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Abstract

BACKGROUND: The effect of spatial separation of the semiochemical Lurem-TR, which has been found to inhibit conidia of
entomopathogenic fungi when put together, on the persistence of conidia of Metarhizium brunneum and M. anisopliae was
evaluated in the greenhouse and field in order to develop an autodissemination strategy for the management of Megalurothrips
sjostedti on cowpea crop. Influence of spatial separation of the semiochemical on thrips attraction and conidial acquisition by
thrips from the autoinoculation device was also investigated in the field.

RESULTS: Persistence of conidia of M. brunneum and M. anisopliae increased with distance of separation of Lurem-TR. Direct
exposure of fungus without separation from Lurem-TR recorded the lowest conidial germination as compared with the other
treatments. Attraction of thrips to the device also varied significantly according to distance between device and semiochemical,
with a higher number of thrips attracted when Lurem-TR was placed in a container below the device and at 10 cm distance. There
was no significant difference in conidial acquisition between spatial separation treatments of conidia and Lurem-TR. Attraction
of other insect pests to the device did not significantly vary between treatments. Positive correlations were found between
conidial acquisition and thrips attraction.

CONCLUSION: This study suggests that spatial separation of fungal conidia from Lurem-TR in an autoinoculation device could
provide a low-cost strategy for effective management of thrips in grain legume cropping systems.
© 2015 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
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1 INTRODUCTION
Grain legumes are among the key economical crops widely grown
in Eastern and Western Africa as important sources of food and ani-
mal fodder.1,2 In Kenya, the annual bean production is estimated at
577 674 Mt.3 However, the production of grain legumes is compro-
mised by a complex of insect pests such as the legume pod borer,
Maruca vitrata Fabricius (Lepidoptera: Pyralidae), bean stem mag-
gots, Ophiomyia spp. (Diptera: Agromyzidae), aphids (Hemiptera:
Aphididae) and thrips (Thysanoptera: Thripidae).4 Among the
thrips, the bean flower thrips (BFT), Megalurothrips sjostedti (Try-
bom) (Thysanoptera: Thripidae), is considered to be the most
important pest attacking the reproductive structures of grain
legumes.5 Damage by BFT includes early flower blemishes, abscis-
sion and necrosis, with yield losses ranging from 20 to 100%.6

Thrips are difficult to control owing to their cryptic flower-
dwelling behaviour and their minute size.7 Chemical control is
the most widely adopted management strategy by farmers, who
often resort to using obsolete or banned chemical pesticides, with
detrimental consequences to human, environmental and animal

health.8 The introduction of stringent regulations by European
importing countries such as the maximum residue limit (MRL) has
led to several crop rejections and economic losses. In addition,
thrips have developed resistance to most of the chemical insec-
ticides, and hence the need to explore other control strategies,
including biological control.9 – 12

Entomopathogenic fungi (EPF) are among the most promising
alternatives to synthetic chemical pesticides that are being
explored.13 – 15 Fungal-based biopesticides for control of thrips
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are commercially available and include Metarhizium anisopliae
(Metschnikoff) Sorokin ICIPE 69, marketed as Campaign® by
RealIPM in Kenya. The most common application technique of
EPF is through inundative spray.16 However, EPF conidia applied
on foliage have short persistence owing to environmental fac-
tors such as UV light, temperature and rain.17 – 20 For instance,
Ekesi et al.,14 reported persistence of M. anisopliae conidia for
3–4 days on cowpea leaves. Such short persistence in the field
requires frequent applications of EPF at short intervals, resulting in
higher inoculum requirement and high costs. Another application
technique referred to as autodissemination or autoinoculation,
consisting of attracting insects to an autoinoculator where they
are infected with a pathogen before returning to the environ-
ment to disseminate the pathogen to conspecifics, is also being
considered.21 This approach has already been tested against
Frankliniella occidentalis Pergande on French bean22 and is based
on the combined use of visual cues (blue colour), semiochemical
attractant Lurem-TR and the entomopathogenic fungus M. aniso-
pliae. However, Lurem-TR was found to have a negative effect on
conidial germination and infectivity of M. anisopliae in the field.22

The introduction of Lurem-TR in a dessicator containing a culture
of M. anisopliae resulted in complete inhibition of its germination
after 48 h, confirming field results (Niassy S, personal observa-
tion). In order to improve the performance of autodissemination
devices for thrips management, we explored the effect of distance
separation of Lurem-TR from fungal conidia on the persistence
of M. brunneum in the greenhouse and M. anisopliae under field
conditions. We also evaluated the influence on thrips attraction
and conidial acquisition in various distance separation treatments
under field conditions.

