
Mouse gut microbiomics of Mouse gut microbiomics of Mouse gut microbiomics of Mouse gut microbiomics of 
short chain fatty acid short chain fatty acid short chain fatty acid short chain fatty acid 

metabolism and mucosal metabolism and mucosal metabolism and mucosal metabolism and mucosal 
responsesresponsesresponsesresponses    

    

    

Floor Hugenholtz 
 

 

 

 

 

    

    

     



 

 

 

 

 

 

 

 

 

 

Thesis committeeThesis committeeThesis committeeThesis committee    

PromotorsPromotorsPromotorsPromotors    
Prof. Dr H. Smidt 
Personal chair in the Laboratory of Microbiology 
Wageningen University 
 
Prof. Dr M. Kleerebezem 
Personal chair in the Host Microbe Interactomics Group 
Wageningen University 

Other membersOther membersOther membersOther members    
Prof. Dr E. Smid, Wageningen University 
Dr J. Doré, National Institute for Agricultural Research, INRA, France 
Prof. Dr D.J. Reijngoud, University of Groningen 
Dr D Bosscher, Cargill, the Netherlands 
 
This research was conducted under the auspices of the Graduate School VLAG 
(Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health 
Sciences).   



 

MousMousMousMouse gut microbiomics of e gut microbiomics of e gut microbiomics of e gut microbiomics of 
short chain fatty acid short chain fatty acid short chain fatty acid short chain fatty acid 

metabolism and mucosal metabolism and mucosal metabolism and mucosal metabolism and mucosal 
responsesresponsesresponsesresponses    

    

    

Floor Hugenholtz 
 

 

 

 

 

 

 

ThesisThesisThesisThesis    
submitted in fulfillment of the requirement for the degree of doctor  

at Wageningen University 
by the authority of the Rector Magnificus 

Prof Dr M.J. Kropff, 
in the presence of the 

Thesis Committee appointed by the Academic Board 
to be defended in public 

on Friday 23 January 2015 
at 13.30 p.m. in the Aula.  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Floor Hugenholtz 
Mouse gut microbiomics of short chain fatty acid metabolism and mucosal 
responses, 208 pages 
 
PhD thesis, Wageningen University, Wageningen, NL (2015) 
With references, with summaries in Dutch and English 
 
ISBN 978-94-6257-179-2  



 

SummarySummarySummarySummary    
The microbiota of the gastrointestinal (GI) tract plays a key role in the digestion of 
our food. The human gut microbiota can be studied using in vitro and animal models. 
In this thesis the mouse model is used to study the microbiota interaction with the 
diet and the host in different regions along the GI tract. These interacting microbes 
in the GI tract of humans and other mammals yield a wide range of metabolites, 
among which the short chain fatty acids (SCFA), in particular butyrate, acetate, and 
propionate, are the most abundant products of carbohydrate fermentation. 
Fermentable carbohydrates can modify the composition of the gut microbiota and 
change the SCFA concentrations in the gut. Opportunities for increasing specific 
SCFA by targeting their producers with carbohydrates are discussed. Five different 
fibres – resistant starch, inulin, fructooligosaccharides, arabinoxylan and guar gum – 
are tested for their modification of the mucosal tissue transcriptome, luminal 
microbiota composition and SCFA concentrations in the murine colon. The fibres 
inulin, fructooligosaccharides, arabinoxylan and guar gum led to increased SCFA 
concentrations and induced similar changes in relative abundance of microbial 
groups as determined by the MITChip, a phylogenetic microarray targeting the 16S 
ribosomal RNA of mouse intestinal microorganisms. Furthermore, these four fibres 
induced regulation of overlapping sets of genes in the mouse intestinal mucosa, 
where the transcription factor PPARγ was predicted to be a prominent upstream 
regulator of these processes. Multivariate data integration revealed strong 
correlations between the expression of genes involved in energy metabolism and 
the relative abundance of bacteria belonging to Clostridium cluster XIVa. Similar 
analyses were done for the caeca of the same mice, and were complemented with 
metatransciptome analyses. To comprehensively analyse RNAseq data of complex 
natural microbial communities, a de novo metatranscriptome assembly pipeline was 
developed and applied to unravel the activity profiles of the microbiota residing in the 
mouse cecum. This revealed distinct contributions of bacterial families to the 
fermentation of fibres into SCFA, involving the Bifidobacteriaceae, Lachnospiraceae, 
Clostridiaceae, Bacteroidaceae, Erysipelotrichaceae and Ruminococcaceae in 
some or all stages of the overall fibre fermentation activity. All families expressed 
genes encoding enzymes involved in the production of SCFA in different ratios. 
Specifically, butyrate producing bacteria correlated with a set of host genes involved 
in processes such as energy metabolism, transcriptional regulation and the mucosal 
immune system. 
In addition to complex carbohydrates, amino acids derived from dietary proteins can 
also serve as substrates for SCFA formation, leading to expansion of the 
fermentation end-product palet by including branched-SCFA. The long-term effects 
of high protein-diets on microbial community composition and activity were analysed. 
The caecal microbiota composition was changed by the high dietary protein. Most of 
the gene functions detected by metatranscriptomics in these caecal samples were 
assigned to the Lachnospiraceae, Erysipelotrichaceae and Clostridiaceae. High 
protein diets induced a decrease of Lachnospiraceae activity, but stimulated the 



 

activity of the Erysipelotrichaceae, while the Clostridiaceae appeared to express the 
broadest range of amino acid metabolism associated pathways.  
In conclusion, this thesis describes dietary interventions to modulate the mouse 
intestinal microbiota and mucosa. The data provides expansion of the knowledge on 
interactions between the diet, microbiota and host. This information can be used to 
optimize the design and validation on dietary intervention studies in humans.  
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General iGeneral iGeneral iGeneral introductionntroductionntroductionntroduction    
The food we consume every day is largely digested by ourselves, though still an 
undigested fraction ends up in the large intestine, and comprises mainly of dietary 
fibres, dietary proteins and host derived products such as mucus (Macfarlane et al. 
1988, Cummings and Macfarlane 1997, Tasse et al. 2010, Flint et al. 2012a). These 
components can, to a large extend, be fermented in the large intestine by the gut 
microbiota. Human individuals can harbor over 150 different microbial species in 
their gut, which collectively encode more than 100-fold more non-redundant genes 
than there are in the human genome (Backhed et al. 2005, Ley et al. 2006, Qin et al. 
2010).  
Not only humans have microbiota in their gastrointestinal (GI) tract, they are also 
found in the intestine of all other mammalian species that each harbours a distinct 
microbial composition (Ley et al. 2008a), and based on their microbial community 
and diet, carnivores, omnivores and herbivores can be grouped separately. These 
groups can be distinguished by increasing microbiota diversity, respectively, which 
probably reflects the larger diversity of plant derived carbohydrates in the diet of 
herbivores that stimulates a larger diversity in the microbiota. The differences in 
composition and diversity of GI tract microbiota in these animal groups indicate that 
diet and host collaboratively mediate the bacterial composition (Ley et al. 2008a, Ley 
et al. 2008b, Van den Bogert 2011), and underline the importance of the GI tract 
microbiota in degrading non-digestible plant polysaccharides. These 
polysaccharides are converted by the bacteria into predominantly short chain fatty 
acids (SCFA), which the host uses to a large extent as energy source. In herbivores, 
the SCFA can provide up to 85% of the total energy intake of the animal, whereas in 
omnivores, especially humans, the fermentation of non-digestible polysaccharides 
is estimated to contribute only up to 10% of the total energy recovery from the diet 
(McNeil 1984). The energy of the SCFA is the main energy source of the intestinal 
epithelium in mammals (Cummings 1981, Cummings et al. 1987, Bloemen et al. 
2009, Louis and Flint 2009, Flint et al. 2012b).  
The health of the host can be significantly modulated by the different intestinal SCFA, 
which will be further described in Chapter 3Chapter 3Chapter 3Chapter 3.... 

Microbial ecology of the GI tractMicrobial ecology of the GI tractMicrobial ecology of the GI tractMicrobial ecology of the GI tract    
The GI tract microbiota can be defined as a microbial community, since there are a 
collection of organisms co-occurring in the same habitat – the GI tract. This 
community is not purely composed of bacteria, but also includes archaea and 
eukaryote microbes (Scanlan and Marchesi 2008, Rajilic-Stojanovic and de Vos 
2014). Archaea are more important in some mammals then in others. For instance 
in the cow-rumen they represent a relatively large fraction of the overall microbiota 
community, whereas in monogastrics such as humans they are only present at low 
abundance. The main role of these Archaea in the intestinal ecosystem relates to 
their capacity to produce methane from hydrogen and carbon dioxide and in case of 
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acetoclastic methanogens also from acetate. The eukaryotic microorganisms in the 
GI tract include mostly anaerobic fungi, yeast and Blastocystis – a single-celled 
eukaryote (Scanlan and Marchesi 2008, Scanlan et al. 2014), of which the specific 
role in the GI ecosystem still needs to be further investigated.  
The collective of microbes in our intestine is referred to as the GI tract microbiota, of 
which in this thesis only the bacterial fraction is studied. These bacteria all live 
together in the intestinal habitat, where they are sometimes classified by their 
functional role in the ecosystem – fibre degraders, cross-feeders and mucus 
degrading bacteria. The intestinal habitat encompasses multiple micro-habitats and 
bacteria can be mucus associated, free-living in the intestinal lumen, and/or dietary 
fibre associated. The differences of the communities along the GI tract are described 
in Chapter 2Chapter 2Chapter 2Chapter 2. 

Analytical methods to study the GI tract microbiotaAnalytical methods to study the GI tract microbiotaAnalytical methods to study the GI tract microbiotaAnalytical methods to study the GI tract microbiota    
Woese and Fox suggested in 1977 to use the 16S ribosomal RNA (rRNA) molecule 
as a molecular marker for the determination of the phylogenetic classification of the 
prokaryotes (Woese and Fox 1977). They also proposed that prokaryotes should not 
be classified into a single domain, but should be divided into two domains of life: the 
Bacteria and Achaea. The 16S rRNA appeared to be an ideal molecule to use as a 
phylogenetic marker, for several reasons; i) it has an essential function within the 
ribosome, therefore all bacteria and archaea encode it; ii) it is large enough to carry 
the amount of phylogenetic information necessary to distinguish one species from 
the other; iii) it has conserved and highly variable sequence elements due to the 
structure and catalytic function of the molecule; iv) it is not exchanged via lateral 
gene transfer. The use of this single genetic marker has revolutionized microbial 
ecology (Tringe and Hugenholtz 2008, Pace et al. 2012), since it is relatively easy to 
amplify the 16S rRNA encoding genes from environmental DNA. Nowadays, with 
next-generation sequencing techniques many microbial environments can be 
studied in depth, using relatively straightforward procedures.  
The microbiota composition in the GI tract has also been studied extensively by using 
16S rRNA gene targeted approaches. A variety of such techniques is currently 
employed to study microbial ecosystem composition: Denaturing Gradient Gel 
Electrophoresis (DGGE), Cloning & Sanger sequencing, Terminal Restriction 
Fragment Length Polymorphism (T-RFLP; (Prakash et al. 2014), FISH, quantitative 
PCR (qPCR), and phylogenetic microarrays (Deng et al. 2008, Rajilic-Stojanovic et 
al. 2009). The last two techniques have been employed in this thesis and are briefly 
described. qPCR is a quantitative method used in intestinal microbiota studies either 
to determine the microbiota community density in a sample or to quantify the 
abundance of a specific bacterial group or gene within the ecosystem. In this thesis 
microbiota composition in the GI tract was analysed using a phylogenetic microarray 
technology that has been developed at the Laboratory of Microbiology of the 
Wageningen University. These DNA oligonucleotide microarrays target the V1 and 
V6 variable regions within the 16S rRNA gene sequences of the intestinal microbiota, 
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allowing the comprehensive profiling of intestinal microbiota composition (Rajilic-
Stojanovic et al. 2009). In addition to the prototype, the HITChip (Human Intestinal 
Tract Chip), a platform specific for murine intestinal microbiota has been developed 
and validated (MITChip) (Geurts et al. 2011a, IJssennagger et al. 2012, Reikvam et 
al. 2012, El Aidy et al. 2013a, El Aidy et al. 2013b, Everard et al. 2013). 
 

Table 1.1 Overview of information output from the different omics-technologies. 
 
To address not only microbiota composition, but rather focus on the metabolic 
potential and actual activity of the intestinal microbiota, we also applied meta-
transcriptomic and meta-bolomic analyses. These two methodologies belong to the 
‘meta-omic’ approaches that have emerged during the last decade and are now 
widely used (Zoetendal et al. 2006, Qin et al. 2010, Van den Bogert 2011, Zoetendal 
et al. 2012, Fritz et al. 2013). Each of the ‘meta-omic’ approaches provides different 
information about the functional potential or activity profiles of a microbial community 
(Table 1.1). Metagenomics is used to determine the members present in a microbial 
community as well as their functional capacity. Metagenomics was used in the Meta 
HIT consortium and provided a human microbiome-derived gene catalogue with over 
3 million genes, indicating a community of over 150 species in an individual and a 
100-fold larger non-redundant gene set compared to the human genome (Qin et al. 
2010). Metatranscriptomics and metaproteomics are able to provide information 
about the functions that are expressed by the members of the community. For 
instance, metaproteomics analysis in rats revealed differential protein patterns in 
microbiota samples derived from different intestinal locations, indicating aerobic 
microbial metabolism within the microbiota residing in the mucus layer and anaerobic 
microbial metabolism in the microbiota derived from the intestinal lumen (Haange et 
al. 2012). Metabolomic approaches are used to detect and quantify the metabolites 
that are produced by the microbial community. This approach has been suggested 
to be applicable as a diagnostic tool in diseases that involve aberrations of the 
intestinal microbiota composition and activity (De Preter and Verbeke 2013). In this 

InformationInformationInformationInformation    
aboutaboutaboutabout::::    

MetaMetaMetaMeta----
genomegenomegenomegenome    

MetaMetaMetaMeta----
transcriptometranscriptometranscriptometranscriptome    

MetaMetaMetaMeta----
proteomeproteomeproteomeproteome    

MetaMetaMetaMeta----
bolomebolomebolomebolome    

Taxonomy     

Functional 
capacity 

    

Expressed 
functions 

    

Metabolic 
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thesis only narrow spectrum metabolomics were used, focussing on the SCFA as 
the predominant end products of fibre and protein fermentation. 

In this thesis metatranscriptomic approaches were used (Chapter 6 Chapter 6 Chapter 6 Chapter 6 and 7777). This 
method covers the analysis of the transcriptome – i.e. all the genes that are 
expressed by a microbial community such as the intestinal microbiota. For this 
analysis bacterial RNA needs to be isolated from environmental samples, i.e., 
intestinal content (Zoetendal et al. 2006, Zoetendal et al. 2012, Leimena et al. 2013). 
Notably, total bacterial RNA commonly consists for more than 95% of rRNA (and 
tRNA) and encompasses less than 5% of messenger RNA (mRNA), which can 
provide information about the transcription of protein encoding genes. To enlarge 
the relative fraction of mRNA for metatranscriptome sequencing, enrichment of 
mRNA can be performed by the selective removal of rRNA, using kits that are relying 
on oligonucleotide probes that are complementary to the highly conserved rRNA 
regions allowing post-hybridization removal of the probe-rRNA complexes from the 
sample. The mRNA enriched RNA sample is subsequently converted to double-
strand cDNA, which can be subjected to next generation sequencing (Figure 1.1) 
(Leimena et al. 2013).  
Metatranscriptome analysis in the GI tract microbiota enables the elucidation of the 
specific functional roles microbes have in this complex community. Although initial 
studies on the human large intestine revealed that different functions are expressed 

 

 

 

 mRNA enrichment 

cDNA synthesis 

Illumina sequencing  

Bacterial RNABacterial RNABacterial RNABacterial RNA Figure 1.1 Preparation of RNA 
samples for meta-transcriptome 
sequencing. Bacterial RNA is enriched 
for messenger RNA (mRNA) and then 
synthesized into cDNA before the 
Illumina sequencing. 
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among individuals, core functions of the microbiota appeared to be consistently 
expressed in different individuals (Gosalbes et al. 2011, Franzosa et al. 2014). 
Moreover metatranscriptome analyses of small intestinal microbiota underpinned the 
cross-feeding between two dominant members of the small intestinal microbiota, i.e., 
Streptococcus spp. and Veillonella spp., where the lactate produced by 
Streptococcus spp. is used as carbon and energy source by the Veillonella spp. 
(Zoetendal et al. 2012). Metatranscriptome analysis of the microbiota in humanized 
mice revealed that mice colonized with the microbiota obtained from a lean human 
donor displayed higher expression of genes involved in polysaccharide breakdown 
in propionate and butyrate production as compared to those colonized with the 
microbiota of an obese human donor (Ridaura et al. 2013). These findings imply that 
metatranscriptomics can provide insight in the differential activity profiles in the 
intestine microbiota, and enables the reconstruction of the metabolic activity profile 
of microbial communities.  

Dataset integration approachesDataset integration approachesDataset integration approachesDataset integration approaches    
The multivariate meta-omics datasets need tools to simplify the datasets and focus 
on correlations between points of interest, like dietary interventions to the bacterial 
community or the bacterial community to host responses. Multivariate statistics are 
used to handle these large datasets and enables quick focus on data of importance 
(Martin et al. 2008b, Martins dos Santos et al. 2010, ter Braak and P 2012). The 
CANOCO 5.0, a tool for multivariate analysis of ecological data, is using ordination 
methods to analyse communities. Ordination methods are assuming a continue 
change in the community composition and therefore ‘order’ species along a gradient 
(ter Braak 1987). Moreover CANOCO 5.0 enables visually summarising the 
community patterns with the external variables, such as dietary interventions and or 
SCFA concentrations. However to determine the effect of these external variables in 
the microbial community, constrained ordination methods, like Redundancy analysis, 
can be used to statistically test the impact of a variable on the overall variation in the 
dataset, which is used in Chapter 4, 6Chapter 4, 6Chapter 4, 6Chapter 4, 6 and 7777.  
As mentioned earlier the microbiota also interacts with the host. The responses in 
the host are in this thesis measured in the mucosal cell layer. Intestinal tissues are 
scraped to obtain the mucosal cell layer, of which the RNA is extracted 
(IJssennagger et al. 2012). The RNA can be used to do real-time PCR or microarray 
analysis to find responses of the host to the microbes or diet. To address microbe-
host interactions, the CRAN R ‘mixOmics’ library (Le Cao et al. 2009) can be used 
to first calculate the correlation of two heterogeneous datasets, like microbial 
composition and host mucosal transcriptome measured in the same samples, and 
then to visualize these correlations via heatmaps. Additionally the biological 
interpretation can be added allowing to generate hypotheses and models regarding 
the biology and corresponding mechanisms underlying interactions between the 
microbiota and the host.  
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The project, aimsThe project, aimsThe project, aimsThe project, aims    and outlineand outlineand outlineand outline    
The interplay between the formation of SCFA, the composition and function of the 
microbiota, and the functioning of the host has not been evaluated in vivo, and so far 
only community metabolic networks of the microbiota in in vitro models have been 
generated (Kovatcheva-Datchary et al. 2009, den Besten et al. 2013). In a 
collaborative project between TI Food & Nutrition and the Netherlands Centre for 
Systems Biology (NCSB) we studied the SCFAs metabolism of the intestinal 
microbiota, and evaluated the potential of these microbiome metabolites to modulate 
the activity in the host’s intestinal mucosa and liver, aiming to reconstruct a metabolic 
and host-microbe interaction framework using systems biology approaches, 
focussing on short chain fatty acids. The overall project encompassed 4 work 
packages (WP) (Figure 1.2): 

1. Population dynamics of intestinal microbiota in relation to exogenous and 
endogenous factors 

2. Quantification of metabolic activities of the gut microbiota 
3. Molecular analysis of host responses, in intestinal mucosa and liver  
4. Communication model construction for SCFA-host interaction, comparing 

the mouse and pig models with human  

 

Figure 1.2 Work package overview of the TIFN-NCSB project. 
 
This thesis predominantly encompasses work from WP1, and WP2, and also reports 
on collaborative efforts with WP3. The aim of the research described in this thesis is 
to unravel protein and fibre fermentation by the gut microbiota and the corresponding 
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host responses. Protein and fibre dietary interventions in mice were employed to 
decipher the metabolic profile changes they elicit in the murine gut microbiota, in 
correlation with SCFA production and the host responses in the mouse intestine.  
In the review provided in Chapter 2Chapter 2Chapter 2Chapter 2, an overview is given on human gut microbiota 
and using in vitro and animal models to study the human gut microbiota. Focus is 
given to the study of the different regions along the GI tract and the use of rodent 
and pig models that enable more invasive studies to obtain samples that allow the 
analyses of the microbiota residing in the more inaccessible regions of the GI tract. 
The modulation of the gut microbiota by fermentable carbohydrates is reviewed in 
Chapter 3Chapter 3Chapter 3Chapter 3. Such dietary modulations change the microbiota activity profiles, leading 
to altered SCFA concentrations in the gut. Focus is given to the opportunities to 
increase the in situ concentration of specific short chain fatty acids by targeting their 
microbial producers with specific carbohydrate nutrients.  
The impact of five different dietary fibres on the mucosal transcriptome, the luminal 
microbiota composition and SCFA concentrations in the murine colon was studied 
in Chapter 4Chapter 4Chapter 4Chapter 4. Mucosal gene expression profiling revealed the regulation of fibre-
specific, as well as overlapping transcriptional responses in colonic epithelial cells, 
which appeared to involve transcription factor PPARγ as a prominent upstream 
regulator of these transcriptional changes. Microbiota composition profiles could 
discriminate between the different dietary fibre interventions, although the 
interventions employing inulin, fructooligosaccharides, arabinoxylan and guar gum 
induced common changes in the abundance of several microbial groups. Multivariate 
data integration revealed strong correlations between the expression of genes 
involved in energy metabolism in the mucosa, with the relative abundance of bacteria 
belonging to the group of Clostridium cluster XIVa that includes several known 
butyrate producing bacteria. 
To facilitate effective murine microbiota metatranscriptome RNAseq data processing 
and interpretation, a generic de novo assembly pipeline for such data was developed 
in Chapter 5Chapter 5Chapter 5Chapter 5. Notably, the pipeline developed is principally applicable for any    
(complex) microbial community, independent of its composition or the niche it was 
derived from. Functional-mapping of the caecal mouse microbiota 
metatranscriptome provided insight in global, and family-specific activity and 
underpins the potential of this approach to unravel interactions and task division in 
microbial ecosystems. 
The microbiota metatranscriptome activity profiles in the caecum of the mice 
subjected to the dietary interventions using the different fibres described in Chapter Chapter Chapter Chapter 
4444 were studied in Chapter 6Chapter 6Chapter 6Chapter 6. This chapter complements the microbiota composition 
analyses with metatranscriptome analysis of the transcriptional activity of the 
microbial community, as well as caecal mucosa transcriptome analysis in the host, 
and steady-state SCFA levels in the caecal lumen. The obtained datasets were 
independently analysed as well as integrated by multivariate statistical analyses. 
These analyses revealed distinct activity profiles of specific bacterial families that 
were associated to the fermentation of the dietary fibres provided in the mouse diet, 
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and their role in SCFA production. We could distinguish three categories of bacteria, 
(i) the Bacteroidaceae, the Porphyromonadaceae and the Verrucomicrobiaceae that 
expressed genes coding for glycosidases, but hardly sugar transporters; (ii) 
Bifidobacteriaceae, Lachnospiraceae, Erysipelotrichaceae and Clostridiaceae 
expressed both glycosidase- and sugar transporter-encoding genes; (iii) 
Eubacteriaceae, several Bacilli families and the Ruminococcaceae hardly expressed 
genes encoding glycosidases, but did express those coding for sugar transporters.  
All these families expressed genes encoding enzymes involved in the production of 
short chain fatty acids, albeit in significantly different ratios. Furthermore, the relative 
abundance of bacterial groups involved in butyrate production correlated with 
transcriptional changes in the host’s mucosa that were associated with processes 
such as energy metabolism, transcriptional regulation and immune system. 
The long-term effects of high protein- and/or high-fat diets on the caecal microbiota 
composition and activity were studied in Chapter 7Chapter 7Chapter 7Chapter 7. Determinations of the microbiota 
composition using phylogenetic microarray (MITChip) technology were 
complemented with metatranscriptome analyses to unravel microbial activity 
profiles, and the steady-state caecal concentrations of (branched chain) SCFA. The 
metatranscriptome data revealed predominant nitrogen metabolism activity in the 
Lachnospiraceae, Erysipelotrichaceae and Clostridiaceae bacterial families, 
irrespective of the diet provided to the mice. The relative activity of 
Erysipelotrichaceae was increased in mice consuming the high protein diets, 
apparently at the expense of the relative activity of the Lachnospiraceae that was 
suppressed in the caeca of mice that were fed the high-protein diets. Notably, the 
relative activity of the Clostridiaceae appeared relatively insensitive to the dietary 
modulations, and this bacterial family expressed the broadest range of amino acid 
metabolism associated pathways.  
The final chapter of this thesis, Chapter 8Chapter 8Chapter 8Chapter 8, provides a summary of the results 
presented in this thesis, including by a general discussion of the impact of these 
studies. This chapter also includes recent data, obtained in a follow-up experiment 
of Chapter 4Chapter 4Chapter 4Chapter 4 and 6666, in which intestinal specific PPARγ knock-out mice were 
subjected to a dietary intervention using inulin. Chapter 8 concludes with a 
discussion and future directions of research in this field, aiming to expand our 
knowledge on interactions between the diet, microbiota and the host.  
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IntroductionIntroductionIntroductionIntroduction    
From birth onwards the gastrointestinal (GI) tract of humans and animals is colonized 
by microorganisms that constitute a community or ecosystem known as the 
microbiota. These microorganisms, predominantly from the bacterial kingdom, but 
also including archaea and eukaryotes such as fungi and protozoa, can reach a 
diversity of at least 160 species per individual, and over 1150 different species were 
detected in the human gut (Rajilic-Stojanovic et al. 2007, Qin et al. 2010, Faith et al. 
2013). This complex ecosystem increases in numbers throughout the length of the 
GI tract, from 10 to 1000 cells per ml in the stomach, reaching a density of 1011 cells 
per gram of intestinal content (Booijink et al. 2007, Walter and Ley 2011) in the large 
intestine.  All three domains of life are present in the large intestine where the 
bacterial community is dominant as well as the most phylogenetically diverse. At 
least nine different bacterial phyla have been detected in the large intestine, among 
which the phyla Bacteroidetes and Firmicutes dominate (Backhed et al. 2005, Rajilic-
Stojanovic et al. 2007, Lozupone et al. 2012b). So far, only a minority of the bacteria 
in the gut have been cultured. Nonetheless molecular techniques that have emerged 
over the last two decades provided the opportunity to understand this complex GI 
tract ecosystem much better (Rajilic-Stojanovic et al. 2007, Van den Bogert 2011, 
van den Bogert et al. 2011, Fraher et al. 2012). The microbial ecosystem differs in 
the anatomically distinct regions in the intestinal tract, which has been reviewed 
elsewhere (Booijink et al. 2007).  
The composition of the intestinal microbiota is driven by external factors such as 
habitual diet, antibiotic therapy and maternal microbiota, and intrinsic factors such 
as host species and genotype (Hoskins and Boulding 1976, Thompson-Chagoyán 
et al. 2007, Martin et al. 2008a, Claesson et al. 2012, Lozupone et al. 2012a, 
Makivuokko et al. 2012). Since the intestinal tract is the main point of contact of the 
host immune system and microorganisms, the role of microbiota in both local and 
systemic immune function plays an important role in immunity and health (Round 
and Mazmanian 2009).  

Locations and their conditions along the GI tractLocations and their conditions along the GI tractLocations and their conditions along the GI tractLocations and their conditions along the GI tract    
pH, transit time and microbial density are just a few of the many factors that are 
changing along the GI-tract. These differences need to be considered during 
experiments. 

Oral Oral Oral Oral cavitycavitycavitycavity    
When food is chewed in the mouth, it will be broken into pieces, moisturized and 
mixed with digestive enzymes – amylases and lipases – from the salivary glands of 
the host (Walter and Ley 2011). The most common bacteria found in the mouth are 
species of the genera Gemella, Granalucatella, Streptococcus and Veillonella (Aas 
et al. 2005, Walter and Ley 2011). Furthermore, additional niches exist in the oral 
cavity, such as supra- and subgingival plaque, which are densely populated by a 
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large number of different microorganisms, the diversity of which can be similar to 
that of the intestinal tract (Kolenbrander 2000, Smoot et al. 2005). 

StomachStomachStomachStomach    
The low pH of 1-2 in the stomach is too acidic for most microorganisms to survive. 
Until 30 years ago, it was considered to be a barrier for microorganisms, especially 
pathogens, to enter the body and survive (Savage 1977, Bik et al. 2006). However, 
in 1984, Barry Marshall and Robin Warren isolated a gastric bacterium, which was 
thought to be linked to gastritis. Later on this bacterium was named Helicobacter 
pylori and is now known to be present in 50% of human beings, whereas only a 
minority shows gastritis (Leser and Molbak 2009). Besides the understanding of H. 
pylori’s survival and maintenance in the stomach, not much is known about other 
species that dwell in the stomach. Bik et al. (Bik et al. 2006) found 128 phylotypes 
from 8 bacterial phyla present in the stomach. This diversity was much higher than 
expected thus far. Moreover, 50% of the phylotypes were assigned to uncultivated 
bacteria, and of these 67% were described earlier as bacteria from the mouth. 
Nevertheless, it remains a question whether these bacteria dwell in the stomach and 
whether they have adapted to different environments – mouth and stomach. To 
collect gastric fluid or mucosal tissue, a nasogastric or orogastric catheter can be 
used, which enters via the nose or mouth, respectively, and passes the oesophagus 
to enter the stomach. 

Small IntestineSmall IntestineSmall IntestineSmall Intestine    
The small intestine is considered the first region of the gastrointestinal tract where 
food meets microbiota. It can be subdivided into the duodenum, jejunum and ileum. 
This region of the GI tract is hard to access compared to the mouth and large 
intestine and therefore less well studied. The small intestine can be sampled (like 
the stomach) by using an intraluminal nasogastric or orogastric catheter,  that passes 
the stomach and part of the small intestine depending on the region where the 
sampling will occur by peristalsis (van den Bogert et al. 2011, Zoetendal et al. 2012, 
van den Bogert et al. 2013). The location can be determined using short-interval 
fluoroscopic control and calculating the distance from the pylorus to the tip (Fraher 
et al. 2012, Zoetendal et al. 2012). This method provides an indication of which 
region the catheter is situated. However, due to considerable differences in the 
length of the small intestine in different individuals, the precise location cannot be 
determined. As an alternative, ileostomy subjects provide easier access to small 
intestinal content, and recently allowed detailed insight into structure and function of 
small intestinal bacterial communities (Booijink et al. 2010, van den Bogert et al. 
2011, Zoetendal et al. 2012). These individuals have their colon removed, and the 
end of the ileum is surgically attached to an abdominal stoma. Despite not having a 
colon, ileostomized individuals can have a healthy life, and it could be shown by 
above-mentioned studies that they provide a suitable in vivo model system that 
enables analysis of the proximal small intestinal microbiota, rather than the ileum.  
The diversity in the small intestine is higher than in the stomach, but smaller than 
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that found in the large intestine. The proximal small intestine is enriched with 
Clostridium spp., Streptococcus spp. and Veillonella spp. (van den Bogert et al. 
2013). In turn, the ileum shows a community dominated by Bacteroidetes and 
Clostridium cluster XIVa and is more similar to the ecosystem of the large intestine 
(Booijink et al. 2010, van den Bogert et al. 2011, Zoetendal et al. 2012).  
In addition to the possibilities outlined above, autonomous, ingestible intestinal 
sampling devices are being developed (e.g. http://www.micropharma.net), which 
would allow direct and programmed sampling of luminal as well as mucosal samples 
from predefined locations along the entire GI tract. 

Large intestineLarge intestineLarge intestineLarge intestine    
The large intestine can be subdivided into subparts: cecum, proximal, transversal 
and distal colon (Booijink et al. 2007). This region is densely populated by microbiota, 
the number of which can exceed 1011 cells per gram content. The diversity is large 
and reaches up to 160 bacterial species per individual (Qin et al. 2010), of which 
90% belong to the Bacteroidetes and the Firmicutes (Ley et al. 2005). 
The transit time of the intestinal content through the large intestine is much longer 
than in the other regions of the intestinal tract. Here the more complex food 
ingredients remain at the end of the GI tract as the sole energy source for the 
microbiota. Undigested carbohydrates and some fraction of proteins are converted 
into a broad range of metabolites, of which short chain fatty acids (SCFA), including 
acetate, propionate and butyrate, are the most abundant. In turn, these metabolites 
are used by the host as an energy source. This area of the GI tract is almost entirely 
anaerobic, and many bacteria that inhabit this part of the intestine are (obligate) 
anaerobic bacteria. 
To study the large intestine, usually fresh faeces are collected and analysed. 
However, the microbial community of faeces is quite different from that residing in 
the proximal large intestine (Jeffery et al. 2012). This part still contains a lot of 
substrate for microbial growth, concentrations of which decrease towards the distal 
colon. Additionally, the obligate anaerobic species are much less prevalent in faeces 
than in the proximal large intestine (Jeffery et al. 2012). To obtain samples from the 
large intestine colonoscopy can be used. However, to actually enter with a 
colonscope into the colon, patients need to take sedatives and be sober in the last 
hours. More importantly, in case colonoscopy is performed with prior bowel 
cleansing, the obtained picture on the remaining microbiota will be affected, although 
it should be noted that it has recently been shown that colonoscopy doesn’t have a 
lasting effect on faecal microbiota composition (O’Brien et al. 2013). Another option 
is to perform surgery on the patients in the large intestine; a more in depth review on 
sampling the large intestine is provided by Ouwehand & Vaughan (Kerckhoffs et al. 
2006). Ingestible sampling devices such as those mentioned above might provide 
new possibilities also for undisturbed assessment of the proximal colon. 
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Models of the gutModels of the gutModels of the gutModels of the gut    
As described in the previous section, studying the different locations along the GI 
tract currently requires rather invasive sampling methods. However invasive 
sampling from large numbers of healthy individuals is not feasible for practical and 
ethical reasons. In vitro and animal models provide an easier way to collect many 
(invasive) samples, have multiple comparisons and regulating the genotype 
background. 

In vitroIn vitroIn vitroIn vitro    modelsmodelsmodelsmodels    
Solutions to the challenges explained above for in vivo studies can be the use of in 
vitro models, where a broad range of parameters can thus be measured during 
microbial fermentation. The in vitro models used to study the gut microbiota can be 
classified in batch fermentation models, continuous culture models and the TNO 
Intestinal Models (TIMs). The set-up and application of these different types of 
models has been extensively reviewed (Mäkivuokko and Nurminen 2006, Ridaura et 
al. 2013). In vitro models are usually inoculated with faecal samples. The faecal 
sample of an individual can be used in multiple comparisons at the same time, taking 
care that the different comparisons in the model are all originating from the same 
individual with the same genotype. By replicating particular conditions found in 
localized regions of the intestine, the gut microbiota in these models usually shifts to 
a microbial community more comparable to the corresponding intestinal region, 
validating to an extent the biological representativeness and value of the model. 
In vitro fermentation models are mainly used to study the adaptation of the microbiota 
and the degradation of food or food ingredients (Kovatcheva-Datchary et al. 2009, 
Van den Abbeele et al. 2010). In the continuous culture and TIM models, probiotics 
are also tested by researchers to study their effects on the community and the 
washout time for these bacteria (Martinez et al. 2011, Martinez et al. 2013). Moreover 
by using membranes and filters, metabolites that are usually taken up by the host 
can be monitored during the fermentation process. However, mucus associated 
bacteria will not be present in these models. For this reason the M-SHIME was 
developed, where mucin-covered microcosms are introduced in the original SHIME 
model (Van den Abbeele et al. 2012b). Probiotics can now be better studied in the 
M-SHIME model with respect to their adhesion to the mucosal layer and their 
colonization.  

Animal modelsAnimal modelsAnimal modelsAnimal models    
In general, in vitro models do not allow researchers to study interactions between 
the host and the microbiota. Animal models and in particular mammalian models 
provide an alternative way to study the in vivo responses to beneficial, commensal 
and pathogenic microorganisms in the GI tract. The main animals used to study the 
mammalian GI tract are rodents and pigs. Below we will discuss how they are used. 
However, to translate the knowledge gained from animal studies to the human 
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situation, differences in physiology (see Table 2.1, Figure 2.1 a, b and c) and 
behaviour between animals and humans concerning their GI tract need to be 
considered (Rodewald 1976, Stevens 1977, Booijink et al. 2007).  
 

pHpHpHpH    Human Rat  Pig 

Stomach 
Small intestine 
Large intestine 

1.0-4.4 
5.5-7.5 
5.9-7.0 

3.3-5.1 
6.5-7.1 
6.6-7.4 

2.2-4.3 
6.0-7.5 
6.3-7.1 

Table 2.1 PH of the GI tract of humans, pigs and rodents (Rodewald 1976, Stevens 1977, 
Booijink et al. 2007). 

