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Abstract

Dominance has been suggested as one of the genetic mechanisms explaining heterosis. However, using traditional
quantitative genetic methods it is difficult to obtain accurate estimates of dominance effects. With the availability of dense
SNP (Single Nucleotide Polymorphism) panels, we now have new opportunities for the detection and use of dominance at
individual loci. Thus, the aim of this study was to detect additive and dominance effects on number of teats (NT), specifically
to investigate the importance of dominance in a Landrace-based population of pigs. In total, 1,550 animals, genotyped for
32,911 SNPs, were used in single SNP analysis. SNPs with a significant genetic effect were tested for their mode of gene
action being additive, dominant or a combination. In total, 21 SNPs were associated with NT, located in three regions with
additive (SSC6, 7 and 12) and one region with dominant effects (SSC4). Estimates of additive effects ranged from 0.24 to 0.29
teats. The dominance effect of the QTL located on SSC4 was negative (20.26 teats). The additive variance of the four QTLs
together explained 7.37% of the total phenotypic variance. The dominance variance of the four QTLs together explained
1.82% of the total phenotypic variance, which corresponds to one-fourth of the variance explained by additive effects. The
results suggest that dominance effects play a relevant role in the genetic architecture of NT. The QTL region on SSC7
contains the most promising candidate gene: VRTN. This gene has been suggested to be related to the number of
vertebrae, a trait correlated with NT.
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Background

Dominance effects are non-additive effects due to the interac-

tion between alleles at the same locus. In livestock and plant

breeding, the main benefits of dominance effects are expected in

crossbreeding, since dominance has been suggested as one of the

genetic mechanisms explaining heterosis [1–5]. However, esti-

mates of dominance effects have not been widely used in livestock

breeding because it is difficult to estimate these effects accurately

based on pedigree [6].

The development of dense SNP (Single Nucleotide Polymor-

phism) panels offered new opportunities for detection and use of

dominance at individual loci. However, genomic selection or

genome-wide association studies (GWAS) mainly focused on

additive genetic effects and ignored dominance. Recently, a

number of studies investigated the importance of non-additive

effects in genomic prediction [6–9] and GWAS [10,11], showing

that accounting for these effects increased the accuracy and

reduced the bias of genomically-predicted breeding values in

comparison to an additive model [6–9]. Su et al. [9] showed that

in a purebred Duroc population the dominance variance

accounted for 6% of the total phenotypic variance in daily gain,

emphasizing the relevance of dominance.

Significant dominance effects on number of piglets born alive

and litter size were identified in a GWAS [10]. In cattle, significant

dominance effects were reported for milk production traits [11]. In

both studies, additive and dominance effects were tested for each

SNP using multiple regression, i.e. this approach simultaneously

tested for the significance of the SNP and investigated its mode of

gene action. An alternative way of testing for additive and

dominance effects of a SNP consists of two steps: 1) SNP genotypes

are fitted in the model as a class variable and the significance of a

genetic association is tested, irrespective of the mode of gene action

and subsequently, 2) only the SNPs with a significant genetic effect

are tested for their mode of gene action. This two-step approach is

favored over the multiple regression model because a single class

variable is used to capture the total genetic variation that is

explained by the SNP, while the multiple regression method

applied by Coster et al. [10] and Boyesen et al. [11] will divide the

variation over two parameters which are then separately tested for

significance. In addition, the multiple regression model requires

approximately twice the number of tests that are performed by the

two-step approach. Therefore, for certain modes of gene action,

this multiple regression model leads to a reduction of power.

Fitting a SNP as a class variable has been successfully applied in
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previous GWAS [12–14]. However, in these studies the mode of

gene action of the significant SNPs was not evaluated.

In QTL mapping studies in pigs, number of teats (NT) has been

one of the most extensively studied traits. NT is an important trait

for breeding programs because the number of piglets in a litter is

often larger than the number of functional teats of the sow due to

the remarkable improvement in sow prolificacy over the last

decades [15]. A lower NT than the number of piglets induces

suckling competition, which can lower pre-weaning growth and

survival. Previous linkage studies on NT [16–26] have shown

evidence of both additive and dominance effects on this trait.

These studies applied low density microsatellite panels to relatively

small experimental crosses, resulting in the identification of QTL

with wide confidence intervals. The use of dense SNP panels using

a GWAS gives the opportunities to narrow down the QTL regions

in purebred populations.

