
International Environmental Modelling and Software Society (iEMSs) 
 7th Intl. Congress on Env. Modelling and Software, San Diego, CA, USA,  

Daniel P. Ames, Nigel W.T. Quinn and Andrea E. Rizzoli (Eds.) 
http://www.iemss.org/society/index.php/iemss-2014-proceedings 

Practical identifiability analysis of environmental 
models 

Stefano Marsili-Libelli
1
, Michael B. Beck

2
, Philip Brunner

3
, Barry Croke

4,5,6
, Joseph Guillaume

4,5
, 

Anthony Jakeman
4,5

, John Jakeman
7
, Karel Keesman

8
, Hans Stigter

9 

1 
Department of Information Engineering, University of Florence, Italy 

2
 Warnell School of Forestry and Natural Resources, University of Georgia, USA 

3 
Centre d’Hydrogéologie et de Géothermie, Université de Neuchâtel, Switzerland 

4 
National Centre for Groundwater Research and Training, Australian National University, Canberra, 

Australia  
5 
Fenner School of Environment and Society, Australian National University,  

6 
Mathematical Sciences Institute, Australian National University 

7 
Sandia National Laboratories, Albuquerque, USA 

8 
Biomass Refinery & Process Dynamics, Wageningen University, The Netherlands 

9 
Department of Mathematical and Statistical Methods, Wageningen University, The Netherlands 

(email:tony.jakeman@anu.edu.au ) 

Abstract: Identifiability of a system model can be considered as the extent to which one can capture its 
parameter values from observational data and other prior knowledge of the system. Identifiability must be 
considered in context so that the objectives of the modelling must also be taken into account in its 
interpretation. A model may be identifiable for certain objective functions but not others; its identifiability 
may depend not just on the model structure but also on the level and type of noise, and may even not be 
identifiable when there is no noise on the observational data. Context also means that non-identifiability 
might not matter in some contexts, such as when representing pluralistic values among stakeholders, and 
may be very important in others, such as where it leads to intolerable uncertainties in model predictions. 
Uncertainty quantification of environmental systems is receiving increasing attention especially through 
the development of sophisticated methods, often statistically-based. This is partly driven by the desire of 
society and its decision makers to make more informed judgments as to how systems are better managed 
and associated resources efficiently allocated. Less attention seems to be given by modellers to 
understand the imperfections in their models and their implications. Practical methods of identifiability 
analysis can assist greatly here to assess if there is an identifiability problem so that one can proceed to 
decide if it matters, and if so how to go about modifying the model (transforming parameters, selecting 
specific data periods, changing model structure, using a more sophisticated objective function). A suite of 
relevant methods is available and the major useful ones are discussed here including sensitivity analysis, 
response surface methods, model emulation and the quantification of uncertainty. The paper also 
addresses various perspectives and concepts that warrant further development and use. 

Keywords: Identifiability; Environmental models; Model analysis 

1. INTRODUCTION 

Environmental models are widely used for management and scenario analysis, increasingly for social 
learning among stakeholders, and in environmental decision support systems (Kelly et al., 2013). Given 
the expanding importance of models the mission of this paper is to persuade environmental scientists to 
understand their models better. Understanding model limitations contextually, that is given the purpose 
and assumptions of the model and the data available to calibrate it, is fundamental. There are two prime 
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considerations in this exercise: the predictive accuracy of the model (solving the forward problem) 
relevant to its purpose as treated by Bennett et al. (2013); and the identifiability of the model (also viewed 
as the well-posedness of the inverse problem of identifying a model structure and parameters from 
observational data on the system of interest). This paper critically reviews practical problems in assessing 
model identifiability, groups different perspectives on the validity of estimates and concludes with a 
discussion of open research issues. It could be regarded as a sequel to Bennett et al. (2013), exploring 
the behaviour of environmental models and how their usefulness should be assessed. A valuable 
reference on identifiability is Walter and Pronzato (1997). While Beck (1987) considered identifiability in 
terms of water quality models, much of the discussion there is also of more generic value. Identifiability 
can be viewed as a key concept and step to be explored in the development and evaluation of 
environmental models (see Jakeman et al., 2006).  

