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Chapter 1 

11 MICROBIAL REDOX REACTIONS

Elements on Earth, such as carbon, nitrogen or sulfur are chemically and 
biologically transformed from their most reduced (methane, ammonia, 
sulfi de) to their most oxidized states (carbon dioxide, nitrate, sulfate) 

and vice versa. Such processes, if enzymatically mediated, yield energy that 
microorganisms use for anabolic functions like growth, motility and maintenance. 
The metabolic and phylogenetic diversity of microorganisms that mediate sulfur, 
carbon or nitrogen biotransformations has received a lot of attention and much 
understanding in how microorganisms participate in global biogeochemical cycles 
has been gained. Some of the more recent and spectacular fi ndings in these areas 
were for instance the anaerobic oxidation of methane and ammonium. 
At a time when no oxygen was yet present on Earth, life existed based on the 
generation of energy from anaerobic respiration processes. The microbial reduction 
of metals and elemental sulfur is estimated to stand at the evolutionary beginning of 
life around 3.5 billion years ago (1). A long time after, namely 2.5-2.1 billion years 
ago, the great oxygenation event on Earth took place (2). The cause of it was the 
evolution of oxygenic photosynthetic microorganisms resulting in the release of free 
dioxygen to the atmosphere.
The physiology of anaerobic microorganisms is characterized by different respiratory 
processes such as CO2 reduction to methane, sulfur and sulfate reduction or the 
reduction of metals (e.g. Fe3+, Mn4+) and nitrate. These different forms of microbial 
respiration occur in diverse anaerobic environments (that differ in temperature, pH, 
salinity etc.) and phylogenetically distant groups of microorganisms.
Besides oxygenic photosynthesis other anaerobic processes have been described that 
produce oxygen enzymatically, namely by the disproportionation of nitrogen and 
chlorine oxyanions (3, 4). It was speculated whether these metabolic routes may 
have existed already in ancestral life forms and if their occurrence might even have 
preceded the evolution of photosynthesis (3, 5). Such considerations are particularly 
tempting in context of the growing evidence for the deposition of chlorine and 
nitrogen oxyanions since early Earth (6, 7). 
Particularly the yet expanding diversity of microorganisms that grow by the 
reduction of chlorate (ClO3

-) and perchlorate (ClO4
-) [together termed (per)chlorate] 

(5, 8) may indicate that this metabolism is still underestimated in its ecological and 
phylogenetic distribution.
This thesis presents the outcome of a study investigating chlorate- and perchlorate-
reducing microorganisms, their occurrence in hot environments and the deep 
subsurface. It gives insight in a novel variation of the metabolism known from 
mesophilic bacteria and interprets the results also in terms of industrial applications 
based on microbial chlorate and perchlorate reduction.
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11In this chapter the source of perchlorate and chlorate will be discussed, followed by 
an overview of (per)chlorate-reducing microorganisms and the current knowledge of 
their metabolism. The fi nal section will give a brief overview on oil reservoirs and 
oil production.

INORGANIC CHLORINE OXYANIONS

Human-made chlorate has been extensively used as herbicide and in the paper 
and pulp industry, where it is converted to chlorine dioxide. Chlorine dioxide and 
hypochlorite are common disinfectants and bleaching agents. They are very reactive 
and form chlorine compounds of different oxidation states, like chlorite, chlorine 
anions and chlorate. The production of chlorate in North America was 2.1 million 
tons in year 2000 and around 3 million tons worldwide (9). However, the chlorine 
oxyanion most widely dispersed in nature is perchlorate. Both, anthropogenic and 
natural sources of (per)chlorate are found in the environment (10). Perchlorate has 
been manufactured for more than 100 years, mainly for its use as explosive and 
rocket propellant in the form of ammonium perchlorate (11). Especially after WWII 
an increased demand in perchlorate raised its production to an estimate of 18 million 
kg per year in the United States only (9). The current production of perchlorate is 
diffi cult to determine, since perchlorate is a classifi ed strategic compound in the 
United States (11). 
Former disposal practices in the aerospace, military and chemical industry are the 
main cause for perchlorate found in groundwater and surface waters. It was reported 
that 15.9 million kg of perchlorate were released to the environment since the 1950s 
(12), causing a threat to the environment and human health due to the toxicity of the 
compound. This raised also interests in the (biological) remediation of perchlorate-
polluted sites and drove scientifi c research on (per)chlorate-reducing bacteria. The 
use of respective microorganisms was discussed for the treatment of contaminated 
waste (13) and ground waters (14). Furthermore, (per)chlorate reducers were 
proposed for the in-situ bioremediation of soils (15).
Especially research of the last decade led to much evidence and insight on the natural 
formation of perchlorate. In contrast to the anthropogenically caused pollutions, 
natural formation and deposition of perchlorate involves much lower concentrations 
of perchlorate and is not locally concentrated (6). The most signifi cant natural 
accumulation of perchlorate on Earth is found in the Atacama Desert in Chile, 
where it is co-deposited with nitrate (16). The formation of sizable depositions 
in the Atacama Desert and the recently discovered perchlorate accumulations on 
Mars are both of atmospheric origin. The atmospheric formation and introduction 
on Earth was also proposed for chlorate, which was detected in caliches and soils, 
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11 groundwater and precipitation samples (17).
Several mechanisms have been proposed for the natural formation of perchlorate 
such as electrochemical discharge reactions (18), the oxidation of chloride by ozone 
(19), and photochemically-mediated processes in the atmosphere (20). While there is 
still diverging opinions about the most signifi cant mechanisms for natural perchlorate 
formation there is consensus about its permanent deposition on Earth, most probably 
from a stratospheric source. Perchlorate accumulates only in arid environments (e.g. 
Atacama Desert, Antarctic dry valleys) which is likely attributed to the inactivity 
of microorganisms in the absence of water (6). Elsewhere on Earth perchlorate is 
thought to be biologically reduced to chloride anions.
Perchlorate has been found in groundwater samples from pre-anthropogenic times 
and some estimates about when natural perchlorate formation and deposition on Earth 
started, range up to millions of years ago (6, 21). Taking an average deposition rate 
of perchlorate on Earth of 3.6 g/km2/yr (6) then around 1.8 million kg of perchlorate 
are deposited on Earth every year (also considering the water surface). This rough 
estimate of natural perchlorate deposition even exceeds the anthropogenic release of 
perchlorate reported by Xu et al. (12). 
This permanent introduction of perchlorate on Earth since pre-anthropogenic ages 
has represented a valuable source of energy for microorganisms and may have 
affected the evolution of (per)chlorate-reducing enzymes.

(PER)CHLORATE-REDUCING MICROORGANISMS

The chlorinated oxyanions perchlorate (ClO4
-) and chlorate (ClO3

-), contain chlorine 
in an oxidized form (+VII; +V). They are chemically stable (especially perchlorate), 
their salts are highly soluble in water (in M range) and the high redox potential 
(Table 1) makes them ideal electron acceptors for microorganisms, comparable to 
those of oxygen or nitrate respiration.
In the early 20th century, the fi rst scientifi c observations of microbial reduction of 
chlorate were reported, but it took another 50 years before the fi rst axenic (per)chlorate-
reducing bacterium was isolated and described (13). Particularly research on model 
microorganisms, such as Wolinella succinogenes HAP-1, Ideonella dechloratans, 
Azospira oryzae GR-1, Dechloromonas agitata CKB and Dechloromonas aromatica 
RCB has resulted in more insight in the physiology and genetics of (per)chlorate 
reduction in the following decades (4, 22-25).
Almost 100 strains of (per)chlorate-reducing microorganisms have been obtained 
over the last 40 years, although the number of publicly deposited organisms is 
much lower. The vast majority of (per)chlorate-reducing bacteria are facultative 
anaerobes affi liated to the phylum of Proteobacteria, predominantly belonging to 
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11Table 1: Standard reduction potentials  (E0’) of selected redox  
       couples.

N2O/N2 + 1355 mV

ClO2
-/Cl- + 1199 mV

2NO/N2O + 1175 mV

O2/H2O + 820 mV

ClO4
-/ClO3

- + 788 mV

Fe3+/Fe2+ + 772 mV

ClO3
-/ClO2

- + 709 mV

MnO2/Mn2+ + 380 mV

NO2
-/NH4

+ + 440 mV

NO3
-/NO2

- + 430 mV

NO2
-/NO + 350 mV

HSO3
-/HS- - 110 mV

CO2/CH4 - 240 mV

SO4
2-/HSO3

- - 516 mV

Reduction potentials (circumneutral pH; 25°C) were retrieved 
from Thauer et al. (26) and Wolterink (27). In bold are redox 
couples involved in perchlorate reduction. 

the class of β-Proteobacteria. Apart from that two (per)chlorate-reducing members 
of the Gram-positive Firmicutes were identifi ed recently that couple (per)chlorate 
reduction to growth (28, 29). Most of the isolated (per)chlorate-reducing bacteria 
are mesophiles (30), although (per)chlorate reduction is also thermodynamically 
favorable at elevated temperatures (31). (Per)chlorate-reducing bacteria are mostly 
strict respirers, coupling the reduction of (per)chlorate to the oxidation of acetate 
as electron donor. In addition, other organic electron donors have been reported 
to enable (per)chlorate reduction, such as alcohols (28, 29), organic acids (4, 24), 
aromatic (25, 32) and aliphatic hydrocarbons (33). Inorganic electron donors like 
hydrogen, ferrous iron, zero-valent iron (34) or sulfi de, thiosulfate and elemental 
sulfur (35) are also used by (per)chlorate-reducing microbes. (Per)chlorate reduction 
has been reported to occur at heterotrophic and autotrophic conditions (36). Often 
(per)chlorate reducers are able to utilize nitrate or oxygen besides perchlorate and 
chlorate. (Per)chlorate-reducing microorganisms have been described and isolated 
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11 from a diverse range of environments, comprising pristine and hydrocarbon-polluted 
soils, aquatic sediments, paper mill waste sludge, farm animal waste lagoons (24, 30, 
37, 38), sea water and saline lake water samples (39), activated sludge (4, 23, 35), 
digester sludge (22), an underground gas storage site (28, 29) and from a bioelectric 
reactor (40). Latest results presented in this thesis show that (per)chlorate-reducing 
microorganisms can further be found in submarine hot springs (41), marine solfataric 
thermal vents (42) and terrestrial hot springs (43).
The metabolism of microbial (per)chlorate reduction in known (per)chlorate-
reducing microorganisms is based on the action of perchlorate reductase (Pcr), which 
reduces perchlorate (via chlorate) to chlorite, followed by the disproportionation of 
chlorite by chlorite dismutase to chloride and oxygen (Fig. 1). Chlorate-reducing 
microorganisms that cannot reduce perchlorate employ an enzyme that is genetically 
and structurally different to Pcr, namely chlorate reductase (Clr) (44-46).

ClO4
- ClO3

- ClO2
- Cl- + O2

2 [H]        H2O 2 [H]        H2O

Clr

Pcr

Cld

Cld

Figure 1: Complete microbial (per)chlorate reduction involving perchlorate reductase 
(Pcr) and chlorite dismutase (Cld) in perchlorate-reducing microorganisms or chlorate 
reductase (Clr) combined with chlorite dismutase in chlorate reducers. The fi nal step (the 
disproportionation of chlorite) forms dioxygen under anoxic conditions (and in the absence 
of light).

Oxygen formed under anaerobic conditions by the action of Cld is subsequently 
reduced by a terminal oxidase (47) or used by oxygenases for the activation of 
recalcitrant substrates. This allows for instance the de facto aerobic degradation of 
hydrocarbons based on anaerobic (per)chlorate reduction and has been demonstrated 
for the degradation of aromatic and aliphatic compounds, reaching growth rates 
comparable to the oxidation of respective hydrocarbons with oxygen (32, 33).
(Per)chlorate reduction is a metabolism mainly occurring under neutrophilic 
conditions and low salinities (30), but recently also halophilic (per)chlorate-
reducing microorganisms, such as Marinobacter vinifi rmus and members of the 
Halobacteriacea were described (8, 48). Not much is known about their (per)
chlorate-reducing physiology so far. However, the fact that Halobacteriaceae 
carry a gene resembling those of known Cld in their genome may suggest that a 
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11chlorite-disproportionating enzyme is involved. However, the respective protein is 
only distantly related to functional Cld that have been described up until now, not 
even sharing conserved key residues (49). This indicates that the full diversity of 
enzymes catalyzing complete (per)chlorate reduction is not yet discovered.
Within the current study, (per)chlorate reducers were identifi ed that belong to the  
hyperthermophilic phyla of the Eury- and Crenarchaeota. Besides the only known 
thermophilic (per)chlorate reducer (29) other thermophilic members of the Firmicutes 
with this trait are described in this thesis. All (per)chlorate-reducing microorganisms 
described in this work differ considerably from the “classical (per)chlorate reducers” 
in respect to their physiology, which seems to lack an enzymatic disproportionation 
step. 
These latest fi ndings and the recently grown awareness of an ages-long introduction 
of chemically formed perchlorate on Earth, show the yet underestimated diversity 
of mechanisms for microbial (per)chlorate reduction and their distribution over the 
tree of life. 

OIL RESERVOIR ENVIRONMENT 
Next to the fundamental motivation for a deepened knowledge of the anaerobic 
respiration pathway of (per)chlorate, interests from the oil and gas industry were 
drivers for this project. Oil and gas occurs and is produced from different systems 
with extremely varying environmental conditions (with respect to temperature, 
formation water composition and salinity, formation rock type, pressure, depth, 
etc.). These systems range from the heavily biodegraded bitumen outcrops and low 
temperature shallow oil sands to the deeply buried high pressure/high temperature 
oil and gas reservoirs. Upon deep burial, oil and gas are generated from kerogen 
through a process of thermal cracking (50). The generated oil and gas migrates from 
the deeper buried source rock upwards through different formations till it encounters 
a “trap” that is formed by a reservoir rock (sandstone or limestone) and a cap rock 
(Fig. 2 - left). Cap rocks are geological structures from shale, clay, anhydrite or 
salt with a dense and fi ne texture, resulting in high capillary pressures of the pore 
network that therefore prevents the further passage of the oil and gas (50). Due to 
density differences, migrating gas accumulates directly under this cap rock creating 
a gas cap, whereas an aquifer is usually underlying the oil leg (Fig. 2 - left). 
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Besides oil, the reservoir rock also contains connate water, which is the remnant of 
the water originally in place before it got expelled by the upward migrating oil. These 
pockets with connate water and the interface between oil leg and aquifers underlying 
oil reservoirs are the locations in which most of the naturally occurring microbes and 
microbial activity are assumed to reside (51). As oil reservoirs are highly reduced 
environments that are deprived of oxygen, microbial energy generation can only be 
based on anaerobic respiration processes. Naturally occurring microbial respiratory 
processes such as CO2 reduction to methane, sulfur and sulfate reduction or the 
reduction of metals (e.g. Fe3+, Mn4+) likely play a key role in the formation of the 
biodegraded oil sands (as found in Canada).
Upon discovery, oil from reservoirs is produced either through primary recovery 
solely relying on aquifer pressure support (Fig. 2 - left), but more often through 
water injection (secondary recovery, Fig. 2 - right) or water and chemical injection 
(tertiary recovery, Fig. 2 - right). It is during these periods of water injection to 
the reservoir that the conditions established over geological times are drastically 
changing. Injection of sulfate-containing seawater at offshore locations in sulfate-
depleted environments often results in the formation of sulfi de by sulfate-reducing 
prokaryotes causing reservoir souring. Reservoir souring poses many problems to 
oil producing facilities such as metal(sulfi des) precipitation, corrosion, toxicity, 
H2S-containing export gas and crude that lead to rising production costs and 
deferment of production.
Over the last decades, much research has been directed towards the development of 
strategies to mitigate reservoir souring. One of the strategies developed, the injection 
of nitrate, relies on in-situ microbial respiratory processes by nitrate-reducing 
communities that outcompete and inhibit the sulfate-reducing prokaryotes. An 

Figure 2: Schematic overview of an oil reservoir during primary and secondary/tertiary recovery 
phase. Gas- (white), water- (blue) and oil-saturated zones (grey) are indicated, as well as the fl uid fl ow 
from the injecting to the producing well.
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11adequate impact of nitrate on the sulfate-reducing community is, however, debated 
for both low and hot temperature oil reservoirs. For both scenarios this is thought 
to be associated with the zonation of different functional groups of microorganisms 
(SRP, NRP, etc.) throughout the reservoir (Chapter 2).
During oil production, much of the original oil in place remains in the reservoir 
resulting in recovery factors between 40-60%. Recent studies have indicated that 
Microbial Enhanced Oil Recovery (MEOR) might be achieved by improved sweep 
effi ciency through stimulation of indigenous microbial communities.
The applied objective of the scientifi c work described in this thesis was to identify 
and investigate the potential of microorganisms reducing chlorate and perchlorate 
at high temperatures in order to develop improved strategies for souring mitigation 
and microbial enhanced oil recovery in oil reservoirs. Such processes are regarded 
to be most sustainable if they are based on the activity of microorganisms that are 
indigenous to these mostly hot subsurface environments.
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11 OUTLINE OF THE THESIS

The research described in this thesis gives insight in microbial (per)chlorate reduction 
at high temperatures. A new (per)chlorate-reducing pathway in hyperthermophilic 
archaea and thermophilic bacteria is described and the fi ndings are discussed from a 
biochemical, evolutionary and applied perspective.

Chapter 2 gives an introduction on microorganisms indigenous to oil reservoirs, 
covering different functional groups (iron, manganese and nitrate reducers). The 
occurrence of (per)chlorate-reducing microorganisms in the deep subsurface is 
discussed based on latest fi ndings and analyses of (meta)genomic datasets. The 
broad diversity of genes related to the ones coding for functional chlorite dismutase 
is analyzed and the recent discovery of perchlorate sensu lato is briefl y described 
in context of oil reservoirs. Finally industrial applications based on microbial (per)
chlorate reduction are discussed, such as bioremediation, reservoir souring mitigation 
and microbial enhanced oil recovery.

Chapter 3 reports the ability of Archaeoglobus fulgidus to grow by the reduction of 
chlorate and perchlorate. This fi nding extended microbial (per)chlorate reduction to 
the hyperthermophilic archaeal life and discovered a metabolism that differs notably 
from the one known from mesophilic bacteria. Due to absence of chlorite dismutase, 
the biological reduction of perchlorate and chlorate in A. fulgidus is dependent on 
the chemical reduction of chlorite mediated by sulfi de in the medium. This forms 
oxidized sulfur compounds that can be reduced back by the archaeon, creating a 
“sulfur loop” driving (per)chlorate reduction.

Chapter 4 gives more insight in the (per)chlorate-reducing metabolism of A. fulgidus. 
The strict dependence on dissolved sulfi de, the temporary (chemical) formation 
of elemental sulfur (S0) and the biological reduction of S0 during (per)chlorate 
reduction confi rmed the earlier proposed model of a “sulfur loop” physiologically 
right. Additionally fi ndings relevant for souring mitigation are reported, such as 
the formation of nitrite by A. fulgidus under increased redox conditions and the 
diffi culties of the microorganism to resume with sulfate reduction after long-time 
exposure to perchlorate.

Chapter 5 describes a bacterial consortium growing at high temperature that 
reduces perchlorate coupled to acetate oxidation, a substrate that is abundant in 
hot oil reservoirs. Community analysis and physiological observations indicate a 
potentially syntrophic degradation of perchlorate, linked to chlorite elimination 
by reaction with sulfur compounds. Several sulfur/sulfate reducers and the most 
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11probable candidate for perchlorate reduction, a microorganism remotely related with 
the genus Thermanaeromonas were identifi ed.

Chapter 6 reports the capability of the hyperthermophilic Crenarchaeon, Aeropyrum 
pernix to grow by chlorate and perchlorate reduction. The previously as strict aerobe 
known microorganism lacks chlorite dismutase and employs chemical scavengers 
(thiosulfate) to reduce chlorite to chloride. Similarly, two Firmicutes are described 
here that grow by (per)chlorate reduction. Their physiology and genomic information 
draw a picture of (per)chlorate reduction resembling the ones of A. pernix and A. 
fulgidus, lacking chlorite dismutase.

Chapter 7 gives a short overview on the knowledge on classical (per)chlorate 
reduction. The results of this thesis are discussed in an integrative way and compare 
the classical metabolism with the here newly discovered (per)chlorate reduction 
sensu lato lacking chlorite dismutase. The diversity of microorganisms that are 
possibly able to grow by such mechanisms receives special attention, also in respect 
to evolution and future applications for the oil industry.
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ABSTRACT 

The ability of microorganisms to thrive under oxygen-free conditions in 
subsurface environments relies on the enzymatic reduction of oxidized 
elements, such as sulfate, ferric iron or CO2, coupled to the oxidation of 

inorganic or organic compounds. A broad phylogenetic and functional diversity of 
microorganisms from subsurface environments has been described using isolation-
based and advanced molecular ecological techniques. The physiological groups 
reviewed here comprise iron-, manganese- and nitrate-reducing microorganisms. In 
the context of recent fi ndings also the potential of chlorate and perchlorate [jointly 
termed (per)chlorate] reduction in oil reservoirs will be discussed. Special attention 
is given to elevated temperatures that are predominant in the deep subsurface. 
Microbial reduction of (per)chlorate is a thermodynamically favorable redox process, 
also at high temperature. However, knowledge about (per)chlorate reduction at 
elevated temperatures is still scarce and restricted to members of the Firmicutes and 
the archaeon Archaeoglobus fulgidus. By analyzing the diversity and phylogenetic 
distribution of functional genes in (meta)genome databases and combining this 
knowledge with extrapolations based on earlier-made physiological observations, 
we speculate on the potential of (per)chlorate reduction in the subsurface and more 
precisely in oil fi elds. In addition, the application of (per)chlorate for bioremediation, 
souring control and microbial enhanced oil recovery are addressed.

Keywords: oil reservoirs, deep subsurface, (per)chlorate reduction, anaerobic 
redox processes, MEOR, reservoir souring
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INTRODUCTION

Microorganisms inhabit subsurface environments hundreds of meters below Earth’s 
surface where oxygen is most often lacking. The development of the fi rst modern oil 
wells in the 19th century opened the “gate to the deep biosphere” and not long after 
that scientists discovered the fi rst microbes thriving in these environments (1-3). 
Particularly the studies of Tausson, 1925 (4, 5) and ZoBell, 1945 (6) gained detailed 
insight into the microbial oxidation of hydrocarbons by indigenous subsurface 
microbes. A large number of studies in the following decades tightened the concept of 
an active and diverse microbial subsurface community. The development of improved 
anaerobic culturing techniques during the second half of the 20th century resulted in 
another step forward in the identifi cation of anaerobes and their physiology (7, 8). 
These indigenous subsurface microbes were isolated and often deposited in publicly 
accessible strain collections. A major driver for investigating the microbiology of oil 
reservoirs has been the biogenic in-situ formation of hydrogen sulfi de from sulfate, 
causing souring. The detrimental effects associated with the formation of hydrogen 
sulfi de (high toxicity, sulfi de stress cracking, corrosion, precipitation of metal 
sulfi des) increase the production and refi nery costs of petroleum (9) and have created a 
generally negative image of microorganisms in oil fi elds from the beginning of modern 
oil recovery (10). However, particular microorganisms indigenous (or introduced) to 
the subsurface may have characteristics that are desirable during oil recovery, and it 
might be benefi cial to stimulate these further in-situ. The most prominent example 
is the mitigation of souring by nitrate-reducing communities in oil fi elds (11, 12). 
Additionally, growing effort is spent on the development of new strategies for 
microbial enhanced oil recovery (MEOR), or other processes (e.g. conversion of coal to 
methane) that use the “help of microorganisms” for increasing hydrocarbon recovery.

SUBSURFACE MICROBIOLOGY 
The developments in molecular biology made it possible to obtain a deeper insight 
into the microorganisms that inhabit oil reservoirs. Numerous studies have been 
conducted which describe the bacterial and archaeal community structure of produced 
waters using the 16S rRNA gene marker (clone libraries, DGGE, pyrosequencing) 
(13-15). The genomes of an increasing number of subsurface microorganisms have 
been sequenced and the advances of next generation DNA sequencing technologies 
have made metagenomic analyses on samples from the subsurface and oil reservoirs 
possible (16-18). The computational processing and comparison of the steadily 
growing amount of information in databases will provide a detailed picture of the 
subsurface microbiota. Nevertheless, cultivation and isolation of microorganisms is 
indispensable for the characterization of novel enzymes and metabolic pathways and 
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will deepen the interpretability of future sequencing data information.
The authenticity of indigenous microbes isolated from oil fi elds (and subsurface 
environments in general) is controversial. Oil fi elds that have not been treated 
with secondary recovery methods may be considered pristine, however already 
the drilling into the formation is a potential source of “microbial contaminations”. 
Magot (19) emphasized the additional risk of contamination during sampling and 
processing of subsurface material. Especially for cultures that differ considerably in 
growth requirements from the original in-situ conditions the autochthonous character 
is often questioned (19). Nevertheless, an unexpected high diversity of aerobic 
microorganisms was observed in several oil deposits (coal beds and oil sands), 
where oxygen was assumed to be very limited (17). The study further demonstrated 
that the presence of the respective aerobes was not attributed to anthropogenically 
caused contaminations.
Microorganisms thriving in the subsurface are phylogenetically and physiologically 
diverse. Here, we focus on microbially-mediated redox reactions involving terminal 
electron acceptors that allow energy conservation and growth when coupled to the 
oxidation of inorganic or organic electron compounds. The microbial reduction 
of iron, manganese, nitrate and (per)chlorate are discussed in this review. Sulfate 
reducers, methanogens, fermentative and aerobic microorganisms isolated from oil 
reservoirs are not covered but these groups of microorganisms were extensively 
reviewed earlier (8, 20).

Manganese- and iron-reducing microorganisms 
Microbial ferric iron reduction [Fe(III)] is estimated to have evolved around 3.5 
billion years ago and is considered to be one of the oldest respiratory processes on 
Earth (21). A relative broad diversity of microorganisms uses ferric iron as electron 
acceptor. Several iron reducers can also reduce manganese(IV) [Mn(IV)] or other 
metals (22). 
Dissolved or chelated Fe(III) and Mn(IV) are good electron acceptors yielding 
relatively high amounts of energy. However, the standard redox potential of the 
redox couple Fe(III)/Fe(II) (+770 mV) is only relevant at low pH where Fe(III) is 
soluble (Table 1 in Chapter 1). In general, produced water from oil reservoirs is in 
the range of circumneutral pH. Therefore the concentrations of dissolved Fe(III) 
is very low and practically unavailable for microbial utilization (22); same is the 
case for Mn(IV) and Mn(III). Moreover, the predominant form of Fe(III) and 
Mn(IV) in subsurface environments is bound in solid minerals (23). Their use as 
terminal electron sink for microbial redox reactions is hence, associated with less 
favorable redox potentials and a lower accessibility (24). Some microorganisms 
have physiological adaptations that enable them to utilize insoluble forms of 
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ferric iron as electron acceptors. Several such mechanisms have been described in 
mesophilic Gram-negative bacteria, particularly for Geobacter sulfurreducens and 
Shewanella putrefaciens (22, 25-27). The physiology of Gram-positive and archaeal 
iron reducers is much less understood (28). The fi rst archaeal ferric iron reductase 
was isolated and characterized from Archaeoglobus fulgidus (29, 30). Its potential 
role in energy conservation was discussed, but dissimilatory growth on ferric iron 
has never been observed (29).
For respiration with ferric iron, microbes use organic and inorganic compounds as 
electron donors (30). A limited number of strains with the ability to reduce soluble 
and insoluble forms of ferric iron were isolated from oil reservoirs (31, 32) (Table 
1). Microbial iron reduction also occurs at high temperature and is wide-spread over 
the bacterial and the archaeal domain of life. (30).
The fi rst thermophilic Fe(III)-/Mn(IV)-reducing microorganism isolated from an 
oil fi eld was Deferribacter thermophilus (33) (Table 1). Slobodkin and co-workers 
isolated a number of other thermophilic strains from an oil reservoir (34). These 
belonged to the genera Thermoanaerobacter, Thermotoga, and Thermococcus 
and they were able to reduce ferric iron. With this fi nding they concluded that the 
reduction of ferric iron may be a common trait for energy conservation among 
anaerobic thermophiles in oil reservoirs.
Another oil fi eld isolate that derived from a moderately hot oil fi eld, Geoalkalibacter 
subterraneus, grows by the reduction of Fe(III), Mn(IV), nitrate or elemental sulfur 
and trimethylamine-N-oxide (35).
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Table 1:  Microorganisms isolated from oil fi eld environments, that are able to grow by the reduction  
 of nitrate, Fe(III) and/or Mn(IV).

Species Strain Growth in 
°C [optima]

Electron 
acceptors 

Electron 
donors

Source Lit.

Arcobacter sp. FWKO B 15-40 nitrate sulfi de, 
hydrogen, 
formate

produced 
brine, oil fi eld 
(Canada)

(38)

Deferribacter 
thermophilus

BMAT 50-65 [60] nitrate, 
Mn(IV), 
Fe(III)

hydrogen, 
malate, 
acetate, 
citrate, 

pyruvate, 
lactate, 

succinate, 
valerate

production 
water, North 
sea oil fi eld 
(UK)

(33)

Denitrovibrio 
acetiphilus

N2460T 4-40 
[35-37]

nitrate acetate oil fi eld 
environment 
(oil refi nery)

(39)

Garciella 
nitratireducens

MET79T 25-60 [55] nitrate lactate, 
pyruvate, 
malate, 

fumarate 
and others 

oil fi eld 
separator, oil 
fi eld (USA)

(40)

Geoalkalibacter 
subterraneus

Red1T 30-50 [40] Fe(III), 
Mn(IV), 
nitrate

formate, 
acetate, 

propionate, 
lactate, 

butyrate, 
isobutyrate, 
succinate, 
fumarate, 
valerate, 

isovalerate, 
citrate, 

salicylate, 
octanoate, 
palmitate, 
glycerol, 
hydrogen 
and others

produced 
water, oil fi eld 
(USA)

(35)
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Geobacillus lituanicus N-3T 55-70 
[55-60]

nitrate yeast oil fi eld 
(Lithuania)

(41)

Geobacillus 
subterraneus

34T 45-65 nitrate acetate formation 
water, oil fi eld 
(China)

(42)

Marinobacter 
hydrocarbonoclasticus 
(formerly M. aqueolei)

VT8 13-50 [30] nitrate acetate, 
succinate, 

citrate

produced 
fl uid, oil fi eld 
(Vietnam)

(43)

Petrobacter 
succinatimandens

4BONT 35-60 [55] nitrate formate, 
fumarate, 
pyruvate, 
succinate, 
ethanol, 

yeast extract

production 
water, oil fi eld 
(Australia)

(44)

Shewanella putrefaciens 
(formerly Alteromonas 
putrefaciens)

Fe(III) hydrogen, 
formate

produced 
water, oil 
storage tanks 
(Canada)

(31)

Sulfurimonas 
sp. (formerly 
Thiomicrospira sp.)

