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ABSTRACT: Effects that are estimated for SNP markers 
depend on LD with the QTL, and interactions of the QTL 
with other genetic and environmental factors. These factors 
are often mentioned but rarely studied. Breeding for 
crossbred performance both brings the need and supplies 
data for studying these interactions. SNPs with different 
effects on litter size in pigs between low and high 
production environments were identified from a genomic 
reaction norm model. Clustering of these SNPs lead to 
candidate genes related to bacterial defense that are 
expressed in reproductive tracts and regulated by the 
estrous cycle. To study interaction of SNPs with genetic 
background, a method to determine breed origin of alleles 
in crossbreds was implemented using long range phasing 
with AlphaPhase software. With more genotypes and 
phenotypes on crossbreds, estimation of interactions with 
genetic background and the environment will become 
feasible. 
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Introduction 
 

Marker-trait associations have been studied for a 
long time (e.g. Sax (1923); Andersson et al. (1994)) and are 
at the center of many studies currently performed in animal 
genetics. Both the research areas of association analyses 
and genomic selection rely on association between markers, 
most often SNPs, and phenotypes to either discover the 
genetic architecture of traits or predict future performance 
of animals. In this paper we used the term SNP as it is 
currently the most frequently used type of marker. 

 
A number of factors have an impact on the effect 

that can be measured for a SNP and they are often 
mentioned when results from one study do not transfer to 
other studies. For example, when peaks that are found in a 
genome wide association study (GWAS) in breed A are not 
replicated by a GWAS in breed B the reasons mentioned 
may include one or more of the following three arguments. 
First, the associated SNP(s) in breed A are not in Linkage 
Disequilibrium (LD) with the QTL in breed B. Second, the 
genetic background in breed B is ‘different’. This could 
mean that the functional variation that underlies the QTL is 
not segregating in breed B or epistatic interactions in breed 
B are different due to other genes that modify the effect of 
the QTL in breed B. Third, the phenotype being measured 
in breed B is not the same as in breed A. This could simply 

be because the definition or measurement method of the 
trait is not the same (Barendse (2011)), but there could also 
be environmental differences experienced by animals from 
breed B that cause different QTL to be important for the 
trait when measured in breed B, i.e. genotype by 
environment interaction (G×E) is present. Presence of G×E 
is particularly evident when one of the breeds is kept in, 
say, a breeding facility and the other breed or cross is kept 
under commercial production conditions, possibly in a 
different country and/or climate.  

 
Besides these three reasons, that are of interest to 

be unraveled by geneticists, there are other, less exciting 
reasons for lack of replication such as lack of power in the 
analysis of breed B, or spurious results in breed A (for more 
reasons, see Chanock et al. (2007)). The results in breed A 
could be spurious because of ‘noise’ such as hidden 
structure in the data that is not accounted for in the analysis. 
Experimental design and statistical analysis will normally 
attempt to remove this noise. However, one specific form of 
this ‘noise’ are the associations due to family relationships. 
While these family relationships may lead to false positives 
in association analyses, they are in fact of use in the context 
of genomic prediction when selection candidates are related 
to the reference population.  

 
Knowledge about the impact of LD, and especially 

of epistasis and G×E on the effects of QTL and the 
estimates of SNP effects is limited. Considering that these 
factors are so often mentioned in the discussion of GWAS 
and genomic prediction studies, more studies into the 
extend and importance of these effects are warranted.  

 
Our first objective was to introduce and discuss the 

impact on SNP effects from the three factors, LD, 
interaction of genotype with the environment (G×E) and 
with genetic background (epistasis). Second we report 
results from two studies that aimed to discover the effects 
of G×E and epistasis on SNP effects. The first study applies 
functional clustering to discover genes affecting the change 
in SNP effects across different environments. The second 
study applies long range phasing to trace the breed origin of 
alleles in crossbred animals.  

