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Abstract Aging is a progressive process that results in
the accumulation of intra- and extracellular alterations
that in turn contribute to a reduction in health. Age-
related changes in DNAmethylation have been reported
before and may be responsible for aging-induced chang-
es in gene expression, although a causal relationship has
yet to be shown. Using genome-wide assays, we ana-
lyzed age-induced changes in DNA methylation and
their effect on gene expression with and without tran-
sient induction with the synthetic transcription modulat-
ing agent WY14,643. To demonstrate feasibility of the
approach, we isolated peripheral blood mononucleated
cells (PBMCs) from five young and five old healthy
male volunteers and cultured them with or without
WY14,643. Infinium 450K BeadChip and Affymetrix
Human Gene 1.1 ST expression array analysis revealed

significant differential methylation of at least 5 %
(ΔYO>5 %) at 10,625 CpG sites between young and
old subjects, but only a subset of the associated genes
were also differentially expressed. Age-related differen-
tial methylation of previously reported epigenetic bio-
markers of aging including ELOVL2, FHL2, PENK,
and KLF14 was confirmed in our study, but these genes
did not display an age-related change in gene expression
in PBMCs. Bioinformatic analysis revealed that differ-
entially methylated genes that lack an age-related ex-
pression change predominantly represent genes in-
volved in carcinogenesis and developmental processes,
and expression of most of these genes were silenced in
PBMCs. No changes in DNA methylation were found
in genes displaying transiently induced changes in gene
expression. In conclusion, aging-induced differential
methylation often targets developmental genes and oc-
curs mostly without change in gene expression.

Keywords Molecular aging . Epigenetics . DNA
methylation . Gene expression . PBMCs . Epigenetic
biomarkers of aging

Introduction

The unavoidable and complex process of organismal
aging is characterized by a progressive decline in
structural and functional features of all organs in the body,
resulting in increased morbidity and mortality. Molecular
processes underlying these deteriorating effects have
been extensively studied in many experimental contexts,
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but are still only partially understood. Age-induced
changes in gene expression have been observed in a
broad variety of organisms, and the importance of
deregulated gene expression in the process of aging is
commonly acknowledged (Lee et al. 1999; Lund et al.
2002; McCarroll et al. 2004; Park and Prolla 2005;
Pletcher et al. 2002; Zahn et al. 2007). Epigenetic mod-
ifications, including CpG methylation, histone modifica-
tions, and regulation by non-coding RNAs, affect gene
expression without modifying the DNA sequence
(Goldberg et al. 2007). Increasing evidence suggests that
these epigenetic modifications might be important mech-
anisms underlying aging-related changes in gene expres-
sion (D'Aquila et al. 2013; Huidobro et al. 2012; Johnson
et al. 2012). DNA methylation is up until now the most
intensively studied epigenetic mark in aging research.
Studies examining age-related changes in DNA methyl-
ation started already a long time ago (Berdyshev et al.
1967), but rapid technological advancements during the
last 5 years allowing genome-wide analysis of the DNA
methylation status have caused a strong acceleration in
this research field. In human samples, age-related chang-
es in DNA methylation have been detected in whole-
blood (Garagnani et al. 2012; Hannum et al. 2012;
Horvath et al. 2012; Rakyan et al. 2010; Teschendorff
et al. 2010; Bell et al. 2012) or in purified subsets of blood
cells (Heyn et al. 2012; Rakyan et al. 2010), saliva
(Bocklandt et al. 2011), brain (Hernandez et al. 2011;
Horvath et al. 2012; Numata et al. 2012), or in various
other cell and tissue types (Bork et al. 2010; Koch et al.
2011; Koch and Wagner 2011; Teschendorff et al. 2010).
These studies have revealed a large number of genes and
probe sets displaying either aging-related hyper- or hypo-
methylation. However, up until now, concomitant chang-
es in gene expression have onlymarginally been explored
on a genome-wide scale.

Most expressed genes show hypomethylation of the
promoter region combinedwith hypermethylation of the
gene body (Jones 2012). Changes in the regular DNA
methylation pattern, hypermethylation of the promoter
regions, and hypomethylation of the gene body have
been shown to alter normal expression levels in aging
cells and tissues (D’Aquila et al. 2013; Huidobro et al.
2012; Jones 2012). In addition to aging, alterations in
gene expression in response to epigenetic modifications
have also been reported during normal embryonic de-
velopment (Cantone and Fisher 2013) or for instance in
a disease like cancer (Dawson and Kouzarides 2012),
where they cause long-lasting effects. Currently, only a

limited number of studies have shown a correlation
between transient changes in gene expression and alter-
ations in DNAmethylation (Aoi et al. 2011; Barres et al.
2012; Doig et al. 2012; Kangaspeska et al. 2008;
Metivier et al. 2008; Pero et al. 2011), and the impor-
tance of DNA methylation for transient regulation of
gene expression still needs to be established. Expression
regulated via the nuclear receptor proliferator-activated
receptor alpha (PPARα) can be used as a read-out to
analyze the relevance of differential DNA methylation
for the regulation of transient changes in gene expres-
sion for several reasons. PPARα is a ligand-activated
transcription factor involved in the regulation of a vari-
ety of processes, ranging from inflammation and immu-
nity to nutrient metabolism and energy homeostasis
(Kersten 2010). Long-term effects on gene expression
in relation to DNA methylation for PPARα have previ-
ously been shown in response to perinatal exposure to a
low-protein diet (Lillycrop et al. 2008) and as a conse-
quence of continuous exposure to the peroxisome
proliferator WY14,643 (Pogribny et al. 2007). Further-
more, the PPARα target genes PDK4 and FABP4 and
the PPARα coactivator PGC-1a have recently been
reported to show a DNA-methylation-related change in
gene expression (Barres et al. 2012; Kulkarni et al.
2012), so there are strong indications that DNA meth-
ylation is involved in PPARα-mediated gene expres-
sion. We have previously shown that activation of the
PPARα nuclear receptor causes a pronounced change in
gene expression in human PBMCs (Bouwens et al.
2008), but whether DNAmethylation is involved in this
process has not been determined yet.

