08930 1466.57 2635.38 1.8 2.70E-05 0.067385 ERD6 EARLY RESPONSE TO DEHYDRA-

TION 6
AT4G08930 180.46 296 1.64 3.20E-05 0.072477 ATAP-

RL6
APR-like 6

AT4G13250 2671.71 1949.97 0.73 7.50E-05 0.154031 NYC1 short-chain dehydrogenase
AT2G26560 382.93 639.03 1.67 9.50E-05 0.180556 PLP2 PHOSPHOLIPASE A 2A
AT1G66940 561.77 761.7 1.36 0.000135 0.235011  protein kinase-related
AT3G59310 367.25 543.52 1.48 0.000187 0.282446  unknown protein
AT4G20260 2554.42 3606.7 1.41 0.000187 0.282446 PCAP1 DREPP plasma membrane polypep-

tide family protein
AT1G63860 133.94 210.26 1.57 0.000207 0.290811  ATP binding
AT2G40300 424.78 263.92 0.62 0.000218 0.290811 FER4 ferritin 4
AT1G69840 651.47 887.81 1.36 0.000299 0.357721  band 7 family protein
AT3G05320 84.83 142.71 1.68 0.000299 0.357721  unknown protein
AT1G72180 830.49 1152.09 1.39 0.000318 0.36135  leucine-rich repeat transmembrane 

protein kinase
AT1G07890 9041.36 6838.35 0.76 0.000348 0.366488 MEE6 ascorbate peroxidase 1
AT1G64980 999.54 1337.35 1.34 0.000355 0.366488  unknown protein
AT4G18010 226.7 421.61 1.86 0.000376 0.366488 IP5PII MYO-INOSITOL POLYPHOSPHATE 

5-PHOSPHATASE 2
AT5G13630 7921.61 6253.77 0.79 0.00039 0.366488 GUN5 GENOMES UNCOUPLED 5
AT1G33415 55.19 99.81 1.81 0.000417 0.366488  other RNA
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Supplemental table 14. Parental effects JA: Top-25 differentially expressed genes.
Top-25 RNA sequencing results between MMMM and MJJM. Results are sorted on most significant 
P-value. Grey-coloured genes are involved in organ development (TAIR). FDR-P, FDR-adjusted 
P-value; Abbr., gene abbreviation.
 BaseMean BaseMean fold-

Change
    

Gene id MMMM MJJM MJJM/
MMMM

P-value FDR-P Abbr. Description

AT4G22485 42.4 171.03 4.03 1.50E-05 0.255865   Encodes a Protease inhibitor
AT4G08150 47.32 109.52 2.31 2.20E-05 0.255865 KNAT1 KNOTTED-LIKE 1
AT3G54820 105.37 180.34 1.71 5.30E-05 0.413149 PIP2D PLASMA MEMBRANE INTRIN-

SIC PROTEIN 2;5
AT5G08000 212.75 333.53 1.57 0.00015 0.621461 PDCB2 GLUCAN ENDO-1,3-BETA-GLU-

COSIDASE-LIKE PROTEIN 3
AT3G02640 154.04 229.79 1.49 0.00021 0.621461   unknown protein
AT3G51740 211.82 315.08 1.49 0.000223 0.621461 IMK2 INFLORESCENCE MERISTEM 

RECEPTOR-LIKE KINASE 2
AT1G77120 220.06 392.34 1.78 0.000231 0.621461 ATADH1 ALCOHOL DEHYDROGENASE 1
AT3G11520 34.77 63.64 1.83 0.000241 0.621461 CYCB1;3 CYCLIN B1;3
AT3G18000 455.29 629.26 1.38 0.000252 0.621461 XPL1 XIPOTL 1
AT1G80760 50.36 106.57 2.12 0.000266 0.621461 NLM7 NOD26-LIKE INTRINSIC PRO-

TEIN 6;1
AT3G02120 73.22 115.93 1.58 0.000556 1   hydroxyproline-rich glycopro-

tein family protein
AT4G33790 41.21 76.19 1.85 0.000589 1 G7 ECERIFERUM 4
AT5G61480 279.93 394.96 1.41 0.000695 1 TDR leucine-rich repeat transmem-

brane protein kinase
AT1G49320 10.81 29.9 2.77 0.000786 1 USPL1 BURP domain-containing 

protein
AT4G23800 378.64 516.61 1.36 0.000811 1 3xHMG-

box2 
high mobility group (HMG1/2) 
family protein

AT4G22505 24.92 87.74 3.52 0.000886 1    
AT2G19920 22.9 46.14 2.01 0.000945 1   RNA-dependent RNA polymer-

ase family protein
AT4G10270 53.3 91.68 1.72 0.001103 1   wound-responsive family 

protein
AT5G23940 497.96 705.89 1.42 0.001221 1 PEL3 embryo defective 3009
AT3G17998 451.51 604.75 1.34 0.001225 1 CPuORF30 Conserved peptide upstream 

open reading frame 30
AT3G12145 264.66 411.51 1.55 0.001393 1 FLR1 enzyme inhibitor
AT5G66400 77.12 40.81 0.53 0.001429 1 RAB18 RESPONSIVE TO ABA 18
AT1G18370 135.15 196.15 1.45 0.001504 1 NACK1 HINKEL
AT3G15550 65.16 99.49 1.53 0.001782 1   unknown protein
AT3G07320 249.95 354.81 1.42 0.001835 1   glycosyl hydrolase family 17 

protein
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Every living organism, from the smallest unicellular bacterium to the largest giant sequoia, 
arises from the same genetic material, DNA. It is the organization of DNA into genes and the 
translation of genes into proteins that generate different cell types and the endless diversity 
of nature. However, the phenotype is not simply a product of DNA and proteins, but it is 
the complexity in which DNA and proteins are expressed in response to environmental 
and developmental cues that generates the phenotype. Natural diversity is not static due 
to the evolutionary forces of mutation and recombination that allow the genetic material 
to change with each generation. Due to recent advances in next generation sequencing 
methods, the genetic variation can be fully surveyed down to the nucleotide level. Hundreds 
of genotypes within different species have been resequenced, which enables the association 
of natural phenotypic variation within species with the smallest possible genetic variation, 
single nucleotide polymorphisms (SNPs) (Schneeberger and Weigel, 2011).

Genome-wide association studies (GWAS) associate phenotypic variation in a large 
population of individuals to genome-wide SNP variation. Since the first GWA study in plants 
by Atwell et al., 2010, several studies have followed and they have identified numerous SNPs 
that associate with hundreds of different phenotypes (Korte and Farlow, 2013). Although 
previously validated genes involved in flowering time, such as FLOWERING LOCUS C (FLC) 
and FRIGIDA (FRI), and simple Mendelian inherited traits, such as disease resistance, have 
been identified, a large part of the genetic variation for most quantitative traits remains 
unidentified in GWAS (Atwell et al., 2010; Brachi et al., 2010; Ingvarsson and Street, 2011). 
Because many important agronomic traits are highly quantitative, GWAS may fail to identify 
the causal variants for those traits (Ingvarsson and Street, 2011; Korte and Farlow, 2013). 
Furthermore, the verification of novel causal variants is complicated due to the high number 
of false-positives and false-negatives in GWAS.

