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Abstract

Tail biting in pigs is a widespread problem in intensive pig farming. The tendency to develop this damaging behaviour has
been suggested to relate to serotonergic functioning and personality characteristics of pigs. We investigated whether tail
biting in pigs can be associated with blood serotonin and with their behavioural and physiological responses to novelty.
Pigs (n = 480) were born in conventional farrowing pens and after weaning at four weeks of age they were either housed
barren (B) or in straw-enriched (E) pens. Individual pigs were exposed to a back test and novel environment test before
weaning, and after weaning to a novel object (i.e. bucket) test in an unfamiliar arena. A Principal Component Analysis on
behaviours during the tests and salivary cortisol (novel object test only) revealed five factors for both housing systems,
labeled ‘Early life exploration’, ‘Near bucket’, ‘Cortisol’, ‘Vocalizations & standing alert’, and ‘Back test activity’. Blood samples
were taken at 8, 9 and 22 weeks of age to determine blood platelet serotonin. In different phases of life, pigs were classified
as tail biter/non-tail biter based on tail biting behaviour, and as victim/non-victim based on tail wounds. A combination of
both classifications resulted in four pig types: biters, victims, biter/victims, and neutrals. Generally, only in phases of life
during which pigs were classified as tail biters, they seemed to have lower blood platelet serotonin storage and higher
blood platelet uptake velocities. Victims also seemed to have lower blood serotonin storage. Additionally, in B housing, tail
biters seemed to consistently have lower scores of the factor ‘Near bucket’, possibly indicating a higher fearfulness in tail
biters. Further research is needed to elucidate the nature of the relationship between peripheral 5-HT, fearfulness and tail
biting, and to develop successful strategies and interventions to prevent and reduce tail biting.
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Introduction

Aberrant behaviours such as tail biting, i.e. the harmful oral

manipulations of the group mates’ tails, can both reflect and

contribute to health and welfare problems in pigs [1]. Tail biting is

caused by many factors [2], but the lack of exploration possibilities

in the home pen is likely the main risk factor for its development

[3]. Accordingly, tail biting is generally seen as redirected

explorative behaviour [4]. Indeed, pigs kept in pens enriched

with materials suitable for chewing and rooting, perform much less

tail biting compared to pigs kept in rather barren pens [3,5].

However, in barren housing systems not all pigs develop tail biting

behaviour, and, conversely, in enriched housing systems still some

pigs perform the behaviour [6]. Previously, the existence of

different types of tail biters was suggested [2] and there may be

different underlying motivations to display the damaging behav-

iour by pigs kept in diverging housing systems. Individual pigs may

therefore be predisposed to develop tail biting behaviour. Tail

biting behaviour has comparable characteristics with for instance

feather pecking in laying hens [7] and feather picking in parrots

[8]. The behaviours involved may be perceived as maladaptive as

they seem an inadequate response given the living circumstances

[9,10]. However, an important commonality of the problematic

behaviours may be a malfunctional neurotransmitter system

[11,12] which would imply that in some individuals the behaviours

may be malfunctional rather than maladaptive only [10].

Furthermore, it has been suggested that the propensity to develop

aberrant behaviour is related to personality traits, such as the

strategy (or ‘coping style’ [13]) an animal adopts in challenging

situations [11,14]. Animals may be classified in either proactive or

reactive individuals [13]. Briefly, proactive animals cope more

actively with acute mild stress, develop more easily routines and

seem more rigid in their responses to changes in their environ-

ment, whereas reactive animals respond more passively to acute

stressors and seem more flexible in their behavioural responses

[15,16]. These coping styles may also relate to the functioning of

the brain neurotransmitter systems [17,18] and it was previously

suggested that these proactive animals may be more vulnerable to

develop compulsive disorders, which show similarities with feather

pecking in laying hens and tail biting in pigs [11]. Another

personality trait that may contribute to the tendency of animals to

develop aberrant behaviours is fearfulness or anxiety [19,20]

which may be reflected in the response to novel situations [21,22].

Additionally, in pigs the behaviour in novelty tests has been

associated with coping styles [23], tail biting [20], and serotonergic

blood and brain parameters [22]. Therefore, the main aim of our

study was to explore whether tail biting in pigs, in a longitudinal

study, is associated with behavioural and physiological responses to
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challenges, and also with blood serotonin. Blood serotonin is

relatively easy to measure compared to brain serotonin and

behaviours and may, thus, be valuable in understanding the

mechanisms of tail biting. Pigs were subjected to a back test as the

behaviour performed during this test may reflect a pig’s coping

style [16,24], and they were exposed to two novelty tests, one

before and one after weaning. After weaning, salivary cortisol

measured around the novelty test was used to assess the pig’s

adrenal response to a challenging situation [25]. Tail biting

behaviour, tail damage, and blood serotonin were measured at

different time points in life as we recently found that tail biting in

pigs is not always consistent over different life stages [6].

Previously, in laying hens [26] and pigs [27] differences were

found in gene expression profiles of the animals that performed

damaging behaviours (feather peckers/tail biters), animals that

received the damaging behaviours (victims of feather pecking/tail

biting), and animals that were not involved in performing or

receiving the damaging behaviours (neutral animals). Apart from

focussing on pigs displaying tail biting behaviour, it seems,

therefore, highly relevant to explore other types of pigs as well.

Accordingly, our pigs were classified in tail biters/non tail biters

and victims/non-victims of tail biting. Combining both classifica-

tions resulted in biters, victims, a combination of both (biter/

victims), and pigs that never engaged in tail biting or receiving the

behaviour (neutrals). We chose to use both barren and enriched

pens as environmental enrichment strongly affects the prevalence

of tail biting behaviour (e.g. [6,28]), and may reveal different types

of tail biters [2].

Materials and Methods

Ethics Statement
The experimental protocol followed during this study was

approved by the Animal Care and Use Committee of Wageningen

University (no. 2010055f) and then also adopted by the Animal

Care and Use Committee of the University of Groningen, the

Netherlands. Blood samples were taken near the home pens of the

pigs and as quickly as possible to minimize stress. Pigs with severe

tail wounds (i.e. tip of tail missing) were removed from the

experiment and all pens (barren and enriched) received a jute sack

from 8 weeks of age onward to keep tail biting in barren housing at

an acceptable level.

Animals and housing
Pigs (n = 480) were born in 5 rounds at the experimental farm of

TOPIGS Research Center IPG in Beilen (the Netherlands).