 
Variation in LD. The reason for finding an 

association of a SNP with the phenotype is the (nearby) 
presence of genetic variation that has a functional effect on 
the phenotype, e.g. one or more QTL in LD with the SNP. 
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Differences in LD can obviously lead to differences in the 
effects that are estimated for a specific SNP in different 
populations, but should by itself not lead to lack of 
replication of QTL results. When analyses are performed 
separately for each population with a marker density that is 
high enough for some SNP to be in LD with the QTL, 
associations should replicate. These associations do not 
need to be with the same SNP in each population. 
Differences in LD between breeds can actually be used to 
move towards identification of Quantitative Trait 
Nucleotides (QTN), provided that the effect of such QTN is 
present in the other breeds, without modification due to 
interactions with genetic background and environment. 
Ciobanu et al. (2001) described that estimated haplotype 
effects at the PRKAG3 locus were more consistent across 
populations and resolved the effects of PRKAG3 more 
clearly than the individual SNPs. Individual SNP effects 
were more variable between populations, due to differences 
in haplotype frequencies.  

 
When interest is in genomic prediction across 

populations, the differences in LD are an important issue 
(de Roos et al. (2009)). Persistence of LD between 
populations is a requirement when the aim is to predict 
breeding values. The persistence of LD will be improved 
with increasing density of SNPs but evidence that this leads 
to higher prediction accuracies is thus far limited.  

 
Genotype by environment interaction. G×E 

usually refers to the changes in the ability of animals to 
perform under different environments. In pig breeding this 
is often referred to as ‘robustness’ (Knap (2005)), meaning 
the lack of G×E interactions. In plant breeding G×E 
interaction leads to the selection of specific lines for 
specific environments but in animal breeding this is largely 
avoided. 

 
While extensive work has been done on the effect 

of environment and G×E interactions at the animal level, a 
limited number of studies investigated the impact of SNPs 
on environmental sensitivity of animals (Lillehammer et al. 
(2009), Streit et al. (2013)) or changes in SNP effects due to 
G×E (Lillehammer et al. (2009)). A recent study in dairy 
cattle showed that mutations in the DGAT and SCD genes 
had a different effect on milk fatty acid composition during 
winter and summer conditions (Duchemin et al. (2013)). 
Even though the G×E effects of DGAT and SCD were 
relatively small and genotypes were not re-ranked, it is 
sensible to expect that the effect of a SNP changes with the 
environment. Simply put, when the mean phenotype 
increases from one environment to the next then the size of 
the individual QTL effects must also increase if everything 
else, such as the allele frequencies, interactions between 
QTL, and the level of heritability, stay the same. 

Recently a genomic reaction norms approach was 
described that modeled breeding values over a range of 
environmental levels and resulted in an estimate of the 
slope and intercept of the animal breeding values (Silva et 
al. (2014)). The method was applied to records of total 
number born (TNB) from daughters of genotyped sires that 
were used for inseminations across many farms and 

countries. A two-step reaction norm approach (Calus et al. 
(2002) was applied where the first step resulted in corrected 
phenotypes of the sows and in estimates of the herd, year, 
season (HYS) effects. The second step estimated the 
breeding values for slope and intercept of each sire with a 
random regression model, using the corrected sow TNB 
phenotypes and the HYS estimates from the first step as 
input. The second step was carried out both with the 
pedigree relationship matrix A and the genotypes 
relationship matrix G. Accuracies of the sire’s estimated 
breeding values were improved both by the use of the G×E 
model over the standard model, without the HYS, and by 
the use of the G over the A matrix (Silva et al. (2014)). 
Here we further investigated the individual SNP effects. 
Specifically, we investigated whether the SNPs that show 
the largest change in effect over environments lead us to 
genes that influence the interaction with environment. 