Missing heritability
In human GWAS, the fraction of heritability that cannot be explained by genetic variants is 
known as the missing heritability (Manolio et al., 2009) and several reasons have been given to 
explain this missing heritability that could also be of importance for GWAS in plants (Gibson, 
2011). Heritability estimates may be over-estimated due to interactions between loci that 
cannot be determined genome-wide with conventional GWA methods (Zuk et al., 2012). 
Furthermore, genotype-by-environment interactions may account for a substantial part of 
the heritability (Thomas, 2010; van Ijzendoorn et al., 2011) and epigenetic modifications, 
independent of genetic variation, may impact phenotypic variation (Eichler et al., 2010). 
It might be, however, that a large part of the missing heritability is simply hidden in the 
genetic architecture of quantitative traits with many loci of small effect or few, large-effect, 
rare alleles that cause phenotypic variation (Gibson, 2011). Genetic variants that determine 
disease risks, for instance, are likely to be deleterious and are thus kept at low frequency 
in the population, supporting the latter argument (McClellan et al., 2007; Zuk et al., 2014). 
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A study on human height, on the other hand, revealed that the estimated additive effects 
of all SNPs explain a large percentage of the heritability, supporting the former argument 
(Yang et al., 2011). This last study suggests that most of the genetic variation that causes the 
phenotypic variation is hidden below the thresholds used for GWA studies (Gibson, 2010). 
Both studies further indicate that the reason for missing heritability is most likely highly 
dependent on the investigated trait and its genetic architecture.

Chapter 2 of this thesis describes a GWA study on morphological traits in which the 
fraction of the phenotypic variation explained by the genetic loci was small in relation to 
the heritability estimates, suggesting missing heritability similar to human GWAS. This 
hypothesis was investigated with genomic selection models that used the 100,000 most 
informative SNPs for prediction of the morphological traits. The genomic selection analyses 
showed high correlations between observed and predicted phenotypic values with very 
small effect sizes for most traits. These results comply with the hypothesis that the heritable 
phenotypic variation is regulated by the additive and interaction effects of the individual loci, 
but that the allelic effect sizes are too small to be identified with GWAS. Quantitative traits in 
plants, such as the morphological traits described here, are indeed thought to be extremely 
complex due to their polygenic inheritance and strong dependence on the environment 
(Ungerer et al., 2002; Ungerer et al., 2003; Alonso-Blanco et al., 2005; Keurentjes et al., 
2007; Ingvarsson and Street, 2011).

Because the genetic loci that cause the phenotypic variation have very small effect sizes, they 
are most likely hidden below the significance threshold (Gibson, 2010). When the significance 
threshold in our study was lowered to -log10(P) = 4, numerous plausible candidate genes 
that had been linked to the phenotypic trait either directly or indirectly in previous studies 
were detected. Most of the candidate genes experience purifying selection at their locus 
and they contain several non-synonymous SNPs (nsSNPs) or SNPs in the promoter region in 
linkage disequilibrium (LD) with the SNPs from the GWA study. These results suggest that 
quantitative morphological traits in plants are determined by many genes of small effect 
and that the heritability is hidden rather than missing.

Verification of candidate genes
Although plausible candidate genes were identified for the morphological traits by lowering 
the significance threshold, they need to be verified. Some of the genes could be false-positive 
associations due to non-causal SNPs that co-segregate with the trait values. Verification of 
candidate genes is most often performed through a number of different steps. Initially, 
next-generation sequencing data from the accessions can be used to calculate the extent 
of linkage disequilibrium (LD) surrounding the most significant SNPs. The genes within 
the LD interval may then be scanned for non-synonymous SNPs, frame shifts, insertions 
and deletions that are in strong LD with the SNPs from the GWA study (chapter 2 and 
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4). Moreover, haplotypes can be built on the basis of the resequence data and it can be 
evaluated whether they co-segregate with the trait values (chapter 2). T-DNA insertion lines 
are usually the next step in candidate gene confirmation as many different homozygous 
knock-outs (KOs) in the Col-0 background are available from the stock centers. Many mutant 
phenotypes, however, depend on the genetic background and might thus be concealed in 
KOs in the Col-0 background (Huang et al., 2012). Apart from that, gene redundancy can 
mask the mutant phenotype, as was the case in chapter 2 and 4, in which only double 
or multiple mutants of a gene family showed a mutant phenotype. Alternatively, mutant 
phenotypes can be studied in different genetic backgrounds using artificial microRNAs that 
target and silence the gene transcript (Ossowski et al., 2008). The artificial microRNAs can 
be transformed into different accessions to study the effect of the genetic background on 
the mutant phenotype. Moreover, the recent discoveries of zinc finger nucleases (ZFNs) and 
transcription activator-like effector nucleases (TALENs) enable targeted gene modification 
and might further facilitate gene confirmation (Joung and Sander, 2013). Furthermore, 
analysis of variation in gene expression among the accessions can aid in the validation of 
candidate genes (chapter 2). Such gene expression analyses may also provide information 
on the effect of different genetic backgrounds on the phenotypic trait. Note, however, that 
regulatory variation can also affect protein function and stability, and in some cases regulatory 
variation does thus not lead to transcript variation. However, changes in gene expression 
through regulatory variation in the promoter are less likely to be negatively selected for 
than non-synonymous polymorphisms, because they are less likely to be deleterious, and 
they might thus be more common (Ingvarsson and Street, 2011). For further validation, 
the SNPs from GWAS may be compared to QTL intervals of the same traits in bi-parental 
QTL mapping populations (chapter 4) (Brachi et al., 2010). For Arabidopsis, more than sixty 
of such populations are available from the stock centers, and they have been phenotyped 
for numerous developmental and biochemical traits. Alternatively, the recent discovery of 
the cenh3 mutant which enables the production of doubled haploids (DHs) within three 
generations can accelerate the creation of new mapping populations (Ravi & Chan, 2010). 
Using data generated by GWAS, divergent accessions can be selected based on the SNPs 
and the phenotypic data to create such populations. Because the onset of flowering initiates 
numerous developmental changes and many developmental traits correlate strongly with 
flowering time (chapter 2 and 5), accessions with similar flowering time are preferred 
provided that flowering time is not the trait of interest. Late flowering accessions that 
require vernalisation have rarely been studied by linkage analysis because the generation 
of such populations would take many years. The discovery of the cenh3 mutant, however, 
greatly accelerates population development and a late flowering population might reveal as 
yet undiscovered genetic variation. If the interest of the GWA study is local adaptation, two 
accessions that differ for the trait of interest, but are not the extremes of the population, 
might be preferred. If the extremes of a population are used, QTL mapping could result in 
the detection of recently established, large-effect rare alleles that are not important in an 
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evolutionary context (Rockman, 2012). Rather two accessions should be chosen that are 
not too far away from each other in the population distribution, but differ for the SNPs 
of interest. Segregation within the population will result in phenotypic variation. However, 
because the SNPs of interest might be false-positives, the selection of accessions for follow-
up studies remains elusive.

Recently, different approaches have been undertaken to combine the advantages of linkage 
and association mapping, using one or multiple founder lines that are crossed to several 
other accessions, such as the Multi-parent Advanced Generation Inter-Cross (MAGIC) lines 
and the Arabidopsis Multi-Parent RILs (AMPRILs) (Huang et al., 2011; Kover and Mott, 
2012). Resolution and allelic diversity in such populations are improved compared to RIL 
populations, while mapping power and the detection of epistasis are increased compared to 
GWAS (Huang et al., 2011; Huang et al., 2012; Huang et al., 2013). With the advancements 
made in the creation of DHs, the combination of GWAS and QTL analysis can be further 
enhanced by creating numerous DH populations in intelligent designs in which genetic 
diversity, resolution and mapping power are maximized.

Although the above-mentioned analyses will provide more confidence on the association 
between candidate gene and phenotype, complementation is needed for complete 
confirmation. Quantitative or transgenic complementation in which different alleles at a 
certain locus are examined in a knock-out or other isogenic background may be used for 
confirmation (Mackay, 2001; Weigel, 2012). In quantitative complementation, the different 
alleles are analysed in the hemizygous state in which the accessions, NILs or RILs are 
crossed to a loss-of-function mutant. If the different alleles induce different phenotypes 
in the mutant crosses, they are most likely causal for the trait variation (Mackay, 2001). In 
transgenic complementation, the genomic sequence of different alleles including its own 
promoter, or otherwise fused to a constitutive or inducible promoter, is transferred into 
the KO or any other isogenic background to study the specific allelic effects. The genomic 
sequence of one allele may also be fused to the promoter of the other allele, and vice versa, 
and other forms of transformation are possible to confirm causality between allelic variation 
and trait variation.