Briefly, piglets were housed in a conventional (barren) farrowing

pen with a sow crate. Tails and teeth were kept intact, but males

were castrated. At four weeks of age piglets were transported to the

experimental farm ‘‘De Haar’’ in Wageningen (the Netherlands).

After weaning pigs were kept either barren (B) or enriched (E). The

difference between E and B housing was the provision of wood

shavings (12 kg at start, 3 kg added daily) and straw (1.5 kg daily)

in E housing. B housed pigs received two handfuls of wood

shavings daily, from six weeks of age onward. Additionally, from

week 8 onward both B and E pens received a jute sack, to keep tail

biting at an acceptable level in B pens. More details on housing of

the pigs both pre- and post-weaning have previously been

described (see [6,24,29]). Groups of pigs in a pen also differed in

Indirect Genetic Effects (IGE) for growth; IGE results are

presented elsewhere (see [30,31]). Each pen consisted of six

unrelated pigs with a 1:1 sex ratio, and at least two pigs of each

back test (see below) classification (LR:HR ratio [24]).

Tail biting behaviour and tail damage
Four life phases were distinguished: one pre-weaning, and three

post-weaning (1–3). These phases were, roughly, according to

general production stages: piglet (0–4 weeks), weaner (4–8 weeks),

grower (8–16 weeks), finisher (16–23 weeks). Pigs were, per phase,

identified as tail biters and victims of being bitten based on home

pen observations and tail damage scores, respectively [6]. Tail

biters were pigs involved in more than one tail biting incidence (i.e.

nibbling, sucking or chewing at the tail of a pen mate) during a

phase post-weaning (.1 out of 360 samples). Pre-weaning, tail

biters could not be identified properly and were, therefore, not

considered in this study. Tail biting behaviour was observed

during instantaneous scan samples with an interval of two min (30

samples/h) while using a Psion Workabout with Observer software

(Noldus Information Technology, Wageningen, The Netherlands).

In total six observation days (at 4, 5, 8, 11, 16, and 21 weeks of

age) of six hours each (in total 1080 samples per pig) were

considered and per phase two observation days (i.e. 360 samples

per pig) were used. Victims of tail biting were pigs with a tail

wound (i.e. any skin damage involving (clotted) blood, which refers

to the severest tail damage score recorded, see [6]) at time of

weaning, or at least one time during a phase post-weaning (weeks

5–7, 8–15, and 16–23 for phase 1, 2 and 3, respectively) [6].

Behavioural tests
Pre-weaning back test. Piglets (n = 480) were subjected to a

back test at approximately 14 days of age (Figure 1A) (see [24]).

The test was carried out on two consecutive days, except for the

final round where all 96 piglets were tested in one day. Preliminary

analyses showed that time of day did not significantly effect the

results. From each litter, individual piglets were placed in supine

position for one min to observe their behavioural response which

may range from vigorous struggling and screaming to immobility

(see for more details [32,33]). Two observers conducted the test,

one observer held the piglet and counted the number of struggles,

and the other observer counted the number of vocalizations and

registered latency times to first struggle and vocalization. Latency

to first struggle was strongly correlated with number of struggles

(r =20.84, P,0.001) and latency to first vocalization was strongly

correlated with number of vocalizations (r =20.76, P,0.001)

(analysed with Spearman’s rank correlation on residuals from a

GLM with round as fixed effect, n = 480). Therefore, further

analysis was restricted to numbers of struggles and vocalizations.

Pre-weaning novel environment exposure. Pre-weaning,

individual piglets (n = 470) were, by litter, exposed to a novel

environment (pNEe) at the age of 3.5 weeks (see also [24]). Testing

was, per round, carried out on two consecutive days. Preliminary

analyses showed that time of day did not significantly effect the

results. The novel environment consisted of a 1.25 m61.25 m

arena with dark wooden walls of 62.5 cm height, and concrete

flooring (Figure 1B). A heating lamp with yellow lighting was

placed above the arena. The test lasted for 2.5 min. Behaviours

included in our study were percentage of time spent on walking (all

forms of moving), standing alert (standing with head upward and

ears pricked), exploring (walking or standing while nosing, licking

or rooting floor or walls), and total number of vocalizations

(grunts, grunt-squeals, squeals, and screams). Behaviours were

recorded by two observers (one for continuous behaviours and one

for behavioural events) who had each a Psion Workabout with

Observer software (Noldus Information Technology, Wageningen,

The Netherlands).

Post-weaning novel object exposure. Post-weaning, indi-

vidual pigs (n = B: 224, E: 227) were subjected to a novelty test at

13 weeks of age (see also [30]). The order of testing was balanced
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for housing condition and sex. Testing was, per round, carried out

on five consecutive days. The size of the test arena was 5 m65 m,

made of wooden walls (approximately 1.5 m high) and concrete

flooring (Figure 1C). The arena (walls + floor) was darkened with

grey painting. The first 5 min pigs were exposed to the test arena

(i.e. novel environment exposure or NEe), then a metal bucket was

dropped from the ceiling (i.e. novel object exposure or NOe) and

pigs were left in the arena for another 5 min. Total duration of the

test was 10 min. In a previous study large behavioural differences

were found between NEe and NOe when pigs were 11 weeks of

age, pointing in the direction of NOe being more fearful for pigs

post-weaning compared to NEe [22]. Since we were especially

interested in behavioural responses to potentially stressful situa-

tions, only the behaviours recorded during the NOe were used for

further analysis. Behaviours considered were percentage of time

spent on standing alert (standing with head upward and ears

pricked), exploring the arena (nosing and rooting floor, nosing and

rooting walls, and chewing), exploring the novel object (nosing,

sniffing, rooting, licking or chewing the metal bucket), and total

number of vocalizations (barks, grunts, grunt-squeals, squeals, and

screams). Two observers with a Psion hand-held computer

recorded continuous behaviours or behavioural events. Addition-

ally, total distance covered (i.e. locomotion), and percentage of

time spent near the door (,1.2562.25 m in front of the door, with

the door centred in the ,2.25, see also [30]) and directly adjacent

to the walls (excluding the door zone) were recorded by video

tracking using EthoVision XT 8.5 (Noldus Information Technol-

ogy, Wageningen, The Netherlands). Housing (B/E) effects on

behavioural parameters of the NOe were not present, which was

previously described elsewhere [30], and are therefore not further

considered in our study.

Physiological measures
Serotonin measures. Blood samples were taken when the

pigs were approximately 8 (T1), 9 (T2), and 22 (T3) weeks of age.

