
plant 
pathogens 
and the plant 
immune system 

NN02963.891 



Fungal plant pathogens 
and the plant immune system 

Prof, dr ir. Pierre J.G.M, de Wit 

Farewell address upon retiring as Professor of Phytopathology at 
Wageningen University on 5 June 2014 

- * 

W A G E N I N G E N U N I V E R S I T Y 
W A G E N I N G E N 

IXt-jOQpT 



ISBN 978-94-6173-976-6 



Fungal plant pathogens 
and the plant immune system1 

Rector Magnificus, relatives, friends, colleagues, ladies and gentlemen, 

I was often asked the question by friends and relatives: "Are you still working on 

tomato and Cladosporium fulvuml" When will your work be finished? Then I often 

responded by comparing my work with that of a medical doctor or immunologist 

who also works on just one species: Homo sapiens. 

Human and plant diseases are very complex. Take the flu caused by influenza virus 

as an example. There are annual outbreaks of epidemics and sometimes pandemics 

of this virus. Against viruses we can be vaccinated, but new subtypes or new strains 

will emerge over and over again, year after year, in different countries. In Figure 1 

you see the major flu pandemics in history, including the dramatic Spanish flu of 

1918, the year that Wageningen University was founded. 

Recorded huuun pandcniu inllucn/js suite IKXs leari* subtypes inferred) 

J42N2 

Source European Centre rot Disease Prevention and Control (ECDC) 2009 

Reproduced and adapted (2009) with permission ol Dr Masalo Tasniro. Director. Center (01 Influenia Vilus Research. National Institute ot 
tnlec'ious Diseases (NllD). lapan. 

Figurei. Pandemics of influenza virus (flu) 
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Similarly, we often get outbreaks of new plant diseases like "sudden oak death" in 

California caused by Phytopthora ramorum (Rizzo et al., 2002), or "bleeding canker of 

horse chestnut" in The Netherlands caused by Pseudomonas syringae pv. aesculi 

(Webber et al., 2008), or leaf rust caused by the Ug99 strain of Puccinia graminis, 

which threatens wheat crops in East Africa and the Middle East (Singh et al., 2011) 

(Figure 2). Plant diseases are a continuous threat to global food production and the 

work of a phytopathologist never ends, much like my research on C.fulvum. This 

afternoon I would like to share with you my fascination and passion for biology and 

phytopathology in particular. Please join me on a short journey through the history 

of phytopathology. It will be followed by a short overview of my own research on 

the plant immune system at the Laboratory of Phytopathology of Wageningen 

University. I will make a comparison with our own immune system, and also show 

some applications of our research. 

"Sudden oak death" 
Phytophthora ramorum 

"Bleeding canker of 
horse chestnut" 

Pseudomonas syringae 
pv. aesculi 

Figure 2. New plant diseases 

"Uganda 99 stem rust strain" 
Puccinia graminis 

For a long time plants were seen as passive organisms, but after my talk I hope to 

have convinced you that plants are clever in their own right and can actively defend 

themselves against pathogens. 

My interest in plants and their pathogens started in my childhood. I grew up on a 

farm in Limburg (the most southern province of The Netherlands) and as a child I 

liked to join my father in the fields when he was looking after his crops. I also saw his 

concern when potato suffered from late blight. This disease is caused by Phytophthora 

infestans, a pathogen that has infected potato in Europe since 1845, when it caused a 

dramatic famine in Ireland. To protect potato against late blight he sprayed the crop 
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with chemicals known as fungicides. Another disease you all know is apple scab 

caused by Venturis inaequalis. Also this disease is usually cured with fungicides. The 

third disease is tomato leaf mould caused by C.fidvum, a fungal pathogen that I have 

studied my whole career (Figure 3). Tomato can be perfectly protected against this 

disease by growing cultivars with resistance genes. No fungicides are required to 

protect tomato against this disease. 

Apple scab 
Venturis inaequalis 

> Requires use of 
fungicides 

Potato late blight 
Phytophthora infestans 

> Requires use of 
fungicides 

Tomato leaf mold 
Cladosporium fulvum 

> Cured by using resistant 
cultivars 

Figure 3. Plant diseases cured by chemicals or disease resistance genes 

Control of human and plant diseases 
The two measures that farmers usually take to prevent or cure plant diseases are also 

taken by ourselves when we get ill. We use either an antibiotic or we are vaccinated. 

Farmers spray chemicals or use disease-resistant cultivars. By using a vaccine or 

using a disease-resistant cultivar, we exploit our own immune system or that of the 

plant, respectively. I grew up in "the sixties" when there was a strong belief in the 

power of chemicals to prevent or cure pests and diseases. There were even daily 

news bulletins on the radio informing farmers about optimal weather conditions to 

spray fungicides against late blight and apple scab. 

However, it soon became clear that the use of chemicals had undesired effects on 

human health and the environment. The book "Silent Spring" written by Rachel 

Carson in 1962 documented the negative effects on human health and the 

environment (Carson, 1962). It influenced president John F. Kennedy, as he called for 

testing of the chemicals mentioned in her book. The use of pesticides was not a 

stimulus to develop and use resistant cultivars, although they were already available 

for many crops, including potato. 
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At home in our vegetable garden, my father grew a potato variety that was very 

resistant against late blight. It was a late season red potato cultivar called 

"Pimpernel" (Figure 4). However, the susceptible cultivar "Bintje" was grown as a 

crop that needed a lot of chemicals for protection against late blight. Apparently, the 

potato industry, growers and consumers preferred Bintje, which is still grown to-day. 

Since my last years at high school I knew I would like to go to Wageningen to learn 

more about plants and their diseases. I would rather become a plant doctor than a 

medical doctor. As a child I was afraid of seeing blood when I was vaccinated against 

infectious diseases, but at the same time I was curious about the mechanism behind 

vaccination and the human immune system. I wondered whether plants would have 

an immune system too. 

Pofxjl»« . ! arm . A * * . ) . G S Mukfer 19U 
«•NIVAP 

> resistant to potato late blight; 
does NOT require chemicals 

1 

**fc 

Mumtarwn % Frwrnn. a» Vmt. 1810 
CNIVAP 

> susceptible to potato late blight; 
does require chemicals 

Figure 4. Potato cultivars Pimpernel and Bintje 

A short history of phytopathology 
Pests and diseases of crops have always been around since man started to 

domesticate plants for farming around 10.000 years ago. There are reports on pests 

and diseases in Babylonian, Greek and Roman literature, and in the bible. Pests and 

diseases were believed to be incited by angry Gods. In Roman times an annual 

festival called "The Rubigalia" was held on the 25th of April . Red dogs and sheep 

were offered to please the god Rubigus who had the power to destroy cereals by 
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inciting disease (Beard et al., 1998). Also from the Middle Ages there are reports of 

plant diseases causing many victims among the human population. One 

representative example is Saint Anthony's fire, a disease that caused gangrene after 

eating flour made from cereals infected by the ergot fungus Claviceps purpurea. 

Prayers were devoted to St. Anthony to become cured from this disease. More 

information about diseases and practices of crop protection in medieval agriculture 

can be found in a book written by professor Jan Carel Zadoks, which was published 

recently (Zadoks, 2013) (Figure 5). 

