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Abstract. Microsatellite (or simple sequence repeat, SSR) markers are highly informative DNA markers often used in
conservation genetic research. Next-generation sequencing enables efficient development of large numbers of SSR
markers at lower costs. Boswellia papyrifera is an economically important tree species used for frankincense produc-
tion, an aromatic resinous gum exudate from bark. It grows in dry tropical forests in Africa and is threatened by a lack
of rejuvenation. To help guide conservation efforts for this endangered species, we conducted an analysis of its gen-
omic DNA sequences using Illumina paired-end sequencing. The genome size was estimated at 705 Mb per haploid
genome. The reads contained one microsatellite repeat per 5.7 kb. Based on a subset of these repeats, we developed
46 polymorphic SSR markers that amplified 2–12 alleles in 10 genotypes. This set included 30 trinucleotide repeat
markers, four tetranucleotide repeat markers, six pentanucleotide markers and six hexanucleotide repeat markers.
Several markers were cross-transferable to Boswellia pirrotae and B. popoviana. In addition, retrotransposons were
identified, the reads were assembled and several contigs were identified with similarity to genes of the terpene
and terpenoid backbone synthesis pathways, which form the major constituents of the bark resin.

Keywords: Conservation genetics; resin; SSR; terpene biosynthesis; terpenoid; tropical dry forest.

Introduction
To implement an effective conservation programme, it is
essential to understand the genetic structure of endan-
gered populations and the dynamics of genetic variation
over space and time (Karp et al. 1997; Burczyk et al.
2006; González-Martı́nez et al. 2006; Frankham et al.
2010; Nybom et al. 2014). Microsatellite or simple se-
quence repeat (SSR) markers have been widely applied in

quantifying the level of genetic variation and its spatial or-
ganization, describing the demography and history of po-
pulations, and analysing the gene flow and parentage in
plants and animals (e.g. Arens et al. 2007; Smulders et al.
2008; Primmer 2009; Allan and Max 2010). These repeats
are abundant in the genome, polymorphic and multi-
allelic (thus highly informative), have co-dominant inherit-
ance (allowing a direct measurement of heterozygosity),
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and markers based on them are frequently transferable
across related species (Chase et al. 1996; Smulders et al.
1997, 2001; Brondani et al. 1998; Pastorelli et al. 2003;
Tuskan et al. 2004; Selkoe and Toone 2006; Allan and
Max 2010; Fan et al. 2013).

Recently, next-generation sequencing technologies have
simplified generating large amounts of sequences at
affordable cost, thus facilitating the development of
molecular markers, including SSRs and single-nucleotide
polymorphisms (SNPs) (Edwards et al. 2011; Ekblom and
Galindo 2011; Castoe et al. 2012; Smulders et al. 2012;
Lance et al. 2013; Vukosavljev et al. 2015), as well as chloro-
plast sequences for phylogeographical studies (Van der
Merwe et al. 2014). The development of markers has thus
become feasible also for species for which no prior
sequence information exists (Smulders et al. 2012), includ-
ing understudied but economically important crops (Zalapa
et al. 2012).

Marker development can be based on short-length
sequences from genomic DNA sequences or cDNA (RNA-
seq). Both sets of reads are useful, but they differ with re-
gard to further data mining. RNA-seq data can be de novo
assembled into a (partial) transcriptome (Yang and Smith
2013) with some caveats, partly related to the assembler
used (Shahin et al. 2012). A common denominator ap-
pears to be that multiple assemblers need to be com-
pared (Nakasugi et al. 2014), but the final result can be
compared with the transcriptome of other species. In
contrast, it is not straightforward (Vicedomini et al.
2013) to assess the quality of a de novo assembly of
short reads of genomic DNA from a species for which no
prior sequence information is available, especially if the
genome is large and contains many repeats, and the spe-
cies is heterozygous or even polyploid. Nevertheless,
many studies are based on genomic DNA, as it is easier
to extract DNA from dry material of wild species collected
in the field (on silica gel) than to try to extract good qual-
ity RNA from fresh samples or from samples specifically
prepared for RNA extraction. What additional information
can be reliably extracted from a single library of short
reads of genomic DNA is an open question.

