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Abstract

Biodiversity, including plant species diversity, is threatened worldwide as a result of anthropogenic pressures such as an
increase of pollutants and climate change. Rare species in particular are on the verge of becoming extinct. It is still unclear
as to why some plant species are rare and others are not. Are they rare due to: intrinsic reasons, dispersal capacity, the
effects of management or abiotic circumstances? Habitat preference of rare plant species may play an important role in
determining why some species are rare. Based on an extensive data set of soil parameters we investigated if rarity is due to
a narrow habitat preference for abiotic soil parameters. For 23 different abiotic soil parameters, of which the most influential
were groundwater-table, soil-pH and nutrient-contents, we estimated species responses for common and rare species.
Based on the responses per species we calculated the range of occurrence, the range between the 5 and 95 percentile of
the response curve giving the habitat preference. Subsequently, we calculated the average response range for common and
rare species. In addition, we designed a new graphic in order to provide a better means for presentation of the results. The
habitat preferences of rare species for abiotic soil conditions are significantly narrower than for common species. Twenty of
the twenty-three abiotic parameters showed on average significantly narrower habitat preferences for rare species than for
common species; none of the abiotic parameters showed on average a narrower habitat preference for common species.
The results have major implications for the conservation of rare plant species; accordingly management and nature
development should be focussed on the maintenance and creation of a broad range of environmental conditions, so that
the requirements of rare species are met. The conservation of (abiotic) gradients within ecosystems is particularly important
for preserving rare species.
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Introduction

Biodiversity, including plant species richness, is threatened

worldwide [1], [2], [3], as a result of anthropogenic pressures such

as an increase of pollutants [4] and climate change [5]. Rare

species in particular are on the verge of becoming extinct. It is still

unclear as to why some plant species are rare and others are not

[6], [7], [8], [9]. Are they rare due to intrinsic reasons, dispersal

capacity, the effects of management or abiotic circumstances?

Habitat preference of rare plant species may play an important

role in determining why some species are rare and others are not.

Species occurrence can also be limited by dispersal capacity, for

instance when all habitat requirements are met but the species is

not yet able to reach suitable habitat [10], [11], [12]. Human

influence is another major factor that impacts on the occurrence of

rare species; for example, through changes in habitats caused by

construction of infrastructure and built development, water-related

management or intensified agricultural land use [10], [13], [14],

[15], [16]. Nature management can be applied to conserve the

habitats necessary for the rare species and thus prevent them from

becoming extinct [16], [17]. Understanding the differences in

habitat requirements between rare species and common species is

also likely to be an important factor in protecting rare species [6].

All plant species establish their own niches in their preferential

habitat and this is a major determinant of their spatial distribution.

The occurrence of species is being determined at different scales,

ranging from the biogeographical till the habitat scale. On the

biogeographical scale species occurrence is probably mostly

limited by climatic parameters such as temperature and precip-

itation. The realized distribution of the biogeographical niche is

often referred to as the climate envelope of a species and used to

predict the effects of climate change on species occurrence [12],

[18]. Within the climate envelope some habitats are suitable and

some are not. Species occurrence on the habitat scale can be

limited by factors such as the vegetation types that are present as a

result of management, the absence of suitable abiotic conditions

including soil pH and nutrient availability, the status of the

groundwater table (both water quality and availability) or fine scale

heterogeneity in for example vegetation structure, soil gradients or

management related gradients [17], [19], [20].

The specific topic of this paper is to consider the influence of

abiotic (soil) conditions in relation to rarity of species. We

hypothesised that rare species have narrower habitat preferences

for abiotic soil conditions than common species. Based on an

extensive data set of measured soil parameters we therefore

investigated if rarity of plant species is constrained by their

restricted habitat preference for abiotic soil parameter.

Material and Methods

Database and abiotic soil parameter selection
Species responses for abiotic soil parameters were estimated

based on field measurements in just over 8000 plots in the

Netherlands, mostly collected from literature. For each plot species
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composition was recorded and a mixed soil sample was taken from

the upper soil layer (mostly upper 10 cm) and analysed in a

laboratory. Plot sizes ranged from 1 m2 for grasslands till 100 m2

for forest. Plots were recorded following the Brown-Blanquet

method [21]. The abiotic values of the plot were linked to all the

species in the plot, including mosses, lichens shrubs and trees. The

data cover the period from 1936 till present day and the database

is still expanding. Each plot is accompanied by at least one abiotic

soil measurement (e.g. pH or nutrient availability). The most

frequently measured soil parameter is pH, with well over 5,000

entries. The database is part of the European metadata database

for vegetation plots (the Ecological Conditions Database; GIVD

ID EU-00-006) [22].