A system-wide genetical genomics approach
Because the morphological traits analysed in chapter 2 are extremely polygenic, lowering 
the threshold will not result in the identification of all genetic variants that are involved in 
the regulation of the traits. Furthermore, some of the identified SNPs are probably false-
positive associations and confirmation of all candidate genes is highly laborious and thus not 
feasible. Moreover, regulation of morphology occurs at multiple intermediate levels that can 
be studied individually in so-called genetical genomics. The integration of transcript, protein 
and/ or metabolite data with morphological traits may partition the phenotypic variation 
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in its underlying components and thus assist in candidate gene identification and selection 
(Jansen and Nap, 2001; Keurentjes et al., 2006; Keurentjes et al., 2007; Fu et al., 2009).

Chapter 4 describes a GWA study in which several structural components, amino acids, 
sugars, organic acids and enzymes of carbon and nitrogen metabolism were analysed 
together with plant biomass. This allows the dissection of heritability for plant biomass into 
some of its underlying components. Indeed, many pleiotropic regulators were identified 
with mostly opposite effects on biomass and primary metabolism. A good example is the 
genome-wide association of ACCELERATED CELL DEATH 6 (ACD6) with biomass and several 
components of primary metabolism, providing strong support that natural variation at this 
locus contributes to developmental variation. Higher activity of the ACD6 allele increases 
resistance to microbial infection and herbivory, but it induces necrosis and reduces biomass 
formation (Todesco et al., 2010). The higher enzyme activities and higher levels of protein 
and amino acids in accessions with higher ACD6 activity suggest higher metabolic rates to 
support constitutive defenses at the expense of growth (chapter 4).

Comparison of the heritabilities between chapter 2 and 4 reveals that the heritabilities 
for morphological traits and biomass are much higher than for metabolic traits. This is in 
accordance with increased robustness at higher phenotypic levels, which was observed 
previously (Fu et al. 2009). The robustness at the morphological level corresponds well 
with an infinitesimal model with many loci of small effect that together ensure the progress 
of development, despite small changes in the environment. The decreased robustness at 
lower phenotypical levels should allow us to narrow down the number of candidate genes. 
Although the morphological traits were analysed under long day conditions (chapter 2) 
and the metabolic traits under short-day conditions (chapter 4), significant Bonferroni-
corrected correlations were found between the two experiments. Flowering time correlated 
positively with total amino acids and UDP-glucose pyrophosphorylase (UGP) activity, but 
negatively with biomass. Furthermore, the petiole to leaf length ratio correlated positively 
with UGP activity and relative growth rate correlated negatively with total amino acids 
and cytosolic phosphoglucose isomerase. Both rosette branching and relative growth rate 
correlated positively with biomass. Although these were the only significant Bonferroni 
corrected correlations, there are many negative correlations between relative growth rate 
and primary metabolism and positive correlations between flowering time and primary 
metabolism. When the SNPs with –log10(P) > 3 were compared between morphological and 
metabolic traits, 313 candidate genes could be assigned in both datasets, among which 
obvious ones such as FLC, PHYTOCHROME B (PHYB), DELAY OF GERMINATION 1 (DOG1), 
PHOSPHOGLUCOSE ISOMERASE 1 (PGI1) and ACS11. The majority of these genes have been 
implicated to play a role in flowering, further emphasizing the large effect of flowering 
time in studies on natural variation (Huang et al., 2013). Interestingly, variation in protein, 
glucokinase activity and the ratio of petiole to leaf length (chapter 2) associated significantly 
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with ACS11 variation, providing additional evidence that natural variation at this locus plays 
a role in developmental processes. Although system-wide genetical genomics reveals many 
additional candidate genes, the overlap between metabolism and morphology can assist in 
narrowing down the number of candidate genes found with GWAS.

A further partitioning of the heritability can be revealed by RNA sequencing and bisulphite 
sequencing (Schmitz et al., 2013). Variation in the transcriptome and methylome might 
identify novel regulators of phenotypic traits or aid in the confirmation of GWA candidate 
genes. Epigenetic polymorphisms remain unidentified with conventional GWA methods, 
but they might explain a considerable amount of the broad-sense heritability when the 
epigenetic polymorphisms are shared between individuals of the same genotype (Weigel, 
2012; Korte and Farlow, 2013). If such changes are not shared, but they are formed through 
stochastic processes such as bet hedging (Simons, 2011; Herman et al., 2013), they might 
explain part of the residual variation.

As indicated in the previous sections on missing heritability, GWAS have several limitations 
for the identification of genes for quantitative traits. Two of the main drawbacks of GWAS are 
the inability to identify rare, large-effect variants and many variants of small effect. The latter 
problem is alleviated by lowering the significance threshold at the expense of an increase in 
false-positives (chapter 2 and 4) and by dividing the heritability of robust phenotypes into 
the less complex underlying components of the primary metabolic network (chapter 4). If 
rare variants cause the phenotypic variation, they most likely remain unidentified in GWAS. 
One possible solution to identify rare variants is the use of recombinant inbred lines in which 
the power to identify such variants is greatly enhanced because the applied crossing scheme 
ensures that the alleles are at equal frequency in the population. Alternatively, genes of 
small effect or rare variants might be identified by increasing the effective population size 
and/ or sampling in local populations with reduced population structure and heterogeneity. 
Such strategies might increase the power to find the causal variants, and especially variants 
important for local adaptation (Korte and Farlow, 2013). Moreover, resolution of GWA 
mapping might be improved in the near future when the full genome sequences of more 
than 1000 Arabidopsis accessions become available (www.1001genomes.org).

Hard versus soft inheritance
The Lamarckian idea of soft inheritance, i.e. that an organism can pass on environmentally 
acquired characteristics to subsequent generations, was refuted by Neo-Darwinians after 
the rediscovery of Mendel’s laws and the unsuccessful attempts to prove soft inheritance 
(Mayr, 1982). Hard inheritance is defined as the constant, stable inheritance of hereditary 
material to subsequent generations, modified only through stochastic and random 
mutation, and was believed to be the sole, heritable cause of phenotypic variation for the 
major part of the 20th century (Richards, 2006). Recent discoveries in the field of epigenetics, 
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however, suggest that epigenetic modifications can be induced by the environment  and 
that they can be stably transmitted from one generation to the next, reviving the idea 
of soft inheritance (Verhoeven et al., 2010; Mirouze and Paszkowski, 2011; Becker and 
Weigel, 2012; Sahu et al., 2013). It is, however, fiercely debated whether such epigenetic 
modifications are pure epialleles, independent of genetic variation, whether they are 
stochastically or environmentally induced and whether they are adaptive (Richards, 2006; 
Pecinka and Scheid, 2012; Turck and Coupland, 2013; Verhoeven and Preite, 2013). The 
main difficulty when studying the effect of epigenetic variation on phenotypic variation 
is the presence of DNA sequence variation. Recent developments together with reduced 
costs of sequencing technologies have enabled new opportunities to disentangle epigenetic 
variants from sequence variants. Whole-genome bisulphite sequencing, for example, 
allows the comparison between DNA sequence and methylome variation. In several lines 
generated for 30 generations by single seed descent from a common Arabidopsis founder 
line, the single methylation polymorphism rate was found to be about four times higher 
than the genetic mutation rate (Becker et al., 2011; Schmitz et al., 2011). The stochastic 
methylome variation among the lines most likely arises through the imperfect resetting of 
epigenetic marks through cell division and meiosis (Schmitz et al., 2011). More recently, 
genome, methylome and transcriptome variation were analysed in 150 different Arabidopsis 
accessions, and widespread natural variation in DNA methylation was found (Schmitz et 
al., 2013). The methylation variation was in many cases linked to genetic variation, which 
indicates that a genetic variant is most likely causal for the variation in DNA methylation. 
An alternative strategy to circumvent sequence variation is the use of asexual species in 
which there is less confounding from genetic variation (Verhoeven and Preite, 2013). As 
asexual species do not undergo meiosis, epigenetic resetting is less likely and epigenetic 
variation might be the main source of phenotypic variation as there is no recombination and 
segregation of alleles in such species (Verhoeven and Preite, 2013). Alternatively, epigenetic 
recombinant inbred lines (epiRILs) consisting of homozygous mosaic lines with stable, 
differentially methylated regions originating from either a wild-type or a hypomethylated 
mutant parent, such as ddm1, could be used for studying epigenetic variation. The mutant 
ddm1 allele was out-crossed by a back-cross to Col-0 and subsequent selection to ensure 
that methylation variation was the main source of variation in this population (Johannes et 
al., 2009).