This study was designed (1) to determine the corre-
lation between age-related DNA methylation and gene
expression and (2) to elucidate DNA methylation
changes involved in transient changes in gene expres-
sion upon WY14,643 treatment. For these purposes,
peripheral blood mononuclear cells (PBMCs) were iso-
lated from five young and five old healthy male blood
donors. Infinium 450K BeadChips analysis revealed a
large number of changes in DNA methylation between
young and old subjects, in particularly localized in genes
involved in developmental processes. Affymetrix Hu-
man Gene 1.1 ST expression arrays showed that expres-
sion of most of these genes is silenced and do not
display an aging-induced change in gene expression.
Moreover, our data show hardly any change in DNA
methylation uponWY14,643-treatment and suggest that
DNA methylation does not play a causal role in
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transiently-induced changes in gene expression regulated
by this ligand.

Materials and methods

PBMC incubation

PBMCs from ten healthy Caucasian male blood donors,
aged 30, 31, 34, 35, 43, 52, 62, 64, 65, and 66 years,
were isolated directly after arrival of the buffy coat
(maximum 8 h after donation) by Ficol-paque Plus
density gradient centrifugation (Amersham Biosciences,
Roosendaal, The Netherlands). All donors gave full
written informed consent. PBMCs were incubated in
RPMI1640 medium with 2 mmol/L L-glutamine, 10 %
fetal bovine serum, and antibiotics (penicillin and strep-
tomycin) in the presence of 5 % CO2 at 37 °C at 1.0×
106 cells/ml with either WY14,643 (50 μM) or vehicle
(DMSO, 0.05 %). After 13 h exposure, the cell suspen-
sions were transferred to 15-ml tubes and centrifuged for
5 min with 1,600 rpm at 4 °C. The two cell pellets per
donor were resuspended in ice-cold PBS, and each
transferred to separate Eppendorf tubes for RNA and
DNA isolation, respectively, and again centrifuged for
5 min at 5,000 rpm at 4 °C. After removing the super-
natant, pellets for DNA isolation were snap frozen on
dry ice and stored at −80 °C. The pellets for RNA
isolation were suspended in 700 μL of buffer RPE with
added B-mercaptoethanol according to manufacturer’s
instructions (Qiagen) and passed five times through a
23G needle before freezing at −80 °C.

RNA isolation

Total RNA was isolated using RNeasy Micro Kit from
Qiagen according to the manufacturer’s instructions.
The RNA was treated with DNAse and purified on
columns using the RNeasy microkit (Qiagen, Venlo,
The Netherlands). RNA concentration was measured
on a NanonDrop ND-1000 ultraviolet–visible spectro-
photometer (Isogen, Maarsen, The Netherlands), and
RNA integrity was checked on an Agilent 2100
Bioanalyzer (Agilent Technologies, Amsterdam, The
Netherlands) with 6000 Nano Chips according to the
manufacturer’s instructions. RNA was judged as suit-
able only if samples showed intact bands of 18S and 28S
ribosomal RNA subunits, displayed no chromosomal

peaks or RNA degradation products, and had a RNA
integrity number (RIN) above 8.0.

DNA isolation

Genomic DNA was isolated from the isolated PBMC
pellets using DNeasy® Blood and Tissue Kit (Qiagen,
Venlo, The Netherlands) according to the manufac-
turer’s instructions. The DNA was treated with RNase
and eluted in Qiagen elution buffer AE. DNA purity and
quantity were checked spectrophotometricaly (ND-
1000, nano-Drop technologies, Wilmington, USA).

Affymetrix gene expression microarray processing

Total RNA from PBMCs was labeled using an Ambion
WT Expression kit (Life Technologies, Bleiswijk, The
Netherlands) and hybridized to Affymetrix Human
Gene 1.1 STexpression arrays (Affymetrix, Santa Clara,
CA, USA). Sample labeling, hybridization to chips, and
image scanning were performed according to the man-
ufacturer's instructions on an Affymetrix GeneTitan
instrument.

Affymetrix gene expression microarray data analysis

Array data were analyzed using an in-house, online
system (Lin et al. 2011). Shortly, probe sets were
redefined according to Dai et al. (2005) using remapped
CDF version 15.1 based on the Entrez Gene database. In
total, these arrays target 19,682 unique genes. Intensity-
based moderated t-statistics (Sartor et al. 2006) was
applied to determine the statistical differences between
the group of young and old subjects. For the analysis of
the WYeffect, treated samples were paired with control
samples from the same donor, and genes were consid-
ered differentially expressed at p<0.01. Functional in-
terpretation of the data was performed through the use of
Ingenuity Pathway Analysis (IPA) (Ingenuity® Sys-
tems,). Array data have been submitted to the Gene
Expression Omnibus, accession number GSE49058.

Infinium 450K BeaChip analysis

DNAs were prepared in a total volume of 20 μl (1 μg of
FF) using a commercial kit EZ DNA Methylation kit
(Zymo Research Corp, Orange, CA, USA). A microarray
platform (Infinium HumanMethylation450 BeadChips ;
Infinium Inc., San Diego, CA, USA) was used, which
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was processed by the UCL Genomics Core Facility in
accordance with the manufacturer’s recommendation.
The scanned data and image output files were managed
with Genomestudio software (version 1.9.0; Illumina).

