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Abstract. The feedback between soil moisture and precip-
itation has long been a topic of interest due to its potential
for improving weather and seasonal forecasts. The generally
proposed mechanism assumes a control of soil moisture on
precipitation via the partitioning of the surface turbulent heat
fluxes, as assessed via the evaporative fraction (EF), i.e., the
ratio of latent heat to the sum of latent and sensible heat,
in particular under convective conditions. Our study investi-
gates the poorly understood link between EF and precipita-
tion by relating the before-noon EF to the frequency of after-
noon precipitation over the contiguous US, through statisti-
cal analyses of multiple EF and precipitation data sets. We
analyze remote-sensing data products (Global Land Evap-
oration: the Amsterdam Methodology (GLEAM) for EF,
and radar precipitation from the NEXt generation weather
RADar system (NEXRAD)), FLUXNET station data, and
the North American Regional Reanalysis (NARR). Data sets
agree on a region of positive relationship between EF and
precipitation occurrence in the southwestern US. However,
a region of strong positive relationship over the eastern US

in NARR cannot be confirmed with observation-derived esti-
mates (GLEAM, NEXRAD and FLUXNET). The GLEAM–
NEXRAD data set combination indicates a region of positive
EF–precipitation relationship in the central US. These dis-
agreements emphasize large uncertainties in the EF data. Fur-
ther analyses highlight that much of these EF–precipitation
relationships could be explained by precipitation persistence
alone, and it is unclear whether EF has an additional role
in triggering afternoon precipitation. This also highlights the
difficulties in isolating a land impact on precipitation. Re-
gional analyses point to contrasting mechanisms over dif-
ferent regions. Over the eastern US, our analyses suggest
that the EF–precipitation relationship in NARR is either at-
mospherically controlled (from precipitation persistence and
potential evaporation) or driven by vegetation interception
rather than soil moisture. Although this aligns well with the
high forest cover and the wet regime of that region, the role
of interception evaporation is likely overestimated because
of low nighttime evaporation in NARR. Over the central
and southwestern US, the EF–precipitation relationship is
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additionally linked to soil moisture variations, owing to the
soil-moisture-limited climate regime.

1 Introduction

Soil-moisture–precipitation feedback has been investigated
for several decades and, despite some progress in recent
years, remains a poorly understood process and a large
source of uncertainty in climate models (Seneviratne et al.,
2010). While studies until the 1990s tended to focus on
the concept of moisture recycling (i.e., the fraction of pre-
cipitation directly contributed by regional evaporation from
the land surface; seeSeneviratne et al., 2010), more recent
studies have emphasized the importance of indirect feed-
back mechanisms – that is, an influence of soil moisture
on atmospheric stability, boundary layer characteristics, and
thereby precipitation formation (e.g.,Schär et al., 1999; Pal
and Eltahir, 2001; Findell and Eltahir, 2003a; Ek and Holt-
slag, 2004; Betts, 2004; Santanello et al., 2009; Hohenegger
et al., 2009; Taylor et al., 2011; Lintner et al., 2013; Gen-
tine et al., 2013). Such indirect effects can theoretically lead
to feedbacks of either sign (Seneviratne et al., 2010). For in-
stance, over wet soils, humidity input into the boundary layer
increases, but turbulence and boundary layer height decrease;
the interplay of these two effects with the environment can
trigger or suppress convective rainfall locally depending on
the prevailing conditions (e.g.,Ek and Holtslag, 2004; Gen-
tine et al., 2013). Although most studies report a positive
feedback, some suggest the existence of a negative feedback
in certain regions (Findell and Eltahir, 2003a, b; Cook et al.,
2006; Hohenegger et al., 2009; Westra et al., 2012; Gentine
et al., 2013). Furthermore, nonlocal processes can also be
important (e.g.,Taylor and Ellis, 2006). In particular, spatial
heterogeneity of soil moisture has been shown to possibly in-
duce mesoscale circulations favoring precipitation over dry
soils, for example in the Sahel region (Taylor et al., 2011)
but also globally (Taylor et al., 2012).

The entire soil-moisture–precipitation feedback can be de-
composed into a chain of processes as follows (Fig.1, mod-
ified from Seneviratne et al., 2010; see also, e.g.,Santanello
et al., 2011):

A. Soil moisture impacts the partitioning of energy at the
land surface into sensible and latent heat flux (H and
λE, respectively), as quantified by the evaporative frac-
tion EF=

λE
H+λE

.

B. The moisture and heat input to the atmosphere corre-
sponding to changes in EF impacts subsequent precipi-
tation.

C. Precipitation impacts soil moisture by replenishing the
soil moisture reservoir.

Relationship A (higher soil moisture leading to higher EF)
is expected to be most significant in regions that are tran-
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Figure 1. Schematic description of the soil-moisture–precipitation
coupling and feedback loop. Positive arrows (blue) indicate pro-
cesses leading to a positive soil-moisture–precipitation feedback
(wetting for positive soil moisture anomaly, drying for negative soil
moisture anomaly), the negative arrow (red) indicates a potential
negative feedback damping the original soil moisture anomaly, and
the red–blue arrow indicates the existence of both positive and neg-
ative feedbacks between evaporative fraction (EF) and precipitation
anomalies. (A), (B), and (C) refer to the different steps of the feed-
back loop (see text). Modified fromSeneviratne et al.(2010).

sitional between wet and dry climates, where soil moisture
is the main limiting factor for land evaporation (e.g.,Koster
et al., 2004; Seneviratne et al., 2006b; Teuling et al., 2009;
Hirschi et al., 2011). Note here the potentially negative feed-
back within relationship A (red arrow in Fig.1), since in-
creased soil moisture content enabling high evaporation leads
to faster depletion of the soil moisture, thus dampening the
initial evaporation increase (see alsoSeneviratne et al., 2010;
Boé, 2013). Relationship B, i.e., higher EF leading to higher
(or lower) precipitation, is generally the most uncertain part
of the soil-moisture–precipitation coupling and feedback and
can exhibit positive or negative sign through boundary layer
regulation (e.g.,Ek and Holtslag, 2004; Santanello et al.,
2007; van Heerwaarden et al., 2009). The impact of precip-
itation on soil moisture (relationship C), on the other hand,
can be considered as straightforward, albeit with a depen-
dence on the partitioning of precipitation into interception,
runoff, and infiltration. Some studies investigate single re-
lationships (e.g., relationship A; see for instanceDirmeyer,
2011), while A–B has been analyzed as one relationship
(e.g.,Taylor et al., 2012) as well as by combining metrics
from each individual relationship (A and B; e.g.,Dirmeyer
et al., 2012). The existence, the sign, and the strength of
soil-moisture–precipitation coupling, i.e., the impact of soil
moisture on precipitation (relationship A–B), and in particu-
lar EF–precipitation coupling (B), remain heavily debated in
the literature.

Modeling studies yield contrasting results, identifying
both positive (Schär et al., 1999; Pal and Eltahir, 2001;
Koster et al., 2004) and negative soil-moisture–precipitation
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relationships in some cases (Findell and Eltahir, 2003a, b;
Ek and Holtslag, 2004; Hohenegger et al., 2009; Siqueira
et al., 2009; van den Hurk and van Meijgaard, 2010). It has
been shown that model-based studies suffer from deficien-
cies, such as the dependence on the chosen convective pa-
rameterization or resolution (e.g.,Hohenegger et al., 2009).
In particular,Taylor et al.(2013) suggest that current con-
vective parameterizations in models lead to a positive feed-
back in regions where observations and cloud-resolving sim-
ulations indicate negative feedback.Dirmeyer et al.(2006)
highlight large biases in global climate models (GCMs) with
respect to covariability between key atmospheric and land-
surface variables, andKoster et al.(2003) suggest that soil-
moisture–precipitation feedbacks may be overestimated in
GCMs.

Given the large range of results from modeling studies,
observational studies are necessary. However, for a number
of reasons, these have been largely inconclusive (Seneviratne
et al., 2010). First, the scarcity of soil moisture and EF mea-
surements is a recurrent limitation. In particular, while recent
satellite remote-sensing efforts have facilitated global anal-
yses and generated new insights (e.g.,Taylor et al., 2012),
these only provide data of soil moisture in the top few mil-
limeters of the soil and in regions without dense vegeta-
tion cover. This is often not representative of deeper lay-
ers and, thus, of EF, especially in vegetated areas. Second,
we note that one of the most challenging tasks in assessing
soil-moisture–precipitation coupling (i.e., A–B) from obser-
vational data is to establish causal rather than mere statistical
links between soil moisture (or EF) and precipitation (see
alsoSalvucci et al., 2002; Orlowsky and Seneviratne, 2010).

The difficulty of causal inferences from observational data
arises from two main confounding effects. First, given the
influence of precipitation on soil moisture (process C) it
can be difficult to assess whether a detected relationship
between soil moisture and precipitation is due to A–B, C,
or both. In particular, persistence in precipitation at various
timescales (from synoptic to interannual scales, including
seasonal scale) can induce apparent causal links, for which
even lagged correlations, such as between soil moisture and
subsequent precipitation, may in fact simply reflect relation-
ship C. Second, covariability between two variables (for in-
stance soil moisture and convective precipitation) may be
a necessary but not a sufficient condition for a causal link
since it does not exclude the possibility that both quantities
are governed by a third influencing variable (for instance sea
surface temperature; seeOrlowsky and Seneviratne, 2010).
Ideally, potential confounding variables should be taken into
account in observational analyses; this is, however, rarely
done in practice, mostly due to difficulties in identifying con-
founding variables or lack of data availability.