2 MATERIALS AND METHODS
2.1 Study site
The study was conducted in the greenhouse at Plant Research
International, Wageningen, The Netherlands (51.986, 5.663; 13 m
above sea level) (T = 20 ∘C, L16:D8 photoperiod), and in the field
in Kamiti, Kiambu County, Kenya (1.191S, 36.883E; 1640 m above
sea level) and at ICIPE, Nairobi (1.221S, 36.896E; 1616 m above
sea level). In the greenhouse, the experiments were conducted to
assess the effect of Lurem-TR on the persistence of M. brunneum,
while experiments in the field were conducted to assess the effect
of Lurem-TR on the persistence of M. anisopliae strain ICIPE 69,
the attraction of thrips and other insects and conidial acquisition
by thrips. Experiments were carried out during the dry season of
May–August 2013. Average temperatures and relative humidity of
20.8 ∘C and 74.2%, respectively, were recorded in the experimental
field.

2.2 Entomopathogenic fungi
Conidia of M. brunneum were obtained from the commercial prod-
uct BIO1020 (strain Met52) (Bayer CropScience, The Netherlands).
They were cultured on Sabouraud dextrose agar medium (SDA) at
25–27 ∘C, pH= 5.6± 0.2.23 Conidia were harvested from the plate
and suspended in 0.01% Triton X-100, and conidial concentration
was determined using a haemocytometer (Fuchs-Rosenthal 0.2
mm). A spore suspension of approximately 109 conidia mL−1 was
prepared and stored for 2 days at 5 ∘C until use in the experi-
ment. M. anisopliae isolate ICIPE 69 is commercially available and
marketed as Campaign® by RealIPM in Kenya. Conidia of M. aniso-
pliae were mass produced on long-rice substrate in Milner bags

(60 cm long by 35 cm wide). Rice was autoclaved for 1 h at 121 ∘C
and inoculated with a three-day-old culture of blastospores.24 The
rice containing fungal spores was then allowed to dry for 5 days
at room temperature. Conidia were harvested by sifting the sub-
strate through a 295 μm mesh sieve and stored for 2–5 days at 5
∘C until use. Conidial viability was determined before any experi-
ment by spread plating 0.1 mL of the suspension (3× 106 conidia
mL−1) on SDA plates. Sterile microscope cover slips were placed on
each plate. Plates were then incubated at 24–28 ∘C, 12:12 L:D pho-
toperiod, and examined after 16–20 h. Percentage germination
was determined by counting the number of germ tubes formed
among 100 random conidia for each plate at 400× under a light
microscope.25 Conidial germination was approximately 90% and
was considered to be acceptable.

2.3 Semiochemical
Lurem-TR, a commercial semiochemical whose active ingredient
is methyl-isonicotinate, previously reported to be effective in
monitoring thrips populations, was used in this study.26 It was
obtained from Pherobank (Wageningen, The Netherlands).

2.4 Effect of spatial separation of Lurem-TR on the
persistence of conidia of M. brunneum in the greenhouse
Four 9 cm petri dishes without cover were placed at 0, 5, 10 and 20
cm, corresponding to treatments P0, P5, P10 and P20 respectively,
on a rack with platforms connected to a stick in such a way that
all platforms/petri dishes were vertically under each other (Fig. 1).
Lurem-TR was placed above the top petri dish (P0). Petri dishes
contained water agar (1.5% w/w), on which eight cover slips of
10 mm diameter (0.79 cm2) previously atomised with a spore
suspension of M. brunneum were placed. Atomisation was done by
spraying 4 mL of conidial suspension (approximately equivalent
to 600 L ha−1) of M. brunneum on eight glass cover slips placed
on petri dishes without water agar at a pressure of 7.5 bar using
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Figure 1. Experimental design for the evaluation of the effect of distance
separation of Lurem-TR on M. brunneum conidial persistence in the green-
house.
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a Potter precision laboratory spray tower (Burkard Manufacturing
Co Ltd, Rickmansworth, UK). Petri dishes were allowed to dry for
20–30 min, after which cover slips were transferred to the petri
dishes containing water agar and then placed in the rack. The
treated petri dishes were exposed to Lurem-TR for 24 h. As a
control, a petri dish was atomised with conidial suspension as
described above and allowed to dry, and conidial germination was
determined immediately. All treatments were replicated 2 times
and repeated 4 times.