Boswellia papyrifera is currently the number one
frankincense-producing tree species in the world (Coppen
2005). Frankincense is an aromatic resinous gum exudate
produced from the bark of trees. Its economic value in the
world market stems from its use as an ingredient in phar-
maceuticals, cosmetics and as a church incense (Groom
1981; Tucker 1986; Lemenih and Teketay 2003). In
Ethiopia, besides its value in the national economy, it
has a significant contribution in the local livelihoods, pro-
viding up to one-third of annual household income, espe-
cially in the northern regions of the country (Lemenih
et al. 2003, 2007; Woldeamanuel 2011).

The population size of B. papyrifera is declining in Ethiopia
(Abiyu et al. 2010; Groenendijk et al. 2012; Tolera et al.
2013), Eritrea (Ogbazghi et al. 2006) and Sudan (Abtew
et al. 2012). Little or no tree regeneration occurs in
its natural range and mortality of adult trees increases.
Despite its endangered status and economic importance,
very few conservation efforts exist and none are sup-
ported by genetic information. The later situation results
because genetic markers for the species have not been
developed.

In the present study, we applied the Illumina paired-
end sequencing technology to sequence genomic DNA
of B. papyrifera with the goal of identifying microsatellite
repeats and developing SSR markers. The reads were also
assembled into the first genomic resource for this species,
and we present a couple of structural and functional ana-
lyses on them.

Methods

Plant material

Boswellia papyrifera is one of the six Boswellia species
that grow in various parts of Ethiopia. The B. papyrifera
genotype used for Illumina paired-end sequencing was
collected from a natural population at Kafa Humera Wuh-
det (14.05265N latitude; 37.13078E longitude) in north-
west Ethiopia. Young leaves were collected from growing
shoot tips of the plant and preserved in silica gel while in
the field and during transportation to the laboratory
for DNA extraction. A genomic DNA library for Illumina
paired-end sequencing was prepared from 4 mg of DNA
following the PCR-based gel-free illumina TruSeq DNA
sample prep protocol and sequenced as 2 × 100 nt
paired-end reads on an Illumina HiSeq at Greenomics,
Wageningen UR, Wageningen, the Netherlands.

Plant material for SSR marker development

For testing of the SSR loci a set of 12 genotypes were
used. Ten of the genotypes represented populations of
B. papyrifera collected from 10 different regions of Ethiopia.
Two genotypes of Boswellia pirrotae and B. popovina were
included for testing the cross-transferability of the markers
to closely related species. The B. pirrotae sample was from
the northwestern part of Ethiopia. Boswellia popoviana is
endemic to Socotra Island, Yemen, and the dried leaf sam-
ple was obtained through the Edinburgh Royal Botanical
Garden, UK.

DNA extraction

Total DNA was isolated from silica-dried young leaves
following the cetyltrimethylammonium bromide protocol
of Fulton et al. (1995). As large amounts of phenolic com-
pounds were expected because of the resin content in the
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leaves, the protocol was modified by the addition of 2 %
pvp-40 to the extraction buffer and 1 % mercaptoethanol
to the microprep buffer of Fulton et al. (1995), added imme-
diately before use. The extraction was followed by purifica-
tion steps using DNeasy (Qiagen, Venlo, The Netherlands)
according to Smulders et al. (2010). DNA yield and quality
were visually assessed on a 1 % agarose gel.

