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ABSTRACT

The introduction of non-indigenous species and associated diseases can
cause declines in indigenous flora and fauna and threaten local bio-
diversity. The crayfish plague pathogen (Aphanomyces astaci), carried
and transmitted by latent infected North American crayfish, can lead to
high mortalities in indigenous European crayfish populations. Although
the parthenogenetic marbled crayfish (Procambarus fallax (Hagen, 1870)
forma virginalis) is common in the aquarium trade and has established wild
populations in Europe, its carrier status is still unknown. This study in-
vestigated one captive and three established wild-living marbled crayfish
populations for an infection with the crayfish plague pathogen applying
real-time PCR. We demonstrate that captive, as well as two wild mar-
bled crayfish populations were infected by A. astaci. Although infection
status in laboratory kept specimens reached high levels, marbled cray-
fish showed no obviously plague-related mortality. Furthermore, sequence
analysis revealed that captive crayfish carried the A. astaci genotype Pc,
which has earlier been isolated from the North American red swamp cray-
fish (Procambarus clarkii). The results indicate that due to its positive car-
rier status marbled crayfish poses a greater threat to local biodiversity in
Europe than considered until now.

RESUME

Premiere mise en évidence de 'agent de la peste de I'écrevisse dans des populations de
I'écrevisse marbrée (Procambarus fallax f. virginalis)
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L'introduction d’espéces non-indigénes et des maladies associées peut entrainer
le déclin de la flore et la faune indigenes et menacer la biodiversité locale. L'agent
pathogéne de la peste des écrevisses (Aphanomyces astaci), porté et transmis
par des écrevisses nord-américaines a infection latente, peut conduire a de fortes
mortalités chez des populations d’écrevisses européennes indigénes. Bien que
I’écrevisse marbrée parthénogénétique (Procambarus fallax (Hagen, 1870) forma
virginalis) soit fréquente dans le commerce d’aquariophilie et qu’elle ait établi
des populations sauvages en Europe, son statut de porteur est encore inconnu.
Cette étude a porté sur une population captive et trois populations d’écrevisses
marbrées sauvages établies pour rechercher une infection par I'agent pathogéne
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PCR en temps de la peste des écrevisses en appliquant la PCR en temps réel. Nous démontrons

réel que deux populations d’écrevisses marbrées sauvages ainsi que celle en capti-
vité étaient infectées par A. astaci. Bien que I'infection en laboratoire présente des
spécimens atteints a des niveaux élevés, les écrevisses marbrées ne présentent
pas de mortalité évidente liée a la peste. En outre, I'analyse des séquences a
révélé que les écrevisses captives portent le génotype Pc d’A. astaci, qui a été
précédemment isolé de I’écrevisse rouge des marais nord-américaine (Procamba-
rus clarkii). Les résultats indiquent qu’en raison de son statut de porteur I’écrevisse
marbrée constitue une plus grande menace pour la biodiversité locale en Europe
que considéré jusqu’a présent.

INTRODUCTION

From the end of the 19th century and onwards non-indigenous crayfish species (NICS) from
North America, like spiny-cheek crayfish (Orconectes limosus), signal crayfish (Pacifastacus
leniusculus) and red swamp crayfish (Procambarus clarkii), were introduced in Europe
(Alderman, 1996; Holdich et al., 2009). Besides unintended introductions, e.g. by escaping
pet specimen, the main reason for their importations was intentional stockings (Lilley et al.,
1997). For example, the signal crayfish was stocked into natural waters to replace indige-
nous noble crayfish (Astacus astacus) populations, which have been lost because of crayfish
plague outbreaks (Vennerstrom et al., 1998). Although the intentional release of NICS today
is restricted in most European countries, the three above mentioned “Old NICS” (i.e. NICS
introduced before 1975) have already established numerous populations throughout Europe
(Holdich et al., 2009; Kouba et al., 2014). Presently, a wide variety of different North American
crayfish are popular as pets in the aquarium trade, especially in Germany and the Netherlands,
and the extensive trade of crayfish species as pets leads to further releases of these animals
into nature from aquaria (Chucholl, 2013) and garden ponds (Patoka et al., 2014). Despite
that scientist promote a ban on the supply and keeping of NICS in aquaria as pets, crayfish
availability via aquarium trade, fairs, and internet sales is still increasing in many European
countries (Chucholl, 2013).