CVO 5-35 nitrate, 
nitrite, 
N2O

sulfi de, 
elemental 

sulfur

produced 
brine, oil fi eld 
(Canada)

(38)

Thermoanaerobacter 
acetoethylicus

SL 26, 
S128

40-80 [65] Fe(III) peptone, 
hydrogen

formation 
water, oil fi eld 
(Russia)

(34)

Thermoanaerobacter 
brockii 

M739 35-85 [65] Fe(III) peptone, 
hydrogen

formation 
water, oil fi eld 
(Russia)

(34)

Thermococcus sibiricus MM 739T 40-88 [81] Fe(III) peptone, 
hydrogen

formation 
water, oil fi eld 
(Russia)

(34)

Thermotoga 
subterranea

SL-1 50-75 [70] Fe(III) peptone, 
hydrogen

formation 
water, oil fi eld 
(France)

(34)
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Iron-reducing microorganisms, next to oil reservoirs, have also been isolated from 
other hot environments such as marine and terrestrial hydrothermal vents, hot 
freshwater springs and geothermally heated soils [reviewed in Lovley et al. (22) and 
Slobodkin (30)]. Microbial iron reduction has been reported to occur up to 121°C 
and at salinities 10-times higher than that of sea water (36, 37). Such environmental 
conditions are also common to hot oil reservoirs. 
In turn, the oxidation of ferrous iron in anaerobic environments is an important 
microbially-mediated process, probably innate to nitrate reducers in general (45, 
46). At circumneutral pH, Fe(II) and Mn(II) are several magnitudes more soluble 
than their oxidized counterparts [Fe(III), Mn(III), Mn(IV)] (24). To which extent 
the injection of nitrate in oil fi elds may result in the oxidation of in-situ deposited 
metal(hydr-)oxides is unknown.
A novel microbial enhanced oil recovery (MEOR) strategy was proposed dosing 
dissolved ferrous iron together with nitrate (47). The microbial in-situ formation 
of solid forms of ferric iron by the action of nitrate-reducing microorganisms could 
eventually result in improved sweep effi ciencies.

Nitrate-reducing microorganisms 
The injection of nitrate during water fl ooding is applied for souring mitigation 
purposes, diminishing the biogenic in-situ formation of hydrogen sulfi de by sulfate-
reducing prokaryotes (SRP).
In oil fi elds, nitrate is reduced by microorganisms to dinitrogen gas (denitrifi cation) 
or ammonia, using inorganic and organic electron donors (12). The fi rst step in 
denitrifi cation and dissimilatory nitrate reduction to ammonia is the reduction of 
nitrate to nitrite. This conversion is catalyzed by nitrate reductases of the respiratory 
Nar-type (with the catalytic subunit located in the cytoplasm for bacteria and 
periplasm for archaea, respectively) and the Nap-type reductases (catalytic subunit 
in the periplasm) (48). Both types of nitrate reductases are found in microorganisms 
thriving in oil fi elds (49, 50).
Strain CVO and strain FWKO B, related to the genus Sulfurimonas (formerly 
Thiomicrospira) and Arcobacter respectively, are chemolithoautotrophic nitrate-
reducing mesophiles both isolated from produced fl uids (38). Strain FWKO B couples 
the oxidation of sulfi de, hydrogen or formate and strain CVO the oxidation of sulfi de 
and elemental sulfur to the reduction of nitrate. Whether these microorganisms can 
couple the reduction of nitrate also to the oxidation of ferrous iron is not known.
One of the heterotrophic nitrate reducers isolated from oil reservoirs is Deferribacter 
thermophilus (33). This thermophile in addition to nitrate can also reduce Fe(III) and 
Mn(IV) (see above). 
Geobacillus is a prominent genus associated with nitrate reduction at elevated 
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temperature in oil reservoirs (42, 51, 52). Geobacillus species can utilize a broad 
range of carbon sources. Some isolates are also able to degrade (long-chain) alkanes 
in the presence of oxygen. (51, 53). 
The thermophilic nitrate-reducing oil fi eld isolate Denitrovibrio acetiphilus couples 
the reduction of nitrate to acetate oxidation (39). Marinobacter hydrocarbonoclasticus 
(synonym Marinobacter aqueolei), isolated from an oil reservoir, is a mesophilic 
bacterium that can grow by the reduction of nitrate and degrades oil compounds 
under aerobic conditions (43).
Numerous thermophilic nitrate reducers have been isolated from other hot 
environments, like Thermovenabulum ferriorganovorum from a hydrothermal vent 
(54), Garciella nitratireducens from an oil fi eld separator (40) or Caldinitratiruptor 
microaerophilus from a hot spring (55).
Ferroglobus placidus was isolated from the vicinity of a hydrothermal vent and is 
one of the few hyperthermophilic nitrate reducers. It is also able to reduce thiosulfate 
and Fe(III). This archaeon can also couple the oxidation of aromatic compounds to 
Fe(III) reduction (56, 57). 
However, to our knowledge no hyperthermophilic nitrate-reducing microorganism 
has ever been isolated from oil reservoirs up until now. Despite an extensive search 
on metagenomic resources for hyperthermophilic nitrate reducers, microorganisms 
like Ferroglobus placidus and Pyrobaculum aerophilum are very rarely found to 
be associated with hydrocarbon resources. Examples include the high temperature 
(102°C) water samples coming from Bass Strait oil reservoirs where the 
aforementioned nitrate reducers were detected to be present at very low abundance 
(0.02% and 0.01% respectively) (MG-RAST ID 4550335.3). Assuming that these 
microorganisms are indeed present, the absence of nitrate in the water samples 
as it was reported in the chemical analysis might explain their minor role in this 
system. Ideally, microbes detected at low abundance should be reported with caution 
as metagenomics algorithms can sometimes struggle to distinguish between rare 
microbes and false positives. At the same time, as metagenomic datasets are usually 
incomplete, failure to detect certain taxa or genes should not be interpreted that they 
are absent from these particular environments. 

(PER)CHLORATE REDUCERS IN THE DEEP BIOSPHERE?! 
(Per)chlorate reduction is a well-studied dissimilatory reductive pathway performed 
under anaerobic conditions (58). The complete reduction of perchlorate (ClO4

-) 
involves the action of a perchlorate reductase (Pcr), that reduces perchlorate to chlorate 
(ClO3

-) and further to chlorite (ClO2
-) followed by the disproportionation of chlorite 

to oxygen and chloride by a chlorite dismutase (Cld). Microorganisms that carry 
enzymes which only reduce chlorate but that are incapable of reducing perchlorate 
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are called chlorate reducers (59). The respective enzyme, chlorate reductase (Clr) 
is an enzyme that differs from Pcr in genetic, structural and evolutionary aspects 
(60-62).
Most (per)chlorate-reducing microbes favor neutrophilic conditions (63) and low 
salt concentrations. However, some microorganisms have been reported to cope with 
high salinities during (per)chlorate reduction. Dechloromarinus chlorophilus and 
Arcobacter sp. strain CAB can grow at salinities of up to 5% and 3%, respectively 
(58, 64). Actively perchlorate-reducing enrichment cultures were reported at 
salinities of up to 11% (65). Recently, Marinobacter vinifi rmus and members of 
the Halobacteriaceae have shown to reduce (per)chlorate at salinities beyond 10% 
sodium chloride (66, 67).
The vast majority of (per)chlorate-reducing bacteria are mesophilic facultative 
anaerobes affi liated to the phylum of Proteobacteria, predominantly belonging to 
the class of β-Proteobacteria (63). Acetate is a common substrate for (per)chlorate 
reducers, but other organic electron donors were also reported to sustain (per)chlorate 
reduction, such as alcohols (68, 69), organic acids (70, 71), aromatic hydrocarbons 
(72, 73) and aliphatic hydrocarbons (74). Inorganic electron donors like hydrogen, 
ferrous iron, zero-valent iron (75) or thiosulfate and elemental sulfur (76) are also 
used by (per)chlorate-reducing microbes. For a broad range of mesophilic (per)
chlorate-reducing bacteria it was demonstrated that the oxidation of sulfi de could 
be coupled to chlorate and/or perchlorate reduction, resulting in the accumulation 
of elemental sulfur but not promoting growth (77). The authors also reported the 
oxidation of sulfi de to sulfate by Dechloromarinus anomalous strain NSS during the 
reduction of chlorate.

“Classical (per)chlorate reduction” 
Up until now no (per)chlorate-reducing microbes have been isolated from oil 
reservoirs. Here, we discuss a computational analysis to aid to get insight into the 
occurrence of (per)chlorate reducers in oil fi elds. 
A crucial necessity for classical (per)chlorate-reducing microorganisms is the 
presence of a chlorite-disproportionating enzyme, named chlorite dismutase, that 
avoids accumulation of the toxic intermediate chlorite. Hundreds of proteins that 
resemble functional chlorite dismutases (Cld) are encoded in phylogenetically 
diverse groups of prokaryotes (78, 79). However, the actual number of proteins that 
are able to catalyze the disproportionation of chlorite to chloride is not known. 
Up until now all publicly available genomes of Geobacillus species carry a gene 
encoding a Cld-like protein (pfam06778). Also the genomes of two oil fi eld isolates, 
Bacillus cereus Q1 and Geobacillus thermodenitrifi cans NG80-2 harbor the gene of 
this Cld-like protein, which is highly conserved within the genus Geobacillus (>70% 
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identity over ca. 250 amino acids length). However, its similarity with functionally 
effi cient chlorite dismutases is low (max. 24% over full length). The function of this 
particular protein is unknown, neither has any Geobacillus sp. ever been reported to 
grow by (per)chlorate reduction.
Another subgroup of a Cld-family protein is found in the Halobacteriaceae (>50% 
homology among different species) and only very remotely related to functional 
chlorite dismutases (max. 23% amino acid sequence identity). Even though this protein 
group has not been further characterized, several members of the Halobacteriaceae 
(e.g. Haloferax mediterranei and Haloarcula marismortui) are able to grow by the 
reduction of perchlorate and chlorate (67). Microorganisms that belong to the genus 
Haloferax and Halorubrum (both Halobacteriaceae) were also isolated earlier from 
oil fi elds (80, 81); their ability for (per)chlorate reduction has never been tested. The 
halobacterial group of Cld-like proteins lacks key residues (Ile88, Trp97, Leu122, 
Arg127, Glu167 – position refers to Nitrobacter winogradskyi) that were identifi ed 
for functionally active chlorite dismutases (79). Based on the same key residues 
119 sequences (harbored in 112 microorganisms) were identifi ed from the IMG and 
related ones from the NCBI database as potentially functional Cld (ranging from 
lengths of 123-288 amino acids); a selected set is displayed in Figure 1. These 
sequences belong to a phylogenetically diverse group of mesophiles. Cld-like 
proteins were assigned according to the earlier proposed lineage I and II (62, 79).



34

Chapter 2 

22

Figure 1: Phylogeny of selected protein sequences that carry key residues of functional chlorite 
dismutases (Cld) [earlier defi ned by Mlynek et al. (79)] Accession numbers and the respective 
microorganism (or metagenome dataset) where sequences derive from are added. Sequences in bold 
belong to functionally effi cient chlorite dismutase enzymes and have been investigated in more detail. 
The bar illustrates substitutions per site. The phylogenetic tree was constructed using the Neighbor-
Joining method including bootstrap values (for 500 replicates). Bootstrap values above 70% are 
indicated by nodes at the respective branches. Evolutionary distances of the tree were computed using 
the Poisson correction method; the scale bar indicates amino acid substitutions per site.

The Cld-like protein of Sedimenticola selenatireducens for instance has a sequence 
identity of 65% (with 92% coverage) with the chlorite dismutase of Arcobacter 
sp. CAB, a known marine (per)chlorate reducer (64). S. selenatireducens is an 
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anaerobic selenate-respiring microbe isolated from estuary sediments (82). Although 
this microorganism has also a perchlorate reductase encoded in its genome (gb: 
ATZE00000000.1) it is not able to grow by the reduction of perchlorate (82).
Marinobacter manganoxydans, a halophilic microorganism isolated from a deep-sea 
hydrothermal vent harbors another Cld-like protein with respective key residues 
(79). M. manganoxydans is the only genome-sequenced Marinobacter species (in 
total 11; via IMG database) that has a Cld-like protein encoded (gb: EHJ03506.1). 
Marinobacter spp. are ubiquitously found at different depths of the ocean and have 
been described from oil fi elds as well (43, 83). Members of the genus Marinobacter 
are able to grow with hydrocarbons as sole carbon and energy source (84). Under 
anoxic conditions these microorganisms can grow by the reduction of nitrate, using 
the membrane-bound Nar-type reductase. Studies on the Nar-type reductase of M. 
hydrocarbonoclasticus strain 617 have demonstrated the enzyme’s ability to catalyze 
chlorate reduction as well (85); a trait known for Nar-type reductases in general (86). 
Another member of the same genus Marinobacter vinifi rmus, was reported to grow 
by the reduction of nitrate and perchlorate recently (66). The genome of M. vinifi rmus 
has not yet been sequenced, however a Cld similar to the one in M. manganoxydans 
is possibly involved in the complete reduction of perchlorate. 
Two putative chlorite dismutase sequences, one deriving from a produced water 
sample (MHGC) (gb: KJ647299) (17), and another from a Canadian oil sand core 
(gb: KJ647307) were retrieved from metagenomic databases (Fig. 1). These partial 
sequences show resemblance (identity >50%) with the functional chlorite dismutase 
of N. winogradskyi (ref: YP_319047.1), carrying the key residues of functional 
lineage II Cld (79). Sequence KJ647299 (186 amino acids length) is identical to 
proteins encoded in Ralstonia picketti (Rpic_1480), Cupriavidus metallidurans 
CH34 (Rmet_6340) and Alicycliphilus denitrifi cans BC (Alide_4606); and almost 
identical to another protein of A. denitrifi cans BC (Alide_4635; 99% identity, 91% 
query coverage) (Fig. 1). A. denitrifi cans strain BC is a known chlorate-reducing 
bacterium. However, another protein in this microorganism was proposed as functional 
chlorite dismutase (Alide_4615) (87). The proteins Alide_4606 and Alide_4635 on 
the other hand are both part of a transposon fl anking functional enzymes responsible 
for chlorate reduction located on a plasmid (62). Just like the functional Cld of A. 
denitrifi cans BC the above-mentioned proteins are encoded next to Cupin 2 domain 
genes (Alide_4607 and Alide_4634), which might suggest a functional connection 
between Cld/Cld-like genes and Cupin 2 genes (62). Alide_4606 and Alide_4635 
have high resemblance with the functional Cld of N. winogradskyi. 
Sequence KJ647307 (with a length of 131 amino acids) is identical to a Cld-like 
protein encoded in Pseudomonas stutzeri A1501 (PST_3351) and very closely 
related to a hypothetical protein in Pseudomonas chloritidismutans (NCBI ref. seq.: 
WP_023445505.1; 99% identity, 94% query coverage) (88) (Fig. 1). Several strains 
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of the genus Pseudomonas are able to reduce chlorate (62, 89), probably indicating 
that this trait is more often found in the respective taxon. However, similar to 
KJ647299 and A. denitrifi cans the resemblance of sequence KJ647307 is not related 
to the proposed chlorite dismutase of P. chloritidismutans (ref: WP_023445619.1). 
Due to the ubiquitous distribution of some above discussed microorganisms (e.g. 
Marinobacter spp.) it is likely that they are regularly introduced in off-shore oil 
reservoirs during the secondary recovery stage of oil recovery. Even in high 
temperature oil reservoirs some of these mesophilic prokaryotes may survive in the 
well-bore region where temperatures are lowered by the injected water. Metagenomic 
analysis on produced fl uid samples from oil reservoirs, however, seems to indicate 
that some of the above-mentioned microorganisms (Pseudomonas, Marinobacter, 
Arcobacter, Geobacillus, etc.) might also be indigenous to oil reservoirs. 
Even though thermodynamic calculations do not exclude (per)chlorate reduction 
under elevated temperatures (90), (hyper)thermophilic (per)chlorate reducers have 
not been described until recently. The isolation of a thermophilic (per)chlorate-
reducing member of the phylum Firmicutes (69), Moorella perchloratireducens and 
the recently discovered (per)chlorate-reducing capability of the hyperthermophilic 
archaeon Archaeoglobus fulgidus extended the range of this trait to high temperatures 
(91). These fi ndings broadened the diversity of (per)chlorate-reducing prokaryotes 
considerably. Besides the phylogenetic diversity, also the ecological background 
of (per)chlorate reducers might be wider than previously expected. Whereas M. 
perchloratireducens was isolated from an underground gas storage, the type strain of 
A. fulgidus (strain VC-16) originates from a submarine hot spring (92). A. fulgidus 
strains are, however, also frequently found in subsurface environments like oil 
reservoirs and deep aquifers, and they are considered to be main contributors to 
souring in high temperature oil reservoirs (93, 94).

(Per)chlorate reduction sensu lato in the subsurface
Some microorganisms appear to grow by (per)chlorate reduction without the 
involvement of a chlorite dismutase. In the absence of a functional Cld an alternative 
mechanism may enable microorganisms to completely reduce (per)chlorate to 
chloride anions. In A. fulgidus the lack of a chlorite-disproportionating enzyme seems 
to be overcome by the abiotic scavenging of chlorite formed in the periplasm with 
naturally occurring or microbially generated sulfi de (91). There is ample evidence 
that this chemical chlorite elimination (using sulfi de) forms sulfur fractions of higher 
oxidation states and enables the continuous biological reduction of (per)chlorate. In 
turn these sulfur compounds are partially reduced back regenerating reducing power 
for an ongoing (per)chlorate reduction (Fig. 2 and Chapter 3 and 4).
Similar mechanisms for the biological reduction of (per)chlorate coupled to growth 
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may also occur in reduced subsurface environments (e.g. oil reservoirs) and other 
microorganisms (besides A. fulgidus). Such a “(per)chlorate reduction sensu 
lato” involves an enzyme reducing (per)chlorate, followed by an abiotic chlorite 
detoxifi cation step.
Several characterized molybdenum enzymes of the DMSO reductase family have 
shown to be rather unspecifi c in their substrate range. For some enzymes of this 
group the reduction of chlorate was demonstrated (besides the canonical function) 
by biochemical tests (95-97); especially Nar-type reductases seem to reduce chlorate 
at high rates (86, 98). The activity for enzymes of the DMSO family towards 
perchlorate has often not been assessed. An exception is the Nar-type enzyme of 
Marinobacter hydrocarbonoclasticus strain 617, which has a very low activity with 
perchlorate (85). 

Figure 2: Complete (per)chlorate reduction by Archaeoglobus fulgidus VC-16 involving a biotic-abiotic 
reaction loop depending on sulfur. Biological processes are illustrated with green arrows indicating the 
direction of a respective reaction, whereas dashed red arrows stand for abiotic reactions. Chlorine and 
sulfur compounds relevant for the complete reduction of perchlorate are shown.



38

Chapter 2 

22

For the reduction of (per)chlorate sensu lato involving chemical chlorite scavenging 
the periplasmic localization of the functional enzymes will be of crucial importance 
to prevent the accumulation of toxic chlorite levels in the cell. Under these conditions 
chlorite would be better accessible for potential scavengers and thus probably enable 
continuous (per)chlorate reduction (in the absence of a functional Cld). 

APPLICATION OF (PER)CHLORATE IN THE OIL BUSINESS

Similar to nitrate reduction, the reduction of (per)chlorate involves energetically 
more-favorable redox couples, compared to e.g. sulfate reduction or methanogenesis 
(Table 1 in Chapter 1).
The two-step reduction of perchlorate to chlorite via chlorate and its subsequent 
disproportionation liberates molecular oxygen (99). Microbial (per)chlorate 
reduction is therefore a metabolism potentially forming molecular oxygen under de 
facto anaerobic non-phototrophic conditions. This light-independent in-situ oxygen 
production is exceptional and offers innovative possibilities for applications in the oil 
recovery business. Unlike oxygen, which is soluble in the mM-range, (per)chlorate 
is soluble in the M-range. 
In a previous study, it was demonstrated that oxygen generated by chlorite dismutase 
could even be utilized by other microbes living in a consortium with a (per)chlorate-
reducing bacterium (100). Given the fact that aerobic processes are energetically 
more favorable compared to anaerobic ones, the in-situ formation of oxygen under 
anoxic conditions could have promoting effects on both growth yields and rates and 
thereby allow bioconversion of compounds that are barely degradable by anaerobic 
without oxygen. 

Bioremediation
Man-made perchlorate pollution of soils and drinking water resources is a threat 
to human health and has therefore caused a considerable rise in attention over the 
last decades. In the 1970s ideas came up to use (per)chlorate-reducing microbes 
for the purifi cation of (per)chlorate-containing industrial waste waters, as well as 
for the remediation of (per)chlorate-polluted soils (101). The advances of in-situ 
bioremediation of perchlorate-polluted soils have been extensively discussed in the 
books of Gu and Coates (102) and Stroo and Ward (103). A comprehensive review 
on ex-situ treatment of perchlorate-containing streams is provided by Sutton (104). 
Besides the bioremediation of toxic perchlorate contamination, the potentially 
remediating effect of (per)chlorate reduction on the co-degradation of recalcitrant 
organic pollutants (e.g. hydrocarbons) in anaerobic soil layers was proposed (100). 
The feasibility and extend of in-situ biodegradation of hydrocarbon-polluted sites 
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often relies on the supply of oxygen. Latter can be supplied by the injection of 
compressed air or pure oxygen into deeper anaerobic soil layers but this is associated 
with high costs and a limited oxygen penetration of the soil body. (Per)chlorate-
reducing bacteria form oxygen under anaerobic conditions when the intermediate 
chlorite is disproportionated during the reduction of perchlorate and chlorate. Even 
though oxygen release from the cell has never been observed in cultures growing on 
(per)chlorate, experiments with washed cell suspensions form and release molecular 
oxygen upon the addition of chlorite (71, 100). 
For the bioremediation of recalcitrant organic compounds, the concept assumes that 
(per)chlorate reduction results in formation of molecular oxygen under anaerobic 
conditions, which might set on the action of oxygenases, involved in the degradation 
of pollutants (105, 106) or be utilized as a terminal electron acceptor. Both would 
thermodynamically be favored over anaerobic degradation and thus they enable 
higher growth rates and faster degradation rates of pollutants (107). This has already 
been demonstrated with studies on bacterial isolates that reduce (per)chlorate coupled 
to the oxidation of different aromatic and aliphatic hydrocarbons in pure culture (73, 
74). The respective microorganisms had comparable growth rates with chlorate and 
oxygen during hydrocarbon oxidation. 
The broad-scale injection of perchlorate or chlorate to contaminated soils, 
probably combined with bioaugmentation of (per)chlorate-reducing microbes 
remains an interesting but debatable strategy due to the potential toxic effects of 
chlorine oxyanions. The in-situ applicability of chlorite injections at hydrocarbon-
contaminated sites, already containing microorganisms growing on (per)chlorate 
is tempting (100) but can also be questioned. Limitations may be associated with 
the high toxicity of chlorite already at low concentrations and the high chemical 
reactivity of chlorite with reduced soil or iron particles (108).

Reservoir Souring Mitigation
Reservoir souring had long been considered to occur only due to abiotic subsurface 
processes (109-111). When the role of sulfate-reducing bacteria was acknowledged 
(112, 113), this resulted in efforts directed to develop strategies to mitigate microbial 
reservoir souring. So far several strategies have been proposed for souring control: 
nitrate injection, sulfate removal and biocide injection. Although probably most 
effective in the majority of cases, sulfate removal is only scarcely applied for souring 
mitigation purposes. This is due to the high investment and operational cost associated 
with sulfate removal units. Application of biocide is used by oil and gas companies 
to achieve microbial control in their surface production and processing facilities, but 
it is generally debated whether it is effective to control reservoir souring as its effect 
does not extend suffi ciently deep into the reservoir formations. Nitrate injection is 
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the most widely accepted and used strategy to control microbial reservoir souring, 
especially effective in homogeneous hot reservoirs (Fig. 3 – right panel) and to a 
somewhat lower extend also in highly heterogeneous hot reservoirs (Fig. 3 – middle 
panel). Nitrate is considered to be effective in controlling reservoir souring by: 1) 
the competitive exclusion of sulfate-reducing bacteria by more effi cient nitrate-
reducing bacteria (competing over the same electron donating compounds; volatile 
fatty acids, BTEX, other hydrocarbons, etc.), 2) inhibition of the dissimilatory sulfi te 
reductase, a key enzyme in the sulfate reduction pathway, by nitrite (an intermediate 
in reduction of nitrate) (114), and 3) the oxidation of generated sulfi de by nitrate-
reducing sulfi de-oxidizing bacteria (12). 

Figure 3: Schematic representation of water fl ood with nitrate injection in cold, heterogeneous hot, 
and (homogeneous) hot oil reservoirs. The difference in the thermal gradient (graph) and the size of the 
injection/formation water mixing zone (dark blue) determine zones that are dominated by nitrate- (NRP, 
blue dots), mesophilic and (hyper)thermophilic sulfate-reducing prokaryotes (m-SRP and t-SRP, red 
and yellow dots respectively). Nitrate injection does provide protection against souring in the vicinity 
of the injector well bore in hot reservoirs (right panel), but this protection becomes signifi cantly more 
challenging in the deeper nitrate-depleted parts of the low-temperature reservoir exposed to sulfate-
containing injection or formation water (left panel). Reservoir souring is often also strongly dependent 
on the mixing of nutrients from the formation and injection water and therefore tends to be more 
extensive in heterogeneous reservoirs (middle panel).
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The effectiveness of nitrate injection to control souring is, however, questionable for 
e.g. low-temperature reservoirs. Nitrate might provide protection against souring in 
the vicinity of the injector well bore, but not in the deeper nitrate-depleted parts of 
the low-temperature reservoir exposed to sulfate-containing injection or formation 
water (115, 116). This will result in the development of zones that are dominated 
either by nitrate- and sulfate-reducing communities (Fig. 3 – left panel). Therefore 
the success of nitrate injection to control souring in low temperature reservoirs is 
linked to how deep nitrate can be delivered into the reservoir.
Depending on the type and abundance of nitrate- and sulfate-reducing microbes, 
nitrate might also be less effective in high temperature reservoirs with heterogeneous 
permeability distribution as these systems might have become depleted for nitrate 
and tend to have larger high temperature mixing zones where nitrate might not 
be able to prevent growth of more temperature tolerant sulfate-reducing microbes 
(Fig. 3 – middle panel). This seems to be confi rmed with the fact that although 
hyperthermophilic nitrate-reducing microorganism do exist (e.g. Pyrobaculum 
aerophilum), these microorganisms have not yet been identifi ed in signifi cant 
numbers in samples from oil reservoirs (contrarily to hyperthermophilic sulfate 
reducers).
The limitations of above-mentioned strategies are the driver to seek for alternative 
mitigation strategies. Based on fi ndings related to (per)chlorate reduction by A. fulgidus 
(91) and sulfi de oxidation by mesophilic (per)chlorate-reducing Proteobacteria (77) 
we propose that (per)chlorate injection could be a good addition or alternative to that 
of nitrate for souring mitigation in both high and low temperature reservoirs. Whereas 
the biological oxidation of sulfi de to elemental sulfur seems to be a characteristic 
innate to classical (per)chlorate reducers of low temperature optimum, the oxidation 
of sulfi de during (per)chlorate reduction at higher temperatures such as that of A. 
fulgidus, is chemically mediated (Chapter 4).   
In contrast to a mesophilic (per)chlorate-reducing community that does not directly 
affect the sulfate-reducing community and would have to be established fi rst, (per)
chlorate reduction by A. fulgidus appears to have a direct negative impact on the 
microorganism’s sulfate-reducing capability (Chapter 3 and 4). The increased 
expression of stress proteins in A. fulgidus when exposed to (per)chlorate, indicates 
that the inhibition might be linked to redox stress from the chlorite produced as 
intermediate. 
Given the ability of A. fulgidus to reduce (per)chlorate and the fact that (per)
chlorate reduction seems to interfere with sulfate reduction, (per)chlorate injection 
could provide control in high(er) temperature zones where that is not feasible by 
nitrate. The fact that Azospira suillum only oxidized sulfi de coupled to (per)chlorate 
reduction, but not nitrate (which is normally also used together with organic electron 
donors), (77) may indicate the different impact of (per)chlorate compared to nitrate 
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during souring mitigation interventions. In other words the alternating use of nitrate 
and (per)chlorate possibly combined with biocides could profi t from complementary 
effects that avoid scavenging of nitrate/(per)chlorate in the vicinity of the injector 
well bore and thereby extend the impact of both nitrate as well as (per)chlorate 
deeper into the reservoir. 

Microbial Enhanced Oil Recovery (MEOR)
The effi ciency of oil recovery from oil reservoirs is very often limited due to the 
geological structure of the oil-bearing formation and the oil characteristics. Although 
a matrix, piston-wise displacement of the target oil is intended (Fig. 4A), the actual 
displacement is often highly unstable due to fi ngering of water in oil (because of 
viscosity differences) (Fig. 4B) or preferred fl ow through high permeable zones (Fig. 
4C) or fractures (Fig. 4D).  

Figure 4: Schematic representation of oil displacement in a petroleum reservoir. Ideal matrix piston-
wise (stable) displacement leaving low residual oil levels (A) with the close-up showing the residual 
oil (black blobs) attached to sand grain particles (brown), unstable displacement showing fi ngering of 
water into the oil phase (B), unstable displacement due to thief zones (C) and unstable displacement 
through fractures (especially for carbonates) (D). Oil phase is indicated in black, water in blue. Small 
black blobs indicate residual oil after being fl ooded, small blue blobs indicate connate water before 
being fl ooded.

Microbial Enhanced Oil Recovery (MEOR) had already been proposed at the advent 
of modern oil production (117). Although several MEOR trials have been reported 
and hundreds of patents are fi led, the process often lacks reproducibility or remains 
unproven (118, 119). Moreover, most of the MEOR trials are in fact well stimulation 
rather than “full-fi eld” MEOR treatments. Many driving mechanisms for MEOR 
were postulated, of which the in-situ generation of biosurfactants received lots of 
attention. Convincing evidence that in-situ microbes will be able to generate suffi cient 
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amounts of effective surfactant in a full-fi eld setting in order to increase the capillary 
number suffi ciently such that residual oil is indeed mobilized is, however, still 
lacking. A critical analysis of the proposed mechanistic drivers for MEOR revealed 
that only the plugging of high-permeability zones (aka conformance control), seemed 
to be most plausible (120). In order to be feasible for a fi eld-wide application, an 
MEOR process based on conformance control would have to rely on the stimulation 
of indigenous microbes (avoiding requirement of injecting microbes) utilizing part 
of the hydrocarbon fraction (or in-situ commonly occurring volatile fatty acids) 
as electron donor. The reduction of (per)chlorate in the subsurface might liberate 
highly oxidative chlorine intermediates (or even oxygen) in a de facto anaerobic 
environment. Reactive chlorine oxyanions (such as chlorite) and oxygen will either 
chemically or biologically oxidize (in)organic compounds (e.g. sulfi de, ferrous iron, 
hydrocarbons etc.) in the vicinity of the (per)chlorate reducer. The availability of 
oxygen is also a pre-requisite for the oxygenation of hydrocarbons by mono- and 
dioxygenases. This may yield “activated hydrocarbons” that are subsequently more 
easily degradable by (other) microorganisms. The presence of oxygen would enable 
facultative prokaryotes to switch from a lower-effi ciency anaerobic “lifestyle” to a 
more effi cient microaerophilic metabolism, generating more biomass. We therefore 
propose that injection of (per)chlorate alone or in combination with nitrate and 
phosphates (if the latter proves to be limiting), might be able to suffi ciently stimulate 
the indigenous microbial community to achieve conformance control and thereby 
enhance oil recovery. Further research is needed to show the effectiveness of (per)
chlorate injection for MEOR.
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ABSTRACT

Perchlorate and chlorate anions exist in the environment from natural and 
anthropogenic sources, where they can serve as electron acceptors for 
bacteria. We performed growth experiments combined with genomic and 

proteomic analyses of the hyperthermophile Archaeoglobus fulgidus that show 
(per)chlorate reduction extends into the archaeal domain of life. The (per)chlorate 
reduction pathway in A. fulgidus relies on molybdo-enzymes that have similarity 
with bacterial enzymes; however, chlorite is not split into chloride and oxygen, as 
occurs in bacteria, but evidence strongly suggests that it is eliminated by an interplay 
of abiotic and biotic redox reactions involving sulfur compounds. Biological 
(per)chlorate reduction by ancient archaea may have prevented accumulation 
of perchlorate in early terrestrial environments and consequently given rise to 
oxidizing conditions on Earth, before the occurrence of oxygenic photosynthesis.