Sequence filtering

The raw reads were error-corrected using musket (Liu
et al. 2012b). This error-corrected set was used for the re-
peat assembly. Prinseq-lite 0.20.04 (Schmieder and
Edwards 2011) was used for quality control and filtering
of reads (minimum read length of 50 nt, minimum aver-
age base quality of 25, maximum ambiguous nt (N) of 1)
after which the data were used for SSR mining. After low
complexity trimming (minimum DUST score of 7 for re-
moval of low complexity reads and removal of duplicate
reads, also with Prinseq-lite), paired-end reads with over-
lapping sequences were connected using connecting
overlapped pair-end (Liu et al. 2012a) in the full mode.
Reads were filtered for chloroplast sequences by mapping
the reads against the closest chloroplast genome
available, which is one of Citrus sinensis, using bowtie2
(Langmead and Salzberg 2012, settings -D 20 -R 3 -N 1
-L 20 -i S,1,0.50 -a).

Repeat analysis

Reads from the highly repeated fraction of the genome
were extracted and assembled using RepARK (REPetitive
motif detection by Assembly of Repetitive k-mers; Koch
et al. 2014). The motifs present in the repetitive contigs
were counted and analysed by blastn (e-value 1e-5)
against Repbase v19.08 (database of repetitive DNA ele-
ments, Jurka et al. 2005).

Assembly and annotation

A de novo draft assembly was created from the filtered
reads using SOAPdenovo 2.21 (Li et al. 2010, settings -K
41 -M 3 -d 4). The gaps emerging during the scaffolding
process by SOAPdenovo were closed using GapCloser
(vs. 1.12). The contigs .1000 bp of the draft assembly
were analysed and functionally annotated using Blas-
t2GO (Conesa et al. 2005).

SSR mining and design of primers

Five million of the filtered but not assembled reads were
analysed with PAL_FINDER 0.02.03 (Castoe et al. 2012) to
identify SSRs using slightly adjusted criteria: at least six
contiguous repeat units for dinucleotide repeats, four
for tri- and tetranucleotide repeats and three for penta-
and hexanucleotide repeats (Castoe et al. (2012) used
six units for trunicleotide repeats). Following Castoe

et al. (2012) the reads with multiple SSR loci were consid-
ered a ‘compound’ repeat if the SSRs had a different
repeat motif, but a ‘broken’ repeat if the SSRs had the
same motif. Reverse-complement repeat motifs (e.g. TG
and CA) and translated or shifted motifs (e.g. TGG, GTG
and GGT) were grouped together, so that there were a
total of four unique dinucleotide repeats, 10 unique trinu-
cleotide repeats and so on.

A subset of over 70 000 trinucleotide to hexanucleotide
repeat-containing reads was used to further screen po-
tentially amplifiable SSR loci (PALs): loci for which PCR
primers could be designed. Primer designing followed
the default parameters specified in Primer3 (Rozen and
Skaletsky 2000). The reads were then screened for differ-
ences in lengths of those sequences that contained these
primers (as in Vukosavljev et al. 2015). At these loci the
sequenced plant may be heterozygous, thus indicating
that the locus is polymorphic. These formed the group
of potentially polymorphic loci.

SSR loci amplification and analyses
of polymorphism

PCRs were performed in a total volume of 10 mL reaction
mixture containing 4 mL 2 ng mL21 DNA, 5 mL MP mix from
Qiagen kit, 0.8 mL (2 mM) universal fluorescent-labelled pri-
mer and 0.2 mL mix of the forward and reverse primers. The
fluorescent labelling method described in Schuelke (2000)
was adapted to label the primers for analyses of the PCR
products with a laser detection system. For this the forward
primers were labelled with a universal M13 sequence (AA
CAGGTATGACCATGA) at the 5′ end while the reverse pri-
mers were tailed with GTTT at their 5′ end according to
Brownstein et al. (1996) to reduce stutter bands (both tail-
ing sequences are not shown in the sequences in Table 1).
A thermal cycling profile was set at 15 min of initial de-
naturation at 95 8C, followed by 30 cycles of 30 s denatur-
ation at 94 8C, 45 s annealing at 56 8C and 45 s extension
at 72 8C. This was followed by additional eight cycles with
53 8C annealing temperature to facilitate the annealing of
the fluorescent dye-labelled M13 primer, and a final exten-
sion step of 10 min at 72 8C. After amplification 10 mL
water was added. Fluorescently labelled amplicons were
resolved on a 4200 or 4300 Licor DNA analyser.

