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Abstract

Trait predictions from leaf spectral properties are mainly applied to tree spe-

cies, while herbaceous systems received little attention in this topic. Whether

similar trait–spectrum relations can be derived for herbaceous plants that differ

strongly in growing strategy and environmental constraints is therefore

unknown. We used partial least squares regression to relate key traits to leaf

spectra (reflectance, transmittance, and absorbance) for 35 herbaceous species,

sampled from a wide range of environmental conditions. Specific Leaf Area

and nutrient-related traits (N and P content) were poorly predicted from any

spectrum, although N prediction improved when expressed on a per area basis

(mg/m2 leaf surface) instead of mass basis (mg/g dry matter). Leaf dry matter

content was moderately to good correlated with spectra. We explain our results

by the range of environmental constraints encountered by herbaceous species;

both N and P limitations as well as a range of light and water availabilities

occurred. This weakened the relation between the measured response traits and

the leaf constituents that are truly responsible for leaf spectral behavior.

Indeed, N predictions improve considering solely upper or under canopy spe-

cies. Therefore, trait predictions in herbaceous systems should focus on traits

relating to dry matter content and the true, underlying drivers of spectral

properties.

Introduction

Leaf biochemical and structural properties (better known

as leaf traits (Violle et al. 2007)) are indicative for plant

strategies (Wright et al. 2004), plant response to pressures

(De Bello et al. 2006; Garnier et al. 2007), and ecosystem

processes and services (Dı́az and Cabido 2001; Lavorel

and Garnier 2002; Lavorel et al. 2011). Therefore, ecosys-

tem management and studies are increasingly using traits,

for example Douma et al. (2012) and Kokaly et al.

(2003). It is recognized that the traits of a leaf influence

its spectral properties: reflectance, transmittance, and

absorbance (Ustin 2013). Hence, by measuring leaf spec-

tral properties using, for example, spectroscopy (many

adjacent spectral bands with high spectral resolution), leaf

traits may be approximated (see for a review: (Homolov�a

et al. 2013)). So far, spectroscopic predictions of traits

appeared particularly focused on forest ecosystems; for an

impressive number of tree species, the spectral properties

of individual sunlit top of canopy leaves have been deter-

mined using field spectrometers and subsequently related

to leaf traits, such as N and P content, photosynthesis

rate, leaf mass per area (LMA), water content, lignin,

phenolics, tannins, and carotenoids (Asner et al. 2011;

Doughty et al. 2011).

For several reasons, tree leaves in the top of the can-

opy are expected to be similar with respect to growth

strategy and nutrient stoichiometry. Firstly, trees reaching

the top of a forest canopy have been successful in com-

peting for light, and all have employed trait combina-

tions that maximized growth rates (Falster and Westoby

2005). Moreover, illumination conditions determine

nutrient allocation to either light or CO2-harvesting

compounds, where the former decreases and stabilizes

with increasing light exposure (Niinemets 2010). Top of

canopy leaves are fully exposed to sunlight and thus
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spend a proportionally large amount of nutrients to CO2

harvesting. This results in a consistent stoichiometry in

top of canopy leaves between leaf constituents that code-

termine the leaf spectral properties, such as between

chlorophyll and N and P (Baraloto et al. 2010). This is

acknowledged by, for example, the PROSAIL leaf and

canopy radiative transfer model (Jacquemoud et al.

2009), which for modeling canopy reflectance as function

of several leaf and canopy properties assumes a fixed

proportion of canopy N allocated to canopy chlorophyll

(Ustin 2013). Similarly, leaf P can be predicted from

spectral data due to its stoichiometric link to leaf N (As-

ner and Martin 2008b).

What would happen if these prepositions on leaf con-

stituency are no longer valid? Herbaceous ecosystems

often contain species with different growth forms and

positions mixed across the three-dimensional matrix of

the canopy (Aan et al. 2006; Fliervoet and Werger 1984;

Hirose and Werger 1995; Kull and Aan 1997). This forces

plant species to employ a variety of strategies to acquire

sufficient resources. Sufficient light may be collected by

investing nutrients in light harvesting compounds (chlo-

rophyll and other pigments), by shifting growth to favor-

able – unshaded – periods, or by spending nutrients on

short-lived fast-growing leaves (Niinemets 2010). Such

variety of strategies may affect the coherence of leaf

chemical–leaf reflectance relationships, particularly when

coinciding with a range of canopy structures (Knyazikhin

et al. 2013). These complications potentially disqualify

empirical trait–spectra relations that are successfully used

in tropical (Asner and Martin 2008b, 2010; Asner et al.

2011; Doughty et al. 2011) and temperate forest (Martin

et al. 2008) canopies, for application in herbaceous

systems. At the same time, herbaceous ecosystems are

widely distributed (Prentice et al. 1992) and of critical

importance on climatic processes (Hoffmann et al. 2002).

This calls for expanding trait prediction to herbaceous

ecosystems.