Rubigalia" in Rome 

St. Anthony's fire J.C. Zadoks 

Figure 5. "Curation" of plant diseases in ancient and medieval times 

It is hard to believe that it is only in the second half of the nineteenth century that 

microbes were discovered as causal agents of human and plant diseases. The German 

surgeon, botanist, microbiologist and mycologist Anton de Bary is seen as the 

founding father of phytopathology and mycology in Europe. He discovered the 

causal agents of several plant diseases (De Bary, 1861). The first professor who 

started to teach phytopathology at Wageningen University was professor Ritzema 

Bos (Ritzema Bos, 1895). Did you know that the first female Dutch professor was a 

phytopathologist? Her name was Johanna Westerdijk. She was professor of 

Phytopathology at Utrecht University and the University of Amsterdam (Faasse, 

2012) (Figure 6). 
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Anton de Bary (1831-1888) 

Jan Ritzema Bos (1850-1928) ^ ^ Johanna Westerdijk (1883-1961) 

Figure 6. Founders of Phytopathology in Europe and the Netherlands 

Two scientists in the 19"1 century have revolutionized biology. The first is Charles 

Darwin with his famous publication on: "The Origin of Species", creating the first 

tree of life (Darwin, 1859) also based on field work of Alfred Rüssel Wallace 

presented at the Linnean Society of London in 1858. The second one is the geneticist 

Gregor Mendel, who discovered the principles of heredity by crossing and analyzing 

the offspring of pea plants (Mendel, 1865) (Figure 7). 

Plants appeared on earth long before us and different plants species have evolved in 

different geographical regions also known as the centers of biodiversity. For example, 

the potatoes and tomatoes that we eat today evolved from wild relatives in South 

America (Figure 8). There is a high degree of variation among these wild plant 

species. Plants and their pathogens have co-evolved for millions of years. The wild 

relatives of our present crops have developed resistance genes against pathogens. 

When the laws of Mendel were rediscovered around 1900, plant breeders started to 

introduce resistance genes in crop plants by crossing them with wild relatives. In 

1905, Biffen in the UK was the first to discover a disease resistance gene effective 

against wheat rust (Biffen, 1905) (Figure 9). He transformed plant breeding from a 

'game of chance' to an exact science. He showed that disease resistance was inherited 

as a dominant Mendelian factor and created the first rust-resistant wheat variety 

called "Little Joss". Indirectly, Mendel and his followers are responsible for the fact 

that The Netherlands have become a major exporter of plant seeds. Did you know 

that one kilo of tomato seeds costs twice as much as one kilo of gold or more? In 2007 

one kilo of tomato seeds was even sold for $350.000 (Cohen, 2007). This is because 
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Charles Darwin (1809-1882) 

[GIN/SPECIES 

Gregor Mendel (1822-1884) 

§ ,® 

»* 

w 

Figure j . Pioneering evolutionist and geneticist who revolutionized biology 

Europe and 
Near East 

TV* Pw 
&>? 

wV^gCj 
Wild tomatoes Commercial tomatoes Commercial potatoes 

Figure 8. Centres of biodiversity of major crop plants (centres of origin) 

> Biffen transformed plant breeding from a 'game of chance' to an exact science 
> Proved that wheat rust resistance is inherited as a dominant Mendelian factor 
r Created the first rust-resistant wheat variety "Little Joss" 
> United plant genetics with plant pathology 

Figure 9. Rowland Harry Biffen created the first rust-resistant wheat variety (1905) 
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breeders have introduced many useful genes including genes for high yield and 
disease resistance. One tomato seed generates one tomato plant that can produce 30 
kilos of fresh tomatoes. 
However, resistance genes do not last forever. Pathogens can overcome an 
introduced resistance gene. Compare it with the new HN strains of influenza virus 
that can cause epidemics and pandemics. The H1N1 strain caused the Spanish flu 
pandemic in 1918 (Taubenberger, 2006) (Figure 1). A new variant of that same strain 
showed up again during the pandemic of 2009. Can we compare disease outbreaks of 
influenza virus with outbreaks of fungal diseases? The answer is yes. A new strain of 
influenza virus escapes detection by the human immune system, while a new strain 
of a fungal pathogen escapes detection by the plant immune system (De Wit et al., 
2009). Growing disease-resistant plants imposes a similar selection pressure on a 
fungal plant pathogen as antibodies do on a strain of influenza virus. There is a 
continuous arms race between hosts and their pathogens. 

The gene-for-gene hypothesis 
Studies on the arms race between plants and their pathogens started in the 1940s by 
Harold Flor in the USA. Flor worked with flax cultivars and the flax rust fungus and 
described the genetic interactions between them. Some flax rust strains did infect 
particular flax cultivars but not others. For these interactions he proposed a genetic 
model that became known as the gene-for-gene hypothesis (Flor, 1942; Flor, 1971). He 
showed that flax cultivars with a dominant resistance gene, R, are resistant against a 
flax rust strain with the corresponding dominant avirulence gene or Avr gene. 
Around the same time, Jan Arend Oort in Wageningen, The Netherlands, showed the 
basis of the gene-for-gene hypothesis in the pathosystem wheat and loose smut 
caused by Ustilago tritici (Oort, 1944). It is a coincidence that last week I was informed 
by my Canadian colleague Guus Bakkeren that the first Avr gene, UhAvri, from 
Ustilago hordei was cloned (Ali et al., 2014). In biochemical terms, the gene-for-gene 
hypothesis proposes that the product of a dominant R gene and the product of a 
dominant Avr gene interact and will cause the activation of immune responses 
including the hypersensitive response (HR), leading to resistance (De Wit, 1997). The 
products of a recessive r gene and a recessive avr gene will not interact and will not 
induce defence responses, leading to disease (Figure 10). When I started my PhD 
research in 1974, my promotor, the late professor Dekker (Zadoks, 1989), gave me the 
freedom to choose my own research project. I was torn between Venturia inaequalis, 
the apple scab fungus (Boone, 1971), and C.fulvum, the causal agent of tomato leaf 
mold . Both interactions were supposed to represent a gene-for-gene relationship. 
Research on C.fulvum has a long history in Canada where initially Langford 
(Langford, 1937), followed by Bailey (Bailey, 1948), and later Verna Higgins (Higgins 
et al, 1998), studied genetic, structural and physiological aspects of the pathogen. 
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Plant: Resistance gene 

R 

Avir ulence gene 

Avr Resistance 

avr Disease 

r 

Disease 

Disease 

Biochemical model: 
Fungus: Avr protein Resistance (HR) Disease (no HR) Plaut: R protein 

rr: 9 • R: 

> HR) Disease (no HR) 
avr: 

Figure 10. Genetic and biochemical model for Flor's gene-for-gene hypothesis 

A summary of my own research 
I chose to research the C. fidvum-tomato system, as a collection of near-isogenic lines 

of tomato with major Cf resistance genes was available at the former Institute of 

Horticultural Plant Breeding generated by Ietje Boukema (Boukema, 1977). A 

collection of C.fulvum strains was also available at the former Institute of 

Phytopathological Research (IPO), initially set up by Hubbeling (Hubbeling, 1971), 

and continued by Thijs Gerlagh (Lindhout et al., 1989). With those two collections at 

hand, I hoped to learn more about the immune system of tomato against C.fulvum. 