To determine the maximum effect of Lurem-TR on inhibition of
conidial germination, in addition to the four treatments described
above, petri dishes were prepared as detailed above and placed
in closed boxes (diameter 10 cm, height 10 cm) with or without
Lurem-TR. After 24 h, the spore germination was determined.
The persistence of conidia was determined after a period of 24
h for all the treatments, including the control. Conidial viability
was determined according to an adapted method of Faria et al.27

Each cover slip with conidia was removed from the petri dish,
placed in a 10 mL Greiner tube containing 1 mL of 0.01% Triton
X-100 water solution and vortexed for 20 s to dislodge conidia.
From each Greiner tube, three samples (10 μL each) were pipetted
separately on one glass slide covered with a thin layer of SDA and
incubated in a closed container on humidified filter paper in the
dark for 24 h at 25 ∘C. Percentage germination was determined
by pipetting one droplet of lactophenol on each sample after
24 h, covering it with a cover slip and counting the number of
germinating and non-germinating conidia (minimum count was
200 spores droplet−1).

2.5 Field experiment with autoinoculation device
The effect of spatial separation of Lurem-TR on the persistence
of M. anisopliae, attraction of BFT and other insects and conidial
acquisition by thrips was evaluated in field experiments. Cowpea,
Vigna unguiculata L. Walp var. Ken-Kunde1, was planted in 10
m2 plots with an inter- and intrarow spacing of 10 and 45 cm
respectively. No fertilisers, organic matter or synthetic chemical
insecticides were applied during the experimental period.

The autoinoculation device used in the present study and the
procedure for the inoculation device were as described by Niassy

et al.22 Briefly, a Lynfield trap (11 cm diameter× 10 cm height) was
perforated with six entry/exit holes (2× 3 cm) near the top and
bottom of the bottle at alternate positions. A velvet (8× 8.5 cm)
and a blue netting (3.5× 11 cm) were wrapped around a smaller
inner cylindrical bottle (5.2 cm diameter× 6 cm height) that was
then hung in the trap. The semiochemical dispenser used to lure
thrips was placed in different positions (see Fig. 2). Approximately
2–3 g of dry conidia was spread evenly on the velvet cloth of the
autoinoculation device. Blue netting was then wrapped around
the velvet cloth containing spores and tightened with two office
pins. The device was then hung at canopy level (35 cm).

The following treatments were used in the field with the
autoinoculation device: T1 – direct exposure of fungal conidia to
Lurem-TR; T2 – conidia separated from Lurem-TR placed inside a
small container fixed just below the device, hereafter also referred
to as 0 cm; T3 – conidia separated from Lurem-TR at 10 cm
above the device; T4 – conidia separated from Lurem-TR at 20 cm
above the device; T5 – control (device without Lurem-TR) (Fig. 2).
Treatments were laid out in a complete randomised block design
with three blocks as replicates. The blocks and treatments were
separated by a distance of at least 15 m to avoid interferences
between treatments and within blocks. Each of the five treatments
was deployed in a single plot, so there were five plots, and these
were repeated 3 times. For conidial viability, five treatments repli-
cated 4 times were used, giving a total of 20 experimental units. In
the experiments on thrips conidial acquisition and attraction, five
treatments were repeated 3 times (15 experimental plots in total).

Experiments were conducted during the peak flowering stage
of the crop, which corresponds to the period of peak infestation of
the crop by thrips, necessitating control measures. The crop was
planted on 14 June 2013, and experiments were run from July to
August 2013. The flowering stage occurred from 24 July 2013 to 7
August 2013, while the podding stage started from 7 August 2013
up to the harvest.

2.5.1 Persistence of conidia of M. anisopliae
The persistence of conidia of M. anisopliae was evaluated for
a period of 2 weeks after the onset of the experiment in the
field. At 3 day intervals, samples of conidia were collected from

Figure 2. Description of the spatial separation of Lurem-TR for evaluation of M. anisopliae conidial persistence in an autoinoculation device in the field.
Treatments: T1 – direct exposure of conidia to Lurem-TR; T2 – conidia separated from Lurem-TR placed inside a small container fixed just below the device;
T3 – conidia separated from Lurem-TR at 10 cm above the device; T4 – conidia separated from Lurem-TR at 20 cm above the device; T5 – control, device
without Lurem-TR.

Pest Manag Sci (2015) © 2015 The Authors. wileyonlinelibrary.com/journal/ps
Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.



www.soci.org DK Mfuti et al.

the autoinoculation devices from the five treatments with a
moist cotton bud. The end of the cotton bud was cut, sus-
pended in 10 mL of 0.05% (w/v) Triton X-100 and vortexed
for 1 min to dislodge conidia. A sample of 100 μL was spread
plated on SDA plates and incubated for 16 h at 25± 2 ∘C and
L12:D12 photoperiod. Germination of conidia was determined as
described above.