The aim of this study was to detect additive and dominance

effects on number of teats, specifically to investigate the

importance of dominance using a high-density SNP panel in a

Landrace-based population of pigs.

Methods

Ethics Statement
The data used for this study were obtained as part of routine

data recording in a commercial breeding program. Samples

collected for DNA extraction were only used for routine diagnostic

purpose of the breeding program. Data recording and sample

collection were conducted strictly in line with the Dutch law on the

protection of animals (Gezondheids- en welzijnswet voor dieren).

Genotypes
DNA from 1,795 animals was extracted from blood, hair

follicles or ear tissue. Genotyping was performed using the

Illumina 60K+SNP Porcine Beadchip [27]. Positions of the SNPs

were based on the Pig genome build10.2 [28]. The first step of the

quality check consisted of excluding SNPs with GenCall score ,

0.15, with unknown position on the build10.2 [30] and SNPs

located on both sex chromosomes. Based on these criteria 8,990

SNPs were excluded from the data. Further, 13,315 SNPs were

excluded because they failed at least one of the following criteria:

call rate ,0.95, minor allele frequency ,0.01 and/or strong

deviation from Hardy Weinberg Equilibrium (x2 values.600).

Finally, 9,016 SNPs were excluded because a genotype class had a

frequency ,0.02. This last step was necessary because this study

focused on both additive and dominance effects and therefore

observations were necessary in all three genotype classes. After

these quality checks, 32,911 out of 64,232 SNPs were used for the

GWAS.

In total, 71 individuals with missing genotype frequency .0.05

(based on 32,911 SNPs that passed the quality check) were

excluded. In addition, animals that had at least one of their parents

genotyped were checked for pedigree inconsistencies. The parental

check consisted of comparing the genotypes of the offspring and

their parents (one or both parents) at all loci. If a Mendelian

inconsistency was detected (e.g. offspring genotype = BB and

parent genotype = AA), the genotype of the offspring at that

specific locus was set to missing. Further, if the proportion of

Mendelian inconsistencies was .0.01, either a pedigree mistake or

a mistake during the genotyping process was assumed and the

offspring was excluded from the data set. If the proportion of

Mendelian inconsistencies was .0.01 for all offspring of a given

parent, the parent was excluded as well, however, this was not

observed in the current data set. A total of 17 animals (offspring)

were excluded based on the described procedure. A further 68

animals were excluded because their NT was not recorded.

Finally, 89 animals were excluded because they were the unique

observation from their herd-year-season class, leaving 1,550

genotyped and phenotyped animals for this study.

Animals and Phenotypes
The evaluated population consisted of 630 males and 920

females from a Landrace-based line. These animals were born

between 2005 and 2012 on 30 different farms. A total of 952

genotyped animals had at least one of their parents genotyped as

well. The group of genotyped parents consisted of 138 sires and

145 dams. The NT of each individual was counted at birth as part

of standard data recording in a commercial breeding program.

Only the total NT was counted. The number of left and right teats,

and teat malformations was not recorded. The average NT in the

dataset was 15.6161.05, ranging from 12 to 20 teats. The dataset

used in this study is available upon request. Contact Egbert Knol

by e-mail: Egbert.Knol@TOPIGS.com.

Figure 1. Genome-wide association study for additive and dominance effects on number of teats in pigs. On the y-axis is the 2log10
(P-values) of single-SNP association with number of teats in pigs. On the x-axis is the physical position of the SNPs across the 18 autosomes. SNPs
associated (false discovery rate #0.10) with number of teats having additive and dominance effects are represented by squares and triangles,
respectively.
doi:10.1371/journal.pone.0105867.g001
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Association Analyses
A single-SNP GWAS for additive and dominance effects on NT

was performed using an animal model. To capture both additive

and dominance contributions to the variance explained by a SNP

in a single model parameter, the genotypes were fitted as a class

variable with three levels. The following model was used:

yijkl~mzsexizhysjzSNPkzanimallzeijkl ð1Þ

where yijkl was the phenotype of animal l; m is the overall mean;

sexi was the fixed effect of sex i; hysj was the fixed effect of the herd

(h) year (y) season (s) j of birth (j = 1 to 291); SNPk was the SNP

genotype k (AA, AB or BB) fitted as a fixed effect; animall was the

random additive genetic effect which was assumed to be

distributed as ,N(0, Gs 2
a ), which accounted for the (co)

variances between animals due to genomic relationships by

formation of a G matrix (genomic relationship matrix); and eijkl

was the random residual effect which was assumed to be

distributed as ,N(0, Is 2
e ). Variance components were re-

estimated in each SNP association analysis. The analyses were

performed using ASReml v3.0 [29].