 
Interaction with genetic background. In a recent 

review, Mackay (2014) showed that epistatic interactions 
between loci must exist, and that knowledge of these 
interactions will, among others, improve our ability to 
predict long term response to selection as well as explain 
heterosis and inbreeding depression. In model species, 
epistasis has been shown to be pervasive (Mackay (2014)). 
Within a breed the epistatic variance is due to alleles 
segregating at, at least, two loci. Differences in SNP effects 
between breeds that are due to epistasis, however, do not 
require that the other loci that interact with the SNP 
segregate within the breeds. Alternate alleles between 
breeds at the other loci is sufficient. The interaction effects 
may be difficult to detect but the breed specific effect of a 
SNP, may still be considerable in size.  

 
In pigs, Su et al. (2012) showed considerable non-

additive contributions to variation in daily gain. Besides a 
dominance variance accounting for 5.6%, additive by 
additive epistatic variance was shown to account for 9.5% 
of total phenotypic variance in purebred Duroc pigs. These 
levels of epistatic variance, in combination with known 
differences in allele frequencies between pig breeds 
(Wilkinson et al. (2013)) predict considerable differences of 
SNP effects between breeds due to interaction with the 
genetic background.  

 
The use of crossbred production animals is both a 

reason and opportunity to study interaction effects of SNPs 
with the genetic background. The effect of the same allele 
could, in principle, be compared when present in the pure 
breed and in the crossbreds. Because SNPs often segregate 
in many of the pig breeds, a prerequisite for such an 
analysis is that the purebred origin of alleles in crossbred 
can be determined. Here we describe an approach and 
results for assigning breed origin to alleles in crossbreds.  

 
Materials and Methods 

 
Although presented here as separate research 

questions with separate experiments, the interactions of 
SNPs with the environment and with the genetic 
background are often confounded. In our experiments with 



crossbred data the two effects will simultaneously be 
present. The genetic background can more easily be 
standardized when estimating interactions with the 
environment than vice-versa. When studying differences 
between SNP effects in pure and crossbreds for better 
prediction of performance we may be less worried about the 
genetic or environmental origin of the interaction effect.  

 
SNP by environment interaction. The study by 

Silva et al. (2014) focused on the accuracy of genomic 
prediction when fitting a genomic reaction norm to 
phenotypes of TNB. Phenotypes were obtained in different 
environments (e.g. HYS levels) ranging from 10 to 22 
TNB. From that study we obtained estimates of slope and 
intercept for each SNP. When the effect of SNP depends 
strongly on the environment we should get a large effect for 
slope. The top 100 SNPs for absolute value of slope were 
selected and all genes identified within ± 500 kilobases 
(Kb) on the Sscrofa10.2 assembly of the reference genome 
(Groenen et al. (2012)) were retrieved using the BioMart 
interface on the Ensembl Genes 75 database (Flicek et al. 
(2014)). The gene names were subsequently used in a 
functional annotation clustering implemented in DAVID 
Bioinformatics Resources 6.7 (Huang et al. (2009)). 
Annotations on the human genome were used because 
information on the pig genome was found to be limited.  

 
SNP by genetic background interaction. SNP 

effects may differ depending on the genetic background in 
which the alleles are present. To estimate effects in 
different genetic backgrounds the comparison of purebred 
and crossbred population is particularly useful, both 
because 50 or 75% of the genetic background can be 
replaced within 1 or 2 generations, and because the 
difference between purebred and crossbred effects are of 
practical importance in pig breeding (Dekkers (2007)). 
However, estimating the effect of a SNP allele from breed 
A, when it is present in a crossbred AB animal requires the 
purebred origin of alleles in crossbreds to be determined. 

 
A total of 5,692 animals from five populations, 

three pure lines (herein referred to as breeds) A, C and D, 
and two crosses, CD (C×D or D×C) and ACD (A×CD), 
were genotyped with the Illumina PorcineSNP60 Beadchip 
(Ramos et al. (2009)). Genotypes of SNPs on SSC2 were 
analysed that had call-rate >0.95 in each breed or cross. No 
threshold was used for minor allele frequency (MAF). 
Samples with call-rate >0.98 were included in the analysis. 
The final dataset contained 2,695 SNPs and 956, 1,816 and 
1,918 animals for breeds A, C, and D respectively. The 
number of crossbred animals included were 324, and 241 
for CD and ACD respectively.  