The paper first considers the concept of identifiability and then focusses on practical methods of 
identification. The two issues were originally quite separate; with the former providing a clear cut (yes or 
no) answer to achieving unique parameter estimates, and the second assessing the numerical values of 
the unknown parameters and the extent of the identification accuracy. These two approaches have 
progressively converged into a single concept of “reliable” identifiability moving from the purely structural 
aspects of absolute identifiability, concerning the structural properties of the model, to the joint 
consideration of the various ingredients leading to a successful identification, including efficient model 
structure (parameter parsimony), data quality (informative data sets, good signal-to-noise ratio), and 
efficiency of the identification method (robustness, uniqueness, speed of convergence, versatility). 

The paper then proceeds to address the perspectives and techniques that have been used to assess 
practical identifiability for different application fields, including the use of sensitivity analysis, quadratic and 
higher degree response surface methods, dynamic identifiability analysis, pseudo Monte Carlo methods 
(Bayesian and non-Bayesian). This approach allows the reader to infer the relevance of the various 
identifiability perspectives across environmental fields. 

2. A BRIEF HISTORY OF IDENTIFIABILITY AND SOME BASIC METHODS 

Sometimes the structure of the model prevents the identification of some or all of its parameters. For this 
reason identifiability was initially considered a structural model property. Early theoretical identifiability 
tests heavily depended on calculus (Bellman and Astrom, 1970; Glover and Willems, 1974; Pohjanpalo, 
1978; Cobelli and DiStefano III, 1980; Norton, 1980; Godfrey et al, 1982; Walter and Lecourtier, 1982) 
and gave a go/no-go response. They were followed later by more flexible (and practical) methods based 
on sensitivity analysis. The rationale behind this approach was that a parameter is (more or less) 
identifiable depending on the relative extent to which they influence the model output. In the paper we 
would like to stress the converging trend between the theoretical and the practical approaches pointing 
toward Sensitivity Theory (ST) and its central role in assessing the practical identifiability of a model, not 
only as a structural property but also in relation to the quality of the data and in some cases the 
experimental design (Fedorov, 1972; Dochain and Vanrolleghem, 2001; Keesman and Stigter, 2002; 
Stigter and Keesman, 2004).  Sensitivity Theory (ST) from a statistical standpoint includes use of the 
Fisher Information Matrix (FIM). Briefly the Sensitivity of the model output y with respect to a parameter ϑ 

is defined as   
 
 

  

  
, therefore the larger is   

 
 the better ϑ is identifiable from the output measurement. 

Since the definition of FIM involves the use of    
 
 which in turn can be used to design optimal 

experimental conditions, there are considerable degrees of freedom in defining the experimental 

conditions that maximize   
 
 (optimal experimental design).As we shall see, sensitivity analysis generates 

other identifiability methods, such as the response surface method (see section 2,2 ) and one- and two-
dimensional projections (e.g. Wagener and Kollat, 2007). These methods analyse the shape of the 
objective error function in the parameter space to reveal possible numerical difficulties such as local 
minima, “narrow valley” or parallel troughs, all preventing the optimum to be reached. As an example two 
different model structures were tested as approximations to a horizontal subsurface constructed wetland 
(Checchi and Marsili-Libelli, 2005). Though apparently similar, their identifiability greatly differs, as shown 
in Figure 1, where parameters V1 and V2 refer to model A, and b and V3 are additional parameters 
introduced in model B. The added complexity of model B is reflected in a partial lack of identifiability (local 
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minima and horizontal trough). The response 
surface of model A has a single (global) 
minimum and is therefore easily identifiable, 
whereas model B shows local minima and a 
horizontal valley meaning that the sensitivity to 
parameter V2 is nil. 

In a recent paper by Anguelova et al. (2012) 
the local structural identifiability problem was 
solved for a model with 31 states and 49 
parameters (including the initial conditions) 
using computer algebra software (that, 
incidentally, was not used to compute any 
sensitivity of states or outputs to the 
parameters). Solution of this very hard 
problem required approximately a day of 
computation time. Although this is quite an 
impressing result that shifts the bounds on 
what currently can be achieved, the 
propagation of measurement uncertainty on 
the parameter estimates was not a part of this 
study, while this is certainly an important topic for environmental engineering. Yet, the computational 
result hallmarks the current possibilities in testing for local structural identifiability. In addition, these kinds 
of results are certainly useful in assisting, for example, with the problem of finding a minimal sensor set 
that allows identification of all model parameters in the model. 