RodentsRodentsRodentsRodents    

Conventional microbiota rodents 
Rodents are often used to study the GI tract and relate this back to the human 
situation. These animals are relatively small, easy to keep and well known models 
to study drugs for humans. Like humans, the two main bacterial phyla of the rodent 
GI tract microbiota are the Bacteroidetes and the Firmicutes. Nevertheless, there are 
some differences in microbiota composition. For example, in mice bifidobacteria are 
present, but in lower abundance than in humans. Additionally, in mice, the phylum 
Fusobacteria is lacking, while presence of Deferribacteres and Gemmatimonadetes 
has been reported (Lozupone et al. 2012a). The mouse forestomach is colonized by 
a biofilm of Lactobacillus reuteri, and murine strains of this species are different to 
those found in humans that produce a vitamin B12 metabolosome (Frese et al. 
2011). Furthermore mice harbour segmented filamentous bacteria, related to 
clostridia, that have a profound effect on the maturation of the innate immune system 
but have been thought to be lacking in humans (Suzuki et al. 2004, Gaboriau-
Routhiau et al. 2009, Ivanov et al. 2009). It should be noted that distinct populations 
of SFB have now also been shown in human infants during the first three years of 
life, even though no functional studies have yet been performed that would support 
a similar role in immune maturation as for their murine counterparts (Yin et al. 2013). 
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1a1a1a1a    1b1b1b1b    1c1c1c1c    

Figure 2.1 a) Gross anatomy of the human GI tract. b) Gross anatomy of the rat GI tract. c) 
Gross anatomy of the pig GI tract. 
 
The microbiota composition in rodents is usually analysed when diet-microbiota-host 
interactions are studied. To this end, rodents are usually on or shifted to a specific 
diet. After a certain time, they are sacrificed in order to collect a range of different 
types of samples. For the purpose of microbiota analysis, in general two types of 
samples are collected from different locations along the GI tract, namely intestinal 
content as well as mucosal scrapings. The latter method allows recovery of the 
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epithelial cell layer from the intestinal tissue, and samples can be used to extract 
RNA for the analysis of host responses or to extract RNA or DNA to analyse the 
mucus associated microbiota. 
There are a large number of different strains of mice and rats available. For example, 
C57Bl/6 mice are generally used in studies related to diet-induced obesity, type 2 
diabetes and atherosclerosis (Ley et al. 2005, Geurts et al. 2011a). Turnbaugh and 
co-authors (Turnbaugh et al. 2008), for example, showed that gut microbiota of 
obese mice have a more efficient fermentation than lean mice. This fermentation 
resulted in a higher energy yield for the obese mice than lean mice with the same 
food. Moreover the obese gut microbiota, with the corresponding phenotypes, could 
be transferred to germ-free mice.  
The choice of an animal model with a certain phenotype, is based on strains that 
have or are sensitive to this phenotype. For less obvious phenotypes, like response 
to a change of food ingredients, the choice is more likely to be made for practical 
reasons, including e.g. the animals are already bred in the facility, they are 
commercially available, or there is in-house experience with a given strain. However, 
recent studies have shown that environment and genetic background of mice have 
a significant impact on the microbial composition (Hildebrand et al. 2013), and this 
must be taken into account when experiments are designed that compare to or 
proceed from previous data.  
Next to these factors, behavioural aspects like eating patterns and coprophagy of 
rodents need to be considered when setting up experiments, as well as during the 
experiment itself. Rodents are usually eating around the clock, and have therefore 
always food in their system along the GI tract. Next to that they practise coprophagy 
– eating their own faeces, or that of their cage partners – which allows them to extract 
more nutrients from the food (Sukemori et al. 2003). Also in terms of energy excretion 
coprophagy can have an impact, since the faeces that is eaten contains more water 
and nitrogen then normal faeces (Kenagy and Hoyt 1980). However, when studying 
the short-term effects of food intervention studies this can give a negative effect, 
unless at the start of intervention the faeces is removed.  

Germ-free animals 
Preferred animals for germ-free and gnotobiotic studies are mice. These animals are 
used for several purposes that include: to study the effect of colonization with one 
single bacterial species, a consortium of defined bacterial species or de novo 
colonization with a complex microbiota from animals with a specific genotypic and/or 
phenotypic background, or from other host species including humans. During 
conventionalization in mice it takes more than a week for the microbial community to 
stabilize, which needs to be taken into account in the experimental design (El Aidy 
et al. 2013a). Turnbaugh et al. (Turnbaugh et al. 2006) showed that transferring the 
microbiota of obese or lean mice into germ free mice resulted in a greater adiposity 
in those animals that received the faeces from obese mice. Another recent example 
of transferring a phenotype with its microbiota is the ability to transfer the production 
of testosterone from male mice to female mice. The female mice had higher 
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testosterone levels when they received via gavage male microbiota (Markle et al. 
2013). 

Humanized rodents 
Rats and mice that are born germ-free can be colonized by a slurry of human faeces, 
often referred to as “humanization” (Mallett et al. 1987). Although the difference in 
physiology can have an effect on the colonization of the human microbiota, these 
humanized animals are valuable models to study the human microbiota, and can 
provide information on the interaction between food ingredients, the human 
microbiota and the host. The microbial shifts occurring in these models due to a 
certain treatment are likely to take place in humans as well (Van den Abbeele et al. 
2011). For instance, the microbiota of human twins discordant for obesity was 
studied in mice, where the impact of the microbiota was linked with the phenotype of 
the human donor (Ridaura et al. 2013). They could furthermore show that specific 
dietary changes could affect the original phenotypes concomitant with alterations in 
composition and activity of the microbial community. 

PigsPigsPigsPigs    
Pig is an important livestock for human because of their meat production. Therefore, 
these animals are studied intensively by researchers with the object of production 
optimization. In recent years, many studies have focused on the GI tract of pigs, 
because manipulation of the gut microbiota can be used as an alternative of feeding 
antibiotic to improve the pig health. Additionally, pigs are scientifically important as 
a result of their high similarities to human beings in physiology, anatomy and nutrition 
(Douglas 1972, Miller and Ullrey 1987, Guilloteau et al. 2010). It makes these 
animals essential as models for human GI tract studies.  

Humanized pigs 
The model of human flora-associated piglets (HFAP) was established by Pang et al. 
(Pang et al. 2007) through orally inoculating a whole faecal suspension of a healthy 
10-year-old boy to caesarean section derived piglets that were raised in specific-
pathogen-free (SPF) conditions. Culture-independent analysis showed that 
transplantation of human gut microbiota produced a donor-like microbial community 
in piglet gut with minimal individual variation, and the succession with aging of piglets 
was similar to that observed in humans. As in humans, the introduction of solid food 
during weaning altered the gut microbial community, resulting in a decrease in 
bifidobacteria. This change suggested the HFAP may share similarities with human 
in the process of microbial colonization, and implied the HFAP could be an attractive 
model to explore the effect of dietary factors on human gut microbiota. Subsequently, 
the HFAP model was successfully employed in prebiotic study. In order to assess 
the effects of short-chain fructooligosaccharides (scFOS) on gut microbiota, Shen et 
al. (Shen et al. 2010) applied this model and confirmed the bifidogenic property of 
scFOS. They found that the Bifidobacterium genus was stimulated consistently 
except during weaning, however the effect of scFOS on non-bifidobacterial species 
varied at different developmental stages of the animals.  
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Gnotobiotic pigs 
Gnotobiotic pigs have been used to study various human GI tract pathogens, such 
as Helicobacter pylori (Nedrud 2006). Recently, gnotobiotic pig has been used as an 
animal model to study the microbial colonization during early life. Laycock et al. 
(Laycock et al. 2012) used the Altered Schaedler Flora (ASF), a murine intestinal 
microbiota and a new “Bristol” microbiota containing Lactobacillus amylovorus DSM 
16698T, Clostridium glycolicum and Parabacteroides spp (ASF519), to colonize 
caesarean-derived gnotobiotic pigs prior to their gut closure. The ASF inoculation 
resulted in unreliable colonization with most (but not all) strains of the ASF. In 
contrast, the Bristol microbiota reliably colonized the length of the intestinal tract of 
gnotobiotic piglets. This microbiota can be used to study the consequences of early 
microbial colonization on development of the intestinal mucosa and immune system, 
on later colonization by a complex microbiota, and on subsequent susceptibility to 
disease. 

Minipigs 
Minipigs are proposed to be good animal models for studying obesity (Johansen et 
al. 2001, Larsen et al. 2002, Larsen et al. 2005). Pedersen et al. (Pedersen et al. 
2013) investigated the composition of gut microbiota in relation to diet, obesity and 
metabolic syndrome in two pig models, Göttingen and Ossabaw minipigs. They 
found that diet seems to be the defining factor that shapes the gut microbiota as 
observed by changes in different bacteria divisions between lean and obese 
minipigs. In the cecum, the lean Göttingen minipigs’ had significantly higher 
abundance of Firmicutes, Akkermansia, and Methanobrevibacter, while obese 
Göttingen had higher abundances of the phyla Spirochaetes, Tenericutes, 
Verrucomicrobia and the genus Bacteroides. With respect to the Ossabaw minipigs, 
the obese minipigs had a higher abundance of Firmicutes in terminal ileum and lower 
abundance of Bacteroidetes in colon compared with lean minipigs. Overall, the 
Göttingen and Ossabaw minipigs displayed different microbial communities in 
response to diet-induced obesity in the different sections of their intestine. This 
funding also reinforced the notion that the host genotype has to be taken into account 
when studying the links between microbiota, diet and phenotype.  

Piglet model for infant nutrition and development 
The piglet has been used extensively in infant nutrition researches. It has been 
suggested as an appropriate model for human infant because of similarities between 
piglet and infant in anatomy, physiology and gastrointestinal tract metabolism (Miller 
and Ullrey 1987, Shulman et al. 1988, Darragh and Moughan 1995, Burrin et al. 
2000, Puiman and Stoll 2008, Guilloteau et al. 2010). Moreover, piglet model has 
also been employed to evaluate the intestinal microbiota of neonates, and preterm 
and term infants. Development of the intestinal microbiota in neonates and infants is 
characterized by rapid and extensive changes in microbial abundance, diversity, and 
composition. These changes are influenced by medical, cultural, and environmental 
factors such as delivery mode, diet, familial environment, diseases, and therapies 
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(Matamoros et al. 2013). To study the effects of these factors, different piglet models 
have been developed. These piglet models allow us to generate more information of 
the dynamics of microbial colonization and its profound influence on intestinal and 
systemic health throughout life. 

Piglet model for investigating effects of environmental microbial association on gut 
microbiota  
To study the effects of environmental association with microbiota on gut health and 
development in the postnatal period, a model of caesarean derived piglets was 
designed by Jansman et al. (Jansman et al. 2012). In this model, piglets were 
obtained by caesarean delivery and were equally divided over two treatment groups 
that were housed in SPF conditions. All piglets received orally the above-mentioned 
Bristol microbiota consisting of Lactobacillus amylovorus, Clostridium glycolicum, 
and Parabacteroides spp. on days 1, 2, and 3 after birth. On day 3 and 4 the piglets 
received either a complex microbiota by providing them with a faecal inoculant of an 
adult sow (complex association group) or a placebo inoculant (simple association 
group). By using 16S rRNA gene targeted microarray-based microbiota profiling 
method, they found faecal microbiota composition was less diverse in the simple 
association group than the complex association group. The differences of microbiota 
between treatments persisted for at least three weeks after birth. 
Furthermore, other studies reveal that the immediate environment during postnatal 
development has long-term impact on gut community structure in pigs (Thompson 
et al. 2008). To investigate the extent to which early-life environment impacts on 
microbial diversity of the adult gut, Mulder and colleagues established a model with 
genetically-related piglets, which were housed in either indoor or outdoor 
environments or in experimental isolators (Mulder et al. 2009). Analysis of over 3,000 
16S rRNA sequences revealed major differences in mucosa-adherent microbial 
diversity in the ileum of adult pigs attributable to differences in early-life environment. 
Pigs housed in a natural outdoor environment showed a dominance of Firmicutes, 
in particular Lactobacillus, whereas pigs housed in a hygienic indoor environment 
had reduced Lactobacillus abundance and higher numbers of potentially pathogenic 
phylotypes. The result revealed a strong negative correlation between the 
abundance of Firmicutes and pathogenic bacterial populations in the gut, and the 
microbial composition differences were exaggerated in animals housed in 
experimental isolators. This study demonstrated strong influences of early-life 
environment on gut microbiota composition in adult pigs, leading to a follow-up study 
on the impact of limiting microbial exposure during early life on the development of 
the gut microbiota (Schmidt et al. 2011). In the following study, the outdoor- and 
indoor-reared piglets, exposed to the microbiota in their natural rearing environment 
for the first two days of life, were transferred to an isolator facility; and the gut 
microbial diversity of adult pigs was analysed by 16S rRNA gene sequencing. 
Although the initial maternal and environmental microbial inoculum of isolator-reared 
animals was identical to that of their naturally-reared littermates, the microbial 
succession and stabilization events reported previously in naturally-reared outdoor 



Chapter 2  

22 

 

animals did not occur. In contrast, the gut microbiota of isolator-reared animals 
remained highly diverse containing a large number of distinct phylotypes. These 
results indicated that establishment and maturation of the normal gut microbiota 
requires continuous microbial exposure during the early stages of life, and this 
process is compromised under conditions of excessive hygiene.  

Piglet model for studying gut microbiota in diseases  
For preterm neonates, one of the most serious diseases is the GI inflammatory 
disorder necrotizing enterocolitis (NEC). The development this disease includes the 
interplay of nutritional, microbial and immunological determinants. For independent 
studies of each determinant under clinically relevant conditions, the preterm piglet 
has been utilized in virtue of its beneficial characteristics compared to other animal 
models (Siggers et al. 2011). With preterm piglets, Sangild et al. (Sangild et al. 2006) 
found NEC pigs showed bacterial overgrowth and a high mucosal density of C. 
perfringens in some but not all animals, however mucosal microbial diversity of 
healthy pigs remained low and independent of diet. This finding was further 
confirmed by Cilieborg et al. (Cilieborg et al. 2011); their study showed a different 
microbiota with high C. perfringens abundance was observed in preterm pigs with 
NEC compared with healthy individuals. However, the C. perfringens inoculation 
failed to induce NEC. It indicated C. perfringens is more abundant in pigs with NEC 
but rather as a consequence than a cause of disease. In addition to the above 
studies, Azcarate-Peril et al. (Azcarate-Peril et al. 2011) have used a unique preterm 
piglet model to characterize spontaneous differences in microbiome composition of 
NEC-predisposed regions of gut. Their study provided strong support for ileal 
mucosa as a focus for investigation of specific dysbiosis associated with NEC and 
suggested a significant role for Clostridium spp., and members of the Actinobacteria 
and Cyanobacteria in the pathogenesis of NEC. 
The short bowel syndrome (SBS) piglet model is another application of the piglet 
model for studying gut microbiota in diseases. The development of a successful SBS 
model in neonatal piglets provides a possibility for characterizing the colonic 
microbiota following small bowel resection (SBR). By using 4-week old female piglets 
that received a 75% SBR, Lapthorne et al. (Lapthorne et al. 2013) found a significant 
level of dysbiosis both two and six weeks post-SBR, particularly in the phylum 
Firmicutes, coupled with a decrease in overall bacterial diversity in the colon.  
Sampling techniques with pig models in kinetic microbiota studies 

Small intestinal segment perfusion technique with pig models  
The Small intestinal segment perfusion (SISP) technique was developed to study 
the effects of bacteria on net absorption of fluid and electrolytes, as a more 
comprehensive and ethical alternative to the ligated loop test in pig models (Nabuurs 
et al. 1993). Recently, this technique has been widely applied to study 
enterotoxigenic Escherichia coli infection (Niewold et al. 2005, Niewold et al. 2010), 
Salmonella typhimurium invasion (Niewold et al. 2007, Veldhuizen et al. 2007), and 
mannose-specific interaction of Lactobacillus plantarum with jejunal epithelium 
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(Gross et al. 2008). Furthermore, SISP can be applied in future research to 
investigate the functional physiological response of probiotics and the crosstalk 
between probiotics and the host (Van der Meulen et al. 2010). In the SISP test, pigs 
are sedated with azaperone, induced with inhalation anaesthesia and maintained 
with sevoflurane and nitrous oxide. For pig small intestine, five pairs of segments are 
prepared and each segment is 20 cm long with inlet tubes at the cranial side and 
outlet tubes at the caudal side. The segments can be used to study up to 10 perfused 
ingredients within one pig. All 10 segments are perfused simultaneously either by an 
infusion system or manually with syringes attached to the cranial tubes for up to 10 
hours. Effluent fluid during perfusion and mucosal scraping can be sampled for 
microbial analysis from each segment.  

Cannulation technique with pig models 
Cannulation is one of the most frequently applied methods for repeated sampling of 
digesta from pig gut. Different cannulation techniques, such as simple T-cannula, 
post-valvular T-cecum cannulation and steered ileocecal valve cannulation, can be 
employed based on the specific research purpose. Among these cannulation 
techniques, the simple T-cannula is widely used for evaluating the microbial 
composition and function in the ileum. A simple T- cannula is normally inserted 10 to 
20 cm anterior to the ileocecal valve. It does not transect the small intestine wall, and 
can maintain a normal physiological state of the intestine (Sauer and De Lange 
1992). Currently, surgical procedures for inserting a T-cannula and sampling 
methods have been established for young pigs (Walker et al. 1986, Li et al. 1993), 
growing pigs (Decuypere et al. 1977, Gargallo and Zimmerman 1980) and pregnant 
sows (Stein et al. 1998).      



Chapter 2  

24 

 

ConclusionConclusionConclusionConclusion    
Studying the human GI tract can be done with a wide range of methods and technical 
approaches. Even though each of the methods that we described here have 
advantages and disadvantages, usually human faeces are used for assessing the 
impact on the microbiota in intervention studies, whereas animal models are used 
for more detailed mechanistic studies, including those that aim to see the impact of 
the host system as well. Nowadays mainly rodents are used to study the human GI 
tract, while pigs show promising and maybe better comparison to study the human 
GI tract. Since the optimal system is not yet established, generally to test a certain 
treatment a combination of methods is used, first in vitro, then in vivo in an animal 
model, ending up with a human intervention study. 
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AbstractAbstractAbstractAbstract    
This review considers fermentable carbohydrates and their role in maintaining health 
through their availability as fuel for the gut microbiota. The microbiota possesses 
remarkably diverse function, and is likely modifiable by diet. Therefore a diet rich in 
varied fermentable carbohydrates such as dietary fibre, glycosylated polyphenolics, 
glucosinolates and other plant glycans, applied in a sustained fashion may promote 
microbial diversity leading to improved health. This may be achieved by increasing 
the flexibility of the microbiota’s capability to interact with diverse dietary 
environments, or via increasing production of short chain fatty acids (SCFAs) from 
the fermentation of carbohydrates.  A higher functional modular complexity is 
indicative of gut health, whilst SCFAs may reduce the risk of developing 
gastrointestinal disorders, cancer, and cardiovascular disease.  
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General IntroductionGeneral IntroductionGeneral IntroductionGeneral Introduction    
The physicochemical effects of dietary fibre consumption are well recognised by the 
scientific community, regulatory authorities, food manufacturers and consumers. 
Generally these “feel the benefit” attributes comprise improvements in laxation: 
frequency, bulk and transit time. However, there are a host of more subtle health 
benefits conferred by the gut microbiota which are becoming increasingly 
recognised. Here we focus on these microbial benefits as conferred by the usage of 
fermentable carbohydrates. In this review, we consider fermentable carbohydrates 
to be any carbohydrate source which, for whatever reason, escapes digestion by the 
host, and passes into the large bowel intact, where it may act as a substrate for the 
growth and metabolic output of the resident bacteria. These fermentable 
carbohydrates may not necessarily fall within the current definition of dietary fibre, or 
prebiotic compounds, but some may loosely fall into that category. Thus we consider 
not only material which meets Codex definition of dietary fibre, but also other 
glycosylated compounds which consist of one or more sugar residues attached via 
glycosidic linkage to non-carbohydrate compounds which collectively do not meet 
conventional definitions of “carbohydrates” in the strictest sense, but nevertheless 
are available as microbial fuel to result in the microbial generation of outcomes of 
interest.  
This gut microbiota is diverse, highly abundant, competitive, metabolically active, 
and largely saccharolytic (Moore and Holdeman 1974, Finegold et al. 1983, Qin et 
al. 2010, Tasse et al. 2010, Flint et al. 2012b). Most members of the microbiota are 
not reliant on the availability of simple sugars, but are able to derive carbon and 
energy from the breakdown of sometimes very complex carbohydrates, alone or as 
a concerted effort. Substrates influencing and fuelling this microbiota include both 
food which escapes host digestion in the upper intestinal tract, but also endogenous 
host secretions. For example, it is unlikely to be a coincidence that the sites of 
highest microbial abundance are the sites of highest mucus abundance – where the 
main structural component of the mucus is the heavily glycosylated glycoprotein 
mucin, acting as a barrier to protect the underlying epithelia from damaging agents 
(including the microbiota) and as a substrate to allow the continued persistence of 
the microbiota in the absence of any other food source. Also present are other 
oligosaccharides, peptides, glycosaminoglycans, aliphatic lipids and steroids 
(Hoskins and Boulding 1976). Products of fermentation of these substrates by the 
microbiota include short chain fatty acids (SCFA), branched chain fatty acids 
(BCFA), and a range of other metabolites, such as vitamins, nitrogenous 
compounds, deconjugated exogenous (phytochemicals) or endogenous (bile) 
compounds, and others. Many of these metabolic by-products are in turn used by 
other species (the secondary feeders) such that food webs and food chains develop. 
Indeed, the stable persistence of a diverse and cooperative microbiota renders it 
unlikely that any single nutrient is limiting the growth of all the resident 
microorganisms. Nevertheless, despite the availability of diverse and complex 
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substrates, it is dietary carbohydrate sources which we may deliberately vary by 
exercising dietary choice, and thus use to manipulate the microbiota. 

The microbiota and healthThe microbiota and healthThe microbiota and healthThe microbiota and health    
The diverse, abundant and competitive microbiota largely occupies the distal regions 
of the intestinal tract. These microorganisms become established in succession from 
birth onwards (Maynard et al. 2012), concurrently driving the maturation of the 
intestinal tract as a functioning digestive, neuroendocrine and immune organ. The 
makeup of this microbial consortium is driven by external factors such as food, 
antibiotic therapy and maternal microbiota (Thompson-Chagoyán et al. 2007), and 
intrinsic factors such as host species (Rawls et al. 2006, Martin et al. 2008a) and 
genotype (Hoskins and Boulding 1976, Makivuokko et al. 2012). Since the intestinal 
tract is the main point of contact of the host immune system and microorganisms 
(Round and Mazmanian 2009), the microbiota in both local and systemic immune 
function (and dysfunction) play an important role in immunity and health. Immune 
dysfunction links with metabolic and autoimmune disorders and so deliberately 
modulating the microbiota with fermentable carbohydrate-based food might permit 
modulation of systemic immunity and obesity.   
Ultimately, there may be in excess of 1000 different species found amongst 
individual adult humans, with any given individual possessing >100 of these (Qin et 
al. 2010). This complex ecosystem increases in numbers throughout the intestinal 
tract, from 10 to 1000 cells per mL in the stomach until a density of 1011 cells per 
gram of intestinal contents in the large intestine (Booijink et al. 2007, Walter and Ley 
2011). These form a complex mixture of resident species, where a variable number 
and proportion of transients are unable to compete with or displace resident 
(commensal) organisms in the synergistic associations and food chains which 
contribute to determining the composition and stability of the microbiota. 
So far only 20-46% of the bacteria in the gut have been cultivated. Nonetheless a 
range of omics-approaches – metagenomics, metatranscriptomics, metaproteomics, 
metabolomics and fluxomics - of the last few decades have given the opportunity to 
understand this complex ecosystem through the GI tract much better. For example 
metagenomic approaches have been used to assess the population and functional 
diversity of the microbiota, while metabolomic approaches have been used to assess 
the impact of introducing poorly adapted microbiota across species, which have 
increased our understanding of the systemic role of this ecosystem (Martin et al. 
2007, Rajilic-Stojanovic et al. 2007, Martin et al. 2008a, Martin et al. 2009, van den 
Bogert et al. 2011).  
Most of the members of the resident gut microbiota can be classified in four phyla: 
Bacteroidetes, Firmicutes, Actinobacteria and Proteobacteria, although the 
increasing importance of less abundant phyla such as Verrucomicrobia, or kingdoms 
such as Archaea, is becoming increasingly recognised (Everard et al. 2013). 
Similarly, yeast, fungi, protozoa and viruses are also present (colonisation or 
replication without causing disease may define them as commensal) and exert 
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influence. Indeed, the role of bacteriophage in genetically conferring or stabilising 
functions within microbiome is also becoming recognised (Reyes et al. 2010). Yet it 
is the key bacterial phyla, particularly the Bacteroidetes and Firmicutes, which are 
numerically and arguably functionally dominant: associations have been made 
between phyla ratios and functional or differences in the microbiota, or between 
relative phyla abundance and host physiology. Interestingly, the carbohydrate 
degradation machinery of members of these two phyla appears to be polar 
opposites: the extra- cell-associated machinery of the Bacteroidetes phyla vs the 
extracellular machinery possessed by members of the Firmicutes phyla (Muñoz-
Tamayo et al. 2011). The latter machinery has been proposed as key to degrading 
recalcitrant carbohydrates (celluloses and hemi-celluloses). Similarly, the SCFA 
profiles produced by members of these two dominant phyla differ, with a tendency 
for butyrate production by members of the Firmicutes phyla, whilst propionate 
production tends to be dominated by Bacteroidetes.  The roles of these and other 
SCFA in gut and systemic health will be explored in more detail later.  
Overall, the microbiota possesses remarkably consistent function across individuals 
(Qin et al. 2010), albeit dependent on gross dietary differences across species 
(Muegge et al. 2011). Recent work employing ecological mathematical principles has 
shown that the microbiota across populations can be divided on bases of 
metagenomic complement into different functional modules (how the genes within 
networks are grouped according to function) of varying complexity (Greenblum et al. 
2012). Here it appears that the microbiota of lean healthy individuals has a higher 
functional modular complexity than that of obese or irritable bowel disease (IBD) 
individuals. Essentially this is simplistically represented as the genetic pathways on 
the periphery of metabolic networks, notably those featuring the first substrates seen 
by the microbiota, and the last products produced, are mathematically networked 
differently. Those of lean healthy individuals have higher numbers of functional 
modules (increased complexity) each containing less genes/networks, whilst obese 
or IBD individuals possessed lower numbers of functional modules (decreased 
complexity) each containing higher numbers of genes/networks. Core metabolic 
function, shared amongst all members of the microbiota in all individuals (e.g. 
nucleotide synthesis, cell division etc.), appears not to vary in modularity (Greenblum 
et al. 2012). This variation in complexity of these “peripheral” genes in the network 
relates to the functional diversity of these microbiota, and the situation is analogous 
to other systems for which these principles have been applied, e.g. obligate 
symbionts have very low functional complexity coinciding with adaptation to low 
diversity environments (Parter et al. 2007). This ecological diversity is relevant here 
for the gut microbiota because those substrate- and product-interacting genes on 
the periphery of the networks are likely to involve carbohydrates degradation and 
some SCFA production. 
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FermentaFermentaFermentaFermentable carbohydratesble carbohydratesble carbohydratesble carbohydrates    
Fermentable carbohydrates are capable of causing favourable changes to the 
microbiota (van Zanten et al. 2012, Haenen et al. 2013d). A commonly accepted 
term to describe this process is “prebiosis”, which is the fermentation of prebiotics. 
The definition of prebiotics is “non-digestible food ingredients that beneficially affect 
the host by selectively stimulating the growth and/or activity of one of a limited 
number of bacteria in the colon” (Gibson and Roberfroid 1995). The term prebiotics 
and dietary fibre (see below) are sometimes used interchangeably; however they are 
not the same. Prebiotics stimulate specific bacteria in the colon, while dietary fibres 
can be fermented by a range of bacteria or not fermented at all (Ouwehand et al. 
2005). Conversely, a diet low in fermentable carbohydrate (e.g. resistant starch), 
common amongst westerners, is associated with colonic disorders (Scheppach 
1994). 

Dietary FibreDietary FibreDietary FibreDietary Fibre    
Dietary fibre is, by definition, dietary polysaccharides and oligosaccharides that 
resist digestion by the human digestive enzymes. It includes the non-starch 
polysaccharides portion of foods derived from plant cell walls (pectin, 
hemicelluloses, and cellulose), oligosaccharides such as fructooligosaccharides 
derived from inulin, digestion-resistant starches, and a range of other non-digestible 
polysaccharides and oligosaccharides added to food formulations to increase their 
fibre content. Dietary fibre has been classified into soluble and insoluble fibre. Most, 
but not all soluble fibres from viscous solution are fermented in the colon. Insoluble 
fibres are also fermented, but include some, such as cellulose, that are fermented 
slowly enough to largely survive colonic transit and have a bulking action in the colon. 
In some cases this is preferred as rapidly fermented fibre can result in uncomfortable 
physiological effects. Within the human gut microbial metagenome data a wide 
variety of carbohydrate-degrading enzyme families can be found (Tasse et al. 2010). 
These enzymes are enriched in adults compared to infants, emphasizing the shift to 
richer mixture of carbohydrates in the gut. This variety of enzymes is necessary to 
degrade the complex structures present in dietary fibre. The different linkages, with 
the combination of different mono-sugars, in the fibres require an arsenal of different 
carbohydrate degrading enzymes (reviewed in (Flint et al. 2012a)). Some bacteria, 
like the Bacteroides spp., are well equipped with a range of glycoside hydrolases 
and are capable of switching between different substrates (Hooper et al. 2002). 
However, these species are more equipped to degrade soluble carbohydrates (Flint 
and Bayer 2008). In contrast, within the family of Bifidobacteriaceae there are some 
species which are specialised to utilise only certain groups of oligosaccharides 
(Barboza et al. 2009, Riviere et al. 2014). In practice, bacterial usage of substrates 
is also influenced by their ability to adhere to the food matrix within the gut. For 
example a lawn of Bacteroides spp. attached to a food particle and interspersed with 
islands of Bifidobacterium spp. has been observed (Macfarlane and Macfarlane 
2006). 
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HostHostHostHost----derived fermentable carbohydratesderived fermentable carbohydratesderived fermentable carbohydratesderived fermentable carbohydrates    
Host carbohydrates (predominantly from the heavily glycosylated mucin 
glycoproteins that are the main structural component of the mucus layer lining the 
gastrointestinal tract) were thought sufficient to maintain the large bowel microbiota 
in its original abundance and diversity in the absence of dietary carbohydrate (Winitz 
et al. 1970, Attebery et al. 1972, Bounous and Devroede 1974, Hudson et al. 1981, 
Macfarlane et al. 1989), Now, contemporary sequencing methods may reveal 
community differences previously unobservable through historical microbiological 
techniques (Gerald Tannock, University of Otago, NZ, pers. comm.). Microbial 
ecological impact notwithstanding, mucin oligosaccharide forms a major alternate 
fermentative substrate to the microbiota during a dearth of dietary carbohydrate. A 
consequence of mucin oligosaccharide utilisation within the mucin layer is that the 
highly de-glycosylated mucin is rendered less resistant to degradation (Variyam and 
Hoskins 1983), thus allowing breakdown of the protein scaffold and access to the 
underlying epithelia. Both dietary and host carbohydrate sources are ultimately 
catabolised to result in increased microbial biomass and production of the microbial 
metabolic by-products dominated by SCFAs and, with fermentable protein, BCFAs 
(Louis et al. 2007). 
Furthermore, the introduction of fermentable dietary carbohydrate to this system 
results in the redistribution of some of the collective microbial degradative capability 
away from host carbohydrates towards this additional nutrient resource (Sonnenburg 
et al. 2005), while a fibre-induced decreased transit time combined with increased 
secretion of mucin ultimately results in faster clearance of the existing microbiota 
(Tirosh and Rubinstein 1998), and the replenishment of highly sulphated and 
sialylated mucin sugars (Larsen et al. 1993). Bacteroides thetaiotaomicron has been 
characterised in terms of its food and host interactions in vivo (Martens et al. 2009). 
In particular, the implications of this organism’s complete switch from host-derived 
to food-derived carbohydrate degradation upon supply of food carbohydrate, 
illustrates how exposing the collective gut microbiota to carbohydrates could be 
applied to modify gut health. 

Glycosylated bioactivesGlycosylated bioactivesGlycosylated bioactivesGlycosylated bioactives    
Many plant compounds are glycosylated. They tend to attract scientific attention 
upon loss of the sugar group resulting in their aglycone moieties, many of which 
possess bioactivity due in part to bioavailability: their intrinsic lipophilic properties 
allowing uptake by cells. Examples are glucosinolates and polyphenols. 
Glucosinolates are -D-thioglucoside-(Z)-N-hydroxyiminosulfate compounds that 
contain an amino acid-derived side chain (Figure 3.1). Glucosinolates such as 
glucoraphanin from cruciferous vegetables are hydrophilic secondary plant 
metabolites believed to confer the plant with defence against predation. 
Glucosinolates themselves appear not to be bioactive, however, upon removal of the 
glycoside moiety, the resulting aglycones are bitter tasting, lipophilic, host phase II 
drug metabolism and antioxidant pathways inducing compounds, such as 
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sulforaphane (Brooks et al. 2001).  
Polyphenols encompass a broad class of compounds (Manach et al. 2004) 
undergoing extensive modification during digestion where, like glucosinolates, are 
rendered bioactive. In contrast to glucosinolates which become aglycones, 
polyphenols are generally found as conjugates of glucuronate or sulfate, with or 
without methylation of the catechol functional group and consequently have different 
biological effects from polyphenol aglycones such as those found in green tea 
catechins (Kroon et al. 2004). 
Here we are specifically interested in the apparently non-bioactive, glycosylated, 
hydrophilic form, as they are potential targets for bacterial glycosidases, and perhaps 
substrates for gut microbial growth.  
 

 
Figure 3.1 General structure for all glucosinolates, the dashed line showing the site where the 
glucose molecule is cleaved during hydrolysis (Mullaney et al. 2013). 

Short chain fatty acidsShort chain fatty acidsShort chain fatty acidsShort chain fatty acids    
The products produced by a microbiota include bacterial fatty acids, de-conjugated 
bile acids, protein putrefaction products and even B vitamins (Stevens and Hume 
1998). In the simplest of terms, (SCFAs) are produced by the gut microbiota through 
their fermentation of carbohydrates. These are metabolised by the microbiota mainly 
via the glycolytic pathway for hexoses and via the pentose phosphate pathway for 
pentoses resulting in pyruvate, the main precursor for SCFA (Cummings 1981, 
Macfarlane and Macfarlane 2003) (Figure 3.2). Anaerobic fermentation in the gut is 
determined by redox differences between substrates and products (Macfarlane and 
Macfarlane 2003). This state determines which products can be formed and thus the 
amount of energy that can be formed. Some of the products, like lactate and 
butyrate, are also used to get rid of the excess of electrons (Miller and Wolin 1979). 
Short chain fatty acids (SCFA) are considered to be beneficial fermentation products 
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in the gut, playing an essential role in the maintenance of colonic integrity and 
metabolism (Cook and Sellin 1998). SCFAs also exert many other beneficial effects 
on the host including resistance to disease (Topping and Clifton 2001), have a role 
in blood pressure regulation (Pluznick et al. 2013), and may be protective against 
cancers by increasing cell proliferation and apoptosis (Scharlau et al. 2009). SCFAs 
act as energy sources (brain, heart, muscle); increase bile salt solubility, mineral 
absorption, leptin production, leptin regulation which helps to protect against obesity 
and metabolic disorders (Lin et al. 2012); decrease gut pH, ammonia absorption, 
and inhibit pathogen growth. 

 

Figure 3.2 Anaerobic sugar fermentation to short chain fatty acids. Metabolites with rounded 
boxes are intracellular; metabolites with rectangular boxes may be excreted outside of the 
cell. Black arrows show intracellular pathways; grey arrows indicate where a bacterium may 
capture and process an excreted metabolite (cross-feeding). 
 

Specific SCFAs may reduce the risk of developing gastrointestinal disorders, cancer, 
and cardiovascular disease. The major three SCFAs are butyrate, acetate and 
propionate. Butyrate is the main energy source for colonocytes, propionate is taken 
up and metabolized by the liver, and acetate is taken up via peripheral circulation for 
metabolism by peripheral tissues (Wong et al. 2006). Acetate, the most highly 
concentrated SCFA in the colon, has been shown (after absorption) to increase 
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cholesterol synthesis, while propionate has been shown to inhibit cholesterol 
synthesis. Butyrate irrigation (enema) was suggested in the treatment of colitis 
(Scheppach et al. 1992), but determined to be ineffective later by the same group 
(Scheppach et al. 1997). Other organic acids (not short chain fatty acids, strictly 
speaking) include succinate and lactate. The collective functions of the major SCFA 
and organic acids are summarised in Table 3.1. 
 