Chapter 5 and 6 describe the epigenetic basis of morphology and phenotypic plasticity in 
different environments (chapter 5) and secondary metabolism in different tissues (chapter 
6) using the ddm1-2-derived epiRIL population (Johannes et al., 2009). Consistent  with 
previous analyses of the epiRIL populations (Johannes et al., 2009; Reinders et al., 2009; 
Roux et al., 2011; Latzel et al., 2012; Zhang et al., 2013) there was abundant variation for 
morphological traits under different conditions. Chapter 6 also describes for the first time the 
strong variation for secondary metabolites of leaves and flowers in the epiRILs. The variation 
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was highly heritable and comparable to heritabilities detected in conventional genetic 
RIL populations. This suggests that epigenetic variation can be an important source for 
heritable, phenotypic variation. Differentially methylated regions (DMRs) within the epiRIL 
population were used as physical markers to generate an epigenetic map (Colome-Tatche 
et al., 2012). The DMRs of the epigenetic map associated significantly with the phenotypic 
trait values and different epigenomic regions could be assigned to various phenotypes. 
Many of the QTLs for morphology, plasticity and metabolism overlapped, suggesting major 
pleiotropic epigenetic regulation. The co-location between metabolic and morphological 
QTLs indicates that unraveling the epigenetic regulation of metabolism can provide insight 
into the epigenetic regulation of morphology, provided that they are controlled by the same 
underlying epigenetic factors. Given the correlations between the metabolites and the 
morphological phenotypes, pleiotropic epigenetic regulation is expected. Moreover, QTLs 
are usually quite accurate despite the rather large QTL intervals (Price, 2006).

Although the epiRILs were designed to differentiate between epigenetic and genetic variation, 
genetic variation through transposable element (TE) insertion cannot be ruled out. Because 
the major pleiotropic QTLs found in our study co-locate with the confirmed epigenetic 
loci (QTLepi) detected in another epigenetic QTL study on flowering time and root length, 
these QTLs are most likely caused by epigenetic factors (Cortijo et al., 2014). Furthermore, 
opposite-effect QTLs were found for leaf area, which indicates that DNA hypomethylation 
can both increase and reduce leaf area depending on the site of methylation. These 
findings illustrate that adaptive phenotypic variation can be induced through epigenetic 
variation that is stable for at least eight generations, and can thus contribute to (short-
term) evolutionary adaptation. Moreover, comparison of DMRs between the epiRILs and 
138 natural accessions of Arabidopsis revealed that approximately 30% of the epiRIL DMRs 
are also present in nature (Cortijo et al., 2014). This suggests that these experimentally 
induced DMRs are also significant in natural settings and that they might contribute to local 
adaptation.

DNA methylation might be relevant in stressful environments. It is well-known that stressful 
environments can induce hypo- and hypermethylation of DNA in different plant species, 
concomitant with variation in gene expression (Choi and Sano, 2007; Chinnusamy and Zhu, 
2009; Grativol et al., 2012). However, thus far it is not known whether DNA methylation 
induced by stress is adaptive and whether it is regulated or stochastic. In our analyses in 
chapter 5, a pleiotropic QTL was found on chr 4 that includes the salt tolerance gene HIGH 
AFFINITY K+ TRANSPORTER 1 (HKT1) (Davenport et al., 2007). Both methylation and small 
expression differences  for this gene were found between ddm1-2 and Col-0 and methylation 
variation in the promoter region of the gene associated with leaf area in the epiRILs where 
reduced methylation decreased leaf area, especially under saline conditions. The DMR in 
the promoter region coincides with a small RNA target region that is heavily methylated in 
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Col-0 (Baek et al., 2011). Removal of methylation at this region increases HKT1 expression 
and salt sensitivity, consistent with our results (Baek et al., 2011). These findings illustrate 
that stable DNA methylation might be adaptive, especially under stressful environments.

Chapter 7 elaborates on these findings and describes the transgenerational inheritance of 
stress-induced epigenetic modifications that cause phenotypic variation at the transcript, 
metabolite and morphological trait level. Convincing evidence was produced for the 
specific environmental induction of epigenetic variation at multiple phenotypic levels. 
Furthermore, the stress-induced epigenetic changes were transmitted over more than one 
stress-free generation, and they appear to be adaptive. Biotic, methyljasmonate stress and 
abiotic, salt stress induced stress-specific transgenerational inheritance of variation in gene 
expression, metabolite abundance and morphology in unstressed progeny. When parents 
or grandparents had been grown under saline conditions, salt-stress responsive genes 
and cell wall maintenance genes were significantly up or down regulated in the progeny. 
Furthermore, transgenerational effects were observed that increased biomass in the 
stressed progeny of stressed grandparents, suggesting that the transgenerational inherited 
phenotypes are adaptive. It needs to be proven with further analyses, however, that these 
transgenerational inherited phenotypes are strictly determined by epigenetic modifications, 
and not initiated or maintained by genetic variation.

Phenotypic plasticity
It is thought that environmentally-induced epigenetic changes are of special importance 
in fluctuating environments, because epigenetic variants, in contrast to DNA sequence 
variants, can be reversed (Rando and Verstrepen, 2007). Epigenetic modifications might 
unlock phenotypic plasticity, and could thus enhance adaptation in such environments. 
However, if the environment changes very rapidly, between one generation and the next, 
the environmental sensitivity of the epigenetic loci might result in immediate reversion and 
the epigenetic chromatin marks are not inherited. It is reasoned that transgenerational 
inheritance of epigenetic regulation may evolve when the environment fluctuates over 
somewhat longer timescales, so that epigenetic marks can be stably transmitted (Furrow 
and Feldman, 2013). If the environment, however, changes over much longer timescales, in 
the order of thousands of generations, genetic mutations are most likely preferred.