2.5.2 Attraction of M. sjostedti and other pests
A blue sticky patch (5 cm× 10 cm) was fixed to the side of the
autoinoculation device with or without Lurem-TR bait to deter-
mine the number of insects, including M. sjostedti, visiting the
device. The sticky cards were replaced every 3 days. Kerosene was
used to dissolve the glue on the sticky cards, and insects were
removed with a fine brush. Thrips specimens were then cleared,
mounted on slides and identified as described in the literature.28,29

The number of thrips and other insect pests such as leafminers and
bean stem maggots were recorded.

2.5.3 Conidial acquisition by M. sjostedti
To assess the amount of conidia acquired by a single thrips visiting
the autoinoculation device, 5–10 cowpea plants from a distance
of 2 m around the autoinoculation device were randomly sampled
using the whole-plant tapping technique.30 The latter consists of
tapping plants on a white barber tray (25× 45 cm), where the tray
is held underneath the selected plant, while the plant is tapped
gently (five taps) using the palm of the hand. In each treatment,
five bean plants were sampled around the autoinoculation device
(1–2 m radius), and 20 insects were collected in a separate 10 mL
glass tube using an aspirator. Tubes were labelled and stored in
the fridge to immobilise insects, which were thereafter transferred
individually into 2 mL cryogenic tubes containing 1 mL of sterile
0.05% Triton X-100. The tube was vortexed for 2–3 min to dislodge
conidia from the insect, and the concentration of conidia was
determined using a Neubauer haemocytometer.

2.6 Statistical analysis
In the greenhouse experiment, differences in the germination rate
of conidia of M. brunneum between treatments were assessed
by linear logistic regression analysis of the observed counts of
germinated spores over the total number of spores examined
for the replicate. The data Y were treated as pseudobinomial
data, taking the variance to be proportional to binomial variance,
i.e. var(Y)= 𝜎

2np(1− p), where p (0< p< 1) denotes the expected
germination rate Y/n of germinated spores Y , n stands for the
number of spores examined from a replicate and 𝜎

2 denotes the
dispersion parameter. A linear logistic model with main effects of
batch and treatment has been used to describe the relationship
between the expected germination rate p and effects of batch and
treatment. The model reads as follows:

ln

(
p

1 − p

)
= constant + batch + treatment

Estimates for the dispersion parameter 𝜎
2, main effects and

F-tests for the main effects were obtained from fitting the model
using the generalised linear model procedure in GenStat.31 The
dispersion parameter 𝜎2 was estimated from Pearson’s chi-square
statistic. Apart from F-tests for main effects, differences between
batches and treatments were assessed by t-tests on all pairwise
differences of fitted means on the logistic scale. Data shown

are back-transformed data from the analysis and present the
predicted germination rates.

For field experiments, repeated-measures ANOVA was used to
analyse M. anisopliae conidial viability, conidial acquisition, BFT
and other insect counts. BFT and other insect counts were log
transformed prior to repeated-measures ANOVA to normalise the
data and stabilise variance between treatments. Means were sepa-
rated using Tukey’s HSD test at 𝛼 = 0.05. A linear regression model
was used to study the relationship between distance of Lurem-TR
and device separation and M. sjostedti attraction. Pearson correla-
tion was used to analyse the association between distance of sep-
aration and conidial counts. The repeated-measures ANOVA was
analysed using R 3.0.1.32

3 RESULTS
3.1 Effect of spatial separation of Lurem-TR position
on conidial persistence
In the greenhouse, the distance from which Lurem-TR was placed
away from conidia had a significant effect on the viability of coni-
dia of M. brunneum both over treatments (F6,52 = 19.4, P < 0.001)
and over times of observation (F3,52 = 41.6, P < 0.001). The lowest
conidial germination (0.6%) was observed when conidia were in
the presence of Lurem-TR inside the closed box (Lmax), followed by
Lurem-TR in immediate proximity (0 cm) of the conidia (13.8%) in
the open air in the greenhouse. However, there was no significant
difference in conidial viability when Lurem-TR was placed at a dis-
tance of 5, 10 or 20 cm in the open air in the greenhouse, conidial
germination being 29.0, 37.4 and 32.8% respectively. The control
treatment in the open air (33.1% germination) was also only signifi-
cantly different from the 0 cm distance treatment and not from the
other distance treatments. In the control treatment (Lmin), where
conidia in a closed box were not exposed to Lurem-TR, conidial
viability was the highest (49.8% conidial germination) and signifi-
cantly different from all other treatments (Fig. 3).