In order to overcome the issue of data scarcity, some stud-
ies have used state-of-the-art reanalysis products (e.g.,Bis-
selink and Dolman, 2008; Findell et al., 2011). Soil mois-
ture and associated land-surface fluxes in reanalysis products

are, however, ultimately model-based and therefore share the
deficiencies of their land-surface models. Some reanalysis
products assimilate screen-level variables (temperature, hu-
midity) in order to better constrain the surface energy bud-
get (Mahfouf, 1991; Bouttier et al., 1993a, b; Gentine et al.,
2011) and may thus be advantageous over other reanalysis
products. Nonetheless, such land data assimilation proce-
dures may introduce biases in surface variables (e.g.,Betts
et al., 2003; Seneviratne et al., 2004). In addition, reanaly-
ses suffer from other issues such as the lack of mass con-
servation. Finally, they suffer from the similar difficulties in
isolating causal relationships as the studies based on observa-
tional data, although they provide a more comprehensive data
basis. Therefore, reanalysis-based investigations are a useful
complement to, but ultimately cannot replace, observational
studies.

In this study, we investigate soil-moisture–EF–
precipitation coupling (i.e., processes A and B, with a
focus on B) over North America, addressing the afore-
mentioned issues. We use direct observations of EF and
precipitation from FLUXNET sites, remote-sensing-derived
products (satellite-driven EF estimates from GLEAM and
precipitation from the US radar network NEXRAD), and soil
moisture, EF, and precipitation from the North American
Regional Reanalysis, NARR (see Sect.2). Specifically, we
quantify the relationship between before-noon EF (and soil
moisture) and afternoon convective rainfall occurrence via
the triggering feedback strength (TFS; seeFindell et al.,
2011, and Sect.3). This metric suggests, when applied to
NARR, a region of positive coupling over the eastern US
(Findell et al., 2011). Here, we first compare TFS estimates
derived from observation-driven data sets with those from
NARR (Sect.4). We then consider the potentially confound-
ing role of precipitation persistence on TFS (Sect.5), and
further investigate the role of soil moisture and vegetation
interception storage on land evaporation, as well as the
inferred EF–precipitation coupling (Sect.6). Finally, results
from these sections and their implications are discussed in
Sect.7.

2 Data sets

We provide here a description of the data sets used in this
study. The analysis is restricted to North America for con-
sistency withFindell et al. (2011). The data sets include
a reanalysis product (the North American Regional Reanal-
ysis, hereafter referred to as NARR), ground-based point-
scale observations from FLUXNET, and remote-sensing-
derived products: the NEXt generation weather RADar sys-
tem (NEXRAD) and Global Land Evaporation: the Amster-
dam Methodology (GLEAM). For 3-hourly data sets (NARR
and GLEAM), the 3 h UTC time step closest to each local
3 h time period (in standard local time based on longitude) is
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used, as inFindell et al.(2011). Thus, a lead or lag of up to
1 h may occur between the data sets.

2.1 NARR

The North American Regional Reanalysis (NARR; see
Mesinger et al., 2006) is maintained at the National Center
for Environmental Prediction (NCEP) and spans the period
from 1979 to present. With its high spatial (about 32 km hor-
izontal) and temporal (3 h) resolution, it allows for analyses
focused on the diurnal evolution of land–atmosphere vari-
ables, which is an important aspect when analyzing the im-
pact of surface fluxes on convection and precipitation. Its key
characteristic is that it successfully assimilates high-quality
precipitation observations into the atmospheric analysis, con-
trary to other reanalyses. This might in principle allow for
a more realistic representation of land hydrology and land–
atmosphere interactions. Humidity observations are also as-
similated to constrain the atmospheric state, but they do
not directly constrain surface fluxes via soil moisture nudg-
ing. Some other variables that affect the land surface, such
as screen-level temperature, are not assimilated (Mesinger
et al., 2006). Surface radiation fluxes can also be signifi-
cantly biased in NARR (Kennedy et al., 2011). Moreover,
West et al.(2007) identified spurious grid-scale precipitation
events and related them to anomalous latent heating in cases
of strong mismatch between assimilated and modeled pre-
cipitation. Ruane(2010a, b) highlighted that, while the ex-
aggerated model precipitation is reduced by the assimilation
of precipitation observations, other components of the wa-
ter cycle such as evaporation and moisture convergence are
not corrected. Indeed, assimilation products do not conserve
water.

The land component of NARR is the Noah land-surface
model (Ek et al., 2003). The soil includes four layers span-
ning the following depths: 0–10 cm, 10–40 cm, 40 cm–1 m,
and 1–2 m. Bare soil evaporation (plant transpiration) is lim-
ited by soil moisture in the top layer (root zone), and evapo-
ration from vegetation interception is accounted for. The root
zone is defined for each grid cell as a function of vegetation
type – at the analyzed sites, it includes the top three or four
layers.

Here, we use NARR data from the years 1995–2007, and
most of the analyses are restricted to days when data are
available from other data sets (NEXRAD and GLEAM; see
Sects.2.3 and2.4, respectively). This removes possible im-
pacts of different time periods or time series lengths. Analy-
ses of the longer 1979–2007 period are included in the Sup-
plement (Sects. S1 and S4 in the Supplement) for compari-
son, yielding similar results.

All data are adjusted to local time by taking the 3 h period
closest to the standard local time. Thus, for afternoon val-
ues, for instance, (12–6 p.m.), data from 09:00–15:00 UTC
are used west from 247.5◦ E while 06:00–12:00 UTC data
are used for the rest of the continent.

2.2 FLUXNET

FLUXNET is a global network of micrometeorological mea-
surement sites (Baldocchi et al., 2001; Baldocchi, 2008),
which uses the eddy-covariance technique to measure ex-
changes of CO2, water, and energy between the land sur-
face and the atmosphere. It currently includes over 500 sites
worldwide (http://www.fluxnet.ornl.gov/introduction) with
a relatively large density over Europe and North America.
The density of the network as well as the record lengths in
these regions allow for spatial analyses. FLUXNET is the
largest available network of “direct” observations of latent
and sensible heat fluxes, which, in spite of some known
issues (underestimation of the fluxes and lack of energy
balance closure, point-scale measurements with relatively
small footprint area, possible change in footprint depend-
ing on, for example, wind direction), provides largely model-
independent data and is therefore a direct estimate pertinent
to our analyses.

In this study, we use data from the FLUXNET LaThuile
data set, a global standardized database of eddy-covariance
measurements which includes a large number of sites. Mea-
surements of sensible (H ) and latent (λE) heat fluxes are
used to compute EF, while global radiation (i.e., incoming
shortwave,Rg) and potential global radiation (i.e., extrater-
restrial radiation,Rpot

g ) are used to get a proxy for cloud cover
(see Sect.3.2). One of the main issues with eddy-covariance
measurements is that the energy balance is not closed: the
sum ofH andλE typically underestimates the available en-
ergy by 10–30 % (e.g.,Wilson et al., 2002; Mauder et al.,
2006; Foken, 2008; Hendricks Franssen et al., 2010). How-
ever, as we do not useH andλE directly but only their ratio
through EF, we note that the commonly used “fixed Bowen
ratio” correction for the energy balance closure (i.e., attribut-
ing the missing energy to latent and sensible heat fluxes while
keeping the Bowen ratioBw =

H
λE

constant; e.g.,Blanken
et al., 1997) does not affect EF. Hence, we can expect that
EF is only marginally affected by the lack of energy closure
at the sites.

A total of 39 sites, listed in Table1, are used in this study,
all of them located in the US and Canada. The selection of
the sites is based on several criteria: first, coverage by pre-
cipitation radars from NEXRAD (see Sect.2.3) as well asRg
measurements are requirements for use in our study. Second,
summers with many gaps in any of the required variables are
removed, and only sites with a reasonable amount of remain-
ing data are kept for the analysis (& 100 days).

2.3 NEXRAD

The NEXt generation weather RADar system (NEXRAD) is
a network of 159 Weather Surveillance Radar-1988 Doppler
(WSR-88D) sites covering the United States. Data are
archived at the National Climatic Data Center (NCDC) of
the US National Weather Service. Here, we use the 1 h
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Table 1.FLUXNET sites included in this study, with latitude, longitude, altitude, vegetation class (IGBP, International Geosphere-Biosphere
Programme), years available, years excluded from the analysis, and reference publication. IGBP classes represented in this subset of sites
are croplands (CRO), closed shrublands (CSH), deciduous broadleaf forests (DBF), evergreen needleleaf forests (ENF), grasslands (GRA),
mixed forests (MF), permanent wetlands (WET), and woody savannas (WSA). For a detailed description of the vegetation classes, see
http://www.fluxdata.org/DataInfo/default.aspx/, accessed on 21 June 2013.