Lactate Acetate Propionate Butyrate Succinate Biological change  
 ↑↑↑↑    ↑↑↑↑      Energy source (brain, heart, muscle)  
   ↑↑↑↑     Main energy source (colonocytes)  

↑↑↑↑    ↑↑↑↑    ↑↑↑↑    ↑↑↑↑    ↑↑↑↑    

Decreased gut pH (increased bile salt 
solubility, increased mineral absorption, 
decreased ammonia absorption, decreased 
pathogen growth)  

   ↑↑↑↑     
Anti-cancer (inhibit proliferation, induce 
apoptosis)  

 ↑↑↑↑       
Lipid metabolism (de novo lipogenesis 
substrate)  

  ↑↑↑↑      
Lipid metabolism (inhibit HMG-CoA synthase 
and reductase)  

  ↑↑↑↑      Increased leptin production  

  ↑↑↑↑      
Decreased acetate absorption and fatty acid  
synthesis resulting in decreased hepatic 
lipogenesis  

   ↑↑↑↑     Decreased inflammation 
 ↑↑↑↑     ↑↑↑↑     Increase associated with obesity in mice 
Table 3.1 Summary of biological changes associated with increased SCFA or other organic 
acids (Fava et al. 2008, Rosendale et al. 2011) 

Changes in SCFA production in response to fermentable carbohydrateChanges in SCFA production in response to fermentable carbohydrateChanges in SCFA production in response to fermentable carbohydrateChanges in SCFA production in response to fermentable carbohydrate    
The amount and ratio of SCFA can be altered by specific types of fibre (Flint and 
Bayer 2008, Van den Abbeele et al. 2011). Effects of fibres do vary between species 
(Ferguson et al. 2000, McOrist et al. 2011). In human faecal samples resistant starch 
has been seen to specifically increase butyrate (McOrist et al. 2011), whereas in a 
rodent model, different patterns for caecal SCFA level were observed, dependent on 
the RS type used, while this was independent for colonic concentrations (Ferguson 
et al. 2000). In a simulated human intestinal microbiota population model 
arabinoxylan has been seen to increase in particular propionate (Grootaert et al. 
2009). Further changes have been observed with a number of other fibre types 
(Table 3.2). 
In addition, glucosinolates and glycosylated polyphenolics have wrought changes in 
SCFA profiles. For example, fermentation by-product profiles in the caecum of rats 
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where the microbiota was primed with supplements of food grade bacteria capable 
of deglycosylating glucosinolates and further acclimatised to a glucosinolate-
supplemented diet had quite different profiles from rats fed basal, un-supplemented 
diets (Mullaney 2013). Similarly, the SCFA profile and microbial abundance of in vitro 
fermentations in the presence of glycosylated phenolic compounds differed from un-
supplemented cultures. 
In addition to different carbon sources leading to different SCFA profiles we know 
that there is significant SCFA profile difference between strains of the same species. 
However in the context of whole microbiota studies where the microbial information 
only differentiate at the genus or family level (or above), we frequently cannot 
consider SCFA production at the strain level. Nevertheless we can attempt to 
capitalize on known and commonly occurring trends during fermentation by a 
complex culture.  

Cross feedingCross feedingCross feedingCross feeding    
Indirectly fibre fermentation alters bacteria that do not ferment dietary fibres, but are 
using the acetate and lactate produced by others in the gut. These so called ‘Cross 
feeders’ are organisms that cannot break down large polymers by themselves but 
take advantage of the products of other organisms: these products may be 
polysaccharide fragments, or SCFA resulting from fermentation by the other 
organisms. This is illustrated by an in vitro study where incorporation of a heavy [13C] 
isotope label from starch into microbial RNA was measured revealed that 
Ruminococcus spp. were the primary starch degraders as indicated by their 
predominant label incorporation, whilst Prevotella, Eubacterium and Bifidobacterium 
spp. incorporated lesser amounts of 13C, consistent with a secondary feeding 
position or crossfeeding upon fermentation by-products of the Ruminococcus 
primary feeders (Kovatcheva-Datchary et al. 2009). 
Similarly, other studies show different phylogenetic groups are capable of converting 
lactate or acetate and lactate to butyrate or propionate (Duncan et al. 2004, 
Zoetendal et al. 2012) (Figure 3.2). For instance, in the small intestine Streptococcus 
spp. convert simple sugars into lactate (Booijink et al. 2007, Zoetendal et al. 2012). 
The lactate can be used by Veillonella spp. as a carbon source and converted into 
propionate and acetate. However in Clostridium perfringens and possibly 
Bifidobacterium breve the amount of lactate produced can be dependent on the 
availability of glucose (Macfarlane and Macfarlane 2003). When there is a surplus of 
glucose C. perfringens produces mainly lactate, since the lactate then functions as 
an electron donor. If there is a shortage of glucose, C. perfringens switches to a high 
acetate production, where more ATP is formed per glucose molecule.  
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In in vitro studies some of these species can grow on glucose, and only show lactate 
utilisation after glucose depletion (Duncan et al. 2004). In the in vivo situation this 
might indicate that these lactate-utilising species could switch depending on the 
dietary availability. However, the amount of monosaccharides in the large intestine 
is probably not sufficient for lactate-utilizers to switch to monosaccharide 
fermentation instead of the acetate-lactate fermentation (Cummings and Macfarlane 
1991, Duncan et al. 2004). Moreover the lactate and acetate utilisation is an 
important factor for the gut pH homeostasis (Duncan et al. 2004, Flint et al. 2012b). 
So far, the identities of the main players in lactate utilisation and what the main SCFA 
products are, is still being investigated. The main lactate-utilising bacteria might differ 
when the carbohydrate-metabolising bacteria are different species, or produce 
different metabolites, depending on the availability and type of the carbon source.  

Manipulating the systemManipulating the systemManipulating the systemManipulating the system    
Overall, the microbiota possesses remarkably diverse function, and is likely 
modifiable by diet. In terms of ecological principles, a collective microbiota’s higher 
functional modular complexity, consistent with high diversity environments, appears 
to correlate with healthy individuals, whilst lower functional complexity consistent 
with low diversity environments, correlates with dysfunction. If this is indeed the case, 
then increasing the sugar residue and glycosidic linkage variability and frequency in 
a sustained manner may be sufficient to promote environmental diversity and 
ultimately increase functional modular complexity which in turn correlates with gut 
health. As a consequence of this dietary change, there will be an increase in SCFAs 
and other related organic acids, which may also confer health benefits.  
Finally, substrates targeting (increasing the abundance or activity of) distinct 
members of the microbiota known to produce specific SCFA species of interest may 
be a means of addressing particular health concerns. Increasing environmental 
diversity could be brought about by a diet rich in varied fermentable carbohydrates 
such as dietary fibre, glycosylated polyphenolics, glucosinolates and other plant 
glycans, applied in a sustained fashion. We envisage a dietary regime consisting of 
polymolecular dietary fibre complexes such as cell walls in fruit, vegetables, cereals, 
nuts and seeds, essentially randomised over time, so that no successive meals are 
the same. To a large extent, this simulates a normal varied healthy diet.  
Increasing SCFA and other beneficial microbial metabolites in a non-specific fashion 
appears to be simply an outcome of increasing non-specific fermentable 
carbohydrate consumption. Choices of fermentable carbohydrate then impart a 
degree of selection over the acids produced. Given sufficient additional information, 
such as the microbial makeup of the individual’s microbiota, we may be able to make 
informed choices as to which members need to be increased in activity and/or 
abundance to yield specific results. For example, if increased propionate was the 
desired response, and a sufficient Veillonella population exists, then we could 
consider increasing lactate production with RS or long-chain inulin in a carbon-rich 
environment, and rely on the Veillonella conversion of lactate to propionate by the 
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acrylyl CoA pathway (Figure 3.2), whilst in the absence of Veillonella, consider 
arabinoxylans in a low carbon environment being directly fermented to propionate 
by Bacteroides via succinate (Figure 3.2). 
The challenge will be to use all the information we have on microbial modulation with 
dietary fibre: to increase functional modular complexity by using diet to drive 
increased ecological diversity; or change the SCFA profile to a healthier profile; 
either increased total SCFA concentrations or enhancing specific acid species 
concentration. 
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AbstractAbstractAbstractAbstract    
Consumption of diets rich in fibers has been associated with beneficial effects on 
gastrointestinal health. However, detailed studies on molecular effects of fibers in 
colon are limited. In this study we investigated and compared the influence of five 
different fibers on the mucosal transcriptome, luminal microbiota and SCFA 
concentrations in the murine colon. Mice were fed isocaloric diets enriched with 
fibers that differed in carbohydrate composition, namely inulin (IN), oligofructose 
(FOS), arabinoxylan (AX), guar gum (GG), resistant starch (RS) or a control diet 
(corn starch) for 10 days. Gene expression profiling revealed the regulation of 
specific, but overlapping sets of epithelial genes by each fiber, which on a functional 
level were mainly linked to transcription/translation and various metabolic pathways 
including fatty acid oxidation, tricarboxylic acid cycle, and electron transport chain 
for which PPARγ was predicted to be a prominent upstream regulator. Microbiota 
profiles were distinct per dietary fiber, but IN, FOS, AX and GG induced a common 
change in microbial groups. All dietary fibers, except RS, increased SCFA 
concentrations, albeit to a different extent. Multivariate data integration revealed 
strong correlations between the expression of genes involved in energy metabolism 
and the relative abundance of members of Clostridium cluster XIVa bacteria. 

IntroductionIntroductionIntroductionIntroduction    
Dietary fibers are complex carbohydrate polymers that escape digestion and 
absorption in the small intestine (Slavin 1987). Importantly, consumption of fiber-rich 
diets has been associated with a variety of beneficial health effects, including the 
improvement of gastrointestinal homeostasis (Aune et al. 2011, Balakrishnan and 
Floch 2012, Eswaran et al. 2013, Slavin 2013). A large diversity of types and sources 
of dietary fibers exist (Slavin 1987, Cummings and Stephen 2007). However, all are 
fermented in the large intestine by the gut microbiota, mainly generating short chain 
fatty acids (SCFA) (Nyangale et al. 2012, Russell et al. 2013). The main SCFA that 
are produced are acetate, propionate, and butyrate, but their production-ratio is fiber 
and microbiota composition dependent (Flint et al. 2008, Van den Abbeele et al. 
2011, Van den Abbeele et al. 2013b). 
Much research has been conducted to investigate effects of dietary fibers on gut 
health and microbiota composition, however, most in vitro, animal or human studies 
investigated a single fiber at a time. Moreover, data on the genome-wide 
transcriptional effects of dietary fibers in colonic mucosa are scarce. This is 
remarkable since there is a major interest in characterizing the genes and networks 
that are regulated by food components, because this contributes to our 
understanding of a healthy diet (Müller and Kersten 2003, Afman and Muller 2006). 
It has only been reported that differential gene expression due to consumption of 
resistant starch (RS) suggested improvement of structure and function of the 
gastrointestinal tract in rats (Keenan et al. 2012), and induced catabolic but 
suppressed immune and cell division pathways in the proximal colon of pigs (Haenen 
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et al. 2013a). In addition, it was shown that oligofructose (FOS) induced expression 
of genes involved in the TCA cycle, oxidative phosphorylation and proteasome-
mediated degradation of intracellular proteins in the rat colon (Rodenburg et al. 
2008). 
Regarding the microbiota, it has been reported that fibers benefit specific groups of 
bacteria, such as some members of the Bifidobacteriaceae, which are specialized to 
utilize only certain groups of oligosaccharides (Barboza et al. 2009, Riviere et al. 
2014), whereas Bacteroides spp. have a range of glycoside hydrolases and are 
capable of switching between different substrates (Hooper et al. 2002). Members in 
both bacterial groups can degrade starch, which is known to increase butyrate 
production, although neither of them is known to produce this metabolite (Duncan et 
al. 2004). Bifidobacteria produce mainly lactate and acetate, whereas Bacteroides 
spp. produce several metabolites, including succinate, acetate and propionate (Flint 
et al. 2008). Other bacteria make use of either the sugars released from fibers that 
are hydrolyzed by these bacteria, or their fermentation products via cross-feeding, 
leading to the observed increased levels of butyrate (Belenguer et al. 2006, Falony 
et al. 2006). As a result dietary fibers modulate the microbiota composition by 
triggering bacteria that directly feed on them, but also the cross-feeding bacteria that 
depend on these primary degraders. 
The aim of the current study was to comprehensively investigate and compare the 
effects of five different fibers on the mucosal transcriptome, together with alterations 
in the luminal microbiota composition in the murine colon. To this end, mice were fed 
diets enriched with fiber components that differed in carbohydrate composition or a 
control diet for 10 days. The colonic gene expression profiles and luminal microbiota 
composition were determined by microarray techniques, and integrated using 
multivariate statistics. Our data revealed consistent associations between fiber 
induced enrichment of Clostridium cluster XIVa representatives and changes in 
mucosal gene expression patterns related to energy metabolism. In addition, the 
latter changes were predicted to involve the nuclear receptor PPAR as an important 
regulator of these mucosal responses.  
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ResultsResultsResultsResults    

Dietary fibers differentially modulate gene expression in colonic epithelial cells Dietary fibers differentially modulate gene expression in colonic epithelial cells Dietary fibers differentially modulate gene expression in colonic epithelial cells Dietary fibers differentially modulate gene expression in colonic epithelial cells     
Expression profiling by microarray was performed to assess the genome-wide 
differences in gene expression in colonic epithelial cells of animals fed different 
dietary fibers. To compare individual mice on basis of their gene expression profile 
and diet, sparse PLS-Discriminant Analysis (DA) was performed. In the score plot a 
clear separation was observed along the x-axis between samples of the CON and 
RS groups versus the other four fibers, whereas along the y-axis the separation 
between groups was much less pronounced (Figure 4.1    A). In addition, the 90% 
confidence ellipses from the FOS, IN and GG groups largely overlapped with each 
other. These results show that the gene expression profiles were mainly 
distinguishable based on the chemical composition of the carbohydrate polymers, 
i.e. the starch vs. the non-starch polysaccharides (NSP). Among the NSP diets, we 
observed an additional separation between diets consisting of hexose- (FOS, IN, 
GG) and pentose-polymers (AX). Subsequently, 897 genes were identified that were 
differentially expressed by any of the 5 fibers (F test P < 0.01). A heatmap 
representing the signal intensities of these genes is given in Figure 4.1 A. In line with 
the PLS-DA, similar effects of RS and CON diet on gene expression were observed, 
showing that RS had only minor effects on the transcriptome in colonic epithelial 
cells as compared to the control diet. The response patterns for IN, FOS, GG and 
AX were clearly distinct from those for CON and RS. Within the cluster of IN, FOS, 
AX, and GG samples, the AX samples clustered together, and tended to separate 
from the majority of IN, FOS and GG samples, although some individual animal 
variation was observed especially within the FOS group. Based on their expression 
pattern, genes could be grouped in two main clusters that distinguished RS and CON 
samples from the other fiber diet samples. Next, the number of significantly (P < 
0.01) regulated genes per fiber compared to control were determined. The largest 
number of genes changed was observed for FOS (925), and smallest for RS (287).    
Only 28 genes were commonly regulated by all fibers, whereas 97 genes were 
commonly regulated only by the NSP fibers. Taken together, these results showed 
that RS induced only few, but specific gene expression changes and appeared to be 
most similar to the control diet. The hexose polymers (FOS, IN, GG) caused 
relatively similar gene expression changes, while AX induced a quite consistent and 
specific gene expression pattern that may relate to the fact that this is the only 
pentose polysaccharide employed in this study. 
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Figure 4.1 Differential effects of dietary fiber on gene expression profiles in colonic epithelial 
cells. Panel A: PLS-DA score plot of gene expression profiles in colonic epithelial cells of mice 
fed 5 different fibers or the control diet. In the plot the samples (individual mice) were plotted 
based on the two main variates. Ellipses indicate 90% confidence intervals of the scores. 
Panel B: A heatmap was generated to visualize the expression values of the 897 significantly 
regulated genes across all diet groups (F test P < 0.01). Columns represent the samples 
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(individual mice), rows represent genes. Both samples and genes were subjected to 
unsupervised hierarchal clustering based on Euclidean distance. Colors represent row-
normalized gene expression values; the color range is continuous and ranges from blue (i.e. 
low expressed) to red (i.e. high expressed). 

Functional implications of differential gene expression in epithelial cellsFunctional implications of differential gene expression in epithelial cellsFunctional implications of differential gene expression in epithelial cellsFunctional implications of differential gene expression in epithelial cells    
To gain better insight into the functional changes represented by the regulated 
genes, gene set enrichment analysis (GSEA) was performed, and significantly 
changed gene sets (GS) were identified (P < 0.0001). The smallest number of 
changed GS was found for RS (140), whereas for IN (329) the largest number was 
identified. To better highlight commonalities and differences between fiber diets, an 
Enrichment Map was created in which all GS were represented that were 
significantly regulated by at least one of the fibers. Since in this union of regulated 
GS, inulin modulated the largest number of GS, it was chosen as the fiber to which 
the effects of all other fibers were compared (Figure 4.2). The resulting Enrichment 
Map of 604 gene sets displayed two major clusters of functionally related processes, 
namely energy metabolism and gene transcription/translation (Figure 4.2). Other 
clusters belonged to immunity, protein-degradation, adhesion dynamics, signaling 
and morphogenesis. While genes belonging to energy metabolism were induced by 
IN, FOS, AX and GG, they were not changed or even suppressed by RS compared 
to CON. In particular, genes belonging to fatty acid catabolism, TCA cycle, and 
electron transport chain were induced by all fibers except RS. Similarly, target genes 
of two transcription factors, peroxisome proliferator-activated receptor (PPAR) and 
nuclear factor (erythroid-derived 2)-like 2 (Nrf2), were induced by IN, FOS, AX and 
GG. Nevertheless, functional processes similarly regulated by all fiber diets, 
including RS, were also observed, such as for the category of lipid biosynthetic 
processes, in which genes belonging to phospholipid and steroid synthesis were 
induced for all fibers. In addition, most immune-related processes, comprising both 
adaptive and innate immunity (inflammation, defense response, platelet activation) 
were modulated by all fiber diets. Within the cluster of innate immunity the gene 
encoding NFKBIB, which is an inhibitor for NFKB, was commonly yet modestly 
activated by all fiber diets. While aspects of innate immunity and genes encoding for 
immunoglobulin domain were consistently activated by all fiber, not all aspects of 
adaptive immunity were consistently regulated. Within the adaptive immunity gene 
cluster, the genes belonging to the subcategory of T cell differentiation were 
suppressed by all fibers, except FOS. Furthermore, we observed that genes 
belonging to the category adhesion dynamics (cytoskeleton, adhesion function, 
GTPase signaling) were most significantly activated by the RS diet, while these 
processes were suppressed (AX, FOS) or unaffected (IN, GG) by the other fiber 
diets. Genes related to transcription and translation were predominantly suppressed 
by all fibers. However, within this cluster, genes related to gene-specific transcription 
were not affected by RS diets and genes related to translation and RNA transport 
were not affected by FOS. Moreover, we observed a cluster of GS belonging to 
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protein-degradation (ubiquitin-proteasome system) for which inconsistent regulation 
by different fibers was observed. While this cluster was most consistently and 
positively enriched for FOS fed mice, others did not have an effect (AX) or even 
suppressed theses GS (RS).  
Taken together, we found consistent activation of major metabolic pathways and in 
particular the transcription factor target genes of PPAR and Nrf2 were activated for 
non-starch fibers. In general, processes related to innate immunity were consistently 
activated for all fiber whereas transcription/translation was largely suppressed. Other 
processes such as adhesion dynamics, protein degradation and adaptive immunity 
were rather inconsistently regulated by the different fiber diets.  

Identification of upstream regulatorsIdentification of upstream regulatorsIdentification of upstream regulatorsIdentification of upstream regulators    
The underlying mechanisms by which the fibers modulated gene expression 
changes are not well understood. We therefore aimed to identify potential upstream 
transcriptional regulators that could explain the observed shifts in gene expression 
profiles. Next to the canonical involvement of PPAR, the different diets appear to 
modulate gene sets that are connected to other regulators (Table 4.1). In line with 
results obtained by GSEA, PPAR, particularly the isoform PPARG, was potentially 
activated for FOS, AX, GG, but most for IN. In addition, we observed both 
overlapping and unique sets of PPARG target genes within the fiber specific GS ( 
Figure S 4.1). Next to PPARG, several other regulators were predicted to play a role 
in the transcriptional responses elicited by one or more of the fibers. Notably, the 
transcription regulator KDM5B was uniquely predicted to play a role in control of the 
RS modulated gene expression profiles, which may at least in part explain the 
specific gene expression profile induced by RS. KDM5B is a histone demethylase 
and plays a role in cell fate decisions. In addition, within the FOS-specific 
transcription pattern changes, NR5A2 and MBD2 were uniquely predicted to play a 
role in the control of these genes. Among the transcriptional regulators for GG we 
identified sterol/lipid metabolism related regulator (SREBF1, SREBF2), NR1I2 
involved in drug metabolism, and STAT5A and STAT5B involved in cytosolic 
signaling. For AX, TP63 was specifically identified.  
Taken together, we identified potential transcription regulators that may explain 
commonalities and differences in gene regulation patterns observed for the different 
fiber diets. In particular, PPARG appears to play a central role in the gene expression 
response to dietary fiber in colonic epithelia.  
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Table 4.1 Common and specific potential upstream regulator in colon of mice after feeding 
different fiber diets as determined by Ingenuity Systems Pathway Analysis Software 
(Transcriptional regulator and ligand-dependent nuclear receptor which showed an activation 
z-score ≥ 2 or ≤ -2 and a p-value < 0.05 are displayed) 
 

      Activation score per dietary fiber  

 RS FOS AX IN GG 

PPARG  2.83 2.01 4.23 3.07 

HNF4A    2.58 3.50 

TP53    2.36 2.82 

ATF4  2.61   2.43 

PPARGC1A    2.39 2.08 

XBP1     2.93 

NR5A2  2.61    

SREBF1     2.58 

FOXC2    2.43  

SREBF2     2.22 

PTTG1    2.21  

NR1I2     2.09 

CEBPB    2.02  

KDM5B 2.00     

NCOA2    2.00  

TP63   -2.15   

STAT5B     -2.16 

MBD2  -2.23    

STAT5A     -2.36 

MYC    -2.63  
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Figure 4.2 Enrichment Map of gene 
sets that were changed by at least 
one fiber compared to control. 
GSEA was performed to identify 
functional gene sets, i.e. metabolic 
pathways or signaling transduction 
routes, that were changed by at 
least one fiber compared to control 
(P<0.0001). Nodes represent 
functional gene sets, and edges 
between nodes represent their 
similarity. A red node indicates 
induction of a gene set, a blue node 
indicates suppression of a gene set 
, and a white node indicate no 
significant regulation of a gene set 
by a fiber compared to control. 
Node size represents the gene set 
size, and edge thickness represents 
the degree of overlap between 2 
connected gene sets. Clusters are 
manually grouped and labeled to 
highlight the prevalent biologic 
functions among related gene sets. 
As basis layout served the 
interaction network for IN, because 
for this fiber most gene sets were 
changed. Biological processes 
specific for a fiber are indicated in 
the respective network. 
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Dietary Dietary Dietary Dietary fibers differentially modulate microbiota compositionfibers differentially modulate microbiota compositionfibers differentially modulate microbiota compositionfibers differentially modulate microbiota composition    
Intestinal content of the colon from four mice per dietary treatment was subjected to 
microbiota quantification and composition analysis. Although all fibers seemed to 
increase colonic microbiota density compared to the control diet, no statistical 
significance was reached (Figure S 4.2). MITChip analysis revealed that all five fibers 
changed the colonic microbiota composition, except for a single mouse from the RS 
group that clustered with the mice from the CON group (Figure S 4.3). The microbial 
diversity, as determined by the Shannon index, did not show any significant 
differences between different diet groups (data not shown). To relate changes in 
microbiota composition to the different diets, the hybridization signals of 96 genus-
level phylogenetic groups was subjected to redundancy analysis (RDA). Overall, 
73.7% of the total variation in microbiota composition was captured within the first 
two canonical differentiation axes, with diet explaining 34.8% (Figure 4.3). Samples 
from the RS and control diet clustered separately from IN, AX, FOS and GG. The 
genus-like groups in the plot that correlated with RS and control diets belong to the 
Bacteroidetes phylum, and also encompassed specific classes of the Firmicutes 
phylum (Bacilli, Clostridium clusters I, II and IV), and single genus groups of the 
Actinobacteria, Proteobacteria and Deferribacteres phyla. In the opposite direction 
groups within Clostridium cluster XIVa and a specific genus group of the 
Bacteroidetes phylum correlated with IN, GG and FOS. The AX diet-group was 
positioned centrally in the plot, illustrating that this diet did not clearly correlate with 
changes in any specific bacterial groups. To assess potential differences of 
individual genus-like groups detected by the MITChip between the different diet 
groups, all fibers were pairwise compared to the control diet. In total 47 genus-like 
bacterial groups were significantly different (P < 0.05) for at least one of the fibers 
(Figure 4.4). The main differences included a consistent decrease in members of 
Clostridium clusters I, II and IV and Gammaproteobacteria and an increase in 
Clostridium cluster XIVa genes like groups (except Ruminococcus obeum et rel.) for 
IN, FOS, AX and GG relative to the control diet.  

Dietary fibers differentially modulate luminal SCFA levelsDietary fibers differentially modulate luminal SCFA levelsDietary fibers differentially modulate luminal SCFA levelsDietary fibers differentially modulate luminal SCFA levels    
Despite differences in fiber type, IN, FOS and GG were highly similar in epithelial 
cell gene expression responses. Therefore, it was assumed that this might be 
explained by similar production of fermentation products of these fibers by the 
microbiota. Moreover, differences between the AX-induced colonic transcriptome 
patterns and those obtained from mice fed IN, FOS or GG might be, at least partially, 
explained by the fermentation profiles of the microbiota stimulated by the different 
fibers. As the main fermentation metabolites of dietary fibers, SCFA were analyzed 
in the luminal content. Total SCFA concentrations significantly increased in colonic 
luminal samples obtained from mice that were fed IN, AX, and GG (P <0.05), while 
a similar trend was observed for FOS (P =0.07). The highest cumulative SCFA 
concentrations were observed for mice fed GG, followed by IN.  
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Figure 4.3 Differential modulation of colonic microbiota composition by dietary fibers. 
Correlation triplot based on a redundancy analysis (RDA) depicting the relationship between 
colonic luminal microbiota composition and the differences induced by dietary fibers. Dietary 
fiber, used as explanatory variable, explained 34.8% of the total variation in the microbiota 
composition, and 73.7% of that variation was explained by the first two canonical axes shown 
here. Samples are labelled per diet group, and bacterial groups are indicated by arrows. The 
arrows point in the direction of maximal variation in the species abundances, and their lengths 
are proportional to their maximal rate of change. Long arrows correspond to species 
contributing more to the data set variation. Right-angle projection of a sample dot on a species 
arrow gives approximate species abundance in the sample. 
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Figure 4.4 Heatmap of phylogenetic groups that were significantly affected by any of the 
dietary fibers. All fibers were pairwise compared to the control diet to identify genus-like 
bacterial groups that were affected by any of the fibers. In total 47 genus-like bacterial groups 
were significantly different (P < 0.05). Changes in abundance are depicted in colors; red: 
increased, blue: decreased. * indicate statistical significance as determined by Mann-Whitney 
U-test. 
 

In contrast, the SCFA concentrations in samples obtained from mice fed RS were 
comparable to those obtained from the control fed animals (Figure 4.5 B). In all diet 
groups, the acetate concentration was highest. ANOVA analysis revealed that mean 
concentrations of both acetate and propionate were significantly different between 
any of the fibers (P <0.05) (Figure 4.5 A). Specifically, acetate concentrations in 
samples obtained from mice fed AX, IN and GG were significantly higher compared 
to samples obtained from mice fed CON and RS diet, while propionate 
concentrations were significantly higher in samples from mice fed FOS, AX, IN and 
GG compared to CON. Butyrate concentrations were not significantly different 
between the diet groups but showed a trend (P =0.061). No significant difference 
was observed for iso-butyrate, valerate or iso-valerate . Taken together, these 
results show that the different fibers increased total colonic luminal SCFA to a 
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different extent. The highest SCFA concentrations were found for IN and GG.  

 
Figure 4.5 Dietary fibers differentially modulate luminal SCFA levels. Colonic luminal SCFA 
concentrations in μmol/g colonic content were measured with gas chromatography. The mean 
± SEM for A) individual SCFA and B) total SCFA concentrations for each diet group is 
represented in a bar plot. Different letters indicate statistical difference between the diet 
groups as tested with ANOVA and Tukey post hoc test. 

Integrative analysis of changes in colonic epithelial cell gene expression and Integrative analysis of changes in colonic epithelial cell gene expression and Integrative analysis of changes in colonic epithelial cell gene expression and Integrative analysis of changes in colonic epithelial cell gene expression and 
luminal microbiota compositionluminal microbiota compositionluminal microbiota compositionluminal microbiota composition    
To get insight in the interaction between changes in gene expression and microbiota 
composition, and to generate new hypotheses about potential mechanisms 
explaining host transcriptional responses to fiber fermentation by the microbiota, we 
investigated how changes in microbiota composition correlated with changes in 
colonic epithelial cell gene expression. The correlation pattern between microbiota 
and gene expression across 22 samples was visualized in a heat map. This clustered 
heatmap revealed five clusters of genes and three main clusters of discriminating 
bacterial groups (Figure 4.6) (Gene lists are available upon request)    for all genes 
and bacteria per cluster). The strongest correlations were found for bacteria in cluster 
C, which positively correlated with genes in cluster 1, but negatively correlated with 
genes in cluster 5. This cluster C contained known butyrate-producing bacteria 
belonging to Clostridium cluster XIVa. These bacteria co-clustered with saccharolytic 
bacteria such as Parabacteroides distasonis (Sakamoto and Benno 2006) in cluster 
C, which suggests a potential cross-feeding relationship. Genes in cluster 1 were 
involved in metabolic, energy-generating and oxidative processes, whereas genes 
in cluster 5 were involved in adhesion dynamics and signaling. While these 
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processes were positively correlating with bacteria from Clostridium cluster XIVa, 
Turicibacter et. rel and Clostridium perfringens showed negative correlation with 
these sets of genes. Correlation of the three main SCFA, acetate, propionate and 
butyrate with host gene expression showed strongest correlation for acetate and 
propionate (data not shown). The strongest correlation was found for acetate 
correlating with genes related to the functions adhesion dynamics (Cmah) and 
immunity (Trim15, Nos2, Duoxa2, Atf3). Thus, multivariate analyses revealed strong 
correlations between gene expression changes and relative abundance of bacteria, 
among which members of Clostridium cluster XIVa stood out because of strong 
association with mucosal gene expression patterns.   
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Figure 4.6 Integration of epithelial cell gene expression with luminal microbiota composition. 
Sparse PLS canonical correlation analysis was performed to integrate gene expression values 
with relative abundance data of bacteria for individual mice. The heatmap represents the 
correlation structure of both dataset; red: positively correlated, blue: negatively correlated. The 
more intense the color is, the higher the correlation value. Correlation values were subjected 
to unsupervised hierarchal clustering based on Euclidean distance for both genes and 
microbial groups. Three main gene clusters, and five main bacterial clusters were identified. 
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DiscussionDiscussionDiscussionDiscussion    
In the current study five different dietary fibers were fed to mice to comprehensively 
study the effects on epithelial cell gene expression, luminal microbiota composition 
and SCFA concentrations. We found that each fiber provoked a specific, but 
overlapping response with respect to these different aspects.  

PPARγ is proposed to be a central regulator of transcriptional responses to fiberPPARγ is proposed to be a central regulator of transcriptional responses to fiberPPARγ is proposed to be a central regulator of transcriptional responses to fiberPPARγ is proposed to be a central regulator of transcriptional responses to fiber----
diets. diets. diets. diets.     
Dietary fibers have diverse effects on the microbiota and host metabolism, of which 
the latter is most likely mediated by the SCFA that have been shown to elicit diverse 
effects on colonic gene expression patterns (Vanhoutvin et al. 2009, Alex et al. 
2013). To the best of our knowledge, however, it has not yet been determined how 
different dietary fibers can modulate colonic gene expression in the same mouse 
model. At the start of this study, we anticipated that different dietary fibers would 
induce differential responses in terms of colonic epithelial gene expression. Our 
results showed that many of these transcriptional responses are conserved for 
several fibers on the level of functional implications, but that specific genes are more 
variable. Among the functional implications, target genes of the nuclear receptor 
PPAR were found to be commonly regulated, albeit to a different extend, i.e. different 
targets were regulated by non-starch fiber diets and in different magnitude (Figure S 
4.1), which may be indicative for differences in SCFA fluxes across the colonic 
epithelium. Furthermore, the main separation of the diet-associated transcriptome 
profiles was obtained for mice on non-starch fiber diets compared to starch diets. 
This separation coincided with changes in the cumulative SCFA levels in the colonic 
lumen. SCFA have recently been identified as modulators of PPARγ in vitro (Alex et 
al. 2013). Therefore, we conclude that PPARγ appears to play a prominent role in 
regulation of the in vivo responses to altered fermentation activity and increased 
SCFA levels in the colon. It has been shown that PPARγ mainly regulates genes 
involved in metabolism, in particular lipid metabolism, but also affects signaling, 
motility and cell adhesion (Su et al. 2007). In our study, especially the IN fed mice 
displayed an increased expression level of genes involved in lipid metabolic 
processes. Taken together we propose that fiber fermentation by the colon 
microbiota is leading to activation of PPARγ in the colon epithelia, probably through 
increased levels of SCFA exposure. Nevertheless, the variability of gene response 
magnitude as well as specific gene expression patterns that may be related to 
PPARγ activation and the role of SCFA production patterns warrant further research. 
Activation of PPARγ is also of interest because this transcription factor has been 
demonstrated to coordinate the expression of anti-inflammatory properties in 
inflammatory bowel disease (Dubuquoy et al. 2006) and appears to play a pivotal 
role in the interplay between metabolism and immune function regulation (Hou et al. 
2012).  
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Clostridium cluster XIVa correlates with epithelial cell metabolic pathwaysClostridium cluster XIVa correlates with epithelial cell metabolic pathwaysClostridium cluster XIVa correlates with epithelial cell metabolic pathwaysClostridium cluster XIVa correlates with epithelial cell metabolic pathways    
We showed that dietary fibers yielding increased SCFA concentrations in the colonic 
lumen commonly increased the transcription of genes involved in metabolic 
processes associated with energy metabolism. The data also demonstrate 
relationships between the microbiota composition and these changing host gene 
expression patterns. In particular bacterial groups within Clostridium cluster XIVa 
correlated with genes involved in energy metabolism. This bacterial group is known 
to encompass many secondary fermenters, of which several have been shown to 
produce butyrate as their metabolic end product (Louis and Flint 2009). In addition, 
Clostridium cluster XIVa adherence to the mucosal layer has been reported using in 
vitro models, a feature which may facilitate the delivery of butyrate directly to the 
epithelial cells (Van den Abbeele et al. 2013a). Several of these known butyrate 
producers were found to positively correlate with the gene expression changes 
associated with energy metabolism. Unfortunately, and analogous to many other 
studies, the data presented here are based on single time-point measurements, and 
thereby fail to represent actual production or absorption rates of SCFA. Such flux 
data could give a considerable refinement to our understanding of the rate of 
production of butyrate by these bacteria and the actual levels of butyrate flux 
experienced by the colonic epithelia, respectively. Interestingly, the Clostridium 
cluster XIVa bacteria co-clustered with Parabacteroides distasonis, for which it has 
been shown that its oral administration to mice can reduce inflammation in DSS 
induced colitis, which was proposed to be exerted by specific immune regulatory 
mechanisms as well as changes in the colonic microbiota (Kverka et al. 2011). This 
observation further supports the anti-inflammatory potential of dietary fibers, which 
may be linked to their stimulatory effects on specific bacterial groups that produce 
anti-inflammatory antigens and/or metabolites. 

Specific effects of dietary fibSpecific effects of dietary fibSpecific effects of dietary fibSpecific effects of dietary fiberererer    
The transcriptional effects observed in colonic epithelia in mice fed RS or AX was 
quite distinct from those obtained for mice fed GG, IN and FOS. The transcriptomes 
associated with AX clustered separate from the mixed transcriptome clustering of 
the IN, GG and FOS samples, which may be related to the particular chemistry of 
AX. This fiber is a polymer consisting of arabinose and xylose moieties, and thus 
consists of pentose- rather than hexose-polymers, the latter of which are the building 
blocks of IN, FOS, GG and RS. The transcriptome patterns obtained from mice fed 
the RS diet were clearly distinct from any of the other fiber diets, which coincided 
with a clear separation of the RS diet on basis of colonic luminal SCFA concentration 
and microbiota composition data. Preliminary analyses of mono-, di- and 
oligosaccharides in the intestinal lumen samples revealed that RS fed mice 
contained large amounts of non-degraded starch in their colonic lumen as compared 
to the other diets (Figure S 4.4). Hence, the deviating effects of RS might be 
explained by difference in fermentation process, possibly leading to production of 
other microbial metabolites. Next to SCFA, there are a variety of other metabolites 



Chapter 4  

56 

 

formed by the intestinal microbiota (Russell et al. 2013). 

ConclusionConclusionConclusionConclusion    
Using comprehensive transcriptome and microbiome analysis we showed common 
and specific effects of dietary fibers on gene expression patterns in the colonic 
epithelia and microbiota and SCFA compositions in colonic lumen. The common 
regulation of genes involved in energy metabolism by some dietary fibers is 
proposed to involve the increased colonic SCFA level that can modulate the 
transcription factor PPARγ. The transcriptional regulation of epithelial metabolic 
processes was strongly correlated with the abundance of members of Clostridium 
cluster XIVa, among which were several known butyrate producers. Taken together, 
the data illustrate that dietary fibers that can induce increased total SCFA 
concentrations in combination with the abundance of Clostridium cluster XIVa may 
have a beneficial effect on colonic tissue homeostasis by targeting PPARγ. This 
modulation of the immuno-metabolism within the mucosa, leading to increased anti-
inflammatory characteristics of the colonic tissue, which to a certain extent appeared 
to be independent of the fiber-type used. The fiber-specific differences, however, 
may also be of importance, as they may have location specific implications due to 
differences in microbiota composition and activity, differences in the secretion of 
microbe-derived factors and the related host-response.  
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MethodsMethodsMethodsMethods    

Ethics statementEthics statementEthics statementEthics statement    
The institutional and national guidelines for the care and use of animals were 
followed and the experiment was approved by the Local Committee for Care and 
Use of Laboratory Animals at Wageningen University (DRS code: 2010167).    