In chapter 5, the phenotypic plasticity was calculated as the absolute difference in average 
trait values between control and saline conditions in the epiRILs. The majority of epiRILs 
showed stronger plasticity under changing conditions than wild-type Col-0. Furthermore 
two pleiotropic QTLs for phenotypic plasticity that co-located with the morphological 
trait QTLs were found. This indicates that DNA hypomethylation can unlock phenotypic 
plasticity, and that the plasticity is most likely regulated by the same loci that regulate the 
morphological traits. It is reasonable to assume that by removing silencing from TEs and 
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genes, the ddm1-2 induced hypomethylation increases the environmental sensitivity of 
such genes, and therefore increases plasticity. It must be noted that the variation observed 
here is due to stable, heritable variation, and not due to plastic de novo variation induced 
by the stress (Richards et al., 2010). Phenotypic plasticity was also enhanced in the epiRILs 
in response to drought and nutrient stress, which suggests that phenotypic plasticity is a 
general response in the epiRILs (Zhang et al., 2013). Phenotypic plasticity is also observed 
in conventional RIL populations and most often the plasticity QTLs overlap with the trait 
value QTLs (Lacaze et al., 2009; Tetard-Jones et al., 2011; El-Soda et al., 2014). It is difficult to 
compare the epigenetic with the genetic contribution to phenotypic plasticity as epigenetic 
variation might contribute to phenotypic variation in conventional RIL populations when 
the epigenetic variation associates with the genetic markers (Schmitz et al., 2013). Recently, 
a RIL population in soybean was analysed for genome, methylome and transcriptome 
variation and indeed, the majority of the DMRs co-segregated with the genetic background, 
and for 90% of the DMRs, genetic QTLs explaining the methylation variation were identified 
(Schmitz et al., 2013). Similar results were obtained for natural accessions of Arabidopsis 
(Schmitz et al., 2013). Although this suggests that most epigenetic variants are dependent 
on genetic variation, rare examples of DMRs not linked to genetic variation were identified, 
and such DMRs could be pure epialleles (Schmitz et al., 2013; Schmitz et al., 2013). In our 
study, the pleiotropic QTL on chr. 1 included two plasticity QTLs that overlapped with the 
epigenetic QTL interval from Cortijo et al., 2014 and suggests that pure epigenetic alleles 
determine phenotypic plasticity and morphological trait variation at this QTL. These findings 
illustrate that stable, epigenetic modifications can increase phenotypic plasticity. It needs, 
however, additional experiments to prove that the environment can induce such changes, 
that they are adaptive and that such environmentally induced changes are inherited to 
future generations. In violets, variation in DNA methylation was associated with different 
levels of herbivory in natural settings, suggesting local adaptation via epigenetic phenotypic 
plasticity (Herrera and Bazaga, 2010). Moreover in a study on nectar-associated yeast, 
sugar composition and concentration initiated different non-random DNA methylation 
states and when DNA methylation was chemically inhibited, proliferation was repressed 
on media containing sugar. DNA methylation thus allowed successful growth in extreme 
sugar environments and enhanced phenotypic plasticity (Herrera et al., 2012). These studies 
indicate that DNA methylation variation can be adaptive in certain environments, but do not 
provide conclusive evidence for environmentally induced soft inheritance.

Besides phenotypic plasticity, chapter 5 showed that developmental instability was generally 
increased in the epiRILs and that several genomic regions associated with developmental 
instability, indicating epigenetic regulation. Increased developmental instability conforms to 
an adaptive strategy called bet hedging. Bet hedging is described as the ability of a genotype 
to produce phenotypically diverse offspring where variation in fitness is reduced at the cost 
of overall fitness (Simons, 2011). This strategy could be adaptive in fluctuating environments, 
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because at least some individuals within the population will thrive (Herman et al., 2013). 
Since bet hedging is found in adverse environments in nature (Evans et al., 2007; Venable, 
2007), and because epigenetic variation can be induced by different environmental stresses 
(Chinnusamy and Zhu, 2009; Verhoeven et al., 2010; Grativol et al., 2012) and because DNA 
hypomethylation increases developmental instability for many morphological traits (chapter 
5), epigenetic mechanisms might determine bet hedging strategies.

To claim soft inheritance, it must be proven that the epigenetic polymorphisms are 
independent of genetic variation and that they are induced directly by the environment in a 
non-random process. Most epi-alleles discovered so far are not pure epi-alleles, but rather 
depend on some sort of genetic variation (Becker and Weigel, 2012; Pecinka and Scheid, 
2012; Turck and Coupland, 2013) or are induced stochastically (Becker et al., 2011; Schmitz 
et al., 2011). The analyses of chapter 5, 6 and 7 and the study of Cortijo et al., 2014 provide 
strong evidence that pure epi-alleles can regulate both morphological and metabolic 
trait variation (chapter 5 and 6), that they can be specifically induced by the environment 
(chapter 7), that they can be found in nature (Cortijo et al., 2014), and that they can be 
adaptive (chapter 5 and 7). These analyses together strongly suggest that soft inheritance 
can play an important role in determining phenotypic variation between individuals of the 
same species. However, it must be emphasized that numerous DNA sequence variants have 
been identified in crop and wild species that cause naturally occurring phenotypes (Weigel, 
2012; Alonso-Blanco and Méndez-Vigo, 2014). Although epigenetics is an interesting field of 
research and a better understanding of its occurrence and mechanisms might contribute to 
improved agricultural crop growth and productivity, only a small number of epialleles have 
been identified so far, and the majority is dependent on genetic initiation.

To grow fast or to grow strong
Chapter 3 describes the metabolic trade-off between investment of resources for growth 
and reproduction, or for defense and survival. When pathogen pressure is low or absent, 
plants are expected to evolve increased competitive ability, while high pathogen pressure 
would favor the evolution of resistance and tolerance (Hare, 2012). This balance between 
growth and defense may be seen in the light of primary and secondary metabolites, because 
primary metabolites are mostly involved with growth, development and reproduction, while 
secondary metabolites are mostly involved with responses to changes in the environment. 
Moreover, primary metabolites are often used as substrate, cofactor or ligand in enzymatic 
reactions for the biosynthesis of secondary metabolites, and these primary metabolic 
resources are, in such cases, thus diverted away from growth related processes (Logemann 
et al., 2000; Bolton, 2009). Furthermore, energy required for the activation of the defense 
pathways is merely generated via primary metabolic pathways (Scheideler et al., 2002). 
Interestingly, chapter 4 describes negative correlations between primary metabolites and 
growth related traits (RGR and FW), suggesting a trade-off between investment in primary 
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metabolism and growth, quite contrary to expectation (chapter 3 and 4). Moreover, the 
positive associations between primary metabolism and stress-related genes, such as ACD6 
and HVA22E further illustrate that investment in primary metabolism contrasts with fast 
growth. The stress related associations, however, also suggest that primary metabolites are 
needed in harsh environments, most likely as resources for stress tolerance and pathogen 
resistance. Consistent with this hypothesis, transcripts involved in primary metabolic 
regulation, such as TCA cycle and biosynthesis of amino acids increased upon exposure 
to various abiotic and biotic stresses, which suggests indeed that primary metabolites 
provide the energy for defense responses (Less et al., 2011; Etalo et al., 2013). Furthermore 
carbohydrates and amino acids positively regulate the expression of defense-related genes 
and may trigger defense responses (Rojas et al., 2014). Therefore, plants that experience 
high pathogen and herbivore pressure might increase their primary metabolic status to 
enhance defense responses in the case of attack (Bolton, 2009).

Flowering time on the other hand correlated positively with the primary metabolites, which 
suggests that fast growing accessions use their carbon resources very efficiently to enable fast 
growth, early flowering and fast reproduction. In stressful environments, these fast growing 
accessions are most likely outcompeted by their defense-oriented neighbors, while in less 
stressful environments, they grow faster and outcompete their slow growing neighbors. This 
indicates that environmental conditions act as selective pressures that can shape the natural 
variation in plant metabolism, growth and morphology, and drive local adaptation (Baxter 
et al., 2010; Hare, 2012; Juenger, 2013; Keith and Mitchell-Olds, 2013). Further studies that 
analyse natural variation in both primary and secondary metabolites, possibly on different 
analytical platforms and in different environments, integrated with plant growth analyses, 
are needed to present a more comprehensive overview of the relationships between growth, 
metabolism and adaptation. Such studies would also contribute to a better understanding 
of the possible trade-off between investment in primary and secondary metabolism.