Therefore, we investigated whether trait prediction is

hampered by the variety of plant strategies employed by

herbaceous species. We aimed to avoid the potential

influence of canopy structure on trait predictions (Knyaz-

ikhin et al. 2013; Ustin 2013) and measured traits and

spectra therefore directly on leaf level. This research asks

whether leaf spectra (here, leaf spectra refer to leaf reflec-

tance, transmittance, and absorbance) remain indicative

of key leaf traits when an empirical model – based on

partial least squares regression (PLSR) – that correlates

spectra to traits is confronted to a wide range of herba-

ceous species. Despite results on indirectly related traits

obtained for forest ecosystems, we hypothesize that only

traits that are direct mediators of leaf spectral properties

will correlate well with spectral properties.

Materials & Methods

Plant collection

We aimed to collect data on traits and leaf spectra from a

wide range of ecosystems dominated by herbaceous plant

species to encompass the environmental gradients within

which herbaceous ecosystems occur (thereby presumably

expressing the various strategies viable in herbaceous

ecosystems). Thirty-one different plant species were col-

lected in six different ecosystems (dunes, dry and moist

heathers, various oligotrophic, and eutrophic grasslands).

Four species were sampled in two different ecosystems,

resulting in a total of 35 plants. Selection of species was

based on an a priori assessment of which species would

be abundant and characteristic to each site, as well as

aiming to include species from throughout the vertical

dimension of the canopy. All plants were sampled during

or close to peak growing season (June to August 2011).

Specific care was taken for each target species to select a

specimen that was a healthy adult with at least six fully

developed healthy green leaves that were not affected by

herbivores. Whole plants were harvested, if possible,

including a portion of the roots to keep the plant as

intact as possible. To preserve the plant tissue, the mate-

rial was wrapped in moist tissues, sealed in a plastic bag,

and stored refrigerated until analysis in the laboratory at

the end of each day. Fourteen plants were collected dur-

ing consecutive field work days and were kept refrigerated

for max. 48 h.

Leaf spectra

No more than 30 min after harvesting each plant, leaf

spectra (i.e., leaf reflectance, transmittance, and absor-

bance) were determined for 1–4 (modus = 3) healthy,

fully developed leaves, using an ASD (Analytical Spectral

Devices, Inc., Boulder, CO) Integrating Sphere (IS) cou-

pled to an ASD FieldSpec Pro FR spectrometer. The IS

generates an averaged spectral signature of the leaf that is

independent of viewing angle. The FieldSpec collects light

with a flexible bundle of optic fibers and transports it to

three individual spectrometers that collectively cover the

range 350–2500 nm. Preliminary analysis revealed a low

signal-to-noise (S/N) ratio for wavelengths >1800 nm as

well in the first few spectral bands around 350 nm. To

account for this, all spectra were cropped to the 400–
1800 nm range, retaining 1401 spectral bands. A second-

order Savitzky-Golay filter was applied to remove minor

noise. A filter window of 31 nm was applied to 300–
800 nm, and a length of 51 nm was applied to the

remaining spectral bands. For the remainder of this study,

the spectral regions are referred to as follows: visible (VIS,
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400–700 nm), near infrared (NIR, 700–1400 nm), and

short-wave infrared (SWIR, 1400–1800 nm). In addition

to leaf reflectance, transmittance was measured by placing

the leaf in front of the IS and recording radiation that

penetrated the leaf.

We followed the protocol for measuring reflectance

and transmittance as provided by the IS manual (hereaf-

ter, standard procedure). Per leaf, a single measurement

of reflectance and transmittance (being the average of 100

spectrometer readings) was normalized by dividing the

measured radiance by the radiance as reflected by a white

reference material (spectralon, Labsphere Inc., North

Sutton, NH). This relative measure of reflectance was

transformed to absolute reflectance after multiplying by

the absolute reflectance of the reference material (which

was provided by the manufacturer). Each reflectance

and transmittance measurement was corrected for stray

light by subtracting radiance measured with a light trap

behind the input port. Reflectance and transmittance were

calculated per leaf and subsequently averaged for each

individual plant. In all, reflectance was acquired for 34

plants, and for 29 plants, noise-free transmittance mea-

surements were available. Overlap between these two

groups of plants consisted of 28 plants. For these 28

plants, leaf absorbance was calculated as 1 – reflectance –
transmittance. Smoothing of absorbance spectra was not

necessary because absorbance was calculated after

smoothing was applied to the reflectance and transmit-

tance data.

For three plants, the leaves were too small to cover the

IS input port (hereafter: small width leaves), as the IS is

designed to receive leaves with a minimum diameter of

10 mm, hereafter: wide leaves. Various solutions have

been proposed to measure optical properties of small

width leaves (Daughtry et al. 1989; Mesarch et al. 1999;

Noda et al. 2013). We applied a correction mechanism

developed by Noble and Crowe (2007), which consists of

applying a custom-made mask, in our case consisting of a

vertical slit 5 mm wide and 10 mm high, reducing the

width of the input port and subsequently correcting the

measured radiance for the spectral contribution of the

mask, based on the masked and unmasked spectra of two

reference materials. Small-width leaf transmittance was

measured by alternating the leaf background between a

white (spectralon) and black reference surface. To assess

the reliability of the mask correction, reflectance of all

wide leaves was subjected to masked measurements as

well. This allowed comparison of leaf reflectance acquired

by the standard procedure and spectra resulting from the

mask-corrected measurements. Large leaves were not

measured for transmittance with the masked protocol due

to the labor intensity of this IS setup and time constraints

during the fieldwork.