Results

Next-generation sequencing

Genomic DNA of one B. papyrifera individual was se-
quenced in order to obtain a library to mine for microsatel-
lite repeats. One lane on an Illumina HiSeq produced
143 458 368 raw reads. Based on k-mer counts, the esti-
mated genome size of B. papyrifera was 705 Mb, sequenced
at 36× coverage. After error correction and filtering reads
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Table 1. Forty-six polymorphic microsatellite markers developed for B. papyrifera and their cross-transferability to B. pirrotae and B. popoviana.
1A ¼ number of alleles in 10 B. papyrifera genotypes. 2Ho ¼ observed heterozygosity (a tentative figure, as the 10 individuals are from 10
different populations. 3Amplification was also tested in one individual of B. pirrotae (Br) and one of B. popoviana (Bv) except where no Bv is
indicated. Hom ¼ homozygous and Het ¼ heterozygous, always with products in the same size range as the alleles in B. papyrifera, except
where noted that they were out of range. No ampl ¼ no amplification.

Name Primer sequence (5′�3′) Repeat motif A1 Allele size

range (bp)

Quality

(Smulders

et al. 1997)

Ho2 based on 10

B. papyrifera

genotypes

Other

Boswellia

species3

Bp01 F:TTGTTAAGGCTTTTCTCCTC

R:GTTGCTTATCTTTGGCTGAG

(AAG)6 4 119–134 2 0.34 Br ¼ het

Bv ¼ hom

Bp02 F:TGAGAAGTTTACCCTTTATGTTT

R:TCTCTGCCTCTTCTTCTTATTT

(ATT)13 7 195–219 2 0.78 Br ¼ hom

Bv ¼ hom

Bp03 F:ATGGGGAAAGGTTAAAGATC

R:CTGCACAACACAAGTTAAGC

(ATC)6 3 123–129 1 0.1 Br ¼ het

Bv ¼ het

Bp04 F:TATCAACACTTTTGTTTTGC

R:CAATTCGAGTCTCCTCAAC

(TTC)8 2 182–197 3 0.2 Br ¼ het

Bv ¼ het

Bp05 F:GGAGCAGGTACCTTGTATGT

R:AACAGATCTCTTGGTTTGATT

(AAC)7 5 232–250 1 0.8 Br ¼ hom

Bv ¼ hom

Bp06 F: GATCTCCACTTGATCAGGAC

R:ACATGGAAAATTGAAAGCAC

(TTC)9 8 263–297 1 0.5 Br ¼ het

Bv ¼ het

Bp07 F:GAAACTTTGTGGGTGTTTGT

R:TCATCCTCTGACATATCCATT

(ATT)8 3 284–293 1 0.34 Br ¼ hom

Bv ¼ hom

Bpo8 F:TTTTCTGTGTTTTGTACGCA

R:GCATGCAAGAAATAGGAGAG

(ATT)6 3 207–213 2 0.11 Br ¼ no ampl

Bv ¼ no ampl

Bp09 F:TTGATCAATTATTTCGGACA

R:AAAATGCAAGTCCTTTGTAA

(ATT)11 7 292–331 1 0.78 Br ¼ no ampl

Bv ¼ het

Bp10 F:CTTTGGCAGATTCAAATAGG

R:GACACAAGAAAATTGAGGGA

(TTC)6 4 197–213 1 0.11 Br ¼ het

Bv ¼ het

Bp11 F:AGAGAATTCCCTAAGGAGAGA

R:TCTACAATAGCCCAGCAACT

(TTC)9 6 284–307 1 0.78 Br ¼ hom

Bv ¼ het

Bp12 F:ACCCATGATAAAGAGTTCCA

R:GAGAACGCCGTTTGAGTT

(ATT)10 7 238–302 2 0.56 Br ¼ het

Bv ¼ no ampl

Bp13 F:ATAATTTCCCACCAGGAGAT

R:CAACGAACTACAAGTATTGAATG

(ATT)7 3 227–239 1 0.22 Br ¼ hom

Bv ¼ hom

Bp14 F:GGCAATTATTTGATCGCTAC

R:ATGACATTCATTCGTAACCC

(ATT)15 8 198–253 1 0.44 Br ¼ het

Bv ¼ hom

Bp15 F:TATATGCCTTGCTAAGCGTT

R:AAACTCCGAGCTGACTACAC

(ATC)10 7 301–337 1 0.78 Br ¼ het

Bv ¼ hom

Bp16 F:AAAACTTTGTTTCCTCTCCA

R:TCAGAAGGAAGCACTTCAAC

(TCC)11 2 218–221 1 0.33 Br ¼ hom

Bv ¼ hom

Bp17 F:AGCAATATTTCCAAAGGACA

R:CTGCCCAATAACATAGTTCC

(TTC)11 6 200–215 1 0.4 Br ¼ no ampl

Bv ¼ hom

Bp18 F:TTATCTTGTAGTGGGATGGG

R:GAGAACTGGTAATCACATGAAA

(TTC)12 6 221–262 2 0.67 Br ¼ hom

Bv ¼ no ampl

Continued
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Table 1. Continued

Name Primer sequence (5′�3′) Repeat motif A1 Allele size

range (bp)

Quality

(Smulders

et al. 1997)