Abiotic ranges for an individual species were only estimated

when at least 25 positive findings in relation to the abiotic

parameter combination were present in the database. The

procedure was carried out for the 23 different soil parameters

(Table 1).

Species response
Responses per species were modelled by means of logistic

regression employing a penalized B-spline [23] to estimate the

curve (details in Wamelink et al.) [24]. Applying the spline function

has the advantage that the responses of the species are

independent of the number of findings. By dividing the abiotic

(x) axes in 25 parts and subsequently calculating the chance of

occurrence per part, a bias due to the number of findings is

prevented. For each species an indicator value was derived as the

mean of the response curve. We could have used the spline to

estimate the range of the species. However, this would give ranges

for only a limited number of species and based on a relative small

number of relevés (just over 7000 for soil pH and over 1000 for the

other abiotic parameters). The species indicator values were

therefore used to calculate the mean abiotic values for a

calibration dataset with 160,000 relevés, representative for the

Dutch vegetation [25]. However, this was never tested and relevés

were made for all kind of purposes and are therefore not random

divided over Dutch nature. From the resulting responses for the

abiotic parameters per species the 5 and 95 percentile were

retrieved from a re-estimated species response curve, employing

the full calibration set of 160,000 relevés, giving the range at which

each species occurs (Figure 1). By applying this calibration dataset

we are able to increase the number of species for which we can

estimate a response. The length of the range of the species was

defined as the difference between the 5 and 95 percentile of the

response curve. The full method and the database used are

described in Wamelink et al. [19], [22], [24].

To counteract the effect of non-random selection of the plots we

used the 5 and 95 percentiles of the ranges of the fitted species

response curve (Figure 1), instead of simply the abiotic value of the

relevés at which the species occurs. To understand why this works

consider the case in which relatively more narrow abiotic values

are present in the database, or for a part of the abiotic range the

plots are overrepresented. Using only the abiotic values for which

a species is present will inevitably result in percentiles which are

too narrow; the overrepresented plots will dominate the range.

Since the effect of this might be different for the 5 and 95

percentile, this will also affect the range. However, the fitted

species response curve, employing presence and absence data, will

in principle not be affected by the non-random selection of the

abiotic values as long as there are data for the full range of the

abiotic values. Consequently, the range as estimated from the

fitted curve will not be heavily affected.

Rare species selection
The species list with responses was split in two: one part

containing rare species and one containing the other species. The

latter group will subsequently be called common species. Rare

species were defined as species fulfilling the red list criteria [26]

and as such indicated in the Dutch flora [27]. The rarity of the

species is based on their frequency and trend as measured on the

Dutch national 5 by 5 km grid, based on the period 1980–1990.

There are five levels for the Dutch red list:

1. Red list category 0: species extinct in the Netherlands

2. Red list category 1; Species occurs in 1–12 grids, with a

decrease in grid frequency of at least 50%, or species occurs in

13–40 grids, with a decrease in grid frequency of at least 75%.

3. Red list category 2: Species occurs in 1–12 grids, with a

decrease in grid frequency of 25–50%, or species occurs in 13–

40 grids, with a decrease in grid frequency of 50–75%, or the

species occurs in 41–225 grids, with a decrease in frequency of

at least 75%.

4. Red list category 3: the species occurs in 13–40 grids, with a

decrease of 25–50%, or the species occurs in 41–225 grids, with

a decrease of 25–75%.

5. Red list category 4: the species occurs in 1–60 grids, its

occurrence is more or less stable and the species is not under

immediate threat of becoming extinct.

All the species that fulfil one of the five above given criteria were

merged into the set of rare species, in total 190 species out of 973

species.

Statistical analysis
Means and standard errors for the ranges were calculated for

the rare species group and the common species groups. A two

sided student t-test was used to test for a difference between the

averages of both groups for each abiotic soil parameter. All

calculation, including the estimation of the spline functions were

done in GenStat version 15 [28].