Infinium 450K DNA methylation data analysis

The raw signal intensity values were normalized using
the subset-quantile within array normalization (SWAN)
method (Maksimovic et al. 2012), as implemented in the
minfi R-package. Arrays were then checked for high
quality using the control probe information of the
Infinium 450K array. Evaluated were (1) the distribution
of signal intensity for each of the quality control probes
for bisulphite conversion, (2) extension and hybridiza-
tion in both of the channels, as well as (3) the intensity
distribution for 614 negative control probes that are
present on the array. Finally, density plots of the meth-
ylation beta values of all samples were compared. No
outlier arrays were identified, so all arrays were included
in the subsequent analyses. Next, probes were filtered
that contained a single nucleotide polymorphism (SNP)
at or near the target CpG with minor allele frequency
equal or larger than 1 % and probes that contained more
than 2 SNPs. This resulted in the removal of 18,986
probes. In addition, all non-CpG methylation probes
(e.g., CAG, CAH, and CTG) and “rs”(random SNPs)
probes were discarded (3,156 probes). Finally, 207
probes were removed that had a detection p>0.05. Tak-
en together, the filtering procedure reduced the total
number of 485,577 probes present on the array with
22,349 to 463,228. To identify differentially methylated
CpG probes between old and young subjects, the meth-
ylated and unmethylated signals were first converted
into methylation beta values, where beta was defined
as: Beta=Meth/(Meth+Unmeth). Since Beta is a pro-
portion and bounded between 0 and 1, a logit transfor-
mation was performed, as recommended for inferential
statistical analysis (Du et al. 2010). To avoid dividing
with small values or zero, a beta-threshold ε of 0.001
was used, so beta values were always in the interval [ε;
1−ε]. Finally, differences in M values were tested for
statistical significance using moderated t tests, in which
the sample variances were shrunk by computing empir-
ical Bayes posterior means using the limma package
(Smyth 2004). Specifically, comparison between age
groups were made using only the 10 mock-treated ar-
rays; however, statistical power was increased by in-
cluding the 10 WY14,643 arrays and treating each

subject as random effect using the function duplicate
correlation(). Themean beta value of the group of young
and old subjects was calculated, and significant differ-
entially methylated probes (p<0.01) displaying at least
5 % methylation difference between the mean value of
the young and the mean value of the old subjects
(ΔYO>0.05) were included in the analysis. Statistical
significance ofWYeffects for each subject were inferred
by a paired sample comparison. Again, probes were
included in the analysis if the methylation difference
between the group of treated versus untreated samples
was >5 %. 450K data have been submitted to the Gene
Expression Omnibus, accession number GSE49064.

Results

Aging-induced differential methylation identified
by applying Infinium 450K BeadChip analysis

To evaluate genome-wide effects of aging and
WY14,643-treatment on DNA methylation and gene
expression, PBMCs were isolated from 10 healthy male
Caucasian volunteers ranging in age from30 to 66 years.
The mean age of the group of the five young subjects
was 34.6 and of the five old subjects 61.8 years (age of
the individual subjects in the two groups is presented in
supplemental Table 1). As shown in Fig. 1a, 20,911 of
the total number of 463,228 probes included in the
analysis were found to be significantly (p<0.01) differ-
entially methylated in mock-treated PBMCs (see
“Materials and methods”). Of these significant differen-
tially methylated probes, 10,625 showed a methylation
difference of at least 5 % between the mean value of the
group of young and old subjects (ΔYO>5 %) including
7,081 hyper- and 3,544 hypomethylated probes. The
results presented in Fig. 1b show that the majority of
all probes measured on the 450K Infinium BeadChips
are either located in a CpG island or at a single CpG site.
In line with previous studies (Christensen et al. 2009;
Hannum et al. 2012; Heyn et al. 2012), we found that the
aging-related hypermethylated probes were predomi-
nantly present in the CpG islands, while the majority
of the hypomethylated probes were found in less CpG
dense regions (shelves and single CpG dinucleotides).
Of the 10,625 probes containing a methylation differ-
ence of at least 5 %, 3,027 are intergenic probes while
7,598 are linked to one or more genes, in total associated
with 4,370 unique genes.
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To ensure the results presented in this study are not
caused by an aging-induced change in cell type, we
checked the cell mixture composition in our samples
by applying the previously reported method of House-
man et al. (2012) on the 450K data of our PBMC
samples. We implemented this algorithm using the
estimateCellCounts function in the minfi R-package.
The results obtained clearly show that the purification
of the blood samples completely removed, as intended,
the granulocyte fraction of the leucocytes and that there
were no significant differences in blood cell composi-
tion in the PBMCs between the group of young and old
subjects (see supplemental Fig. 1).

Identification of epigenetically controlled
aging-induced changes in gene expression in PBMCs

Genome-wide gene expression analysis revealed that, of
the above described 7,598 differentially methylated
gene-related probes, 640 were not represented on the
Affymetrix Human Gene 1.1 ST expression array. By
evaluating the 407 genes associated to these 640 probes
in more detail, we found that, apart from a number of
pseudo- and uncharacterized genes, this subset of probes
contained antisense RNAs, long intergenic nonprotein
coding RNAs and micro-RNAs (data not shown), sug-
gesting the involvement of epigenetic mechanisms other
than DNA methylation in the aging process.

T values of the remaining 6958 probes were plotted
against the microarray (MA) t values of the related
genes (Fig. 2a), and the most significant differentially
expressed genes were identified using −2>t value>2 as
a cut-off. As shown in Fig. 2a, 470 probes were
hypermethylated, of which 334 were concomitant with
down-regulation of gene expression in 168 genes and
136 linked to up-regulation of 78 genes. Of the 256
hypomethylated probes, 130 accompanied 101 up-
regulated genes, while 126 probes were linked with 95
down-regulated genes. We next analyzed the localiza-
tion and CpG density (island, shore, shelf, or single
CpG) of the hyper- and hypomethylated probes linked
to differentially expressed genes. The results revealed
that hypermethylated probes of both up- and down-
regulated genes are mostly located in CpG-dense pro-
moter regions [probes located in TSS1500, TSS200, 5′
untranslated region (UTR) and first exon regions]
and to a lesser extent in CpG-dense regions of the
gene bodies (Fig. 2b). The hypomethylated probes
did not reveal a clear methylation profile but showed
a more random distribution over the promoter and
body region with a slight enrichment for CpG poor
regions. Since hardly any differentially methylated
probes were found in the 3′UTR regions, these data
were not included in Fig. 2b.