Leaf traits

Of each plant, the remainder of the plant material was

kept refrigerated until the end of the day when they were

transported to laboratory facilities. Here, around five

leaves (mode value) were selected for plant trait analysis

and removed from the plant, excluding petioles. Fresh

weight was determined before scanning the leaves on a

flatbed scanner to determine leaf area in mm2. Samples

were oven-dried for 48 h at 60°C to determine dry

weight, to thus calculate leaf dry matter content (LDMC,

mg/g) as well as the specific leaf area (SLA, mm2/mg).

After mill grinding the dried samples, leaf nitrogen and

leaf carbon contents (LNC, LCC, mg/g) were determined

by dry combustion with a Flash EA112 element analyzer

(Thermo Scientific, Rodana, Italy). After acid digestion of

the ground leaf tissue, leaf phosphorus content (LPC, mg/

g) was determined using a color reagent at 880 nm on a

spectrophotometer (UV-1601 PC, Shimadzu Corporation,

Tokyo, Japan) following the method of Murphy and Riley

(1962). In addition, the N:P ratio was calculated to iden-

tify the variation in nutrient growth limitations.

Regression between leaf spectra and leaf chemical con-

stituents is influenced by, among other aspects, whether

the constituent is expressed on mass or area basis (Gross-

man et al. 1996). To account for this, we created two

new traits by dividing LNC and LPC by SLA, referred to

as LNCarea and LPCarea (g/m2). All analyses were carried

out for the combined sample of all leaves for each plant,

instead of for each leaf individually, to acquire a robust

trait value for each plant.

To evaluate the correlation among traits, Pearson’s cor-

relation coefficient was calculated between all trait pairs.

In addition, a principal component analysis (PCA) was

carried out to determine trait variations in multiple

dimensions.

Relation spectra – plant traits

A normal distribution of the trait values was approached

after taking a logarithm of the original trait distribution.

As an exploratory analysis, Pearson’s correlation coeffi-

cient between the trait values and each individual spectral

band was calculated. Subsequently, plant trait values were

related to plant spectra using partial least squares regres-

sion (PLSR). The advantage of PLSR over regular multi-

linear regression is its capacity to deal with colinearity.

The 1401 predictor variables (i.e., spectral bands) out-

number the observations and prevent application of

regular multivariate regression. PLSR projects the explan-

atory variables into new orthogonal latent variables (LV,

each being a linear combination of the original predictor

variables) that explain the variance in the original predic-
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tors in an asymptotic fashion. Regression is then applied

between the dependant variable (i.e., trait) and an opti-

mal number of LVs (Wold et al. 2001). The number of

latent factors for each model was chosen as to minimize

the root mean square error (RMSE) of the leave-one-out

(LOO) validation. Model accuracy was expressed by

RMSE and by the coefficient of determination r2 which

compares predicted to observed values. RMSE and r2 were

acquired during both model calibration (indicated with

subscript cal) and after model validation (indicated with

subscript val). Correlation coefficients r and coefficients

of determination r2 are marked as strong (>0.7), moder-

ate (0.7 � 0.5), or weak (<0.5) (Doughty et al. 2011).

For each of the LOO validation model fittings, the

regression coefficients were calculated. A t-test revealed

whether the mean regression coefficient deviated signifi-

cantly from 0. A band was considered significant if P < 0.1.

PLSR models were iteratively fitted by cropping the predic-

tor variables to the significant predictors of the prior run.

This was repeated until all predictors were significant or

until cropping did not result in an improved RMSEval.

All analyses were performed in R (R_Core_Team 2013)

using the pls package (Mevik and Wehrens 2007) and

scripts adapted from Feilhauer et al. (2010).

Results

Leaf spectra

Reflectance

Reflectance measurements showed pronounced absor-

bance in VIS wavelengths and a steep red-edge around

700 nm where variance in reflectance over all plants was

very low (Fig. 1). Reflectance values were highest for the

NIR region, where 50% reflectance was exceeded. Minor

water absorbance features were visible around 1000 and

1200 nm, while major absorbance features were clearly

visible around 1450 and 1800 nm. The Savitzky–Golay fil-

ter effectively removed spectral noise throughout the

spectrum (nonsmoothed spectra not shown).

In addition to reflectance measurements of plants with

wide leaves, three plants had small width leaves and were

measured with only the masking technique. The correct-

ing algorithms yielded a spectral signature that was typical

for a green leaf, however, with increased noise levels in

NIR and SWIR compared with unmasked measurements.

Many other masked measurements (specifically: masked

measurements of wide leaves for validation purposes and

a number of additional small width leaves) suffered from

abrupt changes in reflectance precisely at the transition

between the three spectrometers inside the FieldSpec.

These obvious errors are likely due to differences in

spectrometer calibration between the moment of sample

measurement and measurement of the reference materials.

Spectra with abrupt changes were omitted from further

analysis, reducing the number of wide leaf plants with

dual spectral measurements for validation to just six.

Average reflectance and 95% confidence interval of those

plants acquired for the unmasked samples and the mask-

corrected samples are shown in Supporting Information

1. Noise was considerably higher for masked reflectance,

especially around 1000 nm and around 1700 nm. Masked

reflectance was lower at the NIR range, but approached

the original unmasked reflectance in the remaining parts

of the spectrum.