Another interesting problem in system identification is to address the question of which parameters (from 
a large set of unknowns) can be reliably identified given the current model and experimental setup (inputs 
and outputs to the system). Brun and Reichert (2001), for example, consider this problem for a model with 
3 states and 13 parameters. Through comparison of collinearities (dependencies between parametric 
output sensitivities) and magnitudes of relative sensitivities, a ranking can be calculated that indicates 
which of the parameters can be identified and which ones can be fixed to a realistic but arbitrary value 
without influencing the model prediction substantially. Of course their analysis depends on the particular 
values of the parameters involved, but this does not hamper Brun and Reichert in concluding which 
parameters are the most relevant in explaining, for example, the dominant behaviour of a modest size 
bio-reactor model. 

2.1 Correlation between parameters and structural identifiability 

Another (and by now classical) example of the issues encountered in an identifiability analysis involves 
correlation between parameters, and is presented in Dochain et al. (1995). In this example, analysis of a 
simple 4 parameter model describing the oxygen uptake rate of a population of micro-organisms shows a 
strong correlation between the parameters. Analysis of the Jacobi matrix can identify such issues, as well 
as yielding a reduced parameterization (in this example, a reduction to 3 parameters). While the search 
for a re-parameterisation may be very rewarding in terms of gaining considerable reliability in the 
parameter estimates, the possible price that may have to be paid for a re-parameterisation is a loss of 
insight in the model’s structural relations. However, the question is: ‘how should we re-parameterise?’ 
Some feasible solutions to the model re-parameterisation problem have been presented in Keesman 
(2011), Section 5.2.5. 

2.2 Quadratic response surfaces 

Graphical methods using surface response plots, as in Figure 1, are typically limited to cases with less 
than three parameters. Response surface-based identifiability analysis of models with more than three 
parameters is possible if the response surface can be locally approximated by a quadratic surface (see 

 

Figure 1. Response surface plots of the two models 
(graph A: model A; graphs B, C, D: model B). 
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e.g. Box and Draper, 1987; Abusam et al. 2001). For the two-parameter case, as presented in Figure 1, 
this reads as 

                                     (1) 

with y the model response, 1:=V2, 2:=b and second-order polynomial parameters a0, ..., a22.  

In general, for the p-dimensional parameter case, we can write 

         
       (2) 

with:=[1, 2, ..., p]
 T

, A:= [a1, a2, ..., ap], and B a symmetric pp matrix with diagonal elements a11, a22, ..., app 
and off-diagonal elements aij/2. Eigenvalue decomposition of B gives eigenvectors that represent the 
direction of the main axes of the quadratic surface, and corresponding eigenvalues that represent the 
length of the semi-axes of the ellipsoidal contours. If both eigenvalues have the same sign then ellipsoidal 
contours appear. Different signs lead to a saddle plane. Non-identifiability of two parameters is shown by 
a valley or ridge in the response surface. Equal eigenvalues give a circular contour plot, an ideal 
identifiability case, as both parameters are fully uncorrelated.  

Hence, when one or more of the eigenvalues are close to zero, nearly non-identifiable parameters are 
present in the model. The corresponding eigenvectors show the directions in the parameter space of a 
valley or trough, and thus the nearly non-identifiable parameter combinations. 

2.3 Role of Data 

In parallel, extensions of these techniques have been used to investigate the dependence of identifiability 
on the dataset used for parameter estimation. Analytical methods can be used to identify the data 
characteristics necessary to achieve ‘persistence of excitation’ (Norton, 1986). This is related to the 
notion of ‘observability’ of parameters. For example, parameters of some hydrological models may only 
be active in rare conditions (Sorooshian & Gupta, 1983). For black-box models, Dynamic Identifiability 
Analysis (DYNIA) identifies a time-varying measure of information in data with respect to parameters 
(Wagener et al., 2003). This can also be approached by investigating time-variation of sensitivity (e.g. 
Herman et al 2013). 

In a numerical study on data worth in the context of unsaturated zone models, Brunner et al. (2012) 
observed that certain observations can significantly reduce predictive uncertainty without informing any 
specific parameters.  Therefore, the reduction of uncertainty must be related to information concerning 
combinations of parameters.  This raises questions concerning the adequate level of complexity because 
in this case the ability of the model to reduce the uncertainty of predictions does not rely on the precise 
estimation of all model parameters. Instead it relies on good estimations of only combinations. This 
information can be used to simplify the model as suggested through the calibration process. 