In the field, the separation distance of Lurem-TR and M. aniso-
pliae had a significant effect on overall viability of conidia
(F4,12 = 24.0, P < 0.0001) (Table 1A). The lowest conidial germi-
nation (39%) was obtained when conidia were in direct contact
with Lurem-TR, placed within the autoinoculation device. How-
ever, there was no significant difference in conidial viability when
Lurem-TR was not in direct contact with M. anisopliae, e.g. 0, 10 and
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Figure 3. Effect of spatial separation of Lurem-TR from M. brunneum
(Met52) on conidial germination. Treatments: L0, L5, L10 and L20 are
respectively petri dishes with conidia directly exposed, 5 cm above, 10 cm
above and 20 cm above Lurem-TR. Lmin and Lmax represent the minimum
and the maximum effect of Lurem-TR on inhibition of spore germination
when placed in closed boxes with or without Lurem-TR.

wileyonlinelibrary.com/journal/ps © 2015 The Authors. Pest Manag Sci (2015)
Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.



Separation of semiochemical and entomopathogenic fungi in autoinoculation for thrips management www.soci.org

Table 1. Repeated-measures ANOVA table for the response variable: M. anisopliae conidial viability (A) and acquisition (B) in autoinoculation devices
as affected by spatial separation of Lurem-TR position and M. anisopliae

(A) Conidial viability
Source of variation df Sum of squares Mean square F-value P-value

Between plot
Block 3 306 102 6.90 0.006
Treatment 4 1417 354 23.95 <0.0001
Residuals 12 178 15

Within plot
Time 3 5715 1905 39.99 <0.0001
Time× treatment 12 186 16 0.33 0.981
Residuals 45 2144 48

(B) Conidial acquisition
Source of variation df Sum of squares Mean square F-value P-value

Between plot
Block 2 10.19 5.09 11.02 0.005
Treatment 4 4.20 1.05 2.27 0.150
Residuals 8 3.70 0.46

Within plot
Time 4 6.49 1.62 15.73 <0.0001
Time× treatment 16 1.06 0.07 0.64 0.828
Residuals 40 4.13 0.10
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Figure 4. Effect of spatial separation of Lurem-TR on conidial viability of M.
anisopliae in autoinoculation devices. Bars denote means± one standard
error at P = 0.05 (Tukey’s HSD). Means (± SE) of three replicates of five
autoinoculation devices. Treatments: T1 – direct exposure of conidia to
Lurem-TR; T2 – conidia separated from Lurem-TR placed inside a small
container fixed below the device; T3 – conidia separated from Lurem-TR
at 10 cm above the device; T4 – conidia separated from Lurem-TR at 20 cm
above the device; T5 – control, device without Lurem-TR.

20 cm away from the autoinoculation device, conidial germination
being 46, 47 and 45% respectively. In the control treatment, coni-
dial viability was 52% and significantly different from the other
treatments (Fig. 4). Conidial viability decreased significantly over
time (F3,45 = 40.0, P < 0.0001) (Table 1A). The treatment with direct
exposure had the lowest conidial viability at all observation times,
and after 15 days the viability was only 25%, whereas the control
recorded the highest viability at all observation times, with 41%
viability after 15 days (Table 2). The other treatments were inter-
mediate to direct exposure and control. The differences observed
between treatments were consistent over time; therefore, no
significant interactions were observed between treatment and
exposure time (F12,45 = 0.33, P = 0.98) (Table 1A).

3.2 Effect of spatial separation of Lurem-TR on attraction
of M. sjostedti
The position of Lurem-TR had a significant effect on thrips attrac-
tion (F4,8 = 15.1, P < 0.001 (Table 3A). Thrips were more attracted

to the device when Lurem-TR was placed at 0 and 10 cm dis-
tance (Fig. 5). The control treatment recorded the lowest num-
ber of thrips (80.2± 11.3) and was significantly different from
the direct exposure treatment (99.2± 16.5) and 20 cm treatment
(97.8± 11) (Table 4). The mean number of BFT attracted to the
device increased over time: 100.0± 16.5 at day 3 and 167.8± 25.1
at day 15 (F4,40 = 6.3, P < 0.0001), and this did not vary significantly
between treatments (F16,40 = 0.73, P = 0.75) (Table 3A).