One of the common crayfish species found in the North American and European pet trade
is the marbled crayfish (Procambarus fallax (Hagen, 1870) forma virginalis) (Faulkes, 2010). It
was introduced into Germany via pet trade in the mid 1990s (Chucholl and Pfeiffer, 2010) and
became popular due to its extraordinary reproduction strategy, the apomictic parthenogene-
sis (Scholtz et al., 2003; Martin et al., 2007, 2010). The first wild-living marbled crayfish were
found in 2003 in a dredging pool near Eggenstein-Leopoldshafen (near Karlsruhe, Germany)
only one km away from the River Rhine, but without any surface water connection to the river
(Marten et al., 2004). Today at least six wild established populations are known, most of them
from Germany (Chucholl et al., 2012). In Europe, the species has also been reported in the wild
occurring in Sweden (Bohman et al., 2013), the Netherlands, Italy and Slovakia (Kouba et al.,
2014). Once established, NICS are often more competitive than indigenous crayfsh species
(Schulz et al., 2006) but they also displace indigenous crayfish species due to associated
diseases carried by them (Holdich et al., 2009).

North American crayfish are natural hosts and carriers of the crayfish plague pathogen, the
oomycete Aphanomyces astaci (Unestam and Weiss, 1970; Alderman, 1996). A. astaci is a
crayfish parasite (Unestam, 1969) but can also infect two crab species (Eriocheir sinensis and
Potamon potamios) (Svoboda et al., 2014; Schrimpf et al., 2014). The cysts of the pathogen
can survive in freshwater for a few days or in mud for a couple of weeks and give rise to
new zoospores which infect the animals (Cerenius and Sdderhall, 1985; Longshaw, 2011).
Although North American crayfish are usually resistant to this pathogen and only act as car-
riers, they can succumb and die from the infection under stressful conditions (Séderhéll and
Cerenius, 1992). In contrast, indigenous European crayfish are highly vulnerable and an infec-
tion usually leads to high mortality rates (Longshaw, 2011). Today five genotypes of A. astaci,
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which can be assigned to different host species, are known and they seem to vary in their
virulence (Makkonen et al., 2012b; Viljamaa-Dirks et al., 2013). Genotypes Ps1 and Ps2 have
been assigned to signal crayfish (Huang et al., 1994), Pc to red swamp crayfish (Diéguez-
Uribeondo et al., 1995) and Or has been identified on spiny-cheek crayfish (Kozubikova et al.,
2011). Genotype As has only been identified on native European crayfish species, but until
now the original host species in Europe is unknown (Makkonen et al., 2012a; Viljamaa-Dirks
et al., 2013). The genotypes of infected calico crayfish (Orconectes immunis) as well as virile
crayfish (Orconectes virilis), that have been found to be carrier of A. astaci (Schrimpf et al.,
2013a; Tilmans et al., 2014), are not yet identified.

Although Culas (2003) had claimed to have detected A. astaci DNA in two marbled cray-
fish specimen (Culas, 2003), her results cannot be regarded as reliable because a later work
has shown that the applied PCR method is not specific for A. astaci, instead also related
Aphanomyces-species show a positive signal (Oidtmann et al., 2006). Hence, the carrier sta-
tus of the parthenogenetic marbled crayfish is still unknown. Therefore, the intention of this
study was to investigate captive and wild-living marbled crayfish populations for an infec-
tion with the crayfish plague pathogen applying species-specific and quantitative real-time
PCR (gPCR). Furthermore, we aimed to determine the A. astaci genotype of infected marbled
crayfish using sequence analysis. The species could either carry a yet unknown genotype
or be carrier of a known genotype due to overlapping habitats, species contact, as well as
impurities and exchange through aquarium trade.