As identifiability relates to the inability to estimate unique parameters, it has naturally been extended to 
the idea of uncertainty in parameter estimation more generally. As a result of mismatch between model 
structure and error characteristics relative to the data available, parameter values identified may vary 
depending on the dataset and objective function used. Calculating cross-validated performance can give 
a measure of the significance of the problem. This broader understanding of identifiability has been 
approached through the concept of ‘non-stationarity,’ multi-objective optimisation and trade-offs between 
objectives (e.g. Madsen, 2000, Oudin et al. 2006), equifinality (e.g. Beven, 2006), uncertainty analysis 
(e.g. Beck and Halfon, 1991) and uncertainty quantification generally (e.g. Vrugt et al., 2008).  

2.4 Regularisation 

Regularisation is often used to enhance the identifiability of a model. In principle, two approaches to 
regularization exist (Doherty 2010). Tikhonov regularization stabilizes an ill-posed inverse problem (i.e. 
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enhances identifiablilty) by providing information directly relating to the calibrated parameters (Aster et al. 
2005). An alternative to this method is through subspace approaches such as Singular Value 
Decomposition (SVD).   In this approach, the parameter space is decomposed into a solution and a null-
space. These subspaces are orthogonal and spanned by orthogonal unit vectors. Unit vectors which span 
the calibration solution space are the combinations of parameters that can be estimated with a given 
calibration dataset.  The null space is spanned by parameter combinations that cannot be estimated. This 
decomposition allows identifying super-parameters (Tonkin and Doherty 2005) that represent 
combinations of orthogonal base parameters. The calibration of super parameters rather than all 
individual parameters represents a reduction of the dimensionality to the inverse problem.  

3. PRACTICAL PROBLEMS ENCOUNTERED IN THE PARAMETER ESTIMATION OF 
ENVIRONMENTAL SYSTEMS 

3.1 Numerical techniques for practical parameter estimation 

The parameter estimation problem, for a state-space model, can be stated in the following terms: given a 
model and a set of N experimental measurements 

{
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            (3) 

where x is the system state, y its input, uexp the experimental input and P the vector of parameters; then a 
set of optimal model parameters can be found by solving 

 ̂         ( )  ( )  ∑ (  ( )    
   
)
 
  (  ( )    

   
) 

   , (4) 

where Qk represents the accuracy of the k-th measurement. Usually this is expressed as a diagonal 

matrix with the reciprocal of the measurement variances 
2 2 2k
1 2 q

1 1 1
, ,...,Q diag

  

 
  

 

. Since parameters 

generally appear non-linearly in the output of model Eq. (3), numerical search methods must be used, the 
most popular being based on the Nelder and Mead flexible polyhedron algorithm and variations thereof, 
such as optimized search step, multi-start, etc. The main pitfall of this method is the possibility of being 
trapped in local minima. For this reason it is advisable to have a preliminary exploration of the error 
functional surface (see Section 2) or use a robust global optimizer, e.g. based on a genetic algorithm. 
This is especially recommended with data-driven models involving many parameters with little or no 
physical significance.  

3.2 Insensitivity of output to parameter changes 

Lack of identifiability of parameters commonly manifests itself in two key forms: insensitivity of the output 
to change in a single parameter change, and to changes in correlated parameters (Sorooshian & Gupta, 
1983). In the first case, if varying a parameter while keeping others fixed has no effect on the output, this 
suggests a problem with persistence of excitation or observability. The parameter needs to either be 
omitted, along with the processes it was meant to capture, or be estimated with a different forcing dataset 
in which its effect can be observed.  