Transmittance

Transmittance spectral signatures followed similar pat-

terns as the reflectance measurements, albeit with consid-

erably more variation in the VIS spectrum (Fig. 2). The

NIR range revealed less pronounced absorbance features

and several minor peaks, while in the SWIR, a prominent

absorbance peak is observed. The Savitzky–Golay filter

removed minor noise features around 1000 nm but could

not prevent retention of noise in 750–900 nm.

Again, transmittance was measured following the stan-

dard procedure where possible. A single plant was mea-

sured with the masked procedure, of which in the resulting

spectral signatures no oddities were apparent. In the

absence of transmittance measurements using both stan-

Figure 1. Mean reflectance (n = 34) and transmittance (n = 29) with

the 95% confidence interval indicated in gray, and postsmoothing

with a Savitzky–Golay filter. Transmittance is mirrored. The residual of

1 – reflectance – transmittance is defined as absorbance (n = 28) and

is indicated as such.
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dard and masked procedures, the reliability of the masked

transmittance measurements could not be determined.

Absorbance

The remainder of emitted radiation that was reflected nor

transmitted by the leaf was assumed to be absorbed.

Hence, absorbance spectra generally mirrored reflectance

and transmittance signatures (Fig. 2). Absorbance in the

VIS was consistently high for all plants, with the obvious

omission of green spectra (550 nm). Irregular features

were observed in the NIR range. Absorbance was the

dominant process in the SWIR range around 1450 nm.

Leaf traits

We observed considerable variation in the values of the

seven traits selected to reflect plant strategies concerning

nutrient allocation and cycling (Fig. 2). This variation

comprises a large part of the global variation in these

traits, which is evident from the comparison of the trait

values in this study with median and quantile values of

the same trait for all records in the TRY database (Kattge

et al. 2011): trait values in this study exceeded the 2.5%

quantile (LCC, LNCarea and LPCarea) and 97.5% quantile

(LNC and LPC) of the TRY database. Other traits values

were confined to the range of the TRY database, but cov-

ered a large part of the reference trait range. The extremes

of the observed trait values correspond with the wide

variety in abiotic conditions in the sample locations. SLA

values in this study were high compared with the TRY

database, reflecting the relatively fertile conditions of the

ecosystems included in our study.

Correlation between trait pairs was generally weak

(supporting information 2), suggesting that the plants

employed various strategies to cope with the environmental

conditions. Nutrient-related traits, especially LNC

and LPC, correlated weakly with each other as well as

to structure-related traits (LCC, SLA, and LDMC)

(0.49 > r > �0.27), while correlation among structural

traits (LCC, SLA, and LDMC) was intermediate (�0.54 >
r > 0.41). Because LNCarea and LPCarea are derived from

other traits, correlation with the nutrient traits expressed

on mass basis was strong (up to r = 0.8). In contrast with

LPCarea, LNCarea corresponds well also to the structure-

related traits. Principal component analysis of the traits

(Supporting Information 2, Fig. 2) also suggests low vari-

ation among traits, with the first two principal axes

accounting for just 68% of the total trait variation.

LDMC and SLA on opposite ends of the first axis reveal

variation in leaf thickness and area, as expressed as thin

large leaves to thick resistant leaves (Wright et al. 2004).

N:P ratios in the plants (Fig. 1) indicate that the plants

originate from both N (N:P < 14, n = 17) and P (N:

P > 16, n = 11) limited ecosystems, as well as six plants

from areas where both nutrients were equally limiting

Figure 2. Boxplots of the observed trait values with median and 25% and 75% quantiles (left). To appreciate the range of trait values sampled

in this study, the right-hand side shows median and 97.5 and 2.5% quantiles for the same trait derived from the TRY database (Kattge et al.

2011). Note that only summary statistics are provided in Kattge et al. (2011), so it was not possible to plot the exact TRY trait value distribution.
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(Koerselman and Meuleman 1996) (mean N:P ratio: 13.3,

standard deviation 6.6, Fig. 2).

Predicting leaf traits from spectra

Partial least squares regression was applied to predict

plant traits from the different spectra. Prior to this,

correlation coefficients between individual spectral bands

and traits were calculated to gauge the relation between

spectra and traits. Correlation coefficients and normal-

ized model regression coefficients are summarized in

Fig. 3A–C, and model performance parameters are pro-

vided in Table 1. Scatter plots between observed and

predicted trait values are shown in Fig. 4A–C with the

(A)

(B)

(C)

Figure 3. Model summaries for reflectance (A), transmittance (B), and absorbance (C) data. Correlation between each spectral band and traits

(solid black line) is highest when approaching 1 (positive correlation) or �1 (negative correlation). Model regression coefficients (dark gray) have

been scaled to the maximum and minimum values. Increased deviation from zero signifies additional influence in the model outcome.
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ecosystem of origin of each plant indicated. Model resid-

uals were found not to be significantly different between

the various ecosystems (one-way ANOVA, P < 0.05)

except for any LPC model. Likewise, model residuals

were not significantly different between small width

leaves and plants measured according to the standard

procedure.