Of all 398 differentially regulated genes presented in
Fig. 2a (and listed in supplemental Table 2S), 170
contained multiple differentially methylated probes
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Fig. 1 Identification of significantly differentially methylated hy-
per- and hypomethylated probes. a DNA methylation was ana-
lyzed in human PCMCs with the Infinium HumanMethylation
450K BeadChips. Of the 463,228 probes included in the analysis
20,917 were significantly regulated (Lima t test, p<0.01) between
the group of old and young subjects. Over 5 % methylation
difference between the mean of the group of the young and old

subjects was found for 10,625 of these probes including 7,081
hypermethylated and 3,544 hypomethylated probes. The subset of
10,625 probes contains 7,598 gene-related and 3,027 intergenic
probes. b Most of the probes displaying hypermethylation in the
group of old subjects are located in CpG islands, while
hypomethylated probes were predominantly found at single CpG
sites
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and for a number of genes both hypo- as well as
hypermethylated probes were detected. Table 1 displays
all genes containing at least four differentially methyl-
ated probes. In Fig. 2c and d, two examples of differen-
tially expressed genes containing multiple differentially
methylated probes are presented. Disintegrin and metal-
loproteinase domain-containing protein 12 (ADAM12)
is an example of a gene displaying age-related down-
regulated gene expression. As shown in Fig. 2c in the
group of old subjects, significant hypermethylation in
the ADAM12 promoter was observed. Different aging-
induced differential methylation was observed for tumor
necrosis factor α (TNF-α). As shown in Fig. 2d, for
TNF-α aging-induced up-regulated gene expression
combined with significant hypomethylation of eight
probes present in the promoter as well as in the gene
body was found.

Taken together, a subset of genes was identified
displaying differential expression as well as differential
methylation.

A large subset of genes display age-related differential
methylation without change in gene expression

Next, we focused our analysis on the aging-induced
differentially methylated probes lacking a concomitant
change in gene expression. Figure 3a shows that 4,554
differentially methylated probes (listed in supplemental
Table 3S) occur without changing the expression status
of the 2,390 genes they are associated with (using
−1< t value<1 as a cut-off for the MA data).
Again, many genes are represented by multiple differ-
entially methylated probes, and the number of differen-
tially methylated probes per gene reaches much higher
numbers (Table 2) than observed for the genes
displaying age-related differential expression (Table 1).
We analyzed the probe localization and CpG density of
all hyper- and hypomethylated probes. As shown in
Fig. 3b, hypomethylation of the genes lacking a change
in gene expression occurs predominantly at single CpGs
in the promoter region as well as in the gene body. The
hypermethylated probes were predominantly located in
the CpG dense regions of the promoter and, to a lesser
extent, in the gene bodies. This DNA methylation pro-
file is highly similar to the hypermethylated probes
encoding for aging-induced differentially expressed
genes presented in Fig. 2b. By evaluating the basal
expression levels of the two subsets of genes, we found
that more than 70 % of the genes displaying aging-

induced changes in DNA methylation without a con-
comitant change in gene expression have extremely low
expression levels (MA log2<6) (see Fig. 3c). Higher
basal expression was observed for the genes displaying
an age-related change in gene expression. Promoter
hypermethylation has previously been shown to cause
down-regulated gene expression (Jones 2012), so, if
expression of a particular gene is already extremely
low, hypermethylation of the promoter regions might
occur without altering gene expression. An example of
such a gene is SRY-related HMG-box-1 (SOX1), a gene
that has also previously been reported to show aging-
related changes in DNA methylation (Bell et al. 2012;
Horvath et al. 2012; Teschendorff et al. 2010). All
probes present on the 450K BeadChip linked to SOX1
are located in the promoter region of this gene and 14 of
them reveal significant aging-induced hypermethylation
(see Fig. 3d), which does not result in a further decrease
of the low expression values present at young age. Zic
family member 1 (ZIC1) is the gene containing the
highest number (20) of age-related differentially meth-
ylated probes and is located on chromosome 14 in close
proximity to ZIC4 for which 17 differentially methylat-
ed probes were found. Both genes display age-related
hypermethylation at all differentially methylated probes
located in the promoter regions as well as in the gene
bodies (see supplemental Fig. 2S), but the already ex-
treme low expression levels in young individuals are not
further reduced in the older individuals (data not
shown). However, the lack of change in gene expression
cannot be explained by low basal expression levels in all
cases. In three of the five young subjects, dual specific-
ity phosphatase 22 (DUSP22) shows markedly de-
creased methylation of the promoter region combined

�Fig. 2 Differential expression of genes associated to differentially
methylated gene-related probes. a t values of the 10,625 differen-
tially methylated probes are plotted against the MA t values. The
most pronounced changes in gene expression are identified by
applying −2>MA t value>2 as a cut-off and presented in the
redlined squares. b Relative occurrence of the probe location is
presented for all hyper- and hypomethylated probes linked to the
differentially expressed genes. c Beta-values of all probes associ-
ated to ADAM12 present on the 450K BeadChips, six of them
show significant hypermethylation (↑) in the promoter region of
the gene of old subjects, accompanied by down-regulated gene
expression. d Methylation profile of the 450K TNF-α probes
reveal significant hypomethylation (↓) of eight probes in old
individuals in the promoter region as well as in the gene body
together with up-regulated gene expression
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with increased methylation in the gene body, but these
methylation changes did not alter the moderate expres-
sion levels of this gene (Fig. 3e). Since age-related
differential methylation of DUSP22 has not been report-
ed in previous studies and our study contained a low
sample size, the variation in DNA methylation might
not necessarily be caused by aging but might reflect
interindividual variation.