The correlation of parameters results in lack of identifiability because a change in one parameter is 
compensated by a change in another, such that multiple parameter sets give the same output according 
to some quantity of interest. This effect can in some cases be addressed by removing or reducing 
correlation between the parameters (e.g. Gupta and Sorooshian 1983).  
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3.3 Failure of optimisation algorithms 

Even if an objective function response surface has a unique optimal point, optimisation algorithms may 
not be able to consistently identify it due to multiple regions of attraction, minor local optima, roughness, 
poor sensitivity and non-convex shape (Duan et al. 1992). A number of advances in optimisation methods  
(e.g. Duan et al. 1992; Vrugt et al. 2008) mean that a number of these can be overcome. They are 
however generally symptomatic of underlying issues with the data and model structure, and it may be 
desirable to instead improve properties of the response surface (e.g. Gupta and Sorooshian 1983, 
Kavetski et al 2006). 

3.4 Noise and estimation accuracy 

When a model structure has been selected, reliable 
identification also depends on the quality and richness 
of information in the data. In environmental problems, 
the available data were often collected for other 
purposes than modelling, so they are far from the 
“optimal experiment” conditions and yet in many 
instances they are the only available ones and the 
modeller has to make do with them. Noisy data can be 
filtered, for example by smoothing splines or by 
wavelets, in order to remove part of the noise without 
significantly affecting the information contained in the 
data (Torrence and Compo, 1998; Marsili-Libelli and 
Tabani, 2002; Marsili-Libelli et al., 2003, Marsili-Libelli, 
2004; Marsili-Libelli and Arrigucci, 2004.  

Consider the estimation of Monod kinetics from noisy 
observations of substrate and biomass, as shown in 
Figure 2. The µmax sensitivity – and estimation accuracy 
- in the noise-free case is compared to the results 
obtained with increasing levels of noise. If the noise is 
moderate (σ = 0.0147) the estimated value is still the 
exact one, but as the noise level increases the 
estimation accuracy is affected as the estimated value 
(red dots) is displaced from the correct value (µmax = 
0.5). In all cases the noisy estimation is more sensitive. 

The presence of noise raises the potential for overfitting 
when using automated parameter estimation. 
Parameters need to be unique despite error, which 
relies on capacity to account for error, typically in 
objective/likelihood function. It may be necessary to 
accept that there is no unique solution, and instead use 
an approach to quantify uncertainty or to explore its 
effects. 

3.5 Transparency of improvements to identifiability 

Issues of identifiability are by their very nature hidden from the modeller’s view. If the issues were 
obvious, the modeller would have addressed them, and no identifiability issue would be experienced. 
Therefore addressing identifiability generally requires changes that the modeller would not generally have 
considered, e.g. transforming parameters, selecting specific data periods, changing model structure, 
using a more sophisticated objective function. It is important that these changes do not undermine the 

 

Figure 2. Estimation of µmax with noisy 
observations. 
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ability to understand the concepts that went into creating the model in the first place. This relates to the 
debate on appropriate model complexity (e.g. Simmons and Hunt, 2012). 

3.6 Time required to analyse identifiability 

Ability to address identifiability is limited by skills, resources and available time, both of the modeller and 
computational time. Response surface methods also known as surrogate or model emulation methods 
are often essential for identifiability analysis. When evaluating a model is computationally expensive, the 
number of times the model can be run is limited. In such situations many of the methods mentioned in this 
paper are infeasible, especially Monte Carlo based algorithms. Surrogate models can be used to alleviate 
the computational burden, by using techniques such as Polynomial Chaos Expansions (PCE) or 
Gaussian Processes (GP) (Rasmussen and Williams, 2005; Xiu and Westhaven, 2005), to efficiently 
approximate the model response surface. Once built, these surrogates can be sampled repeatedly at a 
negligible cost relative to that of running the true model. Provided a surrogate of sufficient accuracy 
(problem dependent) can be constructed with fewer samples than required by the identifiability analysis, 
response surface methods are extremely effective at enabling the application of more computationally-
demanding methods. 

4. PERSPECTIVES ON VALIDITY OF THE ESTIMATES 

A modeller’s experience of identifiability differs depending on the problem, model and data 
characteristics, as indicated in the case of model structure issues (e.g. Gupta et al., 2012; Lin and Beck, 
2012). Perspectives therefore vary on what constitutes valid parameter estimates (and whether such 
even exist), and what should be done when no valid estimate can be identified. This depends on the type 
of identifiability considered and the assumptions that can be justified in the problem domain. While 
perspectives on identifiability have not been rigorously surveyed, we can at least distinguish between 
identifying an identifiability problem, elimination of the problem, quantification of uncertainty, and 
evaluating risk (impact of uncertainty). 