Site
Lat Long Altitude IGBP Years Years

Reference
[◦ N] [◦ E] [m] class available excluded

CA-Mer 45.41 −75.52 70 WET 1998–2005 2000 Roulet et al.(2007)
US-ARM 36.61 −97.49 314 CRO 2003–2006 – Fischer et al.(2007)
US-Aud 31.59 −110.51 1469 GRA 2002–2006 – Xiao et al.(2010)
US-Bkg 44.35 −96.84 510 GRA 2004–2006 – Saito et al.(2009)
US-Blo 38.90 −120.63 1315 ENF 1997–2006 1997 Goldstein et al.(2000)
US-Bo1 40.01 −88.29 219 CRO 1996–2007 1996, 2007 Fisher et al.(2008)
US-Dk1 35.97 −79.09 168 GRA 2001–2005 – Katul et al.(2003)
US-Dk3 35.98 −79.09 163 ENF 2001–2005 – Johnson(1999)
US-FPe 48.31 −105.10 634 GRA 2000–2006 2001 Owen et al.(2007)
US-FR2 29.95 −97.00 271.9 WSA 2004–2006 – Heinsch et al.(2004)
US-Goo 34.25 −89.87 87 GRA 2002–2006 2005 Yuan et al.(2007)
US-Ha1 42.54 −72.17 340 DBF 1991–2006 1991–1994, 1997, 2000–2005Urbanski et al.(2007)
US-Ho1 45.20 −68.74 60 ENF 1996–2004 – Fernandez et al.(1993)
US-Ho2 45.21 −68.75 91 ENF 1999–2004 – Fernandez et al.(1993)
US-IB1 41.86 −88.22 225 CRO 2005–2007 – Matamala et al.(2008)
US-IB2 41.84 −88.24 225 GRA 2004–2007 2004 Matamala et al.(2008)
US-KS2 28.61 −80.67 3 CSH 2000–2006 2003 Langley et al.(2002)
US-Los 46.08 −89.98 480 CSH 2001–2005 – Yi et al. (2004)
US-LPH 42.54 −72.18 360–395 DBF 2002–2005 2005 Angert et al.(2003)
US-Me2 44.45 −121.56 1253 ENF 2003–2005 – Thomas et al.(2009)
US-MMS 39.32 −86.41 275 DBF 1999–2005 1999, 2000 Pryor et al.(1999)
US-MOz 38.74 −92.20 219.4 DBF 2004–2006 – Gu et al.(2007)
US-Ne3 41.18 −96.44 363 CRO 2001–2005 2005 Suyker et al.(2004)
US-PFa 45.95 −90.27 470 MF 1996–2003 1996 Mackay et al.(2002)
US-SO2 33.37 −116.62 1394 CSH 1997–2006 1997, 1998 Stylinski et al.(2002)
US-SO3 33.38 −116.62 1429 CSH 1997–2006 1998–2000, 2002–2004 Stylinski et al.(2002)
US-SP2 29.76 −82.24 50 ENF 1998–2004 1998, 1999 Bracho et al.(2011)
US-SP3 29.75 −82.16 50 ENF 1999–2004 1999 Bracho et al.(2011)
US-SRM 31.82 −110.87 1120 WSA 2004–2006 – Scott et al.(2009)
US-Syv 46.24 −89.35 540 MF 2002–2006 2004 Desai et al.(2005)
US-Ton 38.43 −120.97 177 WSA 2001–2006 – Ma et al.(2007)
US-UMB 45.56 −84.71 234 DBF 1999–2003 1999, 2002 Curtis et al.(2002)
US-Var 38.41 −120.95 129 GRA 2001–2006 2003, 2004 Ma et al.(2007)
US-WBW 35.96 −84.29 283 DBF 1995–1999 – Greco and Baldocchi(1996)
US-WCr 45.81 −90.08 520 DBF 1999–2006 1999, 2004 Cook et al.(2004)
US-Wi4 46.74 −91.17 TBD ENF 2002–2005 2003 Noormets et al.(2007)
US-Wkg 31.74 −109.94 1531 GRA 2004–2006 – Scott et al.(2010)
US-Wrc 45.82 −121.95 371 ENF 1998–2006 2000, 2003, 2005, 2006 Waring and McDowell(2002)

precipitation product (N1P) from the level 3 data. More
details about NEXRAD products can be found athttp://
www.ncdc.noaa.gov/oa/radar/radarresources.html(accessed
on 20 December 2012). N1P data for summer (June to Au-
gust, JJA) from 1995 to 2007 were downloaded at NEXRAD
stations covering FLUXNET sites and their vicinity. We
use 3 hr averages of precipitation within 20 km around each
FLUXNET site. Aggregating with different radii and time-
averaging methods leads to similar results (not shown).

2.4 GLEAM

GLEAM (Global Land Evaporation: the Amsterdam
Methodology; seeMiralles et al., 2011b) is a global data set
of daily land-surface evaporation (E) based on satellite ob-
servations, available at a resolution of 0.25◦. Estimates ofE
for dayi are derived from

Ei = E
pot
i Si + (1− β)EI,i, (1)
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Table 2. Data sets used in GLEAM product. Daily aggregates are computed locally to match the before-noon evaporative fraction (EF)
estimate (i.e., starting and ending at around 9 a.m.; see Sect.2.4). S and Epot are the evaporative stress and the potential evaporation,
respectively. See Sect.2.4for details.

Variables Data set Resolution and use

Soil moisture NASA-LPRM (Owe et al., 2008) based
on SSMI (1995–2002) and AMSR-E
(from mid-2002)

nighttime overpass
(for theS calculation)

Vegetation optical depth NASA-LPRM (Owe et al., 2008) daily (for theS calculation)

Precipitation NEXRAD (Sect.2.3) daily (for theS calculation)

Net radiation GEWEX SRB 3.0
(Stackhouse et al., 2004)

daily (for theS calculations)
and 3-hourly frequencies
(for the morningEpot)

Air temperature NCEP-1 (Sheffield et al., 2006) daily (for theS calculations)
and 3-hourly frequencies
(for the morningEpot)

whereE
pot
i is the potential evaporation (at dayi), derived

through the Priestley and Taylor formulation (Priestley and
Taylor, 1972) using data of net radiation (Rnet) and near-
surface air temperature.Si denotes the evaporative stress (at
day i) and is computed combining observations of vegeta-
tion water content (microwave vegetation optical depth) and
estimates of root-zone soil moisture (θi) from a multilayer
soil module driven by observations of precipitation (Pi) and
surface soil moisture (θobs

i ). The inclusion of vegetation opti-
cal depth accounts for the effects of plant phenology; its low
day-to-day variability causes minor effects on the short-term
dynamics ofEi . EI,i denotes the vegetation rainfall inter-
ception loss, calculated based on Gash’s analytical model of
rainfall interception (Gash, 1979) and described inMiralles
et al.(2010); β is a constant to account for declines in tran-
spiration when the canopy is wet (seeMiralles et al., 2010,
2011b).

The satellite-data-driven evaporation model GLEAM is
based on a larger array of satellite information than other
evaporation products, which often apply algorithms requiring
variables that are difficult to retrieve from satellite data (e.g.,
near-surface humidity and wind speed), and therefore rely
on reanalysis forcing. To our knowledge, GLEAM is also
the only large-scale satellite-data-driven evaporation product
that estimates the temporal dynamics of root-zone soil mois-
ture (based on observations of precipitation and surface soil
moisture and a multilayer soil model). This root-zone soil
moisture is used to constrain the atmospheric demand for
water calculated based on radiation and temperature (note
that explicit soil moisture constraints are not directly in-
cluded in analogous models; e.g.,Su, 2002; Mu et al., 2007;
Fisher et al., 2008). GLEAM estimates ofE have been exten-
sively validated and compared to other methodologies (Mi-
ralles et al., 2011a, b; Mueller et al., 2013; Liu et al., 2013;
Trambauer et al., 2014; Miralles et al., 2014a, b). In par-

ticular, GLEAM was successfully validated using measure-
ments from 163 eddy-covariance stations and 701 soil mois-
ture sensors all across the world and run with a wide range
of data sets for the required input variables inMiralles et al.
(2014b). λE estimates from GLEAM have been applied to a
large number of studies over the past 3 years (e.g.,Miralles
et al., 2011a, 2012, 2014a, b; Reichle et al., 2011; Mueller
et al., 2013; Liu et al., 2013; Fersch and Kunstmann, 2014;
Jasechko et al., 2013; Trambauer et al., 2014), and the es-
timates error has been characterized using triple collocation
(Miralles et al., 2011a).

We use a version of GLEAM that is driven by the input
data sets noted in Table2. Importantly, precipitation from
NEXRAD (see Sect.2.3) is used as input (to estimate inter-
ception loss and drive the soil module). GLEAM estimates
using three other precipitation data sets yield similar results
(Supplement S2, Fig. S3). GLEAM usually operates at daily
time steps; as shown in Eq. (1), the computation ofEi re-
quires daily estimates of potential evaporation,E

pot
i ; evap-

orative stress,Si ; and interception,EI,i . Here, to estimate
before-noon EF (9 a.m.–12 p.m., i.e., EFi,9−12), several mod-
ifications to the original methodology are therefore neces-
sary.

GLEAM is first run with daily input variables aggre-
gated to days beginning/ending at around 9 a.m. standard lo-
cal time. The resulting estimates of root-zone soil moisture
(θi−1) used to deriveSi−1 roughly correspond to 9 a.m. on
day i, as they are derived using the cumulative precipitation
up to 9 a.m. and instantaneous observations of surface soil
moisture from the early morning hours (between 1.30 a.m.
and 6 a.m. depending on the satellite platform – see Table2
for details on the soil moisture remote-sensing products). In
the assimilation, early morning surface soil moisture obser-
vations are combined with the bucket model estimates of soil
moisture based on the rainfall until 9 a.m. Although surface
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soil moisture might not always be representative of root-zone
soil moisture,Miralles et al.(2014b) found mild improve-
ments in the root-zone soil moisture estimates of GLEAM
after assimilating the satellite observations.

Before-noon EF at dayi (i.e., EFi,9−12) is then computed
usingSi−1 estimates as a proxy for the before-noon evapo-
rative stress conditions. Since days with morning-time pre-
cipitation are not included in the computations of the TFS,
EI,i,9−12 is assumed to be zero. EFi,9−12 is therefore calcu-
lated as

EFi,9−12 =
λE

pot
i,9−12Si−1

Rnet
i,9−12− Gi,9−12

, (2)

whereRnet is net radiation from the GEWEX SRB data set
(satellite-based product; seeStackhouse et al., 2004) andG is
the ground heat flux, computed as a function ofRnet and land
cover type according toMiralles et al.(2011b). Note that the
focus on the inter-day rather than intra-day variability in EF
is advantageous since EF is considered most stable around
noontime (e.g.,Gentine et al., 2007). In addition, EF is rather
robust toG given the low day-to-day variability inG relative
to its diurnal cycle.