The G matrix was used to account for genomic relationships

and to reduce the risk of false-positive associations due to

population stratification and was computed as described by

VanRaden [30];

G~
ZZ0

2
Xn

i~1
pi 1{pið Þ

where Z is a matrix that contains all SNP genotypes of all animals

corrected for the allele frequency per SNP; n is the total number of

SNPs present in Z and pi is the frequency of the allele B of SNP i.
The SNP genotypes were coded as 0, 1 and 2, being 0 = AA,

1 = AB and 2 = BB. Allele frequencies of the current sample were

used in the calculations to obtain Z and pi.

Residuals were visually inspected for normality based on a QQ-

plot of the residuals from model (1) without a SNP effect, using the

qqnorm() function in R [31]. The inflation factor (lambda) for the

distribution of P-values from the GWAS was estimated using the

estlambda() function of the R package GenABEL [32]. A genome-

wide False Discovery Rate (FDR) was applied using the R package

qvalue [33] to avoid false positives due to multiple testing. An

FDR #0.10 was used to indicate significant association.

All significant SNPs located within 5 Mb from another

significant SNP were considered to belong to the same QTL

region. When more than one QTL region was detected on the

same chromosome, linkage disequilibrium (LD) was used to assess

the dependence of these effects. If the LD (r2) of all SNP-pairs

between the two different regions was ,0.70, these regions were

considered independent. LD estimates were obtained using

Haploview v4.2 [34].

The total variance explained by each QTL (s 2
QTL ) was

estimated as the sum of its additive (s 2
QTL a ) and dominance

(s 2
QTL d ) variances, which were estimated as follows:

âa~(BB{AA)=2

d̂d~AB{(BBzAA)=2
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a~âaz(q{p)d̂d

d~2pqd̂d

s2
QTL a~2pq(a)2

s2
QTL d~(d)2

s2
QTL~s2

QTL azs2
QTL d

where p and q are the allele frequencies, âa the additive and d̂d the

dominance effects estimated from the genotype effects (AA, BB
and AB) of the most significant SNP in a QTL region, a is the

allele substitution effect and d is the dominance deviation. The

QTL variance was expressed as a fraction of the total phenotypic

Figure 2. Difference in linkage disequilibrium (LD) between two distinct QTL regions. (a) LD (r2) between the significant SNPs of the QTL
region on Sus Scrofa chromosome (SSC) 12; the most significant SNP in this region is surrounded by a square. (b) LD between the SNPs located 0.2 Mb
downstream and upstream of the only significant SNP (surrounded by a square) of the QTL region on SSC4. The numbers inside the diamonds are the
LD measurements (r2) on a scale of 0 to 100%.
doi:10.1371/journal.pone.0105867.g002
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variance (s 2
P , being the summation of the additive and

environmental variances) which was estimated based on model

(1) without a SNP effect.

Testing for additive and dominance effects
To determine if the SNP had a significant additive effect,

dominance effect or both, contrasts for additive and dominance

effects were tested for the most significant SNP in each QTL

region. Testing was performed using the option !CONTRAST in

ASReml v3.0 29] in model (1). Additive effects were declared

when the contrast between the effects of the two homozygous

genotypes was significantly different from zero (P,0.01). Domi-

nance effects were declared when the contrast between the average

effect of the two homozygous genotypes (AA and BB) and the

effect of the heterozygous genotype was significantly different from

zero (P,0.01).

Results from the current study were compared with previously

identified QTL using the alignment of genetic and physical maps

in PigQTLdb [35]. Genes located in QTL regions, including

flanking regions of 0.2 Mb upstream or downstream of QTL

regions, were considered as candidates. Gene searches were

carried out with NCBI map viewer (http://www.ncbi.nlm.nih.

gov/projects/mapview/map_search.cgi?).

Results

The additive genetic variance for NT estimated using model (1)

without a SNP effect was 0.43 and the corresponding heritability

was 0.3760.05. The estimated effects for sex showed that males

presented 0.3560.09 more teats than females. Although NT is a

count variable, the residuals follow a normal distribution (Figure

S1).

An inflation factor of 1.13 was estimated, indicating that any

major effects of population stratification were accounted for in the

analyses. In total, 21 SNPs were associated with NT (Figure 1).