3.3 Effect of spatial separation of Lurem-TR on conidial
acquisition by M. sjostedti
The interaction between treatment and time was not significant
(F16,40 = 0.64, P = 0.83) (Table 1B).

Overall, there was no significant difference in conidial acquisi-
tion by M. sjostedti between the different treatments (F4,8 = 2.27,
P = 0.15) (Table 1B). However, conidial acquisition increased
significantly with time (F4,40 = 15.7, P < 0.0001) (Table 1B),
ranging from 0.14× 105 on day 3 to 0.96× 105 on day 15
post-treatment (Table 5). The increase rate over time was esti-
mated as 0.069± 0.008.

3.4 Effect of spatial separation of Lurem-TR on the
attraction of other insects
In addition to the attraction of M. sjostedti, other insects such as
leafminers, whiteflies and bean stem maggots were also attracted
to the device baited with Lurem-TR (Table 6). The attraction did
not vary significantly among the treatments (F4,8 = 0.9, P = 0.5)
(Table 3B). The mean number of other insects attracted to the
device increased over time (F4,40 = 17.3, P < 0.0001) (Table 3B),
with day 15 recording the highest number of other insects
attracted to the device (62.8± 5.8) (Table 6). The interaction
between treatments and time was not significant (F16,40 = 0.54,
P = 0.9) (Table 3B).

A Pearson correlation test indicated a significant positive cor-
relation between conidial acquisition and M. sjostedti attraction

Pest Manag Sci (2015) © 2015 The Authors. wileyonlinelibrary.com/journal/ps
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Table 2. Effect of spatial separation of Lurem-TR on the persistence of conidia of M. anisopliae in autoinoculation devices over time

Days after treatment Meana

Distance of separation 3 6 9 15

Control 60.6± 2.5 58.2± 2.8 50.2± 1.7 40.8± 4.2 52.5± 2.5 a
Direct 51.2± 3.3 46.1± 3.5 35.2± 2.9 24.5± 4.0 39.3± 3.3 c
0 cm 61.4± 3.0 57.5± 3.3 50.9± 2.3 33.8± 4.1 50.9± 2.2 b
10 cm 61.0± 2.0 58.5± 3.3 50.0± 3.2 39.1± 3.6 52.2± 2.5 b
20 cm 53.4± 2.2 48.5± 3.0 52.4± 2.8 35.9± 3.6 47.6± 2.5 b
Meanb 57.5± 1.3 b 53.8± 1.2 b 47.7± 1.8 b 34.8± 2.2 c

a Means (± SE) followed by the same letters within the column are not significantly different according to Tukey’s HSD test.
b Means (± SE) followed by the same letters within the row are not significantly different according to Tukey’s HSD test.

Table 3. Repeated-measures ANOVA table for the response variable: M. sjostedti attraction (A) and other insect attraction (B) (log-transformed
counts) in autoinoculation devices as affected by spatial separation of Lurem-TR position and M. anisopliae

(A) log-transformed thrips counts

Source of variation df Sum of squares Mean square F-value P-value

Between plot
Block 2 3.31 1.66 70.94 <0.0001
Treatment 4 1.41 0.35 15.11 0.001
Residuals 8 0.19 0.02
Within plot
Time 4 0.57 0.14 6.32 0.000
Time× treatment 16 0.26 0.02 0.73 0.746
Residuals 40 0.90 0.02

(B) log-transformed other insect counts
Source of variation df Sum of squares Mean square F-value P-value

Between plot
Block 2 0.35 0.18 3.13 0.099
Treatment 4 0.20 0.05 0.90 0.507
Residuals 8 0.45 0.06
Within plot
Time 4 0.96 0.24 17.25 <0.0001
Time× treatment 16 0.12 0.01 0.54 0.909
Residuals 40 0.56 0.01
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Figure 5. Effect of spatial separation of Lurem-TR and M. anisopliae on over-
all attraction of M. sjostedti. Bars denote means± one standard error at
P = 0.05 (Tukey’s HSD). Means (± SE) of three replicates of five autoinoc-
ulation devices. Treatments: T1 – direct exposure of conidia to Lurem-TR;
T2 – conidia separated from Lurem-TR placed inside a small container fixed
below the device; T3 – conidia separated from Lurem-TR at 10 cm above
the device; T4 – conidia separated from Lurem-TR at 20 cm above the
device; T5 – control, device without Lurem-TR.

(r = 0.77, P = 0.0001). There was also a significant correlation
between M. sjostedti attraction and other insect attraction (r = 0.9,
P = 0.0001). However, a negative correlation was found between
M. anisopliae conidial persistence and M. sjostedti attraction
(r =−0.7, P = 0.0001), and also between persistence and M.
anisopliae conidial acquisition (r =−0.8, P < 0.0001).