Keywords: hyperthermophilic (per)chlorate reduction, deep subsurface, 
Archaeoglobus, sulfur 
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(PER)CHLORATE REDUCTION BY ARCHAEOGLOBUS 
FULGIDUS

Perchlorate and chlorate anions [together referred to as (per)chlorate] in the 
environment have long been considered as arising mainly from anthropogenic 
activities, namely the production of perchlorate-containing rocket propellants and 
ammunitions followed by environmental pollution (1). Recent fi ndings, however, 
indicate that perchlorate is continuously formed naturally in the atmosphere, with 
proposed mechanisms ranging from photochemically triggered processes (2) to 
electrical-discharge-based reactions and ozone oxidation of chlorides (3). Such 
natural sources make perchlorate an ubiquitous compound on Earth, though sizeable 
accumulations tend to be limited to certain arid environments, like the Atacama desert 
in Chile (4). Perchlorate deposits also exist on Mars (5). It has been proposed that 
the lack of perchlorate accumulation elsewhere on Earth might be due to microbial 
activity (4), which is supported by the widespread occurrence of bacteria that can use 
perchlorate and chlorate as terminal electron acceptor for growth (6).
(Per)chlorate-reducing bacteria described so far belong mainly to the bacterial 
phylum of Proteobacteria (7). The widely accepted pathway of biological (per)
chlorate reduction consists of a two-step reduction from perchlorate, via chlorate 
to chlorite followed by a disproportionation to molecular oxygen and chloride (8). 
This metabolism relies on the action of a perchlorate reductase (Pcr) and a chlorate 
reductase (Clr), two functions that in perchlorate reducers are often performed by a 
single enzyme (9); it further requires a chlorite dismutase (Cld) to form molecular 
oxygen and chloride. Microbial formation of molecular oxygen under anaerobicity 
is a biochemical rarity.
Because the reported mechanisms for natural perchlorate generation on Earth seem 
to have existed already during preanthropogenic times (1, 2), the appearance of 
biological reduction of (per)chlorate may have been an important event in Earth’s 
history. One indication of an ancient origin for reduction of (per)chlorate would 
be its occurrence in microorganisms that thrive in environments resembling those 
of early Earth. Archaeoglobus fulgidus, a hyperthermophilic archaeon fulfi ls this 
criterion. A. fulgidus was isolated from marine hot vents close to Vulcano island in 
Italy (10), but has since then been found in many extreme subsurface environments, 
such as hot oil reservoirs or geothermal formations (11, 12). It is considered to be 
a major contributor to sulfate reduction and sulfi de formation at high temperature. 
A. fulgidus strain VC-16 is the best studied sulfate-reducing archaeon. Its genome 
contains many oxidoreductases genes with unknown function (13).
We demonstrate that A. fulgidus strain VC-16 as well as A. fulgidus strain Z (14), 
(Fig. S1) can grow with perchlorate or chlorate as electron acceptors (Fig. 1, and 
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Table S1) coupled to lactate oxidation. Strain VC-16 coupled (per)chlorate reduction 
also to fatty acids oxidation (butyrate, capriate, palmitate) and carbon monoxide 
utilization (results not shown); traits that have earlier been demonstrated coupled 
to sulfate reduction (15, 16). Our fi nding extends (per)chlorate reduction into the 
archaeal domain of life and high temperature environments. 

Figure 1: (Per)chlorate reduction by A. fulgidus strain VC-16. Experiments were performed with 
[(C) and (D)] and without addition of sulfate [(A) and (B)] as an alternative electron acceptor. The 
reduction of perchlorate (open circle), chlorate (open triangle) and sulfate (open square) is coupled to 
the oxidation of lactate (fi lled circle), producing acetate (fi lled square) and formate (fi lled triangle). 
Growth is represented by the protein concentration (dashed line), plotted against the secondary y-axis 
(right). Inocula used were exponentially growing perchlorate- (A, C) and chlorate-reducing (B, D) 
cultures, respectively. In the absence of either electron acceptor or electron donor (lactate) no growth 
and substrate conversion were observed (Table S1 and Fig. S4); means ± range (bars), n=2.

Enzyme assays showed chlorate-reducing activity in cell-free extracts and 
suspensions of A. fulgidus VC-16 that were comparable with activities found in 
some mesophilic (per)chlorate-reducing bacteria (Table S2). An activity towards 
perchlorate could not clearly be identifi ed, which is similar to an earlier study on 
the perchlorate reductase of Azospira oryzae strain GR-1 (9). No chlorite dismutase 
activity could be detected either. Consistent with this, no genes similar to known 
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chlorite dismutases were identifi ed in the genome of A. fulgidus. On the other hand 
no accumulation of chlorite was observed, suggesting an alternative mechanism of 
chlorite conversion.
Perchlorate- and chlorate-grown cells of A. fulgidus are still able to use sulfate as 
electron acceptor. When sulfate and perchlorate are present together in the cultures, 
both are used simultaneously, whereas sulfate reduction is delayed if chlorate is 
present (Fig. 1C and D). Simultaneous perchlorate and sulfate reduction in a single 
culture is intriguing from an energetic viewpoint. The midpoint potentials of redox 
couples involved in (per)chlorate reduction are high, while those involved in sulfate 
reduction are low (ClO4

-/ClO3
-  E0’ = + 0.788 V; ClO3

-/ClO2
-  E0’ = + 0.709 V; ClO2

-/
Cl-  E0’ = + 1.199 V versus SO4

2-/HSO3
-  E0’ = - 0.516 V; HSO3

-/HS-  E0’ = - 0.110 V).  
During the reduction of (per)chlorate the redox potential is locally increasing, but the 
overall redox state remained low in all the cultures throughout the entire experiment 
(<-200 mV; indicated by resazurin in the medium and a redox electrode). 
Sulfi de is normally omitted from media when growing (per)chlorate reducers but is 
used to establish a low-redox-potential required for growth of strict anaerobes, like A. 
fulgidus. Similar to sulfate reduction, (per)chlorate reduction in A. fulgidus requires 
reduced conditions that are established by the addition of sulfi de to the medium and 
even pronounced by sulfi de formation if sulfate is present as well (Fig.1C and D). 
Proteome analysis of cells grown with either perchlorate or chlorate shows that in 
comparison with sulfate-grown cells, there is an increased abundance of a large 
number of proteins that are associated with redox and oxygen stress (Table S3). 
We hypothesize that in the presence of (per)chlorate these proteins play a crucial 
role in creating and maintaining a low intracellular redox potential, which is a 
basic requirement for dissimilatory sulfate reduction to take place. The differential 
expression of stress proteins refl ects differences in redox-stress conditions. 
Potentially destructive redox stress is also indicated by the increased abundance of 
enzymes involved in cell repair (Table S3). The higher Gibbs free energy change 
when coupling the oxidation of a substrate to (per)chlorate instead of sulfate (Table 
S4) was not visible in terms of enhanced growth rate and/or higher growth yield of 
A. fulgidus strain VC-16. The mass balances at the 3 growth conditions resulted in 
similar protein concentrations, as a measure of biomass (Table S1). These growth 
yields refl ect high maintenance costs when growing with (per)chlorate.
The proteome of  VC-16 cells grown with (per)chlorate also contains proteins encoded 
by three gene clusters that are annotated as molybdopterin oxidoreductases (cluster I: 
AF0157-AF0160; cluster II: AF0173-AF0176; cluster III: AF2384-AF2386) (Table 
1).
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Spectral counts

Function Perchlorate Chlorate Sulfate

molybdo-oxidoreductase I 
(α-subunit: AF0159) 568 712 261 300 20 16

molybdo-oxidoreductase II 
(α-subunit: AF0176) 1039 1190 640 766 112 69

molybdo-oxidoreductase III 
(α-subunit: AF02384) 1305 1392 1703 2154 349 190

ATP sulfurylase
(AF1667) 952 1033 741 834 1769 1515

APS reductase
(α-subunit: AF1670) 2399 1906 1856 1375 3121 2871

sulfi te reductase
(α-subunit: AF0423) 255 328 265 450 317 283

Table 1: Expression of key proteins involved in (per)chlorate reduction by A.  
               fulgidus strain VC-16.

Growth was performed with perchlorate, chlorate and sulfate as electron acceptor. 
Columns indicate biological duplicates. The locus tag numbers are in parentheses. 
The full set can be found in the Supplementary Materials (Table S3).

Cluster II is the best candidate for the reduction of (per)chlorate. Its catalytic subunit 
encoded by AF0176, has 31% identity (on protein level) and a query coverage of 98% 
with the alpha-subunit of the characterized perchlorate reductase of Dechloromonas 
agitata (17). Cluster I and cluster III are most likely involved in the metabolism of 
sulfur-based substrates: Cluster I carries a conserved domain in its alpha-subunit 
for a tetrathionate reductase (cld02758), while that of cluster III carries a conserved 
domain for thiosulfate-, sulfur-, and polysulfi de reductases (cd02755) (18, 19).
Structure-based modeling suggested that AF0176 possibly is the catalytic subunit of 
a periplasmic NarG-type nitrate reductase (20). However, NarG key residues found 
in AF0176 can often be identifi ed in the alpha-subunit of characterized perchlorate 
reductases (PcrA) as well (Fig. S2). Thus far, no reports mention the ability of 
Archaeoglobus species to respire with nitrate. Nitrate reductase and perchlorate 
reductase both belong to the type II DMSO family of enzymes, and share the 
conserved domain cd02750, indicating the high level of similarity between these 
enzymes. In addition, perchlorate reductases are known to reduce nitrate as well (9). 
The apparent involvement of the three molybdopterin oxidoreductases in (per)
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chlorate reduction suggests the following model. (Per)chlorate reduction performed 
by AF0174-0176 results in the formation of chlorite, which reacts abiotically with 
sulfi de. The reactivity of sulfi de with chlorite triggers a cascade of subsequent 
reactions forming higher oxidized sulfur compounds (21, 22). Depending on the 
conditions in the medium all sulfur might eventually be converted to sulfate (Fig. 
S3). The accumulation of oxidized sulfur fractions requires the action of enzymes 
regenerating reduced sulfur compounds to continuously detoxify chlorite. These 
conversions can be catalyzed by AF0157-0159, a tetrathionate reductase-like 
enzyme, and AF2384-2386, an enzyme similar to thiosulfate-, sulfur-, and polysulfi de 
reductases. Our fi ndings give rise to a hypothesis where (per)chlorate reduction by A. 
fulgidus relies strictly on a sulfur-based cycle that is driven by both biotic and abiotic 
processes (Fig. 2). In nature these reduced conditions might also be accomplished by 
co-existing sulfate-reducing organisms or alternative reductants. 

In our model complete conversion of sulfi de to sulfate is not essential, but the enzymes 
needed to activate and reduce sulfate are constitutively present (23) (Table 1). The 
chemical destruction of chlorite formed during biological (per)chlorate reduction by 
A. fulgidus is thus an alternative to biological disproportionation.
Because the (per)chlorate reduction mechanism in A. fulgidus does not involve 
chlorite dismutase, a key enzyme in known (per)chlorate-reducing bacteria, the 
coupling of biotic processes to the abiotic removal of the produced chlorite is a 

Figure 2: Proposed pathway and enzymatic machinery for the reduction of (per)chlorate coupled 
to sulfur compounds in A. fulgidus. Reductases involved in the reduction of (per)chlorate (AF0174-
176) and tetrathionate (AF0157-159) and an enzyme similar to thiosulfate-, sulfur-, and polysulfi de 
reductases (AF2384-2386). Interactions between biological and chemical processes are illustrated by 
solid and dashed lines, respectively.
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necessity. The fact that a strict anaerobic archaeon is able to reduce and grow with (per)
chlorate as electron acceptor suggests that this metabolism may be more widespread 
in the prokaryotic world. Furthermore, if perchlorate was produced in Earth’s early 
atmosphere, biological mechanisms utilizing this compound may have evolved at 
a very early time, potentially even before oxygen-generating photosynthesis. The 
utilization of (per)chlorate together with other compounds such as nitrogen-oxo 
compounds may depict the fi rst entry of highly oxidative compounds into microbial 
metabolism, and thus could have contributed to the rise of life adapted to more 
oxidizing conditions on Earth (24).

MATERIALS AND METHODS

Strains and substrate utilization tests
The type strain of A. fulgidus, VC-16 (DSM4304T) (10) and strain Z (DSM4139) 
(14) were purchased from the Deutsche Sammlung von Mikroorganismen und 
Zellkulturen GmBH (DSMZ, Braunschweig, Germany). The medium used 
throughout the study was DSM 399, recommended by DSMZ. The amounts of 
sodium bicarbonate and sodium sulfi de added to the medium were slightly modifi ed 
compared to the reference (fi nal concentration of NaHCO3, 4 g l-1 and Na2S.9 H2O, 
0.3 g l-1). These compounds were added to the medium from a sterile stock solution 
after autoclaving. The recommended trace element solution was supplemented with 
3 mg l-1 Na2WO4. Unless stated otherwise, electron donors and acceptors were added 
from 1 M heat-sterilized stock solutions. The pH of the medium was set to 6.5 (at 
80°C, which was the incubation temperature). Growth experiments were performed 
in butyl-rubber stoppered, 120 ml serum bottles, containing 50 ml medium and a 
N2/CO2 (80:20; v/v) atmosphere of 1.5 bar in the headspace. Anaerobic cultivations 
were conducted according to standard methods. Multiple transfers were required 
to get stable growth of A. fulgidus with the novel electron acceptors, chlorate and 
perchlorate. Experiments were performed in duplicates. Cultures were inoculated 
with cells (1%) grown under the same respective conditions (3 subsequent transfers 
on the same substrates). Growth experiments were performed using lactate (20 mM) 
as electron donor and carbon source and perchlorate (NaClO4), chlorate (NaClO3) 
or sulfate (Na2SO4) (5 or 10 mM) as electron acceptors. The chemical stability 
of perchlorate and lactate under test conditions is illustrate in Fig. S5. The redox 
potential in the medium was monitored with resazurin and by using a redox electrode 
(Qis, Oosterhout, The Netherlands).

Analytical methods
Oxyanions were measured on a HPLC equipped with an Ion Pac AS22 column 
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(4x250 mm), using an ED 40 electrochemical detector (Dionex, Sunnyvale, CA). 
The eluent contained 1.29 g l-1 Na2CO3.10 H2O and 0.12 g l-1 NaHCO3, and the 
analysis was conducted with a fl ow rate of 1.2 ml min-1 at 35°C. Sodium bromide 
(NaBr) was used as an internal standard.
Lactate and fatty acid concentrations were quantifi ed with a HPLC system using a 
Varian column (MetaCarb 87H Guard 4.6x50 mm, Middelburg, The Netherlands), 
connected to a UV and Refractive Index (RI) detector. Sulfuric acid at a concentration 
of 10 mM was used as eluent and sodium crotonate as internal standard. The fl ow 
rate was 0.8 ml min-1 and analyses were carried out at 30°C. The data generated were 
analyzed by the software ChromQuest.
Biomass yields were determined by measuring the protein content, rather than the 
optical density in order to avoid interference with precipitating sulfur (fractions). 
The protein content in cell-free extracts was quantifi ed with a Bradford assay after 
cell disruption using sonication (5 cycles: 30 sec sonication at 40 kHz followed by 
30 sec pause during incubation on ice). Bovine serum albumin was used as standard.

Enzyme activities
All steps for obtaining cell suspensions and cell-free extracts for enzyme activity 
measurements were performed in an anaerobic chamber with a N2/H2 (96:4; v/v) 
atmosphere, circulated over a palladium catalyst to remove traces of oxygen. Cells 
were harvested by centrifuging cultures in the late exponential phase, followed by 
re-suspending the pellets in phosphate buffer or PIPES buffer (50 mM), both set to 
a pH of 6.5 at 80°C. After one washing step the procedure was repeated. To obtain 
cell-free extracts cell suspensions were disrupted by ultrasonic disintegration and 
centrifuged for 10 min at 16000 x g. The supernatants and the cell suspensions were 
transferred to serum bottles, fl ushed with N2, and kept on ice (9). The oxidation 
of reduced methylviologen (0.5 mM in 50 mM phosphate buffer, pH 6.5 at 80°C) 
was measured in response to the addition of cell-free extracts (cell suspensions) 
and perchlorate, chlorate and nitrate at 578 nm wavelength. Potential electron 
acceptors were added at a fi nal concentration of 5.3 mM to the cuvette (Hellma 
GmbH, Müllheim, Germany). The solutions used for these trials were prepared 
anaerobically and added with gas-tight syringes to the cuvettes that were fl ushed 
with nitrogen prior to use.
A Clark-type electrode was used for the determination of chlorite dismutase activities 
(Yellow Spring Instruments, Yellow Springs, OH) (25). The activity was measured 
at 70°C in a 50 mM phosphate buffer (pH 6.5). Sodium chlorite was injected with a 
gas-tight syringe from an anaerobic stock solution (fi nal concentration 0.2-1 mM). 
Enzyme activities are expressed in units (U); one unit is defi ned as the amount of 
enzyme required to convert 1 μmol of substrate per minute, and are related to the 
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protein content determined, as described above. In all assays control experiments 
were included, omitting either the addition of cell free extracts or the addition of 
substrates.

Proteome analysis
The differential protein abundances in cultures growing with different electron 
acceptors were investigated with LC-MS/MS (26). Cells grown with lactate and 
perchlorate, chlorate or sulfate as electron acceptors were compared. For each of the 
3 conditions independent duplicates of 500 ml cell suspensions were grown until the 
late exponential phase and harvested by centrifugation. After disintegration (using 
4% SDS) combined with ultrasonic treatment, samples were centrifuged to get 
cell-free samples. The protein concentrations were determined and for each growth 
condition an equal amount of total protein was separated by SDS-PAGE on a 10 
well PAGE® Novex 4-12% Bis-Tris Gel (Invitrogen, Bleiswijk, NL) for 30 min at 
a constant voltage of 200 V using MES-SDS as running buffer. The gel was stained 
with Coomassie Blue (Colloidal Blue Staining Kit, Invitrogen) after which each lane 
was cut into 25 equal slides using a grid cutter (Gelcompany, San Francisco, CA). 
Gel pieces were reduced with 10 mM dithiotreitol (30 min at room temperature), 
alkylated with 20 mM iodoacetamide (60 min at room temperature in the dark) and 
digested with sequencing-grade trypsin overnight at 37°C. After digestion, formic 
acid and DMSO were added (both 5% v/v) to increase peptide recovery. Protein 
digests were analyzed on a reversed-phase nano-HPLC coupled to a LTQ-Orbitrap 
Velos (Thermo Fisher Scientifi c, Bremen, Germany). An Agilent 1200 series HPLC 
system was equipped with an in-house packed capillary trapping column (100 μm ID 
x 20 mm length) and analytical column (50 μm ID and 300 mm length) fi lled with 
Reprosil Pur 120 C18-AQ (Dr. Maisch, Ammerbuch-Entringen, Germany) (27).
Trapping was performed at 5 μl min-1 for 10 min in solvent A (0.1 M acetic 
acid), and a linear gradient from 0 to 40% solvent B (0.1 M acetic acid in 8:2 v/v 
acetonitrile:water) for 40 min at a fl ow rate of 100-150 nl min-1 was used to elute the 
peptides. 
The column effl uent was directly electro-sprayed in the ion source of a LTQ-Orbitrap 
Velos (Thermo Fisher, Bremen, Germany), which was programmed to operate in 
data-dependent mode, automatically switching between MS and MS/MS. Survey 
full-scan MS spectra were acquired from m/z 400 to 1500 in the Orbitrap analyser 
at a resolution of 30000 at m/z 400 after accumulation of ions to a target value of 1 
x 106. The twenty most intense multiply charged ions above a set threshold of 5000 
were fragmented in the linear ion trap using collision-induced dissociation (CID) 
after accumulation to a target value of 1 x 104. The isolation width was set to 2.5 
amu, the normalized collision energy at 35% and dynamic exclusion was 90 sec. All 
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raw data fi les were processed into peaklists using Proteome Discoverer 1.2 (Thermo 
Fisher).

Bioinformatics
The genome of A. fulgidus VC-16 was published by Klenk et al., 1997 (13) and 
is publicly available via the NCBI website. MS/MS spectra were searched using 
the Open Mass Spectrometry Search Algorithm (OMSSA) (28). The spectra (for 
each condition between 66000 and 94000) were searched against a peptide database 
derived from the predicted A. fulgidus VC-16 proteome, and a decoy database 
constructed from reversing the predicted A. fulgidus VC-16 proteome. Peptide 
spectrum matches were performed with OMSSA (28) with the following parameters: 
a precursor ion tolerance of 0.2 Da, a fragment ion tolerance of 0.3 Da, a missed 
cleavage allowance of up to and including 2, fi xed carbamide methylation, variable 
oxidation of methionine and deamination of glutamine and asparagine. The E-value 
threshold was set iteratively from the false discovery rate (FDR) and was set to 0.01, 
in which case the FDR is expected to be below 5%. For FDR calculation, top hit 
spectral matches to peptides in the reversed database were taken and the number 
of false positives was divided by the number of total positives. Relative abundance 
of each protein within the total pool of proteins was estimated by spectral counting 
(29).
Signifi cant differences in spectral counts were investigated by applying the 
likelihood ratio G-test for independence (30) with the null hypothesis of equal 
protein distribution between the three conditions. The null hypothesis was rejected 
when a specifi c gene was differentially expressed at a level of p ≤ 0.05.
A rather wide set of proteins was at least 3-times more abundant when cells were 
grown under perchlorate-/chlorate-reducing conditions compared with under 
sulfate-reducing conditions (Table S3). Those inferred to be fundamentally involved 
in metabolizing (per)chlorate and accumulating intermediates during the process 
are displayed in Table 1 of the article. The proteome analysis of perchlorate- and 
chlorate-grown cells did not reveal any signifi cant difference in the expression 
profi les, thus they are henceforth discussed together in the comparison with cultures 
grown under sulfate-reducing conditions. The complete proteomic data set generated 
is accessible via The Proteomics Identifi cations Database (PRIDE), accession number 
1-20130122-51500. Multiple-sequence alignments were made using ClustalX2 (31). 
Gene-cluster identifi cation was done via the microbes online database, which is 
based on the work of Price et al., 2005 (32). For the subcellular location of archaeal 
proteins Pred-Signal was used (33).
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SUPPLEMENTAL MATERIAL

Figure S1: Perchlorate reduction by A. fulgidus strain Z. The reduction of perchlorate (open circle), is 
coupled to the oxidation of lactate (fi lled circle), accumulating acetate (fi lled square) and formate (fi lled 
triangle). Inocula used were exponentially growing perchlorate-reducing cultures. In the absence of 
either electron acceptor or electron donor no growth or conversion was observed; n=2, means ± range 
(bars).
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: VRYAGPARFAALVG--GIQLDHVAAVGDLITGAHLAYGNPMESFTSDAWFDA : 231 
: ITNTAYTRMTKLLG--AISPDATSMTGDLYTGIQTVRVPASTVSTFDDWFTS : 229 
: VSFSAGHRFAHYIG--AHTHTFFDWYSDHPTGQTQTCGVQGDSAECSDWFNS : 222 
: VSFSAGHRFAHYIG--AHAHTFCDWYGDHPTGQTQTCGVQGDTCETADWFNS : 222 
: VSYASGARYLSLIG--GTCLSFYDWYCDLPPASPQTWGEQTDVPESADWYNS : 247 
: VHKGAMMRLASMFG--WSALHGYTMNGDLPAFWSQTFGVQTEEFESLEWTNS : 204 
: YKPFFKAFLAALGTPNGGGVPEALCFLSKALGWKSAYGFGAHPELLTDYENA : 203 
: NFKAKWSAKLGEKGLKLEDILIDPDRPDLGTKANQLVYMRGRGQGHADYFYQ : 279 

Figure S2: Multiple sequence alignment of the catalytic alpha-subunits of characterized chlorate 
reductases (ClrA), perchlorate reductases (PcrA), nitrate reductase (NarG) and the molybdopterin-
binding subunits of the oxidoreductases of A. fulgidus, Pseudomonas chloritidismutans (P.chl), Ideonella 
dechloratans (I.dec), Dechloromonas agitata (D.agi), Dechlorosoma sp. KJ (D. KJ), and Escherichia 
coli (E.col). Key residues of NarG according to Dridge et al., 2006 (1) are in red. Exclamation mark 
indicates residues that are adjacent to the Mo cofactor; the asterisk marks the Mo ligand and the hash 
key the residues dictating the putative substrate entry channel. The twin-arginine motif in the putative 
leader sequence is indicated with hyphens.
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Figure S3: Chemical reactivity of chlorite with sodium sulfi de at 80°C. The relatively thermal-stable 
chlorite (open circle) reacts with injected sulfi de (arrows), forming sulfate (open square) and chloride 
(open triangle), according to the stoichiometry: 2ClO2

- + S2- → SO4
2- + 2Cl-. Injections of 1.25 mM 

sodium sulfi de are indicated by arrows; in phosphate buffer (50 mM, pH = 6.5); n=3 (error bars, s.d.).
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Figure S4: Biological controls with A. fulgidus strain VC-16 exposed to lactate (fi lled circle) or 
perchlorate only (open circle). Exponentially growing perchlorate-reducing cultures were used as 
inocula; n=2, means ± range (bars).



70

Chapter 3 

33 0

5

10

15

20

25

0 2 4 6 8 10 12 14 16

C
 (m

M
)

Time (d)

Figure S5: Abiotic stability of perchlorate (open circle) and lactate (fi lled circle) under cultivation 
conditions (reduced DSM 399 Medium, 80°C); n=2, means ± range (bars).

Table S1: A. fulgidus strain VC-16, growing under three different redox conditions. Start and end-point 
measurements (t=0 and t=9 days) were performed for substrates and products, as well as for the growth 
yield (expressed in the protein content). No conversion or turbidity was observed when lactate was 
offered without any electron-acceptor. “NM” stands for not measured; n=2, means ± range.

Conditions Start End Difference

sulfate (mM) 9.6 ± 0.1 1.4 ± 0.1 -8.2
lactate (mM) 18.5 ± 0.1 8.4 ± 0.6 -10.1

Sulfate reduction acetate (mM) 0 4.6 ± 0.0 4.6
formate (mM) 0 1.3 ± 0.1 1.3
protein yield (mg l-1) 107.3 ± 16.3

chlorate (mM) 10.4 ± 0.1 0 -10.4
lactate (mM) 19.3 ± 0.1 5.2 ± 0.2 -14.1

Chlorate reduction acetate (mM) 0 9.0 ± 0.2 9.0
formate (mM) 0 2.8 ± 0.0 2.8
protein yield (mg l-1) 73.0 ± 6.6

perchlorate (mM) 9.7 ± 0.3 0 -9.7
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lactate (mM) 20.0 ± 0.5 2.3 ± 0.4 -17.7
Perchlorate reduction acetate (mM) 0 10.6 ± 0.7 10.6

formate (mM) 0 3.1 ± 0.1 3.1
protein yield (mg l-1) 98.6 ± 5.4

lactate (mM) 19.3 ± 0.9 19.6 ± 0.1 0.3
Lactate acetate (mM) 0 0 0
(without e-acceptor) formate (mM) 0 0 0

protein yield (mg l-1) NM

Table S2: Specifi c enzyme activities determined in crude extracts (cell-free extracts) of (per)chlorate-
reducing microorganisms [μmol mg-1 min-1]. Cell-free extracts of A. fulgidus derived from cells grown 
with perchlorate (*) or chlorate (**); incubations using cell-free extracts or electron acceptors (ClO4

-, 
ClO3

-, ClO2
-) alone were used as controls; n=3 (± s.d.).

Pcr Clr Cld Reported e-acceptors Ref.

A. ful.* ND 0.27 ± 0.05 ND ClO4
-, ClO3

-, SO4
2-, SO3

2- this study
A. ful.** ND 0.29 ± 0.06 ND

A. ory. 0.15 0.39 145 ClO4
-, ClO3

-, NO3
-, O2, Mn(IV) (2), (3)

D. hor. + 3.12 155 ClO4
-, ClO3

-, NO3
-, O2 (4)

A. den. NM 0.30-0.40 5.7-22 ClO3
-, NO3

-, NO2
-, O2 (5)

P. chl. ND 9 134 ClO3
-, O2 (6)

A. ful., Archaeoglobus fulgidus VC-16; A. ory., Azospira oryzae GR-21; D. hor., Dechloromonas hortensis 
MA-1; A. den., Alicycliphilis denitrifi cans BC; P. chl., Pseudomonas chloritidismutans AW-1; ND, not detecta-
ble; NM, not measured; +, degree of activity not reported
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Table S3: Proteins of A. fulgidus strain VC-16 with at least 3-times higher abundance when growing 
under perchlorate- and chlorate-reducing conditions, compared to sulfate-reducing conditions.