To summarize, EFi,9−12 is computed in two steps:

1. GLEAM is first run as inMiralles et al.(2011b) to de-
rive the daily averages of evaporation (Ei) and evapora-
tive stress (Si) – see Eq. (1). The only difference here is
that we compute daily values from about 9 a.m.–9 a.m.
for all variables (depending on longitude but always be-
fore 9 a.m.).

2. Si−1 is used to calculate before-noon EF (i.e., EFi,9−12)
using Eq. (2).

In this form, Si−1 accounts for evaporative stress due to
soil moisture deficits only and does not account for intercep-
tion. This is done to acknowledge that interception rates are
high even at night (see e.g.,Pearce et al., 1980) and there-
fore vegetation only remains wet for a few hours after rain-
fall (4 ± 1.9 h using values from field studies compiled by
Miralles et al., 2010), and because days with morning rainfall
are removed, not being the subject of our analyses (Sect.3.2).

Nonetheless, to allow comparison with NARR, we in-
troduce an alternative formulation which accounts for in-
terception evaporation during the before-noon time period
by assuming that vegetation stores intercepted water from
the previous-day precipitation. To do so, we use a modified
stress formulation,S∗

i−1, which assumes that water remains
on vegetation from the previous-day precipitation. Hence, we
can rearrange Eq. (1) asEi = E

pot
i Si +(1−β)EI,i = E

pot
i S∗

i ,
which yields

S∗

i−1 = Si−1 + (1− β)
EI,i−1

E
pot
i−1

. (3)

Estimates of EFi,9−12 can then be computed usingS∗

i−1 in-
stead ofSi−1 in Eq. (2) to account for interception evapo-
ration. Nonetheless, this alternative approach is likely un-
realistic due to the above-mentioned fast evaporation rates.
In addition, findings from field studies highlight that advec-
tion and downward sensible heat flux rather than radiation are
critical to the evaporation of intercepted water (e.g.,Pearce
et al., 1980; Asdak et al., 1998; Holwerda et al., 2012), and
therefore the contribution of interception evaporation to the
(radiation-based) EF is not straightforward. Nonetheless, we
use this alternative approach as a sensitivity test of potential
interception effects in Sect.6 (see Fig.11).

Note that the timing of the input data sets for theS and
S∗ computation is crucial to this application, in particular for
precipitation. First, we do not want to include any informa-
tion about afternoon precipitation for the estimated before-
noon EF on the same day. Second, rainfall occurring in the
night preceding the estimated EF must be included in or-
der to get an EF reflecting the conditions in the early morn-
ing. Unfortunately, the definition of “days” in many standard
daily precipitation products varies, as shown in Table S1 in
the Supplement, and is sometimes unclear: for instance, the
use of data from the Global Precipitation Climatology Project
(GPCP; seeHuffman et al., 2001) is inappropriate due to the
time window of the data set (00:00 to 00:00 UTC, i.e., from
4 p.m. (7 p.m.) to 4 p.m. (7 p.m.) in the US west (east) coast;
see Table S1 in the Supplement). Also noteworthy, for the
CPC Unified gauge product (Chen et al., 2008) days are de-
fined differently depending on the country. For most of the
US, the defined window is 12:00 to 12:00 (UTC, i.e., 4 a.m.–
4 a.m. in the west coast/7 a.m.–7 a.m. in the east coast), which
in principle suits our requirements, although uncertainties re-
main due to differing reporting times between contributing
rain gauge stations. NEXRAD is not affected by this issue
given its higher temporal resolution.

Due to the large diversity of precipitation products and the
sensitivity of EF to precipitation, GLEAM has been driven
with several precipitation data sets as input (see Supplement
Discussion S2). Data sets used for this sensitivity test are
NEXRAD, CPC Unified (Chen et al., 2008) and PERSIANN
(Hsu et al., 1997). These three data sets either suit the re-
quired daily time window (like in the case of CPC Unified) or
have a subdaily temporal resolution and therefore allow for
appropriate daily aggregates (like in the case of NEXRAD
and PERSIANN). Results obtained from these three inde-
pendent precipitation data sets are qualitatively similar (see
Fig. S3 and text in the Supplement).

3 Methods

This section describes the convection triggering metric TFS,
including the selection of potentially convective days to
which the computations are restricted, and the applied sta-
tistical test for assessing the significance of the results.
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3.1 Triggering feedback strength (TFS)

The TFS, defined byFindell et al.(2011), quantifies the link
between before-noon EF and afternoon precipitation occur-
rence as

TFS= σEF
∂0(r)

∂EF
, (4)

where EF is the before-noon evaporative fraction (computed
between 9 a.m.–12 p.m., where 12 p.m. is noon),σEF is the
standard deviation of EF and0(r) is the probability of after-
noon rain (> 1 mm, computed between 12 p.m. and 6 p.m.).
The computation is restricted to summer days (June to Au-
gust, JJA). Only potentially convective days (Sect.3.2) are
included in the computation in order to reduce the impact
of large-scale synoptic systems. In addition, surface turbu-
lent fluxes of sensible and latent heat are most likely to
impact precipitation formation in convective situations (see
Sect.3.2). Note that, like most statistical analyses, a high
TFS does not necessarily imply causality between EF and
0(r) but simply the existence of a statistical correlation be-
tween the two variables.

Findell et al.(2011) computed TFS in bins of the param-
eter space of EF, CTP, and HIlow (the convective triggering
potential and a low-level humidity index, respectively; see
Findell and Eltahir, 2003a), which are subsequently aggre-
gated. HIlow is an indicator of humidity in the lower atmo-
sphere, while CTP provides information about atmospheric
stability. Accounting for these two variables is expected to
reduce possible confounding effects from atmospheric con-
ditions. In our study, however, relatively short observational
time series preclude extensive sampling of this parameter
space and independent observational sources for CTP and
HI low, i.e., radio soundings, do not exist in the vicinity of
all analyzed FLUXNET sites.

We can therefore only approximate the approach ofFindell
et al.(2011). Thus, we compute here a simplified version of
TFS,

TFS∗
= σEF

0(r|EF> EFQ60) − 0(r|EF≤ EFQ40)

EFQ80− EFQ20
, (5)

where EFQX is theXth percentile of EF. The variableσEF
and the percentiles of EF are determined for each location
and data set independently. The definition of the bins ensures
clearly distinct bins (i.e., no possible overlap even if EFQ60 =

EFQ40) while retaining most of the available data. Consider-
ing quantiles also partly accounts for different shapes of the
EF distributions when comparing different EF data sets. EF
values outside of the 0–1 range are excluded from the analy-
sis. Although TFS∗ is only an approximation of the original
TFS defined byFindell et al.(2011), the two different com-
putations show close agreement when applied to NARR.

3.2 Identification of potentially convective days

Midlatitude continental convection tends to occur in the af-
ternoon, as a result of a particular daytime boundary layer
evolution (Rio et al., 2009). Potentially convective days are
therefore expected to be rain- and cloud-free in the morning.
Moreover, convection is usually linked to low atmospheric
stability and, therefore, typically positive CTP (Findell et al.,
2011).

Findell et al.(2011) therefore identify potentially convec-
tive days as days with CTP> 0 and no morning precipita-
tion. In the absence of the necessary information for CTP
from observations, we alternatively use the following criteria
throughout our analyses:

– No morning precipitation, as inFindell et al.(2011), and

– Rg/R
pot
g > 0.67max(Rg/R

pot
g ) in the morning, where

Rg is the global radiation (i.e., incoming shortwave)
at the land surface andRpot

g is the potentialRg in the
absence of atmosphere (i.e., extraterrestrial incoming
shortwave).

Rg is available from NARR and measured at FLUXNET
sites.Rpot

g , being dependent on time and latitude only, is com-
puted for each grid cell used in our analysis for NARR. It
is directly available in FLUXNET data. The computation of
max(Rg/R

pot
g ), restricted to summer days (JJA), is applied

to each site to account for site-specific conditions.Rg/R
pot
g

therefore quantifies the fraction of incoming solar radiation
reaching the ground, and its maximum value corresponds to
clear-sky cases. RequiringRg/R

pot
g > 0.67max(Rg/R

pot
g ) in

the morning is used to remove days with thick, persistent
morning clouds from the analysis as they are likely linked
to synoptic systems. Cutoff ratios between 0.5 and 0.8 do
not lead to different results (not shown). Note that this crite-
rion does not exclude the presence of morning clouds, which
could be convective, but prevents cases dominated by morn-
ing clouds, likely of stratiform origin.

In this study, the data set combinations use these criteria
computed on the following data sets, chosen according to
data availability:

– NARR: precipitation andRg from NARR,

– FLUXNET–NEXRAD: precipitation from NEXRAD
andRg from FLUXNET,

– GLEAM–NEXRAD: precipitation from NEXRAD and
Rg from NARR.

The impact of the criteria for the selection of potentially
convective days on TFS∗, in particular with respect to the
NARR analysis and the different set of criteria used in our
study compared toFindell et al.(2011), is small, as discussed
in the Supplement (Sect. S1 and Fig. S2).
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Figure 2. Triggering feedback strength (TFS∗) in different data sets computed at FLUXNET sites. (left) Evaporative fraction (EF) and
precipitation data from NARR, (center) EF from FLUXNET and precipitation from NEXRAD, and (right) EF from GLEAM and precipitation
from NEXRAD. TFS∗ values significantly different from 0 at the 90 % level are indicated by a black asterisk. In case of overlap, points are
shifted and the black lines inside the circles indicate the actual location of the station. Empty dots indicate sites with unreliable NEXRAD
data.