These SNPs were located in four different QTL regions on SSC4,

6, 7 and 12 (Table 1).

One QTL region was characterized as dominant and three as

additive. Estimated effects for QTLs that were characterised as

showing additive gene action ranged from 0.24 to 0.29 teats (in

absolute values). The QTL that was characterised as showing

dominant gene action showed a negative dominance effect (20.26

teats). The summation of s 2
QTL a of all four QTLs corresponds to

7.37% of s 2
P and 23.25% of the additive genetic variance. The

summation of s 2
QTL d of all four QTLs corresponded to 1.82% of

s 2
P , which is one-fourth of the variance explained by additive

effects.

Additive QTL
The QTL region on SSC6 contained two SNPs with significant

associations. This QTL region was located between 101.77 and

104.42 Mb and ALGA0036369 was the most significant SNP with

2log10 (P-value) of 6.37. This SNP showed an additive effect of

0.27 teats and a dominance effect of 20.18 teats. However, only

the contrast for additive effects was significant for this SNP.

On SSC7, between 103.03 and 103.59 Mb, the highest GWAS

peak was found for SNP ASGA0035500 with a 2log10 (P-value) of

7.59. This SNP showed an additive effect of 0.29 teats, a

dominance effect of 0.04 teats and explained 3% of the phenotypic

variance.

On SSC12, between 52.71 and 54.68 Mb, was located the third

most significant QTL region which was also the region charac-

terized by the largest number of significant SNPs in this study (15

SNPs). The most significant SNP in this region (ALGA0120076)

showed an additive effect of 0.24 teats and a dominance effect of

0.05 teats.

Figure 3. Genotype effects. Genotype effects and their standard errors of the most significant SNPs on Sus scrofa chromosomes (SSC) 4 and 7 on
number of teats (NT). The genotypic effects are relative to the effect of the heterozygous genotype, which was set to zero.
doi:10.1371/journal.pone.0105867.g003
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Dominant QTL
The SNP ASGA0019540 located at 44.53 Mb on SSC4 was the

only significant marker in this QTL region. This SNP showed a

dominance effect of 20.26 teats and its s 2
QTL d corresponded to

1% of the total s 2
P (Table 1). The additive effect for this QTL

was not significant (P.0.01) and thus, the mode of gene action of

this QTL seems purely dominant. This SNP presented a minor

allele frequency of 0.31 and a minor genotypic frequency of 0.09

(Table 1), indicating that each genotype class consisted of a

considerable number of observations.

Discussion

QTL and candidate genes
The majority of studies that use genomic information in

livestock species have been directed towards discovery or use of

additive genetic effects. Such studies are generally performed by

applying a linear regression to obtain SNP allele substitution

effects. In the current study, SNP genotypes were fitted in the

model as a class variable. Using this approach, and basically the

same data structure typically used in association studies, it was

possible to distinguish additive and dominance genetic effects.

In the present study, four QTL regions related to NT were

identified. Among these QTLs, three presented significant additive

effects, while one only showed significant dominance effect. The

proportion of the total phenotypic variance explained by the

additive effects were also higher compared to the proportion

explained by dominance effects, being respectively, 7.37 and

1.82% of s 2
P (Table 1). Although these percentages were likely

overestimated due to the Beavis effect [36], which especially has an

impact when the effects of a SNP are small, these results present

convincing evidence that dominance plays a role in the genetic

architecture of NT. These results also suggest that additive effects

contribute more to the genetic variance of NT than dominance

effects. In pigs, other authors have also demonstrated that additive

effects contribute more to the genetic variance of traits than

dominance effects. Su et al. [9] showed that additive genetic

variance of daily gain was 3.73 fold higher than the dominance

genetic variance. Recently, Nishio et al. [37] demonstrated for a

number of traits in pigs that the contribution of additive effects to

the genetic variance was 18–31% higher than the contribution of

dominance effects.

All QTL regions identified in this study overlap with QTL

regions that have been detected previously in one or more studies

[17,20,21,24–26]. However, this study is the first to describe a

dominant QTL effect on SSC4. On this chromosome, previous

studies [24,25] have shown QTLs with additive effects. In

addition, the length of the QTL regions in this study has been

considerably reduced. For example, the most significant QTL in

this study (SSC7) showed significant associations in the region

between 103.03 and 104.35 Mb (length of the region is 1.32 Mb).

Guo et al. [24] reported a QTL related to NT on SSC7 with a

confidence interval of 112 cM (,112 Mb).