The first (n = B: 237, E: 235 pigs) and last blood samples (n = B:

213, E: 221 pigs) were considered as basal samples. The second

sample (n = B: 233, E: 230 pigs) was taken three days after a

regrouping test, where pairs of pigs were, for another study, mixed

with unfamiliar pigs during 24 h and then returned to their

original home pen (see for more details [29]), but no short-term

effects on blood serotonergic measures were expected as they are

thought to be rather stable over time [34,35]. Samples were taken

by venipuncture while the pigs were either placed on their backs

(T1 and T2) or when held in a nose sling (T3). Order of blood

collection was always balanced for housing. Blood was collected in

EDTA containing tubes (9 ml) and stored on ice until transfer to

the lab for further processing. Platelets (expressed in 109 cells/l)

were counted using a Sysmex F-820 Counter (Sysmex Corpora-

tion, Kobe, Japan).

Blood platelet serotonin level. Platelet serotonin (5-hydroxytryp-

tamine or 5-HT) level was determined using a fluorimetric assay

based on [36,37] as previously described [22]. Platelet 5-HT level

was expressed in nmol/109 platelets.

Whole blood serotonin level. Serotonin in platelets represents .

95% of 5-HT found in blood [38,39]. Therefore, we multiplied

platelet 5-HT level by the number of platelets counted in whole

blood (109 cells/l) to obtain whole blood 5-HT. Whole blood 5-

HT was expressed in nmol/ml blood.

Blood platelet serotonin uptake velocity. Serotonin uptake

velocity in blood platelets was measured by a radioactive uptake

assay based on [40,41] as previously described [22]. Platelet 5-HT

uptake velocity was expressed as pmol/109 platelets/min.

Salivary cortisol measures. Before (t = 0 min) and after

(t = 15, 30, and 60 min) the start of the novelty test at 13 weeks of

age, pigs (n = B: 218, E: 218) were allowed to chew on two cotton

buds to obtain saliva samples to measure cortisol concentrations by

a radioimmunoassay kit [30,42]. Pigs were previously habituated

to chewing on the cotton buds. For each pig the deltas between the

first and second sample (D t = 15–0) (i.e. cortisol rise from the first

sample to the highest observed peak), and between the second and

final sample (D t = 15–60) (i.e. cortisol recovery from the highest

observed peak to the final sample) were calculated. The area under

the curve (AUC) from time 0 to 60 was determined per pig using

the linear trapezoidal rule. Housing (B/E) effects on salivary

cortisol parameters were previously described elsewhere [30] and

therefore not further considered in our study. Shortly, B housed

pigs had consistently higher values compared to E housed pigs, but

cortisol responses to novelty did not differ between the pigs from

the two different housing types.

Statistical Analysis
SAS version 9.2 (Statistical Analysis System Institute and Inc.,

2002–2008) was used for all statistical analyses. The effect of type

of pig (see below) was considered per phase as tail biting behaviour

observed in individual pigs was inconsistent throughout life

resulting in different classifications per pig per phase [6].

Additionally, an ‘overall’ score per pig (ever (i.e. in one of the

three phases) a tail biter, and ever a victim or not) was used to

assess the overall effect of type of pig on variables considered per

phase. Number of pigs varied among analyses due to several

reasons: some pigs did not participate in the novel environment

test pre-weaning (i.e. they were initially not selected for follow up),

pigs were removed from the experiment due to health reasons and

tail wounds, blood samples were not suitable for analysis, some

blood and saliva samples were lost or could not be analysed due to

technical problems.

The effect of housing and of type of pig on serotonin

measures. The effect of housing (B/E) on serotonin measures

was tested in a mixed model with a fixed effect of round (1–5) and

Figure 1. Pigs subjected to three behavioural tests. A: Back test. B: Pre-weaning novel environment exposure (pNEe). C: Novel object
exposure (NOe).
doi:10.1371/journal.pone.0107040.g001
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random effect of pen (nested within round). Subsequently, the

effect of type of pig with respect to tail biting (per phase and over

all phases) on serotonin measures was tested separately for both

types of housing (B/E). At time of weaning piglets were classified

as either a victim (i.e. piglet had a tail wound; n = B: 14, E: 30) or

non-victim of tail biting (i.e. piglet had no tail wound; n = B: 226,

E: 210). This classification in non-victim/victim (0/1) was tested as

fixed effect in a mixed model, together with round (1–5) and the

random effect of pen (nested within round). In each phase (1–3)

post-weaning, pigs were classified as either a tail biter (at least

twice involved in biting incident) (n = B: 29, 40, and 38, E: 0, 6,

and 8 in phase 1–3, respectively) or a non-tail biter (n = B: 211,

199, and 183, E: 240, 232, and 223 in phase 1–3, respectively). In

addition, all pigs were classified in each phase as either a victim (at

least once a tail wound) (n = B: 76, 132, and 154, E: 26, 29, and 58

in phase 1–3, respectively) or a non-victim (no tail wounds) (n = B:

164, 107 and 68, E: 210, 214, 209 and 173 in phase 1–3,

respectively). Both 0/1 classifications were treated as fixed effects

with two levels, i.e. the effects of ‘biter’ (non-tail biter = 0 versus tail

biter = 1) and of ‘victim’ (non-victim = 0 versus victim = 1),

respectively. These two fixed effects and their interaction were

included in a mixed model, together with the fixed effect of round

(1–5) and the random effect of pen (nested within round).

Including the interaction between the effects of ‘biter’ and of

‘victim’ in the model made it possible to distinguish between the

following four types of pigs: biter (‘biter’ = 1, ‘victim’ = 0) (n = B:

23, 22, and 11, E: 0, 5, and 2 for phase 1–3, respectively), victim

(‘biter’ = 0 and ‘victim’ = 1) (n = B: 70, 114, and 126, E: 26, 28,

and 52 for phase 1–3, respectively), a combination of both, here

referred to as biter/victim (‘biter’ = 1 and ‘victim’ = 1) (n = B: 6,

18, and 27, E: 0, 1, and 6 for phase 1–3, respectively) and pigs not

involved in tail biting or being tail bitten, here referred to as

neutral pigs (‘biter’ = 0 and ‘victim’ = 0) (n = B: 141, 85, and 57, E:

214, 204, and 171 for phase 1–3, respectively). A similar approach

was used to test the effect of an overall classification of each pig.