Ho2 based on 10

B. papyrifera

genotypes

Other

Boswellia

species3

Bp19 F:GTGCCAGAATTCAGGTATGT

R:GGTTGTGAGTCCACCATTAT

(TTC)13 5 287–321 2 0.1 Br ¼ het

Bv ¼ hom

Bp20 F:TGCTTTATGACTTTGTTGAGA

R:GAACCATCATGCAATTAGTTT

(TTC)15 10 227–266 2 0.5 Br ¼ het

Bv ¼ hom

Bp21 F:CAGAGTTAATAATATAAGTAGCAGCA

R:CTATGTTCATACTTAGAAAAGTTGG

(TTC)16 12 117–299 1 0.6 Br ¼ hom

Bv ¼ hom

Bp22 F:TAAAACCATTTTCAGCAAGG

R:AGAACCAGACCTTCAAATCA

(TTC)17 11 237–307 1 0.7 Br ¼ hom

Bv ¼ het

Bp23 F:GCGAATTTGCTCTGTAATTC

R:TAAGACCCCAAGAAATTGAA

(TTC)20 11 224–266 2 0.8 Br ¼ het

Bv ¼ hom

Bp24 F:TATTTGTCAACAGATTGGGG

R:CAGTCTAAGTCCACAAACTCC

(CGGGG)3 2 241–251 1 0 Br ¼ hom

Bv ¼ hom

Bp25 F:ATCATCATCAGGTGAAGACC

R:ATGTCGTTTTCGACTTTCG

(TCTCGC)3 4 261–279 1 0.22 Br ¼ hom

Bv ¼ hom

Bp26 F:AAATCATGTTTGGCTAATGG

R:TGCAAATGCAAATTAATGG

(TGCC)6 3 235–247 1 0.34 Br ¼ hom

Bv ¼ hom

Bp27 F:CTCTAGATGCATAGGGATGG

R:AAATATAATCCTAAACCTTGCG

(TCCGGG)3 2 240–246 1 0.25 Br ¼ no ampl

Bv ¼ no ampl

Bp28 F:CAAATCCTTGTGATTTCTCC

R:AAGTAGCCATAAATAATCATAGGG

(AAGAG)3 4 262–272 1 0.14 Br ¼ het

Bv ¼ hom

Bp29 F:ATTTCACAAATCACTTTCGC

R:TTAACAAGTAACGCTAACGC

(TC)10(AGCG)5 6 249–264 1 0.43 Br ¼ hom

Bv ¼ het

Bp30 F:ATATGCTAGAGACTTGGCCC

R:TTTTCAATGCTTGGATGC

(TTGGGC)3 3 200–212 1 0.34 Br ¼ hom

Bv ¼ hom

Bp31 F:CAGAACAAAAGTGACAGTTAGC

R:GAGGCAAAGAGACTTGACC

(AGAGC)4 4 277–307 2 0.75 Br ¼ hom

Bv ¼ no ampl

Bp32 F:TCATAACTTCCAAAATTGAGC

R:TTTCTATCTTTGGATCAATGC

(TCTG)4 3 144–156 1 0.11 Br ¼ hom

Bv ¼ no ampl

Bp33 F:CGTCTACCTCCTTCTCTTCC

R:GTACTAAACCCTCCGTTCG

(TCTCC)3 2 171–181 3 0.33 Br ¼ het

Bv ¼ no ampl

Bp34 F:AGAGAACATCCCAAGAATCC