MATERIAL AND METHODS

We captured eleven wild-living marbled crayfish with traps and by hand from the Pond in
Klepzig (0.025 ha, Sachsen-Anhalt, Germany), and 28 from the Lake Singliser near Borken
(74 ha, Hessen, Germany). From the Lake Moosweiher located near Freiburg in the Upper
River Rhine catchment (7.6 ha, Baden-Wuerttemberg, Germany), where marbled crayfish is
coexisting with spiny-cheek crayfish, we collected 23 marbled crayfish and 28 spiny-cheek
crayfish. In Lake Singliser, the marbled crayfish presence was first suspected in October 2010
and one year later, in October 2011, actual proof of its occurrence had been delivered. Be-
ing of unknown origin, it was presumed that the animals were released from an aquarium
(Dimpelmann and Bonacker, 2012). The first confirmation of a marbled crayfish presence in
Lake Moosweiher was provided in July 2009 (Pfeiffer, 2010). Although the lake already con-
tained an established population of spiny-cheek crayfish, marbled crayfish also established
a population in Lake Moosweiher. Also here the origin of the population is unknown. Fur-
thermore, 33 marbled crayfish were obtained from a lab culture at Alterra, Wageningen (The
Netherlands). The culture was already in-house for approximately six years after founding
individuals were purchased from a hobby breeder.

DNA was extracted from the soft abdominal cuticle, the inner joint of two walking legs and
parts of the uropods using a CTAB-method as described in Vrélstad et al. (2009). To assess the
infection status of marbled crayfish, we conducted a TagMan® minor groove binder (MGB)
gPCR, targeting the ITS region according to Vrélstad et al. (2009) with some modifications
(Schrimpf et al., 2013a). Infection status and agent level from the A. astaci-specific gPCR are
based on the numbers of observed PCR forming units (PFU) and were defined according to
Vrélstad et al. (2009). DNA samples with an agent levels of A2 (5 PFU < PFUgps < 50 PFU)
and higher (A3: 50 PFU < PFUqps < 10% PFU; A4: 10° PFU < PFUqps < 10* PFU; A5: 10* PFU
< PFUqps < 10% PFU) are considered infected with A. astaci and samples with A0 (0 PFU)
and A1 (PFUqps < 5 PFU) are considered uninfected. A. astaci prevalence in marbled crayfish
populations as well as 95% confidence intervals were estimated according to Filipova et al.
(2013) using the function “epi.conf” (included in package epiR) with RStudio version 0.98.501.
The genotype of A. astaci was identified using sequence analysis of a 370 base pair frag-
ment of the chitinase gene according to Makkonen et al. (2010) with some modifications.
We have used 5x PCR buffer, 2 uM MgCly, 0.025 u TagMan® Taq (all Promega, Mannheim,
Germany), 0.2 uM dNTP (Fermentas, St. Leon-Rot, Germany), 0.2 uM primers AAChiF and
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Table |

gPCR results for one laboratory cultured marbled crayfish population, two wild-living marbled crayfish
population and one coexisting population of marbled crayfish (MC) and spiny-cheek crayfish (SC) from
sampling sites in Germany. Shown is the number (N) of tested individuals, their detected agent level (AO
to A5, considering A0 (0 PFU) and A1 (PFUqws < 5 PFU) uninfected and A2 (5 PFU < PFU,ps < 50 PFU),
A3 (50 PFU < PFUqps < 10° PFU), A4 (10° PFU < PFUqps < 10* PFU) and A5 (10* PFU < PFUqps <
105 PFU) infected), the absolute number of infected individuals, A. astaci prevalence in different marbled
crayfish populations as well as 95% confidence intervals.

Laboratory cultured MC 33 9 1 16 5 1* 1* | 23 | 70 | (53-83%)
Klepzig MC 11 8 2 1 1 9 (2-38%)
Lake Moosweiher MC 23 | 16 | 5 2 2 9 (2-27%)
Lake Moosweiher SC 28 | 20 7 1 1 4 (1-18%)
Lake Singliser MC 28 | 28 0 0 (0-12%)

*Samples used for the sequence analysis.