Structural traits: LCC, SLA, and LDMC

Reflectance spectra were most capable of approaching

LCC values (r2 val = 0.15), but still achieved a poor fit.

Highest correlation between reflectance and LCC was

found in the VIS region, and this was correctly identified

by PSLR. SLA prediction accuracy was weak for all spec-

tra, as were the correlations of each band with the SLA

values (Fig. 3A–C). The PLSR models identified and

employed the highest correlating bands in the VIS, except

for the absorbance model. Also, transmittance values of

spectral bands around 690 nm that correlated weakly with

SLA were incorporated in the PLSR model. LDMC was

well predictable with any of the three spectra, but espe-

cially with absorbance (r2 val = 0.82, nlv = 9). For trans-

mittance and absorbance, moderately strong correlating

bands occurred throughout the VIS and SWIR, while the

VIS is almost absent in the reflectance model.

Plotting observed–predicted LDMC values shows only

minor deviations from the 1:1 line, while for SLA, strong

under and over predictions occurred. Especially, the three

highest SLA values are consistently predicted too low,

suggesting saturation of the spectral signal at higher SLA

values (also found in Asner (1998) and Asner and Martin

(2008b)).

Nutrient-related traits: LNC and LPC

In contrast to LDMC, nutrient-related traits (LNC and

LPC) appeared to be poorly predictable by any spectrum.

LNC and LPC were best predicted by transmittance data

(r2 val = 0.13 and 0.15, respectively). For some model val-

idations, r2 val was below zero, indicating that the mean

observed value is a better predictor than the PLSR model.

For LNC and LPC, bands retained in the band selection

procedure coincided with those having the highest

correlation coefficients (Fig. 3A–C). LPC – reflectance

had no significant bands, so all band were retained. For

LPC – absorbance, it is striking that NIR bands correlat-

ing positively with LPC are assigned both positive and

negative regression coefficients.

Scatter plots of the observed and predicted values for

the nutrient-related traits (Fig. 4A–C) reveal a near hori-

zontal point cloud, indicating severe over and under pre-

diction of low and high values, respectively.

Nutrient-related traits on area basis: LNCarea and
LPCarea

Expressing nutrient content on an area basis nearly always

enhanced the correlation with the three spectra, although

for LPCarea, the model accuracy remained weak (r2 val not

exceeding 0.21). For LNCarea on the other hand, the

model accuracy was moderate (and in one instance weak),

with r2 val up to 0.66. The four highest LNCarea values

were structurally under predicted by all spectra (Fig 4A–
C), but for the remaining plants, no severe deviations

from the 1:1 line were observed.

Correlation between LNCarea and transmittance and

absorbance spectra was strong in the VIS region. These

bands were all identified and employed by the PLSR

models. LPCarea correlated weakly with reflectance and

transmittance spectra and moderately with absorbance in

the VIS. For LPCarea – absorbance, the PLSR model iden-

tified the highest correlating bands and did not incorpo-

rate the lesser correlating bands at around 710 nm.

Under- and overprediction of extreme values was again a

problem for LPCarea (Fig 4A–C).

Table 1. Overview of partial least squares regression (PLSR) model performance.

Reflectance Transmittance Absorbance

nlv r2 cal r2 val RMSEcal RMSEval nlv r2 cal r2 val RMSEcal RMSEval nlv r2 cal r2 val RMSEcal RMSEval

LNC 1 0.10 0.00 0.12 0.13 1 0.21 0.08 0.11 0.12 1 0.24 0.13 0.11 0.12

LPC 2 0.09 �0.22 0.26 0.30 2 0.15 �0.09 0.24 0.27 5 0.54 0.15 0.18 0.25

LCC 2 0.28 0.15 0.03 0.03 1 0.05 �0.08 0.03 0.03 2 0.14 �0.09 0.03 0.03

SLA 2 0.26 0.11 0.12 0.13 2 0.41 0.24 0.11 0.12 2 0.30 0.12 0.12 0.14

LDMC 3 0.67 0.57 0.09 0.10 7 0.78 0.58 0.08 0.12 9 0.93 0.82 0.04 0.06

LNCarea 2 0.56 0.46 0.10 0.11 3 0.74 0.66 0.08 0.09 2 0.70 0.60 0.09 0.10

LPCarea 1 0.11 0.00 0.24 0.25 3 0.25 0.05 0.22 0.25 1 0.34 0.21 0.21 0.23

nlv is number of latent variables,% sig is percentage of spectral bands that was significant. r2 is coefficient of determination for the model calibra-

tion and validation (subscript cal and val). Values <0 indicate that model residuals exceed residuals of using mean observation as predictor. RMSE

is root mean square error.
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Discussion

(first) leaf trait predictions for herbaceous
species

This study presents a prediction of leaf traits from leaf

spectra for a wide range of herbaceous plant species. While

trait prediction of individual leaves from spectral proper-

ties receives increased attention (Ustin 2013; Ustin et al.

2009), empirical models have predominantly been devel-

oped for trees (e.g., (Asner and Martin 2008b; Asner et al.