Animals, diets, design and samplingAnimals, diets, design and samplingAnimals, diets, design and samplingAnimals, diets, design and sampling    
Male C57BL/6J mice were purchased from Charles River Laboratories (Maastricht, 
the Netherlands) at 6 weeks of age. Mice were housed in pairs in a light- and 
temperature-controlled animal facility of Wageningen University (12 hour light-dark 
cycle; light on from 11h PM to 11h AM, 21 °C). Mice had free access to water and 
food throughout the entire experimental period. Upon arrival, mice were fed standard 
lab chow (RMH-B, Arie Blok, Woerden, the Netherlands) for 3 wks. Subsequently, 
all mice were adjusted to the control diet, a standard semi-synthetic low fat diet 
containing corn starch, for 2 wks. To achieve similar weight distribution among the 
diet groups, mice were stratified according to their body weight to one of the six diet 
groups (n=10 per diet group), i.e. control (CON), inulin (IN), oligofructose (FOS), 
arabinoxylan (AX) , guar gum (GG) or resistant starch type 3 (RS). The diets 
enriched in fiber were identical to the control diet, except that 10% (w/w) of corn 
starch was replaced by each fiber (20% for RS, see below). Inulin (brand name 
Frutafit IQ) and oligofructose (brand name Frutalose OFP) were a gift of Dr Diederick 
Meyer (Sensus, Roosendaal, the Netherlands); arabinoxylan (brand name NAXUS) 
was a gift of Dr Hans van der Saag (BioActor, Maastricht, the Netherlands); guar 
gum (brand name Viscogum) and resistant starch (brand name ActiStar) were 
obtained from Cargill R&D Centre Europe (Vilvoorde, Belgium). According to the 
supplier, the RS was only 50% resistant to digestion in the small intestine, and was 
therefore included in the diet at a 20% (w/w) level, i.e. double the amount of the other 
fibers. Diets were prepared by Research Diet Services (Wijk bij Duurstede, The 
Netherlands). Detailed composition of the diets is presented in Table S 4.1. . . . Mice 
were fed the fiber or control diets for 10 days. On the day of sections, mice were 
fasted for 4hrs (starting at 5 AM). Mice then received a calibrated meal of 1g of their 
habitual diet to reduce the inter-individual variation in physiological state at time of 
tissue collection. Four hours later mice were anaesthetized with isoflurane, and the 
colon was excised. The adhering fat around the colon was carefully removed, and 
the colon was cut open longitudinally. The luminal content was sampled and the 
tissue was rinsed with ice-cold phosphate buffered saline. Subsequently, the 
epithelial lining of the colon was scraped off. Luminal content and scrapings were 
collected in tubes, which were immediately snap frozen in liquid nitrogen and stored 
at -80°C.  

RNARNARNARNA    isolation, Affymetrix microarray processing and analysis. isolation, Affymetrix microarray processing and analysis. isolation, Affymetrix microarray processing and analysis. isolation, Affymetrix microarray processing and analysis.     
Colonic scrapings (n=6 per diet group) were subjected to genome-wide expression 
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profiling. In brief, total RNA was isolated from epithelial scrapings and were 
hybridized on Mouse Gene 1.1 ST arrays (Affymetrix). Packages from the 
Bioconductor project (Gentleman et al. 2004), integrated in an online pipeline (Lin et 
al. 2011), were used for quality control and statistical analysis of the array data. Due 
to insufficient quality, 1 array from the control group had to be excluded from further 
analysis. The dataset was filtered to only include probe sets that were active (i.e. 
expressed) in at least 5 samples using the universal expression code (UPC) 
approach (UPC score > 0.50) (Piccolo et al. 2013). This resulted in the inclusion of 
8,831 (42%) of the 21,187 probe sets. Differentially expressed probe sets were 
identified by using linear models and an intensity-based moderated t-statistic (Smyth 
2004, Sartor et al. 2006). Probe sets that satisfied the criterion of P < 0.01 were 
considered to be significantly regulated. Array data have been submitted to the Gene 
Expression Omnibus under accession number GSE59494. Detailed information on 
microarray processing and data analysis can be found under Supplemental 
Methods.  

Functional analysis of array dataFunctional analysis of array dataFunctional analysis of array dataFunctional analysis of array data    
Changes in gene expression were related to functional changes using gene set 
enrichment analysis (GSEA) (Subramanian et al. 2005). The Enrichment Map plugin 
for Cytoscape was used for visualization and interpretation of the GSEA results 
(Merico et al. 2010). Upstream Regulator Analysis in IPA (content version 18030641 
released 2013; Ingenuity Systems) was used to identify the cascade of potential 
upstream transcriptional regulators that may explain the observed gene expression 
changes in the data set, and whether they are likely activated or inhibited. Functional 
annotation of selected genes, e.g. identified by multivariate correlation analysis, was 
performed in Enrichr (Chen et al. 2013a). 

DNA isolation, microbiota MITchip proceDNA isolation, microbiota MITchip proceDNA isolation, microbiota MITchip proceDNA isolation, microbiota MITchip processing and analysis ssing and analysis ssing and analysis ssing and analysis     
Total bacterial DNA was extracted from colonic luminal content samples (n=4 per 
diet group) using the repeated bead beating plus column method (Yu and Morrison 
2004). Quantification of the overall bacterial community density was performed by 
qPCR targeting the 16S rRNA gene, whereas the microbial community composition 
was analyzed using the Mouse Intestinal Tract Chip (MITChip) (Geurts et al. 2011b) 
(for further details also see Supplemental Methods). The relative abundance of 96 
genus-level bacterial groups detected on the MITchip was determined by the Robust 
Probabilistic Averaging algorithm (Lahti et al. 2013). Pairwise statistical testing for 
differences for microbial groups between each fiber diet and the control group was 
done using the Mann-Whitney U-test. Groups that satisfied the criterion of P < 0.05 
were considered to be significantly affected. To assess the correlation of the 
microbial groups with all diets groups, multivariate redundancy analysis (RDA) was 
performed as implemented in Canoco for Windows 4.5 (Lepš and Šmilauer 2003). 
The Monte Carlo Permutation test was used to assess the significance of the 
variation in the dataset in relation to the diet.  
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ShortShortShortShort----chain fatty acid analysis in colonic luminal content chain fatty acid analysis in colonic luminal content chain fatty acid analysis in colonic luminal content chain fatty acid analysis in colonic luminal content     
Luminal samples (n=3-5 per diet group) were analyzed for SCFA concentration by 
gas chromatography as described before (Haenen et al. 2013c).  

Multivariate integration and correlation analysis. Multivariate integration and correlation analysis. Multivariate integration and correlation analysis. Multivariate integration and correlation analysis.     
To get insight into the interactions between changes in gene expression and 
microbiota composition, the datasets were combined using the linear multivariate 
method partial least squares (PLS) (Boulesteix and Strimmer 2007). This analysis 
ignores diet group membership. For 15 mice both gene expression and microbiota 
composition data was available, but to increase power the dataset was expanded 
with 7 measurements performed in mice housed in the same cage. Since we did not 
want to make any ‘a priori’ assumption on the relationship between the two sets of 
variables that were analyzed, the canonical correlation framework of PLS was used 
(Le Cao et al. 2009b). Both datasets were log2 transformed before analysis, and the 
correlation matrices were visualized in clustered image maps (Gonzalez et al. 2012). 
Analyses were performed in R using the library mixOmics (Le Cao et al. 2009). 
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Supplemental informationSupplemental informationSupplemental informationSupplemental information    

Supplemental FiguresSupplemental FiguresSupplemental FiguresSupplemental Figures    

    

    
 

 
Figure S 4.1    Upstream regulator analysis.        
PPARG target genes were determined by 
Ingenuity Pathway Analysis. A heatmap 
represents the relative gene expression values 
for each fiber diet compared to control. Red 
indicates increased expression, while green 
indicates decreased expression. The relative 
gene expression values were log2 transformed, 
i.e. a fold change of 0.6 means 1.5 fold 
upregulation, while -0.6 means -1.5 
downregulation with fiber compared to control.      
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Figure S 4.3 Clustering of MITChip profiles at the probe-level. 
Pearson distance-based clustering of the samples on log10 transformed probe level data of 
the MITChip.  

 
  
    

    

Figure S 4.2 Quantitative 
PCR on total bacteria. 16S 
rRNA gene-targeted qPCR 
was used to assess total 
bacterial numbers. The 
copy number per 16S rRNA 
gene was calculated back to 
total copy number per organ 
weight. 
 

Figure S 4.4 Carbohydrate 
content analysis.  
Carbohydrate content was 
analyzed in luminal content of 
mice (n=1; per group) using 
HPAEC (High-performance 
Anion Exchange 
Chromatography). The 
mono/disaccharides were 
calculated based on glucose, 
and the oligosaccharides were 
calculated based on FOS. 
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Supplemental TablesSupplemental TablesSupplemental TablesSupplemental Tables    

 

Table S 4.1 Diet composition 
*Mineral mix S10026 contains the following (g/kg mineral mix): 41.9 magnesium oxide, 257.6 
magnesium sulfate•7H2O, 259 sodium chloride, 1.925 chromium KSO4•12H2O, 1.05 cupric 
carbonate, 0.035 potassium iodate, 21 ferric citrate, 12.25 manganous carbonate, 0.035 
sodium selenite, 5.6 zinc carbonate, 0.20 sodium fluoride, 0.30 ammonium molybdate•4H2O, 
399.105 sucrose. 
**Vitamin mix V10001 contains the following (g/kg vitamin mix): 0.80 retinyl palmitate, 1.0 
cholecalciferol, 10 all-rac-a-tocopheryl acetate, 0.08 menadione sodiumbisulfite, 2.0 biotin 
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(1.0%), 1.0 cyancocobalamin (0.1%), 0.20 folic acid, 3.0 nicotinic acid, 1.6 calcium 
pantothenate, 0.70 pyridoxine-HCl, 0.60 riboflavin, 0.60 thiamin-HCl, and 978.42 sucrose. 

Supplemental MethodsSupplemental MethodsSupplemental MethodsSupplemental Methods    

Microarray processing and data analysis 
Total RNA (100 ng) was used for whole transcript cDNA synthesis by using the 
Ambion WT expression kit (Life Technologies) and subsequently labelled using the 
Affymetrix GeneChip WT Terminal Labeling Kit. Samples were hybridized on Mouse 
Gene 1.1 ST arrays (Affymetrix), washed, stained, and scanned on an Affymetrix 
GeneTitan instrument. Detailed protocols for array handling can be found in the 
GeneChip WT Terminal Labeling and Hybridization User Manual (P/N 702808, Rev. 
7; Affymetrix). Packages from the Bioconductor project (Gentleman et al. 2004), 
integrated in an online pipeline (Lin et al. 2011), were used to analyze the array data. 
Various advanced-quality metrics, diagnostic plots, pseudoimages, and 
classification methods were used to determine the quality of the arrays before 
statistical analysis (Heber and Sick 2006). The probes on the Mouse Gene 1.1 ST 
array were redefined using current genome information (Dai et al. 2005). In this 
study, probes were reorganized on the basis of the gene definitions available in the 
NCBI Mus musculus Entrez Gene database based on the mouse genome build 38 
patch release 1 (GRCm38.p1) (custom CDF v17). Normalized gene expression 
estimates were obtained from the raw intensity values using the robust multiarray 
analysis preprocessing algorithm available in the library ‘AffyPLM’ using default 
settings (Irizarry et al. 2003). Differentially expressed probe sets (genes) were 
identified by using linear models, applying moderated t-statistics that implemented 
empirical Bayes regularization of SEs (Smyth 2004). To adjust for both the degree 
of independence of variances relative to the degree of identity and the relation 
between variance and signal intensity, the moderated t-statistic was extended by a 
Bayesian hierarchical model to define an intensity-based moderated t-statistic 
(Sartor et al. 2006). 

Microbiota analysis-MITChip 

This phylogenetic microarray was designed using criteria of the Human Intestinal 
Tract Chip (HITChip) (Rajilic-Stojanovic et al. 2009). The MITChip consists of 3,580 
different oligonucleotides specific for the mouse intestinal microbiota (Rajilic-
Stojanovic et al. 2009, Geurts et al. 2011a, Reikvam et al. 2012). The array targets 
the V1 and V6 regions of bacterial 16S rRNA genes. The 16S rRNA genes were 
amplified from twenty nanogram of intestinal extracted DNA with the primers 
T7prom-Bact-27-F and Uni-1492-R (Table S 4.2). PCR products were then 
transcribed, and RNA was labelled with Cy3 and Cy5 dyes and fragmented as 
described previously (Rajilic-Stojanovic et al. 2009, Geurts et al. 2011a, Reikvam et 
al. 2012). Finally the samples were hybridized on the arrays at 62.5oC for 16 hours 
in a rotation oven (Agilent Technologies, Amstelveen, The Netherlands). After 
washing and scanning of the slides, data was extracted with the Agilent Feature 
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Extraction software, version 9.1. The data was normalized and analysed using a set 
of R-based scripts in combination with a custom-designed relational database, which 
operates under the MySQL database management system. 

Quantification of bacterial community 
Quantification of the bacterial 16S rRNA gene was done by a qPCR assay using the 
primers developed by (Suzuki et al. 2000). The qPCRs were performed in 384-well 
plates (BioRad) sealed with a film (Microseal B film, Bio-Rad) using a MyIQ cycler 
with MyIQ software (version 1.0.410, Bio-Rad). The reactions were carried out in a 
total volume of 12.5 µl consisting of 1x IQ SYBR green Supermix (Bio-Rad), 200 nM 
of the forward and reverse primer and 2 µl of template DNA, and the cycling program 
and melting curve analysis as previously described (van den Bogert et al. 2011). The 
standard curve consisting of a 8-fold dilution series was a 16S rRNA gene PCR 
product of Escherichia coli top10.  
 

Primer name Sequence Application 

T7prom-Bact-27-F  5’-TGA ATT GTA ATA CGA CTC ACT ATA 
GGG GTT TGA TCC TGG CTC AG–3’ 

MITChip 

Uni-1492-R  5’-CGG CTA CCT TGT TAC GAC-3’ MITChip 

PROK1492R 5' -GGW TAC CTT GTT ACG ACT T-3' QPCR 

BACT1369F 5'-CGG TGA ATA CGT TCY CGG-3' QPCR 

Table S 4.2 List of primers (Suzuki et al. 2000, Rajilic-Stojanovic et al. 2009)    
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AbstractAbstractAbstractAbstract    

BackgroundBackgroundBackgroundBackground    
Metatranscriptomic landscapes can provide insights in functional relationships within 
natural microbial communities. Analysis of complex metatranscriptome datasets of 
these communities poses a considerable bioinformatic challenge since they are 
essentially non-restricted with a varying number of participating strains and species. 
For the RNA-Seq data type a standard approach is to align the generated reads to 
a set of closely related reference genomes. This only works well for microbial 
communities for which a near complete catalogue of reference genomes is available 
at a small evolutionary distance. In this study, we focus on the development of a 
validated de novo metatranscriptome assembly pipeline to obtain functional profiles 
from the caecal microbial communities of four C57BL/6J mice fed on a high-fat high 
protein diet. 

ResultsResultsResultsResults    
A de novo assembly pipeline was developed using RNA-Seq data from an in silico 
generated mock community and further validated using in vivo RNA-Seq data from 
a restricted microbial community taken from an inbred non-obese diabetic (NOD) 
mouse model colonized with Altered Schaedler Flora (ASF). Precision and recall of 
gene expression, functional and taxonomic profiles obtained were compared to 
those obtained with a standard alignment method. The validated pipeline was 
subsequently used to generate expression profiles from non-restricted caecal 
communities of four C57BL/6J mice fed on a high-fat high-protein diet spiked with 
an RNA-Seq data set from a well-characterized human small intestinal sample. The 
spike-in control was used to estimate precision and recall at assembly, functional 
and taxonomic level of non-restricted communities. Functional and taxonomic 
annotation of genes expressed in the mouse microbiome provided insight in global, 
and family specific activities and illustrated the potential of this approach to study 
interactions and task division in unfamiliar microbial ecosystems. 

ConclusionsConclusionsConclusionsConclusions    
A generic de novo assembly pipeline for metatransciptome data analysis was 
developed for microbial ecosystems, which can be applied for microbial 
metatranscriptome analysis in any chosen niche. 
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BackgroundBackgroundBackgroundBackground    
High throughput metagenomics have revolutionized our knowledge of microbial 
communities such as those that populate the human and animal gastrointestinal (GI) 
tract. Complementing 16S ribosomal RNA gene-based compositional analyses, 
metagenome sequencing of these communities provided a broad description of the 
genetic content and relative abundance of individual members. The human 
enterotypes, for instance, have been defined using comparative metagenomic 
analysis of the human gut microbiomes of 39 individuals (Arumugam et al. 2011). 
Metagenomics, however, does not provide insights in the functional interactions 
within a complex microbial ecosystem and how these interactions may change in 
response to an ever-changing environment, including diet. RNA transcript profiling 
can serve as a proxy for ecosystem responses to environmental cues. Recent 
advances in massive parallel sequencing of mRNA-derived cDNA sequences (RNA-
Seq) have led to an exponential increase of such transcriptome profiling studies. 
While most RNA-Seq based expression studies focus on a single species, in a 
number of cases RNA-Seq has been used to profile complex natural microbial 
communities in marine, soil and human and other mammalian GI tract environments 
(Frias-Lopez et al. 2008, Gilbert et al. 2008, Urich et al. 2008, Turnbaugh et al. 2010, 
Baldrian et al. 2011, Xiong et al. 2012, Leimena et al. 2013). Analysis of these large 
complex datasets poses a considerable bioinformatic challenge since natural 
microbial communities are usually non-restricted with a varying number of 
participating strains and species. A standard approach is to align the generated 
RNA-Seq reads to a set of closely related reference genomes or well-annotated 
metagenomes. This approach works well for well-studied microbial communities that 
have a nearly complete catalogue of reference genomes at a small evolutionary 
distance available (Leimena et al. 2013). However, at a larger evolutionary distance, 
the extensive sequence diversity at nucleotide level between the sample and the 
reference database significantly reduces the mapping efficiency of the alignment 
method and increases the probability of spurious assignments.  
To overcome these problems a de novo assembly method can be used. De novo 
assembly of RNA-Seq reads into contigs increases the information content and 
therefore grants a more reliable annotation of the expressed genetic content of an 
unknown microbial community. Subsequently the newly assembled contigs can be 
directly used as target sequences in an mRNA-read mapping approach to obtain 
gene expression data. Currently a whole class of de Bruin graph based assemblers 
have been developed for de novo assembly of Illumina sequencing data (Nagarajan 
and Pop 2013, Yang and Smith 2013). Most of them have been designed to work 
with genomic data from a single species and assume that reads are uniformly 
sampled along a length of a single genome. As such they cannot efficiently deal with 
the existence of many co-linear genomic regions in the genomes of strains and 
species encountered in a non-restricted natural microbial community. Sequencing 
errors, exacerbated by authentic micro diversity caused by the coexistence of 
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syntenic strains of the same species in a community and strong sequence 
conservation of genes common to many species in the community thus can lead to 
assemblies with a relatively high rate of small contigs and to ambiguous chimeric 
contigs. To assess the correctness of de novo metagenome assemblies’ several 
statistical methods are available. These methods involve testing each of the larger 
contigs for a uniform read coverage and for a uniform distribution of k-mer scores 
(Clark et al. 2013). Due to the limited size and strong variations in read coverage, 
however, these statistical analysis methods will not reliably work for RNA-seq 
derived contigs. 
The microbiome of the human GI tract of healthy individuals fulfils a variety of 
beneficial functions for human health (O'Hara and Shanahan 2006). Numerous 
studies have linked an altered gut microbiome to disorders in energy and metabolic 
homeostasis including obesity and diabetes, as well as immune aberrations and 
excessive inflammation diseases (Backhed et al. 2004, Musso et al. 2010, Diamant 
et al. 2011). For a systematic study of the influence of diet, environmental factors 
and host genotype on the microbial diversity and function in the GI tract animal 
models provide an indispensable tool, and the mouse model has emerged as one of 
the preferred model systems. Mouse intestinal microbial communities have been 
mapped using 16S rRNA gene-based community profiling, and many microbial 
mouse intestinal commensals have been identified and categorized. Although the 
phylogenetic make-up of the GI tract microbial communities in human and mouse 
appear to be similar at phylum level, zooming in to genus and species resolution 
reveals a large difference in bacterial composition (Salzman et al. 2002, Ley et al. 
2005). The large evolutionary distance of the microorganisms, combined with a 
strong bias towards human microbiome sequences in the current GI gene catalogs 
results, as we will show here, in low-resolution outcomes of the analysis of mouse 
metatranscriptome data with standard alignment methods (Xiong et al. 2012). This 
led us to design and implement a de novo assembly method that provides better 
gene assignment results, and evaluate sensitivity, reliability and validity of the 
method for the function analysis of complex metatranscriptome data. The generic de 
novo assembly method developed enabled the reliable functional profiling and 
taxonomic binning of unfamiliar microbial ecosystems and was validated by using 
metatranscriptome datasets of community-restricted samples, and samples 
obtained from the mouse GI, and included a spike-in human control sample. 
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Results and DiscussionResults and DiscussionResults and DiscussionResults and Discussion    

Workflow, Samples and Data FilteringWorkflow, Samples and Data FilteringWorkflow, Samples and Data FilteringWorkflow, Samples and Data Filtering    
A generalized metatranscriptome assembly and analysis pipeline was designed 
(Figure 5.1). Briefly the workflow consisted of filtering RNA-Seq reads for low quality 
and non-informative reads such as reads derived from ribosomal RNA (rRNA) 
followed by assembly of the remaining putative ‘mRNA’ reads into contigs, ORF 
calling and gene-function annotation, taxonomic classification and estimation of 
gene expression levels by using read-frequency analyses. 

 
In order to validate the proposed pipeline, two single-end RNA-Seq 
metatranscriptome datasets were used. The first RNA-Seq dataset, obtained from 
an in silico generated mock community was used for a primary evaluation of the 
entire workflow. The second RNA-Seq dataset used to further validate the workflow 
resulted from an in vivo study of a restricted intestinal microbial community of limited 
complexity obtained by the colonization of inbred non-obese diabetic (NOD) mice 
with Altered Schaedler Flora (ASF) obtained from Xiong et al., 2012 (Xiong et al. 
2012). Both datasets were used to estimate precision and recall of the 
metatranscriptome assembly procedure at sequence, functional and taxonomic 
levels. Finally, the pipeline was used to generate functional and taxonomic 
community profiles of RNA-Seq datasets from natural microbial caecal communities 

Figure 5.1 Metatranscriptome 
analysis workflow. Details of the 
programs used are described in the 
methods section 
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of four C57BL/6J mice that were fed a high-fat high protein diet (Schwarz et al. 2012). 
To estimate precision and recall of de novo assemblies obtained from this complex 
non-restricted mouse community, RNA-Seq data from a well-characterized sample 
from the human small intestine (Leimena et al. 2013) was used as spike-in control. 
Technical replicates were available for one of the mouse samples and for the human 
small intestine sample and included to establish the technical reproducibility of the 
procedure. Furthermore, PCR followed by Sanger sequencing of the amplified 
product confirmed the correctness of the sequence of a number of randomly selected 
mouse derived transcript assemblies. 
An essential first step is data filtering (Figure 5.1).    By far the largest fraction of the 
RNA content of a microbial cell is composed of ribosomal RNA (rRNA) and although 
standard mRNA enrichment protocols have been applied to all samples, rRNA 
derived reads remain present in significant amounts. SortmeRNA was employed to 
remove rRNA derived reads (Kopylova et al. 2012). Subsequently adapter 
sequences introduced during sequence-library preparations were removed with 
Cutadapt (Martin 2011), and nucleotides with low quality Phred scores were 
removed by trimming the reads with PrinSeqLite (Schmieder and Edwards 2011). 
Finally, only reads with a minimal length of 50 nucleotides and a minimal mean Phred 
quality score of 30 were kept and used as input for assembly. For all samples filtering 
details are provided in Table S 5.1.  
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Table 5.1 Performance of de Bruin graph assemblers on metatranscriptome data. *mRNA 
reads obtained from the four individual mouse samples were merged with a human small 
intestine spike-in control sample before assembly. 

Assembler performancesAssembler performancesAssembler performancesAssembler performances    
Using filtered mock and mouse caecal metatranscriptome datasets as input, the 
performance of various assemblers was tested; including the IDBA class of 
assemblers (Peng et al. 2010), Trinity (Haas et al. 2013), SOAP (Luo et al. 2012), 
(meta)Velvet (Zerbino and Birney 2008, Namiki et al. 2012) and Oases (Schulz et al. 
2012) (Table 5.1). Although IDBA-MT (Leung et al. 2013) has been specifically 
designed for metatranscriptome assembly it was not included as it requires paired-
end read information, and the datasets employed in this study comprised of single-
end reads. The main criterion for assembler selection was the fraction of mRNA 
reads represented by the de novo assembled contigs. We found that both Trinity and 
IDBA-UD assemblies represented most of the reads for both the mock community 
and the C57BL/6J mouse cecum samples. However, with Trinity we found that many 
reads could be mapped to multiple contigs (75%) which hinders the determination of 
gene expression levels based on read abundance in the next step of the procedure 
due to non-specific mapping. IDBA-UD was therefore selected as the most 
appropriate assembler for single read metatranscriptome data and was 
subsequently used for assembly of all samples. 
 
 

AssemblyAssemblyAssemblyAssembly    

tooltooltooltool 

Mock CommunityMock CommunityMock CommunityMock Community    Mixed Mouse and Human sample*Mixed Mouse and Human sample*Mixed Mouse and Human sample*Mixed Mouse and Human sample*    

contigs total length 

Assembled 

reads (%) contigs total length 

Assembled 

reads (%) 

IDBAIDBAIDBAIDBA----UDUDUDUD    8,943 10,282,975 94.67 23,926 20,967,684 68.95 

IDBAIDBAIDBAIDBA----

HYBRIDHYBRIDHYBRIDHYBRID    9,003 10,282,926 92.82 23,921 20,965,864 68.83 

IDBAIDBAIDBAIDBA----TRANTRANTRANTRAN    9,739 11,908,188 91.68 31,708 30,735,244 62.86 

TrinityTrinityTrinityTrinity    14,841 12,972,081 90.52 34,324 24,283,850 71.31 

IDBAIDBAIDBAIDBA    9,069 10,245,202 82.73 24,413 20,645,762 53.99 

SOAPSOAPSOAPSOAP    10,080 9,377,817 66.06 26,386 19,297,513 40.63 

MetaVelvetMetaVelvetMetaVelvetMetaVelvet    7,871 8,059,412 58.13 25,013 16,354,900 23.06 

VelvetVelvetVelvetVelvet    11,705 6,579,171 22.47 23,806 11,618,506 9.76 
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Table 5.2 Composition of the mock metatranscriptome RNA-Seq dataset and assembly 
results 

SpeciesSpeciesSpeciesSpecies    # filtered# filtered# filtered# filtered    
readsreadsreadsreads    

Relative readRelative readRelative readRelative read    
abundance abundance abundance abundance 
(%)(%)(%)(%)    

AssembledAssembledAssembledAssembled    
reads**reads**reads**reads**    Sample IDSample IDSample IDSample ID    

Streptococcus 
agalactiae 3,224,516 35.0  (98.0%) 

SRR922307 
(Richards et al. 2013) 

Clostridium 
beijerinckii 1,586,292 17.2  (95.2%) 

SRR988002 (Wang et 
al. 2013) 

Pediococcus 
claussenii 1,371,187 14.9  (95.8%) 

SRR647762 (Pittet et 
al. 2013) 

Streptococcus 
pneumoniae 1,235,598 13.4  (97.2%) SRR1009263 

Enterococcus 
faecium 667,246 7.2  (89.8%) 

SRR922448 (Chang 
et al. 2013) 

Lactobacillus 
casei 500,000 5.4  (90.0%) SRR616266 

Streptococcus 
thermophilus 396,951 4.3  (87.6%) SRR390316 

Clostridium 
difficile 239,138 2.6  (62.7%) ERR406251* 

OverallOverallOverallOverall 9,220,928   (94.7%)  
*Pre submission data taken from  http://www.sanger.ac.uk/datasharing/ 
**Assembly results presented were obtained by using the IDBA-UD assembler 

Metatranscriptome assembly of a mock communityMetatranscriptome assembly of a mock communityMetatranscriptome assembly of a mock communityMetatranscriptome assembly of a mock community    
An in silico mock metatranscriptome was built by merging RNA-Seq data of eight 
single species transcriptome profiling experiments downloaded from public 
repositories (Table 5.2). For each of the selected species a high quality reference 
genome was available and the selected RNA-Seq datasets were generated with the 
Illumina HTS platform using 68 to 107 sequencing cycles. From paired-end datasets 
an arbitrarily selected single-end dataset was selected. To capture some of the 
complexity of a true unrestricted community three closely related species from the 
genus Streptococcus where chosen and mixed with five species at a larger 
evolutionary distance. Furthermore, in this mock community the number of mRNA 
reads of each of the eight members was varied mimicking a high variation in species 
abundance (Table 5.2).  
Since the mRNA reads in the mock community dataset originate from a specific set 
of known genomes the output of the de novo assembly workflow can be directly 
compared with results obtained from a standard alignment procedure. In total 8943 
contigs were obtained with the IDBA-UD assembler and their precision at sequence 
level was assessed by aligning these sequences to the reference genomes. For 86% 
of these contigs an unambigous high quality full lenght sequence alignment without 
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insertions or deletions to a reference genome was obtained (Table S 5.1). The 
remaining contigs showed a varying degree of mainly small nucleotide mismatches 
at the 5’- and 3’-end of the contig sequences. Since most of these discrepancies 
were limited, the majority of these remaining contigs could still be used for further 
functional profiling (see below). Only 2% of the assemblies were recognized as a 
cross-species assembly. Manual inspection showed that these assemblies aligned 
to sequences that showed high levels of conservation among the most closely 
related species (Table S 5.1) suggesting that sequence micro-diversity does not 
have a major impact on the assembly performance, and that a taxonomic 
classification of metatranscriptome assemblies at genus level and above should be 
possible. mRNA reads that were not used in the assemblies (Table 5.2) were 
analysed by a direct alignment with the corresponding reference genomes. In many 
cases these reads mapped to genes with a small open reading frame (< 100 amino 
acids) and transcripts of low abundance (data not shown). On basis of our analyses, 
we estimated that a threefold coverage of a gene is required for at least a partial 
transcript assembly (Table S 5.1). 
Functional expression profiles obtained by a direct genome alignment and by de 
novo assembly were compared. For both the assembled sequences and reference 
genomes ORFs were predicted using the Prodigal ORF prediction tool (Hyatt et al. 
2010), and candidate coding sequences were annotated with a KEGG ontology 
using Kaas (Moriya et al. 2007). Gene expression values were obtained by mapping 
mRNA reads on the contigs and the genomes using Bowtie2 followed by extraction 
of gene expression levels using BEDTools (Quinlan and Hall 2010) (Figure 5.1). 
Expression data of proteins with an identical KEGG ontology identifier were lumped. 
Comparison of the functional profiles obtained from both procedures revealed a high 
congruency (Pearson correlation > 0.99)  for the mock community as a whole as well 
as for each of its individual members (Figure 5.2). For functional prediction of 
assembly assigned reads we calculated a precision score of 0.97 with a recall of 
0.94 under the assumption that such an assignment is a true positive if both methods 
agree, a false negative if the assembly method failed to assign a function and a false 
positive in case of a different assignment.  
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Figure 5.2 Comparison of functional profiles of an eight species mock community 
metatranscriptome. Reads assigned via direct genome alignment method (x-axis) and de 
novo assembly with IDBA-UD (y-axis). Each dot represents a specific KEGG orthologous 
function. 
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Metatranscriptome assembly of Altered Schaedler Flora from the intestines of a Metatranscriptome assembly of Altered Schaedler Flora from the intestines of a Metatranscriptome assembly of Altered Schaedler Flora from the intestines of a Metatranscriptome assembly of Altered Schaedler Flora from the intestines of a 
NOD mouse model.NOD mouse model.NOD mouse model.NOD mouse model.    
For further validation of the pipeline a published RNA-seq dataset obtained from a 
defined in vivo mouse intestinal community was used (Xiong et al. 2012). In this 
study RNA-Seq data was obtained from four inbred non-obese diabetic (NOD) germ-
free mice colonized with a defined mixture of eight commensal bacteria (Altered 
Schaedler Flora; ASF). Twelve caecum and colon samples were prepared using 
multiple RNA-extraction protocols and sequenced using the Illumina HTS platform. 
At the time of publication the complete set of ASF genomes was not known, and to 
bridge the evolutionary distance to known species a peptide-based alignment 
procedure (blastx) was used for functional profiling. Using this procedure the authors 
were able to link 16% of the sequence reads to a known bacterial gene. Recently, 
the draft genome sequences of all eight bacteria in the ASF community have been 
determined (Wannemuehler et al. 2014), providing the opportunity to validate the 
metatranscriptome assembly pipeline with a restricted in vivo RNA-Seq dataset from 
a mouse intestinal community. 

 
Figure 5.3 Comparison of functional and taxonomic profiles of the Altered Schaedler Flora 
from the intestine of a NOD mouse model (Xiong et al. 2012). A) Alignment vs assembly 
functional profiling; x-axis, direct genome alignment; y-axis,  de novo assembly. Taxonomic 
profiles of mRNA reads obtained by direct genome mapping  (B) and by using the de novo 
assembly method (C). Sample labels were taken from Xiong et al., 2012. 
 
ASF reads were taken from the SRA repository (SRP012007) (Xiong et al. 2012), 
and approximately 5,4 million reads of high quality passed the filtering stage of the 
pipeline. 1,7 million of these reads could be directly mapped on the recently 
sequenced draft ASF genomes while 1,5 million mapped to the host genome. The 
origin of the remaining 2,2 million reads could not be established. A blastx search of 
those unmapped reads against the NR database did not return any significant 
results. All 5,4 million reads were used in an assembly with IDBA-UD to yield 7160 
contigs. The majority (6638) of these contig could be accurately aligned with one of 
the eight ASF draft genomes and 256 contigs were derived from the host leaving 
266 of the contigs (4%) unaccounted for. The ASF-mapped contigs captured 8688 
ORFs that were functionally annotated and compared with a direct mRNA read 
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alignment to the annotated ASF draft genomes following the procedures described 
above. The result showed a strong correlation (Pearson correlation > 0.9) between 
the expression values obtained from the assembly and the direct-alignment method 
(Figure 5.3). 
The precision and recall for functional annotation was 0.97 and 0.58 respectively. 
The precision was therefore comparable to what was observed for the mock 
community, whereas the recall is much lower, which is probably due to a much lower 
sequencing depth of ASF samples (Table S 5.1). 
Additionally we explored the performance of a taxonomic classification of de novo 
assembled sequences. For a taxonomic classification of the ASF microbiome a two-
step procedure was developed. First a subset of 103 proteins derived from essential 
single copy genes (ESCG) (Dupont et al. 2011) was identified and used to determine 
the boundaries of the taxonomic search space by aligning them with the entire NR 
protein database and further classification using the MEGAN processing pipeline 
(Huson et al. 2007) (see methods section for details). In order to mimic the lack of 
good reference genomes ASF derived protein sequences were excluded from this 
search. Sixty-seven of the 103 marker proteins were classified as proteins belonging 
to the order of Bacteroidales while 33 belonged to the Clostridiales. Only three 
marker proteins could not be classified at the order level and therefore this taxonomic 
rank was used to restrict the reference database. With the taxonomic boundaries set 
to the orders of Clostridiales and Bacteroidales, next non-ESCG proteins were 
classified by aligning them with all Clostridiales and Bacteroidales proteins present 
in the NR database and classification with MEGAN again while the ASF proteins 
were excluded from the search (Figure 5.3). The use of ESCG to restrict the search 
space drastically reduced the computational time to classify the full set of proteins. 
However the low abundant species of different orders may be missed. In this case 
the presence of Lactobacillales and Defferibacterales, which made up six percent of 
the mRNA reads in total, was not detected. 
With large sets of mRNA reads assigned to a taxonomic rank via genome mapping 
we can estimate the precision and recall for the assignments via assembly. We 
assumed that the taxonomic association of a read obtained by a direct genome 
alignment to an ASF gene summarized in Figure 5.3 is true. If via the de novo 
assembly method a different taxonomic association was obtained it was considered 
to be a false positive association and in case such a read was not incorporated by 
the de novo assembly method or ended up in a taxonomically unclassified contig, it 
was considered to be a false negative association. For the correctness of a 
taxonomic classification of ASF proteins via the de novo assembly method we 
estimated a precision of 0.95 for taxonomic ranks down to genus level. The recall 
score for phylum to order level was 0.66 but was reduced to 0.38 for lower taxanomic 
ranks (genus & family) (Table S 5.1). 
Xiong et al., 2012, used a BlastX based alignment procedure to taxonomically assign 
mRNA reads to a known bacterial gene (Xiong et al. 2012). Due to the small read 
length this method can give rise to many ambiguous assignments. This can be 
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substantially improved by using a de novo assembly approach. Relative abundance 
of community members could be estimated with relative accuracy and were in very 
good agreement with those obtained by direct genome mapping (Figure 5.3). 