Locus tag Perchlorate Chlorate Sulfate Function Cluster

AF0035 36 18 31 16 3 5 mannosephosphate isomerase

AF0062 57 57 55 97 12 13 signal transduction protein

AF0066 7 8 8 8 1 1 AbrB family transcriptional 
regulator

AF0080 23 23 24 24 5 2 acetylornithine aminotransferase

AF0092 7 23 21 18 1 1 sulphate ABC transporter 
ATP-binding protein

AF0094 10 19 27 24 3 1
molybdate ABC transporter 
periplasmic substrate-binding 
protein

AF0099 14 10 14 9 3 3 PilT protein domain-containing 
protein

AF0113 11 14 10 9 1 1

5-formaminoimidazole-4-
carboxamide-1-(beta)-D-
ribofuranosyl 5’-monophosphate 
synthetase

AF0152 216 285 195 179 10 8 copper-transporting ATPase 
P-type

AF0154 60 97 76 58 3 3 iron permease FTR1 

AF0155 74 112 86 106 19 15 iron-sulphur cluster-binding 
oxidoreductase 1

AF0156 23 22 32 15 2 2 ferredoxin 1

AF0157 24 46 13 18 1 1 molybdopterin oxidoreductase 
(Fe-S binding subunit) 2

AF0158 26 34 18 14 1 1 molybdopterin oxidoreductase 
(membrane subunit) 2

AF0159 568 712 261 300 20 16 molybdopterin oxidoreductase 
(mo-binding subunit) 2

* AF0160 2 16 5 15 1 2 TtrD 2

* AF0161 9 35 11 17 1 2 molybdenum cofactor 
biosynthesis protein A 2

AF0163 38 50 32 27 1 1 unknown function

AF0168 29 33 34 14 2 1 arsenical resistance operon 
repressor 3

AF0169 51 59 46 45 1 1 unknown function 3

      Spectral counts
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AF0170 156 177 154 249 1 1 sensory box protein 4

AF0171 25 33 34 32 1 1 oxidoreductase molybdopterin 
binding protein 4

* AF0172 1 1 1 1 1 1 unknown function 4

AF0173 24 28 23 32 1 1 reductase assembly protein 5

AF0174 69 81 46 54 2 2 molybdopterin oxidoreductase 
(membrane-subunit) 5

AF0175 157 233 125 167 9 15 molybdopterin oxidoreductase 
(Fe-S binding subunit) 5

AF0176 1039 1190 640 766 112 69 molybdopterin oxidoreductase 
(mo-binding subunit) 5

AF0177 18 88 92 140 3 4 tungsten formylmethanofuran 
dehydrogenase subunit E

AF0179 8 17 7 20 1 2 unknown function

AF0183 18 18 21 7 1 1 NAD(FAD)-dependent 
dehydrogenase

AF0184 125 222 203 183 41 34 XRE family transcriptional 
regulator 6

AF0185 39 75 59 51 4 5 nifU protein 6

AF0186 110 191 107 177 11 6 class-V aminotransferase 6

AF0187 17 20 23 11 1 1 DsrE family protein 6

* AF0188 2 3 1 1 1 1 SirA family protein 6

AF0204 8 11 10 14 1 1 polyprenyl synthetase

AF0212 39 31 31 55 2 2 histidinol dehydrogenase

AF0253 54 38 43 45 10 9 GMP synthase subunit B

* AF0265 8 10 20 16 2 3 molybdenum cofactor 
biosynthesis protein B

AF0343 7 10 26 8 1 1 tryptophan repressor binding 
protein (wrbA)

AF0361 21 24 23 34 1 5 UDP-glucose 4-epimerase
AF0374 12 15 15 11 3 3 p-nitrophenyl phosphatase
AF0395 20 38 30 30 1 2 NADH oxidase

AF0409 81 162 92 144 13 12 LL-diaminopimelate 
aminotransferase

AF0411 36 17 25 25 2 1 cysteinyl-tRNA synthetase
AF0435 23 19 17 12 2 3 enoyl-CoA hydratase
AF0444 20 25 33 26 5 6 phosphoglycolate phosphatase
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AF0461 13 9 15 12 1 3 Sam Hydroxide 
Adenosyltransferase

AF0480 15 31 25 19 5 4 fuculose-1-phosphate aldolase
AF0508 76 79 99 215 11 15 pyridoxal biosynthesis lyase PdxS 7

AF0509 33 43 49 35 6 8 glutamine amidotransferase 
subunit PdxT 7

* AF0510 23 15 12 28 27 16 putative permease 7

AF0529 5 15 12 8 1 1 transcriptional regulator TrmB

AF0550 19 9 12 22 2 3 N-ethylammeline chlorohydrolase

AF0555 79 69 169 69 19 17 Peroxiredoxin family protein 8

AF0556 12 14 21 12 1 2 SirA family protein 8

AF0557 89 84 133 183 3 3 fl avoprotein reductase 8

* AF0558 65 61 135 98 23 34 unknown function 8

* AF0563 2 2 1 2 2 2 DsrE family protein 9

AF0564 69 103 65 95 9 2 class-V aminotransferase 9

AF0565 39 75 59 51 4 5 nifU protein 9

* AF0566 116 212 191 164 43 39 XRE family transcriptional 
regulator 9

AF0588 20 14 16 17 4 3 7-cyano-7-deazaguanine 
tRNA-ribosyltransferase

AF0590 50 37 40 38 5 9 ATP phosphoribosyltransferase

AF0628 89 62 68 77 5 7
multifunctional 3-isopropylmalate 
dehydrogenase/D-malate 
dehydrogenase

AF0632 13 14 12 6 1 1 nifU protein

AF0651 9 9 10 8 2 2 AsnC-type transcription regulator

AF0656 32 39 37 41 8 5 antibiotic maturation protein

AF0665 5 13 4 5 1 1 O-sialoglycoprotein 
endopeptidase

AF0713 27 16 22 20 3 3
phosphoribosylformimino-5-
aminoimidazole carboxamide 
ribotide isomerase

AF0728 28 38 35 41 1 1 cobalt transport protein CbiM 10

* AF0729 1 1 1 1 1 1 cobalt transport protein CbiN 10

AF0730 11 20 24 9 2 3 cobalt transporter 10
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* AF0731 22 51 67 80 11 14 cobalt ABC transporter 
ATP-binding protein

10

* AF0732 23 29 56 15 6 4 cobalamin biosynthesis 
precorrin-8W decarboxylase

10

AF0802 13 18 17 8 1 2 unknown function

AF0822 8 14 6 17 1 1 branched-chain amino acid ABC 
transporter ATP-binding protein

AF0851 38 18 14 25 3 1 carbohydrate kinase 

AF0887 19 17 23 32 2 2 ribose ABC transporter 
ATP-binding protein

AF0901 4 5 5 4 1 1 NTPase

AF0917 5 6 6 6 1 1 2-phospho-L-lactate transferase

* AF0930 1 9 8 7 1 1 molybdenum cofactor 
biosynthesis protein A 11

AF0931 24 25 22 15 3 1

molybdopterin biosynthesis 
protein MoeA/LysR substrate 
binding-domain-containing 
protein

11

AF0933 73 75 40 81 8 10 branched-chain amino acid 
aminotransferase 12

* AF0934 3 4 2 1 6 4 amino acid-binding ACT domain-
containing protein 12

* AF0935 6 5 6 7 1 2 homoserine dehydrogenase 12

AF0936 24 37 31 26 5 3 peptidase A24B, FlaK domain 
protein 12

AF0942 12 9 12 11 1 1 stationary phase survival protein 
SurE

AF0957 31 22 22 25 4 2 2-isopropylmalate synthase

* AF0958 11 13 5 7 3 2 branched-chain amino acid ABC 
transporter ATP-binding protein 13

* AF0959 5 7 8 8 2 1 branched-chain amino acid ABC 
transporter ATP-binding protein 13

* AF0960 1 3 4 6 1 2 branched-chain amino acid ABC 
transporter permease

13

* AF0961 13 5 9 11 6 8 branched-chain amino acid ABC 
transporter permease

13

* AF0962 15 22 22 54 8 7
branched-chain amino acid ABC 
transporter substrate-binding 
protein

13
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* AF0963 7 6 22 5 1 2 enoyl-CoA hydratase 13

AF0964 14 14 13 12 1 1 acyl-CoA dehydrogenase 13

* AF0965 19 14 24 21 5 13 putative nucleic-acid-binding 
protein containing a Zn-ribbon

13

* AF0966 18 30 35 38 3 8 protein associated with 
acetyl-CoA C-acyltransferase

13

AF0967 50 35 50 74 4 10 acetyl-CoA acetyltransferase 13

* AF0968 32 21 27 45 2 10 acetyl-CoA acetyltransferase 13

AF0976 7 14 7 8 1 1 acetyl-CoA synthetase

AF0997 11 6 6 11 1 1 N-ethylammeline chlorohydrolase

AF1030 48 39 30 45 4 2 bipolar helicase 

AF1046 4 11 8 5 1 1 PAS sensor protein

AF1097 36 28 31 27 2 3 mannose-6-phosphate isomerase

AF1099 17 19 28 25 2 2 fumarate hydratase

AF1125 12 18 9 21 3 1 heme biosynthesis protein (nirJ-1)

AF1132 39 29 30 29 9 9 phosphopyruvate hydratase

AF1146 70 60 33 45 9 6 3-phosphoglycerate kinase

AF1157 191 89 110 103 25 18 phosphoribosylamine-glycine 
ligase

AF1186 12 11 7 11 1 1 inosine-5’-monophosphate 
dehydrogenase-like protein VIII

AF1265 40 38 66 92 11 11 metal-dependent hydrolase

AF1277 20 17 15 14 1 3 glutamine amidotransferase

AF1290 13 17 25 17 1 3 cobalamin adenosyltransferase

AF1293 19 48 31 34 1 2 acyl-CoA dehydrogenase

AF1316 60 54 42 104 10 7 threonine synthase

AF1336 4 6 4 4 1 1 cobalamin biosynthesis protein

AF1343 22 17 26 13 4 4 beta-lactamase domain protein

AF1354 115 192 169 208 18 20 DSBA oxidoreductase 

AF1368 11 14 11 12 3 3 hydrogenase expression/
formation protein (hypB)

AF1400 11 13 20 14 1 1 adenosylcobinamide 
amidohydrolase, putative

AF1446 30 32 30 42 10 10 unknown function
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AF1452 17 9 14 11 1 2 signal-transducing histidine 
kinase

AF1489 52 68 46 55 13 9 indolepyruvate ferredoxin 
oxidoreductase subunit alpha

AF1494 28 22 30 17 3 3 glucose-6-phosphate isomerase 

AF1504 34 36 52 28 6 6 unknown function

AF1523 7 8 11 4 1 1 unknown function

AF1535 30 35 30 23 3 4 ferredoxin-thioredoxin reductase 
catalytic subunit

AF1536 37 35 39 25 4 4 glutaredoxin

AF1554 61 75 79 58 11 14 thioredoxin reductase

AF1644 5 6 7 6 1 1 tungsten formylmethanofuran 
dehydrogenase subunit F

AF1647 18 18 17 12 1 1 nitrilase/cyanide hydratase and 
apolipoprotein N-acyltransferase

AF1650 41 35 45 69 6 8 tungsten formylmethanofuran 
dehydrogenase subunit B

AF1671 51 101 84 131 9 9 coenzyme F390 synthetase

* AF1692 5 4 6 6 1 1 endonuclease III

AF1724 7 18 7 21 1 2 dinitrogenase reductase activating 
glycohydrolase

AF1732 212 284 159 223 53 52 glyceraldehyde-3-phosphate 
dehydrogenase

AF1736 32 32 27 70 5 4 3-hydroxy-3-methylglutaryl-
coenzyme A reductase

AF1751 16 11 19 42 3 2 cofactor-independent 
phosphoglycerate mutase

AF1764 9 19 13 16 3 3 dCMP deaminase

AF1958 10 11 7 21 1 1 2-hydroxyglutaryl-CoA 
dehydratase subunit alpha

AF1963 74 108 78 112 18 15 aconitase

AF1965 10 23 28 17 2 1 Holliday junction-type resolvase 

AF1985 116 77 98 107 18 20 ketol-acid reductoisomerase

AF2000 52 41 41 58 11 9 S-adenosyl-L-homocysteine 
hydrolase

AF2021 165 151 156 159 25 28 rod shape-determining protein 
MreB
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AF2035 23 13 17 19 2 1 seryl-tRNA synthetase

AF2049 7 9 8 9 2 1 polynucleotide 
5’-hydroxyl-kinase 

AF2062 17 8 7 11 1 1 signal recognition particle 
receptor

AF2065 48 46 41 41 9 10 translation initiation factor IF-6

AF2074 28 28 42 23 5 7 thiamine phosphate 
pyrophosphorylase

AF2093 35 55 45 81 6 6 unknown function

AF2153 9 7 9 11 2 2 metal dependent hydrolase

AF2185 40 41 37 40 10 8 succinyl-CoA synthetase subunit 
alpha

AF2186 44 35 27 47 4 5 succinyl-CoA synthetase subunit 
beta

AF2191 12 15 15 9 3 3 CcmE/CycJ protein

AF2200 12 16 19 16 1 2 mutator protein MutT

AF2211 16 22 36 23 5 5 HIT family protein

AF2255 241 307 155 201 45 36 alanyl-tRNA synthetase

AF2256 8 10 7 6 1 1 F420-dependent oxidoreductase 

AF2265 17 20 19 13 4 4 imidazoleglycerol phosphate 
synthase subunit H

AF2268 28 33 27 17 2 4 acetoacetate decarboxylase-like 
protein

AF2290 43 37 22 26 6 4 acetylpolyamine aminohydrolase

AF2314 9 15 26 14 3 3 methylated DNA protein cysteine 
methyltransferase

AF2317 9 12 12 12 1 1 ribonuclease P protein component 
3

AF2325 9 7 7 6 1 1 unknown function

AF2366 16 21 25 27 5 5 aspartate aminotransferase

AF2372 10 16 9 9 1 2 extragenic suppressor (suhB)

AF2381 14 17 19 17 2 4 iron-sulfur cluster binding protein

AF2384 1305 1392 1703 2154 349 190 molybdopterin oxidoreductase 
(mo-binding subunit)

14

AF2385 169 315 307 371 37 38 molybdopterin oxidoreductase 
(Fe-S binding subunit)

14
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* AF2386 24 40 34 48 9 8 molybdopterin oxidoreductase 
(membrane-subunit)

14

AF2388 23 48 31 33 4 7 cation diffusion facilitator family 
transporter

AF2410 51 57 40 59 12 7 unknown function

Table S4: Gibbs free energy changes under standard conditions (ΔG0’) for the complete oxidation of 
lactate coupled to the reduction of sulfate (1), chlorate (2) and perchlorate (3).

 (1) 2lactate- + 3SO4
2-   →     6HCO3

-  + 3HS-  + H+ ΔG0’ = -255 kJ/reaction
 (2) 1lactate- + 2ClO3

-   →     3HCO3
-  + 2Cl-  + 2H+ ΔG0’ = -1578 kJ/reaction

 (3) 2lactate- + 3ClO4
-   →     6HCO3

-  + 3Cl-  + 4H+ ΔG0’ = -3013 kJ/reaction

The differences in free energy releases between perchlorate-, chlorate- and sulfate-reduction coupled to 
complete lactate oxidation. However, in the current study the accumulation of end products was observed 
under all three conditions (acetate, formate). The amount of lactate oxidized and the formation of fermentation 
products during (per)chlorate reduction varied among different experiments (Fig. 1 and Table S1). These 
differences in stoichiometry may be caused by the redox stress or the involvement of sulfur compounds in the 
(per)chlorate reduction of A. fulgidus (Fig. 2).
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ABSTRACT

The recent fi nding that Archaeoglobus fulgidus is able to couple (per)chlorate 
reduction to growth expanded this trait to the hyperthermophilic range of 
life. This sulfate-reducing archaeon is considered to be one of the major 

contributors to souring in hot oil reservoirs. Therefore, it is important to study its 
physiology in depth, particularly in view of novel souring mitigation strategies. A. 
fulgidus does not possess the classical (per)chlorate reduction pathway, as it lacks 
the key enzyme chlorite dismutase. The microorganism rather seems to couple 
(per)chlorate reduction to sulfur metabolism. Growth experiments show the strict 
necessity of sulfur compounds to sustain perchlorate reduction. Furthermore, the 
chemical formation of elemental sulfur was observed during perchlorate reduction, 
a compound that is biologically reduced again. Additional experiments showed 
that tetrathionate, but not elemental sulfur and polysulfi de, serve as electron 
acceptor for growth by A. fulgidus. Taken together these results provide further 
evidence for the importance of chemical and biological redox reactions involving 
sulfur compounds during (per)chlorate reduction. In non-reduced media also 
nitrate could be reduced by A. fulgidus, although this was not coupled to growth. 
This observation and the fact that A. fulgidus had prolonged adaptation phases 
on sulfate after long-lasting growth on perchlorate are interesting aspects for the 
development of new souring mitigation strategies using nitrate and/or (per)chlorate.

Keywords: (per)chlorate reduction, oil reservoirs, souring mitigation, Archaeoglobus, 
elemental sulfur, nitrate 
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INTRODUCTION

Microbial reservoir souring is caused by the formation of sulfi de by sulfate-reducing 
prokaryotes (SRP) that are indigenous to oil reservoirs or were introduced during 
secondary oil recovery processes. Sulfi de formation is associated with a set of 
negative effects (such as metal precipitation, corrosion, toxicity, H2S-containing 
export gas and crude, etc.) that lead to rising production costs during oil recovery (1). 
To avoid or limit the detrimental impact of reservoir souring, various mitigation 
strategies are being applied in the oil industry. Sulfate removal from injection water 
is up until now probably the most effective method for souring control (provided 
that sulfate is not present in formation water), however, it is not often applied for 
due to high costs associated with the installation and operation and legislation issues 
concerning the disposal of reject streams. A more rarely applied option for souring 
mitigation is the extensive dosing of biocides, as its effect (deeper) in the reservoir 
is debated. 
The most successfully applied strategy for souring mitigation in oil reservoirs is the 
dosage of nitrate to the injection water, a treatment that affects souring in different 
ways (2): a) heterotrophic nitrate-reducing prokaryotes (hNRP) outcompete SRP for 
available electron donors (3), b) inhibition of sulfi te reductase by nitrite (4, 5) and 
c) sulfi de removal by autotrophic NRP that couple nitrate reduction to the oxidation 
of sulfi de (6). Mitigation through nitrate injection, however, is considered to be 
challenging in low temperature reservoirs where it might not be able to prevent 
the development of a sulfi de-generating community deeper in the reservoir (7). 
Similarly, a zone of sulfi de-generating hyperthermophiles might develop in the 
cold to hot transition zone around the injector well bore of hot oil reservoirs, in 
case hyperthermophilic nitrate reducers are missing. To our knowledge no nitrate-
reducing microorganisms have been isolated from oil fi elds so far that could grow 
beyond 80°C, possibly enabling a niche for hyperthermophilic SRP to persist 
even when nitrate is present. For this reason dosing of nitrite may be an effi cient 
strategy (8), because it directly inhibits SRP on an enzymatic level. However, the 
high chemical reactivity and potential formation of corrosive elemental sulfur upon 
sulfi de exposure are drawbacks of such a strategy. 
Due to the above-mentioned limitations there is a requirement to develop additional 
strategies for improved souring control in oil reservoirs. The microbial reduction 
of perchlorate (ClO4

-) and chlorate (ClO3
-) [together termed “(per)chlorate”] and in 

this respect their potential impact on microbial sulfi dogenesis is a novel strategy that 
deserves further investigations. 
The diversity of microorganisms that couple (per)chlorate reduction to growth 
is a rather broad. While most representatives are mesophiles from the phylum 
Proteobacteria (9), more recent studies identifi ed (per)chlorate reducers also among 
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the Firmicutes (10, 11) and the archaeal domain of life (12-14). The common 
mechanism of perchlorate reduction follows a three-step enzymatic cascade 
employing two enzymes, perchlorate reductase (Pcr) and chlorite dismutase (Cld) 
(15). Chlorite dismutase is regarded to be the key enzyme for biological (per)
chlorate reduction, catalyzing the reaction: ClO2

- → Cl- + O2, and thereby avoiding 
the accumulation of highly toxic chlorite (ClO2

-). Some bacteria lack the ability to 
reduce perchlorate but are able to reduce chlorate due to the action of a chlorate 
reductase (Clr). Although Pcr and Clr share some biochemical characteristics they 
have a different evolutionary history (16). 
(Per)chlorate reduction by Archaeoglobus fulgidus seems to follow an alternative 
pathway. In A. fulgidus the absence of a chlorite-disproportionating enzyme (Cld) is 
likely overcome by the highly reduced environment, which the archaeon requires for 
growth and which is characteristic for subsurface environments like oil reservoirs. 
Earlier conducted proteome analyses already indicated that sulfur compounds may 
play an important role in (per)chlorate reduction by A. fulgidus (12). 
Archaeoglobus spp. are archaeal microorganisms that are ubiquitously found in hot 
oil reservoirs, where they are considered to be major contributors to reservoir souring 
by sulfate reduction (17-19). The observation that A. fulgidus is able to couple the 
reduction of (per)chlorate extended this trait to the hyperthermophilic range of life 
(12). This fi nding may have implications for the development of novel souring 
mitigation strategies. The effect of (per)chlorate on the microbial communities of 
oil fi elds is unknown. Physiological and molecular studies would be required to 
evaluate the potential of (per)chlorate for souring mitigation (similar to nitrate). In 
the current study we describe the interplay of (per)chlorate and sulfur metabolism in 
A. fulgidus. The results are discussed in an integrative way and interpreted in view of 
a potential future role of (per)chlorate during oil recovery processes.

MATERIALS AND METHODS

Strain, cultivation and medium
The hyperthermophilic archaeon Archaeoglobus fulgidus VC-16 (20) was purchased 
from the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmBH 
(DSMZ, Braunschweig, Germany). For growth experiments medium DSM 399, 
recommended by DSMZ, was used. The amounts of sodium bicarbonate and sodium 
sulfi de in the medium were slightly modifi ed compared to the reference (fi nal 
concentration of NaHCO3 was 4 g l-1 and Na2S.9 H2O was 0.3 g l-1). Additionally, 
the trace element solution was supplemented with 3 mg l-1 Na2WO4. Sodium sulfi de, 
sodium bicarbonate and electron donors and acceptors were added from sterile stock 
solutions to the medium after autoclaving. The pH of the medium was set to 6.5 (at 
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80°C, which was the incubation temperature for all experimental set-ups). Growth 
experiments were performed in 120 ml butyl-rubber stoppered serum bottles, 
containing 50 ml medium and a N2/CO2 (80:20; v/v) gas atmosphere of 1.5 bar. 
Experiments were performed in duplicates (n=2) and inoculated with 0.5 ml of fully 
grown cultures, unless stated otherwise. For standard growth conditions 20 mM 
sodium lactate and 5 or 10 mM electron acceptor (sodium perchlorate or sodium 
sulfate) were used. Additionally, sodium nitrate (5 mM), chemical elemental sulfur 
(4 g l-1), potassium polysulfi de (Acros Organics; 0.5 g l-1) and potassium tetrathionate 
(5 mM) were tested as potential electron acceptors, together with lactate. The last two 
were tested without any further addition of sodium sulfi de to the medium as reducing 
agent. Reduced conditions in the medium were visualized by resazurin and where 
indicated also measured by a redox electrode (Qis, Oosterhout, The Netherlands).
The trial monitoring the chemical reactivity of selected chemicals was performed 
in a water bath, using serum bottles containing sodium chlorite (10 mM) or sodium 
nitrite (10 mM) in anaerobic sodium phosphate buffer (50 mM, pH 6.5 at 80°C), 
with a headspace atmosphere of pure N2. The following chemicals were tested for 
their reactivity towards one (or both) of the oxyanions, by injecting the respective 
concentrations twice: FeS (2 mM), FeCl2 (2 mM), MnCl2 (2 mM), Na2S2O3 (2 mM), 
crude oil (1%), humic acid (Na-salt; 0.4%) and Na2S (2 mM). FeS was produced 
by adding excessive amounts of FeCl2 (1 M) to a stock of Na2S (200 mM). After 
the chemical precipitation was completed, FeS was pelleted, washed (2x) and 
resuspended in anaerobic water. These steps were performed in an anaerobic tent.

Chromatographic analyses
Oxyanions were measured on a HPLC equipped with an Ion Pac AS22 column 
(4x250 mm), using an ED 40 electrochemical detector (Dionex, Sunnyvale, CA). 
The eluent was carbonate-bicarbonate buffer (1.29 g l-1 Na2CO3.10 H2O and 0.12 
g l-1 NaHCO3) and the analyses were conducted with a fl ow rate of 1.2 ml min-1 at 
35°C. Sodium iodide (NaI) was used as an internal standard (except in the trial which 
followed the abiotic reactivity of selected chemicals with chlorite/nitrite).
Lactate and fatty acids were analyzed on a HPLC system using a Varian column 
(MetaCarb 87H Guard 4.6x50 mm, Middelburg, The Netherlands). Both, a UV and 
Refractive Index (RI) detector were used. The eluent contained sulfuric acid at a 
concentration of 10 mM and L-arabinose was used as internal standard. The analyses 
were performed at 30°C with a fl ow rate of 0.8 ml min-1. All chromatographically 
generated data was later analyzed by the software ChromQuest.

Elemental sulfur and sulfi de analyses
Aliquots of 1 ml medium suspension were centrifuged and washed with deionized 
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water. The fi nal pellet was resuspended in acetone and left for extraction overnight. 
The analysis of elemental sulfur (S0) was based on the method described by Sörbo 
(21); for the calibration concentrations of 25-300 μM chemical S0 in acetone were 
used.
Sulfi de in the medium was determined with the methylene blue method (22). 
Aliquots were injected (1:1) into a ZnCl2 solution (5% w/v) in order to precipitate 
sulfi de. After waiting 20 minutes the samples were put at 4°C and analyzed at the end 
of the experiment. The photometric quantifi cation was performed with the Merck 
Spectroquant® Multy at 670 nm.

Biomass production
The growth yield was determined by evaluating the protein content in the medium. 
Cell-free extracts of frozen culture aliquots were produced by disrupting cells with 
ultra-sonication (5 times 30 sec sonication at 40 kHz followed by 30 sec pause; on 
ice).
The protein content was determined by a Bradford assay using bovine serum 
albumin standards (23). Due to potential interferences with elemental sulfur direct 
OD measurements were abandoned as growth indicator.

RESULTS AND DISCUSSION

Chemical reduction of periplasmic chlorite by sulfi de
The presence of the enzyme chlorite dismutase is of crucial importance for (per)
chlorate-respiring bacteria (9, 24). It was proposed that the lack of this enzyme in the 
(per)chlorate-reducing hyperthermophile A. fulgidus is compensated by the chemical 
elimination of chlorite with sulfi de, allowing continuous (per)chlorate reduction 
(12). In this study the requirement of sulfi de by A. fulgidus to perform (per)chlorate 
reduction was investigated in a medium where excess sulfi de (used as reducing agent 
in the medium) was completely eliminated by precipitation with ferrous iron (Fig. 
1A-C). By this treatment the redox potential remained at the same level as compared 
to a medium with dissolved sulfi de (mainly present as HS-) (both ca. -240 mV at the 
start), providing optimal circumstances for activity and growth of A. fulgidus. 
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Figure 1: The activity of A. fulgidus on A) sulfate (circles) B) perchlorate (triangles) C) sulfate/
perchlorate after removal of the excess of sulfi de added as reducing agent by precipitation with Fe(II) 
(added as FeCl2; 10 mM). D) Perchlorate reduction in the presence of dissolved sulfi de, omitting FeCl2 
addition (positive control). Lactate was present in excessive concentrations (20 mM) as electron donor. 
The redox potential (dashed lines) was followed by a redox electrode. Panels A-C: n=2, means ± range 
(bars); Panel D: n=1.

The effect of this treatment on the utilization of sulfate (Fig. 1A) and perchlorate 
(Fig. 1B) was monitored. The results show that A. fulgidus was not able to reduce 
perchlorate anymore, whenever sulfi de was removed by precipitation as FeS (Fig. 
1B). Contrarily, the precipitation of sulfi de did not result in any negative effect on 
sulfate reduction by A. fulgidus (Fig. 1A). The lowered availability of sulfi de as 
an ubiquitous reagent for the chemical reduction of chlorite inhibited perchlorate 
reduction right after its start as indicated by an initial increase of the redox potential 
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(Fig. 1B). Unaltered “fi tness” of sulfate reduction with precipitated sulfi de points to 
the important role that sulfi de plays (as chlorite scavenger) only during perchlorate 
reduction. Whenever sulfate and perchlorate were offered together (Fig. 1C) sulfate 
reduction proceeded unrestrained, while perchlorate was gradually reduced. Most 
likely due to the biological formation of sulfi de in the cytoplasm and its cellular 
proximity to the (per)chlorate-reducing enzyme in the periplasm, sulfi de is partially 
available to react with chlorite before precipitating with ferrous iron outside the cell. 
This enables perchlorate reduction to some extent. Under standard conditions where 
sulfi de is in excess in the medium (per)chlorate reduction rates are several times 
higher than illustrated in Fig. 1C (compare with Fig. 1D). 

Biological reduction of S0 and tetrathionate, closing the “sulfur loop”
In case sulfi de is present during (per)chlorate reduction oxidized sulfur compounds 
are formed by the reduction of chlorite. This was indirectly demonstrated in a 
previous study by proteome analyses (12), but it is now also illustrated by growth 
studies comparing sulfate- and perchlorate-reducing conditions where the formation 
of elemental sulfur (S0) was followed (Fig. 2). 

Figure 2: A. fulgidus growing on A) perchlorate (triangles) or B) sulfate (circles), together with lactate 
(excessive concentrations; squares). Diamonds with dashed lines represent the concentrations of 
elemental sulfur and are plotted against the secondary y-axis. n=2, means ± range (bars).

Elemental sulfur was formed up to 160 μM (equates to ca. 13% of total sulfur) 
during perchlorate reduction and got reduced again after perchlorate was depleted. 
The biological reduction of elemental sulfur to sulfi de probably occurred already 
from the beginning of the experiment and prevented an even more pronounced 
accumulation of elemental sulfur in the medium than observed (compare Fig. 2A and 
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B). The reduction of elemental sulfur recycles reducing power required to remove 
the continuously formed chlorite and thereby drives (per)chlorate reduction (Fig. 3).

Figure 3: A) Interplay of (per)chlorate reduction and the sulfur metabolism of A. fulgidus and B) the 
inhibition of (per)chlorate reduction in the absence of sulfi de (precipitated by ferrous iron).

However, while the reduction of elemental sulfur was observed, growth of A. 
fulgidus with S0 or polysulfi de as electron acceptor did not occur, confi rming earlier 
observations (20). The chemical nature and bioavailability of externally added 
sulfur in aqueous solutions depends on several factors and may thus have restricted 
its utilization (25). Tetrathionate on the other hand was used as terminal electron 
acceptor for growth by A. fulgidus promoting growth (Table 1).

Table 1: The reduction of tetrathionate (5 mM) by A. fulgidus coupled to growth, followed by the 
formation of sulfi de, oxidation of lactate and growth (represented by the protein content). The biological 
control (where tetrathionate was omitted) did not show any activity or growth. -, not detected; the 
inoculum (0.25%) derived from a culture grown on tetrathionate and lactate; n=2, means ± range.

Time

Condition Parameters 0 days 2 days 4 days

Tetrathionate Sulfi de (mM) - 4.8 ± 2.6 8.5 ± 0.8

added (5mM) Lactate (mM) 19.7 ± 0.4 13. 1 ± 3.0 6.8 ± 0.4

Protein content (mg l-1) - 43.6 ± 34.9 66.6 ± 1.3

Tetrathionate Sulfi de (mM) - - -

omitted Lactate (mM) 19.7 ± 0.4 18.5 ± 0.3 18.7 ± 0.2

Protein content (mg l-1) - - -
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The ability of A. fulgidus to utilize sulfur and polythionates (or more specifi cally 
tetrathionate) was suggested earlier by proteomic data (Chapter 3), but it was not 
proven experimentally yet. The several fold higher expression of complexes related 
to tetrathionate reductase (AF0157-0159) and S0/polysulfi de reductase (AF2384-
2386) of A. fulgidus grown on (per)chlorate was indicative for the involvement of 
sulfur compounds in (per)chlorate reduction (12). The reduction of oxidized sulfur 
compounds may even be the primary source of energy generation by A. fulgidus 
growing on (per)chlorate. 
Taken together the chemical oxidation and biological reduction of sulfur during (per)
chlorate reduction a closed intraspecies “biotic/abiotic sulfur loop” is established. 
Next to the sulfur fractions monitored in this study, other sulfur compounds may be 
formed (26) during (per)chlorate reduction that are relevant for this loop (Fig. 3).

Alternative chlorite scavengers 
The presence of sulfi de is a common characteristic in the natural environments of 
A. fulgidus and is also required for growth in the culture medium. The chemical 
reactivity of chlorite with reduced sulfur compounds is known (26, 27). However, in 
the environment compounds other than sulfi de may also act as effi cient scavengers 
for the reduction and detoxifi cation of chlorite. Potential candidates may be ferrous 
iron or manganese(II) or organic compounds that are present in the environment of 
A. fulgidus, such as hydrocarbons (28, 29).

Figure 4: Chemical reactivity of chlorite (left and upper right panel) or nitrite (lower right panel) 
with selected chemicals (in anaerobic aqueous solution, 50 mM phosphate; pH = 6.5; 80°C); (no 
microorganisms were added). Arrows indicate the injection of the respective chemicals (each time 2 
mM). means, n=2.
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A chemical trial was performed to identify substances that have a high reactivity with 
chlorite and might thus enable (per)chlorate reduction in A. fulgidus via scavenging 
chlorite (Fig. 4, left and upper right panel). Ferrous iron (FeCl2) showed among 
other chemicals an immediate reaction upon chlorite exposure. This observation 
was also made in other studies where ferrous iron and chlorite reacted to ferric iron 
hydroxides and chloride in a stoichiometry of 4:1, Fe2+:ClO2

- (30). However, the 
chemical reactivity of ferrous iron could not support growth in experiments with 
perchlorate (Fig. 1B). The concentration of dissolved ferrous iron in the medium 
(after sulfi de precipitation) would have been suffi cient for the conversion of at least 2 
mM of chlorite (taking the above given stoichiometry into account). Probably ferrous 
iron, (in case present in dissolved form as ferrous chloride) reacts with chlorite, 
but causes a locally restricted (periplasmic) increase of redox potential (Fig. 1B) 
that leads to a stop of the (per)chlorate-reducing metabolism and growth. This is 
prevented by the archaeon, in case sulfi de is present (Fig. 1D) or generated (Fig. 1C). 
Then, the emerging oxidized sulfur compounds (SxOy

z-) may get formed in relative 
proximity to periplasmic molybdo-enzymes that utilize them promptly and thus 
regenerate sulfi de (12). Another reason may be that the energy production during 
(per)chlorate reduction is mainly based on the reduction of therefrom (chemically) 
generated SxOy

z- compounds.
The chemical trial would furthermore suggest ferrous sulfi de (FeS) as good candidate 
for a quick elimination of chlorite. FeS gets quickly oxidized whenever chlorite 
is provided in excess (Fig. 4, left panel), however biologically formed chlorite is 
present at low concentrations in the periplasm where it is hardly accessible for 
precipitated FeS. Also thiosulfate was tested and showed a quick reactivity with 
chlorite. The hereupon tested substitution of sulfi de with thiosulfate in the medium 
(10 mM; omitting any other reducing agent) was also able to initiate (per)chlorate 
reduction with A. fulgidus.
Manganese(II)chloride (MnCl2) seemed to react with chlorite, but at lower rates, 
whereas crude oil and humic acid were not reactive at all with chlorite (Fig. 4, left 
and upper right panel). 