4 DISCUSSION
The concept of autoinoculation has been tested against various
insect pests and disease vectors.21,22,33 One of the advantages
of the autoinoculation device includes the long persistence of
the inoculum, which is protected against environmental fac-
tors. For instance, Maniania33 reported viability of over 60% of
conidia of M. anisopliae in a contamination device at 31 days
post-exposure in field conditions. However, in the present study,
only 41% of conidia of M. anisopliae remained viable at 15 days
post-treatment. This could be explained by the difference in
the autoinoculation devices and fungal isolates used in the two
studies. Entomopathogenic fungus applied in autoinoculation
devices has the potential to suppress insect populations, as
reported earlier.33,34 For instance, Dimbi et al.34 reported mortality
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Table 4. Effect of spatial separation of Lurem-TR and M. anisopliae on M. sjostedti attraction in autoinoculation devices over time

Days after treatment

Distance of separation 3 6 9 12 15 Meana

Control 64.7± 25.44 97.0± 37.4 71.3± 24.8 79.7± 36.5 88.3± 12.9 80.2± 11.3 e
Direct 75.3± 43.8 104.0± 46.8 89.7± 66.5 92.3± 49.5 134.7± 54.3 99.2± 16.5 c
0 cm 114.3± 34.8 172.3± 53.9 168.0± 37.1 141.3± 34.1 302.0± 26.5 179.6± 25.2 a
10 cm 141.7± 44.9 163.7± 56.9 136.7± 22.9 118.3± 10.6 219.7± 30.5 156.0± 18.3 b
20 cm 101.7± 42.2 123.0± 36.7 79.7± 24.8 90.3± 36.5 94.3± 23.9 97.8± 11.8 d
Meanb 100.0± 16.5 e 132.0± 19.6 b 109.0± 17.9 c 104.0± 14.1 d 167.8± 25.1 a

a Means (± SE) followed by the same letters within the column are not significantly different according to Tukey’s HSD test.
b Means (± SE) followed by the same letters within the row are not significantly different according to Tukey’s HSD test.

Table 5. Effect of spatial separation of Lurem-TR position and M. anisopliae on conidial acquisition in autoinoculation devices over time

Days after treatment

Distance of separation 3 6 9 12 15 Meana× 105

Control 0.1± 0.1 0.2± 0.1 0.2± 0.1 0.7± 0.2 0.8± 0.3 0.4± 0.1 a
Direct 0.1± 0.1 0.3± 0.2 0.7± 0.4 0.7± 0.6 0.9± 0.6 0.5± 0.2 a
0 cm 0.4± 0.3 0.6± 0.4 1.1± 0.6 1.1± 0.3 1.7± 0.6 1.0± 0.2 a
10 cm 0.0± 0.0 0.3± 0.3 0.3± 0.2 0.4± 0.5 0.5± 0.3 0.3± 0.1 a
20 cm 0.1± 0.1 0.2± 0.2 0.6± 0.3 0.9± 0.2 0.9± 0.5 0.6± 0.2 a
Meanb× 105 0.2± 0.1 c 0.3± 0.1 bc 0.6± 0.2 bc 0.7± 0.2 ab 1.0± 0.2 a

a Means (± SE) followed by the same letters within the column are not significantly different according to Tukey’s HSD test.
b Means (± SE) followed by the same letters within the row are not significantly different according to Tukey’s HSD test.

Table 6. Effect of spatial separation of Lurem-TR position and M. anisopliae on the attraction of other insects in autoinoculation devices over time

Day after treatment

Distance of separation 3 6 9 12 15 Meana

Control 31.7± 10.1 41.7± 9.0 40.7± 9.5 48.7± 13.7 58.3± 21.3 44.2± 5.6 b
Direct 23.0± 5.0 34.3± 4.5 33.7± 8.3 45.0± 10.8 56.7± 1.2 38.5± 3.9 b
0 cm 30.7± 3.4 47.3± 10.3 48.3± 9.1 72.3± 6.4 66.3± 8.4 52.9± 5.0 a
10 cm 42.0± 14.2 34.0± 3.1 45.3± 7.0 65.3± 24.4 78.3± 19.3 52.9± 7.4 a
20 cm 28.7± 4.2 35.3± 6.8 35.7± 9.5 55.7± 3.8 54.3± 9.7 41.9± 3.9 b
Meanb 31.0± 3.6 e 38.5± 3.1 d 40.7± 3.4 c 57.4± 5.9 b 62.8± 5.8 a

a Means (± SE) followed by the same letters within the column are not significantly different according to Tukey’s HSD test.
b Means (± SE) followed by the same letters within the row are not significantly different according to Tukey’s HSD test.