Metatranscriptome assembly of mouse cecum samples and validation of Metatranscriptome assembly of mouse cecum samples and validation of Metatranscriptome assembly of mouse cecum samples and validation of Metatranscriptome assembly of mouse cecum samples and validation of 
assemblies by PCR andassemblies by PCR andassemblies by PCR andassemblies by PCR and    Sanger sequencingSanger sequencingSanger sequencingSanger sequencing    
High protein diets are suggested as effective weight loss regimes and therefore 
would fit in a successful strategy to achieve a long-term weight loss for a positive 
effect on health and to decrease obesity and associated metabolic disorders 
(Westerterp-Plantenga et al. 2012). To study the effects of such diets    on a GI tract 
community, four C57BL/6J mice were fed on a high-fat high-protein diet for 12 weeks 
(Schwarz et al. 2012). At the end of the intervention, caecal content was obtained, 
and the microbial activity present in these samples was analysed by RNA-Seq. 
Initially, analyses of the mRNA reads employed a previously developed direct 
alignment approach (Leimena et al. 2013). However, due to the large evolutionary 
distance between mouse and human microbiome sequences, and the much more 
limited availability of mouse microbiota associated reference genomes, this 
procedure resulted in functional and taxonomic information of low resolution (Figure 
S 5.1). To increase the functional and taxonomic resolution the here developed 
assembly workflow was applied. To monitor precision and recall in this complex and 
mostly unfamiliar microbial dataset, an RNA-Seq dataset from a well-characterized 
human small intestinal community (Leimena et al. 2013) was used as a spike-in 
control and co-assembled with the mouse RNA-Seq data. This led to a de novo 
assembly of 24077 contigs and allowed for the prediction of 36012 partial and full 
length ORFs within these contigs. Of these ORFs, 25897 were solely derived from 
the mouse datasets, whereas 9707 were assembled exclusively from the human 
dataset. For the mouse-derived sequences virtually identical results were obtained 
when the mouse RNA-Seq data was separately assembled (results not shown). A 
total of 407 hybrid ORFs were assembled consisting of reads obtained from both 
data sources.  
For taxonomic classification the here developed two-step procedure was used. From 
the full set of proteins ESCG were identified as described above and used to limit 
the taxonomic search spaces. Alignment of the full set of translated proteins against 
a thus restricted NR database suggested low levels of sequence identity between 
mouse GI bacterial proteins and NR proteins (Figure 5.4). This notion was further 
confirmed in the taxonomic classification of proteins from the two environments, 
where 93% of the human small intestine protein sequences could be classified at 
family level, while only 48% of the mouse cecum bacterial protein sequences could 
be classified at this rank. 
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Figure 5.4 Similarity score distributions of predicted Mouse and Human microbial community 
proteins to known proteins. Translated proteins were aligned to the NCBI nr protein database 
and binned according to their SRV score. The SRV score represents the bit-score of the best 
hit divided by the maximum obtainable bit-score (Lerat et al. 2003). 
 
Sanger sequencing of genomic sequences was used to further validate the 
correctness of the mouse metatranscriptome assembly. Twelve transcript 
assemblies of at least 800 nucleotides were randomly selected for having high and 
low read coverages. For each of these assemblies two sets of specific primer pairs 
were designed, and in each case two partially overlapping fragments of the correct 
size could be amplified using caecal microbial DNA of mouse 2 as template (Table 
S 5.2). For ten assemblies Sanger sequencing of the amplified DNA returned 
nucleotide sequences that aligned with 98%-99% identity with the corresponding 
assembly and thus confirmed the existence of corresponding DNA sequences in the 
bacterial metagenome. Two PCR products were shown to be a mixture of amplicons 
originating from isogenic genes. 
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Figure 5.5 Taxonomic composition of the transcriptome using three different methods. Reads 
for three samples were assigned to family level using de novo assembly, BlastX and 
MEGABLAST. 
 

 
Figure 5.6 Distribution of COG functional categories of the mouse caecal metatranscriptome. 
 
For one mouse sample and for the human small intestine sample a technical 
replicate of higher sequence depth was available, and these were employed to 
establish the technical reproducibility of the procedure and to assess the level of 
noisiness in the data analysis pipeline. In the mouse duplicate sample, essentially 
the same results were obtained for transcripts of high abundance even though 
sequence depth between the two replicates differed more than 20 fold. Moreover, 
transcripts of low abundance results were consistent with an increase in noise, and 
the human small intestine sample a similar pattern was obtained (Figure S 5.2). 
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Of the RNA-seq mRNA reads derived from the human small intestine sample, 85% 
was captured in an assembly whereas this fraction was 61-71% for the mRNA reads 
derived from the four individual mouse cecum samples. The fraction of the reads that 
was assigned to an ORF was 80% and 45-55% for the human small intestine sample 
and mouse cecum samples, respectively (Figure 5.5) (Figure S 5.1).  

Functional analysis of the mouse cFunctional analysis of the mouse cFunctional analysis of the mouse cFunctional analysis of the mouse caaaaecal communityecal communityecal communityecal community    
Using the pipeline, metatranscriptome profiles of caecal microbial communities were 
obtained from four C57BL/6J mice fed on a high-fat high protein diet (Schwarz et al. 
2012). For those four individual communities, the relative expression of COG 
functional categories was compared. Proteins were labelled according to the COG 
ontology system (Tatusov et al. 1997) and expression levels of proteins belonging to 
the same category were extracted and lumped (Figure 5.6). Although the taxonomic 
profiles of the caecum samples of the four individual mice showed clear differences 
in relative abundance and distribution of phylotypes the overall COG activity profiles 
of the four communities were highly similar (0.984 -0.999 Pearson correlation, Figure 
5.6). 
To determine whether bacteria from different families fulfilled different roles, 
homologous proteins of the samples from the C57BL/6J mouse cecum belonging to 
the four bacterial families with highest numbers of assigned transcripts, namely the 
Clostridiaceae, Lachnospiraceae, Erysipelotrichaceae and Lactobacillaceae, were 
annotated using KO identifiers (Moriya et al. 2007) and their cumulative family-
specific expression levels were mapped using iPATH (Yamada et al. 2011) (Figure 
S 5.3). For the four families the results showed distinct differences in their metabolic 
profile. For example Lachnospiraceae seemed to be active in propionate formation 
and vitamin B12 biosynthesis, while Erysipelotrichaceae appeared to be active in 
butyrate formation (Figure 5.7). The Lactobacillaceae metabolic activity was found 
to be mainly oriented towards the production of acetate and lactate, a well-
established metabolic feature of this bacterial family. Finally, members of the 
Clostridiaceae family did not display a very clear metabolic activity pattern but 
compared to the other three families appeared to consistently express amino acid 
degradation pathways at a higher level (Figure S 5.3). Further studies should give 
insight into dietary effects on community composition and microbial metabolic 
activity.  
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Figure 5.7 Metabolic pathways mapping of Lachnospiraceae and Erysipelotrichaceae 
expression profiles. Relative contribution of each family (green Lachnospiraceae, red 
Erysipelotrichaceae) are colour scaled. Line-width indicates the total amount of reads mapped 
to the corresponding KEGG ortholog (log scaled). 
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ConclusionsConclusionsConclusionsConclusions    
We have developed a validated de novo metatranscriptome assembly pipeline 
suitable for analysis of transcriptome data from unfamiliar complex ecosystems. With 
this de novo metatranscriptome assembly pipeline mRNA reads obtained from RNA-
Seq can be assigned to a protein function and a taxonomic rank with high precision.  
When dealing with familiar ecosystems composed of species that are well 
represented by complete catalogs of reference sequences at a small evolutionary 
distance, an assembly strategy will be less efficient due to the required minimal 
transcript coverage for assembly. However, when dealing with species that are not 
well represented in the genome databases, the de novo assembly pipeline 
outperforms direct read alignment methods due to a significant increase in 
information content. Nevertheless taxonomic classification of activity profiles 
remains a major issue for unfamiliar ecosystems harbouring many novel species at 
variable evolutionary distances. 
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Material & methodsMaterial & methodsMaterial & methodsMaterial & methods    

RNA extraction, mRNA enrichment, cDNA synthesis and illumina sequencing RNA extraction, mRNA enrichment, cDNA synthesis and illumina sequencing RNA extraction, mRNA enrichment, cDNA synthesis and illumina sequencing RNA extraction, mRNA enrichment, cDNA synthesis and illumina sequencing     
The cecal intestinal content was collected from four mice on a high fat high protein 
diet at 10 weeks during the dietary intervention study previously described by 
Schwarz et al., 2013, snap frozen in liquid nitrogen and stored at -80°C. RNA was 
extracted from 0.1-0.2 grams of cecal content (Schwarz et al. 2012). The content 
was re-suspended in 500 µL ice-cold TE buffer (Tris-HCL pH 7.6, EDTA pH 8.0). 
Total RNA was obtained via the Macaloid-based RNA isolation protocol (Zoetendal 
et al. 2006, Leimena et al. 2013) with in addition the use of Phase Lock Gel heavy 
tubes (5 Prime GmbH, Germany) during the phase separation. The RNA purification 
was done with the RNAeasy mini kit (Qiagen, USA), including an on-column DNAseI 
(Roche, Germany) treatment [38]. The total RNA was eluted in 30 µL ice-cold TE 
buffer, and the RNA quantity and quality were assessed using a NanoDrop ND-1000 
spectrophotometer (Nanodrop Technologies, Wilmington, USA) and Experion RNA 
Stdsens analysis kit (Biorad Laboratories Inc., USA), respectively. mRNA 
enrichment was performed by using the mRNA enrichment kit MICROBExpress 
(Ambion, Applied Biosystems, The  Netherlands) using the manufacturer’s protocol. 
RNA quantity and quality were assessed as described above to determine the 
efficiency of the mRNA enrichment. Double stranded cDNA was synthesized from 
one μg of the enriched mRNA sample with the SuperScript® Double-Stranded cDNA 
Synthesis kit (Invitrogen, The Netherlands), with addition of SuperScript® III Reverse 
Transcriptase (Invitrogen, The Netherlands) and random priming using random 
hexamers (Invitrogen, The Netherlands) (Yoder-Himes et al. 2009, Leimena et al. 
2012, Leimena et al. 2013). To remove the RNA an RNAse A (Roche, Germany) 
treatment was preformed, followed by phenol-chloroform extraction of the cDNA and 
ethanol precipitation. The product was checked on gel and 3 to 8 μg of cDNA was 
sent for sequencing (GATC Biotech, Germany). Single read Illumina libraries were 
prepared from the double-stranded cDNA according to the ChiP protocol with insert 
sizes between 200-300bp. Sequencing was done with an Illumina Hiseq2000, and 
each sequence library was barcoded and sequenced at 5pM concentration using the 
single-end protocol. In total the amount of reads was between 700k and 177 M per 
sample. The data set supporting the results of this article is available in the NCBI 
small reads archive (sra) repository, under accession number SRX611064.  

PCRPCRPCRPCR    and sand sand sand sequencing of a equencing of a equencing of a equencing of a represenrepresenrepresenrepresentatatatative selection of assembled contigstive selection of assembled contigstive selection of assembled contigstive selection of assembled contigs    
Amplicons targeting a representative selection of assembled contigs were generated 
by PCR. Primer sets were designed with the NCBI’s primer blast (Ye et al. 2012) 
using an optimal melting temperature between 59-61 °C with the potential to amplify 
fragments of around 800 bp (Table S 5.2). Amplicons were generated in two runs. In 
the first PCR run amplicons from two primer combinations were generated in 
multiplex reactions, and checked for expected amplicon size. PCRs were performed 
in a total volume of 25 µl with the FastStart Taq DNA polymerase (Roche), a 
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denaturation of 95 °C for 30 seconds an annealing temperature of 60 °C for 40 
seconds, and elongation for 30 seconds at 72 °C, and run for 30 cycles, where the 
size of the PCR products was confirmed by gel electrophoresis. In the second PCR 
only the two outer primers were used resulting in the largest obtainable amplicon per 
contig. The Phusion Hot Start II High-Fidelity DNA polymerase (Thermo Scientific) 
was used for amplification in a total volume of 50 µl during 35 cycles consisting of 
denaturation at 98 °C for 10 s, annealing at 60 °C for 20 s and 72 °C for 50 s for 
elongation. The size of the PCR products was confirmed by gel electrophoresis and 
sent for Sanger sequencing from both the forward and reverse primer. 

Metatranscriptome analysisMetatranscriptome analysisMetatranscriptome analysisMetatranscriptome analysis    

Data filtering 
The data was filtered for ribosomal RNA sequences, adapter sequences and low-
quality reads using dedicated tools. SortMeRNA (version 1.2) (Kopylova et al. 2012) 
was used to rapidly filter out rRNA sequences using the precompiled databases for 
eukaryotes, bacteria and archaea. Truseq adapter sequences were removed from 
the reads with cutadapt (Martin 2011). Initial results showed a high bias of adenines 
in the trimmed sequences and therefore all trimmed sequences were discarded. The 
remaining reads where quality (phred >30) and poly A tail edge trimmed using 
PRINSEQ (lite-version)(Schmieder and Edwards 2011). Reads smaller than 50 
nucleotides were discarded. 
 

Assembly, annotation and classification 
Assemblies were performed using the assemblers’ default setting. When required 
kmer size was set to 31. ORF calling was performed using prodigal 2.60 with the 
meta procedure (Hyatt et al. 2010). Functional annotation was performed using 
Interproscan5 with standard settings for all potential output and the KEGG 
automated annotation server using the SBH method against the default reference 
set (Quevillon et al. 2005, Moriya et al. 2007). COG annotation was performed by 
rpsblast (v2.2015) against the NCBI COG database (2-2-2011) with a minimum E-
value of 0.0001. Reads were mapped using bowtie2 (Langmead and Salzberg 2012) 
and expression levels for each predicted protein were extracted using samtools and 
BEDtools (Li et al. 2009, Quinlan and Hall 2010, Langmead and Salzberg 2012). The 
first step in the taxonomic classification of the predicted ORFs was identifying all the 
essential single copy genes and using these to determine the taxonomic search 
space. Proteins were aligned against the NR database using BLASTp followed by 
MEGAN classification (Altschul et al. 1997, Huson et al. 2011). A list of GI protein 
identifiers belonging to the ESCG identified bacterial orders was retrieved via an 
eUtils query (Nadkarni and Parikh 2012). The second step was to classify the 
remaining proteins by aligning them against a GI restricted database followed by 
MEGAN classification. SRV scores were calculated by dividing the bitscore of the 
best alignment by the bitscore of a self-alignment. Tetra nucleotide occrence 
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regression coefficients of the mock community members were calculated using 
jspecies (Richards et al. 2013).  
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Supplemental filesSupplemental filesSupplemental filesSupplemental files    

Supplemental FiguresSupplemental FiguresSupplemental FiguresSupplemental Figures    

    
Figure S 5.1 Read assignment of human small intestine- and mouse caecum-derived 
metatranscriptome samples using alignment and assembly procedures 
Description: Taxonomy profiles for all mouse and human samples using BlastX, megaBlast 
and assembly strategies. 

 
Figure S 5.2 Comparison of technical replicates 
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Figure S 5.3 iPATH mapping of the 4 most abundant bacterial families found in the 
metatranscriptome. 
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Table S 5.1 Results of filtering of RNA-Seq datasets for rRNA reads, adapter sequences and 
low-quality reads 
Filtering: Ribosomal RNA, adapter and quality filtering results. 
Mock_TNF_hybrids: Number of shared assemblies and tetranucleotide frequency ocrrence 
regression coefficient between mock members. 
Coverage_Assembly: Distribution of assembled proteins based on transcriptome coverage.  
Mock_assembly ouput: Precision and recall for functional assignments 
NOD_mouse_taxonomy_output: Precision and recall for taxonomy assignments 
 

Target Target Target Target     
primer pairprimer pairprimer pairprimer pair    

Primer 

Sequence 

Forward 

Primer 

Sequence 

Reverse 

location 
Forward 

Location 
Reverse 

band 
size 

cross-
primer 

contigcontigcontigcontig----100_0 100_0 100_0 100_0 
P4P4P4P4    

TGTGAACTCGG

GAACTTCGG 

AGATTTCCGGC

ACACTGGAG 
22443 23106 663 1114 

contigcontigcontigcontig----100_0 100_0 100_0 100_0 
P14P14P14P14    

AGATTGCGTCA

CGGGACATT 

ACCGGCTTTGCT

CCACAATA 
21992 22558 566 115 

contigcontigcontigcontig----100_2 100_2 100_2 100_2 
P2P2P2P2    

TCCAGGCTGGT

CGGTATGTA 

CCTGCAACACT

GTTCTGTGC 
21183 22021 838   

contigcontigcontigcontig----100_2 100_2 100_2 100_2 
P3P3P3P3    

CACAGAACAGT

GTTGCAGGC 

TATGCACTCCCG

GGTTTTCC 
22022 22466 444 1283128312831283    

contigcontigcontigcontig----100_5 100_5 100_5 100_5 
P2P2P2P2    

CTGAGGAGTA

TGGCGCAGAG 

CTCATGCATAAC

GTGTGCGG 
8888 9859 971 273 

contigcontigcontigcontig----100_5 100_5 100_5 100_5 
P3P3P3P3    

GTGAGATCATG

CCGGAGGAG 

GCATTTGTATG

CGCCGGATT 
9586 10132 546 1244 

contigcontigcontigcontig----
100_122 P1100_122 P1100_122 P1100_122 P1    

TTCCGGACTCC

CATCTCCAT 

CTATGCGGGAA

AATGCACCG 
4702 5170 468 69 

contigcontigcontigcontig----
100_122 P4100_122 P4100_122 P4100_122 P4    

TCCCTGTGGGC

ATCCAGATA 

ACTGCCCTGTG

AGTTGATCG 
5101 5954 853 1252125212521252    

contigcontigcontigcontig----100_3 100_3 100_3 100_3 
P2P2P2P2    

TGTCATCCCCC

GGATACCTT 

TGTGACACGTC

GGACAAGAG 
3129 3534 405 1180118011801180    

contigcontigcontigcontig----100_3 100_3 100_3 100_3 
P5P5P5P5    

CGAGAATCCTA

CGGCCTTCC 

AAGGTATCCGG

GGGATGACA 
2354 3148 794   
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contigcontigcontigcontig----100_1 100_1 100_1 100_1 
P22P22P22P22    

TCCAGGCTGGT

CGGTATGTA 

CCTGCAACACT

GTTCTGTGC 
848 1378 530 112 

contigcontigcontigcontig----100_1 100_1 100_1 100_1 
P23P23P23P23    

AAGGTACCGCA

CGGCAATTA 

ATTGTTCAGTA

CCAGCGCCA 
1266 1809 543 961 

contigcontigcontigcontig----
100_3111 P1100_3111 P1100_3111 P1100_3111 P1    

TCGTAGCGACC

GGTGAAAAA 

TTCAGTGCGGG

AGCATCATT 
191 1163 972 225 

contigcontigcontigcontig----
100_3111 100_3111 100_3111 100_3111 
P2&P20P2&P20P2&P20P2&P20    

GGCAAGTAGG

TCAAGCCCAT 

CTGCGATCGGA

CAGCAACTA 
938 1787 849 1596159615961596    

contigcontigcontigcontig----
100_4904 P1100_4904 P1100_4904 P1100_4904 P1    

GCATTGTTCTG

CGCTGTAGG 

TCCTTCGGAATG

TTACCGCC 
28 842 814 271271271271    

contigcontigcontigcontig----
100_4904 P9100_4904 P9100_4904 P9100_4904 P9    

CCAAACAGCAA

GGGTACGGA 

GAGTCAACCGG

GTGGAAAGA 
571 962 391391391391    934 

contigcontigcontigcontig----
100_217 P8100_217 P8100_217 P8100_217 P8    

ATTCTGGCAGA

GCAACCGAA 

TGTCTGGCGAG

CTGTTCATT 
2265 2793 528 193 

contigcontigcontigcontig----
100_217 P9100_217 P9100_217 P9100_217 P9    

CTCCGGGTGTT

TTCCGATGA 

AGATCCTTTGT

GCGGGAGTG 
2600 3470 870 1205 

contigcontigcontigcontig----
100_2390 P1100_2390 P1100_2390 P1100_2390 P1    

GTTATCTGGGG

CAACGGTCA 

ACAATGTTGTTC

CGGCAAGC 
117 940 823 310 

contigcontigcontigcontig----
100_2390 100_2390 100_2390 100_2390 P24P24P24P24    

TCCCATGCCTT

CTTCACCTG 

AAGTCACGCCG

GGCTTTTTA 
630 1385 755 1268126812681268    

contigcontigcontigcontig----
100_5984 P2100_5984 P2100_5984 P2100_5984 P2    

TGCCCGATCGT

TAAGGGTTC 

CCACCCTCGTCT

TTCGTCAA 
133 590 457 131 

contigcontigcontigcontig----
100_5984 P9100_5984 P9100_5984 P9100_5984 P9    

CATCGGTGTTC

TGCTTCGTG 

GCAAACGTAAG

ACCCTGCTC 
459 764 305 631 

contigcontigcontigcontig----
100_3802 P2100_3802 P2100_3802 P2100_3802 P2    

TCTGCACGTTA

TCTCCAGGC 

AGAGCGGAGCA

GACATCAAC 
122 676 554 163 

contigcontigcontigcontig----
100_3802 P10100_3802 P10100_3802 P10100_3802 P10    

TGTTGCAACTG

TTCCACGTC 

ATGCCACAGAC

AAGAGAGCA 
513 887 374 765 

Table S 5.2 PCR primers and Sanger sequencing output of amplicons. Table consists of 
primer pair names, the corresponding location and the expected fragment lengths. In bold are 
the fragments not found in the first PCR, underlined are fragments found in the second PCR 
that were send for sequencing. Primers in bold were used for amplification in the second PCR. 
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AbstractAbstractAbstractAbstract    
The microbiota of the gastrointestinal tract plays a key role in the degradation of food 
components that escape digestion by host enzymes. Complex metabolic networks 
of interacting microbes in the gastrointestinal tract of humans and other mammals 
yield a wide range of metabolites of which the short chain fatty acids (SCFA), in 
particular butyrate, acetate, and propionate, are the most abundant products of 
carbohydrate fermentation. Here we studied the quantitative interactions between 
diet, microbiota and host and modelled the multivariate data using Systems Biology 
approaches.  
The experiments targeted the caecum of conventionally raised mice that were fed 
different fibre-containing diets. Microbiota composition was assessed using 
phylogenetic microarray technology, and was complemented with 
metatranscriptome, metabolome and host mucosal tissue transcriptome data. 
Relative abundance of butyrate producing bacteria correlated with host genes 
involved in energy metabolism and affecting the immune system. Moreover the 
metatranscriptome revealed distinct activities of bacterial families in the fermentation 
of fibres into SCFA. The Bacteroidaceae, Porphyromonadaceae, 
Verrucomicrobiaceae, Bifidobacteriaceae, Lachnospiraceae, Clostridiaceae, 
Eubacteriaceae, several Bacilli families, Ruminococcaceae and Erysipelotrichaceae 
all took part in fibre utilization, expressing genes encoding glycosidases and/or sugar 
transport systems. All families expressed in different ratios genes that code for 
enzymes involved in the production of SCFA. Overall different dietary fibres induce 
distinct changes in the caecal microbiota, their functional activities and SCFA 
production with profound effects on host metabolic and immune function in the 
caecum. 
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IntroductionIntroductionIntroductionIntroduction    
A diet rich in fibre has a beneficial health effect by promoting gastrointestinal 
homeostasis, and decreasing risk for obesity, cancer and metabolic disorders. The 
enzyme repertoire of humans and mammals is commonly not able to catabolize non-
starch polysaccharides, like those derived from plant cell walls, resistant starches, 
and oligosaccharides, whereas a broad range of intestinal bacteria can ferment 
these dietary fibres. The intestinal microbiota is diverse, dense, metabolically active, 
and largely saccharolytic (Qin et al. 2010, Tasse et al. 2010, Flint et al. 2012b). Most 
members of the large intestinal microbiota are not depending on the availability of 
simple sugars, but are rather able to derive carbon and energy from the breakdown 
of a range of complex carbohydrates, sometimes involving single members of the 
ecosystem, but often requiring a concerted community effort. 
The bulk of the fibre fermentation takes place in the large intestine, where the fibres 
are the main energy source for the microbiota. Dietary fibre is fermented into a range 
of metabolites, of which the short chain fatty acids (SCFA) acetate, propionate and 
butyrate are the most abundant (Cummings et al. 2001, Flint et al. 2008, Bird et al. 
2010, Flint et al. 2012a). The SCFA production pattern is dependent on diet 
composition, transit time in the small and large intestine, intestinal pH, and the 
microbial species and their relative abundance within the microbiota (Mortensen and 
Clausen 1996, Ouwehand et al. 2005, Macfarlane et al. 2006). SCFA are taken up 
by the mucosa, and have been reported to affect numerous processes related to the 
immune system (Al-Lahham et al. 2011) and energy metabolism (Donohoe et al. 
2011). Additionally, the intestinal microbiota exerts a major influence on host 
physiology, including the tuning of the host’s immune and metabolic state 
(Turnbaugh and Gordon 2009). SCFA are readily absorbed by the colonic epithelium 
where butyrate serves as the main energy source, although in smaller amounts 
acetate and propionate can also be metabolised (Cook and Sellin 1998). After 
absorption and metabolic conversion, the remainder of the SCFA enter the portal 
blood and are processed by the liver, the central metabolic organ in the body 
(Bloemen et al. 2009). Intestine-derived acetate is incorporated in fatty acid 
synthesis in the liver and in part transferred to the peripheral tissue, whereas 
propionate induces lipogenesis and gluconeogenesis in liver (Al-Lahham, 2010).  
The amount and ratio of SCFA can be affected by specific types of fibre (Flint et al. 
2008, Van den Abbeele et al. 2011); Chapter 4Chapter 4Chapter 4Chapter 4). The relative abundance of specific 
groups of bacteria is known to increase when certain types of fibres are consumed. 
For example, when resistant starch is consumed, the relative abundance of species 
of Clostridium cluster IV that includes butyrate producers is increased, while 
consumption of fructooligosaccharides (FOS) and inulin tend  to expand 
bifidobacterial populations (Barboza et al. 2009, Riviere et al. 2014). The explanation 
for these type of community responses are rather complex. For example a dietary 
intervention with resistant starch usually results in increased butyrate concentrations 
in the intestine, indicative of complex food webs consisting of primary degraders 
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such as those belonging to the Actinobacteria (including the Bifidobacteriaceae) and 
Bacteroidetes that ferment starch and produce lactate, succinate, acetate and 
propionate, which are subsequently taken up by secondary fermenters to produce 
mainly acetate, propionate and butyrate, explaining the emergence of elevated 
butyrate levels upon resistant starch feeding via a cross-feeding (syntrophic) 
interaction within the microbial consortium (Duncan, 2004; Flint, 2008).  
In our previous study mice were fed five different fibres or a control diet containing 
corn starch that is readily degraded and largely absorbed within the small intestine 
(Chapter 4Chapter 4Chapter 4Chapter 4). Colonic samples obtained from the non-starch fibre-fed mice showed 
an overall increase in luminal SCFA concentrations, which coincided with an 
increased relative abundance of the Bacteroides distasonis group and Clostridium 
cluster XIVa species in the colonic microbiota. These bacteria most likely act as 
primary or secondary fibre degraders, although data from cultured representatives 
of the detected species are not available. To further specify the microbial 
involvement in the degradation of these fibres, and to study the effects on the host 
mucosal tissue, this study focuses on the main fibre fermentation location in the 
mouse intestine, i.e. the caecum (Chapter 4Chapter 4Chapter 4Chapter 4). The large caecal volume is compatible 
with multiple analyses in individual mice, including the determination of SCFA 
concentrations, microbiota composition and its activity using metatranscriptome 
analysis. Furthermore, these multivariate microbial and metabolic datasets were 
correlated to host mucosal responses in the caecum, determined by tissue 
transcriptome analyses, aiming to construct models of diet-microbe-host 
interactions.  
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ResultsResultsResultsResults    
The effects of different dietary fibres - Resistant Starch (RS), Arabinoxylan (AX), 
Fructooligosaccharides (FOS), Inulin (IN) and Guar Gum (GG) - were studied to 
evaluate whether the responses of the microbiota and the host to different dietary 
fibres are congruent or diverse. Male C57BL/6J mice of 9 weeks (young adults) were 
given the control diet, a standard semi-synthetic low fat diet containing corn starch 
as digestible carbohydrate, for two weeks, followed by a 10 days dietary intervention 
with the fibre diets. Mice were allocated according to their body weight to one of six 
diet groups (n=10 per diet group): control (CON), IN, FOS, AX, GG or RS type 3. 
The diets enriched in fibre were identical to the control diet, except that 10% (w/w) 
of corn starch was replaced by each fibre (20% for RS, since it was 50% resistant) 
(Chapter 4Chapter 4Chapter 4Chapter 4, Table S 4.1). The effects of these dietary interventions were measured 
in caecal samples by determination of the steady state levels of luminal SCFA, the 
microbiota composition by 16S rRNA gene profiling, and the microbiota activity by 
metatranscriptomics, respectively. In addition, the cognate host responses in the 
caecal mucosa were determined using murine microarrays and this was correlated 
to the 16S microbial composition dataset and to the microbial metatranscriptome 
data (Figure 6.1). 

 

     

Figure 6.1 Flow-
chart of data 
analysis.    
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Dietary fibres differentially modulate luminal SCFA levelsDietary fibres differentially modulate luminal SCFA levelsDietary fibres differentially modulate luminal SCFA levelsDietary fibres differentially modulate luminal SCFA levels    
In all mice the main metabolic products of dietary fibre fermentation in the caecal 
lumen were analysed by gas chromatographic quantification of acetate, propionate, 
butyrate, valerate, and the branched-chain SCFA iso-butyrate and iso-valerate. Total 
SCFA concentrations significantly increased in caecal lumen of mice in the IN and 
GG diet groups as compared to the CON diet (p<0.05), and the highest SCFA 
concentrations were observed for mice fed the IN diet (Figure 6.2). In contrast, the 
RS, AX and FOS diets no changes the overall SCFA concentrations were observed.  

Dietary fibres modulate the microbiota compositionDietary fibres modulate the microbiota compositionDietary fibres modulate the microbiota compositionDietary fibres modulate the microbiota composition    
The caecal content of five mice per dietary treatment was used to analyse the 
microbiota after 10 days of dietary treatment. The density of the caecal microbiota 
was analysed by 16S rRNA gene-targeted quantitative PCR (qPCR), whereas the 
MITChip platform was employed for compositional profiling.  
Although all fibre diets, and especially the IN-diet, tended to increase the microbiota 
density in the caecum as compared to the CON diet, none of these effects were 
significant (Figure S 6.1). Microbial diversity was also not affected by the diets used 
in the present study (data not shown). Analogous to what has previously been 
reported for the colon in these mice, caecal microbiota composition of mice fed the 
GG, AX, IN, or FOS diet, but not those receiving an RS-diet, could be discriminated 
from that of mice receiving the control diet (Figure S 6.2). In order to correlate 
changes in microbiota composition and metabolism to the different diets, the SCFA 
concentrations and the hybridization signals of in total 96 genus-level phylogenetic 
groups targeted by the MITChip were subjected to redundancy analysis (RDA). The 
RDA included the concentrations of acetate, propionate and butyrate and the diets 
as explanatory variables, which were concluded to explain 58.6% of the total 

Figure 6.2 Ceacal luminal SCFA 
concentrations in µmol/g content measured 
with gas chromatography. Abbreviations are 
for control (CON), Resistant Starch (RS), 
Arabinoxylan (AX), Fructooligosaccharides 
(FOS), Inulin (IN) and Guar Gum (GG). * 
indicates significance (Student T.test 
P<0.05) between the dietary group and 
control (CON) 
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variation in microbial composition, of which 73.5% was captured within the first two 
canonical axes of the RDA analysis (Figure 6.3). The RS and CON diet groups 
clustered separately from the IN, AX, FOS and GG groups along the first canonical 
axis, whereas the FOS and IN diet-groups appeared to be largely overlapping. 
Genus-like groups that correlated in their relative abundance with the RS and the 
control diet included Collinsella, Propionibacterium, Olsenella et rel., Alistipes et rel., 
Bacteroides splanchnicus et rel., Porphyromonas asaccharolytica et rel., Fibrobacter 
succinogenes et rel., Lactobacillus salivarius et rel., Staphylococcus aureus et rel., 
Turicibacter et rel., Clostridium perfringens et rel., Faecalibacterium prausnitzii et 
rel., Ruminobacter amylophilus et rel., Clostridium difficile et rel., Ruminococcus 
obeum et rel., Fusobacterium, Bilophila et rel., Desulfovibrio et rel., Sphingomonas 
et rel., Labrys methylaminiphilus et rel. and Unclassified TM7. In the opposite 
direction relative abundance of the groups Clostridium herbivorans et rel., 
Clostridium sphenoides et rel., an unclassified Clostridium cluster XIVa group and 
Bacteroidetes distasonis et rel. was correlated with IN, FOS, GG and AX diets. 
Moreover, luminal acetate and propionate concentration also correlated with the IN, 
FOS, GG and AX diets and the four microbial groups that associated positively with 
these diets. An increased luminal butyrate concentration was observed with the GG 
and AX diets, but did not strongly correlate with a specific microbial group.  
 

 
Figure 6.3 Redundancy analysis, RDA, where the explanatory variables are acetate, 
propionate, butyrate and the diets: control (CON), Resistant Starch (RS), Arabinoxylan (AX), 
Fructooligosaccharides (FOS), Inulin (IN) and Guar Gum (GG). These variables explain 
58.6% of total variation. In this plot 73.5% of the explained variation is shown. 
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Effect of dietary fibre on caecum mucosal gene expressionEffect of dietary fibre on caecum mucosal gene expressionEffect of dietary fibre on caecum mucosal gene expressionEffect of dietary fibre on caecum mucosal gene expression    
We used Partial Least Square Discriminant Analysis (PLS DA) to analyse gene 
expression changes in caecal mucosa in mice fed different diets. The expression of 
8427 filtered protein encoding genes was used as input for a sparse PLS DA. The 
analysis revealed that samples could mainly be distinguished between mice fed on 
CON and RS diets and mice fed IN, FOS and GG diets (Figure 6.4). AX fed mice 
were clustering between these two main clusters, indicating intermediate effects on 
gene expression as compared to all other diet groups.  
The data revealed that the different fibre diets modulate gene expression 
differentially. This observation is similar to effects of dietary fibre on gene expression 
in colonic mucosa (Chapter 4Chapter 4Chapter 4Chapter 4), although contrary to the colon transcriptomes, the 
caecal tissue transcriptomes were clearly discriminated by diet, except for IN and 
FOS. This observation implies that fibre diets can elicit more specific effects on 
caecal mucosa as compared to colonic mucosa, which appears to be congruent with 
the notion that the caecum is the main fermentative organ in the mouse intestinal 
tract.  

    
Figure 6.4 Partial Least Square Discriminant Analysis (PLS-DA) score plot on gene 
expression profiles in caecal epithelial cells of mice fed different diets: control (CON), 
Resistant Starch (RS), Arabinoxylan (AX), Fructooligosaccharides (FOS), Inulin (IN) and Guar 
Gum (GG). In the plot the samples (individual mice) were plotted based on the two main 
variates. 
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Correlation between microbiota composition and caecal mucosa gene expression Correlation between microbiota composition and caecal mucosa gene expression Correlation between microbiota composition and caecal mucosa gene expression Correlation between microbiota composition and caecal mucosa gene expression 
profilesprofilesprofilesprofiles    
To reveal associations between microbiota composition and mucosal gene 
expression profiles in the different diet groups, we integrated these two microarray 
datasets using a PLS-based canonical correlation approach (Figure 6.1). The results 
for the first three components were represented in a Clustered Image Map (CIM) 
with correlation coefficients depicted by different colours (Figure 6.5).  

 
Figure 6.5 Correlation of epithelial cell gene expression with luminal microbiota composition.  
Sparse PLS canonical correlation analysis was performed to integrate gene expression values 
with relative abundance data of bacteria for individual mice. The heatmap represents the 
correlation structure of both dataset; red: positively correlated, blue: negatively correlated. 
More intense colours indicate stronger correlation. Correlation values were subjected to 
unsupervised hierarchal clustering based on Euclidean distance for both genes and microbial 
groups. Six main gene clusters (1-6) and six main bacterial clusters (A–F) were identified.  
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In total 599 mucosal genes and 29 bacterial groups (abundance > 1%) were retained 
for the first three components, and clustering of the correlation coefficients revealed 
six main clusters of host genes that correlated to six main clusters of bacteria (Gene 
lists per cluster are available upon request).  
The largest microbiota cluster in this correlation analysis (Figure 6.5, cluster C) 
contained a range of bacterial groups, of which some were previously shown to be 
associated with the control and RS diets, like Alistipes et rel., Bacteroides 
splanchnicus et rel., Porphyromonas asaccharolytica et rel., Clostridium difficile et 
rel., Ruminococcus obeum et rel., Desulfovibrio et rel., Sphingomonas et rel., and 
Unclassified TM7. This microbiota cluster correlated with the repression of epithelial 
gene sets associated with phosphorylation, other signalling processes and protein 
modification (cluster 1), although this effect appeared not completely specific for this 
microbial cluster. Likewise, this microbial cluster also correlated with enhance 
expression levels of genes associated with protein catabolism and RNA related 
processes and apoptosis (cluster 4), although this host response was again not 
exclusively correlated to this group of bacteria. Stronger correlations were identified 
between the second largest bacterial cluster (cluster D) that contained microbial 
groups including Parabacteroides distasonis et rel., Acitenobacter et rel. and seven 
genus groups within the Clostridium cluster XIVa group. Remarkably, this microbiota 
cluster encompassed all the microbial groups that were previously found to be 
associated with the FOS, IN, AX, and GG diets, e.g. Clostridium herbivorans et rel., 
Unclassified Clostridiales XIVa (close to Anaerostipes caccae), Clostridium 
sphenoides et rel., and Bacteroides distasonis et rel.. Cultured representatives of 
these bacterial groups are known for their capacity to degrade diet and host derived 
oligo- and poly-saccharides. Higher relative abundances of these bacterial groups 
were correlated with an elevated expression of genes associated with NF-κB related 
processes, as well as proteolysis and energy-generating processes, including 
oxidative phosphorylation and glycolysis. Inversely, the relative abundance of these 
microbial groups correlated negatively with the expression of mucosal functions 
related to immune-responses (T cell activation), DNA/RNA and glycosaminoglycan 
biosynthesis, and cell-cell communication. A single microbial group (Clostridium 
perfringens et rel.) appeared to correlate with exactly opposing mucosal 
transcriptome responses. The remaining microbial cluster A, E and F, encompassed 
functionally as well as phylogenetically broad microbial groups that correlated with 
relatively mild changes in caecal mucosa gene expression patterns.  
These analyses illustrate that bacterial groups that were associated with the fibre 
containing diets (except the RS diet) and the elevated caecal SCFA concentrations, 
also were associated with alterations in gene expression profiles in the caecal 
mucosa of the mice in variable ways, affecting processes that include energy 
metabolism and immune response, which are the essential pillars of host-microbe 
homeostasis in the intestinal tract. 
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Effect of IN and GG on geneEffect of IN and GG on geneEffect of IN and GG on geneEffect of IN and GG on gene----functions expressed by the microbiotafunctions expressed by the microbiotafunctions expressed by the microbiotafunctions expressed by the microbiota    
The IN and GG diet groups showed the highest SCFA concentrations and most 
distinct microbial profiles compared to the CON diet. Therefore, the caecal content 
of 4 mice of the IN, GG and CON groups were used for metatranscriptome analysis, 
using a procedure encompassing extraction of total microbial RNA, rRNA depletion, 
double-strand cDNA synthesis and single-end shotgun Illumina sequencing. A total 
of 11 to 34 million metatranscriptome reads were generated per sample. These 
reads were filtered for non mRNA and low quality reads, leading to the extraction of 
4.5 x 105 to 3.0 x 106 mRNA reads that were assembled and functionally and 
phylogenetically assigned to unravel the overall as well as group-specific microbiota 
activity profiles (see M&M for details; Chapter 5Chapter 5Chapter 5Chapter 5). Using this approach approximately 
46-69% of the overall mRNA reads could be assigned to specific transcripts (Table 
6.1), of which 70-85% was functionally annotated.  
 