3.3 Statistical tests

The statistical significance of TFS∗
6= 0 is tested by bootstrap

samples. A TFS∗ distribution is computed from 1000 boot-
strap samples for which the EF data are kept unchanged and
precipitation data are shuffled, which simulates the null hy-
pothesis that no relation between EF and precipitation exists.
The bootstrap TFS∗ distribution is approximately symmetri-
cal with respect to 0. For a 90 % significance level, we re-
quire a positive (negative) TFS∗ to be at or above (below) the
95th percentile (5th percentile). We chose a rather low signif-
icance level of 90 % to account for the relatively short time
series and the noise inherent in the data.

4 TFS from different data sets

The impact of before-noon EF on precipitation occurrence is
quantified using the modified triggering feedback strength,
TFS∗ (see Sect.3). TFS∗ is computed at FLUXNET sites
from three data set combinations: (i) a reanalysis product
(NARR), (ii) direct measurements of surface turbulent heat
fluxes at FLUXNET sites for EF in combination with radar
precipitation from NEXRAD, and (iii) EF estimates from a
satellite-data-driven evaporation product (GLEAM) in com-
bination with NEXRAD precipitation. We compare estimates
of TFS∗ from these data sets (Sect.4.1) and general charac-
teristics of the EF data sets (Sect.4.2).

4.1 TFS patterns

Figure2 displays TFS∗ for the three analyzed data set com-
binations. We note that the NARR pattern reproduces the re-
gions of positive TFS∗ from Findell et al.(2011) over the
eastern and southwestern US. This shows that our simpli-
fied TFS∗ computation (Eq.5) reproduces the more sophis-
ticated computation fromFindell et al.(2011). Nonetheless,
results from Fig.2 (left) display slightly weaker and less sig-
nificant values, shown in supplementary analyses to be a re-
sult of shorter time series (Fig. S1 in the Supplement). The
impact of different sets of criteria for the selection of po-

tentially convective days, another source of discrepancy be-
tween our analysis andFindell et al.(2011), turns out to be
small (Fig. S2 in the Supplement).

To complement the maps shown in Fig.2, the distribu-
tion of TFS∗ values for the three data sets are compared
separately over three regions (western, central and eastern
US) using box plots (Fig.3). The definition of these re-
gions is based on expected coupling regions from previ-
ous studies. The central US region represents an expected
soil-moisture–precipitation coupling “hot spot” (e.g.,Koster
et al., 2004), while the eastern US displays a strong positive
EF–precipitation relationship in NARR (Findell et al., 2011).
The western US, on the other hand, is a dry region (soil-
moisture-limited regime; seeThomas et al., 2009; Schwalm
et al., 2012) with little soil moisture and EF variability and
is therefore usually not considered conducive to strong soil-
moisture–precipitation feedbacks. Strong EF–precipitation
coupling is a necessary but not sufficient condition for strong
soil-moisture–precipitation coupling.

Generally, FLUXNET displays large variations within
each region (Fig.3) and even within smaller climatic re-
gions (e.g., in Florida, Fig.2). It does not confirm the pos-
itive TFS∗ regional pattern evident in NARR over the east-
ern US (Fig.2). The remote-sensing-derived estimate from
GLEAM–NEXRAD displays more consistent patterns, but
it also does not yield many significant positive TFS∗ val-
ues in that region (3 significant sites out of 23, Fig.2).
Over both the central US and southwestern US, GLEAM–
NEXRAD and to some extent FLUXNET show larger TFS∗

values compared to NARR (Figs.2 and3). We note that in-
spection of the NEXRAD time series reveals suspect features
(not shown) for three sites in the middle of the western re-
gion; results with NEXRAD (and GLEAM, which is partly
based on NEXRAD) are therefore not shown for these sites
(empty dots, e.g., in Fig.3). Results at other sites have been
confirmed by analyses with other precipitation data sets (not
shown; e.g., with CMORPH;Joyce et al., 2004).

Several reasons might contribute to the observed differ-
ences between TFS∗ estimates from the different data sets,
some of which can be discussed with the support of Fig.4
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Figure 3. Quantitative comparison of the triggering feedback strength (TFS∗) in different regions for the three data sets shown in Fig.2.
(top) Definition of the regions. (bottom) Box plot of TFS∗ in the three regions, where numbers below boxes indicate the fraction of sites
with significant TFS∗. Central lines denote medians, boxes show interquartile ranges, and whiskers denote minimum and maximum values.
Empty dots on the map indicate sites with unreliable NEXRAD data and which are excluded from the box plot.
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Figure 4. Influence of data set and sample size on TFS∗. Only
days with data in all data sets are included in the computation, and
potentially convective days are further selected based on NARR
(see Sect.3.2). TFS∗ from NARR is boxed in red; TFS∗ from
observation-based combinations in blue. The size of the dots in-
dicates the number of days included in the computation according
to the legend shown on the bottom right. TFS∗ values significantly
different from 0 at the 90 % level are indicated by a black asterisk.
Empty dots indicate sites with unreliable NEXRAD data.

(TFS∗ for the different combinations of EF and precipitation
data sets for the same subset of days, namely the potentially
convective days according to the NARR selection):

i. Spatial scale of the EF data: the footprint of FLUXNET
measurements is much smaller than the grid cells
of NARR and GLEAM (typically 100–2000 m and
25–30 km, respectively; see Sect.4.2). Since EF–
precipitation coupling is expected to occur at scales of
about 20–100 km and NEXRAD data are at such a scale,
FLUXNET may be less appropriate for this application.
Although different TFS∗ cannot be clearly attributed to
differences in footprints based on Fig.4, EF uncertain-
ties are shown to play a strong role in controlling the
convection triggering metric (see also Sect.4.2).

ii. Time series length and noise: the lengths of the time
series considered here range from a few years in
FLUXNET to 13 year (with some gaps) in GLEAM–
NEXRAD and NARR. Comparing Fig.2 with the re-
spective panels of Fig.4 shows that the decreased
sample size in Fig.4 affects TFS∗ in NARR and in
the GLEAM–NEXRAD combination. A relatively large
number of days is required to estimate TFS∗ robustly, as
smaller or noisier samples lead to lower and less signif-
icant values. Thus, higher noise levels in observation-
based data sets and incomplete sampling due to short
record length could explain their weaker values of the
metric in the eastern US.

iii. Selection of potentially convective days included in the
TFS∗ computation (Sect.3.2): the application of the cri-
teria to different data sets potentially leads to different
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Figure 5. Correlation of daily JJA before-noon EF values between different data sets. The size of the dots indicates the number of days
included in the computation according to the legend shown on the bottom right, and significant correlations at a 99 % level are indicated by
a black asterisk. Empty dots for GLEAM indicate sites with unreliable NEXRAD (and thus GLEAM) data.

TFS∗ estimates, although sensitivity tests do not high-
light a strong sensitivity of TFS∗ to the chosen criteria,
as shown in the Supplement for NARR (Fig. S2).

iv. Other data set characteristics, such as temporal resolu-
tion, uncertainties, and possible errors (e.g., modeling
components in NARR): such causes for the observed
differences are difficult to disentangle from the three
above-mentioned factors as the selection of days and
the length of the time series are linked to the data sets.
While the region of strong EF–precipitation relation-
ship in the eastern US in NARR cannot be confirmed
with FLUXNET and GLEAM–NEXRAD, it is possible
that time series in these observation-derived data sets
are simply too short or too noisy to detect a robust TFS∗

in this region. Nevertheless, NARR generally exhibits
a stronger (weaker) link between EF and convection
triggering over the eastern (central and southwestern)
US compared to the observation-based estimates used
here. Hence our results suggest a product dependence
of the derived TFS∗ patterns.

Hereafter, we focus on the disentangling of these various
factors, and in particular on possible fundamental differences
in the processes underlying the investigated EF–precipitation
relationship. Thereby, analysis of the differences in the data
sets themselves might shed light on the different TFS∗ pat-
terns. Since precipitation data from NARR and NEXRAD
agree well in terms of precipitation occurrence (not shown),
we focus on the differences between EF data sets and analyze
these in the next section.

4.2 EF time series

To analyze the agreement of the spatiotemporal dynamics be-
tween the three EF data sets, Fig.5 displays their respective
correlations with one another in summer (JJA) for before-
noon (9 a.m.–12 p.m.) EF. Unlike in the TFS∗ computation,
all days are included in the correlations, but similar results
are found for the potentially convective days only. Although
positive, correlations are strikingly low at most sites and
across all data set combinations. This suggests that the dis-
agreement between the TFS∗ patterns in the different data

set combinations is related to differences in the considered
EF data sets (see also Fig.4). Correlations of 10-day and
monthly averages of before-noon EF are higher but remain
low over the eastern US (Fig. S4 in the Supplement). Cor-
relations of EF anomalies (i.e., after removing the seasonal
cycle within JJA) instead of actual values display similar re-
sults (not shown).

Several reasons might explain these differences. First, the
spatial scale over which EF is estimated, or footprint, is data-
set-specific, as mentioned above (Sect.4.1, point i). Differ-
ences might thus arise from contrasting environmental condi-
tions over the respective footprints (e.g., input of water from
rainfall in the case of very local precipitation events), but
also from differences in land covers. Indeed, while wet vs.
dry periods might be similar in all data sets, some studies
have shown that different vegetation might respond differ-
ently to given conditions (Teuling et al., 2010). Land cover
is in fact different at FLUXNET sites compared to the larger
scale in NARR, in particular in regions with cultivated land,
as FLUXNET sites are often located over natural vegetation.
However, we did not find any systematic link between differ-
ent land covers and resulting TFS∗ (not shown). Similarly,
soil texture impacts soil moisture dynamics and EF (e.g.,
Guillod et al., 2013) and differences in local vs. larger scale
soil texture could also be a reason for the differences in EF.