The near-isogenic tomato lines gave very strong defence responses. The plants are 

either fully resistant (R) or fully susceptible (S) to strains of the pathogen (Figure 11). 

Cf genes in near-
isogenic tomato 
lines 

r 
: 

a-va-4 

strains or o/aoosponum luivum 

S 

• • 
S 

s 

s 

s 

s 

s 

• 
•zfl 

s 

• 
s 

• 

• 
s 

s 

s 

• 
s 

LJ 

S: susceptible 

Figure i l . The collections of tomato lines and C fulvum strains available at the start of my PhD 
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Immediately after entering a stoma, tomato recognizes C.fulvum and an HR is 

induced. The resistant plant sacrifices a few cells and arrests the growth of the 

biotrophic pathogen (Figure 12). 

In Figure 13, a C.fidvum strain is depicted infecting a susceptible tomato plant 

colonizing the intercellular space surrounding mesophyll cells. The plant does not show 

an HR and the fungus grows happily. Apparently, in a susceptible plant, the immune 

system does not recognize the pathogen. Why, is the big question to be answered. Since 

the pioneering work of Harold Flor, many phytopathologists have searched for the 

products of the Avr genes that provide a biochemical basis for the gene-for-gene 

hypothesis. It was a very hot research topic when I started my PhD research. 

r Resistant tomato , Sacrifice of a few cells 

Figure 12. A resistant plant shows a hypersensitive response (HR) to an avirulent fungal strain 

> Susceptible tomato r No defence responses 

Figure 13. A susceptible plant does not show defence responses to a virulent strain ofQ. fulvum 
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Tcell 

\ 
Antibody 

production 

TCR 

^ H ^ Antigen 
presentation TLR 

LPS % 

Microorganisms ^ " " ^ ^ ^ 

Innate Immune response ^ ^ ^ ^ ^ Adaptive immune response 

Figure 14. /^cfróaf/on o/f/ie innate and adaptive immune system in mammals 

How does the immune system work in mammals? In mammals an immune response 

is usually triggered when the host recognizes conserved molecules from pathogens, 

the so-called pathogen-associated molecular patterns (PAMPs) (Alexander et al., 

2014). These molecules are present in a broad spectrum of micro-organisms, like 

lipopolysaccharide (LPS) in bacteria. LPS is recognized by a Toll-like receptor (TLR) 

present in dendritic cells that present antigens to T cells to activate the adaptive 

immune system, leading to the production of antibodies (Figure 14). Plants have only 

an innate immune system. What are the differences between the innate and the 

adaptive immune system? 

The innate immune system is non-specific, gives an immediate maximal response 

and does not provide an immunological memory. In contrast, the adaptive immune 

system is only present in vertebrates. It is antigen-specific and slow, but gives an 

immunological memory, where antigens of each pathogen are remembered by 

memory cells (Table 1). When the same pathogen infects the host again, these 

memory cells are activated to quickly attack and eliminate it. 

Table 1. Properties of the innate ami adaptive immune system 

Innate immune system 

Response is non-specific 

Immediate maximal response 

No immunological memory 

Present in plants 

Adaptive immune system 

Response is antigen-specific 

Slow response 

Immunological memory 

Absent in plants 
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> Elicitors from cell walls of 
Cladosporium fulvum induce 
non-specific defence 
responses in resistant and 
susceptible tomato plants 

Figure i;. Cell wall-derived elicitors (PAMPs) from fungi induce defence responses 

Until the 1980s, virtually nothing was known about the molecular mechanism of the 

immune system in plants. We could show that defence responses were induced in 

resistant plants after inoculation with an avirulent strain of a pathogen. Elicitors 

isolated from those strains could induce similar defence responses. Elicitors were 

defined as fungal cell wall-derived molecules like oligochitin, oligoglucans and 

glycoproteins, released by plant chitinases and glucanases . They induce the 

accumulation of antimicrobial compounds like phytoalexins (antimicrobial plant 

metabolites induced after infection) and pathogenesis-related (PR) proteins (Figure 

15), but the encoding genes were unknown (Keen, 1975). The identification of fungal 

elicitors and their immune receptors in the plant took a long time. Everybody was 

trying to identify specific elicitors that could specifically induce phytoalexins and an 

HR in a resistant but not in a susceptible plant. These race-specific elicitors would be 

the presumed products of the Avr genes proposed in Flor7 s gene-for-gene hypothesis 

(Flor, 1971). In the 1970s, many elicitors were identified that could induce an HR, but 

they all appeared to be non-specific. The first years of my PhD study were frustrating 

as from C. fulvum we could only isolate cell wall-derived glycoprotein elicitors, that 

were non-specific. They elicited the same response in susceptible and resistant 

cultivars, irrespective of whether they were isolated from a virulent or an avirulent 

strain of C. fulvum (De Wit, 1977; De Wit and Roseboom, 1980; De Wit, 1981; De Wit 

and Kodde, 1981a, b) 

In the general discussion of my PhD thesis defended in 1981,1 presented a model 

that would fit all the observations that we made for C. fulvum elicitors and of other 

fungi until that time (Figure 16). The model was published, together with my former 

colleague Leen Davidse (De Wit and Davidse, 1980), is not much different from 

present models, but the terminology used is different. Now we call elicitors PAMPs. 

We proposed that C. fulvum needed to suppress the defence responses activated by 
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PATHOGEN HOST PLANT 
DEFENCE REACTION 

DEFENCE 
REACTION 

DEFENCE REACTION 

«- Products of virulence genes suppress defence responses 
induced by non-specific elicitors 

Figure 16. Non-specific elicitor and specific suppressor model for C. fulvum-fomafo interaction (1981) 

elicitors in order to infect tomato. To prove the existence of the proposed specific 

suppressor molecules that would be the products of virulence genes, we started to 

search for those molecules in infected susceptible plants as these plants did not show 

defence responses because they were supposed to be suppressed by these specific 

suppressors. The model looks like an old version of what is now known as the 

effector-triggered-susceptibility (ETS) model (Jones and Dangl, 2006). I will come 

back to ETS later. 

The break-through in identifying Avr gene products that could specifically induce an 

HR came from work that I performed together with MSc student Ger Spikman in 1980. 

When we analyzed apoplastic fluid isolated from C.^/ui/m-infected susceptible tomato 

plants to find race-specific suppressors, we found evidence for race-specific elicitors 

instead (De Wit and Spikman, 1982) (Figure 17). We could mimic the HR induced by a 

strain of C.fulvum on a resistant plant by injecting apoplastic fluid isolated from 

susceptible plants that were infected by that same strain. Thus, we could reproduce the 

gene-for-gene hypothesis using Avr proteins secreted by particular strains of C.fulvum 

during infection of plants. In Figure 17 (right bottom panel), the necrotic sections in the 

leaves occurring after injection with intercellular fluids represent the HR induced by 

Avr proteins present in those fluids. From this experiment we could draw two 

conclusions: (i) specific compounds are only produced by C.fulvum during infection of 

tomato but not in vitro during growth on synthetic media and, (ii) the compounds are 

race-specific elicitors instead of race-specific suppressors. 