2011; Doughty et al. 2011; Martin et al. 2008)). In order to

eventually expand trait predictions to currently under-

appreciated herbaceous ecosystems, we investigated the fea-

sibility of trait prediction on herbaceous species. To avoid

confounding influence from canopy structure (e.g., (Kny-

azikhin et al. 2013)), we related leaf level spectra directly to

leaf level traits. To our knowledge, this is the first study

describing leaf level trait predictions of herbaceous species

The results found here are relevant for future imaging spec-

troscopy explorations over herbaceous areas where the

spectral signal is not generated by a homogeneous surface

of top of canopy leaves, but where canopy gaps and irregu-

larities make that plants with various life forms, light expo-

sure, and strategies contribute to the spectral signal.

In general, the correlation of the seven investigated leaf

traits with the various spectra was weak (Table 1). Nutri-

ent-related traits expressed on dry mass content were

poorly predictable by any spectrum (reflectance, transmit-

tance, and absorbance), while transmittance and absor-

bance related strongly and moderately to N content when

expressed on an area basis. SLA correlated poorly with

all three different spectra. LDMC was reasonably well

predicted, especially by absorbance data. Below, we will

discuss methodological and ecological reasons for the pat-

terns observed and the implications for future research.

Methodological issues do not seem to
explain low predictive ability

Although unable to successfully model all traits, PLSR

model behavior was consistent over all traits and spectra.

For all models, the number of latent variables that opti-

mized LOO validation results was relatively low

(mode = 2), certainly low compared with other instances

of PLSR-predicted vegetation properties, such as Ellenberg

indicator values (e.g., (Klaus et al. 2012), mode = 5),

plant strategy types ((Schmidtlein et al. 2011), mode = 4),

vegetation plot ordination scores ((Feilhauer et al. 2011),

mode = 8 & 11), or grassland biomass properties

(B)(A) (C)

Figure 4. Trait values as observed and predicted from reflectance (A), transmittance (B), and absorbance (C) spectra. Symbols indicate the

ecosystem of origin of each plant.
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((Kleinebecker et al. 2012), mode = 8). PLSR models

employing a high numbers of latent variables indicate a

complex, nonlinear relation between trait and spectra

(Haaland and Thomas 1988). Thus, the relatively few

latent variables employed here suggest a low information

content in the spectral data for our herbaceous species.

The correlation coefficients between each spectral band

and the response variable revealed which spectral regions

respond to variation in trait value. These regions were

generally recognized by the PLSR models and received

high absolute regression coefficients, thereby exercising

great influence on the model predictions. However, the

PLSR models sometimes appear unable to recognize a

sudden decrease in correlation between the spectrum and

response trait and instead assign high regression coeffi-

cients to such bands. A particular prominent decline

occurs around 680 nm for nearly all spectrum trait

combinations. This decline is likely due to a convergence

of spectral response at the onset of the red – edge

(~ 700 nm). Still, some models (e.g., LNCarea – absor-

bance & reflectance) do recognize this decline in correla-

tion and reduce regression coefficients accordingly.

The band selection procedure eliminated bands with

low correlation coefficients from the final model

(Fig. 3A–C). This reduced the extent to which noise was

included in the model and created a convergence

between the r2 of the calibration and validation. On the

other hand, bands were sometimes excluded from the

model despite a moderately strong correlation with a

trait, for example, LDMC – reflectance around 500 and

700 nm. Here, it could have been useful to relax the sig-

nificance criterion (currently P = 0.1) or manually retain

bands in the model. Overall, band selection only con-

verged to the highly correlating bands in case of well-

correlating traits, for example, LNCarea – absorbance, and

enhanced these models even further. For other models,

band selection could not remedy a poor correlation

between the spectrum and traits, for example, LPC –
reflectance.

Compared with previous studies on leaf traits–leaf
spectra relationships (Asner et al. 2011; Doughty et al.

2011), relatively few plants were investigated here. The

power of the PLSR models was thus limited and the low

replication contributed to a high RMSE, but did not

induce the low r2 values. Leaves too narrow to cover the

integrating sphere sample port, common among plant

species found in herbaceous environments, were measured

using a mask that reduced the sample port area. The

spectral contribution of the mask to the overall signal was

removed using reference measurements (Noble and Crow-

e 2007). While validation of this correction algorithm

(Supporting Information 2) proved it to be working rea-

sonably well, this procedure may have introduced addi-

tional spectral noise that the PLSR models were unable to

resolve, especially in the NIR where differences between

the standard procedure and masked measurements were

at its largest (Supporting Information 2). Even so, the

masked samples did not appear more uncertain in the

scatter plots of Fig. 4. Altogether, we think that, although

the methodology was not perfect, methodological flaws

cannot explain the generally poor ability of spectra to

predict leaf traits.

Physiological perspective of trait
predictions

In previous studies relating leaf traits to leaf spectra (As-

ner and Martin 2008b; Asner et al. 2011; Doughty et al.

2011), correlations between LNC, LPC, LCC, and SLA

and reflectance and transmittance exceeded the correla-

tions reported in this research (Table 2).

Table 2. Trait prediction accuracy in literature compared with accuracies found here. Indicated are the coefficients of determination (r2), although

in literature, it is not always clear whether this relates to calibration of validation accuracy. Different trait units are indicated on the left- and

right-hand side. Spectra used in literature slightly extend beyond the spectral range used in this study (400–1800 nm).