To test the results we looked within the red list species in order

to establish whether ranges of species depend on the rarity of the

species. To this end the red list species were divided into four

pools: species that are not rare but made the list because of their

decline (a), species that are rare (r), species that are very rare (rr)

and species that are almost extinct (rrr, see Appendix S1, rarity is

also based on Meijden [27]). Note: these categories were used in

preference to the list above because the first list is a combination of

rarity and the trend of a species, while the list presented here only

is based on the rarity of the species and the effect of the latter is

investigated here. To test for differences between the pools we

simply ranked the average ranges of the four ‘rarity groups’ from

one till four per abiotic parameter and then calculated the average

ranking over the 23 abiotic parameters.

Results

Species responses
Species were only included in further analyses if ranges could be

estimated for a minimum of 20 abiotic parameters. Responses

were thus estimated for 973 species (783 common and 190 rare

species, for an example see Figure 2). The newly designed figures

give clearly the difference in ranges between the common species

Agrostis canina (brown bent) and the rare species Allium
oleraceum (field garlic) (Figure 2a versus 2b). The bars of the

spokes of the wheels of the species show that the ranges (bars) for

most of the abiotic parameters for A. oleraceum are narrower than
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for A. canina. 190 species fulfilled the red list criteria and were

identified as rare species, leaving 783 common species for

comparison.

Differences in ranges
For nineteen out of the twenty-three abiotic soil parameters that

were tested, the ranges for rare species were significantly narrower

than for common species. No significant difference was found for

the average highest and lowest groundwater table and for

magnesium and organic matter content of the soil. Most of the

differences in average range lay between 10 and 25% of the range

(calculated against the average range of the rare species), including

the important soil parameters pH, chloride ammonium concen-

tration, potassium concentration and mean spring groundwater

table. The biggest difference in range length is for nitrate

concentration; up to 44%. The length of the range of a species

may thus be an indicator for rare species.

Within the red list species, in general the rarer a species is, the

narrower its range is likely to be (Appendix S2). The difference

between the declining species ‘a’ and the rare species ‘r’ is narrow

and not significant, but ranges for the common declining species

‘a’ is slightly narrower. All other possible combinations show

statistically significant differences (Appendix S2). The difference

between rare species in the category ‘rr’ and ‘rrr’ is bigger than the

difference between ‘a’ and ‘r’. The species in the categories ‘rr’ and

‘rrr’ have, on average, clearly narrower ranges than both other

categories. The rarest species (‘rrr’) have on average the narrowest

ranges of all. In general, the rarer the species the narrower its

range.

Discussion

We clearly show that, on average, rare species have narrower

ranges than common species for the majority of the examined

abiotic soil parameters. None of the rare species showed

significantly larger ranges. Obviously, this difference has a major

impact on the species fundamental and realized niche and thus it

occurrence. A wider habitat preference gives a species an in

principle higher tolerance and therefore as well a higher resilience

compared to species with narrower habitat preferences. This will

be reflected in its spatial distribution, but also have an effect on the

occurrence of the species as a result of natural changes of abiotic

circumstances in time. The latter both within a season but also

between years, since for both abiotic circumstances may change.

Figure 1. Hypothetical response curve (p-spline) for a hypothetical abiotic parameter, defining the range used in this research.
doi:10.1371/journal.pone.0102674.g001
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Unfavourable circumstances during a part of the season or in some

years may cause that species with narrow habitat requirement

breadth cannot occur, whereas species with a wider habitat

requirement breath can. For the most part, these ranges do not

depend on the number of findings per species. The results

therefore indicate that rare species have narrower habitat

preferences for abiotic soil parameters than common species.

Spitale [29] also found that rare spring bryophytes species had

narrow habitat requirement breadth. Macandza et al. [30] found

that for three wild grazer species of the African savannah, the rare

sable antelope and the common buffalo and zebra, habitat

requirement breadth and resource availability played a role in the

difference in occurrence and consequently rarity of species. They

concluded that rare species may persist by specializing and

precisely selecting favourite patches to graze. Though these are

animals, the results are similar to our results for plant species.

This research has been carried out for single responses; the

interaction between abiotic parameters is not included, also due to

lack of data. It is often speculated that interaction exists on a major

scale [31]. Including interactions in relation to species responses

may give different results; e.g. for a single response a species may

have a wide range for soil pH but, for example, when phosphorus

content is low it may only be able to grow at intermediate pH

levels. How this will influence the results presented here is so far

unknown to us. The biggest difference between rare and common

species is present for nitrate concentration of the soil (44%). One of

the major pressures on the occurrence of plant species in the

Netherlands, but also in many other places in Europe, North

America and Asia is an excessive nitrogen deposition [32], [33].