4.1 Identifying an identifiability problem 

Identifying limitations involves determining whether or not estimated parameters are ‘valid’, whether an 
identifiability problem exists, and perhaps identifying the cause of the issue. It considers that ‘a problem 
well-stated is a problem half-solved’, and suggests that future work may need to address the identifiability 
issued identified. 

Once a set of optimal parameters, in the sense defined in Eq. (4) has been obtained, the credibility of 
these estimates should be challenged. Possible statistical approaches are: 

 Non parametric methods, in which the agreement between data and model response is considered, 
irrespective of the parameter values. These methods rely on regression analysis and F-statistics to 
decide whether the null hypothesis (correct model) should be accepted or rejected. 

 Parametric methods, which consider confidence regions, based on the parameter covariance matrix, 
in which acceptable parameters should fall. These methods are mainly based on the Fisher 
Information Matrix and may involve a feedback path whereby an unsatisfactory estimation can be 
improved by changing the experimental conditions (Optimal Experimental Design, see e.g. Fedorov, 
1972; Seeber and Wild, 1989; Dochain and Vanrolleghem, 2001). 

 A number of analytical techniques can evaluate structural identifiability, including some supported by 
computer algebra (e.g. Bellu et al., 2007). 

 Calculation of degree of interaction can be obtained by a number of means: Sobol indices for specific 
parameter interactions obtained by PCE for example, eigenvalues of quadratic response surface, 
indices of concentricity and interaction, sensitivity ratio (Sorooshian & Gupta, 1985). 

 Certain surrogate methods provide additional benefits other than reduction in the computational cost. 
For example, the structure of Polynomial Chaos Expansions (PCE) allows the derivation of analytical 
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expressions for the mean, variance, and Sobol sensitivity indices. If the model samples used to build 
the PCE are chosen carefully the estimates of these statistics converge much faster than Monte Carlo 
estimates. This typically allows one to obtain high-order interaction Sobol indices which are often not 
computed using Monte Carlo-based Sobol methods (Sudret, 2008). 

4.2 Eliminating an identifiability problem 

Some symptoms of identifiability may be considered intolerable, such as non-uniqueness of automated 
parameters estimated, lack of observability of a parameter or lack of transferability of a model to specific 
conditions, e.g. to drought in hydrological applications. Eliminating these symptoms typically requires 
invasive changes to the model or model identification procedure. Correlation of parameters can be 
eliminated by principal component analysis, factor analysis, reparameterisation and rescaling of variables 
to achieve an elliptical response surface (Gupta and Sorooshian, 1983). Selection of a data record, 
typically approached simply in hydrology by selecting a long enough period, but may not have the right 
information (see Sorooshian and Gupta 1983). 

4.3 Quantification of uncertainty 

In some cases, an identifiability problem is not a priori intolerable. Instead, the identifiability problem is 
transformed into an uncertainty problem, and the resulting uncertainty is quantified. The emphasis is on 
providing information so that its users have an understanding of the effect of identifiability. In general, no 
value judgement is made as to whether the uncertainty is a posteriori tolerable. 

An ellipsoidal parameter confidence region can be defined as the parameter set P that satisfies the 
following inequality 

    p p

T T
1 1

p n ,N n
ˆ ˆ: n F  

  P P P C P P
 (5) 

where np is the number of parameter, N the experimental data and α is the selected confidence level of 
the F statistics. In Eq. (5) the weighing matric C is an approximation of the parameter covariance matrix 

and can obtained as the inverse of the FIM, i.e.        . Alternatively, uncertainty regions, without 
using statistics and not necessarily ellipsoidal, can be obtained via Monte Carlo simulation. 

As pointed out earlier regarding Optimal Experimental Design, the following tutorial example shows how 
trajectory sensitivity, FIM and estimation accuracy are related. Consider a simple Streeter and Phelps 
model describing the dynamics of organic pollution in rivers 

 

b

c sat b

dB
K B

dt

dC
K C C K B

dt


  


    
   (6) 

where B is the Biological Oxygen Demand (BOD) and C is the Dissolved Oxygen (DO), with Csat 

representing its saturation concentration. Consider the estimation of kinetic constants Kb and Kc in the 
simple situation of Error! Reference source not found. with two pollution point sources, assuming that 
only Dissolved Oxygen measurements are available. 
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It is interesting to compare the estimation accuracy in the two cases. It can be seen in  

 

Table 1 that by concentrating the samples in the highly sensitive points of the system evolution a higher 
accuracy can be obtained. In fact the FIM in the concentrated samples case is much larger than in the 
evenly spaced samples. As a 
consequence, the parameter 
uncertainty brackets in the 
latter case are almost half 
those of the even case. 