 Total reads afterTotal reads afterTotal reads afterTotal reads after 
quality filteringquality filteringquality filteringquality filtering 

mRNAmRNAmRNAmRNA Assembled Assembled Assembled Assembled 
mRNA readsmRNA readsmRNA readsmRNA reads 

Bacterial protein coding in Bacterial protein coding in Bacterial protein coding in Bacterial protein coding in 
assembled contigsassembled contigsassembled contigsassembled contigs 

GG_1GG_1GG_1GG_1 1.3E+07 8.2E+05 61.3% 80.6% 
CON_1CON_1CON_1CON_1 1.4E+07 9.4E+05 55.1% 83.6% 
IN_1IN_1IN_1IN_1 1.7E+07 1.2E+06 54.6% 71.6% 
GG_2GG_2GG_2GG_2 2.0E+07 1.8E+06 55.3% 84.9% 
IN_2IN_2IN_2IN_2 1.6E+07 2.0E+06 58.6% 83.6% 
GG_3GG_3GG_3GG_3 2.5E+07 1.7E+06 68.7% 75.8% 
IN_3IN_3IN_3IN_3 1.4E+07 7.0E+05 58.4% 70.4% 
CON_2CON_2CON_2CON_2 2.5E+07 1.5E+06 57.0% 79.4% 
GG_4GG_4GG_4GG_4 2.0E+07 1.3E+06 45.7% 70.6% 
CON_3CON_3CON_3CON_3 1.1E+07 4.5E+05 58.4% 79.8% 
CON_4CON_4CON_4CON_4 2.8E+07 1.0E+06 54.0% 75.1% 
IN_4IN_4IN_4IN_4 3.4E+07 3.0E+06 56.4% 83.0% 

Table 6.1 . . . . Reads of the Iilumina sequences and the result of data processing per sample. 
 

Using the sample specific functional assignments of the detected transcripts, without 
taking their phylogenetic origin into account, RDA analysis revealed that these 
function-patterns clustered according to diet, clearly separating CON, and GG and 
IN diets (Figure 6.6). To further unravel the functional impacts of the different fibre 
diets (GG and IN versus control), the functions (i.e., KEGGs) associated with the first 
axis of the RDA (explaining ~ 27.6 % of the overall variation within this analysis) 
were evaluated. Most of the differentially expressed KEGGs were within the KEGG 
category of “Metabolism” (>70%), predominated by carbohydrate, amino-acid, and 
central energy metabolism associated functions, as well as a scattering of other 
metabolic functions (Table S 6.1). In addition, genes belonging to the KEGG 
category “Environmental Information Processing” appeared to be substantially 
represented in the microbial activity patterns that discriminated the IN and GG diets 
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from the CON diet. This category includes functions involved in response and 
adaptation of bacteria to their environment and encompasses both signal 
transduction pathways like two-component systems, as well as “membrane 
transport” associated functions like ABC-transporters and Phosphotransferase 
systems (PTS), that are important for the utilization of alternative carbon sources 
(e.g., fibres from the diet), and are required to drive the adaptations of the overall 
microbiota metabolism that was detected. Intriguingly, the CON diet microbiota 
appeared to express genes with KEGG identifiers of the “cell motility” category at a 
higher level as compared to the microbiota of mice fed GG or IN diets. The induction 
of bacterial motility within the microbiota, specifically in the caeca of the CON-diet 
animals, may imply that the microbiota experiences nutrient starvation under these 
conditions, which appears in agreement with the lower abundance of dietary 
nutrients (e.g. fibres) in the caecal lumen of these animals, and is known to induce 
motility in vitro (Aizawa and Kubori 1998, Koirala et al. 2014). 

    

Correlation between microbiota expresCorrelation between microbiota expresCorrelation between microbiota expresCorrelation between microbiota expressed functions and caecal mucosa gene sed functions and caecal mucosa gene sed functions and caecal mucosa gene sed functions and caecal mucosa gene 
expression patternsexpression patternsexpression patternsexpression patterns    
To pinpoint microbial and host functions that are associated (Figure 6.1), the 
metatranscriptome KEGG functions were correlated with the caecal mucosa gene 
expression patterns using sPLS canonical correlations, leading to the detection of 
two strongly correlating co-clusters of bacterial and host transcripts (Figure 6.7). The 
strongest correlations (Figure 6, marked areas of the correlation analysis),  

Figure 6.6 Redundancy 
analysis (RDA) of 
metatranscriptome data, 
where the explanatory 
variables are the diets 
control (CON), Inulin (IN) 
and Guar Gum (GG). These 
variables explain 37.4% of 
total variation. In this plot all 
the explained variation is 
shown. 
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Figure 6.7 Correlation between microbiota expressed functions and caecal gene mucosa 
expression patterns. Sparse PLS canonical correlation analysis was performed to integrate 
epithelial cell gene expression with microbial metatranscriptome KEGG functions for individual 
mice. The heatmap represents the correlation structure of both datasets; red: positively 
correlated, blue: negatively correlated. More intense colours indicate stronger correlation. 
Correlation values were subjected to unsupervised hierarchal clustering based on Euclidean 
distance for both genes and microbial groups. Five main gene clusters (1-5), and seven main 
bacterial clusters (A-G) were identified. 
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encompassed host-functions associated with glutathione, glutamate metabolism and 
glycerolipid metabolic processes, and PPAR signalling, (negatively correlated; gene 
enrichment lists per cluster are available upon request), as well as immune-related 
processes such as B cell and T cell receptor and toll- like receptor signalling 
(positively correlated,    gene enrichment lists per cluster are available upon request). 
The microbial functions correlated with these host processes, were scattered across 
a variety of different microbial pathways and processes, and only displayed a minor 
enrichment of the KEGG category “Amino-acid metabolism”. Intriguingly, the 
microbiota-associated functions that displayed an opposite correlation with these 
host functions (Figure 8; the pink (B), purple (F) and dark blue (G) clusters), 
predominantly belonged to the KEGG categories “Environmental Information 
Processing”, “Cellular Processes”, “Genetic Information Processing” and “Nucleotide 
metabolism” (Table S 6.2).  

Effect of IN Effect of IN Effect of IN Effect of IN and GG on active microbial communityand GG on active microbial communityand GG on active microbial communityand GG on active microbial community    
The microbiota functional profiles determined in the different diet groups could be 
due to a shift in the relative contribution to the overall activity patterns by specific 
microbial groups rather than a function adaptation of the overall microbial community 
per se. The differentially expressed KEGG annotated functions could be assigned to 
five bacterial families, i.e., Verrucomicrobiaceae, Bacteroidaceae, Lactobacillaceae, 
and Erysipelotrichaceae were detected at a significantly higher level in the GG diet 
compared to the control diet (Error! Reference source not found.). Conversely, the 
Lachnospiraceae assigned functions were in lower abundance in the GG diet 
compared to control. The same bacterial families displayed a similar trend in the IN 
samples compared to control samples, albeit not reaching significance.  
To identify which bacterial families are active in the degradation of the fibres, all 
metatranscriptome datasets were analysed in detail for the taxonomic origin of 
expressed genes involved in glycoside hydrolysis (Figure 6.8a) and saccharide 
transport (Figure 6.8bc). Bifidobacteriaceae, Lachnospiraceae, Clostridiaceae and 
the Erysipelotrichaceae particularly expressed genes associated with glycoside 
hydrolysis and saccharide transport, possibly indicating active degradation of fibres 
and sugar transport into the cells. The Bifidobacteriaceae appeared to have 
increased expression of both glycosidases and sugar transporters in the IN and GG 
compared to the control. This family is known for its increase in abundance during 
interventions with fructooligosaccharides, like IN and FOS (Gibson and Wang 1994, 
Cummings et al. 2001, Barboza et al. 2009, Kleerebezem and Vaughan 2009). The 
increased activity of Bifidobacteriaceae during GG intervention has not been 
reported to date, but according to the metatranscriptome data generated in this study 
appeared to be even somewhat more elevated in GG diet as compared to the IN 
diet. This finding implies that the Bifidobacteriaceae are strongly involved in GG fibre 
catabolism. The other bacterial families detected displayed quite distinct responses 
to the different diets. The Lachnospiraceae increased the glycosidase expression in 
IN and GG diets compared to the control diet, while their expression of sugar 



Linking the fate of dietary fibres to microbial transcriptome patterns 

107 

 

transport functions was decreased. Conversely, the Erysipelotrichaceae elevated 
expression of sugar transport functions in the IN and GG diets, while their 
glycosidase expression appeared not to respond to the diet changes. Finally, the 
Clostridiaceae decreased the glycosidase expression levels in the fibre diets while 
the carbohydrate transport remained expressed at the same level in all diets. 
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Figure 6.8 Relative abundance of gene expression of a) Glycosidases, b) ABC-transporters 
and c) Phosphotransferase systems (PTS) at family level. 
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Notably, although 25 % of all the detected glycosidase transcripts was assigned to 
the Bacteroidetes, this phylum hardly expressed saccharide transporter functions. 
The Bacteroidetes expressed a relatively large fraction of the overall (and diverse) 
hydrolase encoding genes, but appeared less active in importing the monomeric 
sugars produced by enzymatic polysaccharide hydrolysis. However, isolates within 
the Bacteroides and Prevotella genera encode operons that cluster genes encoding 
fibre binding, several carbohydrate degrading enzymes and transport functions 
(Dodd, 2011; Nelson 2010), and the encoded polysaccharide degradation machinery 
of Bacteroides thetaiotaomicron was proposed to be closely associated with the 
transport machinery anchored in the outer membrane. This assembly could ensure 
direct transfer from the hydrolytic enzymes to the transport system to minimize loss 
of monosaccharides to other bacteria (Dodd 2011), which may not require elevated 
expression levels of other transport functions. 
The Bacilli displayed a relatively lower expression of genes encoding glycosidases 
and higher expression of sugar transporter-encoding genes in the IN and GG groups. 
In particular the Phosphotransferase systems (PTS) expression by the Bacilli was 
strongly elevated in the IN and GG groups, suggesting that these populations 
depend on other microorganisms to generate the mono- and disaccharides through 
the initial hydrolysis of dietary polysaccharides. Analogously, also the 
Ruminococcaceae actively expressed sugar transport functions, but did not 
contribute to the expression of glycosidase encoding genes. This is somewhat 
unexpected, since members of the Ruminococcaceae are known as fibre degraders 
that possess glycosidases, like Ruminococcus bromii, Faecalibacterium prausnitzii 
and Ruminococcus flavevacies (Biddle 2013; Rajilic 2014). Notably, the 
Ruminococcaceae shifted the expression of sugar transport systems from PTS 
systems to ABC transporters in the GG diet (and to a lesser extent in the IN diet) as 
compared to the CON diet. The substrate predictions of the PTS that are strongly 
expressed in the control diet group were related to saccharides that are derived from 
mucus degradation, which may be suppressed by the supply of dietary 
carbohydrates in the GG and IN diets (Figure S 6.4). PTS transport enables efficient 
import of mono- and/or disaccharides, which is coupled to substrate phosphorylation 
(Biddle 2013) and is commonly the preferred mode of transport in bacteria when they 
reside in carbohydrate limited environments. This is likely the situation for the 
Ruminococcaceae in the CON group caeca, where mucus-derived mono- and di-
saccharides as well as other carbon sources were most likely depleted and/or not 
accessible for the members of this family. ABC transport allows import of mono- up 
to oligosaccharides, which could be energetically favourable for the 
Ruminococcaceae in the enriched environment associated with the fibre diets. This 
transport-flexibility is absent from many other bacterial families, like the 
Lachnospiraceae, of which the overall expression of carbon metabolism associated 
functions was suppressed in the GG and IN diet compared to the CON diet, implying 
that this bacterial family is unable to compete with other species for the dietary fibres.  
With the intention to reconstruct the activity profiles involved in SCFA production, 
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KEGGs assigned to key enzymes in SCFA production pathways were selected 
(Figure S 6.5). The expression of genes encoding these enzymes and their predicted 
taxonomic assignment differed between the CON, IN and GG groups in all of the 
pathways evaluated (Figure 6.9). In the GG diet the Erysipelotrichaceae seemed to 
more abundantly express various SCFA pathways compared to the control diet. The 
Erysipelotrichaceae were highly active in the conversion of pyruvate to lactate and/or 
vice-versa. In addition the Erysipelotrichaceae did express the acetyl-coA to butyryl-
coA via crotonyl-coA pathway, where the conversion of crotonyl-coA to butyryl-coA 
allows anaerobes to conserve energy (Figure S 6.6; (Seedorf et al. 2008) and should 
lead to butyrate production. However the butyrate kinase and the butyryl-
CoA:acetate CoA-transferase enzymes of Erysipelotrichaceae were not identified in 
our dataset, which may be due to the erroneous annotation of acetate and butyrate 
kinases and SCFA transferases since these enzymes display a high-level of 
similarity (Louis and Flint 2007, Vital et al. 2013, Vital et al. 2014). Moreover, some 
of the phosphate butyryl-transferase and butyrate kinase were predicted to be 
expressed by members of the Bacillaceae, Bacteroidaceae and 
Porphyromonadaceae families, implying that these families are involved in the 
production of butyrate, which is in clear contrast with previous studies that indicated 
that Bacillaceae and Bacteroidaceae family members are not producing butyrate 
(Rajilic 2014). Again this may indicate that the inaccurate annotations of gene 
sequences related to kinases and transferases involved in SCFA pathways confuse 
these metabolic interpretations of the metatranscriptome data.  
In the IN group there was a high activity in ethanol consumption by members of the 
Desulfovibrionaceae, in line with previous reports that isolates within this family use 
ethanol as a carbon source (Scanlan and Marchesi 2008). Transcripts associated 
with the production of propionate were predominantly assigned to members of the 
Clostridiaceae, Bacteroidaceae and Porphyromonadaceae, where the latter two 
groups probably produce propionate from oxaloacetate via succinate. Although 
increased luminal concentrations of acetate, propionate and butyrate were detected 
in the GG and IN diets, only increased relative expression levels of genes associated 
with propionate were detected in the IN and GG metatranscriptomes compared to 
those of the CON diet, whereas transcripts associated with acetate and butyrate 
production appeared to be present at a relatively lower level in GG and IN compared 
to control diet.  
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Figure 6.9 Activity of SCFA metabolism pathways. A) Control animals. Arrow thickness 
indicates activity of this pathway relative to the total activity. B) and C) are the Inulin and 
Guargum dietary treatment, respectively. The colour and thickness of the arrows indicate a 
fold change compared to the same path in the control diet.  
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DiscussionDiscussionDiscussionDiscussion    
Dietary fibres have been associated with health benefits. After their degradation by 
the intestinal tract microbiota, SCFA are generated and taken up into the epithelium 
of the host. Here we show that the dietary fibres Inulin (IN) and Guar Gum (GG) yield 
increased total SCFA concentrations in the caecum and in parallel increase the 
expression of metabolic processes involved in central energy metabolism in the 
caecal mucosa of the mice. Moreover microbial analysis revealed shifts in 
composition and activity patterns when the mice were given the different 
carbohydrate sources.  
Mice fed the fructooligosaccharides (FOS), arabinoxylan (AX) or resistant starch 
(RS) diets did not have increased total SCFA concentrations in their caeca, although 
FOS and AX could still stimulate enhanced expression of the central energy 
metabolism pathways in the mucosa of these mice. Similar observations were 
reported previously for the colonic mucosa of these mice, although in the colon 
lumen both the FOS and AX diets increased SCFA levels (Lange & Hugenholtz, 
2014). The experimental design of this study allowed sampling of luminal content at 
a single time point and thus generated a snapshot view of the intestinal system, 
which excludes interpretations of the rate of SCFA production and or consumption, 
which may be drastically affected by the different diets. Enhanced SCFA flux into the 
host mucosa could explain the similarity in the local mucosal responses measured 
in the IN, GG, FOS and AX diets. Such a snapshot determination of SCFA 
concentrations in the lumen is clearly a measurement of limited value for the 
determination of the microbiota fibres-fermentation output (den Besten, 2014). 
Microbiota composition and activity shifts may provide a better proxy for the 
estimation of in situ fibre-fermentation rates in the intestinal lumen, and these 
parameters were found strongly affected by the addition of fibres to the diet. 
The fibre digestion by the microbiota could be further specified by analysis of the 
expression of glycosidase and sugar transport functions. Here we could distinguish 
three categories of bacteria, (i) bacteria that express glycosidases, but hardly sugar 
transporters; (ii) bacteria that express both glycosidases and sugar transporters; (iii) 
bacteria that hardly express glycosidases, but do express sugar transporters (Figure 
6.10). The first group is mainly represented by the Bacteroidaceae, the 
Porphyromonadaceae and the Verrucomicrobiaceae, of which the latter displayed 
elevated expression in the IN and GG diet. The Verrucomicrobiaceae member 
detected predominantly belonged to Akkermansia muciniphila (data not shown). The 
increase of activity in the IN and GG groups of this typical mucin digesting microbe 
(Derrien et al. 2008) may indicate that these diets lead to increased mucus 
production, although this was not apparent from the mucosal transcriptome 
analyses, but may not be primarily regulated at the level of gene transcription 
(Hedemann et al. 2009). The second group corresponds to members of the 
Bifidobacteriaceae, Lachnospiraceae, Erysipelotrichaceae and Clostridiaceae.  
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These four families all expressed sugar transporter encoding genes parallel to the 
glycosidases, which is in clear contrast to the first group and may be due to a lack 
of mechanistic coupling of polysaccharide hydrolysis and saccharide transport as 
has been proposed for some members of the first group of bacteria (e.g. Bacteroides 
thetaiotaomicron; Dodd, 2011). Notably, the Erysipelotrichaceae have only recently 
been recognized as a separate bacterial family, and many members still need to be 

Figure 6.10 Overview of identified processes during 
fibre fermentation. 
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characterized and re-assigned to this family ((Rajilic-Stojanovic and de Vos 2014), 
NCBI taxonomy, September 2014). Our results show that this family plays an 
important role in the murine microbiota and contributes strongly to its overall 
metabolite conversions (Figure 6.10). The third group are bacteria that profit from 
glycosidase activity of other bacteria and import the released sugars. These are the 
Eubacteriaceae, several Bacilli families and the Ruminococcaceae. All bacterial 
families in three different categories ferment the carbohydrates they ingest to 
produce SCFA in different composition and ratio, although their individual 
contribution to the overall SCFA production by the microbiota may differ as a function 
of the dietary treatment. However, deciphering of the specific activity in particular 
SCFA pathways of individual bacterial families was hampered by the apparent 
inaccuracy of SCFA pathway mapping of genes, where many functions appear to be 
wrongly assigned, due to the high degree of similarity of the enzymes involved. To 
overcome this, advanced annotation and domain recognition tools need to be 
developed to accurately dissect these different enzyme families, which is a 
prerequisite to enable SCFA pathway reconstruction for environmental samples on 
basis of metatransciptome or similar metagenomic information.  
In summary the SCFA can be used as an energy source for the epithelial cells of the 
host. The correlation of MITChip and host gene-expression revealed fibre degrading 
and possibly butyrate producing bacteria activating energy metabolism in the host 
and repress transcriptional regulation and immune system processes. Moreover, 
based on the KEGG functions derived from the metatranscriptome data we observed 
a correlation with similar host genes to KEGG functions related to bacterial growth. 
This could indicate that active and fibre utilizing bacteria influence the host mucosa 
directly by enhancing its energy metabolism and affecting the immune system. Next 
to the known fibre responding families - Bacteroidaceae, Porphyromonadaceae, 
Verrucomicrobiaceae, Bifidobacteriaceae, Lachnospiraceae, Clostridiaceae, 
Eubacteriaceae, several Bacilli families and the Ruminococcaceae – we identified a 
new family, the Erysipelotrichaceae, as a prominent and active member of the 
murine gut microbiota.  
  



Chapter 6  

116 

 

Material and methodsMaterial and methodsMaterial and methodsMaterial and methods    

ShortShortShortShort----chain fatty acid analysis in caecal luminal content chain fatty acid analysis in caecal luminal content chain fatty acid analysis in caecal luminal content chain fatty acid analysis in caecal luminal content     
Short chain fatty acids were measured in mouse intestinal samples at section. 
Luminal content of the caecum (ten mice per group) was collected in H3PO4 and 
isocaproic acid (as an internal standard) containing buffer solution. Samples were 
stored at -20ºC until further processing. The day of analysis, samples were thawed, 
centrifuged at 14.000 rpm (5 min), and supernatant was collected and stored at 5ºC. 
The samples were then subjected to gas chromatography (Fisons HRGC Mega 2, 
CE Instruments, Milan, Italy) at 190°C using a glass column fitted with Chromosorb 
101 with a carrier gas (N2 saturated with methanoic acid). 

Microbial CompositionMicrobial CompositionMicrobial CompositionMicrobial Composition    
Total DNA was extracted from 0.01-0.1 grams of caecal content samples using the 
repeated bead beating plus column (RBB+C) method of (Yu and Morrison 2004). 
The composition of microbial communities in the intestinal samples was analysed 
with the Mouse Intestinal Tract Chip (MITChip). This phylogenetic microarray was 
designed using criteria of the Human Intestinal Tract Chip (HITChip) (Rajilic-
Stojanovic et al. 2009). The MITChip consists of 3,580 different oligonucleotides 
specific for the mouse intestinal microbiota (Rajilic-Stojanovic et al. 2009, Geurts et 
al. 2011a, Reikvam et al. 2012). The oligonucleotides on the array target the V1 and 
V6 regions of bacterial 16S rRNA genes. The 16S rRNA genes were amplified from 
twenty nanogram of DNA extracted from intestinal samples, with the primers 
T7prom-Bact-27-F and Uni-1492-R (Table 6.2). PCR products were then 
transcribed, and RNA was labelled with Cy3 and Cy5 dyes and fragmented as 
described previously (Rajilic-Stojanovic et al. 2009, Geurts et al. 2011a, Reikvam et 
al. 2012). Finally the samples were hybridized on the arrays at 62.5oC for 16h in a 
rotation oven (Agilent Technologies, Amstelveen, The Netherlands). After washing 
and scanning of the slides, data was extracted with the Agilent Feature Extraction 
software, version 9.1. The data was normalized and analysed using a set of R-based 
scripts in combination with a custom-designed relational database, which operates 
under the MySQL database management system. To determine correlation of the 
Robust Probabilistic Averaging (RPA) signal intensities of 2667 specific probes for 
the  96 genus-level bacterial groups detected on the MITChip with a specific diet or 
SCFA, redundancy analysis (RDA) in Canoco 5.0 was used, and visualized in a 
triplot (Lahti et al. 2011, ter Braak and P 2012). The Monte Carlo Permutation test 
was used to assess the significance of the variation in the dataset in relation to the 
diet and SCFA.  
The Unpaired Wilcoxon signed-rank test was used to determine bacterial groups 
significantly different between the control and resistant starch, IN, FOS, arabinoxylan 
and the guar gum diet. The RPA signal intensities of the 96 genus-level groups were 
tested.  
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Primer namePrimer namePrimer namePrimer name    SequenceSequenceSequenceSequence    ApplicationApplicationApplicationApplication    

T7prom-
Bact-27-F  

5’-TGA ATT GTA ATA CGA CTC ACT ATA GGG GTT 
TGA TCC TGG CTC AG–3’ 

MITChip 

Uni-1492-R  5’-CGG CTA CCT TGT TAC GAC-3’ MITChip 

PROK1492R 5' -GGW TAC CTT GTT ACG ACT T-3' QPCR 

BACT1369F 5'-CGG TGA ATA CGT TCY CGG-3' QPCR 

Table 6.2 List of primers (Suzuki et al. 2000, Rajilic-Stojanovic et al. 2009). 

Quantification of bacterial communityQuantification of bacterial communityQuantification of bacterial communityQuantification of bacterial community    
Quantification of the bacterial 16S rRNA gene was done by a qPCR assay using the 
primers developed by (Suzuki et al. 2000). The qPCRs were performed in 384-well 
plates (BioRad) sealed with a film (Microseal B film, Bio-Rad) using a MyIQ cycler 
with MyIQ software (version 1.0.410, Bio-Rad). The reactions were carried out in a 
total volume of 12.5 µl consisting of 1x IQ SYBR green Supermix (Bio-Rad), 200 nM 
of the forward and reverse primer and 2 µl of template DNA, and the cycling program 
and melting curve analysis as previously described (van den Bogert et al. 2011). The 
standard curve consisting of an 8-fold dilution series was a 16S rRNA gene PCR 
product of Escherichia coli top10. The copy number was calculated per caecum 
weight. 

RNA extraction, mRNA enrichment, cDNA synthesis and illumina sequencing.RNA extraction, mRNA enrichment, cDNA synthesis and illumina sequencing.RNA extraction, mRNA enrichment, cDNA synthesis and illumina sequencing.RNA extraction, mRNA enrichment, cDNA synthesis and illumina sequencing.    
Four intestinal caecum content samples from each dietary treatment were used to 
analyse the metatranscriptome activity profiles. The RNA was extracted from 0.1-0.2 
grams of caecal content. The content was re-suspended in 500 µL ice-cold TE buffer 
(Tris-HCL pH 7.6, EDTA pH 8.0). Total RNA was obtained via the Macaloid-based 
RNA isolation protocol (Zoetendal et al. 2006, Leimena et al. 2013) with in addition 
the use of Phase Lock Gel heavy tubes (5 Prime GmbH, Germany) during the phase 
separation. The RNA purification was done with the RNAeasy mini kit (Qiagen, USA), 
including an on-column DNAseI (Roche, Germany) treatment (Zoetendal et al. 
2006). The total RNA was eluted in 30 µL ice-cold TE buffer and the RNA quantity 
and quality were assessed using a NanoDrop ND-1000 spectrophotometer 
(Nanodrop Technologies, Wilmington, USA) and Experion RNA Stdsens analysis kit 
(Biorad Laboratories Inc., USA), respectively. mRNA enrichment was performed by 
using the mRNA enrichment kit (MICROBExpressTM, Ambion, Applied Biosystem, 
The  Netherlands) using the manufacturer’s protocol. As with the total RNA the 
quantity and quality were assessed, the latter was done to check on the efficiency of 
the mRNA enrichment. One µg of the enriched mRNA sample was used to transcribe 
the RNA in cDNA. Double stranded cDNA was synthesized with the SuperScript® 
Double-Stranded cDNA Synthesis kit (Invitrogen, the Netherlands), with addition of 
SuperScript® III Reverse Transcriptase (Invitrogen, the Netherlands) and random 
priming using random hexamers (Invitrogen, the Netherlands) (Yoder-Himes et al. 
2009, Leimena et al. 2012, Leimena et al. 2013). To remove the RNA a RNAse A 
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(Roche, Germany) treatment was preformed, followed by phenol-chloroform 
extraction of the cDNA and ethanol precipitation. The product was checked on gel 
and 3 to 8 µg of cDNA was send to the sequencing provider for sequencing (GATC 
Biotech, Germany). Single read Illumina Libraries were prepared from the double-
stranded cDNA according to the ChiP-seq protocol (Schmidt et al. 2009) with insert 
sizes between 200-300bp, suing barcoded tags for library constructions to enable 
parallel sequencing (GATC Biotech, Germany). Sequencing was performed using 
Illumina Hiseq2000 and using 5pM concentration of the library and the single-end 
protocol (Leimena et al. 2013).  

Sequence data processingSequence data processingSequence data processingSequence data processing    
In total, sequencing yielded between 11 and 34 million reads per sample. The data 
is available in the NCBI small reads archive (sra) repository, under accession 
numbers SRR1569190-SRR1569206.The reads were processed via a previously 
described protocol (Chapter 5Chapter 5Chapter 5Chapter 5). Briefly the data was filtered for ribosomal RNA 
sequences, adapter sequences and poor quality reads using SortMeRNA (version 
1.2) (Kopylova et al. 2012), cutadapt (Martin 2011), PRINSEQ (lite-version) 
(Schmieder and Edwards 2011), respectively. Reads smaller than 50 nucleotides 
were discarded. The resulting mRNA fractions were merged and de novo assembled 
into larger contigs, creating one reference set for all samples. A total of 70710 contigs 
were assembled with a total length of 59 Mb (n50=1074). Encoded in these contigs 
a total of 104110 potential open reading frames were predicted. To determine the 
taxonomic origin of the contigs, the predicted protein sequences were aligned with 
NCBI’s non-redundant database, and the taxonomical family classification of the 
best hit was retrieved. Functional annotation was done by assigning KEGG orthology 
identifiers using the KEGG’s KAAS server. Expression levels of the predicted 
proteins were determined by aligning the mRNA reads with assembled contigs and 
counting the total amount of nucleotides aligned with the corresponding ORFs. 

Transcriptome analysis and Functional implications  
All steps for Microarray hybridization and analysis, including RNA isolation and 
purification, were performed as described before (ChChChChapter 4apter 4apter 4apter 4). Functional implications 
were analysed using Enrich (Chen et al. 2013b).  

Multivariate statistical analysis 
We used Partial Least Square analysis (PLS) from mixOmics library in R to first, 
analyse effects of dietary fibre on gene expression (PLS Discriminant analysis) and 
second, to integrate microbiota composition with mucosal gene expression (PLS 
canonical correlation). For latter analysis, twenty-three animals were chosen for 
analysis of microbiota composition and host gene expression of which for 15 mice 
both datasets were available and 8 mice were added that were cage partner to 
increase the power. For transcriptome-transcriptome analysis 11 mice were included 
in the analysis of which for 7 mice both datasets were available and 4 mice were 
added that were cage partner. To normalise the data, both datasets were log 
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transformed before analysis. The PLS was done in a canonical mode. A pair-wise 
similarity matrix for the first three components of both datasets was computed. The 
matrix was visualized in a clustered image map representing colour-coded variable 
associations (correlation coefficients) between the two datasets (from blue negative 
to red positive). The columns and rows were reordered according to hierarchical 
clustering (Euclidean distance). Analyses were performed in R using the library 
mixOmics (Lê Cao et al. 2009).        
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Supplemental informationSupplemental informationSupplemental informationSupplemental information    

Supplemental FiguresSupplemental FiguresSupplemental FiguresSupplemental Figures    

    
Figure S 6.1 Microbial abundance as measured by 16S rRNA gene-targeted quantitative PCR 
(qPCR). 

    
Figure S 6.2 Pearson distance clustering of the samples on log10 transformed probe level 
data of the MITChip. Abbreviations are for control (CON), Resistant Starch (RS), Arabinoxylan 
(AX), Fructooligosaccharides (FOS), Inulin (IN) and Guar Gum (GG). 
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Figure S 6.3 Relative abundance of metatranscriptome (activity) at family level. Family names 
depicted in purple are significantly different in activity between control and Guargum groups. 

    
Figure S 6.4 Expressed Phosphotransferase systems (PTS) in the metatransciptome. 
Uncoloured units were not found in the data. Grey, equally expressed in all groups; orange, 
higher expression in IN and GG; blue, lower expression in IN and GG; yellow, higher 
expression in GG compared to CON; red, higher expression in IN compared to CON. 
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Figure S 6.5 KEGG numbers of    the SCFA metabolism pathways used to create Figure 6.9. 