 
To determine the breed origin of alleles in 

crossbreds we wanted to phase the haplotypes in the 
crossbred, and subsequently determine the breed origin of 
the haplotypes. Pedigree-based phasing methods were not 
suitable, because the parents of genotyped crossbreds were 
not included in the genotype data. This corresponds to a 
common situation in real breeding programs where the 
pedigree of crossbred animals are not known and several 

generations may separate the genotyped purebred and 
crossbred animals. LD based phasing methods were also 
not suitable because haplotypes within a LD block are often 
common between several pig breeds (e.g. Hidalgo et al. 
(2014)). 

 
 Long range phasing (Kong et al. (2008)) 

overcomes both the issues of lacking pedigree and common 
haplotypes between breeds. Genotype data from the 5 
populations was combined in one dataset and analyzed with 
AlphaPhase software version 1.1 (Hickey et al. (2011)). 
AlphaPhase was run without pedigree information, and 
allowing 1% genotype errors and 1% disagreement between 
genotype and haplotypes. Number of surrogates and 
percentage of surrogate disagreement were both set to 10. 
AlphaPhase assigns two haplotypes to each animal which 
were processed using custom functions in R (R Core Team 
(2013)). First, the unique haplotypes were identified among 
the pure breeds. A haplotype was considered to originate in 
a specific breed if >90% of its copies were observed in that 
breed, otherwise the haplotype origin was set to ambiguous. 
Second, the haplotypes of crossbreds were matched to the 
haplotypes assigned to the different breeds. Alleles (0 and 
1) carried on the crossbred haplotypes were then assigned 
their purebred origin. 

 
Allelic origin assignment was done with a range of 

settings for core and tail length in AlphaPhase and both 
offset and non-offset analyses were applied. Core lengths 
ranged from 150 to 350 SNPs in steps of 50, and tail 
lengths were 50, 100 or 200 SNP. Allelic origin 
assignments were summarized from 18 different 
AlphaPhase analyses, using custom functions in R (R Core 
Team (2013)). Each allele at each SNP received 18 breed 
origin assignments, or fewer when some of the AlphaPhase 
analyses resulted in an ambiguous haplotype origin. The 
most frequent breed assignment was considered the true 
origin for each allele. 

 
Results and Discussion 

 
SNP by environment interaction. Changes in the 

environment are likely to put different requirements on the 
abilities of the animal and therefore we expect that the role 
of an individual gene, and the effects of genetic variation 
associated with SNPs near this gene, will change. The 
genomic reaction norm model (Silva et al. (2014)) did not 
estimate the SNP effects directly, but first estimated 
breeding values using the G matrix and subsequently SNP 
effects were back solved for each level of HYS. The 
overlap between the top 1% (462) of SNP in different HYS 
levels was high for similar HYS while 47 SNPs were 
consistently present in the top 1% for all HYS levels 
ranging from 10 to 22 TNB. These 47 SNPs had relatively 
high estimates for their effects in all HYS, and as expected 
the slope of their reaction norm was small.  

 
We now investigated whether the SNP with the 

largest slopes were near candidate genes that can be related 
to G×E or robustness. The absolute SNP effects ranged 
from 0 to 0.0026 across different HYS, and estimates for 



the absolute values of slope ranged from 0 to 0.00023 
additional piglets per litter per increase of HYS with 1 
piglet per litter. The 100 largest absolute values for slope 
ranged from 0.00010 to 0.00023 (Figure 1). Most of these 
SNPs, 86, had effects in opposite directions for different 
HYS environment. While the maximum SNP effect of 
0.0026 was not found among these 100 SNPs, the effects 
did reach values near 0.002 in some HYS while the effects 
were near 0 in other HYS for the same SNP. The top 100 
SNPs for slope were found distributed over the whole 
genome, ranging from 17 SNPs on SSC1 to 2 SNPs on both 
SSC9 and SSCX. Some clustering of SNPs was observed, 
with 24 SNPs within 2 Mbp, and 48 within 5 Mbp of 
another top 100 SNP.  