Infinium 450K BeadChip data methylation data were
validated by analyzing the methylation status of several
CpGs by pyrosequencing, while Affymetrix expression
data were validated by applying quantitative PCR (Q-
PCR) analysis. The obtained results are presented in
supplemental Fig. 3S+4S.

In summary, differential methylation of multiple
probes representing the same gene is found for many
genes that do not show an age-related change in gene

expression. Silenced expression of many of these
genes may be (partially) responsible for the ab-
sence of an expression change. Although these
prominent epigenetic changes seem to be without
phenotypic consequences, they may be useful as bio-
markers of aging.

Differential methylation detectable in developmental
genes and genes involved general cellular processes

To evaluate the functions of the differential methylated
genes, IPAwas applied. Interestingly, most of the 2,390
genes described above that display one or more differ-
entially methylated probes but lack an age-related
change in gene expression were found to be involved
in cancer and in various developmental processes (see
Fig. 4a). Different functional categories were observed

Table 1 Aging-related differentially expressed genes with four or more differentially methylated probes

Number of differentially
methylated probes per gene

4 5 6 7 8 9 10 11

Gene symbols AHRRa BAI1a ADAM12 EFCAB1 FOXI2 FBXO39 TBX15 DOCK1a

BCL2L2 ERBB4a IGF2BP1a NETO1 INS-IGF2a

C12orf34 LYPD1 HS3ST2a TNF

CCKa OSR2 MYO1Da

CDH2 SH3BP2 SLC9A3a

CDK2AP1 TMEM132C

COL23A1a

CYFIP1a

FAT1

FOXA2

FZD10

HAS1

HIC1

ISLR2

MANEAL

NCOR2

PAX5

PROM1

RANBP17a

SP140

TRIL

UGGT2

WDR8a

Symbols in italics indicate up-regulated expression; symbols in normal font indicate down-regulated expression
a Contains hypo- and hypermethylated probes
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when the genes displaying differential methylation as
well as differential expression were evaluated. As
shown in Fig. 4b, these genes were found to be involved

in different basal cellular processes like cellular growth
and proliferation, cellular movement, cell/tissue mor-
phology, and metabolic functions.
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Fig. 3 Genes associated to a large number of differentially meth-
ylated probes do not display a change in gene expression. a 2,390
genes present in the redlined square are associated to 4,554
differentially methylated probes and do not display a change in
gene expression (−1<MA t value<1). bRelative occurrence of the
probe location is presented for all hypo- and hypermethylated
differentially methylated probes. c Basal expression of the genes

lacking an age-induced change in gene expression is lower than
that of genes displaying an age-related change in gene expression.
d DNA methylation profile of the SOX1 gene displays age-related
hypermethylation, but the expression of this gene is not changed in
old compared to young subjects. e Strong hypomethylation was
observed in the promoter region of three of the five young subjects,
but no change in expression of the DUSP22 gene was detectable
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Previously published potential biomarkers of aging
are not differentially expressed in PBMCs of old
subjects

During the last few years, several research groups have
identified aging-related changes in DNA methylation by
analyzing either Infinium 27K or 450K BeadChips in
whole-blood (Bell et al. 2012; Florath et al. 2013;
Garagnani et al. 2012; Hannum et al. 2012; Teschendorff
et al. 2010; Xu and Taylor 2014) or in purified blood cell
samples (Heyn et al. 2012; Rakyan et al. 2010). These
studies reporting aging-related changes in DNA methyla-
tion in blood samples applied different selection criteria
and the number of reported differentially methylated
probes varied from 9 (Garagnani et al. 2012) to 5,988
(Heyn et al. 2012). In total, 7,477 different differentially
methylated probes have been reported in these eight stud-
ies (see supplemental Table 4S), of which just a limited set
of 529 probes have been reported bymore than one group.
From this subset of 529 probes, we selected the genes
reported with the highest frequency in the above men-
tioned 8 studies, which are represented by at least 3 age-
related differentially methylated probes. As shown in
Table 3, this list includes ELOVL fatty acid elongase 2
(ELOVL2), four and a half LIM domains 2 (FHL2),
proenkephalin (PENK), Krüppel-like factor 14 (KLF14),
somatostatin (SST), and glycine receptor, alpha 1
(GLRA1) that have previously been put forward as epige-
netic biomarkers of aging (Garagnani et al. 2012; Hannum
et al. 2012; Heyn et al. 2012). Of all of these previously
reported epigenetic biomarkers of aging at least one, but in
most cases multiple, probes showed significant (p<0.01
and ΔYO>5 %) differential methylation in our PBMC
data set. Intriguingly, none of these genes displayed aging-
related differential expression in PBMCs.

In summary, substantial variation was found in
aging-induced changes in DNA methylation by apply-
ing 27K and 450K analysis in white blood cells as
reported in recently published studies. However, a num-
ber of markers are detected in multiple studies andmight
be useful biomarkers of aging, but they lack an age-
related change in gene expression in PBMCs.