As pointed out in Marsili-
Libelli et al. (2003) the actual 
agreement or disagreement 
between confidence ellipsoids 
computed with differing 
methods can be diagnostic in 
questioning the accuracy of 
the estimated parameters. 

The concept of an indifference 
region can also be useful in 
this respect. Indifference is 
the "approximate region 
in the parameter space 
around a parameter estimate 
for which the model output 
sequences are considered to 
be indistinguishable." 
(Sorooshian and Gupta, 
1985). 

 

 

 

Table 1. Comparison of estimation accuracies. 
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Figure 3. A simple Streeter and Phelps model with two  point sources. 
The trajectory sensitivities are shown in the lower graph. In the first 
case evenly spaced measurements are taken along the entire reach 

(red diamonds) whereas in the second case the samples are 
restricted to the highly sensitivity zones (blue diamonds). 
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4.4 Evaluating risk (impact of uncertainty) 

Uncertainty due to identifiability issues (whether explicitly quantified or not) can also be assessed in terms 
of its risk, i.e. effect on the final product of the analysis, such as for decision making. If it does not change 
the result, perhaps there is not a need to worry about it. This is typically the default approach if modellers 
are aware of identifiability issues. By professional judgment, modellers often assert that a given issue is 
not significant, in order to be able to provide results efficiently rather than futilely trying to tie up every 
loose end. For example, uncertainty in parameter estimates may not be significant compared to many 
other issues in complex modelling.  

Identifiability issues may also be beneficial in some cases. This is particularly the case with models where 
parameter values are manually-defined, e.g. cost benefit analysis, expert opinion in Bayesian networks. 
There may be multiple/pluralistic ways of expressing the situation in order to enhance and share 
understanding. Not only may identifiability not matter because the emphasis is on promoting discussion, it 
may be useful to have multiple equivalent models that emphasise different aspects of a situation, e.g. 
gross margins $/ML and $/ha to emphasise value of water or viability of farm land. 

5. OPEN RESEARCH ISSUES 

 Many methods for investigating uncertainty are dependent on the type of model. Some model types 
are therefore under-served, e.g. those that have no explicit mathematical formulation (Sorooshian & 
Gupta 1983), or have non-smooth derivatives.  

 Making techniques accessible to modellers and results accessible to end-users limits the techniques 
that can be used, e.g. re-parameterisation needs to maintain interpretable parameters. 

 Need for teaching re identifiability issues to non-mathematical model users, particularly when 
optimisation and uncertainty quantification tools are used as black boxes. 

 Need for development of general techniques for identifying how correlation of parameters can be 
removed. Outside of a small set of specific cases, this is currently an ad-hoc exercise. 

 Estimating parameters that are expected to become important in the future but do not have a 
significant effect presently. When parameters are poorly observable with existing data more 
advanced parameter estimation techniques are required. Parameters can also be non-identifiable 
(less identifiable) on some parts of a data set when (more) identifiable on others, so guidance is 
need in this respect (Shin et al., 2013). 

 Design of data collection to improve identifiability. Even in modelling of environmental systems where 
experiments are not possible, it is possible to design monitoring processes. Existing literature takes 
an uncertainty-focussed approach (often emphasising return on investment). This could be extended 
to identifying how additional parameters can be identified, rather than reducing uncertainty on 
existing parameters. 

 There are many open questions related to generating response surfaces, however the overarching 
theme of these questions is how can the number of model runs used to build a surrogate be 
reduced. Most research to date has focused on approximating smooth response surfaces, but very 
little has been done to approximate discontinuous response surfaces. One approach that has shown 
initial promise is enriching surrogates of computationally expensive high-fidelity models with 
information from lower-fidelity models.  

 To address the curse of dimensionality better adaptive sampling strategies are needed that focus on 
dimensions and/or regions of interest, and variable transformations that identify important directions 
in the input space. 
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