The QTL region on SSC4 contained only a single significant

SNP while the region on SSC12 contained 15 significant SNPs.

The QTL region on SSC12 covered 1.97 Mb and the average LD

(r2) between the 15 SNPs was 0.78 (Figure 2) and the smallest

pairwise r2 between SNPs in this region was 0.56, except for the

most distal SNP. The average LD between the significant SNP and

the neighbouring SNPs (within 0.2 Mb) in the region on SSC4 (9

SNPs) was very low (0.15). The low LD between SNPs in this

region, and with the single significant SNP in particular, explains

why the significant associations could not be confirmed by

significant associations of neighbouring SNPs with NT. An

alternative explanation for observing only one single significant

SNP on SSC4 could be that this SNP was misplaced in the Pig

genome build10.2 [28]. However, Pearson correlations (r) between

this SNP (genotypes coded as 0, 1 and 2) and all other SNPs used

in the GWAS (across the whole-genome) showed that the highest

correlations were found with SNPs, who according to the Pig

genome build10.2, should be considered its neighbouring SNPs

(data not shown). Therefore, there is no evidence suggesting that

the location of this SNP is wrong. Thus, it was concluded that

although the QTL on SSC4 is only picked up by a single SNP, this

QTL is probably not an artefact. However, the effect of this QTL

region needs to be confirmed based on independent studies.

To distinguish between additive and dominance effects,

observations are necessary for all three genotype classes. There-

fore, a total of 9,016 SNPs with minor genotypic frequency ,0.02

were excluded. The lowest minor genotypic frequency of a

significant SNP observed in the current study was 0.09 (143 out of

1,550 individuals) for the dominant QTL in the region SSC4. As

the proportion of SNPs excluded based on their minor genotypic

frequency was relatively high, an additional analysis was

performed to investigate whether any of these 9,016 excluded

SNPs were associated with NT, even though these SNPs do not

allow the investigation of the mode of gene action. For this

analysis, the least frequent genotype class of these SNPs was set to

missing and SNPs with two genotype classes ,0.02 were not

evaluated (n = 115). None of these SNPs showed a significant

association (FDR,0.10).

The region detected on SSC7 has been identified as a QTL for

NT in other populations [16,21,22,24,25], as well as a QTL for

carcass length [38–40] and number of vertebrae and ribs [41–45].

A phenotypic correlation of 0.24 between NT and number of

thoracic vertebrae has been estimated [42], and a larger number

of vertebrae is associated with an increase in carcass length and

number of ribs [46,47]. Thus, the region is of great interest for pig

breeders with favourable pleiotropic effects on economically

important traits, including mothering ability of the sows due to

the increase in NT, and increased pork production per animal due

to longer carcasses.

The Vertnin (VRTN) gene appeared as the most promising

candidate in this region. VRTN encodes a potential DNA binding

factor and has been described as an essential factor for

development of the embryo in different species [48]. Due to its

biological function, this gene has been indicated as a candidate

gene for number of vertebrae [42,48,49]. Recently, Fan et al. [49]

performed a fine mapping study aiming to identify the causal

mutation of a QTL for number of vertebrae in the same region. By

applying an identity-by-descendent sharing method, the QTL

region was narrowed down to a 128 Kb region that harboured the

VRTN gene. The region was defined by two SNPs:

ASGA0035500 and INRA0027623, which were, respectively,

the first and the third most significant SNPs for NT in the current

study. Later, Fan et al. [49] identified a possible causal mutation in

the VRTN gene. Due to the positive relation between NT and

number of vertebrae and the similarities between the results on

SSC7 of the present study and the results of Fan et al. [49], it can

be assumed that the VRTN gene may also have an effect on NT.

In the other QTL regions, no obvious genes that could

effectively affect NT were identified. The relationship between

VRTN and NT needs to be further investigated in order to

validate the effect of this gene on the genetic architecture of NT.

Implications
The term heterosis was coined by Shull [50] to describe an

improved performance of crossed individuals compared to the
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average performance of their parental inbred lines. However, the

performance of crossbreds depends partly on the degree and sign

of the dominance effects of the loci affecting the trait [51,52],

which can also lead to negative heterosis (crossbreds performing

worse than the average of their parents). Thus, the definition of

heterosis being the deviation of crossbred performance compared

to the average performance of the two parental breeds [53] is more

appropriate.

In pigs, negative heterosis (also called outbreeding depression or

hybrid inferiority) has not often been reported in the literature.