 

 
Figure 1. Effect estimates of the 100 largest slope SNP 
across HYS levels.  

 
Within ±500 kb surrounding the top 100 SNPs,  

476 unique gene names were retrieved from Ensembl. Out 
of the 476 genes, 424 had human annotation records in 
David, versus only 79 with porcine annotations. The 
functional clustering of the genes was therefore done with 
the human annotations. In total 16 clusters were identified, 
with enrichments scores of 3.54 and 2.72 for groups 1 and 2 
that contained 21 (Table 1) and 19 genes respectively. 
Other groups had enrichment scores of 1.1 or lower. The 
most enriched functional annotation terms in cluster 1 were 
UniProt (The UniProt Consortium (2014)) keywords 
‘defensin’ (Fold = 250, P =1.1×10-25), ‘antibiotic’ (Fold 
=150, P =7.5×10-23), and ‘Antimicrobial’ (Fold = 140, P = 
1.3×10-22), and GO term (The Gene Ontology Consortium 
(2000)) ‘defense response to bacterium’ (Fold = 78, P = 
3.2×10-20).  

 
Table 1. Genes and SNPs within functional annotation 
cluster 1.  

Chr Position Genes 
3 12,847,263 REG3G 
5 60,919,433 PLBD1 
6 12,847,263 CLEC18A 
7 50,260,218 CRISP1, CRISP2, CRISP3, 

DEFB110, DEFB113, DEFB133 
12 358,639 METRNL 
12 26,214,886 NXPH3 
13 133,415,925 FETUB 

17 40,197,933 DEFB115, DEFB116, DEFB119, 
DEFB121, DEFB123, DEFB124, 
DEFB125, DEFB128, DEFB129 

Chromosome and positions on the Sscrofa10.2 assembly for SNPs in the 
set with 100 largest slopes. SNPs and nearby genes (±500 Kb) in the first 
functional annotation cluster. 
 

Responding to bacteria is clearly an interaction 
with the environment. However, the environmental factor 
over which the change in SNP effects was estimated was 
the average production of piglets in the same herd-year-
season (HYS), which is not a direct measure of bacterial 
load or disease. We can speculate that lower average 
production is correlated with less hygienic conditions, and 
generally lower levels of husbandry practices. Moreover, a 
large proportion of the genes in cluster 1 are β-defensins 
(DEFB) which in mice were shown to be expressed in 
female reproductive tracts and regulated by the estrous 
cycle (Hickey et al. (2013)). These gene functions make a 
functional link to TNB plausible. A higher bacterial load at 
lower levels of average reproduction could mean that the 
effects of these genes would become more important at the 
lower levels of HYS. However, only 2 of the 8 SNPs in 
cluster 1 have larger absolute effects at lower HYS, 4 have 
larger absolute effects at high HYS, and 2 have similar 
absolute effects at both extreme HYS (Figure 1). Having 
large opposite effects on both ends of the HYS scale may, 
in part, be the result of using a first order regression model. 
Fitting a higher order regression may result in a different 
pattern, allowing smaller values at the extreme HYS. 

 
The majority of the genes in cluster 1 are found 

close together in two regions on SSC7 and SSC17. When a 
small number of similar genes are located close together on 
the genome and all are annotated with a given function then 
a single hit near these genes will already result in 
enrichment of this function. Given that the genes in cluster 
1 locate in not just one, but two of these regions on separate 
chromosomes, reduces the chance that we are looking at a 
spurious result. Even when the enrichment suffers from 
positional clustering of the DEFB and CRISP genes, the 
functional clustering was helpful to identify functional 
candidate genes near the top 100 SNPs. Genes in cluster 1 
serve as starting points for investigations towards QTN that 
interact with environment, potentially affecting robustness. 