Ddm1-induced hypomethylation caused both qualitative and quantitative variation in 
secondary metabolism of leaves and flowers (chapter 6). For a number of metabolites, 
several  QTLs were found in leaves and flowers that coincided with the morphological QTLs 
and the epigenetic QTLs published earlier (Cortijo et al., 2014) and suggest pleiotropic, 
tissue-specific regulation of secondary metabolites by epigenetic marks. Interestingly, the 
glucosinolates in the flowers correlated positively with leaf area and most other morphological 
traits and had the same QTL-effect sign, while all leaf metabolites had opposite QTL-effect 
signs and correlated negatively with most morphological traits. In general, investment in 
secondary leaf metabolism was associated with reduced growth rate and late flowering, 
but investment in secondary flower metabolism was associated with increased growth rate 
and early flowering (chapter 6), suggesting that early flowering plants grow fast and invest 
more in flower metabolism, while late flowering plants, grow slower and invest more in 
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leaf metabolism. The chemical defense theory suggests that the allocation of metabolites 
depends on the costs associated with loss of the organ and the likelihood that the organ 
will be attacked (McKey, 1974). Because the floral organs have greater fitness value, it was 
suggested that plants allocate more defensive compounds to these organs (McCall and 
Irwin, 2006). Indeed, defense compounds are most concentrated in the reproductive organs 
of Arabidopsis (Brown et al., 2003) and floral herbivory is common in natural settings and 
affects reproductive success (McCall and Irwin, 2006). Nevertheless, a recent meta-analysis 
found that young leaves had more defense compounds than older leaves, but flowers were 
not better protected than leaves (McCall and Fordyce, 2010). The flowers of Brassica nigra, 
however, had five times higher concentrations of different glucosinolates than leaves, but 
nevertheless the growth rate of caterpillars was much higher on flowers than on leaves 
(Smallegange et al., 2007). These results indicate that the allocation of defense compounds 
to different tissues is not straightforward. It is conceivable that these different strategies 
evolve under different herbivore pressures, where high herbivore pressures move selection 
towards high vegetative defense investment and slow growth, while low herbivore pressures 
moves selection towards fast growing plants that focus on their reproductive outcome to 
improve their competitive ability.

Epigenetic regulation might provide an evolutionary advantage in fluctuating environments 
when different defense strategies optimize reproductive success between generations, or 
when a sudden transition in the environment is likely to occur (Furrow and Feldman, 2013; 
Herman et al., 2013). Epigenetic modifications could be beneficial in such environments, as 
they are relatively inexpensive, and they allow resetting when the environment changes.

Conclusions and future perspectives
The regulation of the flexible plant phenotype by the interaction between the stable genetic 
loci and the ever-changing environment is becoming clearer through recent breakthroughs 
in sequencing and ‘omics’ technologies (De Vos et al., 2007; Schneeberger and Weigel, 2011; 
Schmitz et al., 2013). These technological advancements allow the association between 
transcriptome, metabolome and phenome with single nucleotide polymorphisms (SNPs) in 
genome-wide association studies (GWAS) (Nordborg and Weigel, 2008). It is shown in the 
above sections that GWA studies have several limitations to identify the causal variants for 
quantitative traits in natural populations, but they do pave the way for further analyses and 
therefore greatly facilitate causal variant identification. By lowering the stringent significance 
threshold of GWAS (chapter 2 and 4) and by partitioning the heritability into the underlying 
components, such as enzymes, proteins and metabolites (chapter 4), GWAS identified 
numerous plausible candidate genes for quantitative traits. Intelligent crossing designs that 
combine the strengths of GWAS and QTL analyses by maximizing genetic diversity, mapping 
power and resolution will most likely increase the likelihood of identifying such variants. The 
recent discovery of the cenh3 mutant in Arabidopsis opens up new exciting opportunities 
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for the accelerated creation of doubled haploids (DHs) that can be used in such designs (Ravi 
and Chan, 2010; Wijnen and Keurentjes, 2014). If such studies are optimized for crop species, 
plant breeding will most likely see a revolution in the identification of candidate genes for 
many agronomic traits. Furthermore, epistatic interactions that are extremely difficult to 
identify in GWAS can be studied in recently developed chromosome substitution lines, in 
which chromosomes from different genotypes can be studied in an isogenic background 
(Kooke et al., 2012; Wijnker et al., 2012). And finally, the environment has an unsurpassed 
impact on quantitative traits which should not be underestimated. Therefore, future studies 
need to be performed in natural environments and under conditions that mimic local 
environments to discover genes that are important for local adaptation (Anderson et al., 
2014).

The suspected hard line between the stable genotype and the plastic phenotype is 
softened due to recent advances in the field of epigenetics that suggest the stable, adaptive 
inheritance of environment-induced epigenetic modifications to subsequent generations 
(Richards, 2006). It is however widely disputed whether such epigenetic polymorphisms 
act completely independent of genetic variation, whether they are adaptive, whether 
they are present in nature and whether they are directly induced by the environment. In 
chapter 5, 6 and 7 we find highly convincing evidence that certain epialleles are stable for 
several generations (chapter 5 and 6), induced by the environment (chapter 7), adaptive 
for some morphological traits (chapter 5 and 7), and that they can increase phenotypic 
plasticity (chapter 5). The presence of 30% of the epiRIL DMRs in nature further suggests 
that epialleles could also be important in natural settings (Cortijo et al., 2014).

In conclusion, the genetic and epigenetic analyses in this thesis help to understand the 
quantitative architecture of metabolic and morphological plant traits that are regulated by 
multiple, additive genetic loci, epigenetic variation, the environment and the interactions 
among them.
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Summary

The plant phenotype is shaped by complex interactions between its genotype and the 
environment. Although the genotype is stable and determined by the genomic sequence, 
plants are able to respond flexibly to changes in environmental conditions by orchestrated 
signal transduction pathways. The genomic sequence may change with each generation 
through chromosome rearrangements, meiotic recombination and spontaneous mutations. 
Through natural selection on these randomly induced changes, genotypes become adapted 
to their local environment. Because different genotypes adapt to different environments, 
natural variation within species expands in time and gives rise to a wide variety of genotypes 
and phenotypes. The genetic architecture that specifies the phenotype can be investigated 
by analysing different genotypes in the same environment and associate the phenotypic 
variation with molecular markers that discriminate the genotypes. Recent advances in 
next-generation sequencing technology enabled the fast sequencing of entire genomes, 
and in Arabidopsis thaliana alone, more than 1000 different genotypes have been fully 
resequenced. The sequencing allows the association of phenotypic variation with large 
numbers of single nucleotide polymorphisms (SNPs) that greatly enhance resolution in 
genome-wide association studies (GWAS).

GWAS on human diseases suffer from missing heritability that is most likely caused by the 
genetic architecture of the disease traits. Many variants of small effect or rare variants 
most likely determine a large part of the genetic variation and these variants are difficult 
to identify in GWAS due to lack of statistical power. In plants, several GWAS have been 
performed and they have identified previously validated genes and genes involved in 
monogenic disease resistance, but elucidating quantitative traits such as many agronomic 
important traits might be problematic in plants as well. Chapter 2 describes a GWA study 
in which quantitative morphological traits, such as leaf area, flowering time and branching 
were examined in 350 accessions of Arabidopsis for association with about 200,000 SNPs. 
The morphological traits showed extensive variation and were highly heritable, but GWA 
mapping could not identify the genetic variants that explain the heritability. Therefore, 
missing heritability was addressed using genomic selection models and these models 
confirmed the quantitative complex architecture of the morphological traits. Based upon 
these results, the heritability was assumed to be hidden below the significance threshold, 
and indeed lowering the significance threshold enabled the identification of many candidate 
genes that have been implicated to play a role in the phenotype directly or indirectly, in 
previous studies. One candidate gene was studied in more detail; natural variants of ACS11, 
an ethylene biosynthesis gene, associated significantly with the petiole to leaf length ratio. 
ACS11 is indeed expressed in petioles and ectopically supplied ethylene abolished the 
difference in the phenotype of natural variants at this locus, strongly suggesting that ACS11 
is involved in the regulation of petiole growth.
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However, lowering the significance threshold also increases the number of false-positive 
associations, non-causal alleles that co-segregate with the trait values. Because regulation 
of the morphological traits occurs at multiple intermediate levels, increased certainty on 
the associations can be obtained by performing GWA mapping on the intermediate levels 
from genotype to phenotype such as gene expression, and protein and metabolite content. 
Chapter 3 describes a literature survey into the multi-dimensional regulation of metabolic 
networks that are regulated by inputs from the clock, the communication between cells and 
between source and sink tissues, and the environment. The metabolic status of the plant 
can be seen as the final product of the interaction with the environment, and as such, it 
can serve as a blueprint for growth and development. Chapter 4 describes the abundant 
variation in enzyme activities and metabolites involved in primary carbon and nitrogen 
metabolism. The metabolite and enzyme activity data were analysed together with plant 
biomass data, and many pleiotropic regulators were identified with opposite effects on 
primary metabolism and biomass formation. Natural variants in two stress-responsive genes 
were oppositely associated with biomass and many enzymes and metabolites involved in 
primary metabolism, suggesting that higher enzyme activities and higher levels of sugars 
and proteins might be needed to support plant resistance to stress at the expense of growth.