However, now we know that race-specific elicitor molecules have dual functions 

depending on whether a matching Cf resistance gene is present or absent in the 

tomato plant. Thus, both terms are correct. A race-specific elicitor can act as a 

race-specific suppressor depending on presence or absence of a matching Cf 

resistance gene. 
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Isolation of intercellular fluid 
from Cladospcnum-fulvum-
mfected tomato plants 

> Injection of intercellular 
fluid in tomato cultivera 
with different Cfgenes 

> Race-specific responses in tomato 
cuttivars with different Cf genes 

Figure îy. Intercellular fluids ofC ru\vum-infected plants contain race-specific elicitors 

Cloning of Avr genes 
Although we had evidence that the race-specific elicitors must be the products of Avr 

genes already in the early 1980s, it took us many years to isolate and purify them 

from apoplastic fluids and to clone the encoding genes. For the cloning we used a 

reverse genetics approach. This means that one tries to find the encoding genes based 

on amino acid sequence information obtained from the purified Avr proteins. This 

can be problematic as there are 64 triplet codons available for 23 amino acids, which 

means there is a lot of redundancy, but I will not go into further detail. The first 

fungal Avr gene ever cloned was Avrg. It was cloned by Guido van den Ackerveken 

and Jan van Kan in 1991 (Van Kan et al., 1991; Van den Ackerveken et al., 1992). Four 

additional Avr genes have been cloned in our lab since the 1990s. The Avr4 gene was 

cloned by Matthieu Joosten (Joosten et al., 1994), the Avn gene by Rianne Luderer 

Effector kDa # Cysteines 

Avr2 
Avr4 

Avr4E 
Avr5 
Avr9 

6 
10 
11 
10 
3 

Small and cysteine 

8 
B 
6 
10 
6 

-rich 

r Even number of cysteines 

-»- Contribute to virulence 

Figure 18. Avr effectors secreted in the apoplast by C.fulvum that are recognized by Cf proteins 
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(Luderer et al., 2002), the AvrqE gene by Nienke Westerink (Westerink et al., 2004) 

and very recently, the Avr$ gene by Carl Mesarich (Mesarich et al., 2014). They all 

encode small cysteine-rich proteins that are secreted by the fungus in the apoplastic 

space of tomato leaves during infection. The Avr proteins contain many disulfide 

bridges making them very compact and stable molecules (Figure 18). 

The gene cassette patent 
We were very excited to have cloned the first fungal Avr gene in 1991, quite some 

years after Brian Staskawicz and Noel Keen cloned the first bacterial Avr gene 

(Staskawicz et al., 1984). We filed a patent on exploiting this gene in molecular 

disease resistance breeding (De Wit, 1990; Honée et al., 1995; Honée et al., 1998; 

Stuiver and Custers, 2001). It became known as the gene cassette (Figure 19). We 

proposed to transform Cf-9 tomato plants with the Avrg gene under the control of a 

fungus-inducible promoter, but in principle it could be done with any Avr gene and 

its matching resistance gene. When a pathogen would enter such an /toro-transgenic 

plant the HR would be induced giving broad spectrum resistance against biotrophic 

pathogens. It was filed together with the former Biotech company Mogen 

International NV in Leiden (Mogen). We found proof of concept. By selling the 

patent to Mogen, a few postdocs could be appointed at the Laboratory of 

Phytopathology, showing that our work was of economic relevance and appreciated 

by Biotech companies. However, the patent has not been developed further after the 

merger of Mogen with Zeneca and later with Syngenta, as the company was 

concerned that the Avrç protein could cause allergy, and that genetically modified 

(GM) plants would not be accepted by society. 

Avr produced by the pathogen itself 
induces hypersensitive responses 
(HR) 

^-TC Pathogen-induced secretion of Avr by 
transgenic plants results in HR and 
provides broad spectrum resistance 

Figure 19. The gene cassette patent, providing broad resistance to pathogens affected by an HR 
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Primary functions of Avr genes 
It took a long time to discover the primary functions of the Avr genes of C. fulvum. As 

the primary function of their products is to facilitate infection (virulence factors) they 

are nowadays called effectors instead of elicitors. Of all effector genes identified so 

far from C. fulvum, we now know the primary function of three only. The Avr2 

effector inhibits the tomato cysteine protease Rcr3 to prevent it from hydrolyzing 

fungal proteins required for infection and colonization (Van Esse et al., 2008). As an 

evolutionary response, tomato has developed the immune receptor Cf-2 that 

recognizes the Rcr3-Avr2 complex, and subsequently induces an HR and resistance 

to the fungus (Rooney et al., 2005). 

The Avr4 effector is a chitin-binding protein that is secreted by the fungus and binds 

to chitin present in fungal cell walls. In this way, Avr4 protects fungal cell walls 

against hydrolysis by plant chitinases (Van den Burg et al., 2003; Van den Burg et al., 

2004; Van den Burg et al., 2006; Van Esse et al., 2008). Avr4 does occur in additional 

fungal plant pathogens (Stergiopoulos et al., 2010). As an evolutionary response, 

tomato has developed the Cf-4 immune receptor that recognizes the fungal Avr4 

protein and induces an HR and resistance (Thomas et al., 1997). 

Finding the avirulence function of an effector was easier than finding its virulence 

function. In the first case, one searches for secreted proteins that induce a Cf-specific 

HR. An HR induced by an effector is easy to score, but less so its virulence function. 

Assume that 100 effector molecules are produced by a pathogenic fungus and they 

all contribute equally to virulence, then the contribution to virulence of one effector is 

only 1%. A difference in virulence of 1% is difficult to score. However, new 

technologies like quantitative PCR are more sensitive and by using those we could 

find a contribution to virulence of many more effector proteins. Looking for 

structural and functional homologues of effectors in other organisms can be helpful 

to find their primary function. However, effectors are often species-specific, so there 

are not many homologues out there, except for a few that we call core effectors, as 

they are used by different pathogens, or major effectors, when they have a huge 

effect on virulence. Of course we did not discover effectors in the same order as they 

appeared in pathogens during co-evolution with their hosts. 

In influenza virus mutations in hemagglutinin (H) and neuraminidase (N) proteins 

that reside at the outside of the virus particle can cause genetic drift leading to new 

virus subtypes causing seasonal outbreaks, while recombination between different 

strains of the virus (by genetic shift) leads to new strains causing pandemics. 

Recombination between viral strains usually occurs when two different strain 

recombine in a shared host like man, birds or pigs and generate new types of H and 

N proteins (Noah and Noah, 2013) (Figure 20). 