R:AGGATGGAGAGCCCTAGC

(ATGGAG)4 4 183–193 1 0.56 Br ¼ het

Bp35 F:GGCTCCTCGCTAACCGACC

R:CTCCCAGTCGAGATCGAGCC

(TTGGCG)4 2 224–230 1 0.1 Br ¼ hom

Bp36 F:GGTATAAAGAGAAAGGGATAGAGG

R:CACAATTTACTGGCAATGG

(TGTGC)3 4 211–226 2 0.89 Br ¼ hom

Bp37 F:ATCTCGCATTCCTACATCC

R:ACGACCTCTTCATCTAACCC

(ATGC)5 2 277–283 1 0.11 Br ¼ hom

Bp38 F:GTTGAGAATGAGAAGAACGG

R:CATCAACTTCCTCAAATTCC

(ATC)7,(8) 5 243–273 1 0.22 Br ¼ het

Continued
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for short sequences, sequences with ambiguities (Ns) and
low complexity, and excluding redundant sequences,
120 479 203(84 %) paired-end reads and 10 851 777
single-end reads remained.

SSR identification

A search of SSRs in a subset of five million Illumina
paired-end reads identified 170 832 reads (3.4 %) con-
taining SSRs. In these reads, a total of 175 607 repeat
loci (dinucleotide through hexanucleotide repeats) were
identified, which corresponds to one SSR locus per
5.7 kb. Figure 1 shows the frequency of the top-20 repeat
motifs. These include all dinucleotide motif repeats (of at
least six repeat units long), of which AC and AT repeats
were the most abundant. Of the trinucleotide repeats
(of at least four repeat units) AAT and AAC were the
most frequent, followed by TTC. Excluding the dinucleo-
tide repeats, the remaining 70 415 SSR loci were screened
for the presence of sufficient forward and reverse flanking
sequences suitable to design primers. This yielded 29 886
(42 %) PALs. Further filtering of these PALs by applying the
most stringent criteria aimed at selecting single-copy loci
yielded 4071 potentially amplifiable SSR loci.