Some studies indicated that epigenetic variation, independent of the genetic SNPs, may 
contribute to missing heritability. Epigenetic inheritance is defined as the inheritance of 
phenotypic variation to future generations without changes in DNA sequence. Epigenetic 
variation is caused by variation in chromatin marks such as DNA methylation, histone 
modifications and small RNAs. Recently, a recombinant inbred line (RIL) population was 
developed in Arabidopsis where the chromosomes are differentially methylated in lines 
with an otherwise isogenic background by crossing wild-type Col-0 with a hypomethylated 
ddm1-2 mutant. Chapter 5 describes the epigenetic regulation of morphology and 
phenotypic plasticity by studying morphological variation in 99 epiRILs under control 
and saline conditions. The morphology and plasticity trait values were associated with 
differentially methylated regions (DMRs) that were used as molecular markers in QTL 
mapping. Many QTLs for various morphological traits and phenotypic plasticity parameters 
co-located, suggesting pleiotropic epigenetic regulation of growth, morphology and 
plasticity. Furthermore, methylation variation in the promoter of a salt-tolerance gene, 
HIGH-AFFINITY K+ TRANSPORTER1 (HKT1) associated significantly with leaf area, especially 
under saline conditions.

To gain more insight into the epigenetic regulation of plant growth and morphology, chapter 
6 describes the epigenetic regulation of secondary metabolite levels in leaves and flowers 
and studies the relationship with the morphological traits determined in chapter 5. Many 
of the QTLs that were found for growth and morphology overlapped with the QTLs for 
metabolic traits, and suggest pleiotropic regulation. Furthermore, subsets of the metabolites 
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correlated well with the morphological traits and might thus be regulated by the same 
loci. The majority of metabolite QTLs were detected for glucosinolates and flavonoids in 
the flowers, and methylation variation was observed for some of the biosynthetic pathway 
genes of these compounds when comparing Col-0 and ddm1-2, which indicates a role for 
epigenetic regulation of these biosynthesis pathways.

Although stable, natural epialleles have been found in plant species and the environment 
can induce hypo- and hypermethylation of DNA, it remains elusive whether environmentally 
induced epigenetic changes can be inherited to subsequent generations, independent of 
genetic variation. Chapter 7 describes the transgenerational inheritance of phenotypic 
variation in progeny derived from a common Arabidopsis founder line. The progeny 
of stressed parents and grandparents showed variation in morphological traits, 
metabolite accumulation and gene expression. For example, many salt-responsive genes 
were up-regulated in progeny of salt-stressed grandparents. The responses to biotic 
(methyljasmonate) and abiotic (salt) stress differed strongly and this suggests that different 
environments can cause different transgenerational responses. Because all lines are derived 
from a single ancestor, epigenetic variation and not DNA variation is most likely causal 
for the phenotypic variation. Further studies are, however, needed to provide conclusive  
evidence for transgenerational inheritance.

Chapter 8 provides a synthesis of the work and discusses the GWA studies in the light of 
missing heritability, genetic architecture and the verification of candidate genes. The work 
on epigenetic regulation of phenotypic plasticity, morphology and metabolism is discussed 
in relation to Lamarckian soft inheritance that gained new enthusiasm after some recent 
discoveries in the field of epigenetics. And finally, the metabolomics work is discussed in the 
light of the growth-defense hypothesis that states that investments in defense occur at the 
expense of growth.
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Samenvatting

Het fenotype van een plant wordt bepaald door de complexe interacties tussen zijn 
genotype en de omgeving waarin hij opgroeit. Hoewel het genotype onveranderlijk is en 
gedefinieerd wordt door de genomische DNA sequentie zijn planten in staat om flexibel te 
reageren op veranderingen in de omgeving door sterk georganiseerde signaal transductie 
routes. De genomische sequentie kan elke generatie worden aangepast door chromosoom 
reorganisatie, meiotische recombinatie en spontane mutaties. Door het proces van 
natuurlijke selectie op deze willekeurig aangebrachte veranderingen passen genotypes zich 
in de tijd aan naar hun lokale omgeving. Omdat verschillende genotypes zich verschillend 
aanpassen aan (verschillende) omstandigheden breidt de natuurlijke variatie zich uit 
met de tijd en ontstaat er een grote verscheidenheid aan genotypes en fenotypes. De 
genetische opmaak van de plant die het fenotype specificeert kan onderzocht worden door 
verschillende genotypes van dezelfde plant op te groeien onder dezelfde omstandigheden 
en een associatie te maken tussen de uiterlijke variatie en moleculaire merkers die de 
genotypes onderscheiden. De onderzoeken naar de associatie tussen vele moleculaire 
merkers en de fenotypes worden aangeduid als genoomwijde associatiestudies (GWAS). 
Recente vorderingen in genotyperingstechnologie hebben het mogelijk gemaakt om de 
volledige DNA sequentie van een organisme te ontrafelen, en in Arabidopsis thaliana (de 
zandraket) alleen zijn nu meer dan 1000 verschillende genotypes volledig genetisch in kaart 
gebracht.

GWAS wordt ook toegepast in humane genetica om de genetische oorzaak van ziekten 
te achterhalen, maar het vinden van de associaties tussen ziekte en moleculaire merkers 
wordt sterk vermoeilijkt door de ontbrekende erfelijkheid (erfelijkheid die niet kan worden 
aangetoond met de moleculaire merkers). Dit wordt zeer waarschijnlijk veroorzaakt door 
de genetische opmaak van ziekteverschijnselen. Vele genetische varianten van klein effect 
of zeldzame genvarianten bepalen waarschijnlijk voor een groot gedeelte de genetische 
variatie. Deze varianten zijn echter moeilijk te achterhalen met GWAS door het ontbreken 
van statistische kracht. In planten zijn verschillende GWAS uitgevoerd en zij hebben 
verscheidene, eerder bevestigde genen gevonden en genen betrokken bij monogenetische 
ziekteresistentie. Echter, het vinden van genen voor kwantitatieve eigenschappen 
zoals belangrijke eigenschappen voor de landbouw lijkt ook in planten problematisch. 
Hoofdstuk 2 beschrijft een GWA studie naar kwantitatieve morfologische eigenschappen, 
zoals bladoppervlak, bloeitijd en stengel vertakkingen in 350 verschillende accessies van 
Arabidopsis gegenotypeerd met ongeveer 200,000 merkers. We vinden veel variatie voor de 
morfologische eigenschappen met een hoge erfelijkheid, maar GWAS leidde niet tot het in 
kaart brengen van de genetische varianten die de erfelijkheid verklaren. Daarom gebruikten 
wij genomische selectie modellen om het probleem van de ontbrekende erfelijkheid verder 
te onderzoeken en deze modellen bevestigden de complexe, kwantitatieve opmaak van de 
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morfologische eigenschappen. Gebaseerd op deze resultaten werd aangenomen dat de 
erfelijkheid niet ontbreekt, maar verborgen is onder de significantie drempel. Het verlagen 
van de significantie drempel zorgde inderdaad voor de identificatie van vele genen waarvoor 
eerder direct of indirect bewijs was geleverd in andere studies dat zij te maken hebben 
met de eigenschappen die wij onderzoeken. Eén gen werd in onze studies in meer detail 
bestudeerd: natuurlijke varianten van ACC synthase 11, ACS11, een ethyleen biosynthese 
gen, associeerden significant met de ratio tussen petiole -en bladlengte. ACS11 komt tot 
expressie in de petiole en het blootstellen van de planten aan ethyleen deed het verschil 
in de ratio tussen petiole- en bladlengte tussen de verschillende genotypes teniet. Deze 
vindingen duiden er sterk op dat ACS11 betrokken is bij de regulatie van petiole groei.