In order to better characterize the EF time series, Fig.6
shows the mean, standard deviation, and persistence (quanti-
fied by the decorrelation timescale,τD, which integrates the
autocorrelation function; seevon Storch and Zwiers, 1999)
for the three data sets. While we do not find any clear differ-
ences between the data sets that can explain the low temporal
correlation and resulting differences in TFS∗, the comparison
highlights some interesting features. The mean EF is similar
in all data sets and exhibits higher values in the eastern US
(wetter climate) compared to the drier climate of the west-
ern US, although in GLEAM the central US displays even
higher mean EF values. The EF standard deviation is noisy,
although similar patterns are found across all data sets, with
higher EF variability in the central US or in the Southern
Great Plains (the exact location depending on the data set).
Note, however, that the amplitudes differ widely among the
three data sets. This does not necessarily impact TFS∗: the
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Figure 6.Statistical properties of EF data sets (NARR, FLUXNET, GLEAM, from left to right): (top) mean (EF), (middle) standard deviation
(σEF), and (bottom) decorrelation timescale (τd). Only days with data in all three data sets are included in the computation. The decorrelation
timescaleτd is computed followingvon Storch and Zwiers(1999). Grey dots indicate too many gaps for a reliable quantification ofτd. Empty
dots for GLEAM indicate sites with unreliable NEXRAD data.

change in the probability of afternoon precipitation with re-
spect to EF is scaled by the standard deviation of EF (see
Eq. 4 andBerg et al., 2013). Finally, EF persistence is gen-
erally lower in the eastern US, suggesting high variability at
a scale of one to a few days in this region of strong rela-
tionship in NARR (Fig.2, left). Thus, the regions of strong
daily correlation between EF and convection triggering cor-
respond, in NARR, to humid regions with low persistence,
while in GLEAM–NEXRAD the drier southwestern region,
with higher persistence, displays the strongest relationship.
For the remaining analyses, we exclude FLUXNET data be-
cause of the record length of this data set being too limited.

5 Impact of EF vs. precipitation persistence

Although the TFS metric is a useful tool for investigating the
relationship between EF and convective precipitation trigger-
ing, precipitation persistence might lead to high TFS even
in the absence of an actual impact of EF on precipitation.
Here, precipitation persistence refers to precipitation auto-
correlation, which might be induced by atmospheric persis-
tence (e.g., from synoptic weather patterns). Resulting per-
sistent wet conditions cause higher EF and vice versa, po-
tentially leading to high TFS∗ values simply through exter-
nally forced precipitation persistence. Although one cannot
exclude the possibility that precipitation days cluster together
due to a feedback mechanism, atmospheric forcing is a more
likely reason. Precipitation persistence might also arise from
seasonality in precipitation. However, this effect is less rele-
vant for our study as only summer is considered, and analyses

on individual months do not suggest a strong link to season-
ality (not shown).

Ideally, the TFS computation should account for such
confounding effects, via the filters for potentially convec-
tive days (see Sect.3.2). In addition,Findell et al.(2011)
use bins of CTP and HIlow in the computation, which we
did not implement (Sect.3.1). Nevertheless, we specifically
test for the effect of day-to-day precipitation persistence on
TFS∗ by replacing before-noon EF with precipitation from
the previous day in the TFS∗ computation. With respect to
an explanatory variable,X, we denote the change in the
probability of afternoon precipitation for high vs. lowX as
10(X) = 0(r|X > XQ60) − 0(r|X ≤ XQ40). Figure7 (left)
shows10(EF) for NARR and the GLEAM–NEXRAD com-
bination, and the patterns strongly resemble those of TFS∗

(Fig. 2). Indeed,10(EF) is the term that controls most of
the TFS∗ signal, sinceσEF and∂EF mostly compensate each
other in Eq. (4), and maps ofσEF (Fig. 6) do not display
a pattern similar to that of TFS∗ (Fig. 2). Using10(X) al-
lows for a direct comparison between the impact of EF and
that of previous-day precipitationPd,prev, shown on the right
of Fig.7 as10(Pd,prev). In fact, previous-day precipitation is
a better predictor for afternoon precipitation occurrence than
before-noon EF, which holds for both data sets and across
all regions. Given these results, one can wonder whether the
signal with EF is, in fact, only reflecting precipitation persis-
tence or whether EF conveys additional information that can
help explain afternoon precipitation.

In order to disentangle the impact of EF on precipitation
from precipitation persistence, we apply a framework sim-
ilar to Salvucci et al.(2002) to stratify the data based on
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Figure 8. TFS∗ for subset of days: (left) all days and (center) days without and (right) days with rainfall on the previous day to account for
precipitation persistence. Top row: NARR (years 1995–2007, as in the rest of the analysis). Middle row: GLEAM–NEXRAD combination.
Bottom row: NARR, all years (1979–2007) for comparison, as the conditioning on previous-day precipitation reduces the number of days
available for the computation. The size of the dots indicates the number of days included in the computation according to the legend shown
on the bottom right map. Empty dots indicate sites with unreliable NEXRAD data.

previous-day precipitation. Here, only the occurrence of pre-
cipitation is considered and we investigate whether the signal
emerging with EF reflects previous-day precipitation occur-
rence alone and thus may be an artifact of precipitation per-
sistence on a short timescale. Note thatSalvucci et al.(2002)
also accounted for seasonal-scale persistence, which we omit
since our analysis is restricted to summer months and our
main interest is on short-term persistence (e.g., due to frontal
systems or a sequence of these). Figure8 shows TFS∗ in-
dependent of previous-day precipitation (i.e., as shown be-

fore; left column) as well as conditioned on the occurrence
of precipitation the day before: here TFS∗ is computed for
subsets of days with either no precipitation on the previ-
ous day or with precipitation on the previous day (center
and right columns, respectively). Since the conditioning re-
duces the number of days available, this analysis is applied to
NARR and GLEAM–NEXRAD as well as to the longer set
of NARR data, covering 1979–2007 (bottom row) for com-
parison.
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For both NARR and the GLEAM–NEXRAD combination,
the signal over the eastern US strongly weakens when days
are conditioned on previous-day rainfall (Fig.8). This sug-
gests an important role of precipitation persistence on sub-
sequent precipitation and thus on TFS∗. Note, however, that
the shorter length of the time series after filtering days based
on previous-day precipitation might also impact the results:
using all available years from NARR (1979–2007, bottom
row), TFS∗ is less sensitive to the conditioning on the pre-
vious day’s rainfall, where EF might provide information on
afternoon precipitation that is additional to previous-day pre-
cipitation occurrence. Nonetheless, for days following rain-
free days, the weakening of the signal suggests a relevant
role of precipitation persistence. Over the southwestern US,
the signal appears less sensitive to day-to-day precipitation
persistence as TFS∗ remains significant at most sites for both
data sets.

Overall, precipitation persistence plays an important role
and thereby affects TFS∗ in all data sets. Several factors can
lead to high precipitation persistence via the atmosphere,
such as atmospheric dynamics or SST forcing linked with
large-scale teleconnection patterns. That said, we cannot ex-
clude a partial contribution of EF–precipitation coupling to
the identified persistence features, although larger10 with
previous-day precipitation than with EF suggests that this is
not the dominant mechanism. Finally, the binning in CTP and
HI low might already partly account for this effect inFindell
et al.(2011).

6 Soil moisture and interception evaporation

In the conceptual framework of a feedback between soil
moisture and precipitation via EF (Fig.1), soil moisture is
expected to be the main driver of EF. However, our analysis
shows that EF can be highly variable from day to day (as re-
flected, for example, by the low autocorrelation in the eastern
US; see Fig.6). This feature is inconsistent with an impact
of low-frequency soil moisture variations, which is generally
the main relevant factor in the context of weather and sea-
sonal forecasting (e.g.,Koster and Suarez, 2001; Seneviratne
et al., 2006a; Koster et al., 2010). We thus examine the rele-
vance of soil moisture in the analyzed relationships between
land conditions and convection triggering.

We recall thatλE (and thereby EF) comprises three main
components (Fig.9): plant transpiration (Etrans), bare soil
evaporation (Esoil), and evaporation of water intercepted by
vegetation (EI). These evaporate water from different reser-
voirs that typically evolve at different timescales. Root-zone
soil moisture (Wroots), which reflects precipitation over the
previous weeks to months and is affected by vegetation, pro-
vides a mid- to long-term storage forEtrans. Surface soil
moisture (Wtop, top few centimeters of the soil), which re-
flects precipitation over the preceding days or week, provides
a short-term storage forEsoil. Finally, intercepted water on

vegetation structures (Wcanopy), which reflects precipitation
over the preceding hours, provides very short storage forEI .
Although often neglected in climate studies, evaporation of
intercepted rainfall has been estimated to represent more than
10 % of global terrestrialE (Miralles et al., 2011a) and 20–
50 % over forests (e.g.,Savenije, 2004; McLaren et al., 2008;
Gerrits and Savenije, 2011). Typical timescales mentioned
here reflect estimates from many studies (see, e.g.,Salvucci
and Entekhabi, 1994, for soil moisture orScott et al., 1997,
for individual components of evaporation) but may not en-
compass the entire range of possible interactions. Therefore,
a feedback on precipitation through EF can, theoretically, re-
sult from any of the three components ofλE (or a combina-
tion of them), all of them affected by antecedent precipitation
itself.