Nitrate reduction and accumulation of nitrite
Growth of A. fulgidus with nitrate as electron acceptor has until now not been 
reported (31, 32). However, in the current study it was observed that when sulfi de 
was completely omitted from the growth medium inoculated with a perchlorate 
pre-grown culture, nitrate was reduced, partially accumulating nitrite (Fig. 5B) and 
forming acetate and formate from lactate.
In incubations with sulfi de-amended medium reduction of nitrate did not occur, 
neither was it observed in earlier conducted methylviologen-based enzyme assays 
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using dithionite as reducing agent (12). It is possible that nitrate reduction is catalyzed 
by the same enzyme that reduces (per)chlorate in A. fulgidus (AF0174-0176). This 
enzyme was studied because of its resemblance with respiratory Nar-type reductases 
(33, 34). The inability of A. fulgidus to reduce nitrate in the presence of sulfi de 
(Fig. 5A) might be related to the low and thus unfavorable redox conditions. Nitrate 
reduction is a process that takes place at a high redox potential, which might not be 
compatible with the metabolism of a strictly anaerobic microorganism like A. fulgidus 
and consequently not result in growth (compare protein concentrations in Fig. 5 with 
Table 1). However, (per)chlorate reduction, a metabolism with comparable redox 
chemistry as nitrate reduction (35, 36) is coupled to growth. This seems to be possible 
due to the “sulfur-based loop”, a mechanism that may theoretically be coupled to 
nitrate reduction as well, but has not been observed. Potentially formed nitrite (by 
nitrate reduction) could then react chemically with sulfi de, forming elemental sulfur 
(or polysulfi de) and ammonium (37). However, this reaction seems to be slower than 
the one between chlorite with sulfi de resulting in more long-lasting unfavorable high 
redox conditions due to the accumulation of nitrite when exposed to nitrate (compare 
Fig. 4, lower right panel with Fig. S3 in Chapter 3). In the genome of A. fulgidus 
a putative assimilatory nitrite reductase (AF0164) is encoded, but its biochemical 
functionality has never been demonstrated (38). In the experimental set-up exposing 
A. fulgidus cells to nitrate, a substantial amount of nitrite accumulated in the medium 
(Fig. 5B). 

Figure 5: Archaeoglobus fulgidus exposed to nitrate as potential electron acceptor (together with 
excessive concentrations of lactate) under A) standard growth conditions, reducing the medium with 
sulfi de (1.25 mM) and B) anaerobic conditions omitting sulfi de. The inoculum derived from a culture 
grown on perchlorate and lactate. n=2, means ± range (bars).
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Nitrate has been successfully used for the mitigation of souring in oil fi elds (2). In 
a former study with thermophilic isolates from produced water of a petroleum fi eld, 
strains related to Thermodesulforhabdus norvegicus and A. fulgidus did not show 
any inhibition in terms of sulfi de formation upon nitrate injection. However, nitrite 
strongly inhibited the microorganisms (8). 
The fi nding that A. fulgidus is able to reduce nitrate to nitrite, in addition to (per)
chlorate, is particularly interesting in view of souring mitigation.

Changing electron acceptor conditions
The activity of perchlorate-reducing A. fulgidus cultures shown in this study was 
obtained after several subsequent transfers to perchlorate. The simultaneous exposure 
of (per)chlorate-adapted cultures to (per)chlorate and sulfate indicated a change in 
the microorganism’s sulfate reduction capabilities (12). When perchlorate-adapted 
cultures of A. fulgidus were transferred back solely to sulfate as electron acceptor, a 
clear lag-phase was observed (Fig. 6, lower row); this was in comparison to transfers 
to medium containing perchlorate only (Fig. 6, upper row).

Figure 6: Electron acceptor utilization of A. fulgidus under sulfate- (lower panel) and perchlorate-
reducing (upper panel) conditions (coupled to lactate; offered in excess). The arrows indicate where 
inocula (1%) for next generations of cultures derived from. The culture that was used as source for 
starting the experiment had been transferred for multiple times to fresh medium containing perchlorate 
only (ca. 10 generations). n=2, means ± range (bars).
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It took three to four subsequent transfers on sulfate (each taking at least a week) 
before the sulfate-reducing capacity of A. fulgidus was restored to a level that was 
common for sulfate-adapted cultures (Fig. 6, lower row). Interestingly, the degree of 
perchlorate reduction after these repeated transfers on sulfate did not decline (Fig. 
6, upper row). Such observations (though not made in a continuous system) are 
important for souring mitigation. It may prevent an immediate re-activation of sulfate 
reduction after an (unintended) stop of a (per)chlorate treatment (due to e.g. lack of 
injection chemicals, or failing injection pumps), while keeping the microorganisms 
adjusted to (per)chlorate for a subsequent treatment (with shorter conditioning time). 

CONCLUSIONS

It is shown that A. fulgidus requires a “sulfur-based” loop for continuous (per)
chlorate reduction to overcome the lack of a chlorite-disproportionating enzyme. 
The interplay of (per)chlorate reduction and the sulfur metabolism in A. fulgidus 
comprises the chemical formation of oxidized sulfur fractions from the reaction of 
sulfi de with chlorite and the ability of biologically reducing (per)chlorate, elemental 
sulfur and tetrathionate. Depending on the availability of larger or “catalytic” 
amounts of sulfi de, the preferential reduction of (per)chlorate (as demonstrated for 
A. fulgidus;  after adaptation) may not only drain the pool of electron donors (volatile 
acids, hydrocarbons, etc.) and thereby limit sulfi de generation, but could also oxidize 
existing sulfi de to more oxidized sulfur compounds (elemental sulfur, tetrathionate, 
etc.). As a consequence, a signifi cant fraction of sulfur (in case of S0) may be retained 
in the reservoir resulting in produced fl uids and gas containing less sulfi de. In 
situations where sulfi de is completely absent, traces of accumulating chlorite would 
cause cell damage and inhibit the sulfi de-producing microbial community. This study 
also demonstrated that under specifi c conditions, A. fulgidus accumulates nitrite upon 
exposure to nitrate. Nitrite is known as an inhibitor of the sulfi te reductase of SRP. 
Due to their similar structure a comparable effect of nitrite and chlorite would not be 
surprising. Besides, both compounds have a high reactivity and general toxic effect 
when they accumulate in microorganisms. The fi nding that long term exposure to 
perchlorate resulted in prolonged times required for re-adaptation to sulfate, implies 
that temporary downtime of a (per)chlorate injection unit, will not immediately 
allow souring to resume. The long time needed for the prokaryote’s sulfate-reducing 
capability to recover might also provide opportunities to use pulsed-wise dosing 
strategies with (per)chlorate rather than continuous to save chemicals and reduce 
costs. The potential advantage of (per)chlorate-based souring mitigation over nitrate, 
might be that given its direct impact on sulfate reduction (of e.g. A. fulgidus), it 
would probably not rely on the development of a separate (per)chlorate-reducing 
community that would need to compete for exactly the same electron donors with 
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the sulfate-reducing community as it is often the case for nitrate. Costs for use of 
(per)chlorate are expected to be comparable to those of nitrate, and signifi cantly 
lower than costs for sulfate removal. Summarizing, the use of (per)chlorate might 
thus access groups of microorganisms and conditions where nitrate treatments might 
be less effi cient. In hot oil reservoirs, where also A. fulgidus is commonly found, 
nitrate-based mitigation of souring may be challenging in case hyperthermophilic 
nitrate reducers are missing. The combined or alternating use of (per)chlorate and 
nitrate could (for instance in presence of A. fulgidus) lead to an in-situ formation 
and release of nitrite or chlorite to the oil fi eld, affecting adjacent microorganisms 
as well. As such, strategies combining effects of nitrate, (per)chlorate and possibly 
also biocides may increase the effectiveness of souring mitigation treatments in 
future. This also seems a promising strategy for breaking microbial zonations after 
continuous nitrate dosing in reservoirs of lower temperatures and would promote 
the dispersal and effectiveness of the treatment beyond the near well-bore zone (7).
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ABSTRACT

Classical microbial perchlorate reduction is based on the enzymes, 
perchlorate reductase, reducing perchlorate to chlorite and chlorite 
dismutase, disproportionating chlorite to chloride and oxygen. 

Acetate is a common substrate for perchlorate-reducing bacteria, but thus far no 
thermophilic microorganisms have been described that grow with acetate and 
perchlorate or chlorate. We enriched a thermophilic microbial consortium from a 
hydrocarbon-polluted soil that grows with acetate and perchlorate. Perchlorate was 
completely reduced to chloride by the thermophilic consortium. The presence of sulfi de 
was a critical prerequisite for growth of the culture, in contrast to known mesophilic 
perchlorate-reducing bacteria (such as Dechloromonas agitata). Attempts to obtain 
an axenic perchlorate-reducing culture with acetate failed until now indicating 
a possible syntrophy of the microbes involved. A similar mechanism like the one 
described for Archaeoglobus fuldigus might occur, where chlorite reacts chemically 
with sulfi de, producing chlorite and oxidized species of sulfur. This reaction seems 
to provide electron acceptors for other microorganisms reducing sulfur compounds. 
Sulfi de would consequently be regenerated by latter microorganisms and thus be 
available for chlorite elimination and the continuous reduction of perchlorate based 
on an interspecies “sulfur loop”. This hypothesis was supported by 16S rRNA gene 
clone library analysis where potential perchlorate-, sulfate- and sulfur-reducing 
microorganisms were identifi ed. By its dominant abundance a microorganism that is 
affi liated with the genus Thermanaeromonas, seems to be the best candidate for the 
reduction of perchlorate. 

Keywords: syntrophic perchlorate reduction, high temperature, interspecies “sulfur 
loop”, Thermanaeromonas 
 



101

Microbial perchlorate reduction by a thermophilic consortium using acetate

55

INTRODUCTION

Perchlorate and chlorate [together abbreviated (per)chlorate] have been discussed 
as new agents for biologically based processes in the oil upstream industry, like 
microbial enhanced oil recovery (MEOR) and souring mitigation control (Chapter 
2). 
A large number of facultative anaerobic Gram-negative mesophilic bacteria have 
been described that can use (per)chlorate as terminal acceptor for growth such as 
Dechloromonas agitata and Azospira oryzae strain GR-1 (1, 2). Classical microbial 
perchlorate reduction is based on the enzymes perchlorate reductase, reducing 
perchlorate (via chlorate) to chlorite; and chlorite dismutase, disproportionating 
chlorite to chloride and oxygen (2). Some microorganisms cannot reduce perchlorate 
but only chlorate to chlorite (followed by disproportionation of chlorite) which 
is catalyzed by so-called chlorate reductases (3). The reduction of (per)chlorate 
is coupled to a broad set of inorganic and organic electron donors, where acetate 
represents the most commonly utilized electron donor by (per)chlorate-reducers (4).
Microbial perchlorate reduction at elevated temperatures has up until now only 
been investigated in a few studies. For the respective (hyper)thermophiles it was 
demonstrated that the utilization of substrates like lactate, methanol, fructose and 
formate is coupled to (per)chlorate reduction (5, 6). However, except Archaeoglobus 
fulgidus (also coupling (per)chlorate reduction to butyrate oxidation; Chapter 3) no 
other microorganism has yet been reported to use volatile fatty acids (VFA) such as 
acetate, propionate and butyrate for this metabolism.
Acetate, propionate and butyrate are compounds that accumulate in deep subsurface 
environments such as oil fi elds at elevated temperatures (7, 8). Particularly acetate 
accumulation rises up to concentrations in the mM range; even up to 50 mM in 
produced fl uids from a Venezuelan offshore well at 78°C (9). In contrast to hot oil 
reservoirs, higher biological turnover rates in low and moderately hot oil fi elds 
prevent the accumulation of acetate, propionate and butyrate. These compounds (and 
especially acetate) are ubiquitous in oil reservoirs and represent attractive substrates 
for microbial respiration processes. For the aforementioned applications in the oil 
recovery business addressing MEOR and souring control, processes that rely on 
externally added substrates as little as possible are preferred.
The aim of this work was to explore the potential of acetate as electron donor for 
(per)chlorate reduction at elevated temperature. Enrichments were performed using a 
hydrocarbon-polluted deep soil layer as source of microorganisms. The successfully 
enriched thermophilic perchlorate-reducing consortium was physiologically 
characterized and its microbial diversity determined. 
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MATERIALS AND METHODS

Cultivation and media
The sample used for enrichments was a deep anoxic soil layer (6-10 m depth), taken 
from below the ground water table, of a site polluted with hydrocarbons (BTEX and 
mineral oil) and MtBE (Methyl tert-butyl ether). For initial enrichment cultures, a 
sample 0.5 g (1%; w/v) were transferred to anaerobic medium, contained in rubber 
stoppered 120 ml serum bottles. The headspace of the bottles was fi lled with a N2/
CO2 (80/20; v/v; 1.5 bar) gas atmosphere. The medium used throughout the study 
was bicarbonate/CO2 and phosphate buffered at neutral pH containing yeast extract 
(0.2 g l-1) (10). The only sulfur source in the medium was sulfi de (which was used as 
reducing agent). The medium was routinely supplemented with soil extract, deriving 
from the original substrate (5% v/v), in order to maintain perchlorate-reducing 
activity.
The soil extract was prepared by mixing soil and demi water (5%, w/v) in anoxic 
conditions followed by 2 hours shaking at 200 rpm. After settling by gravitational 
force (1h) the supernatant was autoclaved twice and stored under anoxic conditions 
(with pure N2 gas in the headspace). Due to the partial loss of perchlorate-reducing 
activity in subsequent transfers, sodium sulfi de (1.25 mM) was added to the medium 
as a reducing agent, which could fully recover the initial activity. 
Initial enrichments were set up using chlorate or perchlorate as sole electron acceptor 
(10 mM), together with acetate (10 mM). Electron acceptors and donors were added 
to the medium from sterile anaerobic stocks after autoclaving. 
Experimental set-ups were incubated at 60°C and 30°C. Latter represents ideal 
conditions for most known (per)chlorate-reducing microorganisms (11).

Analysis of metabolites
Oxyanions were analyzed using a HPLC with an Ion Pac AS22 column (4 x 250 
mm), using an ED 40 electrochemical detector (Dionex, Sunnyvale, CA). Carbonate/
bicarbonate buffer (1.29 g l-1 Na2CO3.10 H2O and 0.12 g l-1 NaHCO3) was used as 
eluent with a fl ow of 1.2 ml min-1 and the analysis was performed at 35°C. Pure 
standards (analytical grade) of chloride, nitrate, chlorate and perchlorate were used 
at 2.5; 5; 10 and 20 mM concentrations. Sodium iodide (NaI) was used as internal 
standard in every sample with a fi nal concentration of 2 mM. 
Acetate and potentially formed products were analyzed at a HPLC system using a 
Varian column (MetaCarb 87H Guard 4.6x50 mm, Middelburg, The Netherlands). 
Sulfuric acid was used as eluent at a concentration of 10 mM with a fl ow rate of 
0.8 ml min-1 and the analysis was performed at 30°C. The internal standard was 
L-arabinose at 10 mM. Chromatographic data was analyzed using the software 
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package ChromQuest.
The turbidity in the medium caused by the soil extract did not allow proper monitoring 
of growth by optical density. Thus growth was determined by the protein content of 
cell lysates. Aliquots of 1 ml of culture were disrupted by ultra-sonication (5 times; 
30 sec sonication at 20 kHz followed by 30 sec pause) and centrifuged (10 min, 
16100 g).
The protein content in these supernatants was determined by a commercially available 
Bradford assay using bovine serum albumin as standard (12); concentrations of 0, 
25, 50, 75 and 100 μg ml-1 were used.

Clone library
Cloning of the 16S rRNA gene was performed for the determination of the microbial 
diversity in the enrichment. The total genomic DNA was extracted using the 
FastDNA® SPIN Kit for Soil and the FastPrep® Instrument (MP Biomedicals, 
Santa Ana, CA). The yielded DNA was quantifi ed on a Nanodrop spectrophotometer 
(Nanodrop Technologies, Wilmington, Delaware, USA). 
Bacterial 16S rRNA genes were amplifi ed in triplicate with the primer set 27F-1492R 
(Ta = 57°C) and cloned in Escherichia coli DH5α competent cells using the pGEM-T 
vector (Promega, Madison, WI). The 16S amplifi cation for archaeal 16S rRNA 
genes was performed using the primers 25F-1492R (Ta = 52°C). Next to some 
unspecifi c amplifi cation of short bacterial fragments no archaeal 16S rRNA clones 
were obtained. Positive control PCR reactions were performed with the addition of 
amplifi able reference DNA (e.g. for archaeal PCR DNA of A. fulgidus VC-16) and 
negative controls were done without addition of template. Furthermore control PCR 
reactions were performed on the added soil extract (see “cultivation and media”), and 
consistently yielded no product. Purifi ed PCR products were cloned in Escherichia 
coli DH5α competent cells by using the pGEM-T vector (Promega, Madison, WI) 
according to the manufacturer’s instructions. Plasmid DNA was sequenced using 
a Big-Dye sequencing kit (Applied Biosystems) following the manufacturer´s 
instructions with Sanger sequencing method by GATC (Konstanz, Germany).
DNABaser software 3.5.3 was used to assemble the sequences. Vector sequences 
fl anking the 16S rRNA inserts were identifi ed using VecScreen tool (NCBI) 
(http://www.ncbi.nlm.nih.gov/VecScreen/VecScreen.html) and manually removed. 
Afterwards the sequences were checked for chimeras (http://decipher.cee.wisc.edu/
FindChimeras.html).
The sequence reads were processed by the NGS analysis pipeline of the SILVA 
rRNA gene database project (SILVAngs 1.0) (13, 14). Identical reads were identifi ed, 
the unique reads were clustered (OTUs), and the reference read of each OTU was 
classifi ed phylogenetically. 
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The selected representative sequences of each OTU were added to a database of 
over 230000 homologous prokaryotic 16S rRNA genes using the merging tool of the 
ARB program package (15). Phylogenetic reconstruction was performed in the ARB 
package using three different algorithms and the Neighbor-Joining tree constructed 
using bootstrap analysis. 
The 16S rRNA gene of the mesophilic pure culture was directly amplifi ed from the 
total genomic DNA, followed by PCR using primers 27F and 1492R. 
16S rRNA genes obtained in this study were deposited in the European Nucleotide 
Archive (ENA) under accession numbers LM643753-LM643767. 

RESULTS AND DISCUSSION

Initial enrichments were set up using both chlorate and perchlorate as sole electron 
acceptor and acetate as electron donor, incubated at 30 and 60°C. From these four 
conditions only the mesophilic condition with chlorate and the thermophilic condition 
with perchlorate resulted in microbial activity as indicated by the complete reduction 
of the respective electron acceptor monitored over one month of incubation.

Mesophilic chlorate reduction
The mesophilic culture (30°C), representing the ideal conditions of classical (per)
chlorate-reducing bacteria (16), showed higher activity and led in subsequent 
transfers and dilution series to the isolation of a microorganism (strain ClrAce30) 
affi liated with the genus Pseudomonas (P. chloritidismutans AW-1; coverage 99%, 
identity 99%). Several Pseudomonas strains were demonstrated to grow by chlorate 
reduction before. Strain AW-1 was isolated from an anaerobic bioreactor treating 
chlorate- and bromate-polluted waste streams (17). It was reported to grow by 
the reduction of chlorate or oxygen together with acetate, but lacked the ability to 
reduce perchlorate, nitrate or bromate. Strain AW-1 largely constitutes an archetype 
of mesophilic chlorate-reducing bacteria, which have been investigated over several 
decades (4, 11, 16). Due to the phylogenetic and physiological resemblance with 
these microorganisms no further in-depth investigations were conducted with strain 
ClrAce30.

Thermophilic perchlorate reduction
Initial enrichments of perchlorate reduction coupled to acetate oxidation at 60°C were 
made without the addition of sulfi de to the medium, but its addition in the subsequent 
transfers was crucial to maintain perchlorate-reducing activity. Sulfi de addition as 
reducing agent was not necessary for the mesophilic culture enriched in this study; 
neither is it normally added for growth of other classical (per)chlorate-reducing 
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microorganisms due to their facultative anaerobic autecology. 
Over the course of time and multiple transfers, the activity of the perchlorate-reducing 
enrichment culture increased considerably, being fully-grown after ca. 1 week (Fig. 
1). Under the chosen conditions (60°C, 1.25 mM of sulfi de, 5% soil extract), acetate 
was completely mineralized to CO2 by the microbial consortium, while perchlorate 
was reduced all the way to chloride (Fig. 1). The reduction of perchlorate led to 
the accumulation of stoichiometric amounts of chloride in the medium. Methane or 
other products were not detected in the medium at any time.
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Figure 1: The reduction of perchlorate (diamonds) coupled to acetate oxidation (squares) and growth 
(expressed in the protein yield) by a microbial consortium at 60°C. The reaction forms chloride 
(triangles) and carbon dioxide (not measured). The experiment was performed in reduced medium 
(1.25 mM sodium sulfi de) and in the presence of 5% soil extract; n=2.

The observed stoichiometry of the reaction required approximately equimolar 
amounts of acetate and perchlorate which roughly meets the expected stoichiometry.

 ClO4
- + CH3CO2

- → Cl- + 2HCO3
- + H+  ΔG0’ = -966.8 kJ

Transferring the culture to 30°C instead of 60°C did not result in any growth, which 
indicated the thermophilic nature of the perchlorate-reducing culture rather than 
activity of mesophilic microorganisms at suboptimal conditions. In addition, known 
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acetate-oxidizing (per)chlorate reducers have their upper limit around 37 to 40°C 
(17-19). 
Perchlorate reduction was not observed in the control incubations, where acetate or 
the inoculum was omitted. Surprisingly, the culture was not able to reduce chlorate 
effi ciently; chlorate reduction stopped after ca. 1-2 mM of chlorate was reduced. 
This might be explained by the enzyme kinetics of perchlorate reductases and related 
enzymes, which have a higher specifi c activity with chlorate than perchlorate (20, 
21). In the absence of a functional Cld, the use of chlorate as electron acceptor may 
(in contrast to perchlorate) exceed the abiotic reduction rates of chlorite with sulfi de, 
which accumulates toxic levels of chlorite and terminates chlorate reduction. 
Substituting perchlorate with nitrate resulted in the reduction of nitrate (results not 
shown). Unlike perchlorate reduction, nitrate reduction was faster whenever sulfi de 
was omitted from the medium. Perchlorate was also reduced when acetate was 
replaced by H2/CO2. Additionally, perchlorate reduction occurred with lactate, as 
electron donor and C-source. 
Attempts to obtain an axenic perchlorate-reducing culture growing on acetate failed, 
although several isolation methods were applied (such as dilution series and roll 
tubes).
The microbial diversity of the thermophilic acetate-degrading perchlorate-reducing 
culture was analyzed by cloning and sequencing of the 16S rRNA gene. While no 
archaeal sequences were obtained, the bacterial clone library resulted in 85 good 
quality sequences of which 2 turned out to be chimera. The remaining 83 valid 
sequences clustered in 14 OTUs grouped by 98% threshold. Some of the sequences 
were classifi able to the genus level identifying microorganisms that belonged 
to the genera Desulfotomaculum, Thermanaeromonas, Thermacetogenium and 
Thermosediminibacter (Fig. 2).
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of the perchlorate-reducing culture, grown at 60°C using acetate. Absolute abundances of clones are 
given after the respective names of the clones (in squared brackets). Accession numbers and relevant 
environmental sources are given after the sequence names. Neighbor-Joining method with Jukes-
Cantor correction was chosen after applying the three algorithms as implemented in the ARB package. 
Based on 1000 replications, signifi cant values of each branch (above 70%) are indicated at the nodes by 
circles. The scale bar illustrates substitutions per site.
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Desulfotomaculum thermosubterraneum, DQ208688

uncultured Thermoanaerobacteriaceae 

uncultured Firmicutes b

uncultured Firmicutes bacterium, EU073782 (coal bed)

Thermosediminibacter litoriperuensis, AY703479

Thermovenabulum ferriorganovorum, AY033493

Tepidanaerobacter syntrophicus, AB106353.1

The high abundance (82%) of clones related to Thermanaeromonas (OTUs represented 
by PerAce60_C10, H12, B07, A12, C12) is likely an indication of the functional 
importance of members of that genus for the reduction of perchlorate. The most 
closely related isolate to these sequences is Thermanaeromonas toyohensis (identity 
92%, coverage 99%) (gb: AB062280). This strictly anaerobic strain was isolated 
from geothermal waters of a Japanese metal mine (22). It can utilize thiosulfate, 
nitrate and nitrite as electron acceptors and has an optimum growth temperature of 
70°C. Substrates used for the reduction of thiosulfate were reported to be arabinose, 
cellobiose, fructose, glucose, inositol, maltose, mannose, sucrose, trehalose xylose, 
yeast extract, formate, lactate and pyruvate; acetate and H2/CO2 were not utilized. 
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The ability of T. toyohensis to reduce nitrate and nitrite was successfully tested with 
lactate. More closely related Thermanaeromonas-like sequences (ranging from 93 
to 99% identity to PerAce60_C10, H12, B07, A12, C12) derive from uncultured 
microorganisms of a hot spring environment (gb: FJ638536.1), subsurface circulation 
water (gb: JQ446369.1) and low (gb: GU179929.1) and high (gb: DQ097672.1) 
temperature oil reservoirs (23) (Fig. 2).
Thermoacetogenium phaeum, a microorganism isolated from a methanogenic reactor, 
is the most closely related isolate to sequence PerAce60_E11 (24) (coverage 92%, 
identity 98%). Sequences of uncultured microorganisms with high resemblance to the 
PerAce60_E11 clone (ranging from 98 to 99% identity) were also found in pipelines 
(gb: JQ014200.1) (25), oil facilities (gb: FJ469351.1) (26) and oil reservoirs (gb: 
JF808029.1 and AB546077.1) (27, 28).
PerAce60_F05 (Thermosediminibacter sp.) had highest resemblance with 
sequences deriving from Thermosediminibacter litoriperuensis (93% coverage and 
99% identity) and Thermosediminibacter oceani (100% coverage, 99% identity), 
which were isolated from a deep sea sediment core (29). Environmental sequences 
more distantly related to PerAce60_F05 originated also from oil reservoirs (gb: 
DQ675032.1) (30) (92% coverage, 90% identity). 
PerAce60_D04 is affi liated with the genus Desulfotomaculum. Members of this 
genus are commonly found in subsurface environments and more specifi cally in oil 
reservoirs, like e.g. the isolates Desulfotomaculum salinum (gb: AY918122.1) (31) 
and Desulfotomaculum thermocisternum (gb: U33455.1) (32).
The presence of several microorganisms in the perchlorate-reducing consortium that 
are related to microorganisms with a sulfur metabolism was surprising considering 
that sulfur was only added to the medium in form of sulfi de (1.25 mM). Closest 
related isolates to the here obtained OTUs such as Desulfotomaculum kuznetsovii 
(PerAce60_D04), T. oceanii/T. litoriperuensis (PerAce60_F05) and T. phaeum 
(PerAce60_E11) have the capabilities to reduce sulfate (D. kuznetsovii, T. phaeum), 
sulfi te (D. kuznetsovii), thiosulfate (D. kuznetsovii, T. oceanii/T. litoriperuensis, 
T. phaeum) and elemental sulfur (T. oceanii/T. litoriperuensis) (24, 29, 33, 34). 
Measurements of sulfate in the medium confi rmed that its concentration was below 
60 μM at all times of the experiment; thiosulfate concentrations were below detection 
levels. 
The presence of microorganisms with a sulfur metabolism may indicate a similar 
mechanism for perchlorate reduction as was reported for A. fulgidus (Chapter 3 and 
4). A. fulgidus reduces perchlorate and chlorate to chlorite, followed by a chemical 
scavenging of chlorite by sulfi de. The formed oxidized sulfur compounds are in 
turn biologically reduced again. This constitutes an intraspecies “sulfur loop” that 
involves biotic and abiotic reactions driving the biological reduction of perchlorate. 
Other than A. fulgidus complete (per)chlorate reduction in the here characterized 
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consortium may be spread over functionally diverse microorganisms and form an 
interspecies “sulfur loop”.
We propose that Thermanaeromonas sp. is the most probable candidate to reduce 
perchlorate to chlorite, followed by the chemical reduction of chlorite with sulfi de, 
forming oxidized sulfur compounds. This would explain the coexistence of sulfate- 
and sulfur-reducing microorganisms in the consortium, that are reducing oxidized 
sulfur compounds to sulfi de and also why it was not possible to obtain an axenic 
culture of an acetate-utilizing perchlorate reducer. 
The low similarity of OTUs represented by PerAce60_F04, A04, D03, G10, B03 
and H10 to known isolates (Fig. 2) resulted in a low taxonomic resolution using two 
independent taxonomic identifi cation tools, SILVA (35) and the Ribosomal Database 
Project (RDP) (36). Although OTUs represented by PerAce60_ A04 and G10 are 
remotely associated with members of the genus Desulfotomaculum and F04 and D03 
with Thermananaeromonas (for all identities < 90% using BLAST) they could not 
be classifi ed beyond the level of Clostridia/Firmicutes. More closely related clones 
to the above-mentioned sequences can also be found in samples from oil reservoirs 
(gb: AB710363.1, JF808030.1 and AB539956.1) (28, 37) and a coal bed sample (gb: 
EU073782.2).
OTUs PerAce60_B03 and H10 were taxonomically unclassifi able and only distantly 
related to the genus Ammonifex (sequence identities of 86% with A. degensii using 
BLAST). Both described isolates within the genus Ammonifex were isolated from 
hot springs (38, 39).
From both a phylogenetic and physiological perspective, it would be desirable to 
shed more light on the respective microorganisms to understand their exact role in 
the perchlorate-reducing consortium. 

CONCLUSIONS AND OUTLOOK

The results of this study demonstrated the feasibility of coupling a readily and 
abundantly available substrate in anaerobic environments like acetate to perchlorate 
reduction at high temperature. The presence of related environmental sequences 
found in the subsurface and petroleum reservoirs suggests that the injection of 
perchlorate would likely result in perchlorate reduction in respective environments.
Intensifi ed effort is currently spent on the isolation of the Thermanaeromonas-like 
bacterium, which seems the most probable perchlorate-reducing candidate. So far, 
efforts for obtaining an axenic perchlorate-reducing culture did not succeed. An 
explanation therefore may be the dependence of perchlorate-reducing microorganisms 
on microbial partners for the co-degradation of perchlorate.
Contrarily to the mesophilic (per)chlorate-reducing enrichment where P. stutzeri, 
a facultative anaerobe, dominated; 16S rRNA sequencing of the thermophilic 
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perchlorate-reducing enrichment showed the exclusive presence of strictly anaerobic 
microorganisms. These results combined with the necessity of sulfi de for commencing 
perchlorate reduction in the thermophilic culture suggest a similar mechanism as 
described for perchlorate reduction by A. fulgidus (Chapter 3 and 4). In contrast to A. 
fulgidus the here presented consortium may enable complete perchlorate reduction 
by an interspecies “sulfur loop”; a model which is strengthened by the presence of a 
diverse group of microorganisms affi liated with known sulfur- and sulfate-reducing 
microorganisms. Future experiments are required to gain more evidence for the 
model of an interspecies “sulfur loop” for complete perchlorate reduction. 
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ABSTRACT

The knowledge on hyperthermophilic chlorate and perchlorate [together 
termed (per)chlorate] reducers is thus far only based on the recently 
described metabolism in Archaeoglobus fulgidus; a trait that seems to differ 

considerably from the physiology of classical (per)chlorate-reducing mesophiles. 
In this study, we describe the ability of other thermo- and hyperthermophilic 
microorganisms to use perchlorate and chlorate as electron acceptors. 
Aeropyrum pernix, previously described as a strictly aerobic Crenarchaeon, is able 
to grow anaerobically by the reduction of (per)chlorate. Physiological, genomic 
and proteome analyses suggest that A. pernix performs (per)chlorate reduction by 
employing a periplasmic enzyme related to nitrate reductases (pNar) for reducing 
perchlorate to chlorite (via chlorate), but lacks a functional chlorite-disproportionating 
enzyme (Cld) to complete the pathway. Similar to A. fulgidus, chemical reactivity of 
reduced sulfur compounds and chlorite seems to play a crucial role in (per)chlorate 
reduction of A. pernix. The chemical oxidation of thiosulfate (in excessive amounts 
present in the medium) to sulfate and the concomitant release of chloride anions from 
the reduction of chlorite are the products of a biotic-abiotic (per)chlorate reduction 
pathway. 
The lack of Cld in two (per)chlorate-reducing Firmicutes (Carboxydothermus 
hydrogenoformans and Moorella glycerini strain NMP) and the strict necessity of 
sulfi de for (per)chlorate reduction in these bacteria is consistent to the observations 
made on A. fulgidus and A. pernix. All microorganisms employ similar strategies 
for the reduction of (per)chlorate at high temperatures and differ notably from the 
classical (per)chlorate-reducing mesophiles. This paper further strengthens the 
hypothesis that (hyper)thermophilic (per)chlorate reduction commonly occurs based 
on a biotic-abiotic pathway, missing Cld. 