Also, new strains of C. fulvum can develop mutations in effectors that can overcome 

recognition by Ci immune receptors. Mutation is followed by selection and 
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Figure 20. Mutation (drift) in H and N generates subtypes and recombination (shift) generates new types 

of influenza 

multiplication of the selected strain, usually not by recombination as C.fulvum is not 

known to reproduce sexually. However, in other fungi or oomycetes like Phytophthora 

species studied by my colleague Francine Govers in the Laboratory of 

Phytopathology, both mutations and recombination do occur, which causes quicker 

development of new strains (Li et al., 2012). Mutations occur continuously and help 

organisms to adapt to new environments. Mutations and recombination are the 

driving forces behind evolution. An individual with a lethal mutation will disappear 

from the population, but when a mutation gives a (small) advantage it will start to 

dominate the population. We discovered five different types of mutations in C. 

fulvum that enabled new strains to escape recognition by different Cf immune 

receptors (Van den Ackerveken et al., 1992; Joosten et a l , 1994; Luderer et al., 2002; 

Westerink et al., 2004; Mesarich et al., 2014): (i) mutation in an effector gene causing a 

stop codon leading to a truncated effector protein, (ii) mutations in an effector gene 

leading to the production of an effector protein with one or a few different amino 

acids, (iii) mutations in an effector gene leading to the production of an unstable 

effector protein, (iv) loss of an effector gene from the genome leading to loss of 

effector protein production or (v) insertion of a transposon in an effector gene 

preventing production of a functional effector protein. 

Mutation in an effector gene that produces a modified effector protein that is no 

longer recognized by the corresponding immune receptor will keep its virulence 

function and C. fulvum remains fit. However, loss of an effector gene will make C. 

fulvum less fit and less virulent. Loss of virulence is a problem for C.fulvum, but 

sometimes there is redundancy in effectors and the function can be taken over by a 

homologue, or, the fungus simply develops a new effector. 
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Cloning of Cf immune receptor genes 
The cloning of the C.fulvum effector genes sped the cloning of the Cf genes. The 

availability of the Avrg gene enabled the research group of Jonathan Jones at the 

Sainsbury Laboratory to clone the matching Cf-g gene by a transposon tagging 

approach (Jones et alv 1994). I was in his lab when the first Cf-g tagged mutants made 

by David Jones showed up. It was an exciting time. The Jones' lab also cloned the 

Cf-2, Cf-4 and Cf-5 genes (Dixon et al., 1996) (Thomas et al., 1997; Dixon et al., 1998). 

The Cf-qE gene was cloned by Frank Takken (Takken et al., 1999). All Cf genes encode 

receptor-like proteins known as RLPs. They are integral plant membrane proteins 

containing an extracellular leucine-rich repeat or LRR domain, a membrane spanning 

domain, and a short cytoplasmic tail without signaling domain . They directly or 

indirectly mediate recognition of the matching effectors (Figure 21). 

Cf- receptors (RLPs) 

LRRs 

Aw9 

Qf.g ' No signaling domain 

Figure 21. Cf immune receptors are LRR-membrane proteins without a signaling domain 

In the late 1990s, all Cf genes from the collection of Ierje Boukema were cloned, except 

the minor Cf genes, Cf-i and Cf-3 (Stevens, 1988). We wondered whether we could 

isolate novel Cf genes from wild tomato species by assuming that C.fulvum produces 

many more effectors. The genome of C.fulvum was not available at that time, so once 

again we had to go the hard way from protein to gene. PhD student Richard Laugé 

set out to isolate and purify additional extracellular effector protein candidates 

(Ecps). Similar to the approach we used in 1980, he injected them into a collection of 

wild tomato species, or expressed their encoding genes using the PVX expression 

system (Laugé et al., 1998). He identified many wild tomato species that responded 

with an HR. In this way, five additional effector proteins and matching resistance 

genes that induced a specific HR were identified (Laugé et al., 2000) (Figure 22). His 

idea was soon followed up by many researchers in the research community to 
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identify new R genes against different pathogens in wild crop plant species 

mediating effector recognition (Torto et al., 2003). Nowadays, with many genome 

sequences available, high throughput screens can be set up for bacteria, fungi and 

oomycetes, to test the HR- inducing activity of hundreds of potential effector genes 

and identify a similar number of immune receptors. 

^ »v. 
Cladosponum fulvum ^ ^ " • * £ ~ £ extracellular proteins (Ecps) • •£ 

> Purity Ecp effectors inject into wild tomato plants - • 

> Identify HR-respondmg lines 

> HR-respondmg lines new Cf-genes 

> Efficient method to identify new Cf- and other R genes 

Figure 22. Identification of new Cf genes from wild tomato species by Ecp effectors causing HR 

Interaction of effectors with Cf immune receptors and downstream 
defence signaling 
We have also tried hard to show whether C. fulvum effectors and the corresponding 

Cf immune receptors interact. The biochemical model of the gene-for-gene system 

suggests direct interaction. In the C. fulvum group, PhD students Miriam Kooman-

Gersmann, Renier van der Hoorn, Rianrie Luderer, Nienke Westerink, John van 't 

Klooster, and recently, Mansoor Karimi-Jashni have worked on these and related 

projects (Figure 23). They have tried to prove direct interaction in vitro using both 

Cf-2 C M Cf-9 

o 

Proven indirect interaction No proven direct interaction No proven direct interaction: 
indirect interaction? 

Figure 23. Effectors interact indirectly via virulence targets with Cf immune receptors? 
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radiolabeled and biotinylated Avr4 and Avrç effectors and Cf proteins produced in 

different expression vectors including COS cells, insect cells or yeast cells, but with 

variable success (Kooman-Gersmann et al., 1996; Luderer et al., 2001); (Van 't Klooster 

et al., 2011). This is mainly due to the fact that RLPs with so many extracellular, 

heavily glycosylated LRRs are difficult to produce stably and in sufficient amounts 

outside the plant. Only indirect interaction between Avr2 and Cf-2 via Rcr3 has been 

demonstrated, as mentioned earlier (Rooney et al., 2005; Van 't Klooster et al., 2011). 

Perhaps with exception of Avr4 we expect that most effectors will be indirectly 

recognized by RLP immune receptors via their host targets. RLPs lack a kinase 

domain that is usually required to transduce defence signals. Most pattern recognition 

receptors (PRRs) that recognize PAMPs are extracellular LRR transmembrane proteins 

with a cytoplasmic kinase signaling domain known as RLKs. 

Thus, RLP immune receptors cannot transduce signals without engaging co-

receptors like RLKs (Kruijt et al., 2005). We and others, including the research group 

of Jonathan Jones, have tried hard to find proteins interacting with Cf receptors that 

are required for downstream signaling making use of yeast two-hybrid assays. 

Indeed interacting proteins were identified, but they did not appear to be crucial, as 

silencing of the encoding genes did often only weakly compromise HR and resistance 

(Rivas et al., 2004; Nekrasov et a l , 2006; Van den Burg et al., 2008). 

However, recently PhD student Thomas Liebrand in the research group of Matthieu 

Joosten made great progress in identifying a crucial RLP interactor using a 

proteomics fishing approach. He identified the RLK called SOBIRi that interacts with 

all Cf proteins enabling them to transduce defence signals, eventually leading to HR 

and resistance (Liebrand et al., 2013; Liebrand et al., 2014) (Figure 24). This RLK is 

crucial for activity and downstream signaling of Cf immune receptors and related 

RLPs, as silencing does compromise HR and resistance. 