Echter, het verlagen van de significantie drempel leidt ook tot een verhoging van 
het aantal vals positieve associaties, niet causale allelen die cosegregeren met de 
fenotypische waarden. Omdat regulatie van de morfologische eigenschappen plaatsvindt 
op verschillende, intermediaire niveaus kan meer zekerheid over de juistheid van de 
associaties verkregen worden door GWAS toe te passen op deze intermediaire niveaus 
tussen genotype en fenotype, zoals op genexpressie, eiwit en metaboliet niveau. Hoofdstuk 
3 beschrijft een literatuuronderzoek naar de multidimensionale regulatie van metabolische 
netwerken, die geregeld worden door signalen van de klok, de communicatie tussen cellen 
en tussen weefsels, en de omgeving. De metaboliet huishouding van de plant kan worden 
gezien als het uiteindelijke product van de interactie tussen genotype en omgeving en op 
deze manier kan het dienen als een blauwdruk voor groei en ontwikkeling. Hoofdstuk 4 
beschrijft de veelvuldige variatie in enzymactiviteiten en metabolieten betrokken bij 
primair carbon en stikstof metabolisme. De metaboliet huishouding en enzymactiviteit data 
werden geanalyseerd ten opzichte van de biomassa van de plant, en vele pleiotropische 
genen werden geïdentificeerd met tegenovergestelde effecten op primair metabolisme 
en biomassa vorming. Natuurlijke variatie in twee stress responsieve genen bijvoorbeeld 
suggereert dat hoge enzymactiviteit en hogere suiker en eiwit niveaus nodig zijn om de 
resistentie van planten te verhogen ten koste van snelle groei.

Verscheidene studies wijzen erop dat epigenetische variatie, onafhankelijk van genetische 
variatie, ook zou kunnen bijdragen aan de ontbrekende erfelijkheid. Epigenetische 
erfelijkheid wordt gedefinieerd als de overerving van fenotypische variatie aan volgende 
generaties, onafhankelijk van veranderingen in de DNA sequentie. Epigenetische variatie 
wordt veroorzaakt door veranderingen in het chromatine zoals variatie in DNA methylatie, 
histon modificaties en kleine RNAs. Recentelijk is een recombinante inteelt lijn populatie 
ontwikkeld (RIL) in Arabidopsis waar de chromosomen differentieel gemethyleerd zijn 
in een anderzijds isogene achtergrond door het kruisen van wildtype Col-0 met een 
hypogemethyleerde mutant, ddm1-2. Deze populatie wordt de epigenetische recombinante 
inteelt lijn (epiRIL) populatie genoemd. Hoofdstuk 5 beschrijft de epigenetische regulatie van 
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morfologie en fenotypische plasticiteit aan de hand van een studie naar de morfologische 
variatie in 99 epiRILs opgegroeid onder ofwel controle ofwel zoute omstandigheden. De 
morfologische en plasticiteits-gerelateerde eigenschappen werden geassocieerd met de 
differentieel gemethyleerde gebieden, die gebruikt worden als moleculaire merkers voor 
kwantitatieve kenmerk analyses (QTL, quantitative trait locus). Verscheidene QTLs werden 
gevonden voor zowel de morfologische eigenschappen als de fenotypische plasticiteit 
parameters op dezelfde positie in het genoom, wat er op duidt dat er sprake is van 
pleiotropische, epigenetische regulatie van groei, morfologie en plasticiteit. Bovendien, 
variatie in DNA methylatie in de promotor van een gen betrokken bij zout tolerantie, HKT1, 
associeerde significant met bladoppervlak, vooral onder zoute omstandigheden.

Om dieper in te gaan op de epigenetische regulatie van plantengroei en morfologie beschrijft 
hoofdstuk 6 de epigenetische regulering van secundaire metaboliet niveaus in bladeren en 
bloemen en wordt de relatie tussen het metabolisme en de morfologische eigenschappen 
onderzocht. Velen van de QTLs die werden gevonden voor groei en morfologie overlapten 
met de QTLs die werden gevonden voor het secundaire metabolisme, en dit wijst opnieuw 
op pleiotropische regulatie. Bovendien correleren bepaalde metabolieten zeer goed met 
de morfologische eigenschappen en zouden zij dus beiden geregeld kunnen worden 
door epigenetische invloeden. De meeste metabolische QTLs werden gevonden voor 
glucosinolaten en flavonoïden in de bloemen. Bovendien werd variatie in DNA methylatie  
waargenomen tussen de ouders van de populatie Col-0 en ddm1-2 voor enkele biosynthese 
genen van deze moleculen. Dit duidt sterk op epigenetische regulatie van de biosynthese 
routes.

Hoewel stabiele, natuurlijke epiallelen zijn gevonden in verschillende plantensoorten en 
hoewel omgevingsfactoren hypo –en hypermethylatie van het DNA kunnen veroorzaken 
blijft het onzeker of omgeving-geinduceerde epigenetische veranderingen kunnen worden 
doorgegeven aan het nageslacht, onafhankelijk van genetische variatie. Hoofdstuk 7 
beschrijft de transgenerationele overerving van fenotypische variatie in nakomelingen van 
eenzelfde Arabidopsis ouder. De nakomelingen van gestreste ouders en voorouders tonen 
variatie in morfologische eigenschappen, metaboliet accumulatie en genexpressie ten 
opzichte van nakomelingen van niet gestreste ouders en voorouders. Verscheidene zout 
responsieve genen bijvoorbeeld werden verhoogd afgeschreven in de nakomelingen van 
grootouders die opgroeiden onder zoute omstandigheden in vergelijking met nakomelingen 
van grootouders die opgroeiden onder optimale omstandigheden. De respons van 
nakomelingen na biotische (methyljasmonaat) en abiotische (zout) stress verschilde 
sterk en dit suggereert dat verschillende omgevingen verschillende transgenerationele 
responsen veroorzaken. Omdat alle lijnen van dezelfde homozygote ouder afkomstig zijn via 
zelfbestuiving is epigenetische variatie waarschijnlijk verantwoordelijk voor de fenotypische 
variatie, en niet genetische variatie. Vervolgstudies zijn echter nodig om volledig aan te 
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tonen dat het hier gaat om epigenetishce transgenerationele overerving.
Hoofdstuk 8 voegt het werk samen tot één geheel en bediscussieert GWAS in het licht van 
ontbrekende erfelijkheid, genetische opmaak en de verificatie van kandidaat genen. Het werk 
over de epigenetische regulatie van fenotypische plasticiteit, morfologie en metabolisme 
wordt bediscussieerd met betrekking tot Lamarckiaanse erfelijkheid die recentelijk 
hernieuwde aandacht kreeg door ontdekkingen in het epigenetische onderzoek. En als 
laatste wordt het metabolieten werk bediscussieerd in het licht van de groei-verdedigings 
hypothese die aanduidt dat investeringen in verdediging gebeuren ten koste van groei.
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