Keywords: Aeropyrum pernix, (per)chlorate reduction, pNar, hot environments, Cld 
defi ciency, Firmicutes
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INTRODUCTION

Dissimilatory reduction of perchlorate (ClO4
-) and chlorate (ClO3

-) [jointly termed 
(per)chlorate] is a microbial metabolism under oxygen free conditions that is known 
for almost 100 years (1). (Per)chlorate-reducing microorganisms are predominantly 
represented by members of the Proteobacteria and characterized by a mesophilic and 
facultative anaerobic lifestyle (2). The respective microorganisms employ either a 
perchlorate (reducing perchlorate to chlorate and chlorite) or a chlorate reductase 
(reducing chlorate to chlorite), followed by an enzyme disproportionating chlorite to 
dioxygen and chloride, called chlorite dismutase (Cld) (3-5). 
Due to the environmental release of man-made perchlorate sediment- and soil-
inhabiting (per)chlorate-reducing microorganisms have received attention for their 
potential role in biological remediation of polluted sites. However, the presence of 
(per)chlorate on Earth and the development of enzymes reducing these compounds 
may date back already to pre-anthropogenic eras (6-8). Geophysical studies of 
the last years have demonstrated several (photo)chemical mechanisms of natural 
perchlorate formation that introduce perchlorate on Earth and Mars (9). Ancient 
(per)chlorate deposition on Earth has possibly already infl uenced the evolution of 
early prokaryotic enzymes used for energy conservation. The degree of homology of 
perchlorate reductases with nitrate reductases suggests an evolutionary relatedness of 
these enzymes (10, 11). The promiscuity of numerous enzymes in the DMSO enzyme 
family using chlorate (and possibly perchlorate) as substrate may have evolved in 
ancestral enzymes already. Previous reports of archaea growing by the reduction of 
(per)chlorate might support arguments for an early evolution of enzymes that reduce 
(per)chlorate in anaerobic environments (12, 13). However, in classical perchlorate- 
and chlorate-reducing mesophiles horizontal gene transfer seems to play a major role 
for the acquisition of this trait as well (10, 14). The related nitrate reductase enzymes 
have a wide dispersal over diverse groups of prokaryotes. A complex evolution 
of these enzymes involving several mechanisms, amongst which horizontal gene 
transfer, has been described (15).
New discoveries in the fi eld of microbial (per)chlorate reduction are not only 
interesting in terms of phylogenetic diversity or the biochemical background of 
the metabolism. Findings of recent years also discovered (per)chlorate-reducing 
capabilities in ecologically diverse microorganisms and expanded this trait beyond 
moderate temperatures to thermophilic (16) and hyperthermophilic life forms (13).
In the current study we examined (hyper)thermophiles for the ability to grow by the 
reduction of (per)chlorate. The Crenarchaeon Aeropyrum pernix, a microorganism 
that has thus far been known for its strictly aerobic lifestyle was identifi ed as the fi rst 
member of its phylum that is able to grow by the reduction of (per)chlorate. It extends 
microbial (per)chlorate reduction up to 100°C. This novel physiological characteristic 



118

Chapter 6 

66

of A. pernix was investigated in more detail by genomic and proteomic analyses. 
Similarly, two thermophilic bacteria, Carboxydothermus hydrogenoformans and a 
strain related to Moorella glycerini showed the capabilities to reduce perchlorate 
and chlorate. The presented work enlarges the current knowledge on (per)chlorate-
reducing microorganisms at high temperatures and confi rms the important role of 
sulfur compounds for this trait. 

MATERIALS AND METHODS

Strains, media and cultivation
Aeropyrum pernix strain K1 (17) and Carboxydothermus hydrogenoformans strain 
Z-2901 (18) were purchased from the Leibniz Institute DSMZ - German Collection 
of Microorganisms and Cell Cultures. Strain NMP, which turned out to be affi liated 
with Moorella glycerini (19) (99% sequence identity, 96% coverage) was isolated in 
our laboratory from a culture previously obtained from an underground gas storage 
site (16). In contrast to the type strain of M. glycerini, strain NMP was not able to 
use glycerol as substrate. The cultivations of the two fi rst mentioned microorganisms 
were done according to the recommendations of the supplier, using DSM media nr. 
820 (A. pernix) and nr. 507 (C. hydrogenoformans). The substrates for growing A. 
pernix were yeast extract (1 g l-1) and peptone (5 g l-1), whereas pyruvate (20 mM) was 
used to grow C. hydrogenoformans. The medium used for strain NMP was described 
earlier (20); a bicarbonate/CO2 and phosphate-buffered medium containing yeast 
extract (0.2 g l-1) and sulfi de (1.25 mM) at neutral pH. Methanol or formate were 
used as substrates for the growth of strain NMP.
Physiological trials were conducted in 120 ml bottles containing 50 ml medium. 
The headspace of the serum bottles was fi lled with a N2/CO2 (80/20; v/v; 1.5 bar) 
gas mixture (for strain NMP and C. hydrogenoformans) or pure N2 (for anaerobic 
incubation of A. pernix). Aerobic cultures of A. pernix were also grown in serum 
bottles. Prior to autoclaving the headspace was completely saturated with atmospheric 
air, stoppered and sealed.
Stocks of electron acceptors (sodium chlorate, sodium perchlorate), medium 
additives (sodium sulfate, sodium thiosulfate, sodium bicarbonate, sodium sulfi de) 
and electron donors (sodium formate, methanol) were separately autoclaved and 
added to the media afterwards. Vitamin solutions and sodium pyruvate were fi lter-
sterilized and added to the medium after autoclaving. 
In the trial determining sulfur fl uxes (Fig. 2), sulfate in the medium was lowered to 
4 mM in order to increase the analytical accuracy for detecting additionally formed 
sulfate. The standard medium used for growing A. pernix (DSM nr. 820, see above) 
contained 4 mM sodium thiosulfate and 23 mM sodium sulfate. 
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Strain NMP was cultivated at 60°C, whereas C. hydrogenoformans and A. pernix 
were grown at 70 and 90°C, respectively. All experiments were performed with 
biological duplicates.
Next to the here mentioned (per)chlorate-reducing microorganisms other pure cultures 
were tested for this trait, using anaerobic medium. The following thermophilic 
strains were selected based on the presence of a gene encoded in their genomes that 
resembles chlorite dismutase, however none of the respective microorganisms was 
able to reduce (per)chlorate: Geobacillus debilis Tf, DSM 16016 (DSM medium 
nr. 220), Thermoplasma volcanium GSS1 DSM 4299, (in DSM medium nr. 398), 
Thermus scotoductus SE-1, DSM 8553 (DSM 878), Marinithermus hydrothermalis 
T1, DSM 14884 (DSM medium nr. 973) and Sulfolobus solfataricus P2, DSM 1617 
(DSM medium 182). Chlorate and perchlorate were tested at concentrations of 5 mM 
in recommended media using cultures pregrown under standard conditions.
 
Chromatographic analyses and Cld activity
Oxyanions were measured on a HPLC equipped with an Ion Pac AS22 column 
(4x250 mm), using an ED 40 electrochemical detector (Dionex, Sunnyvale, CA). 
The eluent was carbonate-bicarbonate buffer (1.29 g l-1 Na2CO3.10 H2O and 0.12 g l-1 
NaHCO3) and the analyses were conducted with a fl ow rate of 1.2 ml min-1 at 35°C. 
Sodium iodide (NaI) was used as an internal standard.
Methanol and fatty acids were analyzed on a HPLC system using a Varian column 
(MetaCarb 87H Guard 4.6x50 mm, Middelburg, The Netherlands) equipped with 
a UV and Refractive Index (RI) detector. The eluent contained sulfuric acid at a 
concentration of 10 mM and L-arabinose was used as internal standard. The analyses 
were performed at 30°C with a fl ow rate of 0.8 ml min-1. The software ChromQuest 
was used for analyzing the chromatograms later.
The potential activity of a chlorite-disproportionating enzyme in crude extracts and 
cell suspensions was determined by using a Clark electrode detecting the formation 
of oxygen. The preparation of cell free extract was performed as described earlier 
(13). The assay was performed in anaerobic phosphate buffer and under oxygen free 
conditions at 60°C. 

Genome Sequencing and Proteome analysis
Genomic DNA of strain NMP was sent to Baseclear (Leiden, NL), where paired-end 
sequencing of the genome was performed. A de novo assembly was done using the de 
novo assembler Ray (21). Pilon (http://www.broadinstitute.org/software/pilon/) was 
used for assembly improvement afterwards. The assembled scaffolds were annotated 
using an in-house annotation pipeline (VAAP). This annotation includes (amongst 
others); predicted rRNA genes, predicted proteins and a blast search against the 
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SwissProt database, in an RDF database format. PRED-TAT was used to predict the 
subcellular location of proteins of interest (22).
The proteome analyses of A. pernix cells grown with oxygen, chlorate or perchlorate 
were performed using LC-MS/MS (23). For all 3 conditions independent duplicates 
of 500 ml cell suspensions were grown until the late exponential phase and harvested 
by centrifugation. Ultrasonication and chemical disintegration using 4% SDS in PBS 
followed by centrifugation were used to obtain cell free extracts. Prior to loading the 
samples on a SDS-PAGE an incubation step of 95°C for 10 minutes was included. 
As a control of sample quality an equal amount of total protein was separated by 
SDS-PAGE on a 10 well SDS-PAGE 10% Bis-Tris Gel (Mini Protean System, 
Bio-Rad, U.S.) for 90 min at a constant voltage of 120 mV using Tris-SDS as running 
buffer. Label free quantitative proteomics type experiments were carried out to fi nd 
differentially expressed proteins under all different growth conditions studied. Equal 
amounts of the protein extracts were loaded onto a Novex 4-12% Bis-Tris SDS 
page gel (Invitrogen) and electrophoresed for 5 min at 200V constant voltage using 
MES-SDS as running buffer. For each lane a single band containing all proteins was 
cut out and treated for reduction and alkylation using 20 mM dithiotreitol and 40 
mM iodoacetamide in 50 mM ammonium bicarbonate. Digestion was performed 
by incubating the samples overnight at 37°C with trypsin at a 1:20 enzyme-protein 
ratio. Peptides were diluted with 5% formic acid and 5% DMSO and subjected to 
nano LC-MS/MS using an EasyLC 1000 and an Orbitrap Q-Exactive Plus instrument 
(Thermofi sher Scientifi c). Each peptide sample was auto-sampled and separated over 
a 25 cm analytical column (75 μm inner diameter) in-house packed with 5 μm C18 
column material (Reprosil Pur-AQ, Dr. Maisch) with a 60 min gradient from 5% 
to 40% acetonitrile in 0.6% acetic acid. The effl uent from the column was directly 
electrosprayed into the mass spectrometer. Full MS1 spectra were acquired in the 
positive ion mode from m/z 300-1200 at a resolution of 70000 after accumulation 
of 3 x 106 ions within a maximal injection time of 250 ms. A top20 method was 
used to acquire MS2 spectra at a resolution of 17500 after accumulation of 1 x 105 
ions within a maximal injection time of 50ms. Parent ions were isolated with a 2.5 
m/z window and fragmented with a HCD energy of 28. Only multiply charged ions 
were selected and the dynamic exclusion time was set to 30 seconds. Raw data were 
analyzed using Proteome Discoverer 1.4 (ThermoFischer Scientifi c) and Mascot 
2.2 (matrixscience) was used as search engine. A database containing all protein 
entries of A. pernix listed in Uniprot was used to search the data. Search settings 
used were; 5 ppm for parent ions, 0.02 Da for fragment ions, trypsin as proteolytic 
agent, carbamidomethyl cysteine as fi xed modifi cation and methionine oxidation as 
variable modifi cation. Scaffold 3.0 (ProteomeSoftware) was used to merge all search 
results. Filtering of the data was done by setting the minimum protein threshold to 
99%, the minimum peptide count to 2 and the minimum peptide threshold to 95%.
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The genome of A. pernix is publicly available and encodes 1752 genes, from which 
1700 genes are predicted to be protein-coding (24, 25). 
The raw proteome analysis resulted in the identifi cation of 993 different proteins (with 
at least 2 unique peptides identifi ed). A likelihood ratio G-test for independence (26) 
with a null hypothesis of equal protein distribution between the different conditions 
was applied. The null hypothesis was rejected in case of differential expression of a 
gene at levels of signifi cance of p ≤ 0.05; ** or p ≤ 0.01; ***. Proteins 5-times more 
abundant in one condition compared to another are listed in the appendix (Table S1). 
Proteins that possibly play an important role under different growth conditions are 
discussed in more detail in the text (Table 1).

RESULTS AND DISCUSSION

In this study we examined the ability of (hyper)thermophilic microorganisms to 
reduce the chlorine oxyanions perchlorate and chlorate. Next to the here successfully 
tested and described (per)chlorate reducers other microorganisms were tested but 
could not grow by the reduction of (per)chlorate, such as G. debilis, T. volcanium, 
T. scotoductus, M. hydrothermalis, and S. solfataricus (see Materials and Methods).
Contrarily to the earlier described hyperthermophilic (per)chlorate-reducing 
microorganism A. fulgidus, which is strictly anaerobic, A. pernix is known as a strict 
aerobe (17). However, we showed that A. pernix was able to grow effi ciently under 
anaerobic conditions using perchlorate and chlorate as electron acceptors (Fig. 1). 
The microorganism was not able to grow by nitrate reduction or fermentation of 
proteinaceous substrates (yeast extract, peptone), which confi rms earlier observations 
(17). The newly discovered metabolism of A. pernix was investigated in more detail 
to get better insight in the mechanism of (per)chlorate reduction at extremely high 
temperatures.
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Figure 1: Growth (A) and electron acceptor utilization (B) of Aeropyrum pernix in anaerobic medium 
(DSM medium 820) at 90°C containing either perchlorate (triangles), chlorate (squares), nitrate 
(diamonds) or no additional e-acceptor (circles); solid lines indicate biological experiments (2% 
inoculum) and dashed lines (uninoculated) chemical controls; plotted are means (n=2) [± range bars in 
(B)]. The medium contained pepton (5 g l-1) and yeast extract (1 g l-1) as growth substrates.

In the genome of A. pernix, no genes are encoded that closely resemble known 
perchlorate or chlorate reductases. However, a putative Nar-type reductase (alpha-
subunit: APE_1288.1, ref: NP_147849.2) is encoded in the genome, which is also 
found in the second described Aeropyrum species, A. camini (100% coverage, 95% 
identity). APE_1288.1 has also a high sequence similarity with the periplasmic alpha-
subunit of the functionally characterized Nar-type reductase (pNar) of Pyrobaculum 
aerophilum (97% coverage, 59% identity) (ref: WP_011009509.1). Similar to 
this enzyme, APE_1288.1 carries a TAT sequence motif, which is indicative for a 
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periplasmic location of the catalytic subunit. The pNar of P. aerophilum was reported 
earlier to use chlorate, besides nitrate as substrate; the Vmax with chlorate was slightly 
higher compared to nitrate (27); perchlorate was not tested as substrate. 
Besides the identifi cation of a probable enzyme for reducing perchlorate and 
chlorate in A. pernix, the remaining question was how the archaeon eliminates 
chlorite; an intermediate that is highly toxic for prokaryotes. Chlorite is normally 
disproportionated in mesophilic (per)chlorate reducers by the action of a chlorite 
dismutase. Although a protein (APE_0237.1; NP_147071.2) was found in the 
genome of A. pernix (24) that belongs to the same protein family as functional chlorite 
dismutases (Cld) (Pfam06778) its overall similarity with respective enzymes is very 
low. Additionally, there was no Cld activity observed in A. pernix cell extracts and 
whole cells (grown with perchlorate) upon chlorite injection.
A closer examination of this Cld-like protein in A. pernix revealed the absence of 
earlier defi ned signature residues that are present in functional Cld (Ile88, Trp97, 
Leu122, Arg127, Glu167 - position refers to Nitrobacter winogradskyi) (28). From 
the broad diversity of assigned Cld-like proteins in bacterial and archaeal microbes 
only a low number is carrying the respective signature residues and for an even 
smaller number the chlorite-disproportionating activity could be proven (28, 29). 
To obtain more understanding of the (per)chlorate-reducing metabolism of A. pernix, 
a proteome analysis was conducted. The presence and abundance of proteins in cells 
grown with oxygen and grown with chlorate and perchlorate were compared. 
The proteome analysis of A. pernix cells grown with oxygen, chlorate and perchlorate 
resulted in coverage of ca. 60% of the protein-coding genes. The best candidate for 
perchlorate and chlorate reduction, the aforementioned putative Nar-type reductase 
(alpha-subunit: APE_1288.1), was surprisingly abundant at about similar levels 
under all three growth conditions (Table 1). 

Table 1: The expression of selected proteins/enzymes of A. pernix grown with oxygen, or anaerobically 
with chlorate or perchlorate as electron acceptors. An extended table listing differentially abundant 
proteins (5-times more) can be found in the Supplemental Material (Table S1).

Protein Locus tag Spectral counts
oxygen chlorate perchlorate

Bipolar DNA helicase APE_0107 38 43 3 4 11 8

5’ to 3’ nuclease repair protein APE_0109.1 12 9 0 0 3 1

Putative exonuclease APE_0181 20 18 5 1 10 4

Cld-like protein APE_0237.1 18 19 21 18 43 40

Heme-copper oxidase subunit II APE_0792.1 20 17 2 0 0 1
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Heme-copper oxidase subunit I+III APE_0793.1 6 5 0 0 0 0

Sulfate adenylyltransferase APE_1197.1 40 42 3 0 6 1

Nitrate reductase, alpha subunit APE_1288.1 641 683 778 837 497 492

Nitrate reductase, beta subunit APE_1294.1 199 186 264 275 146 152

Nitrate reductase, gamma subunit APE_1297 14 17 21 23 8 9

DNA repair photolyase APE_1326.1 4 4 0 0 0 0

Molybdopterin oxidoreductase,        
iron-sulfur binding subunit APE_2605.1 25 23 21 16 3 0

Molybdopterin oxidoreductase, 
membrane subunit APE_2607 18 21 18 18 1 0

Molybdopterin oxidoreductase, 
molybdopterin binding subunit APE_2610 298 285 203 165 22 5

Nitrate reductases of the Nar-type as well as perchlorate and chlorate reductases 
are normally negatively regulated by oxygen (11, 30, 31). However, already former 
proteomic studies of A. pernix grown with oxygen resulted in high expression levels 
of the Nar-type complex (32). Transcriptomic analyses of P. aerophilum demonstrated 
that its pNar is also expressed independently of the presence or absence of oxygen 
and nitrate (33). Considering the close relatedness of pNar of P. aerophilum with 
the putative nitrate reductase in A. pernix the similarity in the regulation of the two 
enzymes seems plausible. Based on the observation made by Palmieri et al. (32), 
the authors debated whether A. pernix was a real strict aerobe. The microorganism’s 
ability to grow without oxygen shown in this study proves their earlier thoughts now 
experimentally right. 
APE_0237.1, the chlorite dismutase family protein of A. pernix, had a low number 
of total spectral counts, which remained in the same range under all different growth 
conditions (Table 1). As was experimentally shown in other studies the fate of 
chlorite may not only be dependent on the presence of a chlorite-disproportionating 
enzyme, but is due to its high chemical reactivity also determined by the availability 
of reducing chemicals in the medium (Chapter 3 and 4). Following the routinely 
added sulfur components (thiosulfate, sulfate) in the medium (DSM 820) it was 
demonstrated that, similar to A. fulgidus (and sulfi de), (per)chlorate reduction by A. 
pernix resulted in a concomitant oxidation of thiosulfate (compare Fig. 2A and B). 
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Figure 2: Oxidation of thiosulfate during growth of Aeropyrum pernix with either oxygen (A) or 
perchlorate (B). The primary y-axis shows thiosulfate (crosses) and sulfate concentrations (triangles); 
cell densities (solid lines/no symbols) are plotted against the secondary y-axis. Dashed lines indicate 
the change of respective sulfur compounds in (uninoculated) chemical controls. Perchlorate and oxygen 
concentrations are not displayed. n=2, means ± range (bars). The expected stoichiometry where 2 
molecules chlorite react with 1 molecule thiosulfate to form 2 molecules sulfate (Fig. 3) was roughly 
met in the experiment [all available perchlorate (7.9 mM) was depleted after 5 days]. The activity of the 
cultures in Fig. 2 was higher compared to Fig.1.

The chemical reactivity of reduced sulfur compounds (including thiosulfate) with 
chlorite has been investigated thoroughly in the past [Mao et al. (34) and Chapter 3 
and 4]. Their role as chemical scavengers in the biological reduction of (per)chlorate 
in microorganisms that lack a chlorite-disproportionating enzyme was reported 
recently (13) and seems to be crucial for (per)chlorate reduction in A. pernix as well 
(Fig. 3).
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Figure 3: The proposed mechanism of (per)chlorate reduction in A. pernix and the thermodynamics 
of the biologically (equ. 1; solid lines) and chemically mediated branches (equ. 2; dashed lines) of this 
metabolism under standard conditions (pH 7, 25°C).
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Enzymes related to the sulfur metabolism of the archaeon showed differential 
expression comparing chlorate-, perchlorate- and oxygen-grown cells (Table 1). 
An enzyme signifi cantly more abundant in aerobically grown cells, a putative 
ATP sulfurylase (APE_1197.1), is probably assimilating sulfate; which seems less 
required during growth with perchlorate (Fig. 2), where it accumulates to higher 
concentrations. APS kinase (APE_1195.1), the subsequent enzyme in the assimilatory 
sulfate pathway could not be detected in the proteome analysis.
The ability of heterotrophic microorganisms to gain energy from the oxidation of 
thiosulfate in presence of oxygen has been reported for several microorganisms 
(35). Also for A. pernix cultures grown with oxygen growth-stimulating effects of 
thiosulfate and its biological oxidation were demonstrated before (17). The strongly 
increased abundance of a molybdopterin oxidoreducase related to tetrathionate 
reductase enzymes (APE_2605.1, APE_2607, APE_2610) in oxygen- compared 
to perchlorate-grown cells (Table 1) seems to relate the results of this study with 
the above-mentioned observation. In previous studies it was already shown that the 
oxidation of thiosulfate to tetrathionate, as well as the reversed reaction (reduction 
from tetrathionate to thiosulfate) can be catalyzed by the same enzyme (36) or the 
same microorganisms (35), depending on the availability of oxygen. In the current 
study, the biological oxidation of thiosulfate (represented by the abundance of 
tetrathionate reductase) seems to be slightly or completely repressed when cells 
were grown with chlorate or perchlorate, respectively (Table 1). This might be 
attributed to an inability of transferring electrons deriving from thiosulfate oxidation 
to electron acceptors other than oxygen. Also a potentially faster chemical reactivity 
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between chlorite and thiosulfate than between oxygen and thiosulfate (Fig. 2 and 
Chapter 4) may compete with the biological oxidation of thiosulfate and combined 
with the above-mentioned aspect be the cause of lower abundances of the enzyme 
(APE_2605.1, APE_2607, APE_2610). 
Contrary to the proteome analysis performed on A. fulgidus (13), growth with 
perchlorate and chlorate did not result in a strong redox and oxygen stress response 
in A. pernix. There was rather increased abundances of potentially redox-sensing 
proteins in the presence of oxygen (e.g.: APE_0107, APE_0109.1, APE_0181, 
APE_1326.1), than under anaerobic conditions with (per)chlorate (Table 1). This is 
comprehensible considering the strictly anaerobic lifestyle of A. fulgidus compared 
to the aerobic metabolism of A. pernix. 
Besides (per)chlorate reduction there are indications for an even broader metabolic 
fl exibility in A. pernix. The increased abundance of a putative arsenite oxidase in 
presence of oxygen (but absence of arsenite) (Table S1) may indicate a pre-adapted 
metabolic preference. 
Additionally the putative tetrathionate reductase encoded in the genome (which 
was discussed above) may also get expressed under anaerobic conditions in case 
tetrathionate is present. This would possibly enable another anaerobic respiration 
pathway next to (per)chlorate reduction in A. pernix. 

(Per)chorate-reducing members of the Firmicutes
Two Gram-positive bacteria of the Firmicutes, namely the strict anaerobe 
Carboxydothermus hydrogenoformans (strain Z-2901) and strain NMP, affi liated 
with the type strain of Moorella glycerini (strain JW/AS-Y6) (18, 19) were also 
able to reduce perchlorate (Fig. 4A and 5) and chlorate (Fig. 4B) in the presence of 
sulfi de (see Material and Methods). (Per)chlorate reduction in the absence of sulfi de 
was tested with strain NMP and did not result in any activity. Other members of the 
genus Moorella have also been reported earlier to grow by the reduction of (per)
chlorate (16, 37). The genomes of both, C. hydrogenoformans and M. glycerini 
NMP harbor genes for enzymes that belong to the DMSO II enzyme family, most 
closely resembling respiratory nitrate reductases. The alpha-subunit of the nitrate 
reductase of C. hydrogenoformans (Chy_2082, YP_360901.1) is predicted to be 
located outside of the cell using PRED-TAT (22). This characteristic has also been 
found for the presumed (per)chlorate-reducing enzymes of A. pernix and A. fulgidus 
(Chapter 3). The best enzyme candidate for the reduction of (per)chlorate in strain 
NMP (also predicted to have an extracellular catalytic subunit) has a high similarity 
with the nitrate reductase of C. hydrogenoformans (alpha-subunits: 99% coverage, 
73% identity) and with a molydopterin oxidoreductase in Moorella thermoacetica 
ATTC 39073 (alpha-subunits: 99% coverage, 93% identity). 
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Figure 4: The reduction of A) perchlorate (triangles) and B) chlorate (diamonds) by Carboxydothermus 
hydrogenoformans Z-2901 in sulfi de-reduced medium at 70°C. Pyruvate was used as electron donor 
(not measured) and acetate accumulated as product (crosses). The increase of biomass is indicated by 
the protein concentration (dashed line) over time. Data points are means of n=2.

Both, the draft genome of strain NMP and the genome of C. hydrogenoformans 
do not encode any enzyme resembling chlorite dismutases. In addition, no chlorite 
dismutase activity was detected with whole cells and cell free extracts of strain 
NMP; C. hydrogenoformans was not tested in this respect. Although earlier studies 
reported chlorite-disproportionating activities in (per)chlorate-grown members of 
the Firmicutes (16, 38), the mechanism of perchlorate reduction observed in this 
study seems to differ. 
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Figure 5: The reduction of perchlorate (ClO4
-, triangles) by Moorella glycerini strain NMP at 60°C. A) 

Methanol (circles) or B) formate (squares) were used as substrates and acetate (crosses) accumulated 
over time. The complete reduction resulted in the formation of chloride anions (Cl-, diamonds). Plotted 
data are means of n=2.

C. hydrogenoformans has been reported to grow by the reduction of sulfi te, thiosulfate, 
sulfur, nitrate and fumarate, but not sulfate (39). Similarly also strain NMP was 
able to grow by the reduction of thiosulfate and sulfi te, but not sulfate. Strain NMP 
had diffi culties to grow with chlorate (which is the intermediate of perchlorate 
reduction), though perchlorate served as excellent electron acceptor (Fig. S1). This 
may be related to the kinetics of the perchlorate-reducing enzyme combined with 
the lack of a functional Cld. Higher specifi c activities of Pcr with chlorate compared 
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to perchlorate were shown earlier (3, 40). Thus, chlorate reduction might exceed 
the abiotic reduction rates of chlorite with sulfi de (in case chlorate is offered as 
electron acceptor instead of perchlorate), which accumulates toxic levels of chlorite 
and terminates chlorate reduction. 
For the two members of the Firmicutes tested in this study it seems probable that 
complete (per)chlorate reduction proceeds in a similar manner as described for 
A. fulgidus and A. pernix, where the absence of Cld is compensated by chemical 
chlorite reduction, involving reduced sulfur compounds. Further studies are required 
to obtain additional support for the involvement of an intracellular “sulfur loop” in 
(per)chlorate reduction, similar to the one in A. fulgidus (Chapter 3 and 4).