    
Figure S 6.6 iPATH visualization of the expression levels in the metabolic processes assigned 
to Erysipelotrichaceae. 
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Supplemental TablesSupplemental TablesSupplemental TablesSupplemental Tables    

    
    Nr of KeggsNr of KeggsNr of KeggsNr of Keggs    Total KeggTotal KeggTotal KeggTotal Kegg    

 
More 
expressed in 
IN and GG 

Less expressed 
in IN and GG 

 

MetabolismMetabolismMetabolismMetabolism    95959595    87878787    70.5%70.5%70.5%70.5%    

Carbohydrate metabolismCarbohydrate metabolismCarbohydrate metabolismCarbohydrate metabolism    33.1%33.1%33.1%33.1%    38.6%38.6%38.6%38.6%    20.9%20.9%20.9%20.9%    
Glycolysis / Gluconeogenesis 5 4  

Citrate cycle (TCA cycle) 4 -  

Pentose phosphate pathway 1 3  

Pentose and glucuronate interconversions 3 2  

Fructose and mannose metabolism 2 6  

Galactose metabolism 7 4  

Ascorbate and aldarate metabolism 1 1  

Starch and sucrose metabolism 2 -  

Amino sugar and nucleotide sugar metabolism 6 9  

Pyruvate metabolism 2 1  

Glyoxylate and dicarboxylate metabolism 2 1  

Propanoate metabolism 1 1  

Butanoate metabolism 4 2  

C5-Branched dibasic acid metabolism 1   

Energy metabolismEnergy metabolismEnergy metabolismEnergy metabolism    8.9%8.9%8.9%8.9%    6.7%6.7%6.7%6.7%    10.3%10.3%10.3%10.3%    
Oxidative phosphorylation 3 -  

Carbon fixation in photosynthetic organisms 2 1  

Carbon fixation pathways in prokaryotes - 1  

Methane metabolism - 3  

Nitrogen metabolism 2 -  

Sulfur metabolism 4 3  

Lipid metabolismLipid metabolismLipid metabolismLipid metabolism    6.5%6.5%6.5%6.5%    4.2%4.2%4.2%4.2%    3.8%3.8%3.8%3.8%    
Fatty acid biosynthesis - 1  

Fatty acid degradation - 1  

Synthesis and degradation of ketone bodies - 1  

Sphingolipid metabolism 2 1  

Linoleic acid metabolism 1 -  

Biosynthesis of unsaturated fatty acids - 1  

Primary bile acid biosynthesis 1 -  

Glycerolipid metabolism 3 -  

Glycerophospholipid metabolism 1 -  

Nucleotide metabolismNucleotide metabolismNucleotide metabolismNucleotide metabolism    6.5%6.5%6.5%6.5%    5.0%5.0%5.0%5.0%    7.4%7.4%7.4%7.4%    
Purine metabolism 7 3  

Pyrimidine metabolism 1 3  

Amino acid metabolismAmino acid metabolismAmino acid metabolismAmino acid metabolism    10.5%10.5%10.5%10.5%    7.6%7.6%7.6%7.6%    11.9%11.9%11.9%11.9%    
Alanine, aspartate and glutamate metabolism 2 -  

Glycine, serine and threonine metabolism 1 1  
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Cysteine and methionine metabolism 2 2  

Valine, leucine and isoleucine biosynthesis 1 -  

Valine, leucine and isoleucine degradation - 1  

Lysine biosynthesis 1 -  

Lysine degradation - 1  

Arginine and proline metabolism 4 1  
Phenylalanine, tyrosine and tryptophan 

biosynthesis 
2 - 

 

Phenylalanine metabolism - 2  

Tryptophan metabolism - 1  

Metabolism of other amino acidsMetabolism of other amino acidsMetabolism of other amino acidsMetabolism of other amino acids    1.6%1.6%1.6%1.6%    1.7%1.7%1.7%1.7%    2.1%2.1%2.1%2.1%    
Selenocompound metabolism 1 1  

D-Alanine metabolism 1 -  

beta-Alanine metabolism - 1  

Glycan biosynthesis and metabolismGlycan biosynthesis and metabolismGlycan biosynthesis and metabolismGlycan biosynthesis and metabolism    2.4%2.4%2.4%2.4%    5.0%5.0%5.0%5.0%    3.2%3.2%3.2%3.2%    
N-Glycan biosynthesis - 1  

Various types of N-glycan biosynthesis - 2  

Glycosaminoglycan degradation - 1  

Glycosphingolipid biosynthesis - globo series 1 -  

Peptidoglycan biosynthesis 1 -  

Other glycan degradation 1 2  

Metabolism of cofactors and Metabolism of cofactors and Metabolism of cofactors and Metabolism of cofactors and vitaminsvitaminsvitaminsvitamins    3.2%3.2%3.2%3.2%    5.9%5.9%5.9%5.9%    6.2%6.2%6.2%6.2%    
Nicotinate and nicotinamide metabolism 1 -  

Porphyrin and chlorophyll metabolism 3 1  

Pantothenate and CoA biosynthesis - 4  

Biotin metabolism - 1  
Ubiquinone and other terpenoid-quinone 

biosynthesis 
- 1 

 

Metabolism of Metabolism of Metabolism of Metabolism of terpenoids and polyketidesterpenoids and polyketidesterpenoids and polyketidesterpenoids and polyketides    1.6%1.6%1.6%1.6%    0.8%0.8%0.8%0.8%    1.9%1.9%1.9%1.9%    
Terpenoid backbone biosynthesis 1 1  

Carotenoid biosynthesis 1 -  

Biosynthesis of other secondary Biosynthesis of other secondary Biosynthesis of other secondary Biosynthesis of other secondary 
metabolitesmetabolitesmetabolitesmetabolites    

0.8%0.8%0.8%0.8%    0.8%0.8%0.8%0.8%    1.2%1.2%1.2%1.2%    

Streptomycin biosynthesis 1 -  

Caffeine metabolism - 1  

Xenobiotics biodegradation Xenobiotics biodegradation Xenobiotics biodegradation Xenobiotics biodegradation and metabolismand metabolismand metabolismand metabolism    1.6%1.6%1.6%1.6%    6.7%6.7%6.7%6.7%    1.6%1.6%1.6%1.6%    
Chloroalkane and chloroalkene degradation 1 -  

Bisphenol degradation 1 -  

Benzoate degradation - 3  

Xylene degradation - 1  

Atrazine degradation - 1  

Dioxin degradation - 1  

Drug metabolism - other enzymes - 2  

GeneticGeneticGeneticGenetic    Information ProcessingInformation ProcessingInformation ProcessingInformation Processing    4444    5555    13.2%13.2%13.2%13.2%    

TranscriptionTranscriptionTranscriptionTranscription    0%0%0%0%    0.8%0.8%0.8%0.8%    0.3%0.3%0.3%0.3%    
RNA polymerase - 1  



Linking the fate of dietary fibres to microbial transcriptome patterns 

125 

 

TranslationTranslationTranslationTranslation    0.8%0.8%0.8%0.8%    2.5%2.5%2.5%2.5%    6.0%6.0%6.0%6.0%    
Aminoacyl-tRNA biosynthesis 1 1  

Ribosome - 2  

Folding, sorting and degradationFolding, sorting and degradationFolding, sorting and degradationFolding, sorting and degradation    0.8%0.8%0.8%0.8%    0.8%0.8%0.8%0.8%    2.4%2.4%2.4%2.4%    
RNA degradation 1 -  

Protein processing in endoplasmic reticulum - 1  

Replication and repairReplication and repairReplication and repairReplication and repair    1.6%1.6%1.6%1.6%    0%0%0%0%    4.5%4.5%4.5%4.5%    
Nucleotide excision repair 1 -  

Homologous recombination 1 -  

Environmental Information ProcessingEnvironmental Information ProcessingEnvironmental Information ProcessingEnvironmental Information Processing    23232323    21212121    11.8%11.8%11.8%11.8%    

Membrane transportMembrane transportMembrane transportMembrane transport    11.3%11.3%11.3%11.3%    11.8%11.8%11.8%11.8%    7.5%7.5%7.5%7.5%    
ABC transporters 8 10  

Phosphotransferase system (PTS) 6 4  

Signal transductionSignal transductionSignal transductionSignal transduction    7.3%7.3%7.3%7.3%    5.9%5.9%5.9%5.9%    4.2%4.2%4.2%4.2%    
Two-component system 6 6  

HIF-1 signaling pathway 1 -  

FoxO signaling pathway 1 -  

Phosphatidylinositol signaling system 1 -  

Calcium signaling pathway - 1  

Cellular ProcessesCellular ProcessesCellular ProcessesCellular Processes    2222    6666    4.5%4.5%4.5%4.5%    

Transport and catabolismTransport and catabolismTransport and catabolismTransport and catabolism    1.6%1.6%1.6%1.6%    0.8%0.8%0.8%0.8%    0.9%0.9%0.9%0.9%    
Peroxisome 2 1  

Cell motilityCell motilityCell motilityCell motility    0%0%0%0%    4.2%4.2%4.2%4.2%    2.9%2.9%2.9%2.9%    
Bacterial chemotaxis - 2  

Flagellar assembly - 3  

Table S 6.1 KEGG orthology distribution of 250 KEGGs explaining the differentiation of the 
diets in Figure 6.6 best. More expressed in IN and GG are the KEGGs in the direction of the 
IN and GG groups, less expressed are the KEGGs that correlated to the CON group. 
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All All All All 
KeggsKeggsKeggsKeggs    

Cluster Cluster Cluster Cluster 
1111    

Cluster Cluster Cluster Cluster 
2222    

Cluster Cluster Cluster Cluster 
3333    

Cluster Cluster Cluster Cluster 
4444    

Cluster Cluster Cluster Cluster 
5555    

Cluster Cluster Cluster Cluster 
6666    

Cluster Cluster Cluster Cluster 
7777    

MetabolismMetabolismMetabolismMetabolism    70.5%70.5%70.5%70.5%    70.2%70.2%70.2%70.2%    81.4%81.4%81.4%81.4%    76.0%76.0%76.0%76.0%    75.2%75.2%75.2%75.2%    61.1%61.1%61.1%61.1%    60.5%60.5%60.5%60.5%    34.8%34.8%34.8%34.8%    

Carbohydrate metabolism 20.9% 18.4% 24.6% 22.4% 21.4% 20.4% 24.2% 2.2% 

Energy metabolism 10.3% 4.3% 18.2% 7.3% 10.3% 18.5% 5.6% 8.7% 

Lipid metabolism 3.8% 4.0% 3.0% 2.8% 0.9% 5.7% 8.1% 0.0% 

Nucleotide metabolism 7.4% 9.4% 5.5% 7.7% 13.7% 0.0% 4.8% 19.6%19.6%19.6%19.6%    

Amino acid metabolism 11.9% 18.4%18.4%18.4%18.4%    12.7% 12.6% 11.1% 4.5% 8.1% 0.0% 
Metabolism of other 
amino acids 2.1% 2.0% 1.7% 2.4% 0.9% 2.5% 3.2% 2.2% 
Glycan biosynthesis and 
metabolism 3.2% 3.3% 2.5% 5.7% 5.1% 1.9% 0.0% 0.0% 
Metabolism of cofactors 
and vitamins 6.2% 5.7% 9.3% 9.3% 4.3% 2.5% 3.2% 2.2% 
Metabolism of terpenoids 
and polyketides 1.9% 1.7% 1.3% 1.6% 3.4% 2.5% 2.4% 0.0% 
Biosynthesis of other 
secondary metabolites 1.2% 1.7% 0.8% 1.6% 1.7% 1.3% 0.0% 0.0% 
Xenobiotics 
biodegradation and 
metabolism 1.6% 1.3% 1.7% 2.4% 2.6% 1.3% 0.8% 0.0% 

Genetic Information Genetic Information Genetic Information Genetic Information 
ProcessingProcessingProcessingProcessing    13.2%13.2%13.2%13.2%    18.4%18.4%18.4%18.4%    10.2%10.2%10.2%10.2%    7.7%7.7%7.7%7.7%    4.3%4.3%4.3%4.3%    14.6%14.6%14.6%14.6%    6.5%6.5%6.5%6.5%    60.9%60.9%60.9%60.9%    

Transcription 0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.8% 6.5% 

Translation 6.0% 1.7% 5.9% 2.8% 1.7% 11.5% 4.8% 47.8% 
Folding, sorting and 
degradation 2.4% 2.0% 3.4% 2.4% 2.6% 3.2% 0.8% 6.5% 

Replication and repair 4.5% 14.7% 0.8% 2.4% 0.0% 0.0% 0.0% 0.0% 

Environmental Information Environmental Information Environmental Information Environmental Information 
ProcessingProcessingProcessingProcessing    11.8%11.8%11.8%11.8%    9.7%9.7%9.7%9.7%    7.6%7.6%7.6%7.6%    14.2%14.2%14.2%14.2%    18.8%18.8%18.8%18.8%    9.6%9.6%9.6%9.6%    19.4%19.4%19.4%19.4%    2.2%2.2%2.2%2.2%    

Membrane transport 7.5% 6.0% 5.1% 8.5% 17.1% 5.1% 9.7% 2.2% 

Signal transduction 4.2% 3.7% 2.5% 5.7% 1.7% 4.5% 9.7% 0.0% 

Cellular ProcessesCellular ProcessesCellular ProcessesCellular Processes    4.5%4.5%4.5%4.5%    1.7%1.7%1.7%1.7%    0.8%0.8%0.8%0.8%    2.0%2.0%2.0%2.0%    1.7%1.7%1.7%1.7%    14.6%14.6%14.6%14.6%    13.7%13.7%13.7%13.7%    2.2%2.2%2.2%2.2%    

Transport and catabolism 0.9% 1.3% 0.0% 0.8% 0.9% 1.9% 0.0% 2.2% 

Cell motility 2.9% 0.0% 0.0% 0.4% 0.0% 11.5%11.5%11.5%11.5%    12.9%12.9%12.9%12.9%    0.0% 

Cell growth and death 0.7% 0.3% 0.8% 0.8% 0.9% 1.3% 0.8% 0.0% 

Table S 6.2 KEGG category distribution of KEGGs from the different clusters in the microbial 
expressed functions and mucosal caecal gene expression. 
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AbstractAbstractAbstractAbstract    
The undigested carbohydrates and proteins fractions of the food are converted by 
the microbiota into a large range of metabolites, of which short chain fatty acids 
(SCFA) are the most abundant. These microbial metabolites are subsequently 
available for absorption by the host mucosa and can serve as an energy source. 
Amino acids derived from dietary proteins can also serve as substrates for SCFA 
formation, leading to expansion of the fermentation end-product diversity, including 
branched-SCFA. So far metabolic networks related to protein fermentation were 
documented in in vitro models. Here the long-term effects of high protein-diets on 
microbial community composition and functionality were analysed. To this end, 
determinations of the microbiota composition using phylogenetic microarray 
(MITChip) technology were complemented with metatranscriptome and metabolome 
analyses to obtain further insights in the protein fermentation pathways and 
associated groups. 
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IntroductionIntroductionIntroductionIntroduction    
Components of our daily food such as fibres and a part of our dietary protein are not 
efficiently digested by us, leaving that fraction of our diet available for digestion by 
the intestinal microbiota. These food ingredients proceed toward the large intestine 
where they are converted by the microbiota into a large range of metabolites, of 
which short chain fatty acids (SCFA) are the most abundant. These microbial 
metabolites are subsequently available for absorption by the host mucosa and can 
serve as an energy source.  
Approximately ten grams of protein reach the human colon daily (Chacko and 
Cummings 1988), which include both host (proteases from the pancreas and 
mucins) as well as dietary proteins. The gut microbiota has a high proteolytic 
capacity and ferments the proteins into SCFA, branched chain fatty acids (BCFA), 
ammonia and phenolic and indolic compounds (Macfarlane et al. 1988, Gibson et al. 
1989, Smith and Macfarlane 1997, Windey et al. 2012b). These BCFA are generated 
by branched-chain amino acid catabolism, i.e., the degradation of valine, leucine and 
isoleucine (Macfarlane et al. 1986), while the phenolic and indolic compounds are 
degradation products of aromatic amino acids. Bacterial degradation of sulfur 
containing amino acids, including methionine, cysteine, and taurine, results in the 
formation of the hydrogen sulfide. At present there is contradicting evidence 
concerning the potentially damaging effects in the large intestine elicited by high 
protein intake (Windey et al. 2012a, Windey et al. 2012b). However, the source of 
the protein seems to be an important factor for colonic damage, as animal protein 
has a more pronounced effect than plant derived protein. For example the risk of 
colorectal cancer and inflammatory bowel disease are correlated with red meat 
intake, although white meat, like fish, is not associated with these diseases (Norat et 
al. 2010, Windey et al. 2012b). In contrast whey protein reduced body weight gain 
and increased insulin sensitivity in rats (Belobrajdic et al. 2004). 
Nowadays, the consumption of diets that contain high protein levels is quite common 
and has been proposed to support body weight reduction (Lacroix et al. 2004, 
Westerterp-Plantenga et al. 2009, Westerterp-Plantenga et al. 2012). With respect 
to the effect of high protein dietary intake on the composition of the gut microbiota, 
it has been shown that long term consumption of high levels of protein and animal 
fat are associated with the Bacteroides enterotype (Wu et al. 2011, Zoetendal and 
de Vos 2014), but it should be noted that so far there is no confirmation that the high 
protein content in the diets directly leads to this enterotype. In rats a short term (2 
weeks) high protein dietary intervention did change the microbial community, where 
Clostridium coccoides, Clostridium leptum and Faecalibacterium prausnitzii 
decreased in abundance due to the intervention (Liu et al. 2014). 
In a previous study the effect of long-term high protein (HP) diets was studied in a 
mouse model, and could be shown to result in a lower body weight, reduced 
adiposity and hepatic lipid accumulation (Schwarz et al. 2012). However, to date little 
is known about the effect of this type of high-protein diet on the gut microbiota 
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community composition and activity. Here we describe the effects on the gut 
microbiota community and activity on long-term high-protein dietary interventions in 
mice, using 16S rRNA gene-targeted profiling and metatranscriptome approaches, 
to unravel patterns of activity within the microbial ecosystem residing in the caeca of 
the mice.  
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Results & DiscussionResults & DiscussionResults & DiscussionResults & Discussion    
Long-term effects of high protein diets on composition and activity of the gut 
microbiota were assessed in a 12-week dietary intervention study in mice. The 
effects of high protein was studied both in a low- and high-fat dietary background, to 
evaluate whether the fat content of the diet affects the outcome of the high protein 
intervention. Male C57BL/6J mice of 10 weeks (young adults) were given the control, 
a normal protein and low fat diet, for two weeks, followed by the 12 week dietary 
intervention. Four groups of mice were selected (n=10 per group), for the four diets: 
the control diet (normal protein low fat, NPLF), a normal protein high fat diet (NPHF), 
a high protein low fat diet (HPLF) and a high protein high fat diet (HPHF) (Table 7.1). 
The effects of these dietary interventions were measured by determination of the 
fermentation output, measured by luminal SCFA levels, the microbiota composition 
and activity at DNA and mRNA levels, respectively. 
 

  NPLF    NPHF    HPLF    HPHF    
  (g/kg) dry matter 
Milk protein    140 160 484 580 
Corn starch    361.35 291.3 189.35 80 
Sucrose    361.35 291.4 189.35 80 
Soybean oil    40 40 40 40 
Palm oil    0 120 0 123 
Minerals    35 35 35 35 
Vitamins    10 10 10 10 
a-Cellulose    50 50 50 50 
Choline    2.3 2.3 2.3 2.3 

Table 7.1 The four diets. NPLF: Normal protein low fat. NPHF Normal protein high fat. HPLF: 
High protein low fat. HPHF: high protein high fat (Schwarz et al. 2012). 
 

Dietary proteins differentially modulate luminal SCFA levelsDietary proteins differentially modulate luminal SCFA levelsDietary proteins differentially modulate luminal SCFA levelsDietary proteins differentially modulate luminal SCFA levels    
The main fermentation metabolites of dietary protein are short chain fatty acids, 
predominated by acetate, propionate and butyrate. During protein fermentation also 
branched-chain SCFA are formed from the degradation of branched amino acids, 
and these metabolites were measured to obtain an indication whether the protein 
fermentation increased due to the dietary intervention. Gas chromatography was 
used to measure concentrations of acetate, propionate, butyrate, valerate and the 
branched-chain SCFA, iso-butyrate and iso-valerate in caecal luminal content of 
mice receiving the different diets. 
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Figure 7.1 Caecal luminal SCFA concentrations in µmol/g content measured with gas 
chromatography. * Indicates significance between two groups (Ttest, p < 0.05). 
 
The high protein diets led to an apparent increase of the SCFA and branched-chain 
SCFA concentrations in the caecum (Figure 7.1). However due to the high variation 
between individual mice, only a significant increase could be detected in the 
concentration of iso-butyrate in the HPLF group relative to the HPHF group, while 
valeric acid was significantly increased in the HPLF group compared to the NPLF 
group. Total SCFA concentrations tended to be higher (not significant) in caecal 
luminal samples obtained from mice that were fed the HPLF (data not shown). 
Evaluation of overall trends in these luminal metabolites indicated that the high 
protein levels in the diet resulted in a higher concentration of these fermentation 
products, whereas high fat diets were associated with slightly reduced 
concentrations. However, in these analyses it should be taken into account that the 
relative amount of corn-starch in the diets was drastically decreased in diets with 
increased relative protein and fat concentrations. Notably, this observation implies 
that despite the reduced corn-starch availability for microbial fermentation in the 
HPHF diet, the microbiota still generated higher overall SCFA concentrations, which 
are likely derived from protein fermentation, which has been proposed to account for 
up to 17% of the overall SCFA production in the caecum (Macfarlane, 1992). 
Apparently high level protein fermentation by the microbiota supports higher SCFA 
concentrations in the caecal lumen as compared to fermentation of the alternative 
nutrients (e.g. corn-starch).  

Dietary proteins modulate the microbiota compositionDietary proteins modulate the microbiota compositionDietary proteins modulate the microbiota compositionDietary proteins modulate the microbiota composition    
Intestinal content of four mice per dietary treatment was used to analyse the 
microbiota composition after 12 weeks in the ileum, caecum  and colon, using the 
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MITChip platform, a 16S rRNA targeted phylogenetic microarray designed for the 
comprehensive and deep profiling of mouse intestinal microbiota composition 
(Rajilic-Stojanovic et al. 2009, IJssennagger et al. 2012, El Aidy et al. 2013a, Everard 
et al. 2013). MITChip analysis revealed clearly distinct microbiota composition 
profiles in the ileum as compared to those obtained for caecal and colonic content. 
Notably, the ileal microbiota appeared to be unaffected by the dietary intervention, 
whereas the caecum and colon microbiota profiles clustered closely together and 
sub-clustered according to the diet (Figure S 7.1). The caecum is considered as the 
intestinal region where most prominent microbiota fermentation takes place. 
Moreover, this region of the intestine allowed the extraction of an amount of intestinal 
content that was sufficient for RNA extractions that are compatible with 
metatranscriptome analysis. Therefore, our analyses focused on the 
metatranscriptome analysis of the microbiota residing in this intestinal region as 
described below. 

 
Figure 7.2 Cluster of the caecal samples on log10 transformed probe level data of the 
MITChip. The clustering was made using Pearson distance. 
 
MITChip analyses revealed distinct microbiota composition profiles in the caecum 
from animals that were fed the normal protein (NPLF and NPHF) or high protein 
content (HPLF and HPHF) diets (Figure 7.2). Notably, within the NP diets the fat 
level resulted into distinct clustering of the microbiota from mice on the low (NPLF) 
and high (NPHF) fat content diets, whereas the microbiota profiles failed to 
discriminate the HP diets on basis of their fat-content. This finding illustrates that 
within the NP diet context the other main nutritional component (i.e., fat content) has 
a prominent influence on the microbiota, while this effect is lost or overruled by the 
high protein content in the HP diet context.   

MiMiMiMicrobiota and crobiota and crobiota and crobiota and fermentationfermentationfermentationfermentation----metabolite metabolite metabolite metabolite data integrationdata integrationdata integrationdata integration    
In order to relate changes in caecal microbiota composition to the different diets, the 
weight of the mice, as well as to SCFA as the main metabolites of microbial 
fermentation, hybridization signals of in total 96 genus-level phylogenetic groups 
were subjected to redundancy analysis (RDA). The RDA included the concentrations 
of acetate, propionate, butyrate, iso-butyrate, valerate, iso-valerate, the weight of the 
mice and the diets as explanatory variables. Overall, these explanatory variables 
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Figure 7.3 Redundancy 
analysis. Explanatory 
variables are the weight 
of the mice, acetate, 
propionate, butyrate, 
valerate, iso-butyrate 
and iso-valerate. 
Explanatory variables 
account for 85.8 % of 
the total variation. 
 

accounted for 85.8% of the total variation, 57.5% of which was covered by the first 
two canonical axes (Figure 7.3). All the diets clustered separately on these canonical 
axes. The LFNP, HFNP and HFHP diets as explanatory variables had a significant 
(Monte Carlo Permutation test, p<0.05) impact on the total variation of the data. The 
genus like microbial groups in the analyses that correlated with the LFNP diet 
belonged to the Bifidobacterium, Lactobacillus delbrueckii et rel., Lactobacillus 
plantarum et rel., Lactobacillus acidophilus et rel., Lactobacillus gasseri et rel., and 
Ruminococcus obeum et rel. Notably, these groups also correlated with the acetate 
concentration that was measured in the caecum content. The higher abundances of 
these typical saccharolytic bacterial groups implies that in the mice on the LFNP diet, 
the higher relative amount of the carbohydrates in this diet, i.e., corn-starch and 
sucrose, are incompletely (digested and) absorbed in the small intestine, and thus 
available for microbial fermentation in the caecum. Ruminococcus obeum can use a 
wide range of sugars (Liu et al. 2008) and the lactobacilli are known for their rapid 
sugar import and metabolism (Turroni et al. 2014). The HFNP diet as well as the 
body-weight of the mice strongly correlated with higher abundances of several 
groups within Clostridium cluster XIVa. Inversely, Akkermansia muciniphila was anti-
correlated with the HFNP diet and body-weight, which is notable since the anti-
correlation of this microbial group with body-weight has also been reported (Everard 
et al. 2013, Cani and Everard 2014). Samples taken from animals fed the HP diets 
grouped closely together and correlated with elevated levels of branched SCFA as 
well as with a higher abundance of Parabacteroides distasonis et rel.  
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Effect of high protein and high fat on overall microbial Effect of high protein and high fat on overall microbial Effect of high protein and high fat on overall microbial Effect of high protein and high fat on overall microbial metatranscriptomemetatranscriptomemetatranscriptomemetatranscriptome    patternspatternspatternspatterns    
The activity profiles of the microbiota obtained from the caecum of mice were 
determined by metatranscriptome analysis in each of the diet-groups at the end of 
the dietary intervention period. To this end, the caecal contents of four mice of the 
LFHP, HFHP, HFNP and three mice of the LFNP group were used for RNA 
extraction, mRNA enrichment, cDNA synthesis and illumina metatranscriptome 
sequencing. The sequencing efforts generated 13.4-34.9 million reads per sample, 
with a single outlier that generated 177.0 million reads. These reads were filtered for 
non-mRNA and low quality reads, resulting in between 3.4 - 19.2 x 105 (with the 
outlier at 56 x 105) of mRNA derived sequence reads. To determine the function and 
taxonomy of these reads the mRNA fractions were merged and de novo assembled 
into larger contigs using the pipeline described previously (Chapter 5Chapter 5Chapter 5Chapter 5), creating one 
reference set for all samples. A total of approximately 38 thousand contigs could be 
assembled with an overall length of 29.8 x 106 bases (n50=945). These contigs 
encoded a total of close to 5.5 x 104 predicted open reading frames. The taxonomic 
origin of the contigs was analysed by alignment of the predicted protein sequences 
with NCBI’s non-redundant database, retrieving the taxonomic family classification 
of the protein sequence with the highest similarity. Functional annotation was 
performed by assignment of KEGG orthology identifiers to all predicted protein 
sequences, using the KEGG KAAS server. Expression levels of individual genes 
were determined by aligning the mRNA reads with the assembled protein-encoding 
contigs and enumerating the total amount of nucleotides aligned with the 
corresponding ORFs. Between 54% and 74% of the mRNA reads could be assigned 
to the predicted protein-encoding transcripts (Table 7.2). The expression levels of 
each of the protein encoding regions in each of the samples were normalized by 
scaling each gene by the total number of nucleotides mapped to ORFs of that same 
sample. Clustering of the normalized expression dataset revealed a clustering of the 
different samples that resembled the clustering of the MITChip derived microbiota 
composition profiles (Figure S 7.2). This indicates that analogous to microbial 
composition, the microbiota activity profiling enabled the detection of the impact of 
the dietary fat content in the NP diets, whereas this effect of the fat content appeared 
to be lost or overruled by the high protein content in the HP diets. 
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Sample Sample Sample Sample 
namenamenamename 

Total readsTotal readsTotal readsTotal reads mRNAmRNAmRNAmRNA 
Assembled Assembled Assembled Assembled 
mRNA mRNA mRNA mRNA 
readsreadsreadsreads 

Bacterial protein Bacterial protein Bacterial protein Bacterial protein 
coding in assembled coding in assembled coding in assembled coding in assembled 
contigscontigscontigscontigs 

HPLF_3 3.49E+07 7.14E+05 73.7% 83.1% 
NPLF_2 3.29E+07 1.58E+06 66.2% 83.1% 
NPLF_3 3.11E+07 1.92E+06 64.0% 88.6% 
HPLF_4 1.93E+07 3.83E+05 64.7% 80.2% 
HPLF_1 1.81E+07 4.02E+05 76.4% 78.2% 
NPHF_1 1.40E+07 4.48E+05 62.1% 83.7% 
NPLF_1 1.61E+07 7.28E+05 62.6% 80.1% 
HPHF_1 2.49E+07 6.38E+05 73.2% 73.0% 
HPHF_2 1.77E+08 5.58E+06 73.3% 82.0% 
HPHF_3 1.34E+07 3.37E+05 75.8% 75.5% 
NPHF_2 1.83E+07 4.03E+05 68.0% 74.9% 
NPHF_3 2.35E+07 5.60E+05 72.2% 59.7% 
HPLF_2 3.29E+07 6.78E+05 75.0% 70.6% 
NPHF_4 2.40E+07 5.99E+05 64.7% 65.2% 
HPHF_4 1.77E+07 5.78E+05 80.5% 53.1% 
Table 7.2 Reads of the illumina sequences and the result of data processing. 

Effect of high protein and high fat diets on microbiota function profilesEffect of high protein and high fat diets on microbiota function profilesEffect of high protein and high fat diets on microbiota function profilesEffect of high protein and high fat diets on microbiota function profiles    
To focus only on functions that are differentially expressed within the microbiota as 
a function of the different diets, we employed an in house R script to detect KEGG 
modules that are differentially expressed. Remarkably, the different fat levels in the 
diets (HF versus LF) could not be correlated to KEGG modules that were 
differentially expressed. In contrast, the samples derived from NP and HP diet fed 
mice enabled the detection of KEGG modules that displayed significant differential 
expression levels. The KEGG modules enriched in the NP diet derived samples were 
all associated with sugar metabolism, whereas the modules enriched in the HP diet 
derived samples were consistently associated with protein metabolism (Table 7.3). 
These findings are in good agreement with the clustering analyses as well as the 
predicted dietary impacts on the nutrients available for fermentation in the caecum 
of the mice that were fed on the different diets.  
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M00377 
10 4 

Reductive acetyl-CoA pathway (Wood-Ljungdahl pathway) 
[PATH:map01200 map00720] 

M00422 5 3 Acetyl-CoA pathway, CO2 => acetyl-CoA [PATH:map00680] 

M00196 4 3 Multiple sugar transport system [PATH:map02010]  
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M00018 
10 4 

Threonine biosynthesis, aspartate => homoserine => 
threonine [PATH:map01230 map00260] 

M00299 4 3 Spermidine/putrescine transport system [PATH:map02010]  

M00236 3 3 Putative polar amino acid transport system [BR:ko02000] 

Table 7.3 Enriched modules within the NP or HP dataset. 

Effect of high protein and Effect of high protein and Effect of high protein and Effect of high protein and high fat on active microbial communityhigh fat on active microbial communityhigh fat on active microbial communityhigh fat on active microbial community    
To further support an eventual role of microbial groups in protein fermentation, the 
metatranscriptome datasets were screened for genes involved in proteolysis (Figure 
7.4a), amino acid metabolism (Figure 7.4b), and amino acid transport transport 
(Figure 7.4c) based on the kegg orthology annotations. The microbial families 
Lachnospiraceae, Erysipelotrichaceae and Clostridiaceae were all dominantly to the 
overall activity associated with the degradation of proteins, supporting their high 
relative contribution in the total mRNA activity profile in the samples from HP diets 
(Figure S 7.3). Especially the Erysipelotrichaceae displayed a significant increased 
contribution to the overall protein degradation, which was most significantly detected 
in samples obtained from mice that were fed the LFHP diet, whereas the trend was 
also observed in the samples obtained from HFHP-fed mice, albeit not reaching 
significance. On the contrary Lachnospiraceae tends to decrease its contribution to 
the overall protein degradation, where the expression of peptidases in the HPLF diet 
is significantly lower than in the NPLF diet.  
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Figure 7.4 Relative abundance of families expressing peptidases (A), amino acid metabolism 
related proteins (B) and amino acid transporters (C). * Indicates significance between NPLF 
and another group (Ttest, p < 0.05). 
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In contrast to the observed increased relative abundance of protein degradation 
related transcripts, one of the glycolysis-associated genes encoding the 6-
phosphofructokinase, was less expressed in the HPLF diet, which was mainly due 
to the decreased expression from Lachnospiraceae (Figure S 7.4). The 
Lachnospiraceae seemed less able to use the protein sources and are more 
dependent on the sugar fermentation in the gut. Confirming earlier observations by 
Liu et al., 2014, that the Clostridium coccoides group, belonging to the 
Lachnospiraceae, decreases due to high protein in the diet (Liu et al. 2014). To more 
closely inspect the specific activity patterns of these three microbial families their 
specific-activity was plotted on the metabolic map available in the iPATH software 
suite (Figure 7.5). Remarkably, the specific expression patterns did not seem to differ 
in the different dietary regimes for the three predominantly active microbial families 
(data not shown). Nevertheless, each of the microbial families displayed quite 
distinct expression patterns. As an example, Lachnospiraceae, strongly expressed 
genes encoding enzymes involved in the conversion of phosphoenolpyruvate to 
oxaloacetate, and lipid biosynthesis activity, whereas the Erysipelotrichaceae hardly 
displayed these activities. In turn, the Erysipelotrichaceae appeared to be much 
more focused on the conversion of malate, fumarate and succinate. Finally, the 
predominant Clostridiaceae representatives were concluded to express both these 
activities, as well as a broader spectrum of pathways related to amino acid 
metabolism. Notably, each of the iPATH mapped pathways for the activity patterns 
of the families Lachnospiraceae, Erysipelotrichaceae and Clostridiaceae appeared 
to display gaps, suggesting incomplete or incorrect annotations of genes in the 
metatranscriptome data. This may either be due to incorrect functional annotation 
due to taxonomical misclassification of the predicted proteins or low expression 
levels. Inaccurately annotated genomes in the NCBI database or substantial 
dissimilarity between the reference genomes and the protein transcription data 
obtained here that are derived from bacterial species residing in the murine intestinal 
tract. However the depth of our metatranscriptome analysis could also be insufficient 
to detect these complete pathways. 
Overall, in animals fed the HPLF diet, the Erysipelotrichaceae family appeared to 
have an advantage over the other families, as the gene expression data suggest a 
focus on pathways for the degradation of a selected set of amino acids. In the HPHF, 
possibly due to the higher fat content, the advantage of the Erysipelotrichaceae 
appeared to be reduced relative to the LF diets and appeared to be at least partly 
taken over by members of the Clostridiaceae, which appeared to express a wider 
range of amino acid catabolic pathways.  
The observed expression profiles of genes encoding enzymes involved in SCFA 
production, suggest that Erysipelotrichaceae produced predominantly acetate as the 
main end product of protein catabolism, whereas Clostridiaceae and 
Lachnospiraceae were predicted to produce both acetate and butyrate (Figure S 
7.5). Notably, also the Erysipelotrichaceae appeared to express genes that code for 
enzymes involved acetyl-coA to butyryl-coA conversion, using the crotonyl-coA 
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pathway, which allows anaerobic microbes to conserve energy (Seedorf et al. 2008). 
This may imply that also this family contributes to butyrate production. However, 
expression of genes encoding the butyrate kinase and the butyryl-CoA:acetate CoA-
transferase enzymes involved in this pathway could not be detected in the 
Erysipelotrichaceae associated transcriptional activity patterns, which could be due 
to erroneous annotations of acetate kinase and other SCFA transferase functions in 
this group, since the sequences of these enzymes are known to be highly similar 
(Louis and Flint 2007, Vital et al. 2013, Vital et al. 2014). Genes that encode the 
enzymes required for propionate production appeared barely expressed, and were 
exclusively assigned to the bacterial families Porphyromonadaceae and 
Sphingomonadaceae. The very low expression detected for the propionate 
production pathway may indicate that for a more complete reconstruction of the 
microbiome activity profiles, metatranscriptome datasets with a higher depth of 
analysis would be required. Analogously, we failed to detect the expression of genes 
encoding enzymes involved in branched SCFA production, which may also require 
a higher depth of metatranscriptome analysis considering that concentrations of 
these metabolites were two – three orders of magnitude lower than those observed 
for acetate, propionate and butyrate (Figure S 7.5), but some of enzymes involved 
in this process might not have classified in the KEGG system. Nevertheless, the 
enriched modules associated with amino acid metabolism in the metatranscriptome 
data establishes the role of microbiota in the fermentation of the increased dietary 
protein levels, while the unaltered pattern of specific activities assigned to 
Lachnospiraceae, Erysipelotrichaceae and Clostridiaceae under the different dietary 
regimes indicates that their specific contribution to the in situ protein catabolic activity 
remains the same despite the substantial differences in protein content of the 
respective diets.  
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ConclusionConclusionConclusionConclusion    
Here we show that extended feeding of high protein level diets for a period of 12 
days exerted a prominent effect on the composition of caecal microbiota and its 
protein fermentation capacity, supporting elevated SCFA production in the caecal 
lumen as compared to fermentation of the alternative nutrients (i.e., corn-starch or 
fat). In addition, the data also revealed a prominent influence on the microbiota 
composition of the fat content in diets that contain normal protein levels. The 
microbial community members most abundant in the diets belonged to the families 
of the Lachnospiraceae, Erysipelotrichaceae and Clostridiaceae, and were all 
predicted to produce mainly acetate and butyrate based on observed 
metatranscriptome profiles. The relative activity of especially the Erysipelotrichaceae 
appeared to be increased in mice consuming the high protein diets, although the 
Clostridiaceae appeared to express a wider range of different amino acid metabolism 
associated pathways. A more complete reconstruction of the microbiome activity 
profiles is necessary to provide a comprehensive understanding of the role of 
Erysipelotrichaceae and Clostridiaceae in protein fermentation in situ in the caecal 
fermentation of dietary proteins. Such improved understanding would be strongly 
facilitated by in vitro pure and defined mixed culture studies using representatives of 
these microbial families to better characterize and more completely identify their 
genetic repertoire involved in these pathways to enhance the accuracy of the 
metatranscriptome mapping to the pathways involved. Moreover, improved 
understanding of the precise role of these microbial groups in protein catabolism in 
the intestine is likely to require metatranscriptome datasets with a higher depth of 
analysis. 
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MethodsMethodsMethodsMethods    

Mice and dietsMice and dietsMice and dietsMice and diets    
Male C57BL/6J mice (age 8 weeks) were purchased from Charles River (L’Arbresle, 
France) and were housed in the animal facility of the Wageningen University. The 
mice were divided into four groups of 20 animals and housed in pairs in light and 
temperature-controlled animal housing facilities (12/12 (light/dark), 20°C).  The mice 
had free access to food and tap water. During the first two weeks of the study all 
mice received the same diet, containing (in %w/totalw) casein (14), corn starch 
(36.1), sucrose (36.1), soy oil (4), mineral mixture (3.5), vitamin mixture (1), cellulose 
(5) and choline (0.23). This control diet (NPLF) was given to one group of mice during 
the whole experiment. In the other groups the amount of protein, fat and 
carbohydrates was changed (Table 7.1), the responses of the mice to the dietary 
interventions was reported previously (Schwarz et al. 2012).  The mice were 
sacrificed after 12 weeks of dietary intervention, the intestinal content was collected 
from the ileum, caecum and colon and snap frozen in liquid nitrogen and stored at -
80°C. 

ShortShortShortShort----chain fatty acid anachain fatty acid anachain fatty acid anachain fatty acid analysis in caecal luminal content lysis in caecal luminal content lysis in caecal luminal content lysis in caecal luminal content     
Short chain fatty acids were measured in mouse intestinal samples at section. 
Luminal content of the caecum (ten mice per group) was collected in H3PO4 and 
isocaproic acid (as an internal standard) containing buffer solution. Samples were 
stored at -20ºC until further processing. The day of analysis, samples were thawed, 
centrifuged at 14.000 rpm (5 min), and supernatant was collected and stored at 5ºC. 
The samples were then subjected to gas chromatography (Fisons HRGC Mega 2, 
CE Instruments, Milan, Italy) at 190°C using a glass column fitted with Chromosorb 
101 with a carrier gas (N2 saturated with methanoic acid). 

Microbial communityMicrobial communityMicrobial communityMicrobial community    
Metagenomic DNA was extracted from the ileum, caecum and colon samples (4 mice 
per diet and time point) using the repeated bead beating plus column (RBB+C) 
method (Yu and Morrison 2004). The microbial population in the intestinal samples 
were analysed with the Mouse Intestinal Tract Chip (MITChip). This phylogenetic 
microarray consists of 3,580 different oligonucleotides specific for the mouse 
intestinal microbiota ((Van den Abbeele et al. 2010)Derrien, et al., in preparation). 
The array targets the V1 to V6 region of 16S rRNA genes of bacteria. The 16S rRNA 
genes were amplified from 20 ng of intestinal metagenomic DNA with the primers 
T7prom-Bact-27-F and Uni-1492-R (Table 7.4). The PCR products obtained were 
transcribed, labelled with Cy3 and Cy5 dyes and fragmented. Finally, the samples 
were hybridized on the arrays at 62.5oC for 16 hours in a rotation oven (Agilent 
Technologies, Amstelveen, The Netherlands). After the slides were washed and 
scanned, data was extracted with the Agilent Feature Extraction software (version 
9.1). The data was normalized and analysed using a set of R-based scripts combined 
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with a custom-designed relational database, which operates under the MySQL 
database management system. 