Bereskin et al. [53] showed that crossbred pigs on average had

higher levels of backfat and lower levels of ham and loin

percentage than their purebred parents. However, more examples

of negative heterosis have been published in other species. In

Drosophila, negative heterosis has been identified for the degree of

deficient venation [54] and in an F1 chicken population, negative

heterosis was reported for leukocyte ratio at 8 weeks of age [55].

Minozzi et al. [56] reported negative direct heterosis for general

immune response traits in White Leghorn chickens. Barbato [57]

observed negative heterosis for abdominal fat in chickens. Denic et
al. [58] described that negative heterosis in humans is related to

higher rates of breast and ovarian cancer.

In the current study, the dominant QTL identified on SSC4

showed negative estimate for dominance effect (20.26 teats).

Based on this locus, negative heterosis would be expected for NT,

assuming that dominance effects are the main cause of heterosis.

However, it is important to keep in mind that the main cause of

heterosis is still under debate. While it has been shown in few

studies that dominance is an important factor contributing to

heterosis [1–5], in other studies, the main cause of heterosis has

been attributed to epistasis [59–61]. Recently, Amuzu-Aweh et al.
[62] evaluating egg production traits in chickens, showed that

although dominance cannot fully explain heterosis, a dominance

model can achieve considerable accuracy of prediction of

heterosis. In pigs, the genetic background of heterosis has not

been elucidated. Therefore, epistatic interactions also might play a

role; however, in segregating populations, the power to identify

epistatic interactions between QTLs is low [60].

As a further step, the role of dominance effects on the genetic

architecture of NT effects should be evaluated in a crossbred

population, since non-additive effects are expected to be of

importance in crossbreeding [63,64]. Nonetheless, the results of

this study showed that dominance effects explain an important

fraction of the phenotypic variance even in a purebred population.

The genotype effects of the QTL region on SSC7 (Figure 3)

showed that this QTL has a clear additive effect. For such QTL,

the traditional selection that is based on allele substitution effects

would be sufficient, as selection for higher NT would lead to the

fixation of the favourable allele B (ignoring the potential impact of

drift).

A more challenging situation is encountered with the QTL

region on SSC4 which may require the adoption of different

strategies, such as mate allocation. Applying an additive model for

estimating breeding values would not be efficient, since the

additive effect of this QTL is close to zero (Figure 3). In cases of

overdominance, selection tends to keep heterozygotes in the

population instead of fixing one of the alleles [65]. However, in

order to improve the population mean, the goal for these two

dominant QTL must be the fixation of one of the alleles in order

to avoid heterozygous animals with their negative dominance

effects. More specifically, for the QTL on SSC4, the selection

should be towards the fixation of the A allele, since this is the most

frequent allele (f(A) = 0.69). If selection is aimed at fixation of the B

allele, it would take longer before this allele becomes fixed, and in

the meantime an increase in the frequency of AB animals would

be observed, negatively affecting the mean NT of the population.

Finally, when this QTL presents the same effect on different lines,

all lines within a breeding program should be fixed for the same

allele in order to maximize the performance of crossbred animals.

According to Toro and Varona [7], it is easier to include

dominance effects in genomic evaluations compared to including

them in the traditional selection using pedigree information. These

authors concluded that the use of dominance effects in a scenario

of genomic selection increases the accuracy of estimated breeding

values and still offers the opportunity of applying mate-allocation.

Wang et al. [65] described that the genetic progress of traits

controlled only by additive genetic effects will generally achieve

the target genotype faster than traits with considerable overdom-

inance. Although the genetic progress is slower in the presence of

dominance compared to the situation when only additive effects

play a role, if dominance effects exist and are not properly taken

into account, the genetic progress may be even slower.

Conclusions

In this study, four QTLs, three additive and one dominant,

were identified by applying a two-step approach; first testing for

significant genetic effect and then testing for additive and/or

dominant gene action only of the SNPs with significant genetic

effects. In total, the s 2
QTL d corresponded to approximately one-

fourth of the variance that was explained by s 2
QTL a , demon-

strating that dominance effects play a role in the genetic

architecture of NT. The QTLs with significant additive effects

overlap with earlier identified QTLs, however, the QTL regions

were considerably reduced in size. Selection based on these QTLs

would benefit mothering ability of the sows due to the increase in

NT, as well as increasing pork production of finishing pigs due to

pleiotropic effects on number of vertebrae and carcass length.
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