WY treatment of PBMCs did result in a pronounced
change in gene expression without detectable change
in DNA methylation

To evaluate whether transiently induced changes in
gene expression are correlated to changes in DNAT
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methylation, PBMCs of all donors were cultured for
13 h in the presence of the PPARα ligand WY14,643
(50 μM) or vehicle. As seen in Fig. 5a, 2,907 of the
probes showed significant differential methylation in
response to WY14,643 treatment. Of four of these
probes, the difference in methylation between control
andWY-treated samples was over 5% (ΔC-WY>0.05).
Microarray expression analysis revealed that 561 genes
were significantly (p<0.01) differentially expressed up-
on WY treatment, including 281 down-regulated and
280 up-regulated genes. The four differentially methyl-
ated probes (ΔC-WY>0.05) were not associated to the
differentially expressed genes.

It should be noted that the CpG probes examined
with the 450K BeadChips often represent only a minor-
ity of the total number of CpGs present in a particular
gene. The strongest WY-induced gene in our data set,
fatty acid binding protein 4 (FABP4) (see Fig. 5b),
contains 42 CpG sites (from TSS1500 through to 3′
UTR), but only six of them are measured on the 450K
BeadChip (Fig. 5c). We examined the methylation sta-
tus of two additional CpG sites present in the promoter
of the FAPB4 gene that are not present on 450K

BeadChips and found no change in DNA methylation
upon treatment with WY14,643 (see supplemental
Fig. 3S) in line with the results obtained of the 450K
BeadChip analysis.

Taken together, the results obtained show that
WY14,643 treatment caused only marginal changes in
DNA methylation, indicating that WY14,643-induced
changes in gene expression are not caused by alterations
in DNA methylation.

Discussion

In this study, Infinium 450K BeadChip analysis was
applied to identify age-related genome-wide changes
in DNA methylation in human PBMCs. The obtained
results revealed significant differential methylation of
10,625 probes displaying a methylation change of at
least 5 % between the group of young and old subjects.
Functional analysis of the genes associated with these
differentially methylated probes revealed strong enrich-
ment of genes involved in cancer and in an extensive
number of developmental gene clusters. Aging-related

A

B

0 2 4 6 8

Vitamin and Mineral Metabolism
Molecular Transport
Tissue Development

Cellular Function and Maintenance
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Fig. 4 Functional analysis of genes associated to differentially
methylated probes. a Differentially methylated probes linked to
genes lacking a change in gene expression are predominantly
involved in carcinogenesis and developmental processes. b Genes

displaying an aging-induced change in gene expression containing
differentially methylated CpGs function in various basal cellular
processes
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Table 3 Genes displaying multiple differentially methylated probes in various previously reported studies
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ELOVL2 0.3657 3.064 cg16867657 1 1 1 1 4 0.000 -0.139