Asner et al.

(2011) RSE
Doughty et al.

(2011) Oeco

Asner and Martin

(2008a) Front Ecol

Environ

Asner and

Martin (2008b)

RSE This article

R T T R R T R T

LNC% 0.77 0.81 0.83 0.55 0.85 0.72 0 0.08 LNC mg/g

LPC% 0.63 0.68 0.47 0.76 0.56 �0.22 �0.09 LCC mg/g

LCC% 0.71 0.74 0.15 �0.08 LPC mg/g

SLA mm2/mg 0.79 0.9 0.89 0.11 0.24 SLA mm2/mg

LDMC mg/g 0.57 0.58 LDMC mg/g

CWC g/g 0.88 0.9 0.77 0.83 0.87 CWC g/g

LNCarea g/m
2 0.46 0.66 LNCarea g/m

2

LPCarea g/m
2 0 0.05 LPCarea g/m

2
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Most notably, LNC proved poorly predictable in this

study by any leaf spectrum, although LNCarea was pre-

dicted with higher accuracy. This improvement is consis-

tent with earlier findings (Grossman et al. 1996), where

LNCarea prediction also outperformed the prediction of

LNC. From the integrating sphere point of view, LNCarea

is a more direct indication of N content than LNC

because the spectrometer receives radiation from a fixed

area of the leaf surface. Still, even LNCarea was not as well

predicted as in previous studies (let alone LNC). This can

be attributed to partitioning (i.e., stoichiometry) of leaf N

to various N containing leaf constituents that do (e.g.,

chlorophyll, (Sims and Gamon 2002)) or do not (e.g.,

CO2 fixating molecules, such as rubisco or cell wall mate-

rial, (Harrison et al. 2009; Hikosaka and Shigeno 2009))

contribute to the leaf spectral signal. Light availability is a

strong driver of stoichiometry and other leaf traits (Niine-

mets 2010; Niinemets and Tenhunen 1997), as well as, to

a lesser extent, leaf spectral properties (Lee and Graham

1986; Poorter et al. 1995). Typically, the fraction of total

leaf N allocated to chlorophyll and other light harvesting

compounds decreases and then stabilizes with increasing

illumination of the leaves (Evans and Poorter 2001); when

carboxylation instead of light becomes limiting for photo-

synthesis, leaf N is invested in additional carbon-fixating

compounds (Harrison et al. 2009; Niinemets 2010). This

suggests that top of canopy leaves, being similarly exposed

to illumination levels often above the saturation level for

photosynthesis (Poorter et al. 1995), have a consistent

fraction of total leaf N allocated to light harvesting com-

pounds (i.e., chlorophyll). Indeed, correlation between

leaf chlorophyll and total leaf N can reach up to 50% in

temperate forests (Sterner and Elser 2002) and up to 57%

in lowland Amazonian forests (Asner and Martin 2010).

The herbaceous species investigated here, however, experi-

ence a wide range of light availabilities within the com-

plexly structured herbaceous canopy, and as a result,

photosynthesis is varyingly limited by light (low light

availability, relatively much N allocated to chlorophyll) or

carboxylation (high light availability, relatively much N

allocated to carboxylating compounds).

While we did not measure chlorophyll content and

therefore cannot verify this, we reckon that the leaf N con-

tent responsible for driving spectral variation (the chloro-

phyll fraction) was likely not a fixed proportion of the

total leaf N content (the response variable). This is in con-

trast with the idea that a fixed proportion of canopy N is

allocated to chlorophyll, as assumed by the PROSAIL leaf

and canopy radiative transfer model (Jacquemoud et al.

2009; Ustin 2013). As such, changes in the spectra by vary-

ing chlorophyll content (Poorter et al. 1995) were not mir-

rored in different LNC nor LNCarea values, leaving the

PLSR unable to correlate LNC and spectra. This rationale

is corroborated when the dataset is partitioned into species

exposed to low and high light availability (i.e., lower and

upper canopy species, respectively), and LNC and LNCarea

are again predicted for both groups (supporting informa-

tion 3). Compared with the original PLSR results

(Table 1), LNC was considerably better predicted when

only the lower canopy species were taken into account.

LNCarea performed better with either upper or lower can-

opy story plants only. These results point to illumination

as a driving force on partitioning of leaf N among leaf

constituents which in turn influences the relation between

spectral properties and total nutrient content.

P lacks an intrinsic spectral signal in the spectral

domain commonly used in optical remote sensing (Curran

1989), but is generally correlated with LNC (Mercado

et al. 2011), allowing its prediction indirectly through N

(Asner and Martin 2008a). In this study, however, LPC

was poorly predictable by any of the leaf spectra (Table 2).

Our range of N:P ratios was exceptionally large among

sites and canopy positions (Fig. 2), imposing different

constraints on plant construction and metabolism (Elser

et al. 2010) and influencing plant physiology (G€usewell

2004). This implies that even in a small selection of herba-

ceous species, both N and P are present as limiting nutri-

ent (Koerselman and Meuleman 1996), whereas tropical

forest species mainly experience P shortage as soil factor

influencing growth rates (Mercado et al. 2011). The nutri-

ent amounts devoted to photosynthetic processes will be

dictated by the availability of the limiting nutrient, while

the excess of the nonlimiting nutrient is stored in stable

leaf compounds that are not involved in photosynthesis

nor have a dominant spectral signal. The variety of nutri-

ent limitations may thus explain the poor correlation

between spectral data and the total P content.