Pigs were classified as tail biter if they were at least once a tail biter

in any of the phases (n = B: 88, E: 14). Similarly, pigs were

classified in victims if they were at least once a victim in any of the

phase (n = B: 200, E: 109). Including the interaction of the effects

of ‘biter’ and ‘victim’ resulted in biters (n = B: 15, E: 4), victims

(n = B: 127, E: 99), biter/victims (n = B: 73, E: 10) and neutrals

(n = B: 25, E: 127). Serotonin measures were logarithmically

transformed if necessary to approach normal distribution of

residuals.

Principal Component Analysis. A Principal Component

Analysis (PCA) [43] was conducted by type of housing (B/E) on

variables from the back test, pre-weaning novel environment test

(pNEe), and novel object test (NOe) including salivary cortisol

measures, to examine whether variation in behavioural and

physiological responses of the pigs (17 in total) could be

summarized in a limited number of different factors [44]. Prior

to PCA, variables were, if necessary, square root (number of

vocalizations), arcsine square root (proportion of time spent

exploring the bucket, and proportion of time spent near the door

zone during NOe) or logarithmically (cortisol measures) trans-

formed, and all variables were subjected to a general linear model

with round (1–5) as fixed effect to obtain residuals used for the

PCA. After extraction, principal components were scaled by their

standard deviations (square roots of associated Eigenvalues) and

subjected to orthogonal rotation (varimax) to obtain independent

factors.

The effect of type of pig on principal component

factors. A mixed model was performed to test whether type

of pig (over all phases and per phase) with respect to tail biting,

had an effect on the factors that were retained from the PCA.

Similar to the analysis of serotonin measures, 0/1 classifications of

pigs as ‘biter’ (non-tail biter = 0 versus tail biter = 1) and ‘victim’

(non-victim = 0 versus victim = 1) were included in the model as

fixed effects, and their interaction was considered as well (resulting

in the four pig types: biters, victims, biter/victims, neutrals).

Furthermore, the random effect of pen (nested within round) was

included in the model. Round (1–5) was not included in the model,

as variables were already corrected for the effect of round prior to

PCA.

Correlations between serotonin measures and principal

component factors. To assess consistency over time (T1, T2,

and T3) with respect to blood serotonin storage (both expressed in

whole blood and in blood platelets), a general linear model per

type of housing (B/E) with round (1–5) as fixed effect was run on

raw data of serotonin variables to obtain residuals. Thereafter,

Spearman’s rank correlation coefficients (as not all variables

approached normality) were calculated between residuals of

serotonin measures. A similar procedure was used to determine

possible relationships between serotonin measures and factors

obtained by the PCA. Spearman’s rank correlation coefficients

were calculated between residuals of serotonin measures and

factors.

Results

The effect of housing and of type of pig on serotonin
measures

Housing significantly affected platelet 5-HT uptake velocity

(determined at T3 only), where B housed pigs had higher velocities

compared to E housed pigs (P,0.05) (Table 1). No other

significant effects of housing were found with respect to 5-HT

measures, except that B housed pigs tended to have higher platelet

5-HT levels at T1 (P,0.10).

Whole blood 5-HT measured at T1 was significantly (P,0.001)

positively correlated with whole blood 5-HT measured at T2 (B:

r = 0.42, E: r = 0.44) and T3 (B: r = 0.40, E: r = 0.36), and T2 and

T3 were also significantly (P,0.001) correlated (B: r = 0.43, E:

r = 0.38). Corresponding results were found for blood platelet 5-

HT measures (all P,0.001), where T1 was correlated with T2 (B:

r = 0.43, E: r = 0.41) and T3 (B: r = 0.37, E: r = 0.38), and T2 was

also correlated with T3 (B: r = 0.37, E: r = 0.29).

Barren housing. Considering a pig’s life as a whole, no

significant main effects of ‘biter’ (i.e. non-tail biters versus tail

biters) or ‘victim’ (i.e. non-victims versus victims), and no

significant interaction between these effects (i.e. allowing for the

distinction between tail biters, victims, biter/victims, and neutral

pigs) were found with respect to the blood 5-HT measures (data

not shown). However, considering each phase of life separately did

reveal relationships between type of pigs and serotonin measures.

Victims at time of weaning had, when B housed post-weaning,

lower whole blood and platelet 5-HT levels at T1 and T3

compared to non-victims (Table 2). Tail biters classified during

phase 1 post-weaning tended to have a lower platelet 5-HT level at

T1 compared to non-tail biters (Table 3). Tail biters of phase 2

had a significantly lower platelet 5-HT level at T2 and they tended

to have a lower whole blood 5-HT level at T2 compared to non-

tail biters. Furthermore, phase 3 tail biters had significantly lower

platelet 5-HT levels at T2 compared to non-tail biters. Victims of

phase 3 had significantly lower platelet 5-HT uptake velocities,

and tended to have higher platelet 5-HT levels at T2 compared to

non-victims. Finally, a significant interaction between ‘biter’ and

‘victim’ revealed that tail biters of phase 3 had lower whole blood

5-HT at T2, and tended to have higher platelet 5-HT uptake

Tail Biting, Serotonin and Fear in Pigs
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velocities at T3 compared to victims, biter/victims, and neutral

pigs.

Enriched housing. Also when considering E housed pigs

throughout life, no relationships were found between type of pigs

(in terms of either significant fixed effects of ‘biter’ and ‘victim’ or

their interaction) and 5-HT measures, although a tendency for an

interaction between tail biters and victims was found with respect

to platelet 5-HT measured at T3 (P,0.10, but post-hoc analysis

revealed no pairwise differences; untransformed LSmeans 6

SEM: biters: 14.466.62, victims: 19.361.55, biter/victims:

26.764.85, neutrals: 19.361.38) (non-significant findings not

shown). Victims at time of weaning tended to have a higher

platelet 5-HT uptake velocity at T3 compared to non-victims

when E housed post-weaning (Table 2). Pigs identified as victim of

tail biting during phase 2 post-weaning had lower whole blood 5-

HT levels and platelet 5-HT levels at T3 compared to non-victims

(Table 4). Tail biters identified during phase 2 had higher platelet

5-HT uptake velocities at T3 compared to non-tail biters. In phase

3, a significant interaction was observed between ‘biter’ and

‘victim’, where tail biters tended to have lower whole blood 5-HT

levels at T3 compared to biter/victims and neutral pigs. A

significant interaction between ‘biter’ and ‘victim’ was also found

Table 1. Blood 5-HT measures at 8 (T1), 9 (T2), and 22 (T3) weeks of age in barren or enriched housed pigsa.