**P* 
®r* 

0**°» 
> SOBIR1 interacts with Cf receptors 

> Interaction of SOBIR1 with Cf receptors is 
required for HR and resistance 

> SOBIR1 also interacts with other RLP receptors 

HR and resistance 

Figure 24. Cf immune receptors interact with SOBIRi to transduce defence signals leading to HR 
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An evolutionary scenario of the arms race between host and pathogen 
In Figure 25A, B, C, D, I give a simple evolutionary scenario that could have 
occurred during co-evolution between C.fulvum and wild tomato species. Of course, 
evolution does work gradually and not in discrete steps, but for simplicity I assume 
it does. In Figure 25 A you see C.fulvum dwelling in the apoplastic space. It is not yet 
a pathogen, as tomato recognizes its PAMP, the chitin fragments released from its 
cell wall, which induce PTI after being recognized by plant chitin receptors. The PTI 
response is not strong, but strong enough to keep C.fulvum in check. That is 
unfortunate for C.fulvum, but it does not give up. You have to lose before you win. 

Ecp6: • 

{Chitin scavenger) 0^ 

A PAMPs (Chitin fragments) 

• •. fct-X- I 
X 

lin receptor (RIK| 

EffsctoMngosrtd 
susceptibility 

plantcell 

w 
Figure 25A. Chitin fragments from C. fulvum are recognized by chitin receptor-inducing PAMP-

triggered immunity 

During evolution, C. fulvum developed a new weapon that helped it to grow a little 
bit further. C.fulvum secretes the Ecp6 effector that binds chitin fragments with a 
higher affinity than the tomato chitin receptor, preventing the induction of PTI by 
chitin fragments (Bolton et al., 2008; De Jonge et al., 2010; Sanchez-Vallet et al., 2013). 
Now a weak form of effector-triggered susceptibility (ETS) is induced, leading to 
weak disease symptoms. C. fulvum can now colonize tomato to some extent (Figure 
25B page 24). 
However, it needs to produce more effectors to become a stronger pathogen. 
Effectors like Avr2 and Avr4 can fulfill this function. This leads to more significant 
disease symptoms and C.fulvum has become a real pathogen (Van Esse et al., 2008) 
(Van den Burg et al., 2006) (Figure 25C page 24). 
However, in the arms race, tomato fights back by sequentially developing the 
Cf-Ecp6, Cf-2 and Cf-4 immune receptors linked to co-receptor SOBIRi(Figure 25D 
page 24). Development of the Cf-Ecp6 immune receptor is supposed to be the first 
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Figure 25B. C. fulvum secretes Ecp6 effector that scavenges chitin fragments to prevent PAMP-

triggered immunity 
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Figure 25C. C. fulvum secretes many effectors targeting apoplastic host targets to increase virulence 
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Figure 25D. C. fulvum develops new Cf immune receptors to recognize new effectors to trigger ETI 
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defence weapon developed by tomato, but many more followed, and maybe up to 

100 effectors might be employed by C.fulvam for the attack, and a similar number of 

immune receptors might have been developed by tomato. 

From the genome of C.fulvum we know that it secretes more than 100 potential 

effectors. Imagine the arms race between C.fulvum and tomato making use of 100 

effectors as weapons and tomato fighting back with 100 corresponding Cf immune 

receptors. The fight becomes a real trench warfare! The strongest effectors we might 

have discovered already, but there are many more to be discovered with smaller 

effects. You will now understand why my work of a (molecular) phytopathologist is 

not finished yet. 

Many more plant pathogens with different modes of infection 
I have now discussed extracellular fungal pathogens, with C.fulvum as an example. 

However, there are other fungi, oomycetes and bacteria that show different modes of 

infection (Dou and Zhou, 2012) (Figure 26). They exploit the cytoplasm of plant cells 

by injecting effectors that interact with cytoplasmic targets to suppress PTI (Whisson 

et al., 2007; Stergiopoulos and De Wit, 2009). Several of these host targets have been 

identified, but I have no time to discuss them. The cytoplasmic effectors are usually 

recognized by cytoplasmic NBS-LRR immune receptors, also known as NLRs 

(Maekawa et al., 2011). If one assumes that tomato is infected by 10 different fungal 

pathogens of which some infect the apoplast, and some the cytoplasm or cell 

organelles, and every pathogen produces 100 effectors, then by simultaneous 

infection, tomato is attacked by 1000 effectors. Assume that in response tomato needs 

to develop 1000 corresponding immune receptors. A lot of work needs to be done to 

figure out the strategy of attack assuming that not all enemies of tomato act as allied 

forces. 

A. Bacteria 
B. Rusts and downy mildews 
C Powdery mildews 
D Extracellular pathogens 

> Defence signaling pathways mediated by Cf-4 and 
Cf-9 immune receptors 

Figure 26. Different pathogens, different infection modes, different effectors but similar arms race/defence 
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How can plants survive in the presence of so many different 
pathogens? 
After recognition of effectors by RLPs, ETI is activated and many research groups are 

identifying and dissecting downstream defence signaling pathways. In Figure 26 

(right panel), a few defence signaling pathways activated and mediated by RLP 

receptors Cf-4 and Cf-9 are shown (De Wit et al., 2009). I will not go into further 

detail. It is now the subject of Matthieu Joosten's research group at the Laboratory of 

Phytopathology. In the past, former PhD students Sandor Snoeijers, Camiel de Jong, 

Suzan Gabriels, Iris Stulemeijer and Ahmed Abdel-Haliem, have worked on this 

research topic (Perez-Garcia et al., 2001; De Jong et al., 2004; Gabriels et al., 2007; 

Stulemeijer et al., 2007; Vossen et al., 2010). 

Consider the huge difference in generation time between a pathogen and a plant. The 

generation time of a bacterium is around 20 minutes, the generation time of a fungus 

a few days, that of a plant 3-6 months, and that of man is 10 years. Consider the 

speed at which pathogens develop mutations in effectors and develop new effectors. 

One wonders, why we and plants still exist. Some plant immune receptors can work 

together by making receptor complexes active against more than one pathogen 

(Lozano-Torres et al., 2012). Also downstream defence responses in plants activated 

during PTI and ETI partly overlap and are effective against a broad spectrum of 

pathogens. These responses include the generation of toxic reactive oxygen species, 

antimicrobial phytoalexins and the antimicrobial enzymes like chitinases, glucanases, 

proteases, and often the HR (Stotz et al., 2014). Former PhD student Jos Wubben has 

worked on the in planta localization of chitinases and glucanases (Wubben et al., 

1992). Work on PR proteins has remained a recurring theme in our research, 

especially the work on chitinases that play a crucial role in the host-pathogen 

interaction. These, in particular, have been extensively studied, and the cloning of 

their genes was initiated by Jan van Kan (Van Kan et al., 1992; Danhash et al., 1993). 

There are also examples of one immune receptor being active against two different 

pathogens. Recently our colleagues at the Laboratory of Nematology showed that the 

Cf-2 immune receptor also works against the cyst nematode Globodera rostochiensis 

(Lozano-Torres et al., 2012).Both the Avr2 effector of C.fulvum and the nematode 

Gr-VAPi effector inhibit the cysteine protease Rcr3, which triggers Cf-2-mediated 

immunity. How can plants develop so many highly specific immune receptors? Most 

of them occur in clusters allowing them to generate new specificities by inter- and 

intra-locus recombination between their homologues. In this way, immune receptors 

with new specificities can be generated (Van der Hoorn et a l , 2001; Kruijt et al., 2004). 