Polymorphism and amplification of SSR loci

A total of 136 SSR loci (117 randomly picked and 19 loci
predicted to be potentially polymorphic as they appeared

to have two different alleles in the sequence reads) were
tested for amplification and degree of polymorphism in
10 randomly chosen individuals from different popula-
tions. Of the 117 randomly picked loci, 82 primer pairs
amplified a high-quality PCR product, of which 37
(45 %) were polymorphic with a banding pattern that
could be scored clearly (Table 1). Of the 19 primer pairs
predicted to be polymorphic, 13 amplified bands of
which 9 loci (69 %) were polymorphic, indicating a signifi-
cantly higher rate of polymorphism (x2 test, P , 0.005)
compared with randomly picked loci. The final set of 46
markers included 30 trinucleotide repeat markers, 4 tet-
ranucleotide repeats, 6 pentanucleotides and 6 hexanu-
cleotide repeats. The number of alleles across the
polymorphic loci varied between 2 and 12 with an aver-
age value of 4.8 alleles in 10 genotypes. Several of the
polymorphic markers with 10–12 alleles were TTC re-
peats. The heterozygosity per locus ranged widely from
0.10 to 0.89 (average 0.43). It is possible that, when
used in larger populations, these markers will show
higher estimates of Ho, and additional alleles may be
found.

As shown in Table 1, most of the SSRs successfully amp-
lified in B. pirrotae and B. popoviana (in the latter species
the amount of DNA was insufficient to test all markers).
Amplification, even if it is in the same size range as the
alleles in B. papyrifera, is not proof that the marker is
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Table 1. Continued

Name Primer sequence (5′�3′) Repeat motif A1 Allele size

range (bp)

Quality

(Smulders

et al. 1997)

Ho2 based on 10

B. papyrifera

genotypes

Other

Boswellia

species3

Bp39 F:TCATGGAATAAGAAACCAAA

R:TCTTAACATTTCGTCTGCTG

(ATC)8,(9) 8 247–298 2 0.6 Br ¼ het

Bp40 F:AAACAAATATACGTGGCACA

R:TCCAAGTGAACATCCAAAAT

(ATT)8,(14) 3 240–255 2 0.3 Br ¼ hom

Bp41 F:TGGGTTTAAAGTATTCTAAAAGG

R:CATTAGAAGAGGCAAAATGG

(ATT)8,(9) 4 230–252 2 0.22 Br ¼ hom

Bp42 F:TTATAAGCAGAGCAAATTATAGC

R:CTAATTTCGCAATTTAAGGC

(ATT)10,(11) 6 228–264 2 0.4 Br ¼ hom

Bp43 F:CCAAGCCTATACACTTCTTCA

R:GATGAATTGGGCTTAGATTG

(TTC)6,(8) 6 272–293 3 0.89 Br ¼ het

Bp44 F:CCATATGGGGATATAGGTCA

R:TTGGCCAAGAAGAAACTTAG

(ATT)6,(7) 4 226–235 2 0.25 Br ¼ het (out

of range)

Bp45 F:AACAGTTGGTTTAACAACGC

R:CTTAAAAGGGAACTGGAAGG

(AACAAG)3,(4) 3 281–293 1 0.67 Br ¼ het

Bp46 F:ATATTCAATTTATCTGTGTGACG

R:TTTGATTTCAAAGGAAAACG

(ATATT)3,(4) 2 256–271 2 0.75 Br ¼ hom
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polymorphic, but heterozygosity (two different alleles in
the expected range) is. Based on that criterion at least
19 of the 46 markers are polymorphic in B. pirrotae and
at least 8 of 33 tested are polymorphic in B. popoviana.

Sequence assembly and annotation

The Illumina reads are the first genomic resource gener-
ated in the genus Boswellia. The repeat fraction was
assembled based on k-mer frequency. This produced
49 576 contigs of repeats that were present at least 50×
(median length 139 bp, mean length 224 bp, N50 238 bp,
maximum length 21 153 bp, total sum ¼ 574 Mbp). Next,
1533 contigs had blastn hits with RepBase, mostly with
Copia (639 hits) and Gypsy (523) retrotransposons, along-
side EnSpm (114), hAT (72), Satellite (29), TY (23), Harbin-
ger (16), YPrime (14), Helitron (12) and SCTRANSP (3).
Intermixed with these elements were hits to the ribosomal
RNAs (LSU 56 hits, SSU 41) and also to Caulimoviridae
viruses (11).