cg21572722 1 1 1 1 4 0.001 -0.079

cg24724428 1 1 1 1 4 0.000 -0.118

FHL2 0.3568 3.869 cg06639320 1 1 1 1 4 0.000 -0.092

cg22454769 1 1 1 1 4 0.000 -0.118

cg24079702 1 1 1 1 4 0.000 -0.080

PENK 0.2085 3.717 cg16419235 1 1 1 3 0.000 -0.080

cg04598121 1 1 2 0.003 -0.083

cg12877723 1 1 0.001 -0.122

cg16219603 1 1 0.002 -0.066

KLF14 0.8057 5.100 cg04528819 1 1 1 3 0.000 -0.060

cg07955995 1 1 2 0.001 -0.033

cg08097417 1 1 2 0.000 -0.087

cg14361627 1 1 2 0.000 -0.109

cg20426994 1 1 2 0.001 -0.048

cg22285878 1 1 2 0.006 -0.026

cg08719712 1 1 0.010 -0.040

SST 0.5685 3.989 cg02164046 1 1 1 3 0.005 -0.075

cg00481951 1 1 2 0.014 -0.062

cg25478614 1 1 0.012 -0.050

GLRA1 0.1387 2.992 cg00059225 1 1 1 1 1 5 0.000 -0.097

cg14319409 1 1 2 0.045 -0.052

cg26567012 1 1 0.052 0.032

TP73 0.2902 4.719 cg00565688 1 1 1 1 4 0.000 -0.109

cg05924583 1 1 2 0.002 -0.067

cg02924487 1 1 0.080 -0.032

cg17163168 1 1 0.004 -0.094

cg17804348 1 1 0.008 -0.067

cg20768358 1 1 0.444 -0.022

cg26055950 1 1 0.006 -0.082

GATA4 0.8217 4.281 cg20279283 1 1 1 1 4 0.005 -0.048

cg09626984 1 1 1 3 0.001 -0.069

cg11981599 1 1 2 0.005 -0.052

cg24646414 1 1 2 0.047 -0.031

cg18123948 1 1 0.225 -0.018

THRB 0.6278 3.751 cg24120841 1 1 1 1 4 0.009 -0.070

cg09805010 1 1 0.050 -0.045

cg21303011 1 1 0.015 -0.060

cg15385623 1 1 0.008 -0.060

DLX5 0.3072 3.862 cg00503840 1 1 1 1 4 0.000 -0.057

cg13344740 1 1 0.093 -0.033

cg16924616 1 1 0.115 -0.026

NEFM 0.7628 3.935 cg18267374 1 1 1 3 0.002 -0.050

cg07502389 1 1 0.002 -0.051

cg18898125 1 1 0.001 -0.049

cg23290344 1 1 0.002 -0.080

TMEM179 0.3767 4.110 cg00107187 1 1 1 3 0.002 -0.055

cg03734874 1 1 2 0.018 -0.050

cg10281977 1 1 0.000 -0.066

ATP8A2 0.2463 3.242 cg18236477 1 1 1 1 4 0.005 -0.059

cg12111714 1 1 2 0.053 -0.051

cg24605553 1 1 0.038 -0.090

FOXE3 0.5648 5.365 cg18815943 1 1 1 1 4 0.002 -0.036

cg01281911 1 1 0.001 -0.080

cg23115387 1 1 0.070 -0.032

PBMC MA data PBMC 450K data
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differential methylation of genes involved in develop-
mental processes has also been observed in previous
studies. Bork et al. (2010) found enrichment in the
differential methylation of a specific subset of develop-
mental genes, the HOX genes, in mesenchymal stromal
cells in response to aging. Furthermore, aging-related
hypermethylation of polycomb target genes have been
reported by Maegawa et al. (2010) in the intestine, by
Teschendorff et al. (2010) in different cell types and by
Beerman colleagues in hematopoietic stem cells
(Beerman et al. 2013). Aging-induced differential meth-
ylation of developmental genes has recently been re-
ported by Rakyan et al. (2010) in purified white blood
cells, and our data support this. Intriguingly, our results
show that a wider variety of developmental genes are
differentially methylated during aging than previously
described and also indicate that genes involved in car-
cinogenesis are differentially methylated. It is interest-
ing to note that genes in which expression is tightly
regulated by epigenetic mechanisms during embryonic
organ, tissue, and cellular development display the most
pronounced loss of their regular DNA methylation pat-
tern during the process of aging. It can be speculated that
enzymes responsible for the tight regulation of the DNA
methylation (Jurkowska et al. 2011) or demethylation
(Bhutani et al. 2011; Wu and Zhang 2010) gradually
lose their capacity to keep the accurate hyper- and
hypomethylation status of the CpGs in these genes intact
during the process of aging causing erosion of the
epigenome. Interestingly, our data reveal that these
changes mostly occur without changing the expression

levels of the developmental genes and that expression of
most of these genes is silenced in PBMCs. Emerging
data suggest that deregulation of genes playing an es-
sential role in early development leads to various pa-
thologies including carcinogenesis (Dormoy et al. 2012)
in adulthood. The fact that aging-related changes in
DNA methylation do not result in gene expression
changes might prevent disease development and reflect
“healthy aging.” It can be speculated that when, in
addition to the changes in DNA methylation, gene mu-
tations, histone modifications, or deregulation of
miRNAs occur, expression levels of these genes might
change resulting in a diseased phenotype. Alternatively,
in tissues where these genes are expressed, changes in
DNA methylation might result in concomitant altered
expression levels in contrast to the situation observed in
PBMCs.

A relatively small subset of genes displayed an age-
induced change in DNA methylation as well as in gene
expression. By analyzing the probe location and CpG
content of the DNA region, we found highly similar
features for the subsets of genes with and without
change in gene expression so this could not explain
the discrepancy between the two gene sets. In addition,
we compared the basal expression levels of the two
subsets of genes and found lower basal expression in
the differentially methylated genes lacking a concomi-
tant change in gene expression compared to the subset
of genes that exhibited changes in both aspects. It can be
speculated that a change in DNA methylation might not
result in altered expression levels when relevant
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Fig. 5 WY14,643 treatment of PBMCs induced a strong response
in microarray gene expression but caused only a minor effect on
DNA methylation. a In response to WY14,643-treatment 2907
probes displayed significant (p<0.01) differential methylation 4 of
which containing over 5 % change between control and Wy-
treated samples. These probes were not associated to the 561 genes

displaying significant (p<0.01) differential expression. b Strong
induction of FAPB4 expression upon WY treatment. c DNA
methylation of the six probes representing the highest PPARα-
response gene FABP4 on the 450K array did not show a change in
DNA methylation upon WY14,643 treatment
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transcription factors are absent; however, low basal
expression levels cannot fully explain why differential
DNAmethylation in some of the genes does not result in
a change in gene expression. For instance, DUSP22
showed intermediate basal expression levels but pro-
nounced changes in DNA methylation did not seem to
affect gene expression (see Fig. 3e). On the other hand,
for ADAM12, differential expression was observed in
old subjects, despite the fact that this gene showed
extremely low basal expression levels (see Fig. 2c).
For some of the differentially methylated genes, the
detected changes in DNA methylation might be located
in parts of the gene not involved in the regulation of
gene expression and thereby do not result in a change
of the expression levels of the related gene. Further-
more, it should be noted that a change in gene body
methylation may not alter gene expression as it is
measured on a microarray but it may be regulating
gene expression via alternative splicing programs
(Li-Byarlay et al. 2013).

Functional analysis of the differentially methylated
genes displaying altered gene expression revealed that a
variety of functional categories representing general
cellular functions like cell growth, movement, signaling,
and development were found to be differentially
expressed with high significance. This observation im-
plies that DNAmethylation might be responsible for the
functional loss of common cellular functions in the
process of aging and thereby play a causal role in the
development of the aging phenotype. Unexpectedly, we
rarely observed differential expression of immune
system-related genes in the PBMCs. The most pro-
nounced immune-related effect was found for TNF-α
showing enhanced expression combined with decreased
methylation in older individuals. Increased TNF-α
levels contribute to inflammaging, and our results are
in line with the age-related loss of TNF-α promoter
methylation recently reported by Gowers et al. (2011).

Since our data set is based upon a limited number of
samples, we concentrated our analysis on the more
robust effects and omitted minor changes in order to
reduce the risk of false positive results. It has previously
been reported that, due to impaired functioning of the
bone marrow as well as the thymus, skewing toward
myelopoiesis can alter the balance between monocyte
and lymphocyte cell fractions between old and young
individuals (Chinn et al. 2012). Cell mixture distribution
analysis of our samples revealed that there was no
significant difference in the cell type populations present

in the PBMCs isolated from the healthy young and old
subjects included in this study.