CONCLUSIONS

This study broadened the knowledge on high temperature (per)chlorate reduction and 
strengthened the idea that classical microbial (per)chlorate reduction is restricted to 
mesophilic microorganisms. There is consistency in the observation that all up to now 
described (hyper)thermophiles [with one exception, Moorella perchloratireducens 
(16)] lack a functional chlorite-disproportionating enzyme. Similar to A. fulgidus 
also A. pernix coupled the complete reduction of (per)chlorate to sulfur compounds. 
By the chemical oxidation of available thiosulfate to sulfate, chlorite is reduced 
to chloride anions. In line with the two above-mentioned archaea also the, here 
tested, Firmicutes [Carboxydothermus hydrogenoformans (strain Z-2901) and strain 
NMP] seem to lack a chlorite dismutase. Furthermore, sulfi de in the medium was 
essential for the initiation of (per)chlorate reduction. Another common characteristic 
of (hyper)thermophilic (per)chlorate-reducing microorganisms known thus far, is 
the periplasmic location of the enzyme reducing (per)chlorate. In the respective 
microorganisms (per)chlorate reduction seems to be catalyzed by enzymes resembling 
Nar-type nitrate reductases. Nar-type nitrate reductase can reduce chlorate (41) (and 
possibly perchlorate, although this has hardly been investigated on the biochemical 
level), but are commonly located in the cytosol, where they form toxic chlorite 
upon chlorate exposure. However, in some microorganisms the catalytic subunit 
of Nar-type reductases and related enzymes are located outside the cell (42) (see 
also Fig. 1 in Chapter 7), which may enable microorganisms to grow with (per)
chlorate even in the absence of a chlorite dismutase (the key enzyme of classical 
(per)chlorate-reducing bacteria). 
Substrate promiscuity of evolutionary related enzymes, like nitrate reductases and 
perchlorate reductases seems to enable (per)chlorate reduction beyond the classical 
mesophilic metabolism (employing chlorite dismutase). A broadened substrate range 
of these molybdenum-enzymes may have competitive advantages for microorganisms 
possessing these enzymes. Especially in the frame of the early co-occurrence of 
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nitrate, (chlorate) and perchlorate on Earth this consideration seems intriguing. 
This study expands the diversity of (per)chlorate-reducing microorganisms growing 
at high temperatures and reports the fi rst Crenarchaeon growing by this metabolism. 
Results so far suggest that microbial (per)chlorate reduction at extremely elevated 
temperatures is characterized by the lack of chlorite dismutase and enabled by a 
combination of biotic and abiotic reactions.
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Oxygen >>> Chlorate

Proteins Locus tag UniProt

Bipolar DNA helicase APE_0107 Q9YFZ4_AERPE ***

5’ to 3’ nuclease repair protein APE_0109.1 Q9YFZ2_AERPE ***

ORC1-type DNA replication protein APE_0152.1 CDC62_AERPE ***

Uncharacterized protein APE_0187 Q9YFR2_AERPE ***

MRP/NBP35 family protein APE_0230.1 Q9YFL8_AERPE ***

30S ribosomal protein S4e APE_0356.1 RS4E_AERPE ***

30S ribosomal protein S19 APE_0367.1 RS19_AERPE **

Medium-chain-fatty-acid--CoA ligase APE_0396.1 Q9YF45_AERPE ***

Uncharacterized protein APE_0413 Q9YF27_AERPE ***

Uncharacterized protein APE_0416.1 Q9YF24_AERPE ***

Glycerol-1-phosphate dehydrogenase 
[NAD(P)+]

APE_0519.1 G1PDH_AERPE ***

Putative dehydrogenase APE_0595.1 Q9YEI1_AERPE ***

Aldehyde dehydrogenase APE_0708.1 Q9YE62_AERPE ***

Uncharacterized protein APE_0763.1 Q9YE06_AERPE ***
tRNA 
(guanine(26)-N(2))-dimethyltransferase APE_0782.1 TRM1_AERPE ***

Uncharacterized protein APE_0784.1 Q9YDY5_AERPE ***

Heme-copper oxidase subunit II APE_0792.1 AOX2_AERPE ***

Heme-copper oxidase subunit I+III APE_0793.1 AOX1_AERPE ***

Branched-chain amino acid ABC transporter APE_0919 Q9YDJ4_AERPE ***

Protease HtpX homolog APE_1045.1 HTPX_AERPE **

Uncharacterized protein APE_1059 Q9YD53_AERPE **
tRNA N6-adenosine 
threonylcarbamoyltransferase APE_1135 KAE1_AERPE **

Uncharacterized protein APE_1164 Q9YCU8_AERPE ***

dTDP-glucose 4,6-dehydratase APE_1180 Q9YCT1_AERPE ***

Sulfate adenylyltransferase APE_1197.1 SAT_AERPE ***

Uncharacterized protein APE_1326.1 Q9YCD0_AERPE **

SUPPLEMENTAL MATERIAL
Table S1: Proteins of Aeropyrum pernix that were found to be at least 5-times more abundant under 
one growth condition compared with another (“>>>”). Different levels of signifi cance of are indicated 
(p ≤ 0.05, ** and p ≤ 0.01, ***).
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7-cyano-7-deazaguanine synthase APE_1470.1 QUEC_AERPE ***

Uncharacterized protein APE_1495.1 Q9YBV5_AERPE ***

Threonine dehydratase APE_1498.1 Q9YBV1_AERPE ***

Uncharacterized protein APE_1510.1 Q9YBT9_AERPE ***

Putative tRNA(Met) cytidine 
acetyltransferase

APE_1543 TMCA_AERPE ***

ABC transporter APE_1548.1 Q9YBQ1_AERPE ***

Putative ATP-dependent adenyltransferase APE_1594 Q9YBK4_AERPE ***

Signal recognition particle APE_1735 SRP54_AERPE ***

Transcription factor E APE_2004.1 TFE_AERPE ***

Probable cysteine desulfurase APE_2023 CSD_AERPE ***

UPF0284 protein APE_2029.1 Y2029_AERPE ***

Glycosyl transferase, group 1 APE_2066.1 Q9YA73_AERPE **

Uncharacterized protein APE_2178.1 Q9Y9W1_AERPE ***

Protein kinase APE_2208.1 Q9Y9T0_AERPE ***

Aldehyde dehydrogenase, large subunit APE_2216.1 Q9Y9S2_AERPE ***

Aldehyde dehydrogenase, middle subunit APE_2219 Q9Y9R9_AERPE ***

Long-chain-fatty-acid--CoA ligase APE_2284.1 Q9Y9K4_AERPE ***

Uncharacterized protein APE_2360.1 Q9Y9C7_AERPE **

Electron transfer fl avoprotein beta-subunit APE_2418.1 Q9Y967_AERPE ***

Uncharacterized protein APE_2425 Q9Y960_AERPE ***

RNA (Cytosine-C(5)-)-methyltransferase APE_2465.1 Q9Y919_AERPE ***

Uncharacterized protein APE_2481.1 Q9Y903_AERPE ***

Branched-chain amino acid ABC transporter APE_2526 Q9Y8V8_AERPE **

Probable arsenite oxidase large subunit APE_2556.1 Q9Y8S7_AERPE ***

Oxygen >>> Perchlorate

Proteins Locus tag UniProt

Uncharacterized protein APE_0258.1 Q9YFI8_AERPE ***

Uncharacterized protein APE_0416.1 Q9YF24_AERPE ***

Xaa-Pro dipeptidase APE_0526.1 Q9YEQ3_AERPE ***
Phospho-2-dehydro-3-deoxyheptonate 
aldolase APE_0581.1 Q9YEJ7_AERPE **

Uncharacterized protein APE_0605.1 Q9YEH1_AERPE ***
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Uncharacterized protein APE_0784.1 Q9YDY5_AERPE ***

Heme-copper oxidase subunit II APE_0792.1 AOX2_AERPE ***

Heme-copper oxidase subunit I+III APE_0793.1 AOX1_AERPE ***

UPF0130 protein APE_0816 Y816_AERPE ***

Uncharacterized protein APE_1059 Q9YD53_AERPE **
tRNA N6-adenosine 
threonylcarbamoyltransferase APE_1135 KAE1_AERPE **

Uncharacterized protein APE_1164 Q9YCU8_AERPE ***

Sulfate adenylyltransferase APE_1197.1 SAT_AERPE ***

Uncharacterized protein APE_1326.1 Q9YCD0_AERPE **

7-cyano-7-deazaguanine synthase APE_1470.1 QUEC_AERPE ***
Oligopeptide ABC transporter, ATP binding 
protei APE_1578 Q9YBM0_AERPE ***

Alcohol dehydrogenase APE_1963.1 Q9YAH6_AERPE **

Uncharacterized protein APE_1966 Q9YAH3_AERPE **

Transcription factor E APE_2004.1 TFE_AERPE ***

Glycosyl transferase, group 1 APE_2066.1 Q9YA73_AERPE **

Aldehyde dehydrogenase, large subunit APE_2216.1 Q9Y9S2_AERPE ***

Dipeptide ABC transporter APE_2263.1 Q9Y9M5_AERPE ***

Long-chain-fatty-acid--CoA ligase APE_2284.1 Q9Y9K4_AERPE ***

Uncharacterized protein APE_2311.1 Q9Y9H7_AERPE ***

Uncharacterized protein APE_2352.1 Q9Y9D5_AERPE ***

Uncharacterized protein APE_2458a Q05DW9_AERPE **

Tryptophan--tRNA ligase APE_2461.1 SYW_AERPE ***

RNA (Cytosine-C(5)-)-methyltransferase APE_2465.1 Q9Y919_AERPE ***

Branched-chain amino acid ABC transporter APE_2526 Q9Y8V8_AERPE **

Probable arsenite oxidase large subunit APE_2556.1 Q9Y8S7_AERPE ***
Molybdopterin oxidoreductase, iron-sulfur 
binding subunit APE_2605.1 Q9Y8M7_AERPE ***

Molybdopterin oxidoreductase, membrane 
subunit APE_2607 Q9Y8M5_AERPE ***

Molybdopterin oxidoreductase, 
molybdopterin binding subunit APE_2610 Q9Y8M2_AERPE ***

Chlorate >>> Oxygen
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Proteins Locus tag UniProt

Uncharacterized protein APE_0725.1 Q9YE45_AERPE ***

Chlorate >>> Perchlorate

Proteins Locus tag UniProt

Uncharacterized protein APE_0258.1 Q9YFI8_AERPE **

Uncharacterized protein APE_1966 Q9YAH3_AERPE **

Thymidylate synthase ThyX APE_2064.1 THYX_AERPE ***

Dipeptide ABC transporter APE_2263.1 Q9Y9M5_AERPE ***

Uncharacterized protein APE_2352.1 Q9Y9D5_AERPE ***

Tryptophan--tRNA ligase APE_2461.1 SYW_AERPE ***
Molybdopterin oxidoreductase, membrane 
subunit APE_2607 Q9Y8M5_AERPE ***

Molybdopterin oxidoreductase, 
molybdopterin binding subunit APE_2610 Q9Y8M2_AERPE ***

Perchlorate >>> Oxygen

Proteins Locus tag UniProt

Uncharacterized protein APE_0725.1 Q9YE45_AERPE ***

Uncharacterized protein APE_1971.1 Q9YAG8_AERPE ***

Perchlorate >>> Chlorate

Proteins Locus tag UniProt

30S ribosomal protein S4e APE_0356.1 RS4E_AERPE ***

30S ribosomal protein S19 APE_0367.1 RS19_AERPE ***

Probable tRNA sulfurtransferase APE_0465.1 THII_AERPE ***
tRNA 
(guanine(26)-N(2))-dimethyltransferase APE_0782.1 TRM1_AERPE ***

Branched-chain amino acid ABC transporter APE_0919 Q9YDJ4_AERPE ***

Uncharacterized protein APE_1510.1 Q9YBT9_AERPE **

Transport system kinase APE_1683.1 Q9YBB4_AERPE ***

Probable cysteine desulfurase APE_2023 CSD_AERPE ***

Protein kinase APE_2208.1 Q9Y9T0_AERPE ***

Glutamyl-tRNA reductase APE_2296 HEM1_AERPE ***

Hydantoin utilization protein APE_2530.1 Q9Y8V4_AERPE ***
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GENERAL DISCUSSION

Microbial (per)chlorate reduction was reported for the fi rst time in 1928 (1). 
Especially research conducted in the fourth quarter of the 20th century 
unraveled this metabolism of facultative anaerobic mesophilic bacteria 

(2). The isolation of the fi rst axenic cultures of (per)chlorate-reducing bacteria, the 
characterization of key enzymes and the exploration of the genetic fundament has 
described an “exotic” anaerobic metabolism, that forms dioxygen under oxygen-free 
conditions (3). Microbial (per)chlorate reduction at high temperature has barely 
been reported (4, 5), although it is a thermodynamically favorable process (6).
In the current work, research on microbial (per)chlorate reduction at elevated 
temperatures is described. Results of this study did not only expand microbial (per)
chlorate reduction up to 100°C, but also discovered a metabolism that differs from 
the classical (per)chlorate reduction at low temperatures. Consistent observations 
were made regarding the interactions of biotic and abiotic reactions involving sulfur 
compounds that enable complete (per)chlorate reduction in (hyper)thermophiles. 
In addition to the scientifi c value of this work the potential benefi t of (per)chlorate 
and (per)chlorate-reducing microorganisms for industrial applications is discussed 
from the angle of petroleum recovery.

CLASSICAL (PER)CHLORATE REDUCTION

Almost all (per)chlorate-reducing microorganisms that have been described so far 
are mesophilic bacteria (7). They are mostly facultative anaerobes affi liated with 
the phylum Proteobacteria (two others are belonging to the Firmicutes) and they can 
be found in a broad range of environments, including pristine soils. (Per)chlorate 
reducers couple the reduction of (per)chlorate to the oxidation of organic and 
inorganic electron donors, while acetate is the most commonly utilized substrate by 
the microorganisms (2).
The classical pathway of complete biological perchlorate reduction involves the action 
of two enzymes, perchlorate (Pcr) or chlorate reductase (Clr) and chlorite dismutase 
(Cld) (8, 9). Perchlorate reductase catalyzes the fi rst two reduction steps, from 
perchlorate to chlorate and from chlorate to chlorite, while chlorite is disproportioned 
by chlorite dismutase to chloride and molecular oxygen. Microorganisms that cannot 
use perchlorate but reduce chlorate employ genetically distinct chlorate reductases 
(10). Pcr and Clr are enzymes that belong to the DMSO II type reductases and have 
their alpha-subunits located in the periplasm. Pcr and Clr resemble nitrate reductases 
and other DMSO II oxidoreductases that use molybdopterin as cofactor (11). 
Chlorite dismutase is an enzyme that forms oxygen and chloride by the 
disproportionation of chlorite under oxygen-free conditions (3). The detoxifi cation 
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of chlorite, a highly toxic compound for the cell is the crucial step in (per)chlorate 
reduction and assigns a key function to chlorite dismutase in this metabolism. 
In addition to the functionally characterized Cld from known (per)chlorate-reducing 
bacteria, there is a huge number of microorganisms with Cld-like proteins encoded 
in their genomes (12, 13). In the Integrated Microbial Genomes (IMG) database 
(14), around 500 completed genomes contain genes that encode chlorite-dismutase 
family proteins (pfam06778) (Chapter 2). It is unknown how many of these proteins 
can actually dispoportionate chlorite and whether this may enable respective 
microorganisms to grow by (per)chlorate reduction. Recently a highly effi cient 
Cld of Nitrobacter winogradskyi was described; this enzyme is different in size 
and structure from previously characterized Cld (13). This fi nding indicates the yet 
unknown diversity of functionally effi cient enzymes and microorganisms involved 
in the reduction of (per)chlorate. Based on the presence of genes which remotely 
resemble the ones of Cld in genome-sequenced microorganisms, we selected and 
tested (hyper)thermophilic bacteria and archaea for their capability to grow by (per)
chlorate reduction (Chapter 6).
The investigations described in this thesis discovered unexpected mechanisms during 
microbial (per)chlorate reduction that do not employ the action of Cld; normally 
regarded as prerequisite for (per)chlorate reduction. These alternative strategies for 
complete (per)chlorate reduction coupled to growth are described hereafter and are 
compared with the classical metabolism relying on Cld.

(PER)CHLORATE REDUCTION SENSU LATO

This thesis presented new insights in microbial (per)chlorate reduction at high 
temperature, a rarely explored fi eld of research until now. Findings of this study 
extended this anaerobic metabolism to hyperthermophilic archaea and additional 
thermophilic Gram-positive bacteria (Chapter 3, Chapter 6) and described an 
alternative pathway to classical mesophilic (per)chlorate reduction. It was shown that 
the complete microbial reduction of (per)chlorate to chloride does not necessarily 
rely on the presence of a functional chlorite dismutase (Chapter 3). The presence 
and regeneration of reduced sulfur compounds enables an alternative pathway of 
(per)chlorate reduction in Archaeoglobus fulgidus (lacking Cld), where continuously 
formed chlorite is eliminated by sulfi de, forming sulfur compounds of higher 
oxidation states (SxOy

z-).

Biological (per)chlorate reduction
The initial step of (per)chlorate reduction in A. fulgidus (from perchlorate to chlorite) 
is mediated by a DMSO II oxidoreductase (Af_0174-0176; Af_0173 is a chaperone) 
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that is only moderately related to known Pcr (Chapter 3). This enzyme has been 
associated with Nar-type enzymes, but unlike the bacterial Nar, Af_0173-0176 
seems to have its catalytic subunit located in the periplasm (15).
Such periplasmic Nar-type nitrate reductases were biochemically characterized from 
three archaeal species (16-18). Similar to respiratory nitrate reductases of bacteria, 
the pNar from Haloferax meditteranei and Pyrobaculum aerophilum utilize chlorate 
(17, 19). The activity toward perchlorate has unfortunately not been assessed.
Similary, Aeropyrum pernix was shown to grow by the reduction of (per)chlorate in 
the absence of a functional chlorite dismutase (Chapter 6). In contrast to A. fulgidus 
this crenarchaeal microorganism was formerly described as a strict aerobe. The newly 
discovered trait in A. pernix showed, next to the absence of a functional Cld, other 
consistencies with the (per)chlorate-reducing metabolism of A. fulgidus. A putative 
nitrate reductase was identifi ed as the most probable enzyme for the reduction of 
perchlorate and chlorate to chlorite. Also this enzyme is other than bacterial Nar-type 
enzymes positioned with its catalytic subunit on the outside of the cell. The role of 
sulfur compounds for the abiotic oxidation of chlorite during (per)chlorate reduction 
was demonstrated. In contrast to A. fulgidus (per)chlorate reduction in A. pernix is 
not based on sulfi de, but the reactivity of thiosulfate (present in the medium) with 
chlorite, accumulating sulfate and chloride. In Chapter 6 also two Firmicutes are 
described, C. hydrogenoformans and a strain belonging to Moorella glycerini (strain 
NMP), that were able to couple growth to (per)chlorate reduction, while lacking 
chlorite dismutase. The similarity to the above-mentioned archaeal (per)chlorate-
reducing metabolism is obvious. As for another Moorella strain chlorite dismutase 
activity was reported (4) further research is needed to elucidate the perchlorate-
reducing pathway in this genus.

Chemical chlorite elimination
The periplasmic location of (per)chlorate-reducing enzymes may be the key for 
complete (per)chlorate reduction in the absence of a Cld, exposing chlorite to 
potential chemical scavengers in the environment (e.g. sulfi de, thiosulfate). The 
fate of chlorite during (per)chlorate reduction and the hereupon-based formation 
of oxidized sulfur compounds was investigated in more detail in Chapter 4. 
Additional evidence was obtained that A. fulgidus depends on abiotic reactions 
(reducing chlorite) based on sulfur compounds to drive (per)chlorate reduction. 
An intraspecies “sulfur loop” in A. fulgidus is established, consisting of abiotic 
oxidation and biotic reduction processes, that recycles reducing agents for further 
chlorite scavenging. This was also indicated by the increased presence of enzymes 
involved in the reduction of elemental sulfur/polysulfi de and tetrathionate during 
growth on (per)chlorate (Chapter 3). The (periodic) accumulation of elemental sulfur 
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and the biological reduction of elemental sulfur during (per)chlorate reduction in A. 
fulgidus was shown (Chapter 4), which strengthened the model of a “sulfur loop”. 
Another potentially important intermediate in the “sulfur-based” loop, tetrathionate 
was shown to be reduced as sole electron acceptor by A. fulgidus. It is therefore 
apparent that A. fulgidus is able to grow on (per)chlorate because it couples (per)
chlorate reduction to its sulfur metabolism.
The above discussed intraspecies “sulfur loop” during (per)chlorate reduction 
was most detailed investigated with A. fulgidus, but also the other, here described 
thermophilic (per)chlorate-reducing species are likely employing such strategies. 
Particularly C. hydrogenoformans and M. glycerini strain NMP, which grew by 
(per)chlorate reduction, have a wide set of “sulfur enzymes” (20) (Chapter 6) that 
possibly regenerate sulfi de during (per)chlorate reduction, needed for the chemical 
elimination of chlorite. 
The high chemical reactivity of other potentially relevant chemical scavengers for 
chlorite (e.g. ferrous iron) was confi rmed in Chapter 4; however (per)chlorate reduction 
of A. fulgidus was only observed in presence of sulfi de or thiosulfate (as reducing 
agents). Although ferrous chloride was added in excess to the medium (with parts 
of it precipitated as FeS), A. fulgidus was not able to grow by perchlorate reduction. 
Possibly reaction rates of ferrous iron with chlorite are lower than compared with 
the ones of sulfi de with chlorite (which could not be assessed accurately enough in 
the trials of Chapter 4) and may consequently lead to the inhibition of (per)chlorate 
reduction. 

Extracellular chlorite formation
Apart from the dependence on effi cient chlorite scavengers, the subcellular location 
of the (per)chlorate-reducing enzyme seems of major importance. The ability of 
bacterial nitrate reductases (Nar-type) to reduce chlorate has been known for a long 
time (21). However, due to their cytoplasmic location this reduction accumulates 
toxic chlorite in the cell, which does not enable growth or the continuous reduction 
of chlorate. Perchlorate and chlorate reductases have their catalytic subunits located 
outside of the cell, where chlorite is rapidly disproportionated by the periplasmic 
enzyme chlorite dismutase during classical (per)chlorate reduction. 
In the absence of chlorite dismutase, the periplasmic location of (per)chlorate-
reducing enzymes seems to matter particularly, since chlorite has to be accessible for 
chemical reducing agents that promptly eliminate the toxic intermediate (Chapter 3 
and 4). 
Indirect proof for this assumption was shown within this thesis by the observation 
that all here identifi ed (per)chlorate-reducing (hyper)thermophiles employ enzymes 
with periplasmic alpha-subunits for (per)chlorate reduction (Chapter 3 and 6). 
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SUBSTRATE AMBIGUITY IN MO-ENZYMES

The ambiguity in the substrate range of enzymes within the DMSO II family allows 
speculation on the diversity of enzymes (next to classical chlorate and perchlorate 
reductases) that can reduce perchlorate or chlorate; forming chlorite. Particularly 
interesting are the above-mentioned (p)Nar-type nitrate reductases and selenate 
reductases that are closely related to perchlorate and chlorate reductases within the 
DMSO II enzyme family. Both enzymes in fact reduce chlorate in addition to nitrate 
or selenate (19, 22). Other molybdenum-enzymes like DMSO reductase (Dor) and 
trimethylamine N-oxide reductase (Tor) have also been reported to reduce chlorate, 
whereas the periplasmic Nap-type nitrate reductase lacks this trait (23-25). The 
activity of these enzymes toward perchlorate has hardly been tested. One of the few 
exceptions is the respiratory nitrate reductase of Marinobacter hydrocarbonoclasticus 
strain 617 (22). For this enzyme, a signifi cantly lower effi ciency for perchlorate 
reduction compared to chlorate and nitrate reduction was measured. 
In summary it seems that a considerable range of molybdenum enzymes in general, 
and DMSO II enzymes in particular, have the potential to reduce chlorate (and 
possibly perchlorate) (Fig. 1), although in most cases with lower effi ciency. In this 
context also the pNar-like enzyme of A. fulgidus and its relatedness to other enzymes 
suggests promising candidates for (per)chlorate reduction. 
Proteins that have a high similarity with the pNarG-like subunit (Af_0176) of A. 
fulgidus (Chapter 3) can be found in other archaea (Ferroglobus placidus, Ferp_0124), 
mesophilic (Desulfosporosinus meridiei, Desmer_2075; Desulfi tobacterium 
dehalogenans, Desde_0947; Desulfi tobacterium dichloroeliminans, Desdi_0326) and 
thermophilic bacteria [Carboxydothermus hydrogenoformans, Cyh_2082; Moorella 
thermoacetica, Moth_1908; Moorella glycerini, strain NMP, Mo-oxidoreductase 
(Chapter 6)]. For some of these enzymes, the potential function as a pNar was 
discussed earlier (19). Here, their potential as (per)chlorate-reducing enzymes is 
proposed.
The sequence similarity and probable periplasmic location of these enzymes 
combined with circumstantial analogies of the respective microbes with A. fulgidus 
[(hyper)thermophily and (strict) anaerobicity] may be indicators for (per)chlorate 
reduction. Taking into account that all the respective microbes lack Cld, it would 
require chlorite elimination strategies similar to the ones in A. fulgidus to enable 
complete (per)chlorate reduction. The observation that C. hydrogenoformans (and 
M. glycerini strain NMP) were found to reduce (per)chlorate (Chapter 6) strengthens 
these assumptions.
C. hydrogenoformans has two putative nitrate reductases encoded in its genome (27), 
one is a putative pNar-type reductase (pNarG: Cyh_2082) and resembles Af_0173-
0176 of A. fulgidus and the other one a nitrate reductase related to the Nap-type (NapA: 



145

General Discussion

77
Figure 1: Diversity of catalytic subunits of selected DMSO Mo-enzymes. Protein sequences of 
characterized enzymes (bold) and uncharacterized molybdopterin oxidoreductases. (Partial) sequences 
retrieved from metagenomic datasets of oil reservoir environments are also displayed; red dots mark the 
periplasmic location of the catalytic subunit for characterized enzymes [otherwise predicted by PRED-
TAT, Bagos et al. (26)], whereas green dots indicate activity with chlorate (next to the canonical enzyme 
function). For most of the enzymes no data are available regarding their activity toward perchlorate. 
The phylogenetic tree was constructed using the Neighbor-Joining method. Bootstrap values above 
70% (based on 500 replicates) are indicated by nodes at the respective branches. Evolutionary distances 
of the tree were computed using the Poisson correction method; the scale bar indicates amino acid 
substitutions per site.
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Chy_0601) (although not predicted to be translocated via the membrane). Given 
the similarity with Af_0173-0176 it seems likely that (per)chlorate reduction by C. 
hydrogenoformans (Chapter 6) is based on the fi rst of the two mentioned enzymes, 
whereas it is not clear which of the two enzymes is reducing nitrate; a trait earlier 
reported for C. hydrogenoformans (20). Interestingly, the nitrate reducer Ferroglobus 
placidus possesses in addition to the above-mentioned enzyme resembling Af_0173-
0176 (Ferp_0121-0124), also a cytoplasmic Nar-type enzyme in its genome (alpha-
subunit: Ferp_0311, whole enzyme: Ferp_0311-0314) (28). The above-mentioned 
Ferp_0121-0124 is a molybdopterin oxidoreductase with unknown function and has 
its catalytic subunit predicted to be outside of the cell. The high similarity between 
Af_0176 and Ferp_0124 suggests that F. placidus has a system for the reduction 
of (per)chlorate that is distinct from the one for the reduction of nitrate. Further 
investigations are required to confi rm this hypothesis. 
Overall, the above-mentioned group of enzymes related to Af_0173-0176 seem to 
be a deep-rooting branch in the phylogeny of DMSO II enzymes (Fig. 2), which may 
indicate the ancient character of these (probably chlorate- and perchlorate-reducing) 
enzymes. 

SYNTROPHIC PERCHLORATE REDUCTION 
Next to classical (per)chlorate reduction based on Cld (Fig. 2A) and the complete 
(per)chlorate reduction, involving an intraspecies “sulfur loop” (like in A. fulgidus) 
(Fig. 2B), it was speculated whether (per)chlorate reduction could also be established 
based on an interspecies “sulfur loop”. This would require a close interaction between 
two (or more) microorganisms, in which one partner reduces perchlorate to chlorite 
and the other one reduces oxidized sulfur compounds, deriving from the chemical 
reduction of chlorite to regenerate sulfi de for continuous (per)chlorate reduction (Fig. 
2C). Such syntrophic interactions during (per)chlorate reduction may theoretically 
also be based on elements other than sulfur such as iron, involving an iron-reducing 
and a (per)chlorate-reducing microorganism. The most critical factor determining 
the feasibility of this syntrophy will probably be once more the availability and 
reactivity of the reduced scavenging compound with chlorite. 
Some indications for syntrophic perchlorate reduction were obtained for a consortium 
that grew with perchlorate and acetate (Chapter 5). Despite the efforts, no pure 
culture could be obtained, indicating the necessity for biological complexity under 
these conditions. Supporting arguments for syntrophic perchlorate reduction derived 
from a community analysis, confi rming mostly species related to known sulfur/
sulfate reducers in the culture. In addition to that a microorganism related to a Gram-
positive nitrate-reducing thermophile was identifi ed; the most promising candidate 
for (per)chlorate reduction. Given the fact that sulfur in the medium was only added 
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as sulfi de it is likely that similar reactions as described for A. fulgidus occur, but 
mediated by an interspecies “sulfur loop” involving  several microorganisms (Fig. 
2C). To get more insight in the exact dimension of this interspecies “sulfur loop” and 
its participants, future experiments are required.
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Figure 2: Schematic overview of microbial (per)chlorate reduction. A) “classical” (per)chlorate 
reduction involving a functional chlorite dismutase (Cld) (mainly found in mesophilic Proteobacteria), 
B) (per)chlorate reduction in the absence of Cld, employing an intraspecies “sulfur loop” (as found in 
Archaeoglobus fulgidus), C) syntrophic (per)chlorate reduction, involving interspecies sulfur transfer 
(as Chapter 5 indicates). (Per)chlorate-reducing enzymes are shown in green, chlorite dismutase and 
terminal oxidase in red and blue respectively. Enzymes involved in the reduction of oxidized sulfur 
compounds (e.g. S0, S2O3

2-, S4O6
2-, etc.) are shown in yellow. (This fi gure was also used in a recently 

submitted  manuscript). 

(PER)CHLORATE REDUCTION AND ANCIENT LIFE

Estimates of how long ago natural perchlorate formation and deposition on Earth 
began range up to many millions of years (29). This has given rise to speculations 
on the early evolution of enzymes adapted to (per)chlorate (5). The broad range of 
stereochemically distinct substrates (nitrate, chlorate and possibly perchlorate) (21) 
used by some enzymes within the DMSO enzyme family could have been such an 



148

Chapter 7 

77

early adaptation. 
The growth-coupled reduction of (per)chlorate by ancient microorganisms linked to 
sulfur metabolism, like it was found in A. fulgidus, represents a “living on the edge” 
situation where highly oxidative intermediates are formed, causing notable redox 
stress response in the metabolism of strict anaerobes (Chapter 3). This might have 
occurred already a long time ago in sulfur-/sulfate-utilising microorganisms under the 
highly reduced atmosphere of early Earth (Fig. 2B) or in consortia of microorganisms 
that metabolized (per)chlorate syntrophically (as indicated in Chapter 5) (Fig. 2C). 
Such reactions may have infl uenced the development of enzymes and life forms 
adapted to an oxidized atmosphere. 

(PER)CHLORATE IN THE OIL BUSINESS 
There is also industrial interest for studying microorganisms that perform (per)
chlorate reduction at elevated temperatures. As extensively covered in Chapter 2 
there is a broad diversity of microorganisms indigenous to oil reservoirs, of which 
some are associated with unwanted activities for petroleum recovery (like sulfate-
reducing microorganisms causing reservoir souring). 
Searching metagenomic datasets for the existence of enzymes involved in the 
microbial reduction of (per)chlorate in oil reservoirs resulted in the identifi cation of 
sequences related to characterized DMSO enzymes with known chlorate-reducing 
capability, like Nar, pNar and Tor (Fig. 1) (17, 21, 23). This may indicate the presence 
of enzymes that are able to reduce chlorate (and probably perchlorate) to chlorite. 
Most of the respective “oil reservoir sequences” are incomplete. Nevertheless, 
some of the sequences carry motifs, indicative for a periplasmic location of the 
protein, using PRED-TAT (26). Although neither classical perchlorate and chlorate 
reductases (Fig. 1), nor chlorite dismutases were identifi ed (Fig. 1 in Chapter 2) it 
is likely that (per)chlorate reduction sensu lato occurs in subsurface environments 
(containing sulfi de or other reduced compounds that can scavenge chlorite) upon the 
introduction of (per)chlorate.