The weak correlation between LCC and any spectrum

could be caused by dominant water absorbance in the

SWIR region, which obscures absorbance by, for example,

lignin, cellulose, and other carbon-containing leaf com-

pounds (Asner 1998).

Specific leaf area was weakly correlated with reflectance

and absorbance (Fig. 3A–C), but relates slightly better to

transmittance data. This is ecologically sound, given that

SLA is related to leaf density (Niinemets 2001), and trans-

mittance will be modulated by the density of the medium.

In literature, the NIR and SWIR ranges were found rele-

vant for SLA predictions for both reflectance and trans-

mittance data (Asner and Martin 2008b). This was not

confirmed by findings here, where especially the VIS spec-

trum proved influential.

We predicted LDMC to align with traits commonly

used in ecological applications (Kattge et al. 2011). LDMC

is a complementary trait for leaf water content (LWC, mg

H2O/g dry matter), which is reported as highly correlating
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with reflectance and transmittance (Asner and Martin

2008b; Doughty et al. 2011). In accordance therewith,

LDMC, being complementary to water, was moderately

correlated with reflectance and transmittance and strongly

to absorbance. The latter correlation was the highest trait–
spectrum relation in this study. Water content absorbs

radiation at around 1500 nm and 2000 nm, as well as

around 1000 and 1250 nm (Asner 1998). However, in our

results, mainly spectra around 1400–1450 nm correlated

strongly with LDMC, where absorbance dominates both

reflectance and transmittance (Fig. 1). In accordance with

earlier studies (Asner et al. 2011; Grossman et al. 1996),

the spectral signal of leaf water content seems to dominate

over contributions of nutrient and dry matter itself.

Because of the strong spectral features of leaf water,

LDMC is the leaf trait that is best predicted in this study.

Summarizing, Table 2 suggests that trait prediction for

herbaceous species does not match findings elsewhere.

Only few leaf compounds are directly driving its spectral

properties: chlorophyll and other pigments, water and dry

matter (Jacquemoud et al. 2009). Using leaf spectra to

predict traits that are commonly used for ecological appli-

cations, such as LNC and SLA (Kattge et al. 2011), hinges

then on a consistent relation with leaf constituents that

are the true, underlying, drivers of spectral behavior. Our

results suggest that when a variety of growing conditions

enforces different environmental constraints (e.g., limita-

tion by either light, N, C, or P), the relation between

response traits and spectral relevant traits is less pro-

nounced. Different prevailing plant strategies in herba-

ceous communities result in an unstable proportional leaf

constituency throughout our set of plants which distorts

the relation between response traits and the leaf constitu-

ents that determine the spectral signal. Consistency in leaf

constituents may thus be an additional driver of trait –
spectrum relations. This is a new insight into the trait–
spectrum relationship in general and in particular for trait

modeling in herbaceous systems and suggests that that

relations of leaf trait–leaf optical properties may not be

easily extrapolated from one ecosystem to another.

Implications for future research

The poor correlation between traits and leaf spectra, with

exception of LDMC and LNCarea, suggests that trait pre-

diction from imaging spectroscopy in herbaceous ecosys-

tems may be difficult, especially when considering that

imaging spectroscopy only records reflectance data (and

not transmittance and absorbance) and that the correla-

tion with reflectance exceeded that transmittance and

absorbance for LNC and LCC only, while it was still

weak. The highest trait–reflectance correlation was for

LDMC (highly relevant for wildfire predictions in herba-

ceous areas (Chuvieco et al. 2010)), encouraging future

research to focus on the water and dry matter content of

grasslands, as well as traits that are directly responsible

for leaf spectra.

However, before claiming far-reaching implications, it

should be noted we only took around 30 plants from a

small geographic extent. This does not necessarily repre-

sent the world’s variety in herbaceous flora. Far more her-

baceous species from various biomes should be

considered to be match the trait and spectral diversity

reported in, for example, Doughty et al. (2011). This

would firmly establish whether variety of growing condi-

tions and environmental constraints experiences by herba-

ceous species truly prevent reliable trait prediction for leaf

spectral information.

Here, we focused on commonly measured ecological

traits, known to be related to (herbaceous) plant strate-

gies, but less so to spectrally relevant leaf properties (Jac-

quemoud et al. 2009). We expect that for, for example,

chlorophyll and pigments, an improved fit may be

obtained, as was already demonstrated for tropical leaves

(Asner and Martin 2008b). At the same time, for a full

exploration and application of such trait predictions, the

role of these traits in ecosystems and even more impor-

tantly the sources of variation and selection of these traits

should be much better understood, for example, to ana-

lyze and verify the supposed decoupling between leaf N

and chlorophyll content in herbaceous ecosystems. In

close collaboration among remote sensing scientists and

ecologists, this may be achieved.
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online version of this article:

Data S1. Masked and standard procedure reflectance

measurements.

Data S2. Correlation between leaf traits.

Data S3. LNC and LNCarea predictions stratified to

canopy position.
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