Previous genome-wide DNAmethylation studies ap-
plying Infinium 27K or 450K BeadChip analysis in
blood samples have identified a substantial number of
potential epigenetic biomarkers of aging. In the future,
these biomarkers might be used to determine a person’s
biological age, predict the risk of age-related diseases or
be useful in forensic research. By comparing the results
of these previous studies with the age-related changes in
DNA methylation in our PBMCs, different interesting
observations were made. Firstly, our data reveal that the
majority of the CpGs displaying age-related differential
methylation are only reported in one study. The discrep-
ancy between the reported results might be explained by
different reasons. First of all, most of the probes present
on the 450K BeadChip are not present on the 27K
BeadChip, and some of the probes present on the 27K
BeadChips are not on the 450K BeadChips. Secondly,
most of the publications used different statistical
methods and a different p value cut-off for the list of
probes presented in the publication. Standardization of
microarray preprocessing and statistical analysis
methods for large DNAmethylation datasets, along with
agreed norms for cut-off values, is likely to help build
consensus among different research groups. Interesting-
ly, genes that have previously been identified as poten-
tial epigenetic biomarkers of aging like ELOVL2,
FHL2, PENK (Garagnani et al. 2012), KLF14, SST
(Hannum et al. 2012), and GLRA1 (Heyn et al. 2012)
have been detected in different studies and are repre-
sented by multiple differentially methylated probes.
Differential methylation of all of these genes was con-
firmed in our PBMC data set, but none of them
displayed age-related differential expression. In addi-
tion, Weidner and colleagues recently identified three
novel CpGs that can be used to analyze aging in blood
(Weidner et al. 2014). These three CpGs (cg02228185,
cg25809905, and cg17861230) showed significant age-
related differential methylation in our PBMC dataset,
but expression of the genes they encode for (PDE4C,
ASPA, and ITGA2B) is extremely low in PBMCs and
does alter in aging subjects (see supplemental Table 4S).
This result indicates that previously reported epigenetic
biomarkers of aging might be useful to analyze epige-
netic aging but may not predict phenotypic changes.
Furthermore, our comparison revealed additional candi-
dates with an age-related methylation change on multi-
ple probes in our PBMC data set (i.e., TP73, GATA4,
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FOXE3, THRB, and TMEM179) that have been iden-
tified in multiple studies but have not been put forward
as potential epigenetic biomarker of aging. Again, none
of these genes showed an age-related change in gene
expression in PBMCs. As indicated above, the sample
size of our study is limited, and therefore, further vali-
dation of these results is required in studies with a larger
sample size.

Since blood cells can easily be obtained compared to
other tissues or organs (i.e., liver, intestine, or brain sam-
ples) whole-blood or purified blood cells are often used for
biomedical research as an indicator for biological process-
es occurring at other places in the body. Further studies are
required to establish the extent at which blood cells repre-
sent the DNA methylation profiles of other cell types
particularly for age-related changes in DNA methylation.
For genes like TP73, TMEM179, andGLRA1, age-related
changes in DNAmethylation have been previously report-
ed in saliva, brain, and other tissues (Bocklandt et al. 2011;
Horvath et al. 2012; Koch andWagner 2011; Numata et al.
2012) pointing towards a general phenomenon. However,
owing to the fact that tissue-specific differentially methyl-
ated regions (tDMRs) have been identified (Rakyan et al.
2008; Fernandez et al. 2012), it seems likely that part of the
aging-related changes relate to a tissue-dependent phenom-
enon. The relation between age-related changes in DNA
methylation and gene expression might be linked to this
observation. Although we did not observe altered expres-
sion of SST in PBMCs, an age-related decline in expres-
sion has previously been reported in the brain (Hayashi
et al. 1997; Lu et al. 2004), and this decline has been
linked to Alzheimer's disease (Saito et al. 2005). Genes
like ELOVL2, FLH2, and PENK are not expressed in
blood cells but are found in heart, smooth muscle, testes,
and specific areas of the brain. It would be of interest to
examine whether these genes display age-related changes
in expression in addition to differential methylation in
these tissues.

In addition to the long-term effects of aging, we ana-
lyzed the correlation between a transient change in gene
expression and DNA methylation. In line with our previ-
ous study (Bouwens et al. 2008), WY14,643-induced
differential gene expression was observed in PBMCs.
Genome-wide DNA methylation analysis with the 450K
BeadChip revealed almost no changes in DNA methyla-
tion in the same samples, suggesting that expression reg-
ulation of the 561 differentially expressed genes is not
regulated by DNA methylation. The number of studies
reporting a correlation between altered DNA methylation

and a transient change in gene expression in adult differ-
entiated cells is extremely limited. It can be speculated that
enzymes involved in DNA methylation (Jurkowska et al.
2011) and demethylation (Bhutani et al. 2011; Wu and
Zhang 2010) are not able to modify the genome fast
enough to induce a transient effect or that additional cell
proliferation is required (Hervouet et al. 2012). Further-
more, the correlation between alterations in DNA methyl-
ation and concomitant changes in gene expression has
predominantly been reported under conditions reflecting
long-term effects such as embryonic development
(Cantone and Fisher 2013), (stem)cell differentiation
(Armstrong 2012; Cantone and Fisher 2013; Cedar and
Bergman 2011; Hu and Rosenfeld 2012) in utero nutrition
(Heijmans et al. 2008; Lillycrop et al. 2008; van Straten
et al. 2010), cancer (Dawson and Kouzarides 2012;
Dawson et al. 2009; Hammoud et al. 2013;
Portela and Esteller 2010), neurological development
and disease (Jakovcevski and Akbarian 2012), etc. It can
be hypothesized that, in mature adult cells, other factors
like enhancer binding proteins, co-activators and co-
repressors, histone modifications, and/or non-coding
RNAs dominate transient regulation of gene expression
instead of DNA methylation.

In conclusion, genome-wide DNA methylation anal-
ysis revealed differential methylation of a wide range of
developmental genes in old subjects. Expression ofmost
of these genes was silenced in PBMCs, and differential
DNA methylation occurred without a concomitant
change in gene expression.
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