This is somewhat reminiscent of the mechanisms by which specific antibodies are 

produced in our own adaptive immune system. New antibodies are generated by 

rearranging germ-line DNA segments to form new antibody genes. Joining different 

segments of DNA encoding the variable light and heavy chains allows the 
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Figure 27. Development of new Cf-9 immune receptors by intra- and inter-locus recombination 

production of millions of different antibodies (Angelin-Duclos and Calame, 1998). 

In Figure 27 you see an example of recombination between homologues of the Cf-9 

immune receptor genes. You notice the mosaic structure of the homologues in the 

cluster in two different genotypes of tomato. Former PhD students Marco Kruijt and 

Renier van der Hoorn studied this together with members of the Jonathan Jones lab 

(Kruijt et al., 2004; Wulff et al., 2004). Thus, the wild tomato population is very 

diverse and contains numerous different homologous immune receptor genes, of 

which few are characterized in their defensive role. It is expected that in the future, 

many will be shown to be involved in recognizing microbe-derived PAMPs and 

effectors which are currently unknown. 

Valorisation of research 
Modern crop plants should be equipped with more than one immune receptor 

against a particular pathogen. With a mutation rate of one in one million nucleotides 

per R gene per season, the chance of overcoming five R genes is estimated to be 

1000.000.000.000.000.000.000 times smaller than overcoming one R gene. Pyramiding 

(also known as stacking) five different R genes in one cultivar or using multi-lines or 

mixed lines, each carrying one of the five different R genes in time and space in many 

different crops, is expected to be durable (Wolfe, 1985); (Brunner et al., 2012). 

However, even when we have developed tools and methods to prevent diseases, this 

does not always lead to implementation in practice. Application depends on the 

attitude of breeders, growers and consumers. I can illustrate this with two examples 

The first example comes again from C.fulvum. The five resistance genes Cf-2, Cf-4, 

Cf-qE, Cf-5 and Cf-9 are very effective against this fungus. In the first half of the last 

century C. fulvum was an economically important disease of tomato, when no 

resistance genes were available yet. In a textbook written by Butler and Jones 

published in 1949, seven pages were devoted to C.fulvum (Butler and Jones, 1949). In 

the 1980s, only one or two Cf genes were present in tomato cultivars grown in 

greenhouses. This led to frequent outbreaks of new strains. Since the 1980s most 
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tomato cultivars contain three or more Cf genes which prevented new disease 

outbreaks for more than 25 years. However, after 2010, new C.fulvum outbreaks were 

reported in greenhouses of organic tomato growers in The Netherlands and 

neighboring countries. Diseased leaves were sent to the Laboratory of 

Phytopathology and were diagnosed. Only race o, race 2, race 9 or race 2.9 strains 

were identified indicating that the diseased tomato cultivars contained no Cf gene, 

the Cf-2 gene, the Cf-9 gene, or both. Obviously, the cultivars did not contain the Cf-4 

and Cf-5 resistance genes. Why? The Cf-9 gene was introduced in the 1980s and was 

so powerful that during the last decades some breeders only introduced the Cf-9 gene 

in new cultivars and did not care for the others explaining why these cultivars 

became heavily infected by old races that are still out there in the field. This example 

shows that breeders and growers need always to be alert, as outbreaks occur when 

tomato cultivars are not equipped with sufficient number of Cf genes. 

The second example refers to the introduction of genetically modified disease-

resistant plants. Nobody wants to eat food that is contaminated with pesticides, but 

we are in favor of growing disease-resistant cultivars. However, in some cases this 

might require using GM plants when traditional resistance breeding is not possible. 

However, GM plants meet much opposition in our society, despite objective 

information about their safety. With all the knowledge generated we can now 

produce new resistant genotypes with multiple R genes that do not need chemicals 

to be protected against pathogens. Hopefully GM disease-resistance plants will 

eventually become accepted by the public and we can grow them to secure our crops 

(Brunner et al., 2012; Zhu et al., 2012). 

La dernière étappe 
Now I come to the last episode of my career. I was very happy with the appointment 

as KNAW professor five years ago. It felt like doing my second PhD thesis. I cannot 

defend it today with the Rector Magnificus Martin Kropff chairing the defence 

committee and the professors left and right of me on the podium being members of 

the defence committee firing questions at me. I am sorry, I need another year of 

research before my second PhD has been completed and can be defended. 

I was happy that I could form an excellent international research team around me 

consisting of motivated young scientists: Dutchmen/women Harrold van den Burg, 

Ate van der Bürgt, Evy Battaglia and Henriek Beenen, Frenchman Jérôme Collemare, 

Greek Ioannis Stergiopoulos, Welshman Scott Griffiths, Iranians Rahim Mehrabi and 

Mansoor Karimi, Turkishman Bilal ekmen, Japanese Yuichiro Iida and New 

Zealander Carl Mesarich. Many of them have affinity with bioinformatics, especially 

Ate van der Bürgt, former Dutch Champion of 800m and 1500m speed running. 

Together we managed to sequence and annotate the C. fulvum genome and compare 

it with its closest relative, the pine needle pathogen Dothistroma septosporum, and 
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Cladosporium fulvum Dothistroma septosporum 

> Biotroph 

> Genome invaded by many retrotransposons 

»•Shares effectors with D. septosporum 

> Produces tomatinase 

> Does not produce dothistromin toxin 

> Shares introner-like element with D. septosporum 

> Contains more secondary metabolite genes than 

D. Septosporum 

•• Originates from a (pine) tree pathogen? 

> Hemibiotroph 

> Genome with few retrotransposons 

> Shares effectors with C. fulvum 

> Lacks tomatinase gene 

> Does produce dothistromin toxin 

> Shares introner-like elements with C. fulvum 

r Contains less secondary metabolite genes than 

C. fulvum 

> Originates from a solanaceous plant pathogen? 

Figure 28. Dothistroma septosporum the pine needle pathogen is tlie dotai relative of C. fulvum 

discover many new phenomena in their genomes. Thank you guys! I cannot discuss 

all your achievements due to time limitation. Some highlights are provided in 

Figure 28. We could address research questions like: 

• Where does C. fulvum come from? 

• Was C. fulvum a pine tree pathogen before it became a tomato pathogen? 

• How did C. fulvum adapt to its host plant tomato? 

• Where did the transposons that invaded C. fulvum come from? 

• Are the discovered introner-like elements ancestral to regular spliceosomal 

introns? 

• Is C. fulvum a real biotroph? 

• If a real biotroph, why does C. fulvum contain so many secondary metabolite genes 

and do they produce functional products? 

• Can pseudogenization explain adaptation to new host plants? 