AAChHIR and added 1.5 uL template DNA for a final volume of 12.5 uL. PCR products were se-
quenced on a 3730 DNA Analyzer eight capillary sequencer (Applied Biosystems, MA, USA).
The sequences were edited with the program Geneious R7 (Drummond et al., 2011) and sub-
mitted to GenBank (accession number: KP100541). Reference sequences of genotypes As,
Ps1, Ps2, Pc were received from J. Makkonen (University of Eastern Finland) and a reference
sequence of the genotype group Or was generated from a pure culture sample (strain Li05,
isolated from O. limosus from the stream Litavka, see Kozubikova-Balcarova et al. (2013)) re-
ceived from A. Petrusek (Charles University in Prague), respectively. Multiple alignments with
our sequences were created and the genotype was determined by comparison of our se-
quences to the reference sequences. Based on the matching mutations the genotypes could
be assigned.

RESULTS

The results from the gPCR revealed that 23 out of 33 (70%) marbled crayfish individuals
from the lab culture were infected with A. astaci (Table ). Agent levels ranged from A2 to
A5. In the marbled crayfish population from Lake Singliser, however, no traces of A. astaci
DNA could be detected, while in the population from Klepzig one of eleven marbled crayfish
(9%) was infected with A. astaci. In the population from Lake Moosweiher two of 23 marbled
crayfish (9%) were A. astaci positive as well as one of 28 (4%) of the coexisting spiny-cheek
crayfish. All positive crayfish individuals collected from the wild yielded only agent level A2,
corresponding to very low agent levels. Since the detection of the A. astaci genotype is rarely
possible for agent levels lower or equal to A3 (Makkonen et al., 2012a) only for two of the
samples from the lab culture with agent level A4 and A5 the genotype of A. astaci could
be determined. This revealed that the laboratory cultured individuals were carrying the Pc-
genotype.

DISCUSSION

This study revealed that marbled crayfish in captivity as well as in nature were infected with
the crayfish plague agent. While wild-living individuals showed a low agent level (A2), caged
marbled crayfish were more heavily infected, up to agent level A5 (Table I). The high agent
levels of the marbled crayfish from the lab culture might be explained by the additional stress
caused by the indoor situation and the captivity (dense population, restricted space) which
weakens their immune system (Soéderhall and Cerenius, 1992) and facilitates the spread of
A. astaci in the crayfish body. Moreover, the successful spread of A. astaci zoospores rises

15p4



N.S. Keller et al.: Knowl. Managt. Aquatic Ecosyst. (2014) 414, 15

with increasing density of crayfish (Kozubikova et al., 2009) and the capability of the crayfish
to cope with the infection decreases with increasing spore density (Oidtmann, 2012). Strand
et al. (2011) have detected higher density of spores in indoor tanks, compared to outdoor
ponds where spores are heterogeneous distributed due to higher spore dynamics, patchy
distributed crayfish and more water per crayfish and A. astaci spores. Although no obvious
signs of a crayfish plague infection (e.g. high mortality, lack of coordination, loss of escape
reflex (Alderman et al., 1987; Oidtmann, 2012)) were observed, the zoospore density in the
aquarium might be higher than in nature and could lead to higher agent levels of marbled
crayfish.

In two out of three wild-living marbled crayfish populations a low A. astaci infection could
be verified. However, the number of samples was relatively small (N = 11 to 28) and due to
environmental stochasticity (Dwyer et al., 2004) or recent molting events (Oidtmann, 2012), the
infection status with A. astaci may have been underestimated. The analysis of 28 individuals
seems to indicate that the population from Lake Singliser is A. astaci free (Schrimpf et al.,
2013b). However, a more intensive sampling could possibly still increase detection probability
(95% confidence interval ranged from 0 to 12%) of A. astaci.

The OIE (2012) recommends either a conventional PCR analysis followed by the sequence
analysis of the ITS-region or the gPCR by Vralstad et al. (2009) to confirm the crayfish plague
agent in tissue material. We have applied the more sensitive gPCR. As an additional confir-
mation we have sequenced a fragment of the chitinase gene according to Makkonen et al.
(2010) and compared it to reference sequences of A. astaci from pure culture. The compari-
sion served as species identification as well as genotype assignment.