Blood measuresb Barren Enriched P-value

n= 203–237 n=207–235

Whole blood 5-HT T1 12.660.52 11.460.52

Whole blood 5-HT T2 12.060.60 11.960.60

Whole blood 5-HT T3 7.360.48 7.660.48

Platelet 5-HT uptake T3 45.461.43 40.161.41 *

Platelet 5-HT level T1 22.960.80 21.360.80 +

Platelet 5-HT level T2 20.261.00 20.761.01

Platelet 5-HT level T3 18.460.91 19.560.90

aUntransformed LSmeans 6 SEM.
bWhole blood 5-HT level in nmol/ml; Platelet 5-HT level in nmol/platelet 109; Platelet 5-HT uptake velocity in pmol/platelet 109/min.
+P,0.10.
*P,0.05.
doi:10.1371/journal.pone.0107040.t001

Table 2. Blood 5-HT measures at 8 (T1), 9 (T2), and 22 (T3) weeks of age in barren or enriched housed victims and non-victims of
tail biting at time of weaninga.

Blood measuresb Victim Non-victim P-value

Barren n= 12–13 n = 191–224

Whole blood 5-HT T1 8.161.75 12.860.59 **

Whole blood 5-HT T2 10.061.94 12.160.61

Whole blood 5-HT T3 2.161.30 7.660.49 ***

Platelet 5-HT uptake T3 45.665.96 45.361.48

Platelet 5-HT level T1 17.762.76 23.160.91 *

Platelet 5-HT level T2 19.463.02 20.360.99

Platelet 5-HT level T3 11.262.73 18.960.73 **

Enriched n= 24–29 n = 183–206

Whole blood 5-HT T1 11.361.13 11.460.46

Whole blood 5-HT T2 13.261.35 11.760.57

Whole blood 5-HT T3 8.161.12 7.560.51

Platelet 5-HT uptake T3 45.563.48 39.461.52 +

Platelet 5-HT level T1 21.461.97 21.360.77

Platelet 5-HT level T2 25.862.35 20.060.95

Platelet 5-HT level T3 19.862.62 19.561.09

aUntransformed LSmeans 6 SEM.
bWhole blood 5-HT level in nmol/ml; Platelet 5-HT level in nmol/platelet 109; Platelet 5-HT uptake velocity in pmol/platelet 109/min.
+P,0.10.
*P,0.05.
**P,0.01.
***P,0.001.
doi:10.1371/journal.pone.0107040.t002
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for platelet 5-HT levels at T3 (P,0.01), where tail biters had

significantly lower levels compared to biter/victims and neutral

pigs, and tended to have lower levels compared to victims of tail

biting.

Performance in behavioural tests by different types of
pigs

Principal component analysis. In B housing, six factors

were retained from the PCA (Eigenvalue or EV.1). However,

only five factors were retained from the PCA to maintain an equal

number of factors for both B and E housing as in E housing five

factors had an EV.1 (Table 5 and 6). The factors of B housing

together explained 87% of the total variance and of E housing this

was 93%. Factors retained in B and E housing were largely similar.

Each factor was labelled according to the importance of measures

defined by loadings. The factor ‘Early life exploration’ had high

positive loadings for the proportion of time exploring the novel

arena and walking, and a high negative loading for the proportion

of time spent standing alert during the pNEe. The proportion of

time spent exploring the bucket presented during NOe loaded

positively, and proportions of time spent near the wall zone and

standing alert loaded negatively (although this was for the latter

variable less prominent in E housing), on the factor ‘Near bucket.

The factor ‘Cortisol’ summarized mainly basal cortisol and the

area under the curve, and to a lesser extent also changes (i.e.

recovery) in cortisol determined around the novelty test post-

weaning. In B housed pigs, high scores on the factor ‘Vocalizations

& standing alert’ were associated with high frequencies of

vocalizing during pNEe and NOe and with a low proportion of

time spent exploring the arena during NOe. The loading pattern

of this factor was slightly different in E housed pigs: here the factor

‘Vocalizations and standing alert’ was less clearly determined by

frequencies of vocalizations during pNEe and NOe (with moderate

loadings of 0.20 and 0.41, respectively), but had a high positive

loading of the proportion of time spent standing alert, and a high

negative loading of the proportion of time spent exploring the

arena during NOe. Variables recorded during the back test, i.e.

numbers of struggles and vocalizations, exclusively loaded on the

factor labelled ‘Back test activity’.

Barren housing. Overall, B housed pigs classified as tail

biters had significantly lower ‘Near bucket’ scores compared to

non-tail biters (tail biters: 20.2460.14, non-tail biters: 0.1260.11,

P,0.05). Furthermore, tail biters tended to have a higher ‘Back

test Activity’ compared to non-tail biters (tail biters: 0.2160.13,

non-tail biters: 20.0960.11, P,0.10) and more specifically it

tended to be so compared to victims and neutral pigs (biter:

0.4260.24, victim: 20.0260.09, neutrals: 20.1760.19, P,0.10).

No other significant (or tendencies to) relationships between the

overall classification of pigs and PCA factors were found (data not

shown). When considering phases of life separately, piglets with a

tail wound at weaning had lower ‘Vocalizations & standing alert’

scores (P,0.05) and tended to have lower ‘Cortisol’ scores (P,

0.10) (Figure 2A). Tail biters identified during phase 1 tended to

have lower ‘Near bucket’ scores (P,0.10), and tail biters of phase 3

had significantly (P,0.05) lower ‘Near bucket’ scores compared to

non-tail biters (Figure 3A and 3C). During phase 2 post-weaning,

an interaction between ‘biter’ and ‘victim’ was found with respect

to ‘Early life exploration’, where victims had significantly lower

scores of this factor compared to neutral pigs (P,0.05), but not

compared to tail biters and biter/victims (Figure 3B). Further-

more, victims identified during phase 2 tended to have lower

‘Vocalizations & standing alert’ scores compared to non-victims

(P,0.10), but an interaction between ‘biter’ and ‘victim’ tended to

be present as well and revealed that tail biters seemed to have

higher scores compared to victims, biter/victims and neutrals (all

P,0.10) (Figure 3B).

Enriched housing. Classifying the E housed pigs once

(‘overall’) with respect to tail biting and thereby combining all

phases of life, did not reveal any relationships with the factors

obtained from the PCA (‘Early life exploration’, ‘Cortisol’, ‘Near

bucket’, ‘Vocalizations & standing alert’, and Back test activity’)

(data not shown). Neither having a tail wound at the time of

weaning (Figure 2B) nor type of pig post-weaning had an effect on

the five factors (Figure 4).