Primer 

name 

Sequence Application 

T7prom-

Bact-27-F  

5’-TGA ATT GTA ATA CGA CTC ACT ATA GGG 

GTT TGA TCC TGG CTC AG–3’ 

MITChip 

Uni-1492-R  5’-CGG CTA CCT TGT TAC GAC-3’ MITChip 

PROK1492R 5' -GGW TAC CTT GTT ACG ACT T-3' QPCR 

BACT1369F 5'-CGG TGA ATA CGT TCY CGG-3' QPCR 

Table 7.4. List of primers (Suzuki et al. 2000, Rajilic-Stojanovic et al. 2009, van den Bogert et 
al. 2011). 

RNA extraction, mRNA enrichment, cDNA synthesis and illumina RNA extraction, mRNA enrichment, cDNA synthesis and illumina RNA extraction, mRNA enrichment, cDNA synthesis and illumina RNA extraction, mRNA enrichment, cDNA synthesis and illumina sequencing.sequencing.sequencing.sequencing.    
Four intestinal caecum content samples from each dietary treatment were used to 
analyze the metatranscriptome activity profiles. The RNA was extracted from 0.1-0.2 
grams of ceacal content. The content was suspended in 500 µL ice-cold TE buffer 
(Tris-HCL pH 7.6, EDTA pH 8.0). Total RNA was obtained via the Macaloid-based 
RNA isolation protocol (Zoetendal et al. 2006, Leimena et al. 2013) with in addition 
the use of Phase Lock Gel heavy tubes (5 Prime GmbH, Germany) during the phase 
separation. The RNA purification was performed using the RNAeasy mini kit 
(Qiagen, USA), including an on-column DNAseI (Roche, Germany) treatment 
(Zoetendal et al. 2006). The total RNA was eluted in 30 µL ice-cold TE buffer and 
the RNA quantity and quality were assessed using a NanoDrop ND-1000 
spectrophotometer (Nanodrop Technologies, Wilmington, USA) and Experion RNA 
Stdsens analysis kit (Biorad Laboratories Inc., USA), respectively. The mRNA 
enrichment was performed using the mRNA enrichment kit (MICROBExpressTM, 
Ambion, Applied Biosystem, The  Netherlands) according to the manufacturer’s 
protocol. Following the enrichment, the quantity and quality of the RNA were 
assessed again (see above) to confirm the efficacy of the mRNA enrichment 
procedure. One µg of the enriched mRNA sample was used to reverse-transcribe 
the RNA to cDNA, and subsequently generate double stranded cDNA using the 
SuperScript® Double-Stranded cDNA Synthesis kit (Invitrogen, the Netherlands, 
11917–010), and employing the SuperScript® III Reverse Transcriptase (Invitrogen, 
the Netherlands 18080–044) and random priming using random hexamers 
(Invitrogen, 48190–011) (Yoder-Himes et al. 2009, Leimena et al. 2012, Leimena et 
al. 2013). To remove RNA from the double stranded cDNA preparations, RNAse A 
(Roche, Germany) treatment was performed, followed by phenol-chloroform 
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extraction and subsequent cDNA purification and concentration by ethanol 
precipitation. The product was checked on 1% agarose gel and 3 to 8 µg of cDNA 
was sent for sequencing (GATC Biotech, Germany). Single read Illumina Libraries 
were prepared from the double-stranded cDNA according to the ChiP-seq protocol 
(Schmidt et al. 2009) with insert sizes between 200-300bp, suing barcoded tags for 
library constructions to enable parallel sequencing (GATC Biotech, Germany). 
Sequencing was performed using Illumina Hiseq2000 and using 5pM concentration 
of the library and the single-end protocol (Leimena et al. 2013).  

Data filteringData filteringData filteringData filtering    
Sequencing generated between 13.4 and 177 million reads per sample. The data 
set supporting the results of this article is available in the NCBI small reads archive 
(sra) repository, under accession number SRP043409. The data was filtered for 
ribosomal RNA sequences, adapter sequences and poor quality reads using the 
following tools. SortMeRNA (version 1.2) (Kopylova et al. 2012) was used to rapidly 
filter out rRNA sequences using the precompiled databases for eukaryotes, bacteria 
and archaea. Truseq adapter sequences were removed from the reads with cutadapt 
(Martin 2011). Initial results showed a high bias of adenines in the trimmed 
sequences and therefore all trimmed sequences were discarded. The remaining 
reads where quality (phred >30) and poly A tail edge trimmed using PRINSEQ (lite-
version) (Schmieder and Edwards 2011). Reads smaller than 50 nucleotides were 
discarded.  

Assembly, annotation and classificationAssembly, annotation and classificationAssembly, annotation and classificationAssembly, annotation and classification    
Assembly was done using IDBA UD with default settings and ORF calling was 
performed using prodigal 2.60 with the meta procedure (Hyatt et al. 2010). Functional 
annotation was performed using KEGG automated annotation server using the SBH 
method against the default reference set (Quevillon et al. 2005, Moriya et al. 2007). 
Expression levels were determined by aligning the reads with the assembled contigs 
using MEGABLAST and counting the total nucleotide coverage of each ORF 
(Morgulis et al. 2008). Only alignments with a bitscore over a hundred were kept. 
Taxonomy of the predicted ORFs was determined by aligning the protein sequences 
with NR database using blastp (Altschul et al. 1997) and retrieving the lineage of the 
tophit. 
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Supplemental InformationSupplemental InformationSupplemental InformationSupplemental Information    

Supplemental FiguresSupplemental FiguresSupplemental FiguresSupplemental Figures    

    
Figure S 7.1 Cluster of all the samples on log10 transformed probe level data of the MITChip. 
The clustering was done using Pearson distance. 

    
Figure S 7.2 Cluster on normalized (annotated) bacterial metatranscriptome data. Clustering 
via hclust script of R, using Pearson distance. 
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Figure S 7.3 Relative abundance of total metatranscriptome (activity) on family level. 

    
Figure S 7.4 Expression of 6-phosphofructokinase in the glycolysis pathway. 
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Figure S 7.5 Relative abundances of families that have activity towards SCFA production. 
Acetate production via acetate kinase, acetyl-CoA synthase and phosphate acetyltransferase 
(K00925, K00625, K01895, K13788;  Propionate production via propionate CoA-transferase 
and acetyl-CoA synthase (K01895, K01026); Butyrate production via butyrate kinase, 
acetoacetate CoA-transferase and phosphate butyryltransferase (K01034, K01035, K01896, 
K00929, K00634). 
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8.8.8.8. General DiscussionGeneral DiscussionGeneral DiscussionGeneral Discussion    
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Mouse modelsMouse modelsMouse modelsMouse models    
In the early 20th century Miss Abbie E.C. Lathrop started breeding mice in Granby, 
Massachusetts, to sell them as pets (Morse III 1978). However, within a few years 
her business had grown into an establishment selling mice to scientific laboratories 
in the area. She also started the inbreeding of mice to generate specific mouse lines, 
without cross-breeding with wild mice. These initial inbred mouse lines are the 
ancestors of many presently used laboratory mouse lines, of which the C57BL/6 is 
probably the most commonly used. Since approximately 1910 these mouse lines 
were inbred, with 1,5 to 2 generations per year, implying that the currently employed 
mice are inbred over 150 generations (Beck et al. 2000). Other frequently used 
laboratory mouse lines, like BALB/c, have a similar origin and were bought by 
scientists and mouse or small pet dealers since the beginning of the last century. 
The advantages of using inbred mouse lines in scientific research were discovered 
around that same time, and include their relatively small size and easy maintenance, 
as well as their applicability in animal models for the study of human diseases, which 
at that time focused on cancer and the evaluation of drugs to fight this disease 
(Morse III 1978), but have since then expanded to a huge variety of mouse models 
for a broad range of human diseases (Lyon and Searle 1989). Although the 
usefulness of mouse models for human diseases and the validity of extrapolating 
results obtained in mice to the human situation is a subject of constant debate, inbred 
mice are still widely used as model organisms for human (Ley et al. 2005, Turnbaugh 
et al. 2006, Martin et al. 2008b, Marco et al. 2009, Turnbaugh et al. 2009, Marco et 
al. 2010, Schwarz et al. 2012, Everard et al. 2013, Ridaura et al. 2013).  

Murine gut microbiotaMurine gut microbiotaMurine gut microbiotaMurine gut microbiota    
Studies related to the role of diet and environmental factors on mammalian health 
often use mice as a model, which also enables the evaluation of the influence of the 
host genotype on health and disease through the availability of genetic tools to 
modify the mouse genome (e.g., knock-out mouse lines etc.) (Cani et al. 2008, 
Zhang et al. 2009, Vijay-Kumar et al. 2010). Mouse models are also employed to 
study the microbial diversity in the GI tract and its responses to diet and 
pharmaceutical treatments, again using the mice as a model for the human situation. 
Although the phylogenetic makeup of the bacterial communities in human and 
mouse appear to be similar at phylum level, there are differences in the bacterial 
composition when evaluating the microbiota at a more refined phylogenetic level 
(Ley et al. 2006, Rawls et al. 2006). Humans and mice have 80% of their gut 
microbial genera in common, although their relative abundances differ significantly 
(Krych et al. 2013). However, significant differences are also seen at genus level, 
e.g., the murine GI tract harbours members of the phylum Deferribacteres, 
predominantly represented  by the species Muscispirillum schaedleri, which appear 
to be absent in the human intestinal microbiota {Krych, 2013 #843}. Nevertheless, 
since the majority of the genera are present in both ecosystems, external factors like 
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diet and antibiotic treatments, could elicit similar responses in these ecosystems. 
This notion is supported by the finding presented in Chapter 4Chapter 4Chapter 4Chapter 4 that higher 
abundances of Ruminococcus bromii and several species of Clostridium cluster IV 
were detected in the mice that were fed resistant starch, which is congruent with the 
changes elicited by this dietary component in human and pig intervention studies (Ze 
et al. 2012, Haenen et al. 2013b). Apparently, these bacterial groups are indeed 
responding similarly to an external factor, i.e., resistant starch, in different 
ecosystems. Conversely, interventions with fructooligosaccharides (FOS) and inulin 
usually result in an increase of bifidobacteria in the human faecal microbiota (Gibson 
and Wang 1994, Langlands et al. 2004, Ouwehand et al. 2005, Barboza et al. 2009, 
Riviere et al. 2014), whereas this modulation was not detected in the colon or faeces 
of mice, but was detected in the mouse caecum. Therefore, although the 
bifidobacterial members of the microbiota appear to respond similarly to FOS and 
inulin dietary interventions in both humans and mice, the localization of this effect is 
apparently different in these two host organisms. FOS and inulin are oligo- and 
polysaccharide compounds that are fermented in the proximal large intestine 
(Macfarlane et al. 1992), hence in the caecum or proximal colon, which implies that 
in humans the increase of bifidobacteria in faeces is sustained throughout the large 
intestine, whereas in mice the increase is diminishing along the length of the colon. 
Notably, the bifidobacteria in mice likely belong to different species compared to 
those in human, which could contribute to the different apparent persistence of these 
bacteria along the length of the colon.  

MetatranscriptomeMetatranscriptomeMetatranscriptomeMetatranscriptome----based analysis of murine gut microbiota activity based analysis of murine gut microbiota activity based analysis of murine gut microbiota activity based analysis of murine gut microbiota activity 

profilesprofilesprofilesprofiles    
Ley et al. showed that the human and murine microbiota is quite different at the 
species level. Owing to large scale projects like MetaHIT and the Human Microbiome 
Project we have now a basic understanding of the number of species present in the 
GI tract, their functional capacities and possible habitats (Turnbaugh et al. 2007, Qin 
et al. 2010, Consortium 2012, Rajilic-Stojanovic and de Vos 2014). 588 Bacterial 
strains that are considered as representatives for the human intestine microbiota 
have been cultured in vitro and their genome has been sequenced, and are currently 
further studied to understand their physiology (reviewed in (Rajilic-Stojanovic and de 
Vos 2014). However much fewer representative isolates have been cultured for the 
microbiota of mice, with only 115 mice-related microbial genomes compared to the 
11748 human-associated bacteria with (partially) sequenced genomes in the GOLD 
database (September 2014), of which 588 are gastrointestinal microbiota (Rajilic-
Stojanovic and de Vos 2014). Increasing the number of murine isolates and bacterial 
genome sequences will give a better picture on the make-up of the murine 
microbiota. Alternatively metagenomic sequencing of the murine GI tract microbiota 
could result in metagenomic species, following a recent approach developed within 
the MetaHIT consortium that resulted in 238 metagenomic species (Nielsen et al. 
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2014). With this information we could start comparing the human and mouse 
microbiota at a functional level, and start understanding particular similarities and 
differences of both microbiota’s and their responses to specific interventions or 
treatments. Moreover, the lack of sequenced mouse microbiota species results in 
poor alignment of metatranscriptome datasets to the current genome databases, and 
thus limits taxonomic and functional assignments. In Chapter 5Chapter 5Chapter 5Chapter 5 we described an 
assembly tool to handle murine metatranscriptome data, to overcome the absence 
of a database that contains genomes originating from the mouse intestine, or at least 
genomes of species of sufficient similarity to allow significant functional and 
taxonomic mapping. With this tool we were able to analyse the functional responses 
of the murine intestine microbiota to dietary interventions, such as in the studies 
described in Chapter 6Chapter 6Chapter 6Chapter 6 and 7777. Metatranscriptome analysis was used to elucidate the 
role of different bacterial groups in the degradation of dietary fibres and proteins, and 
their participation in the production of SCFA. Butyrate, as one of the main SCFA, 
increasingly received attention during the last decade due to its proposed health 
benefits (Barcenilla et al. 2000, Bird et al. 2010, Louis et al. 2010, Scott et al. 2013, 
Vital et al. 2014). In Chapter 6Chapter 6Chapter 6Chapter 6 and 7777 we looked at the butyrate producing enzymes 
in the community, butyryl-CoA: acetyl-CoA transferase and butyrate kinase. These 
two enzymes share regions of high similarity to genes with other substrate 
specificities. For example, butyrate kinases are highly similar to acetate kinases 
(Vital, 2013). In Figure 9.1 the pathways towards acetate, lactate and butyrate from 
three different bacterial families discussed in Chapter 6Chapter 6Chapter 6Chapter 6 are shown using iPATH. 
When studying gene expression patterns in response to different polysaccharides in 
the diet, Lachnospiraceae were characterized by the activity of the pathway that 
converts acetate towards butyrate. In addition, in the Bacteroidaceae transcription of 
a gene annotated as butyrate kinase was detected, whereas in these bacteria the 
transcripts associated with the acetyl-CoA and butyryl-CoA pathway were not found. 
However, in the Erysipelotrichaceae transcription of genes that encode proteins 
catalysing the conversion of acetyl-CoA to butyryl-CoA were detected, but not of the 
genes encoding the enzyme involved in the last step of the butyrate production 
pathway. Vital et al., 2014, already reported that the genome-based prediction of 
butyrate-production capacity in members of the Bacteroidetes phylum still requires 
experimental validation (Vital et al. 2014). In our metatranscriptome data of the 
Bacteroidaceae it seems that not the entire pathway required for the conversion of 
acetate to butyrate is expressed. 
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Figure 9.1 
Metatranscriptome 
profiles of 
Lachnospiraceae, 
Bacteroidaceae and 
Erysipelotrichaceae 
from Chapter 6 Chapter 6 Chapter 6 Chapter 6 using 
the visualization tool of 
iPATH.  

= Acetate  
      = Acetyl-CoA   
      = Crotonyl-CoA  
      = Butyryl-CoA 
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This may suggest that members of the Bacteroidaceae are either producing butyrate 
via the lysine or glutarate pathway (Vital et al. 2014), although the gene encoding 
the enzyme that catalyses the conversion of crotonoyl-CoA to butyryl-CoA, and is 
required for the production of butyryl-CoA, is not detected in the metatranscriptome 
data. Another possibility would be that the butyrate kinase is wrongly annotated as 
a butyrate kinase in the genomes that we used as a template for similarity searches. 
The latter implies that the enzyme could be an acetate kinase rather than a butyrate 
kinase, suggesting that the members of the Bacteroidaceae described in Chapter 6 
and 7 actually do not produce butyrate, but rather acetate, which would be in line 
with the fact that so far no observations of butyrate production by Bacteroidaceae 
were made (Louis et al. 2004, Louis and Flint 2009, Rajilic-Stojanovic and de Vos 
2014, Vital et al. 2014). Consequently, the prediction of the participation of specific 
bacterial families in the production of SCFA using metatranscriptome analysis, at 
this stage requires careful manual curation, especially regarding the substrate and 
product specificities of key enzymes encoded by the expressed gene pool.  

SCFA measurementsSCFA measurementsSCFA measurementsSCFA measurements    
In the mouse experiments described in Chapter 4Chapter 4Chapter 4Chapter 4, 6666 and 7777 the luminal SCFA levels 
were measured as indicators for microbial fermentation. However, as indicated in 
Chapter 6, Chapter 6, Chapter 6, Chapter 6, the snap-shot determinations of SCFA concentrations in the luminal 
content are not a valuable measurement for fibre fermentation output, since it is the 
result of production by the microbiota and absorption by the host, which prohibits the 
interpretation of these measurements in terms of microbial production rate or 
capacity. Rather, the shift in microbiota composition, gene expression and especially 
the multivariate integration of host mucosal gene expression and the microbiota 
composition provided a better proxy for the fermentation activity of the microbiota. 
Nevertheless, the increased luminal colonic SCFA concentrations elicited by the 
fibre diet that were determined in Chapter 4Chapter 4Chapter 4Chapter 4 were reflected in microbiota composition 
changes, as well as gene expression changes and were especially apparent from 
the multivariate data integration analyses. In a different study that was executed 
within this project, the production and absorption fluxes of SCFA were calculated 
from experiments where different guar gum levels were provided in the diet, 
combined with infusions of 13C labelled acetate, propionate and butyrate in the 
caecum (den Besten et al. 2014). These studies revealed a dose dependent 
increase of SCFA production and uptake fluxes, and illustrated that host metabolic 
markers, which included body weight and insulin and glucose levels in blood plasma 
after fasting, correlated with SCFA absorption fluxes. The same metabolic markers 
did not correlate with the measured SCFA concentration in the caecum, confirming 
our observation of Chapter 6 Chapter 6 Chapter 6 Chapter 6 that SCFA concentrations measured in the caecal 
content are not a valuable measurement for the estimation of the microbial 
fermentation output. 
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SCFA supplementation in the diet can prevent and reverse high-fat diet induced 
obesity (den Besten 2014). These studies employed sodium salts of acetate, 
propionate and butyrate as supplements in the diet, which also elicited slight 
alterations in microbial composition of the caecal microbiota (Figure 9.2). The dietary 
SCFA are already absorbed by the host mucosa in the small intestine and may have 
local effects on these mucosal tissues that could play a role in the observed 
physiological effects with respect to obesity. It should be noted, however, that the 
variation in the microbial composition explained by the SCFA in the diets (18%) was 
much smaller than the variation that could be explained by the fibre diets in the 
Chapters 4Chapters 4Chapters 4Chapters 4 and 6 6 6 6 (43.7% and 58,6%, respectively). Dietary fibres will generate SCFA 
predominantly in the large intestine. This consideration may largely explain the very 
moderate differences in microbiota composition elicited by the dietary SCFA and 
could in fact be predominantly induced by the altered physiology of the host organism 
as apparent from their reduced bodyweight (den Besten 2014).  

Host responses to SCFAHost responses to SCFAHost responses to SCFAHost responses to SCFA    
The dietary SCFA down-regulated a nuclear receptor, the peroxisome proliferator-
activated receptor (PPAR)-γ, in the adipose tissue and liver (den Besten 2014). In 
these tissues, the repression of PPAR-γ induced a shift from lipogenesis to fatty-acid 

 

 

Figure 9.2 Redundancy 
analysis of murine microbial 
community, where the 
variables are control or the 
sodium supplements 
acetate, propionate or 
butyrate. The variables 
account for 18.1% of the 
total variation where in this 
plot 85.5% of the canonical 
variation is shown. 
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oxidation, which probably explains how SCFA supplementation can prevent or 
reverse high-fat diet induced obesity. Intriguingly, in Chapter 4Chapter 4Chapter 4Chapter 4 we proposed that fibre 
fermentation by the colon microbiota induces the activation of PPAR-γ in the colon 
epithelia, where different and shared subsets of PPAR-γ target genes were affected 
by the different fibre diets, which is most likely mediated through increased levels of 
SCFA exposure. Taken together PPAR-γ emerges as one of the key host response 
regulators that sense increased SCFA resulting from enhanced fermentation activity 
by the gut microbiota, leading to local modulation of the host’s metabolism and 
potentially overall host physiology. To further explore the role of PPAR-γ in the host 
response to SCFA an intestine specific PPAR-γ knock-out (KO) mouse model was 
set up in the group of J.W. Jonker (University of Groningen, the Netherlands). The 
PPAR-γ KO mice were fed either the inulin or the control diet that were also used in 
the experiments described in Chapter 4 Chapter 4 Chapter 4 Chapter 4 and 6, 6, 6, 6, and the microbial composition 
changes elicited by this dietary intervention were compared to those seen in wild 
type mice (Figure 9.3).  
The microbial composition of wild type and PPAR-γ KO mice appeared to be highly 
similar, whereas it was much more significantly affected by the diet intervention as 
compared to the host genetic background. These observations suggest that 
abolishing the host response to SCFA through intestinal PPAR-γ does not directly 
affect microbial community composition.  
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Figure 9.3 
Redundancy 
analysis of colon 
microbiota from 
wildtype (WT) or 
PPAR-γ KO mice on 
a control or inulin 
diet. The variables 
were the different 
groups - WT on 
control diet (WT 
control); WT on 
inulin diet (WT 
Inulin); PPAR-γ KO 
on control diet and 
PPAR-γ KO on the 
inulin diet. These 
variables together 
accounted for 22.3% 
of the total variation, 
of which in this plot 
92.2% is shown. 
 

Overview and Overview and Overview and Overview and future perspectivesfuture perspectivesfuture perspectivesfuture perspectives    
In this thesis protein and fibre dietary interventions in mice were studied to elucidate 
their impact on the fermentation activities of the gut microbiota, their SCFA 
production, and the mucosal responses to the SCFA. The fibres inulin, 
fructooligosaccharides, arabinoxylan and guar gum lead to increased SCFA 
concentrations and induced similar changes in relative abundance of microbial 
groups in the colon of mice. The relative abundance of bacteria belonging to 
Clostridium cluster XIVa correlated strong with expression of mucosal genes 
involved in energy metabolism of these mice. By using a de novo metatransciptome 
assembly pipeline microbial activities of protein and fibre fermentation in the caeca 
were studied. This new method showed that in fibre fermentation the 
Bacteroidaceae, Verrucomicrobiaceae and Erysipelotrichaceae increased, while 
Lachnospiraceae decreased in activity during inulin and guar gum dietary 
interventions. The Erysipelotrichaceae and Lachnospiraceae families displayed the 
same trend with high protein interventions, where also Clostridiaceae are important 
contributors to the protein fermentation, but don’t show changed activity (Figure 9.4).  
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Figure 9.4. Overview of main results in this thesis.  
 
The metatranscriptome enabled the detection of the major players in the fibre and 
protein fermentation. However we identified many gaps in the data, which make it 
challenging to identify the activity pattern of individual members within the 
community. Isolating and sequencing more members of the mouse gut microbiota 
will partially fill these gaps. These isolates also need to be further characterized in 
order to fully understand their metabolic capacities, and this information needs to be 
used to refine corresponding genome annotations. The annotation of many of the 
enzymes involved in SCFA conversions could be improved if the metabolic output of 
the bacterial species was characterized in more detail. Alternatively, as suggested 
by Vital et al., 2014, for further annotations of genes involved in butyrate production, 
targeting the complete pathway is a more robust way to predict the function of 
individual genes (Vital et al. 2014). Genes that are predicted to be involved in this 
pathway can be identified using hidden Markov models (HMM) and, if the genome is 
accurately annotated, by the EC numbers. The identified genes could then be 
compared to the gene catalogue created by Vital et al., which contains the pathways 
towards butyrate production (Vital et al. 2014). Creating gene catalogues for 
specialized pathways, e.g., butyrate production, could also support the annotation of 
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genes encoding enzymes of other SCFA production pathways, or the pathway 
intermediates like succinate, formate and oxaloacetate. Moreover, the protein 
catabolism capacity of gut bacteria has been poorly characterized to date. Our study 
reveals that only two members, the Clostridiaceae and Erysipelotrichaceae are 
involved in protein catabolism, but we were unable to accurately detect the 
transcripts that represent the complete pathway of amino acid degradation in these 
bacterial families, which would allow the confirmation of their use of dietary protein 
as energy source. The ability to use amino acids as carbon and energy source by 
Clostridium spp. has been known for some decades (Barker 1981, Macfarlane et al. 
1986, Fonknechten et al. 2010). However in genome sequencing and subsequent 
analysis of GI tract microbiota, amino acids fermentation did not receive a lot of 
attention (Backhed et al. 2005, Ley et al. 2006, Qin et al. 2010, Arumugam et al. 
2011, Rajilic-Stojanovic and de Vos 2014). The Erysipelotrichaceae were classified 
as a family in 2009 (Rajilic-Stojanovic and de Vos 2014), however, only 28 bacteria 
within this family have been sequenced to date and currently nine still need 
characterization and assignments within this family (NCBI genomes, September 
2014). We showed that the Erysipelotrichaceae is an important member in both fibre 
and protein fermentation in the murine caecum, and further characterization of 
species within this family will help to understand its functional role within the microbial 
community. Moreover the Erysipelotrichaceae metabolic pattern as projected on 
iPATH patterns of Figure S 6.6 and Figure 7.5 appeared to be independent of the 
diet consumed by the mice, indicating that this family executes a similar functional 
role within the microbial community in all the different dietary interventions. The role 
of Erysipelotrichaceae within the human microbiota also deserves to be further 
investigated, especially if it appears to have similar functions and responses in 
human and could thus prove to be a good indicator for increased fermentation after 
a dietary intervention study. 
The luminal SCFA concentration measurements in Chapter 6Chapter 6Chapter 6Chapter 6 do not seem indicative 
of the fibre fermentation processes that we observed from the microbiota profiles 
and the host mucosal gene patterns. In contrast, the SCFA concentration 
measurements did appear to reflect the fermentation processes in the studies 
presented in Chapter 4Chapter 4Chapter 4Chapter 4 and 7777. To obtain more robust indicators of increased 
fermentation, a combination of microbiota analysis and/or host responses should be 
done parallel to the SCFA measurements in future experiments. Indicator species in 
the large intestine microbiota could be found among members of Clostridium cluster 
XIVa and indicators in the mucosal transcriptome patterns, could include the genes 
regulated by PPAR-γ. However, such indicators still require validation in human 
trials, although several studies already showed increased Clostridium cluster XIVa 
related to fibre fermentation in human faeces (Hayashi et al. 2002, Hobden et al. 
2013, Valdés et al. 2013). Increased Clostridium cluster XIVa and overall SCFA 
concentrations, especially butyrate are considered health biomarkers (Scheppach 
1994, Louis and Flint 2009, Van den Abbeele et al. 2012a), implying that the 
consumption of inulin, fructooligosaccharides, arabinoxylan and guar gum can be 
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considered as beneficial for health.  
Our project had the ambition to include systems biology approaches to better 
understand the interplay between microbiome and host. By using the mouse model 
we were able to perform site-specific measurements on fermentation, microbiota and 
mucosal gene expression in different regions of the intestine. This enabled the 
systematic evaluation of the interaction between microbes and the host, through 
combining multiple omics techniques using multivariate statistics. However to fully 
understand the microbe-diet and microbe-microbe interactions, and the 
consequences of these interactions for the SCFA rates in situ, further genomic and 
physiological characterization of intestinal isolates is crucial. This could open 
avenues towards the comprehensive description of the role of certain bacteria and 
their metabolic functions that are strongly correlated with host gene expression 
modulation. These descriptions could provide a foundation for the construction of 
(predictive) systems biology-based models for the interplay in the diet-microbiome-
host interaction triangle.  
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Nederlandse samenvattingNederlandse samenvattingNederlandse samenvattingNederlandse samenvatting    
Ons darmstelsel wordt bevolkt door micro-organismen, gezamenlijk microbiota 
genoemd. Deze microbiota bestaan uit organismen uit alle drie de domeinen van het 
leven (Eukarya, Bacteria en Archaea). Hun totale aantal in ons darmstelsel is tien 
maal groter dan het aantal cellen in ons lichaam. De bacteriën vormen verreweg de 
grootste groep, en deze zijn in deze thesis verder bestudeerd. Het woord 
“microbiota” wordt verder in deze thesis gebruikt om de bacteriële groep microbiota 
aan te duiden binnen de microbiota in het darmstelsel. Het bestuderen van 
microbiota kan gedaan worden door middel van isolatie en kweken van de 
individuele soorten. Echter, slechts een kwart van deze soorten kan op dit moment 
gekweekt worden. Hierdoor worden met name technieken gebruikt die niet 
afhankelijk zijn van het isoleren en kweken van deze organismen. Dit kan omdat het 
RNA en DNA van deze organismen geïsoleerd en gesequenced (de volgorde van 
de nucleotiden, ATCG, bepalen) kan worden. Ook kunnen unieke sequenties 
bepaald worden met behulp van micro-array methodes. Met deze sequenties 
kunnen soorten en genen via grote databanken getraceerd worden. Op deze wijze 
is het mogelijk te bepalen welke organismen er in de darmmonsters aanwezig zijn.  
Op dit moment is het bekend dat er in een gram fecaal materiaal uit de dikke darm 
1011 bacteriën voorkomen, die behoren tot negen verschillende phyla, waarbij de 
phyla Firmicutes en Bacteroidetes het talrijkst zijn. Deze microbiota hebben de 
functie het onverteerd materiaal uit onze voeding, en de afgescheiden 
lichaamsproducten te fermenteren (het omzetten van organisch materiaal) tot 
stoffen, die voor de mens wel bruikbaar zijn. Deze stoffen bestaan voornamelijk uit 
korte-keten vetzuren (KKV). De meest geproduceerde KKV zijn acetaat, propionaat 
en butyraat. Al deze KKV kunnen door onze darmwand opgenomen worden, waarbij 
met name butyraat als energie bron voor de darmwandcellen fungeert. De 
overblijvende KKV worden via de darmwand opgenomen in het bloed en 
getransporteerd naar de lever, waarna de KKV in het lichaam terecht komen. Van 
met name butyraat is bekend dat het positieve effecten heeft in het lichaam (zie 
Tabel 3.1). Het is op dit moment al bekend dat de KKV productie beïnvloed kan 
worden door het gebruik van vezels in het dieet. In Hoofdstuk 3 wordt samengevat 
wat er bekend is van de veranderingen in KKV concentraties in de darm door de 
aanwezigheid van verschillende vezels in het dieet. Vooral veranderingen in de 
butyraatproductie worden veroorzaakt door secundaire effecten. De microbiota die 
de vezels afbreken zijn vaak niet degene die het butyraat aanmaken. Zij produceren 
voornamelijk acetaat en/of lactaat. Acetaat en lactaat kunnen door een andere groep 
microbiota gebruikt worden als energie bron en omgezet tot butyraat. De butyraat 
producenten behoren tot het phylum Firmicutes en bevinden zich in de Clostridium 
klas IV en XIVa. 
In het project waarbinnen deze thesis gedaan is waren wij geïnteresseerd in de KKV 
productie door de microbiota en de opname en verwerking van deze KKV door de 
gastheer (zie Figuur 1.2). De onderzoeken die in deze thesis beschreven staan 
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hebben zich geconcentreerd op veranderingen, door middel van verschillende 
diëten, van de microbiota, hun KKV productie en de reactie van de gastheer op de 
KKV. Om dit te bestuderen hebben we gebruik gemaakt de muis als proefdier model. 
De beweegredenen om een diermodel te gebruiken in plaats van de mens zelf staan 
beschreven in Hoofdstuk 2. In de onderzoeken in deze thesis hadden we door het 
gebruik van muizen de mogelijkheid om op de plaats van de KKV productie door de 
microbiota en de opname ervan door de gastheer metingen te doen. Er is nagegaan 
welke microbiota KVV in het lichaam produceerden en hoe de gastheer, de muis, op 
deze KKV reageerde.  
In Hoofdstuk 4 wordt beschreven hoe verschillende vezels in het colon (het laatste 
deel van de dikke darm) de microbiota (via het bacterieel DNA), de KKV 
concentraties en de expressiepatronen (patroon van het RNA in cellen, dit geeft aan 
welke genen er actief zijn) van de darmwandcellen van de gastheer veranderen. Uit 
dit onderzoek bleek dat er vier soorten vezels (fructo-oligosacchariden, inuline, 
arabinoxylaan en guar gum) zorgden voor een vergelijkbare verhoging van: de totale 
KKV concentratie, de hoeveelheid Clostridium klas XIVa (de butyraat producenten) 
en de gen expressie van processen gerelateerd aan de energie verwerking in het 
darmepitheel. De laatste twee toonden een ook sterke correlatie.  
Vervolgens werd het RNA van de microbiota bestudeerd om een beter inzicht te 
krijgen in welke organismen actief bijdragen aan de KKV productie. RNA wordt 
gebruikt voor de productie van eiwitten en geeft daarom aan welke microbiota daar 
actief mee waren, in tegenstelling tot DNA waar alleen uit blijkt welke microbiota 
aanwezig zijn. Bestaande technieken om RNA mee te analyseren zijn alleen 
bruikbaar voor het sequencen van soorten uit de humane microbiota. Dit komt 
doordat de microbiota in de darm van de muis verschilt van die in de menselijke 
dikke darm.  
In Hoofdstuk 5 wordt de ontwikkeling van een nieuwe techniek beschreven om RNA 
sequenties van de microbiota van de muis wel te kunnen bepalen. Bij het sequencen 
van het RNA van de muis worden stukjes van 100 nucleotiden gegenereerd. Dit is 
voor de muis-organismen te kort om goed te kunnen zeggen bij welke functie en 
welk organisme dat stukje hoort. De in Hoofdstuk 5 beschreven techniek maakt 
gebruik van deze stukjes om langere stukken van te bouwen. Deze langere 
fragmenten geven meer informatie waardoor er nauwkeuriger vastgesteld kan 
worden bij welke functie en welke soort de fragmenten horen. De grotere lengte zorgt 
dat, ondanks dat de microbiota anders is, het muizen microbiota RNA toch 
gematched kan worden met de databases van menselijke microbiota. Deze techniek 
is daarna in Hoofdstuk 6 en 7 toegepast.  
Om te bepalen welke organismen actief bijdragen aan de KKV productie, is in 
Hoofdstuk 6 en 7 het RNA van de microbiota uit het cecum (het eerste deel van de 
dikke darm) van muizen gesequenced. In Hoofdstuk 6 waren dit dezelfde muizen als 
in het experiment uit Hoofdstuk 4. In Hoofdstuk 6 zijn opnieuw de de KKV 
concentratie, de microbiota samenstelling en de gen expressie van het darmepitheel 
bestudeerd. De resultaten van de cecum resulteren in dezelfde conclusies als van 
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de colon in Hoofdstuk 4: de vier vezels zorgen voor een verhoging in KKV, de 
butyraat producenten en de gen expressie van processen gerelateerd aan de 
energie verwerking in de epitheel laag. Het sequencen van het microbiota RNA gaf 
echter een breder scala aan microbiota voor de fermentatie van vezels, dan wat uit 
de DNA analyse bleek. De actieve bacteriële families waren: de Bifidobacteriaceae, 
de Lachnospiraceae (Clostridium klas XIVa), de Clostridiaceae, de 
Bacteroidaceae, de Erysipelotrichaceae en Ruminococcaceae. Van al deze 
families zijn sequenties terug gevonden die betrokken zijn bij de vorming van 
KKV. Een deel van deze families lijkt belangrijk te zijn bij de vezelafbraak, terwijl 
andere families alleen gebruik maken de producten (KKV of losse suikers) van 
de al afgebroken vezels. 
Naast dat fermentatie van vezels kan leiden tot de productie van KKV, kunnen 
eiwitten ook door de microbiota worden gefermenteerd tot KKV. In Hoofdstuk 7 
is bestudeerd hoe melkeiwit door microbiota wordt afgebroken. Hierbij werd 
bevestigd dat inderdaad een verhoogd gehalte aan melkeiwit in het dieet leidt 
tot een verhoogde KKV concentratie in de cecum van muizen. De microbiota 
samenstelling verandert hierbij ook. Uit de RNA sequenties hiervan bleek dat 
twee families, Erysipelotrichaceae en Clostridiaceae, belangrijk zijn in de eiwit 
afbraak en waarschijnlijk dus ook de KKV productie. 
Concluderend toont dit proefschrift aan dat door middel van veranderingen in het 
dieet de microbiota en het epitheel in de darmwand beïnvloed worden. Deze 
informatie vergroot de kennis over microbiota, diëten en de reactie van de 
gastheer hierop. Ook kunnen door de verkregen data uit dit onderzoek, 
beschreven in dit proefschrift, toekomstige studies naar de humane darm 
microbiota verder optimaliseren.  
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