Nitrogen deposition leads to higher nitrogen concentrations in the

soil and has all kinds of effects on plants [34]; some species benefit

more than others by e.g. outgrowing them. We believe that our

results indicate at least one of the reasons, why many rare species

are threatened in the Netherlands: they have narrow ranges for

nitrogen concentration and cannot cope with the input of

anthropogenic nitrogen. Nitrate concentration in the soil is a

result of release from biological processes (e.g. mineralisation and

nitrification) and uptake by plants and bacteria and denitrification.

This makes the nitrate concentration highly variable and thus

resulting in a relative high uncertainty in the relation between

plant species and their preferred nitrate concentration in the soil.

However, this applies for both groups examined here. Further-

more we try to minimize this uncertainty by collecting as much

data as possible, covering the whole growth season and under

different environmental conditions (e.g. temperature, moist

content of the soil, vegetation structure).

The occurrence of plant species depends on many factors, of

which dispersal [11], [12], habitat availability [13], [14], [15],

[16], grazing and vegetation management [16], [17] and abiotic

conditions (including climate)[12], [16], [17], [18], [19], [20] are

Figure 2. Abiotic ranges for Agrostis canina (brown bent, left) and Allium oleraceum (field garlic, right). The bar gives the range based on
the 5 and 95 percentile of the occurrence of the species. Each spoke of the wheel represents a different abiotic parameter. The values per parameter
are standardised with the minimum absolute value set to 0% and the maximum value set at 100%.The circles indicate the 0, 20th, 40th, 60th and 80th
percentile. The wheels make it possible to compare the ranges between the species. With: pH: pH in water extract, Ca: calcium in water extract, Mg:
magnesium in water extract, K: potassium in water extract, gvg: spring groundwater level, ghg: highest groundwater level, glg: lowest groundwater
level, vocht: moist content of the soil, C_N: C/N ratio, NH4: ammonium content in CaCl2 extract, NO3: nitrate content in CaCl2 extract, Ntot: total
nitrogen content, PO4: phosphate content, Ptot: total phosphor content and Cl: chloride content.
doi:10.1371/journal.pone.0102674.g002
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among the most important. It is known that some rare species

besides narrow niches (as is shown here) also have poor dispersal

capacity [11], [12]. However, how big the importance of the above

mentioned factors is on the species occurrence remains unknown.

This can probably only be established after a multivariate analyses

applied on a database not only containing abiotic measurements

but also information on the dispersal capacity of the species, the

reaction of the species towards management and grazing. It may

be clear however that the results presented here give a strong

signal that abiotic habitat widths of rare species are of importance

explaining their occurrence.

The results obtained here are relevant to the recent past and

circumstances in relation to present climate. Changes in climate

may give changes in species preferences and ranges, also due to

interactions in relation to abiotic soil parameters, which are not

included in the analyses. In principle it is possible that some rare

species may benefit from climate change and thus become less

rare; other species with broader ranges may become rare.

However, in general we postulate that species with narrow abiotic

preferences are likely to suffer more from changes in environ-

mental circumstances than species with broad habitat require-

ments, because new (favourable) circumstances may be out of the

current range of the rare species. In such situations resilience of

species will be less and they will therefore have more difficulty in

reacting to temporary or permanent changes.

The results have major implications in relation to management

and nature development. They indicate that, in order to preserve

rare species, management has to be focussed on the maintenance

and creation of habitats fulfilling the specific requirements of rare

species, both in space and time. An example of this may be the

way excessive nitrogen has been mitigated in heathlands in the

Netherlands. In the past sod cutting took place on a large scale,

removing narrow scale differences in (for example) altitude,

vegetation, light and moisture. This led to low (poor) nutrient

levels, but also removed narrow scale variation from the fields,

where common heather (Calluna vulgaris) recovered, but many

other species did not. It is particularly important for ecosystem

functioning [35] and ecosystem resilience [36] to conserve (abiotic)

gradients within ecosystems. It will be easier to reach tipping

points for rare species than for common species, making them

more vulnerable to changes and as a consequence to local

extinction.

Supporting Information

Appendix S1 Ranges per species for 23 abiotic soil
parameters including rarity of the species, with c:
common species but on the red list due to the trend, r:
rare species and on the red list, rr: very rare species and
on the red list and rrr: almost extinct and on the red list.

(XLSX)

Appendix S2 Average range of the red list species per
rarity category and the ranking (1–4) of the category per
abiotic factor including the overall averages of the
abiotic parameters for the ranking.

(XLSX)
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