Correlations between blood 5-HT and performance in
behavioural tests

Barren housing. In B housed pigs, ‘Vocalizations & standing

alert’ was significantly positively correlated with platelet 5-HT

levels determined at T1 (r = 0.15, P,0.05) and it tended to be so

for T2 (r = 0.13, P,0.10) and T3 (r = 0.12, P,0.10). Furthermore,

also ‘Early life exploration’ tended to be positively correlated with

platelet 5-HT levels determined at T1 (r = 0.12, P,0.10) and T2

(r = 0.12, P,0.10). No other correlations were found between the

factors retained from the PCA and 5-HT measures.

Enriched housing. In E housed pigs, ‘Back test activity’ was

significantly positively correlated with whole blood 5-HT mea-

sured at T1 (r = 0.23, P,0.001) and T2 (r = 0.20, P,0.01), and

platelet 5-HT levels of T1 (r = 0.20, P,0.01) and T2 (r = 0.23, P,

0.001). Furthermore, ‘Cortisol’ tended to be negatively correlated

with whole blood 5-HT levels at T2 (r =20.13, P,0.10) and with

platelet 5-HT levels at T2 (r =20.14, P,0.10).

Discussion

The main aim of our study was to explore whether tail biting in

pigs is associated with behavioural and physiological responses to

challenges, and also with blood serotonin. To our knowledge, this

experiment is the first to provide evidence suggesting that tail

biting in pigs is possibly linked to both fearfulness and the blood 5-

HT system.

The effect of housing
Platelet serotonin (5-HT) uptake velocities were significantly

higher in barren (B) compared to enriched (E) housed pigs. Except

for one tendency for higher 5-HT platelet storage in B housed pigs

than in E housed pigs, no housing effects on blood 5-HT levels

were found. In a previous study in pigs [22], housing affected

blood platelet 5-HT measures also only marginally and not

significantly. Blood 5-HT has been associated with, amongst

others stress physiology [45,46], gut motility [47], and immune

function [48] which may be affected by type of housing. B housed

pigs are likely to suffer from stress due to the inability to perform

species specific behaviours [49]. In humans, stress may reduce

platelet 5-HT uptake sites (patients with PTSD [45]) and velocity

(after surgery [46]). This altered platelet 5-HT uptake may be

related to changes in HPA-axis responses, although cause and

effect remain undecided [46]. Environmental enrichment in pigs,

as compared with barren housing, has been shown to affect HPA-

axis (re)activity at different levels indeed [50,51] and also in our E

and B pigs differences in cortisol levels (but not in response to

novelty) were found (see [30]). Furthermore, in E housed pigs a

tendency for a negative correlation between salivary cortisol and

5-HT storage was observed, suggesting a link between HPA-axis

functioning and platelet 5-HT. In addition, E housed pigs likely

have an increased gut motility [52] due to the availability of highly

fibrous straw. In human babies, increased gut motility was related

to increased platelet 5-HT levels [47], and in chickens the
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availability of fibrous litter for foraging, which likely affects gut

motility, also affected levels of blood 5-HT [53]. Also in pigs,

provision of dietary fibres has been shown to affect whole blood 5-

HT [54]. Hence, also gut motility may relate to blood 5-HT

(uptake) in different ways. Collectively, these findings suggest that

the effect of housing on platelet 5-HT uptake velocity in our pigs

may be related to both stress (B pigs) and the presence of fibrous

foraging material, i.e. straw (E pigs). However, the exact

underlying mechanisms remain unclear and the existence of other

aspects involved cannot be excluded, as peripheral 5-HT also

serves other functions and plays, for instance, a role in immune

responses [48].

Relationships between behaviours may be affected by the

environment (e.g. [55,56]), which emphasizes for our study the

importance of studying relationships between tail biting and other

pig characteristics in different housing systems. Nevertheless, in E

housing far less tail biting and tail damage was observed and only

few E housed tail biters were identified [6]. Consequently, in E

housed pigs, relations between tail biting and serotonergic,

behavioural and cortisol measures were explored, but results

should, given these low numbers of tail biters, be considered with

caution.

Tail biting and its relation with blood serotonin
Classifications of pigs according to performing and/or being the

victim of tail biting at any phase of life, i.e. over the whole

observation period, did not relate to peripheral serotonergic

measures. Tail biting behaviour observed in individual pigs was,

however, inconsistent throughout life [6], which may explain the

lack of relationships between this ‘overall’ characterization with

respect to being the actor and recipient of tail biting (combination

of all phases in life) and 5-HT measures. However, our results also

show that relationships between tail biting and 5-HT seemed to be

present in pigs of both housing systems when specific phases in a

pig’s life were considered. Generally, in several phases of life

(although not all), tail biters had lower whole blood and platelet 5-

HT levels and higher platelet 5-HT uptake velocities compared to

either non-tail biters or other types of pigs (victims, biter/victims,

neutrals). This seems in line with lower 5-HT values in whole

blood or platelets found in humans with mental disorders such as

obsessive compulsive disorders (OCD) [57] and depression

[58,59], and in laying hens that perform feather pecking behaviour

[60,61]. Additionally, in laying hens selected for a low mortality

due to severe feather pecking and other injurious behaviours,

lower platelet 5-HT uptake velocities were found [60,62].

Therefore, tail biters may suffer from a (temporary) change in

the blood 5-HT system. Remarkably though, victims of tail biting

(i.e. pigs with a tail wound) also seemed to have lower whole blood

and platelet 5-HT levels, but had a significantly lower or tendency

for a higher platelet 5-HT uptake velocity, compared to non-

victims. It must be noted, though, that non-victims were possibly

also tail bitten and could have bite marks, but they were not as

Table 5. Loadingsa on the first five factors extracted by principal component analysis, after orthogonal rotation, of variables
recorded in barren housed pigs (n = 212) during a back test at 2 weeks of age, a novel environment test at 3 weeks of age and a
novel object test at 13 weeks of age, including saliva cortisol variables.