As an extension to Fig.1, Fig. 9 presents a schematic rep-
resentation of the soil-moisture–precipitation feedback that
distinguishes between the contributions of these three com-
ponents ofλE. Precipitation impacts the three storage terms
on different timescales, which might then impact EF and,
thereby, precipitation, forming three interlinked feedback
loops. The first loop (C1–A1–B) acts on a short timescale
through Wcanopy and EI , but is likely absent in our anal-
ysis due to the removal of days with morning rain. In-
deed, field studies indicate high evaporation rates of inter-
cepted water even at night (e.g.,Pearce et al., 1980; As-
dak et al., 1998; Holwerda et al., 2012), leading to com-
plete evaporation ofWcanopywithin a few hours. Therefore,
evening precipitation is unlikely to provide intercepted wa-
ter available during the before-noon time period (transpar-
ent black–green arrow in Fig.9). Morning rainfall, on the
other hand, may provide before-noonWcanopy (black–green
arrow) but given that such days may be of synoptic origin,
they are excluded from our analysis, as noted previously.
Moreover, in the few hours following rain, one may expect
well-mixed conditions in the atmospheric boundary layer as
well as low surface net radiation. Under these conditions,
further rain would be more likely due to dynamical forc-
ing from the atmosphere. The second loop (C2–A2–B) acts
on a longer timescale, typically a few days, throughWsoil
and Esoil. Finally, a third loop (C3–A3–B) acts on a mid-
to long timescale, typically weeks to months, viaWroots and
Etrans. Ultimately, all three loops combine and act together on
EF, which can impact precipitation. The distinction between
these three components has, to our knowledge, rarely been
discussed in the literature in the context of EF–precipitation
coupling or soil-moisture–precipitation feedback (with ex-
ceptions, e.g.,Savenije, 1995b, 2004, for moisture recycling
and Scott et al., 1995, 1997, for precipitation persistence).
However, they may help to better understand some of our re-
sults.

In order to investigate the role of these three components,
we compute10(X) using NARR data, whereX is the wa-
ter storage term controlling each component instead of EF.
Storage terms are used instead of individual fluxes, since
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Figure 9. Different water storage components contributing toλE and their potential relevance for afternoon convective precipitation. The
letters (Ai , Bi , Ci ) refer to the steps of the feedback loop shown in Fig. 1, where “i” indicates the evaporation component of concern (1
for evaporation from vegetation interception,EI ; 2 for bare soil evaporation,Esoil; 3 for plant transpiration,Etrans). The horizontal axis
represents time, ending with dayi, and precipitation over the past days to months is represented with its persistence timescales and its typical
influence on the three water storage terms shown below: canopy or vegetation interception storageWcanopyis affected by precipitation over
the previous hours only (C1). Surface soil moistureWtop is impacted by precipitation in the previous days to weeks (C2). Root-zone soil
moistureWroots is mainly impacted by precipitation in the previous weeks to months (C3). These three storages control their respective
evaporation components, and thus EF, in different regions. Over vegetated areas for interception (A1), in a transitional soil-moisture–climate
regime for soil evaporation (A2), and in regions which are both vegetated and in a transitional climate regime for transpiration (A3). Note
that A2 and A3 can also occur in other regions in some circumstances (e.g., over wet regions, during dry years), andWroots includesWtop.
Note that for loop 1 (through interception), a coupling cannot be distinguished from storm-scale precipitation persistence as before-noon
interception is only expected in the presence of morning rain, mainly reflecting precipitation of synoptic origin. Precipitation over the
previous evening usually does not affect before-noonWcanopy, but a transparent arrow is shown for rare cases where this might happen.
Step B of the feedback remains a single component as the three evaporation components combine and only the total heat fluxes and their
partitioning matter to precipitation occurrence.

these are not available from NARR output. Figure10a–d dis-
plays10 in NARR computed with (a) EF, (b) surface soil
moisture (forEsoil), (c) root-zone soil moisture (forEtrans),
and (d) vegetation interception storage (forEI). All these
variables represent before-noon (9 a.m.–12 p.m.) values. The
definition of surface and root-zone soil moisture in NARR is
provided in Sect.2.1.

Over the eastern US, most of the10 signal found with EF
does not appear to be related to soil moisture (neither for sur-
face nor for root-zone soil moisture, except in Florida). This
suggests that the EF variability is not driven by soil mois-
ture variations in this region. On the other hand,10 com-
puted with morning vegetation interception storage displays
a strong signal, suggesting that most of the signal with EF is
linked to interception evaporation. However,10(EF) is not
strongly sensitive to the exclusion of days with vegetation in-
terception storage (Fig.10e, while Fig.10f displays the dif-
ference to the computation including all days and is rather

small), despite the substantial fraction of days they represent
in NARR (15–35 %, Fig.10g). Since the remaining signal
(Fig. 10e) cannot be attributed to vegetation interception, it
is likely either due to one of the remaining terms of evap-
oration or to atmospheric controls on EF through potential
evaporation.

To test this hypothesis, the third row of Fig.10 displays
10(X) computed on days without vegetation interception
and whereX is (h) surface soil moisture, (i) root-zone soil
moisture, and (j ) potential EF (EFpot = λEpot/(Rn−G), i.e.,
the EF that corresponds to potential evaporation from NARR,
which is based on Penman–Monteith equation). Since results
are noisy due to the low number of included days, Fig. S5
in the Supplement displays the same analysis for the whole
NARR time period (1979–2007). For most of the eastern US,
10(EFpot) appears to best reproduce the signal with EF on
Supplement Fig. S5, suggesting that atmospheric controls
on EF (through EFpot) at least partly induce the apparent
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Figure 10.Identification of the drivers of the EF–precipitation relationship in NARR (see Supplement Fig. S5 for the same analysis using the
longer NARR time period). Top row: difference in the probability of afternoon rainfall,10(X) on days with high vs. lowX, whereX is the
before-noon value of the different drivers. From left to right,X is (a) EF and(b–d) the three water storage terms that control EF:(b) surface
soil moisture (Wtop, controls bare soil evaporation),(c) root-zone soil moisture (Wroot, controls plant transpiration), and(d) vegetation
(canopy) interception storage (Wcanopy, controls interception evaporation). Middle row:(e)10(EF) computation restricted to days without
canopy storage,(f) difference between10(EF) computed with all days and with days without vegetation interception storage, and(g)
percentage of days with interception storage. Bottom row:10(X) restricted to days without interception storage, whereX is (h) surface
soil moisture,(i) root-zone soil moisture, and(j) potential EF (EFpot). High (low) X refers to values higher (lower) than the 60th (40th)
percentile ofX, i.e.,10(X) = 0(r|X > XQ60) − 0(r|X ≤ XQ40). Values significantly different from 0 at the 90 % level are indicated by
a black asterisk. Grey dots indicate sites with no rainy days left.

positive coupling. Such a confounding effect could result
from the control of temperature and humidity of the air mass
on EFpot, which would then simply be a proxy for the like-
lihood of the air mass to produce rain, independently of sur-
face fluxes.

Over other regions, we identify different key drivers based
on Fig. 10 and Supplement Fig. S5. Over the southwest-
ern US, our analysis highlights surface and root-zone soil
moisture as important contributors, with interception play-
ing a smaller role. Over the central US, no conclusion can
be drawn from NARR as no EF–precipitation relationship is
identified (see also Figs.2 and3).

As a sensitivity test, we also investigate the potential role
of interception using GLEAM, where, in the default version,
before-noon interception storage is neglected as it is based
on a Gash analytical model (Gash, 1979), and therefore as-
sumes that the vegetation water storage is evaporated within
a model time step (Sect.2.4). Here, we relax this assump-
tion to allow comparison to results from NARR. Figure11
displays TFS∗ for the GLEAM–NEXRAD combination as

shown earlier (standard version, left) and including intercep-
tion evaporation from previous-day precipitation (right; see
Sect.2.4for details on the computation). Including intercep-
tion in that way leads to an increase in significant positive
TFS∗ signal, particularly over the eastern US, which is con-
sistent with the results from NARR. However, we recall that
this feature is likely not realistic: theoretical considerations
do not support the presence of before-noon intercepted wa-
ter storage in our analysis. Indeed, interception evaporation
rates are high even at night (e.g.,Pearce et al., 1980), as these
are driven by advected energy or negative sensible heat flux
rather than radiation (Pearce et al., 1980; Asdak et al., 1998;
Holwerda et al., 2012). Thus, intercepted water evaporates
within a few hours: for instance, a compilation of numer-
ous studies on interception finds mean evaporation rates of
0.3± 0.1 mm h−1 and canopy storage of 1.2± 0.4 mm, lead-
ing to complete evaporation of the whole canopy reservoir
in 4± 1.9 h (Miralles et al., 2010). The presence of intercep-
tion storage during the before-noon time period is therefore
largely restricted to days with morning precipitation, which
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Figure 11. Influence of interception evaporation on TFS∗ in the GLEAM–NEXRAD combination. Left: interception is not included in the
EF computation. Right: interception is included in the EF computation and EF is then capped at 1. Values significantly different from 0 at
the 90 % level are indicated by a black asterisk. Empty dots indicate sites with unreliable NEXRAD data.
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are not included in our analysis as they are indicative of syn-
optic rainfall (Sect.3.2). Some exceptions might occur under
very humid nighttime atmospheric conditions, preventing in-
tercepted water from evaporating, but these cases likely co-
incide with morning precipitation and are thus more likely to
represent the dynamical forcing from the atmosphere.