Many of these research questions are answered by you already, but many are still 

under investigation. For those of you who are interested, you can read the papers 

that were published as a result of this research in recent years: (Bradshaw et al., 2012; 

Ohm et al., 2012; Van der Bürgt et al., 2012; Bradshaw et al., 2013; Chettri et al., 2013; 

Okmen et al., 2013; Stergiopoulos et al., 2013; Collemare et al., 2014; Mesarich et al., 

2014; Okmen et al., 2014; Stergiopoulos et al., 2014; Van der Bürgt et al., 2014a; Van 

der Bürgt et al., 2014b). 
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The future of next generation sequencing 
The genomes of numerous fungi can now be compared based on data obtained from 

genome sequences of " the one thousand fungal genome project". We can now 

identify and isolate useful genes from many of these fungal genomes. The KNAW 

Institute CBS in Utrecht headed by Pedro Crous hosts one of the world's largest 

collections of fungi. It is important to know what these fungi can produce. Some 

might be producers of new antibiotics that are badly needed to cure human and 

animal diseases. 

This afternoon was a journey through forty years of my own research, as a PhD 

student, a postdoc, assistant, associate and full professor. The research was mainly 

performed by talented MSc students, PhD students and postdocs and I thank them 

all. I have good memories of exciting discoveries that we made during that journey. I 

am happy that many of you could be present today. 

The Laboratory of Phytopathology 
For 23 years I was head of the Laboratory of Phytopathology, consisting of six 

independent research groups and I had the privilege to lead this motivated group of 

scientists as the "primus inter pares". The group leaders could all have presented a 

similar talk about their fascination and passion for research. 

• Former group leader Maarten de Waard would have talked about ABC 

transporters in fungi, 

• Pedro Crous about fungal biodiversity and evolutionary phytopathology, 

• Francine Govers about the genome and effectors of Phytophthora infestans and 

potato immune receptors, 

• Matthieu Joosten about effector-triggered Cf-mediated defence signaling in 

solanaceous plants, as he did this morning during the farewell symposium, 

• Jan van Kan about virulence factors of the necrotrophic pathogen Botrytis cinerea 

and comparative genomics of its relatives, 

• Jos Raaijmakers about molecular microbial ecology and soil-borne, antimicrobial 

and growth stimulating bacteria; Jos, much success as future head of the Terrestrial 

Microbial Ecology department of the KNAW Institute NIOO, 

• and finally Bart Thomma about effectors of vascular pathogen Verticillium species 

and host immune receptors. 

Your research groups have all made great contributions to the reputation of The 

Laboratory of Phytopathology by your excellent research. This is also why not only 

sponsors like the EU, NWO, STW and the KNAW, but also breeding companies have 

always supported the Laboratory very well. Our work was also appreciated by the 

board of Wageningen University by extra financial support for education and 

research. Also, ALW and STW have granted many Veni, Vidi and Vici fellowships to 
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our young talents. They are too many to mention them all. I would also like to thank 

secretary Ali Ormel and the technicians Grardy van den Berg, Rob Weide, Ester 

Dekkers and Henriek Beenen for their contributions to research and teaching, and 

managing the office and laboratory. Your work was, and still is of crucial importance. 

MSc students, PhD students and postdocs come and go, but they are the ones that 

carry out the innovative research. Many of you who passed through the Laboratory 

got prestigious positions in The Netherlands and abroad. 

I am also privileged that my successor was appointed already before I stepped down 

as head of the Laboratory of Phytopathology. Bart Thomma, you came like Julius 

Cesar: "Veni-Vidi-Vici", but what Cesar could not manage, you did. You came from 

the south after having conquered the Belgicae, you passed the river Rhine and 

decided to stay permanently among the Batavians. I wish you much success as the 

new head of the Laboratory. You have new challenges ahead, but I am sure you will 

master them with your team of excellent scientists. 

I would also like to thank my former teachers and colleagues, the late professor 

Johan Dekker through his wife Hanny Dekker, Jan Carel Zadoks, Mike Jeger, Leen 

Davidse, Adriaan Fuchs, Tijmen Hijwegen, Gerrit Bollen, Herman Frinking, Theo 

Ruissen and Aad Termorshuizen, as well as our former secretary Elly Depryck. I keep 

good memories of all of you. 

I would also like to thank my colleague professors in the former crop protection 

section for stimulating discussions and collaborations, Just Vlak who replaced the 

late Rob Goldbach, Jaap Bakker, Joop van Lenteren and Marcel Dicke. Also our 

collaborators on the C.fidvum project outside the Laboratory I would like to thank: 

Jacques Vervoort, Pirn Lindhout, Gert Kema, Geert Smant and Henk van den Broek. 

Internationally we have collaborated with many colleagues. I am happy that some of 

them are here today and some even presented their last research in the farewell 

symposium this morning. They are Verna Higgins, Jonathan Jones, David Jones, 

Richard Oliver, Rosie Bradshaw, Nick Talbot and recently Brian Staskawicz, our 

Wageningen University honorary doctor. These collaborations were sometimes 

competitive, but they always worked synergistically and accelerated progress in 

research. I am thankful to all of you. 

As former director of the graduate school EPS, I interacted with many colleagues in 

Plant Sciences from Wageningen University and other Dutch universities. It was 

great to hear when I later became member of the ECOS committee of the KNAW that 

the graduate school EPS was always taken as the example of an excellent national 

graduate school. It was the pioneering work of Cees Karssen, Ab van Kammen and 
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founding director Evert Jacobsen who made this all possible. I wish the present 

director Ton Bisseling and his team much success in the future. 

I would also like to thank the department of Plant Sciences through its director Ernst 

van den Ende and Wageningen University through its Rector Magnificus Martin 

Kropff for providing conditions that stimulated students and scientists to perform at 

their best. 

I also like to thank my tennis team mates with whom I played for forty years and 

some even longer; it gave me a lot of pleasure and diversion after long hours at the 

laboratory. However, fitness decreases with age. I still enjoy tennis, but then the team 

decided to play golf, which requires less physical abilities. First I did not like golf, 

then I started to like it and finally I decided to play competition. I don't think that 

was a good Idea. Our team lost this Spring, but like fungi in the arms race, one has to 

lose before one can win. Thank you, team mates. 

Finally I would like to thank Els for so many years of support during this journey. I 

was often away, physically or with my thoughts, but we always found time for joint 

activities at the tennis court, golf course, jogging, cycling or travelling. I am sure we 

will get more time for all these activities in the future. We will also have more time to 

visit Matthieu and his wife Renee, and Christiaan, Katie and our grandson Elye who 

all live abroad. Matthieu and Christiaan, you have gone different ways, but it was 

good you followed your heart, Matthieu as a scientist studying the functioning of our 

brains, and Christiaan in the music industry. I wish you much success. 

With the last two slides I would like to thank all past and present members of 

Laboratory of Phytopathology (Figure 29) for a wonderful time, as well as 

Wageningen University and all outside sponsors (Figure 30) who made this all 

possible by their support. 

Thank you for listening. It is now time for drinks. 
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Figure 29. Thank you Laboratory of Phytopathology! 
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Figure 30. Thank you sponsors of the Laboratory of Phytopathology! 
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'Fungi are notorious plant pathogens and continuously threat 
global food production. In the last decades we have obtained 
a better understanding of infection strategies of fungi and 
the plant immune system. This has facilitated more efficient 
introduction of disease resistance genes in crop plants by 
plant breeders. A brief overview of progress in research and 
applications will be provided as well as a glimpse into the futui 
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