Measures
Early life
exploration

Near
bucket Cortisol

Vocalizations &
standing alert

Back test
activity

Back test

No. of struggles 20.02 20.05 20.02 0.14 0.72

No. of vocalizations 20.05 20.04 0.03 0.34 0.71

Pre-weaning novel environment exposure

Exploration (%) 0.76 0.01 20.05 20.14 0.01

Walking (%) 0.77 0.03 0.01 0.18 0.04

Standing alert (%) 20.83 20.03 0.05 20.19 20.04

No. of vocalizations 0.22 0.03 20.03 0.65 0.06

Novel object exposure

No. of vocalizations 20.07 0.02 20.04 0.63 0.11

Standing alert (%) 20.23 20.65 0.02 0.20 20.45

Exploration (%) 0.25 0.10 20.08 20.50 0.49

Exploring bucket (%) 20.02 0.81 0.04 0.27 20.10

Distance covered (m) 0.23 0.18 0.01 0.47 0.11

At door zone (%) 20.04 20.26 20.04 0.07 0.03

At wall zone (%) 0.10 20.74 20.01 20.32 0.11

Salivary cortisol

Basal cortisol 20.10 0.17 0.83 0.01 20.13

Cortisol change (t = 15–t = 0) 0.08 20.10 0.18 20.06 0.23

Cortisol change (t = 15–t = 60) 0.04 20.06 0.52 20.03 0.17

Cortisol area under the curve 20.09 0.11 0.85 0.01 20.05

Variance explained (%) 24.20 20.59 15.36 14.15 12.84

Proportions of total variation explained by each factor are given.
aLoadings .0.30 or ,20.30 are indicated in italics, and loadings .0.50 or ,20.50 are also indicated in bold.
doi:10.1371/journal.pone.0107040.t005
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severely bitten as the pigs we identified as victims. It is possible,

that victims with tail wounds may suffer from depressive-like

symptoms (e.g. due to B housing, to being tail bitten, or a

combination of both) and also develop a malfunctional blood 5-

HT system, although not entirely identical to that observed in tail

biters. In pigs, especially the neutral animals not involved in the

damaging behaviour at all, were found to differ in gene expression

profiles (some of the genes were associated with production,

sociality, and novelty seeking) compared to animals that either

displayed or received the damaging behaviour [27]. Although in

our study both tail biters and victims were found to differ from

non-tail biters or non-victims, or other pig types, a clear and

Table 6. Loadingsa on the first five factors extracted by principal component analysis, after orthogonal rotation, of variables
recorded in enriched housed pigs (n = 212) during a back test at 2 weeks of age, a novel environment test at 3 weeks of age and a
novel object test at 13 weeks of age, including saliva cortisol variables.

Measures
Early life
exploration

Near
bucket Cortisol

Vocalizations
& standing alert

Back test
activity

Back test

No. of struggles 20.09 20.07 0.08 20.05 0.72

No. of vocalizations 20.01 20.04 0.12 20.03 0.80

Pre-weaning novel
environment exposure

Exploration (%) 0.75 0.01 0.02 20.08 20.16

Walking (%) 0.78 0.02 0.03 20.03 0.23

Standing alert (%) 20.78 20.03 20.05 20.01 20.08

No. of vocalizations 0.24 0.05 20.03 0.20 0.42

Novel object exposure

No. of vocalizations 0.08 0.14 20.16 0.41 0.32

Standing alert (%) 20.19 20.33 20.01 0.82 20.12

Exploration (%) 0.02 20.36 0.05 20.82 0.00

Exploring bucket (%) 0.07 0.93 20.04 0.01 20.02

Distance covered (m) 0.16 0.36 20.19 20.12 0.41

At door zone (%) 20.01 20.33 20.01 20.03 0.01

At wall zone (%) 20.01 20.82 0.09 20.01 0.04

Salivary cortisol

Basal cortisol 20.01 20.07 0.85 0.00 20.02

Cortisol change (t = 15–t = 0) 20.14 0.19 0.07 0.08 0.09

Cortisol change (t = 15–t = 60) 20.06 0.02 20.27 0.09 20.05

Cortisol area under the curve 20.04 0.06 0.88 0.04 20.01

Variance explained (%) 20.79 24.85 15.93 14.39 17.06

Proportions of total variation explained by each factor are given.
aLoadings .0.30 or ,20.30 are indicated in italics, and loadings .0.50 or ,20.50 are also indicated in bold.
doi:10.1371/journal.pone.0107040.t006

Figure 2. Factor scores of victims and non-victims of tail biting at time of weaning. Behavioural and physiological responses of pigs to
novelty (pre- and post-weaning) were summarized in five factors using a PCA. Factor scores are presented per type of pig, i.e. victim (with tail wound)
or non-victim (without tail wound) at time of weaning. A: Barren housing. B: Enriched housing. +P,0.10, *P,0.05.
doi:10.1371/journal.pone.0107040.g002
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consistent difference between neutral pigs and both tail biters and

victims was not found. This difference in findings may be

explained by the type of pigs used and the relatively low tail

biting threshold (.1 tail biting incidence per phase of life) that was

used. In the current study, we used all available animals including

a group of pigs that were both tail biter and tail bite victim, instead

of a selected set of (possibly the most extreme) animals (biter,

victim, neutral) as was done by others [27].

In B housed pigs, whole blood and platelet 5-HT measured at

T2 (i.e. week 9) were related to tail biting in phases 2 and 3 post-

weaning. In E housing, associations between type of pig, with

respect to tail biting and 5-HT measures were found at T3 (i.e.

week 22) only. Additionally, 5-HT measures determined at T1 (i.e.

week 8) were not significantly related to any type of pig in any

phase, except for pigs that were victims of tail biting at time of

weaning and subsequently B housed. It seems, therefore, plausible

that, rather than suffering from a malfunctional blood 5-HT

system from early life onward, pigs of both housing systems

develop changes in their blood 5-HT system during life. Average

blood 5-HT values determined at T1 and T2 were similar, most

likely because the time span between the two samples was very

short and decreases in 5-HT levels due to aging, as found in

humans [63], were not yet present. However, significant associ-

ations between tail biting and blood 5-HT were present in B

housed pigs at T2. This suggests that temporarily mixing

unfamiliar pigs can trigger relationships between tail biting and

blood 5-HT when also unfavourably housed. As our blood samples

were taken 3 days after mixing the pigs and the half life time of 5-

HT in blood is approximately 3–4 days [47,64], it is not impossible

that some changes in the blood 5-HT system of individual pigs

developed after mixing. Especially when mixing resulted in a lower

feed intake [65] and consequently limited dietary tryptophan

intake that is needed to synthesize 5-HT [66]. Dietary tryptophan

levels [67] and blood tryptophan measures have been associated

with tail biting behaviour in pigs [68]. Additionally, correlations

between blood 5-HT values determined at different time points

were not extremely high (although clearly and significantly

present), suggesting fluctuations in blood 5-HT levels of individual

pigs. Remarkably, in E housing also some relations were found

between type of pig and 5-HT measures in later life. Here, changes

in the 5-HT system may have developed due to a change in

tryptophan availability or demand caused by a depressed feed

intake, stress [69] (e.g. due to restricted space [70] caused by a

pig’s growth) or gut (mal)functioning [47,71], although this may

also be true in B housed pigs. According to our results, pigs

involved in tail biting do not consistently exhibit changes in the

blood 5-HT system that may have led to tail biting behaviour or

becoming a victim of tail biting. However, in phases of life during

which individual pigs display tail biting, a relationship with the 5-

HT system seems to exist, suggesting that tail biting with its

accompanying blood 5-HT levels (lower 5-HT storage and higher

platelet uptake velocity in tail biters) fluctuate throughout time.