Thus, these theoretical considerations based on past field
studies suggest an overestimation of the impact of intercep-
tion in NARR, in line with the results from the validation of
other climate reanalysis and land-surface models (e.g.,Re-
ichle et al., 2011; Van den Hoof et al., 2013; Davies-Barnard
et al., 2014). This could be due to the parameterization of in-
terception as a function ofEpot (Chen et al., 1996), with in-
terception unrealistically affected by net radiation (seeShut-
tleworth and Calder, 1979). Time series in NARR strongly
support this hypothesis, showing that before-noon intercep-
tion storage is most often provided by afternoon or evening
precipitation on the previous day which does not evaporate
in the night (see Supplement S5 and Fig. S6).

Overall, analyzing the role of individual components of
λE in the relationship between EF and subsequent precipita-
tion leads to similar conclusions in NARR and in GLEAM–
NEXRAD. In the eastern US, vegetation interception evap-
oration and atmospheric controls on EF can lead to a likely
overestimated relationship, due to, respectively, the fast rates

of evaporation of intercepted water (see above) and the at-
mospheric origin of the signal. In the central and southwest-
ern US, soil moisture (surface and root zone) drives the re-
lationship where it exists, which would be consistent with
the existence of a positive soil-moisture–precipitation feed-
back. These findings fit well with expectations based on cli-
mate regimes and vegetation cover: Fig.12a highlights a wet
regime in the eastern US, where land evaporation is con-
trolled by radiation rather than soil moisture, unlike the soil-
moisture–limited regime of the central and western US. In
addition, vegetation interception is likely more relevant in
the eastern US than in the central and southwestern US, as
indicated by a high leaf area index in Fig.12b. Although
we recall that the interception-related findings from NARR
are not consistent with knowledge from field studies for the
above-mentioned reasons, an impact of evening or nighttime
interception evaporation via moisture recycling remains pos-
sible on longer timescales.

7 Discussion and conclusions

A recent study (Findell et al., 2011) statistically relates the
occurrence of afternoon convective precipitation to before-
noon evaporative fraction (EF) through the TFS metric
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(triggering feedback strength), based on data from the North
American Regional Reanalysis (NARR), and suggests the
existence of an extended region of positive land-surface–
precipitation coupling over the eastern US. Our study extends
that analysis with a systematic cross validation of additional,
independent, observation-driven data sources and an in-depth
investigation of all components contributing to the identified
pattern fromFindell et al.(2011).

Comparing the relationship patterns from the differ-
ent data set combinations, the FLUXNET–NEXRAD and
GLEAM–NEXRAD combinations do not reproduce positive
TFS∗ in the eastern US found in NARR. Higher noise lev-
els in these data sets and uneven sampling of different land
cover types in the FLUXNET data may contribute to the dif-
ferences. Nevertheless, our results suggest that land-surface
dynamics in NARR and their stronger apparent coupling with
precipitation in the eastern US might reflect model artifacts
(see alsoFerguson et al., 2012, who find that surface soil
moisture from NARR correlates poorly with remote-sensing
estimates in the eastern US). Conversely, a significant rela-
tionship between EF and convection triggering is found for
the observation-driven GLEAM–NEXRAD combination in
the central US (consistent with, e.g.,Koster et al., 2004), al-
though no such signal emerges from NARR in this region.
The FLUXNET–NEXRAD combination displays low TFS∗

values there, possibly due to higher noise levels and short
samples. Similarly, NARR might underestimate a possible
EF–precipitation coupling in these regions. In the area of the
southwestern US close to the Mexican border, all data sets
agree on the existence of significant relationships between
EF and convective triggering.

We find that the choice of the EF data set has a large im-
pact on the relationship between EF and convection trigger-
ing, although the patterns of average EF, EF variability, and
persistence in the different data sets do not clearly indicate
the sources of this discrepancy. This comparison is further
hampered by short observational records, uncertainties, and
different spatial scales.

Furthermore, we find that precipitation of the previous day
is a better predictor of afternoon precipitation than before-
noon EF, pointing to a short timescale dominance of the at-
mosphere over land. Although EF seems to provide a small
additional predictability to precipitation alone, the confound-
ing effects of precipitation on EF via soil moisture or inter-
cepted water precludes definite conclusions on the existence
of a land–precipitation coupling at this stage. Accounting for
the individual components of land evaporation (plant transpi-
ration, bare soil evaporation, and evaporation of intercepted
water) in the analysis, we find that the coupling, if present,
arises from distinct sources in different regions.

Over the eastern US, atmospheric controls on EF (i.e., the
atmospheric demand through potential evaporation) and veg-
etation interception drive the EF–precipitation relationship in
NARR. Atmospheric controls on EF might induce an appar-
ent relationship, but identifying these drivers as, for example,

in Aires et al.(2013) lies beyond the scope of this study. The
unrealistic presence of before-noon intercepted water from
previous evening rainfall in NARR, likely due to an under-
estimation of the rates of evaporation of intercepted water at
night, may falsely contribute to the positive TFS∗ over the
eastern US, in line with the GLEAM–NEXRAD experiment
(Fig. 11). This questions the reliability of NARR for these
applications, despite its real advantage of high-quality pre-
cipitation assimilation. Other reanalysis products have issues
with the representation of interception, e.g., MERRA (where
the MERRA-Land product corrects for interception parame-
ters among others;Reichle et al., 2011). These findings sug-
gest a relatively short timescale of the EF–precipitation re-
lationship in this region in NARR, which is consistent with
the role of day-to-day precipitation persistence. Establishing
a causal link between atmospheric- and interception-driven
EF and precipitation is thus very difficult. Finally, we find
that the EF–precipitation relationship found in NARR in the
eastern US is not related to soil moisture, which makes sense
given the humid climate regime with an expected low control
of soil moisture on EF in this region, unlike what has been
diagnosed in several studies for the central US (e.g.,Koster
et al., 2004; Teuling et al., 2009; Seneviratne et al., 2010).

The processes in central and southwestern US are, indeed,
different from those in the eastern US. Wherever significant
positive relationships between EF and precipitation occur-
rence are found in GLEAM–NEXRAD or NARR, soil mois-
ture is identified as the primary driver. This is consistent with
the soil-moisture-limited evaporation regime in this transi-
tional region (Koster et al., 2004; Seneviratne et al., 2010;
Mueller and Seneviratne, 2012) and aligns well with ex-
pected regions of soil-moisture–precipitation coupling (e.g.,
Koster et al., 2004).

A number of processes are not considered in our analy-
sis, such as the dominance of orographic lifting over land–
atmosphere interactions over the northwestern US where
evaporation is soil-moisture-limited (e.g.,Schwalm et al.,
2012), the effects from different land covers (e.g., young vs.
mature forests; seeVickers et al., 2012), or other processes
acting at smaller scales than those considered here. Detailed
analysis of these local features is, however, beyond the scope
and spatial scale of our study.

A small part of the signal in the eastern US in NARR can-
not be attributed to vegetation interception, soil moisture, and
EFpot. Nonlinear interactions between these variables possi-
bly explain this signal, but the assimilation procedure may
also affect it in a way that is difficult to assess. In GLEAM,
the adjustments that were made to get estimates of before-
noon EF introduce additional uncertainties that are difficult
to quantify. Here we note that the reliability of the estimates
is expected to decrease with increasing temporal resolution
(Miralles et al., 2011b).
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The presence of before-noon vegetation interception stor-
age on days without morning precipitation is unlikely (based
on previous field measurements, e.g.,Pearce et al., 1980; As-
dak et al., 1998; Holwerda et al., 2012). Thus, interception
does not likely play a strong role for the triggering of con-
vective storms via morning surface fluxes. Nonetheless, a
direct impact via moisture recycling is possible and has al-
ready been suggested in the past (e.g.,Savenije, 1995a, b).
Additional moisture input to the atmosphere may thus pro-
vide more rainfall downwind on a longer timescale than the
diurnal scale analyzed here. Indeed, evaporation from inter-
cepted water has been estimated to amount to∼ 11 % of
global land evaporation (Miralles et al., 2011a) and to 20–
50 % over forests (e.g.,Savenije, 2004; McLaren et al., 2008;
Gerrits and Savenije, 2011).

The discrepancies between the coupling patterns of precip-
itation with soil moisture and EF, respectively, as well as the
here-proposed explanations through interception evaporation
and atmospheric controls on EF, have hardly been addressed
in the recent literature on land–precipitation coupling (e.g.,
Findell and Eltahir, 2003a; Seneviratne et al., 2010; Find-
ell et al., 2011; Taylor et al., 2011; Ferguson et al., 2012;
Taylor et al., 2012). This adds to the complexity of this cou-
pling but possibly explains some of the contradictions from
recent studies (e.g.,Findell et al., 2011; Ferguson et al., 2012;
Taylor et al., 2012). We show that not only the individual
segments of the soil-moisture–precipitation coupling (Fig.1;
Wei and Dirmeyer, 2010; Dirmeyer, 2011), but also the indi-
vidual components ofλE may be crucial to uncover remain-
ing uncertainties in land–atmosphere coupling.

Given the many unresolved issues in the investigation of
land–precipitation coupling, further studies are required to
pin down this complicated relationship. Analyses of the feed-
back accounting for precipitation persistence and confound-
ing variables, applied to different temporal and spatial scales
and a wide range of data sets, are urgently needed. More-
over, improvements in models would allow for more realistic
sensitivity studies. Finally, soil moisture and EF observations
at scales relevant to land–atmosphere coupling (i.e., 10 km)
would provide invaluable observational constraints on model
results and understanding of land–atmosphere coupling.

The Supplement related to this article is available online
at doi:10.5194/acp-14-8343-2014-supplement.
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