Souring control
During the secondary recovery phase of petroleum production water injection 
is performed to increase the pressure and oil sweep effi ciency in the reservoir. 
Injected water introduces high concentrations of sulfate (contained in sea water) 
into offshore oil fi elds. Sulfate-reducing prokaryotes (SRP) thriving in oil fi elds, 
such as A. fulgidus, reduce sulfate to hydrogen sulfi de coupled to organic carbon 
oxidation causing reservoir souring. Sulfi de formation is associated with corrosion, 
metal precipitations (plugging) and high toxicities (30). These effects are commonly 



149

General Discussion

77

mitigated by the addition of nitrate during water injection in oil reservoirs, acting on 
several levels: the competitive exclusion of SRP by more effi cient nitrate-reducing 
bacteria competing for same electron donors (31);  the enzymatic inhibition of the 
dissimilatory sulfi te reductase by nitrite (an intermediate during the reduction of 
nitrate) (32); and the oxidation of formed sulfi de by nitrate-reducing bacteria (33).
However, in both low and hot temperature oil reservoirs nitrate often proves to have 
insuffi cient impact on the sulfate-reducing community. For both scenarios this is 
associated with the zonation of different functional groups of microorganisms (SRP, 
NRP, etc.) throughout the reservoir (34) (Chapter 2).
In order to fi nd improved strategies for souring mitigation the potential of (per)
chlorate was evaluated in this study. Although mesophilic (per)chlorate reducers may 
be present in or introduced to oil reservoirs (Chapter 2) their viability throughout 
(mostly) hot oil fi elds is doubtful. 
Archaeoglobus fulgidus on the other hand is a microorganism widely found in 
hot subsurface environments and it is regarded as one of the major contributors 
to reservoir souring in hot oil fi elds (35, 36). Observations that the archaeon had 
diffi culties to resume with the reduction of sulfate after the exposure to chlorate 
(Chapter 3), were particularly interesting in the context of souring mitigation. In 
follow-up experiments (Chapter 4), it was shown that A. fulgidus had prolonged lag 
phases on sulfate after long-term exposure to perchlorate. This was only overcome 
after several subsequent transfers of the cultures to sulfate as sole electron acceptor. 
The inability to readapt quickly to sulfate is a desired property from an operational 
view in souring control since the dosing of (per)chlorate to the oil reservoir may not 
be required continuously, and thus will save costs.
The molecular mechanisms of this inhibitory effect are not identifi ed yet, but may 
be associated with increased redox stress caused during (per)chlorate reduction in 
A. fulgidus (Chapter 3) and possibly with an inhibiting interaction of perchlorate (a 
chemical analogue of molybdate) with ATP sulfurylase.   
The formation of nitrite by A. fulgidus in unreduced medium pointed to another 
valuable property of the microorganism for souring mitigation, the accumulation of 
nitrite by nitrate reduction (Chapter 4). The incomplete reduction of nitrate was not 
coupled to growth and occurred only in perchlorate pre-grown cultures, whenever 
sulfi de was left out from anaerobic medium (causing a raise in redox potential). 
Nitrite is an effi cient inhibitor of the sulfi te reductase of SRP and may be particularly 
effective against thermophiles, due to the absence of nitrite reductase (37). In fi eld 
operations it might be feasible to trigger the in-situ formation of nitrite by alternating 
dosing of (per)chlorate and nitrate for souring control. In contrast to the direct 
dosage of nitrite, this in-situ formation would become effective deep in the reservoir 
and directly affect SRP (in case of A. fulgidus) or SRP close-by. Additionally the 
biologically in-fi eld release of nitrite would, contrary to the massive dosing of nitrite, 
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not have detrimental consequences in terms of corrosion.
Due to the apparent low abundance (or absence) of hyperthermophilic nitrate 
reducers [based on meta-analyses of metagenome datasets (Chapter 2) and indirectly 
confi rmed by the inexistence of respective isolates], nitrate may be less effective 
for souring control in hot oil reservoirs than (per)chlorate. It seems as if the use of 
(per)chlorate has complementary effects to the use of nitrate, which suggests the 
additional benefi t of its application for souring control in (hot) oil reservoirs.

Microbial enhanced oil recovery (MEOR) 
The ability of A. fulgidus to couple (per)chlorate reduction to butyrate oxidation 
(Chapter 3), one of the volatile fatty acids that is commonly found in oil reservoirs 
(besides hydrocarbons) (38, 39), may result in growth without the additional 
dosing of further substrates [besides (per)chlorate] to oil reservoirs. This is from an 
economical point a valuable factor for the feasibility of a new application. Acetate 
which is the most abundant volatile fatty acid in oil reservoir could also be coupled 
to high temperature perchlorate reduction (Chapter 5).
The recently demonstrated anaerobic oxidation of long-chain alkanes and alkenes by 
A. fulgidus coupled to sulfate reduction (40, 41) may also be linked to (per)chlorate 
reduction and in case that occurs in oil fi elds, drain substrates that are normally used 
for sulfi de generation. This would not only result in lowered sulfi de formation (and 
thus reduced reservoir souring), but also stimulate growth based on easily available 
substrates; a benefi cial effect for higher sweeping effi ciencies during water fl ooding 
(through conformance control based on in-situ biomass formation). The use of (per)
chlorate would consequently result in microbial enhanced oil recovery (MEOR) in 
addition to souring mitigation.

CONCLUDING REMARKS AND OUTLOOK

This thesis gained insight in microbial (per)chlorate reduction at high temperatures 
and expanded this trait to hyperthermophilic microorganisms in the phylum 
Crenarchaeota and Euryarcheaota (Fig. 3). 
Ample evidence was collected for a metabolism where the complete reduction of (per)
chlorate is tightly bound to (a)biotic redox reactions involving sulfur compounds. In 
this sense the described physiology of (hyper)thermophilic (per)chlorate reducers 
differs notably from the classical metabolism known from mesophilic bacteria. 
Considering the number of enzymes reducing chlorate (and possibly perchlorate) 
it seems apparent that this trait is present in a yet underestimated diversity of 
microorganisms, particularly in reduced environments (and in presence of sulfur). 
This could enable axenic and syntrophic cultures to grow by the reduction of (per)
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speculate on the utilization of naturally formed perchlorate by ancient anaerobes on 
early Earth and how that infl uenced the evolution of redox- and oxygen stress response 
mechanisms. Particularly interesting would also be to shed further light on the 
functions of uncharacterized molybdopterin oxidoreductases of hyperthermophiles, 
which harbor a rich potential of unknown biotransformations, such as (per)chlorate 
reduction.

Figure 3: The tree of life, displaying the three different domains: Bacteria (blue), Archaea (orange) 
and Eukarya (green). Phyla containing (per)chlorate-reducing members are written in bold. The current 
study expanded the knowledge on microbial (per)chlorate reduction to hyperthermophilic members of 
the Euryarcheaota and to the Crenarchaeota.
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The obtained results show that it is worthy to further assess the use of (per)chlorate for 
industrial applications, such as souring control in oil reservoirs. It was demonstrated 
that the sulfate reduction capabilities of Archaeoglobus fulgidus were only slowly 
resuming after exposure to perchlorate. These results are of great industrial interest 
and it will be the objective of applied research efforts in future to confi rm these 
fi ndings in continuous systems (preferably core-fl ooding experiments with changing 
electron acceptor conditions) to simulate more closely in-fi eld situations and to 
develop a sustainable process.

LITERATURE

1. Aslander A. 1928. Experiments on the eradication of Canada Thistle, Cirsium arvense, with 
chlorates and other herbicides. J. Agric. Res. 36:915-935.

2. Coates JD, Achenbach LA. 2004. Microbial perchlorate reduction: Rocket-fuelled metabolism. 
Nat. Rev. Microbiol. 2:569-580.

3. van Ginkel CG, Rikken GB, Kroon AGM, Kengen SWM. 1996. Purifi cation and 
characterization of chlorite dismutase: A novel oxygen-generating enzyme. Arch. Microbiol. 
166:321-326.

4. Balk M, van Gelder T, Weelink SA, Stams AJM. 2008. (Per)chlorate reduction by the 
thermophilic bacterium Moorella perchloratireducens sp. nov., isolated from underground gas 
storage. Appl. Environ. Microbiol. 74:403-409.

5. Liebensteiner MG, Pinkse MWH, Schaap PJ, Stams AJM, Lomans BP. 2013. Archaeal (Per)
Chlorate Reduction at High Temperature: An Interplay of Biotic and Abiotic Reactions. Science 
340:85-87.

6. Amend JP, Shock EL. 2001. Energetics of overall metabolic reactions of thermophilic and 
hyperthermophilic Archaea and Bacteria. FEMS Microbiol. Rev. 25:175-243.

7. Bardiya N, Bae JH. 2011. Dissimilatory perchlorate reduction: A review. Microbiol. Res. 
166:237-254.

8. Rikken GB, Kroon AGM, van Ginkel CG. 1996. Transformation of (per)chlorate into chloride 
by a newly isolated bacterium: Reduction and dismutation. Appl. Microbiol. Biotechnol. 45:420-
426.

9. Danielsson Thorell H, Stenklo TK, Karlsson J, Nilsson T. 2003. A gene cluster for chlorate 
metabolism in Ideonella dechloratans. Appl. Environ. Microbiol. 69:5585-5592.

10. Clark IC, Melnyk RA, Engelbrektson A, Coates JD. 2013. Structure and Evolution of Chlorate 
Reduction Composite Transposons. mBio 4:e00379-00313.

11. Bender KS, Shang C, Chakraborty R, Belchik SM, Coates JD, Achenbach LA. 2005. 
Identifi cation, characterization, and classifi cation of genes encoding perchlorate reductase. J. 
Bacteriol. 187:5090-5096.

12. Maixner F, Wagner M, Lucker S, Pelletier E, Schmitz-Esser S, Hace K, Spieck E, Konrat R, 
Le Paslier D, Daims H. 2008. Environmental genomics reveals a functional chlorite dismutase 
in the nitrite-oxidizing bacterium ‘Candidatus Nitrospira defl uvii’. Env. Microbiol. 10:3043-
3056.



153

General Discussion

77

13. Mlynek G, Sjoblom B, Kostan J, Fureder S, Maixner F, Gysel K, Furtmuller PG, Obinger C, 
Wagner M, Daims H, Djinovic-Carugo K. 2011. Unexpected Diversity of Chlorite Dismutases: 
a Catalytically Effi cient Dimeric Enzyme from Nitrobacter winogradsky. J. Bacteriol. 193:2408-
2417.

14. Markowitz VM, Chen IMA, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, 
Jacob B, Huang JH, Williams P, Huntemann M, Anderson I, Mavromatis K, Ivanova NN, 
Kyrpides NC. 2012. IMG: the integrated microbial genomes database and comparative analysis 
system. Nucleic Acids Res. 40:D115-D122.

15. Dridge EJ, Richardson DJ, Lewis RJ, Butler CS. 2006. Developing structure-based models 
to predict substrate specifi city of D-group (Type II) molybdenum enzymes: Application to a 
molybdo-enzyme of unknown function from Archaeoglobus fulgidus. Biochem. Soc. Trans. 
34:118-121.

16. Yoshimatsu K, Sakurai T, Fujiwara T. 2000. Purifi cation and characterization of dissimilatory 
nitrate reductase from a denitrifying halophilic archaeon, Haloarcula marismortui. FEBS Lett. 
470:216-220.

17. Afshar S, Johnson E, de Vries S, Schröder I. 2001. Properties of a thermostable nitrate reductase 
from the hyperthermophilic archaeon Pyrobaculum aerophilum. J. Bacteriol. 183:5491-5495.

18. Lledo B, Martinez-Espinosa RM, Marhuenda-Egea FC, Bonete MJ. 2004. Respiratory 
nitrate reductase from haloarchaeon Haloferax mediterranei: biochemical and genetic analysis. 
Biochim. Biophys. Acta 1674:50-59.

19. Martinez-Espinosa RM, Dridge EJ, Bonete MJ, Butt JN, Butler CS, Sargent F, Richardson 
DJ. 2007. Look on the positive side! The orientation, identifi cation and bioenergetics of 
‘Archaeal’ membrane-bound nitrate reductases. FEMS Microbiol. Lett. 276:129-139.

20. Henstra AM, Stams AJM. 2004. Novel physiological features of Carboxydothermus 
hydrogenoformans and Thermoterrabacterium ferrireducens. Appl. Environ. Microbiol. 
70:7236-7240.

21. Moreno-Vivian C, Cabello P, Martinez-Luque M, Blasco R, Castillo F. 1999. Prokaryotic 
nitrate reduction: Molecular properties and functional distinction among bacterial nitrate 
reductases. J. Bacteriol. 181:6573-6584.

22. Marangon J, de Sousa PMP, Moura I, Brondino CD, Moura JJG, Gonzalez PJ. 2012. 
Substrate-dependent modulation of the enzymatic catalytic activity: Reduction of nitrate, chlorate 
and perchlorate by respiratory nitrate reductase from Marinobacter hydrocarbonoclasticus 617. 
Biochim. Biophys. Acta 1817:1072-1082.

23. Yamamoto I, Okubo N, Ishimoto M. 1986. Further characterization of trimethylamine-N-oxide 
reductase from Escherichia coli, a molybdoprotein. J. Biochem. 99:1773-1779.

24. Weiner JH, MacIsaac DP, Bishop RE, Bilous PT. 1988. Purifi cation and Properties of 
Escherichia coli Dimethyl Sulfoxide Reductase, an Iron-Sulfur Molybdoenzyme with Broad 
Substrate Specifi city. J. Bacteriol. 170:1505-1510.

25. Bell LC, Richardson DJ, Ferguson SJ. 1990. Periplasmic and membrane-bound respiratory 
nitrate reductases in Thiosphaera pantotropha - The periplasmic enzyme catalyzes the fi rst step 
in aerobic denitrifi cation. FEBS Lett. 265:85-87.

26. Bagos PG, Nikolaou EP, Liakopoulos TD, Tsirigos KD. 2010. Combined prediction of Tat and 
Sec signal peptides with hidden Markov models. Bioinformatics 26:2811-2817.

27. Wu M, Ren QH, Durkin AS, Daugherty SC, Brinkac LM, Dodson RJ, Madupu R, Sullivan 
SA, Kolonay JF, Nelson WC, Tallon LJ, Jones KM, Ulrich LE, Gonzalez JM, Zhulin IB, 



154

Chapter 7 

77

Robb FT, Eisen JA. 2005. Life in hot carbon monoxide: The complete genome sequence of 
Carboxydothermus hydrogenoformans Z-2901. Plos Genet. 1:563-574.

28. Anderson I, Risso C, Holmes D, Lucas S, Copeland A, Lapidus A, Cheng JF, Bruce D, 
Goodwin L, Pitluck S, Saunders E, Brettin T, Detter JC, Han C, Tapia R, Larimer F, Land 
M, Hauser L, Woyke T, Lovley D, Kyrpides N, Ivanova N. 2011. Complete genome sequence 
of Ferroglobus placidus AEDII12DO. Stand. Genomic Sci. 5:50-60.

29. Kounaves SP, Stroble ST, Anderson RM, Moore Q, Catling DC, Douglas S, McKay CP, 
Ming DW, Smith PH, Tamppari LK, Zent AP. 2010. Discovery of Natural Perchlorate in the 
Antarctic Dry Valleys and Its Global Implications. Environ. Sci. Technol. 44:2360-2364.

30. Tang K, Baskaran V, Nemati M. 2009. Bacteria of the sulphur cycle: An overview of 
microbiology, biokinetics and their role in petroleum and mining industries. Biochem. Eng. J. 
44:73-94.

31. Hubert C, Voordouw G. 2007. Oil fi eld souring control by nitrate-reducing Sulfurospirillum 
spp. that outcompete sulfate-reducing bacteria for organic electron donors. Appl. Environ. 
Microbiol. 73:2644-2652.

32. Wolfe BM, Lui SM, Cowan JA. 1994. Desulfoviridin, a multimeric-dissimilatory sulfi te 
reductase from Desulfovibrio vulgaris (Hildenborough) - Purifi cation, characterization, kinetics 
and EPR studies. Eur. J. Biochem. 223:79-89.

33. Gevertz D, Telang AJ, Voordouw G, Jenneman GE. 2000. Isolation and characterization of 
strains CVO and FWKOB, two novel nitrate-reducing, sulfi de-oxidizing bacteria isolated from 
oil fi eld brine. Appl. Environ. Microbiol. 66:2491-2501.

34. Voordouw G, Grigoryan AA, Lambo A, Lin SP, Park HS, Jack TR, Coombe D, Clay B, 
Zhang F, Ertmoed R, Miner K, Arensdorf JJ. 2009. Sulfi de Remediation by Pulsed Injection 
of Nitrate into a Low Temperature Canadian Heavy Oil Reservoir. Environ. Sci. Technol. 
43:9512-9518.

35. Gittel A, Sørensen KB, Skovhus TL, Ingvorsen K, Schramm A. 2009. Prokaryotic community 
structure and sulfate reducer activity in water from high-temperature oil reservoirs with and 
without nitrate treatment. Appl. Environ. Microbiol. 75:7086-7096.

36. Beeder J, Nilsen RK, Rosnes JT, Torsvik T, Lien T. 1994. Archaeoglobus fulgidus isolated 
from Hot North Sea Oil Field Waters. Appl. Environ. Microbiol. 60:1227-1231.

37. Voordouw G. 2008. Impact of Nitrate on the Sulfur Cycle in Oil Fields, p. 308. In Dahl C, 
Friedrich CG (ed.), Microbial Sulfur Metabolism. Springer, Berlin Heidelberg.

38. Barth T. 1991. Organic-Acids and Inorganic-Ions in Waters from Petroleum Reservoirs, 
Norwegian Continental-Shelf - a Multivariate Statistical-Analysis and Comparison with 
American Reservoir Formation Waters. Appl. Geochem. 6:1-15.

39. Barth T, Riis M. 1992. Interactions between organic acid anions in formation water and reservoir 
mineral phases. Org. Geochem. 19:455-482.

40. Khelifi  N, Ali OA, Roche P, Grossi V, C. B-A, Valette O, Ollivier B, Dolla A, Hirschler-Rea 
A. 2014. Anaerobic oxidation of long-chain n-alkanes by the hyperthermophilic sulfate-reducing 
archaeon, Archaeoglobus fulgidus. ISME J. advance online publication:1-14.

41. Khelifi  N, Grossi V, Hamdi M, Dolla A, Tholozan JL, Ollivier B, Hirschler-Rea A. 2010. 
Anaerobic Oxidation of Fatty Acids and Alkenes by the Hyperthermophilic Sulfate-Reducing 
Archaeon Archaeoglobus fulgidus. Appl. Environ. Microbiol. 76:3057-3060.



155



156



157

Appendices

AA

APPENDICES

Summary

Samenvatting

Acknowledgements

About the author

List of publications

Overview of completed training activities



158

Appendices Summary

AA

SUMMARY

The microbial reduction of chlorate and perchlorate has been known for 
long as a respiratory process of mesophilic bacteria that thrive in diverse 
environments such as soils, marine and freshwater sediments. Chlorate and 

perchlorate are found in nature deriving from anthropogenic and natural sources 
and can, in the absence of oxygen, be reduced by respective microorganisms to 
chloride coupled to energy conservation and growth. These classical chlorate- and 
perchlorate-reducing microorganisms employ enzymes that reduce perchlorate 
(or chlorate) to the intermediate chlorite, followed by the disproportionation of 
chlorite to chloride and dioxygen. The latter has been regarded as key reaction 
for complete (per)chlorate reduction, catalyzed by the enzyme chlorite dismutase, 
which forms oxygen under anaerobic conditions. This de novo produced oxygen 
is reduced by terminal oxidases in the metabolism of facultative anaerobic (per)
chlorate-reducing microorganisms and can be used by oxygenases for the 
activation of recalcitrant substrates, as was shown earlier for hydrocarbons. 
The potentially stimulating effect of chlorate and perchlorate on microorganisms 
indigenous to petroleum reservoirs was discussed, seeking new strategies for 
microbial enhanced oil recovery (based on subsurface growth stimulation and partial 
hydrocarbon degradation) and reservoir souring control (by inhibiting sulfate-
reducing prokaryotes and diminishing sulfi de formation). 
This thesis reports the capability of hyperthermophilic and thermophilic prokaryotes 
that originate from subsurface environments to grow by the reduction of chlorate and/
or perchlorate. In contrast to the classical metabolism of mesophilic (per)chlorate-
reducing microorganisms this study demonstrated that a chlorite-disproportionating 
enzyme is commonly absent in (hyper)thermophilic (per)chlorate reducers. The 
absence of this enzyme that was previously defi ned as prerequisite for (per)chlorate 
reduction is overcome by the chemical reactivity of reduced sulfur compounds with 
chlorite generated. In the here more closely investigated hyperthermophilic archaea 
(Archaeoglobus fulgidus and Aeropyrum pernix) and thermophilic Firmicutes 
(Carboxydothermus hydrogenoformans and Moorella glycerini strain NMP) chlorite 
is formed by the activity of molybdopterin oxidoreductases. The respective enzymes 
are remotely related to perchlorate reductases of mesophilic bacteria and nitrate 
reductases of the bacterial Nar-type. In contrast to classical bacterial Nar-type 
enzymes, above-mentioned enzymes seem to have their catalytic subunits outside of 
the cell. As a consequence the reduction of (per)chlorate forms chlorite extracellularly 
where it reacts with reduced sulfur species present in the medium/environment (e.g. 
sulfi de), forming chloride anions and oxidized sulfur species (SxOy

z-).
The hyperthermophilic archaeon Archaeoglobus fulgidus reduces these chemically 
formed sulfur species concomitantly to (per)chlorate reduction, which regenerates 
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sulfi de for the continuous reduction of (per)chlorate. This interaction of biotic and 
abiotic reactions during (per)chlorate reduction establishes an intraspecies “sulfur 
loop” that enables complete reduction of perchlorate to chloride.
Whereas A. pernix also relies on the chemical reactivity of chlorite with thiosulfate, 
this archaeon does not employ systems for regenerating the reducing agents 
biologically; which is refl ected by the accumulation of sulfate during perchlorate 
reduction. The Crenarchaeon A. pernix, formerly known as a strictly aerobic 
microorganism, expands the trait of microbial (per)chlorate reduction up to 100°C.
In addition to the intraspecies “sulfur loop” of A. fulgidus, there were indications 
that the reduction of perchlorate may also proceed syntrophically, as indicated by 
a thermophilic bacterial consortium. In the respective culture, it seems that one 
microorganism reduces perchlorate, forming chlorite, which is chemically reduced 
by sulfi de to chloride anions and oxidized sulfur compounds. Another group of 
microorganisms uses the respective sulfur compounds as electron acceptors and  
regenerates sulfi de. Sulfur (of different redox states) depicts the mediating agent in 
this interspecies “sulfur loop”, but may possibly be substituted in nature by other 
compounds such as ferrous/ferric iron. 
Here presented (per)chlorate reduction sensu lato, which lacks the action of a 
chlorite-disproportionating enzyme may be widely spread among prokaryotes. For 
example enzymes closely resembling the designated (per)chlorate-reducing enzyme 
in Archaeoglobus fulgidus are also found in other strictly anaerobic thermophiles, of 
which C. hydrogenoformans and M. glycerini NMP were already confi rmed to grow 
by the reduction of (per)chlorate as well.
The substrate ambiguity of particular periplasmic DMSO enzymes may enable 
a broader group of microorganisms of (per)chlorate reduction sensu lato, in case 
sulfi de is present in the environment. A broadened substrate spectrum of respective 
enzymes (beyond their canonical function) may possibly have had evolutionary 
advantages. Chlorine oxyanions are naturally formed and have been introduced on 
Earth for ages already. The reduction of (per)chlorate and formation of chlorite in 
ancient anaerobic microorganisms may even have contributed to the evolution of 
proteins adapted to oxidizing conditions on early Earth and preceded the evolution 
of oxygenic photosynthesis. 
It is shown that subsurface-inhabiting (hyper)thermophiles are able to grow by the 
reduction of (per)chlorate, which is also of interest for applications in the fi eld of 
oil recovery. The fi nding that (per)chlorate reduction is interfering with the sulfur 
metabolism of a major contributor to reservoir souring in hot oil fi elds, A. fulgidus, 
draws promising scenarios for future attempts in developing novel souring control 
strategies.
(Per)chlorate reduction by A. fulgidus was also coupled to the oxidation of butyrate, 
a volatile fatty acid commonly present in petroleum reservoirs. For sustainable 
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applications in the oil recovery business, it is desirable to rely, as little as possible, 
on external substrates. In this respect the fact that A. fulgidus couples (per)chlorate 
reduction to the oxidation of butyrate is advantageous. Possibly the microorganism 
can also degrade long-chain alkanes and alkenes coupled to (per)chlorate reduction, 
a feature that was shown earlier coupled to sulfate reduction.
All together a shift of A. fulgidus from sulfate reduction to (per)chlorate reduction 
in oil fi elds would not only diminish souring, but maintain/stimulate in-situ growth 
of the microorganism (based on intrinsic carbon sources) which has additionally 
advantageous effects for improved sweeping effi ciencies during water fl ooding.
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SAMENVATTING

De microbiële reductie van chloraat en perchloraat is sedert lange tijd bekend 
als een respiratoir proces uitgevoerd door mesofi ele bacteriën die gedijen in 
diverse ecosystemen, zoals de aardbodem en zee- en zoetwatersedimenten. 

Het in de natuur aanwezige chloraat en perchloraat, afkomstig van zowel antropogene 
als natuurlijke bronnen, kan door de betreffende mirco-organismen in afwezigheid 
van zuurstof worden gereduceerd tot chloride ten behoeve van energie productie 
en groei. Deze klassieke chlorate- en perchloraat-reducerende micro-organismen 
gebruiken enzymen die perchloraat (of chloraat) omzetten in het intermediair 
chloriet, dat vervolgens middels disproportionering leidt tot de vorming van chloride 
en moleculair zuurstof. De laatstgenoemde wordt beschouwd als de belangrijkste 
reactie voor volledige (per)chloraat reductie die wordt gekatalyseerd door het enzym 
chlorietdismutase dat daarmee zuurstof vormt onder anaërobe omstandigheden. 
Dit de novo geproduceerde zuurstof wordt gereduceerd door terminale oxidases 
in het metabolisme van facultatief anaërobe (per)chloraat-reducerende micro-
organismen en kan middels oxygenases worden gebruikt voor de activering van 
recalcitrante substraten, zoals eerder werd aangetoond voor koolwaterstoffen. 
Het potentieel stimulerend effect van chloraat en perchloraat op de van nature in 
petroleum reservoirs aanwezige micro-organismen wordt besproken in relatie tot 
het ontwikkelen van nieuwe strategieën voor het verhogen van de olie productie 
(gebaseerd op het stimuleren van groei van deze micro-organismen in de ondergrond 
en de daarvoor benodigde gedeeltelijke afbraak van koolwaterstoffen) en het 
voorkomen van de verzuring van olie reservoirs (door het remmen van sulfaat-
reducerende prokaryoten en daarmee verminderde sulfi de vorming). 
Dit proefschrift beschrijft het vermogen van thermofi ele en hyperthermofi ele 
prokaryoten, die afkomstig zijn uit de ondergrond, om te groeien door middel van de 
reductie van chloraat en/of perchloraat. In tegenstelling tot het klassieke metabolisme 
van mesofi ele (per)chloraat-reducerende micro-organismen toonde deze studie aan dat 
een chloriet disproportionerend enzym gewoonlijk afwezig is in (hyper)thermofi ele 
(per)chloraat-reduceerders. De afwezigheid van dit enzym, dat eerder werd gezien 
als een strikte voorwaarde voor (per)chloraat reductie, wordt gecompenseerd 
door de chemische reactiviteit van gereduceerde zwavelverbindingen met het 
geproduceerde chloriet. In de in deze studie nader onderzochte hyperthermofi ele 
archaea (Archaeoglobus fulgidus en Aeropyrum pernix) en thermofi ele Firmicutes 
(Carboxydothermus hydrogenoformans en Moorella glycerini stam NMP) wordt 
chloriet gevormd door de activiteit van molybdopterin oxidoreductases. Deze 
enzymen zijn ver verwant aan perchloraat reductases van mesofi ele bacteriën en 
nitraat reductases van het bacteriële Nar-type. In tegenstelling tot de klassieke 
bacteriële Nar-verwante enzymen, lijken de bovengenoemde enzymen hun 
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katalytische subeenheden buiten de cel te hebben. Als gevolg van de reductie van 
(per)chloraat wordt chloriet daardoor extracellulair gevormd, waarna het reageert 
met gereduceerde zwavelverbindingen aanwezig in het medium of natuurlijk 
milieu (bijvoorbeeld sulfi de). Dit resulteert in de vorming van chloride-anionen en 
geoxideerde zwavelverbindingen (SxOy

z-). 
De hyperthermofi ele archaeon Archaeoglobus fulgidus reduceert deze chemisch 
gevormde geoxideerde zwavelverbindingen en regenereert daarmee sulfi de nodig 
voor de reductie van chloriet en drijft daarmee de chloraat reductie aan. Deze 
interactie van biotische en abiotische reacties tijdens (per)chloraat reductie creëert  
een intraspecies “zwavel cyclus” dat de volledige reductie van perchloraat tot 
chloride mogelijk maakt.
Alhoewel de (per)chloraat reductie in A. pernix ook van de chemische reactiviteit 
van chloriet met in dit geval thiosulfaat afhankelijk is, heeft deze archaeon geen 
systemen voor het regenereren van thiosulfaat, wat daarom leidt tot de accumulatie 
van sulfaat tijdens perchloraat reductie. Met de acidofi ele crenarchaeon A. pernix, 
voorheen bekend als een strikt aeroob micro-organisme, breidt de eigenschap van 
microbiële (per)chloraat reductie zich uit tot 100°C. 
Naast de intraspecies “zwavel cyclus” van A. fulgidus, blijkt uit een thermofi el 
bacterieel consortium dat de reductie van perchloraat ook syntroof kan verlopen. 
In de desbetreffende cultuur lijkt één groep micro-organismen perchloraat te 
reduceren en daarbij chloriet te produceren, dat vervolgens gereduceerd wordt tot 
chloride waarbij tevens geoxideerde zwavelverbindingen worden gevormd. Deze 
zwavelverbindingen worden op hun beurt weer gereduceerd tot sulfi de door een 
andere groep micro-organismen. Zwavel (in verschillende redox staten) fungeert als 
de intermediaire verbinding in deze interspecies “zwavel cyclus”, maar kan eventueel 
in de natuur door andere stoffen worden vervangen, zoals ferro/ferri-ijzerionen. 
De hier voorgestelde (per)chloraat reductie sensu lato, dat de werking van een 
chloriet disproportionerend enzym mist, is mogelijk zeer veel voorkomend onder 
prokaryoten. Enzymen die gelijkenis vertonen met het (per)chloraat-reducerende 
enzym van Archaeoglobus fulgidus zijn ook in andere strikt anaërobe thermofi elen 
gevonden, waarvan voor C. hydrogenoformans en M. glycerini NMP reeds werd 
bevestigd dat die kunnen groeien door reductie van (per)chloraat. 
Door de brede substraat specifi citeit van periplasmatische DMSO enzymen is 
waarschijnlijk een grotere groep van micro-organismen in staat tot (per)chloraat 
reductie sensu lato, mits er sulfi de aanwezig is. Een breed substraat spectrum van 
deze enzymen (buiten hun canonieke functie) kan mogelijk evolutionaire voordelen 
hebben gehad. Chloor-bevattende anionen worden al reeds miljoenen jaren natuurlijk 
gevormd en daarmee geïntroduceerd op Aarde. Tijdens de ontwikkeling van leven 
op Aarde heeft de reductie van (per)chloraat en vorming van chloriet in oude 
anaerobe microorganismen mogelijk bijgedragen tot de evolutie van aan oxiderende 
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omstandigheden aangepaste eiwitten die daarbij voorafging aan de ontwikkeling van 
oxygene fotosynthese. 
De bevinding dat (hyper)thermofi ele micro-organismen uit de ondergrond kunnen 
groeien door reductie van (per)chloraat is ook van belang voor de ontwikkeling 
van toepassingen op het gebied van aardoliewinning. Het feit dat (per)chloraat 
reductie interfereert met het zwavel metabolisme van A. fulgidus (waarvan bewezen 
is dat deze bijdragen aan de verzuring van olie reservoirs) biedt kansen voor het 
ontwikkelen van strategieën om deze verzuring tegen te gaan.
Daarnaast is het voor een succesvolle microbieel verhoogde olie productie 
strategie noodzakelijk om zo weinig mogelijk afhankelijk te zijn van substraten die 
geinjecteerd dienen te worden. In dat verband is het zeer gunstig dat (per)chloraat 
reductie door A. fulgidus tevens aan de oxidatie van butyraat gekoppeld kan zijn, 
aangezien butyraat een vluchtig vetzuur is dat veel voorkomt  in aardolie reservoirs. 
Naast butyraat kunnen mogelijk ook alkanen en alkenen dienst doen als substraten 
voor (per)chloraat reductie, een functie die eerder werd aangetoond voor sulfaat. 
Samenvattend zou de verschuiving van A. fulgidus van sulfaat- naar (per)chloraat-
reductie in aardolie reservoirs dus niet alleen kunnen leiden tot een vermindering 
van de verzuring van de desbetreffende reservoirs, maar zou tevens middels groei 
op basis van intrinsieke koolstof bronnen kunnen leiden tot een verhoogde aardolie 
productie.
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