Interestingly the captive marbled crayfish from the aquarium carried the known genotype Pc,
which has earlier been isolated from the warm-water favouring North American red swamp
crayfish. In addition, the assigned genotype Pc is physiologically adapted to warm tempera-
tures (Diéguez-Uribeondo et al., 1995) and the spores, compared to other strains (4-20 °C),
grow better at higher temperatures up to 27 °C (Oidtmann, 2012). Altough marbled cray-
fish also prefer warm habitats with water temperatures >15 °C (Chucholl and Pfeiffer, 2010),
we cannot differentiate if marbled crayfish originally carried genotype Pc or if the population
became infected with this genotype due to contaminations in the aquarium trade or the lab-
oratory. The latter is a possibility, since other crayfish species were maintained in the same
laboratory room as well. Although there was no water flow from one tank to another, cross-
contaminations while feeding or handling the animals cannot be excluded. Unfortunately, the
detection of the A. astaci genotype was not possible in samples with lower agent levels from
the wild populations. The failure to determine the genotype of low infected crayfish by chiti-
nase sequencing analysis has been frequently observed (Makkonen, person. comm.) and
could be explained by the lower sensibility of the traditional PCR compared to gPCR (Tuffs
and Oidtmann, 2011) and the lower copy number of the chitinase gene compared to the
multycopy-gene ITS targeted in the gPCR. In Lake Moosweiher marbled crayfish coexist with
spiny-cheek crayfish for at least five years (Chucholl and Pfeiffer, 2010) and on spiny-cheek
crayfish from the Czech Republic the genotype Or has been identified in the past (Kozubikova
et al., 2011). Thus, if the source of the A. astaci infection in marbled crayfish was spiny-cheek
crayfish, we would expect both species to carry genotype Or. But it is also possible that
the spiny-cheek crayfish population was uninfected and got infected from marbled crayfish.
Further investigations might clarify the situation.

Infected non-indigenous crayfish usually act as permanent reservoirs of A. astaci and once
such a reservoir is present in nature, the pathogen can infect other indigenous and non-
indigenous populations through contaminated water, fishing gear or animals (Oidtmann,
2012). Besides transmitting crayfish plague, marbled crayfish can also threat indigenous Eu-
ropean species by competition for resources and high reproduction rates due to high growth
rate and early fertility (Marten et al., 2004). Marbled crayfish favor summer-warm lentic habi-
tats with water temperatures >15 °C. Hence, it is expected that marbled crayfish can re-
produce and establish stable populations, in addition to recent distribution areas (Germany,
Sweden, the Netherlands, Italy and Slovakia), in France, parts of England, Eastern Europe,
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as well as the Iberian and the Balkan Peninsula, including the potential to coexist with other
North American species (Chucholl and Pfeiffer, 2010). Although marbled crayfish could es-
tablish viable populations in these areas, environmental factors (e.g. food sources) often limit
the population growth and spread in nature (Marten et al., 2004).

According to Holdich et al. (2009) “New NICS” can be more easily controlled, managed or
eliminated than the more common “Old NICS” because the chance to control a species is
higher when the species is not yet widespread. Altough the eradication of a restricted, iso-
lated signal crayfish population in a small pond using chemical treatment, pharmaceutical
BETAMAX VET®, and draining appeared to be successful, the application to larger water sys-
tems will probaly not have the same success (Sandodden and Johnsen, 2010). Furthermore,
with a chemical treatment it cannot be assured that only the target species will be eliminated.
Therefore, we cannot consider the chemical treatment as a save way to completely control
invasive crayfish species. Especially the control and eradication of parthenogenetic species
that only need one female to establish viable populations (Marten et al., 2004) might be a
challenge in future.

Since their introductions “Old NICS” from North America, e.g. signal crayfish, spiny-cheek
crayfish and red swamp crayfish, became the greatest threat to indigenous crayfish species
due to transmission of crayfish plague and habitat loss as a result of direct competition
(Holdich et al., 2009). Hence, the marbled crayfish is a much greater menace than previously
known, because our results confirm that this highly reproductive species is infected with the
crayfish plague agent. Therefore, there is an urgent need to minimize the risk of further intro-
ductions of marbled crayfish into nature. Conservation measures including the education of
pet traders, local stakeholders and fisher man is one important measure in halting the further
spread of NICS.
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