 
In the second cluster, with enrichment score 2.72,  

all 19 genes, except for 2, were homeobox genes, 10 of 
which were located on SSC18. Homeobox gene products 
act as transcription factors and can affect the expression of 
many genes. The functional relationship of these genes with 
TNB, and how they would interact with the environment or 
affect robustness is therefore difficult to determine. 

 
SNP by genetic background interaction. To 

determine the effect of alleles in different genetic 
backgrounds we need to estimate the effect of the same 
allele when present in different populations. To be certain 
that we are measuring the same allele we should estimate 
the effect of a QTN, but these are largely unknown. If we 
estimate the effects of SNP markers in different breeds, we 



cannot distinguish between changes in LD with the QTN 
and changes in the QTN effect due to genetic interactions. 
A solution would be to replace (part of) the genetic 
background which occurs when crossbred animals are 
produced. With crossbreeding the effect of a SNP allele can 
be estimated in a 100% pure breed background and in a 
background where 50% or 75% is made up by a different 
breed or breeds. The SNP allele to be estimated will be 
transmitted to the crossbred together with the same QTL 
alleles that it is associated with in the pure breed. To enable 
these estimates we have first worked out a method to 
identify the alleles from a specific breed when present in 
crossbred animals.  

 

 
Figure 2. Overlap of unique haplotypes found in the 3 
purebreds and the ACD crossbred. 

 
Genotype data from three pure breeds and two 

crosses were combined in one dataset and analyzed with 
AlphaPhase1.1 (Hickey et al. (2011)) to produce phased 
haplotypes for all animals. To be informative for 
determining purebred origin, a specific haplotype that is 
found in a crossbred animal should only occur in one of the 
3 pure breeds. For instance, from the analysis of a core 
(genome segment) that was ranging from SNP 401 to 600 
on SSC2, 1,623 different haplotypes were observed across 
the animals of breeds A, C, and D and crossbred ACD 
(Figure 2). Only a single haplotype was found to be present 
across each of the three pure breeds, and another 29 
haplotypes were shared between two of the breeds. In 
addition to low haplotype sharing between pure breeds, we 
need high haplotype sharing between crossbreds and pure 
breeds. For the same core on SSC2, 270 haplotypes from 
the 241 ACD animals could be assigned to a single pure 
breed and 65 were seen in more than one pure breed. Of the 
remaining 147 haplotypes, 112 were unique to the ACD 
animals and 35 could not be phased by the software. 

 
To improve the assignment rate from the 56% 

observed above, a range of settings was applied in 18 
different analyses. In addition, the assignment of a 
haplotype to a pure breed was relaxed by assigning all 
haplotypes for which at least 90% of the copies were found 
in a single breed. From the 18 results for each allele in each 
ACD animal, the most frequent breed assignment for each 

allele was used and resulted in between 3% and 100% of an 
animal’s alleles being assigned an origin, with a median of 
92%. Out of the 241 ACD animals, 238 had ≥80% of 
positions assigned and for those animals 47% and 41% of 
positions had allelic assignments to A+C or A+D 
respectively. At 10% of positions no assignment was made 
and 2% of positions had allelic assignments that were 
inconsistent with the breed composition of ACD animals. 

  
 Figure 3 depicts the allelic origin assigned across 

SSC2 for 20 animals and showed that most ACD animals 
have a fairly intact chromosome originating from breed A 
which supplied the paternal chromosome. The other 
chromosome showed large blocks of green and blue, 
indicating that origin of alleles is consistently assigned 
across very long stretches of the chromosome received from 
the F1 mother. A little over half of the maternal 
chromosomes show a recombination, with more 
recombinations towards the end of the chromosomes and 
fewer near the middle, consistent with the map length and 
recombination rate being higher in the more distal part of 
the chromosome (Tortereau et al. (2012)).  

 
Figure 3. Purebred origin of alleles in 20 ACD crossbred 
pigs. Two haplotypes per animal are shown with alleles 
from breeds A (pink), C (green) and D (blue). White 
regions indicate unassigned allelic origin or regions not 
covered with SNPs. 