The present findings seem to support the existence of a

relationship between the blood 5-HT system and tail biting [68],

similar to the relationship between 5-HT and feather pecking in

laying hens [60,61], but in our pigs this relationship seems more

state-like than trait-like. This does, however, not exclude the

possible existence of trait-like differences in 5-HT system

functioning in other types of tail biters (such as obsessive tail

biters, see also [2]) than observed in our study (likely two-stage tail

Figure 3. Factor scores of barren housed pigs classified as biters, victims, biter/victims or neutrals with respect to tail biting post-
weaning. Behavioural and physiological responses of pigs to novelty (pre- and post-weaning) were summarized in five factors using a PCA. Factor
scores are presented per type of pig, i.e. tail biter, victim (with tail wound), both tail biter and victim (biter/victim), or pigs that were neither tail biter
or victim (neutral). A: Phase 1 post-weaning. B: Phase 2 post-weaning. C: Phase 3 post-weaning. +P,0.10, *P,0.05. Pig types lacking a common
letter differ significantly (a/b) or tend to do so (x/y/z).
doi:10.1371/journal.pone.0107040.g003

Figure 4. Factor scores of enriched housed pigs classified as biters, victims, biter/victims or neutrals with respect to tail biting post-
weaning. Behavioural and physiological responses of pigs to novelty (pre- and post-weaning) were summarized in five factors using a PCA. Factor
scores are presented per type of pig, i.e. tail biter, victim (with tail wound), both tail biter and victim (biter/victim), or pigs that were neither tail biter
or victim (neutral). A: Phase 1 post-weaning. B: Phase 2 post-weaning. C: Phase 3 post-weaning.
doi:10.1371/journal.pone.0107040.g004
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biters, see [6]), which may predispose these animals to perform tail

biting behaviour.

Tail biting and its relation with responsiveness in pigs
and blood serotonin

A fairly consistent relationship was observed in B housed tail

biters with the factor ‘Near bucket’ (retained from a PCA) during a

novel object test post-weaning, i.e. tail biting pigs spent or tended

to spend less time near a metal bucket introduced during a novel

environment test, and spent more time standing alert (a vigilance

behaviour [72]), and in the wall zones compared to non-tail biters.

In E housing no such relation was found, probably due to the low

level of tail biting observed. Avoiding a novel object [73], standing

alert [74,75], and seeking the walls of an arena (also called

‘Thigmotaxis’) [76,77] altogether suggests the presence of a higher

fearfulness in B housed tail biters at times of challenge in an

unfamiliar environment and without other pigs present. Also in

humans with behavioural disorders [78,79] or other animals

displaying maladaptive behaviour (e.g. poultry: [19,80], dogs: [81],

and cats: [82]) higher levels of fear or anxiety were suggested.

Furthermore, the lower blood 5-HT levels in our tail biters in

combination with a higher fearfulness seem to support previous

findings in pigs where lower levels of exploring an unfamiliar arena

(indicative of higher fearfulness [83]) was associated with lower

whole blood and platelet 5-HT levels [22]. However, in a different

study, it was suggested that tail biting pigs were less fearful

compared to victim pigs, which was based on the shorter latency

time to touch a novel object in the home pen, the longer contact

duration with the novel object and lower levels of locomotion [20].

Notably, however, in this particular study tail biters responded to

exposure to the novel object test with a decrease of heart rate

variability in comparison with victims; this indicates suppression of

the parasympathetic nervous system which is also found in human

patients with panic disorders [84]. Moreover, different measures of

heart rate variability were found to be significantly intercorrelated

in tail biters but not in victims or control pigs [20]; similar

intercorrelations were demonstrated in human panickers [84]. The

present finding in tail biting pigs, therefore, seem to agree with the

notion that altered 5-HT system functioning, high fearfulness and

high levels of impulsive behaviours are related (see [85] for a

review).

Over all phases (but not in separate phases), being a tail biter in

our study tended to be associated with a higher ‘Back test activity’

(indicative of a proactive coping strategy [16,24]), compared to a

non-tail biter. This is in line with previous findings in parrots [86],

where feather pickers likely had a proactive coping strategy. In

laying hens it was suggested that the initial (first order) feather

peckers may be proactive copers [87], whereas the hens attracted

to already damaged or ruffled feathers (second order peckers) may

be reactive copers [12]. Interestingly, in one life phase, tail biters

also tended to have higher ‘Vocalizations & standing alert’ scores

compared to victims, biter/victims and neutrals, whereas victims

had lower scores of this factor compared to non-victims.

Moreover, B housed pigs with higher ‘Vocalizations & standing

alert’ scores had higher platelet 5-HT levels, and E housed pigs

with a higher ‘Back test activity’ also had higher whole blood and

platelet 5-HT levels. Altogether, this suggests that blood 5-HT

measures in pigs may be related to more than one personality

dimension, which was also proposed by others [85]. Although the

relationship between tail biting and coping strategy was not

significantly nor consistently present, considering interactions

between 5-HT, fearfulness and other personality dimensions

may be relevant in understanding problematic behaviours such

as tail biting in pigs.

Conclusions

Generally, within specific phases of life, tail biters and to a lesser

extent also victims seemed to have lower levels of blood serotonin

compared to non-performers/receivers. Tail biters also seemed to

have higher blood platelet uptake velocities. Furthermore, our

results show the importance of considering different phases in a

pig’s life with respect to relationships between (problematic)

behaviours and serotonergic measures as both may fluctuate in

time. Additionally, barren housed tail biters seemed more fearful

after a challenging event. Taken together, considering both

behavioural responses to challenging events and blood serotoner-

gic measures in pigs may help in characterizing and identifying

individuals at risk for developing damaging behaviours such as tail

biting. Further research is needed to elucidate the nature of the

relationship between peripheral 5-HT and tail biting, and to

develop successful preventive strategies and interventions.
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