of between 70 and 93% of fruit flies Ceratitis rosa (Karsch) and
C. fasciventris (Bezzi) (Diptera: Tephritidae) after being attracted to
M. anisopliae-treated autoinoculators baited with brewer’s yeast
in a field cage experiment. In another study, 100% mortality was
observed among leafminer fly Liriomyza huidobrensis (Blanchard)
(Diptera: Agromyzidae) visiting an M. anisopliae-treated autoinoc-
ulation device.35 No antifungal effect was observed in either study,
although no semiochemical was involved in the second study. The
addition of semiochemical in the present study was intended to
increase the attraction of thrips and subsequently the infection
by fungus. However, direct exposure of conidia of both M. brun-
neum and M. anisopliae to Lurem-TR resulted in reduced conidial
viability as compared with control treatments, which confirms the
antifungal effect of Lurem-TR as reported earlier.22 Conidial viabil-
ity increased when the inoculum was separated from Lurem-TR,

indicating that the negative effects of Lurem-TR on conidial viabil-
ity can be minimised through distance of separation.

More thrips were attracted to the autoinoculation device
when Lurem-TR was placed at 0 and 10 cm, which may be
attributed to a better diffusion of the semiochemical on account
of ventilation.36 – 38 Nielsen38 reported that several extrinsic factors
such as airflow and type of dispenser affect the methyl isonicoti-
nate release rate. The higher thrips catches at 0 cm separation
could be attributed to the proximity of Lurem-TR to the blue
colour as compared with the 10 and 20 cm separation lures.39

This finding could also explain differences in M. sjostedti catches
between direct exposure and separation treatments.

The present study has shown that M. sjostedti responds to
methyl-isonicotinate, which is the active ingredient of Lurem-TR,
and confirms a previous report by Muvea et al.40 The positive
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correlation observed with thrips attraction could be explained
by frequent visits or longer stays of M. sjostedti in the device.
Methyl-isonicotinate has been reported to stimulate walking
and take-off behaviour in Frankliniella occidentalis (Pergande)
(Thysanoptera: Thripidae) female adults.41 This may explain the
finding of Niassy et al.,22 who observed that conidial acquisition
by F. occidentalis was greater in a Lurem-TR-baited device than
in a device without Lurem-TR. Maniania33 also observed that the
time spent by single tsetse flies Glossina spp. in the contamination
device largely depended on the insect behaviour and varied
between 5 and 189 s, and the subsequent number of conidia
collected varied between 1.6× 105 and 40.5× 105 conidia fly−1.

The effect of conidial acquisition on thrips mortality was not
investigated in the present study. However, Niassy et al.22 found
that the overall mean mortality of F. occidentalis and the mean
number of conidia acquired per single thrips were significantly
higher in field cages with a semiochemical-baited device at 7 days
post-inoculation. Migiro et al.35 reported a positive correlation
between conidial acquisition and mortality of leafminer fly L.
huidobrensis.

Male aggregation and sexual behaviour have been widely doc-
umented in thrips,42 and such behaviours are semiochemically
mediated.43 Classically, male thrips aggregate in numbers to
demonstrate courtships (fighting, mounting) to females before
mating.42,44 Such behavioural elements can permit male-to-male
or male-to-female conidial transmission during leks. Similar sexual
behaviours have also been reported in some fruit fly species,45,46

resulting in horizontal transmission of M. anisopliae, which also
affected egg laying and oviposition.47

The negative correlation between conidial persistence and M.
sjostedti attraction and between M. anisopliae conidial persistence
and conidial acquisition observed in the present study suggest
that the proximity of the attractant with colour for attraction needs
to be appropriately defined for the success of the lure-and-infect
strategy.

In conclusion, the spatial separation of Lurem-TR with fungal
conidia could reduce the negative effect of the semiochemical and
subsequently enhance fungal persistence in an autoinoculation
device. A distance of 0–10 cm away from the conidial source was
found to be optimal for thrips attraction in field conditions. In addi-
tion to M. sjostedti, insect pests such as leafminers, bean stem mag-
gots and whiteflies that are also considered to be important pests
of cowpea in Kenya can be attracted to the autoinoculation device,
which renders this strategy very saleable for the management of
thrips and other insect pests of grain legumes.
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