 
The allelic origin results were obtained on real 

genotype data and accuracy of assignment can therefore not 
be tested. The approach will need to be applied to simulated 
data to assess the true accuracy of allelic origin assignment 
and to test how different factors affect accuracy. However, 
from the current analyses we conclude that sensible results 
were obtained for 98% of the genome positions, including 
10% unassigned. These 10% unassigned, and the 2% 
inconsistent assignments leave room for improvement 
which may be possible by further optimizing the thresholds 
applied in different steps of the method. To investigate SNP 
by genetic background interactions, by estimating SNP 
effects in crossbreds and compare them to their effects in 



purebreds, we will need many more genotyped and 
phenotyped animals than the 241 ACD animals used here.  

 
Cross breeding and SNP effects. Epistatic effect 

are not important for breeding of pure breeds, as indicated 
by Crow (2010). Also, while Su et al. (2012) estimated a 
large epistatic variance they found no improvement in 
genomic prediction accuracy from including epistatic 
effects. Of specific interest for pig breeders, however, is the 
concordance of SNP effects between purebred and 
crossbred pigs. Simulation results have shown that genomic 
selection models that take into account the breed origin of 
alleles in crossbreds can improve the accuracy of EBV but 
that this only happened in specific circumstances. The 
differences between breeds should be big enough because 
the inclusion of breed specific effects in the model comes at 
a statistical cost (Ibánẽz-Escriche et al. (2009)). In another 
simulation study, inclusion of dominance effects in the 
model was shown to outperform the breed specific allele 
model (Zeng et al. (2013)). Analyses on real data are 
needed to determine whether the simulation results are good 
predictors for the value of models that take into account 
breed specific allele effects, dominance effects, and/or 
interaction with environment. The differences between 
breeds may in reality be larger, compared to the simulated 
data which typically do not simulate interaction effects with 
genetic background nor the environment.  

 
The interactions of SNPs with environment and 

with genetic background have been presented here as 
separate issues. In crossbred animals they are usually 
confounded. Crossbreds supply a different background for 
the SNP effects and are typically also kept in different, 
more variable environmental conditions than the pure 
breeds. If our concern is to estimate the best SNP effects for 
prediction of crossbred performance we may not worry 
about the genetic or environmental origin of the interaction 
effects. However, if we want to understand the interactions 
of SNPs with environments, and understand how 
performance in different genetic backgrounds and different 
environments comes about, then the disentangling of these 
effects is needed. The presence of the same cross of animals 
in many different environments is a benefit for this type of 
study, but measuring phenotypes may still be a limiting 
factor.  

 
With genotype data, the performance of crossbreds 

can be used to estimate SNP effects that can be used to 
select in pure breeds. With the method presented here the 
allelic origin of alleles can be determined without the need 
for tracking pedigree relationships of crossbreds. Moreover, 
for determining the origin of alleles it is not even necessary 
to have close relationship between the crossbreds and 
genotyped purebred animals as long range phasing will 
work even with distant purebred relatives of the crossbreds. 

 
Conclusions 

 
Evidence of SNP effects that depend on their 

genetic or environmental context is limited in general, and 
especially in livestock. It is reasonable to assume that these 

interactions exist and the few studies that looked into it in 
real data find considerable interactions. One scenario where 
SNP by genetic background interactions may be important 
in livestock, is the difference of SNP effects between 
purebred and crossbred animals. Estimation of these 
particular SNP by genetic background interactions requires 
sufficient genotype and phenotype data and knowledge of 
the breed origin of alleles. Tracing the purebred origin of 
alleles in crossbreds was shown to be feasible without close 
relationships between pure and crossbreds. When crossbred 
data is collected across a range of environmental values, the 
genomic reaction norm model allows identification of 
regions that harbor QTN that interact with the environment. 
Genotyping of crossbred animals will become more 
widespread, as selection of purebred animals for crossbred 
performance appears to have important benefits. Sizeable 
datasets will therefore be available that allow the estimation 
of interactions with genetic background and the 
environment.  
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