Using all data in a de novo assembly with SOAPdenovo,
444 927 contigs were obtained with a median of 375 bp, a
mean contig length of 690 bp, an N50 of 1085 bp and a
maximum contig size of 19 236 bp (total sum ¼ 307 Mb
genomic DNA sequence). The contigs .1000 bp were
blasted against Genbank, and 65 467 were annotated
with GO terms (Fig. 2; note that these are overlapping
classes).

Terpene biosynthesis genes

Assefa et al. (2012) conducted a biophysical and chemical
study on resins of Boswellia species with special emphasis
on B. papyrifera. Using the list of identified components,
eight contigs of the assembly were found, which re-
present part of genes of the terpene synthesis pathways,
namely pinene synthase, limonene synthase (2×), iso-
prene synthase (4×) and gamma-terpinene synthase.

We also searched for the enzymes that are involved
in terpenoid backbone biosynthesis (according to the
Kyoto Encyclopedia of Genes and Genomes pathway

Figure 2. Representation of ontology assignments of the B. papyrifera
contigs. (A) The 31 086 GO terms of cellular components, (B) the
42 423 GO terms of molecular function and (C) the 54 256 GO terms
of biological processes. Note that these are overlapping classes.

Figure 1. The 20 most frequent SSR motifs obtained, sorted according to frequency.
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database). Table 2 lists the enzymes of the mevalonate
and non-metavolate (MEP/DOXP) pathways, the two
pathways for the synthesis of terpenoid building blocks
in plants, which were found among the annotation re-
sults. Two of the key enzymes of the MEP pathway,
2-C-methyl-D-erythritol-4-phosphate cytidylyltransferase
(EC 2.7.7.60) and 4-(cytidine 5′-diphospho)-2-C-methyl-
D-erythritol kinase (EC: 2.7.1.148), were not recognized in
the set of scaffolds, but reciprocal tBlastx (at 1e-5) against
these enzymes identified in Arabidopsis did reveal hits
with, respectively, 3 and 2 contigs.

Discussion
We have developed the first set of 46 SSR markers for
B. papyrifera. The markers amplified between 2 and 12 al-
leles in individuals from 10 different populations across
Ethiopia. We based the marker development on DNA se-
quences from one individual. Most of the markers tested
were chosen randomly, but the subset for which we as-
sessed, from the sequence reads, that they probably
had two alleles in this individual, gave a significantly
higher success rate compared with the randomly chosen
ones. This assessment is a technically easy screening step
that would improve the efficiency of marker development

in an outbreeding species, even if only sequences from
one individual have been generated, as is often the
case. It is probably not as efficient as a strategy that gen-
erates transcriptome sequences from multiple individuals
with the specific aim of testing only those loci on gel for
which polymorphisms in repeat length exist among the
reads obtained from these individuals (Vukosavljev et al.
2015).

The SSR markers were developed based on a set of Illu-
mina paired-end DNA sequence reads from young leaves
of a single individual of B. papyrifera. The distribution of
these reads indicated a genome size of 705 Mb. This is
close to the estimate of 682 Mb for B. serrata, the only Bos-
wellia species listed in the Kew Gardens C-value database.

Mobile elements that are present in multiple copies in the
genome were analysed based on sequence homology in
k-mers that occurred at high frequency (Koch et al. 2014).
We have identified a series of retrotransposons, the most
common being Copia and Gypsy elements. As these ele-
ments are present in large numbers, our Illumina reads
probably were a sufficiently good source to determine the
presence and relative frequency of various elements.

We also assembled all reads of our paired-end short-
read library and obtained 307 Mb of unique sequences.
The quality of this assembly is difficult to assess without

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. MEP/DOXP and mevalonate pathway genes found among the contigs of B. papyrifera.

Name EC no.

MEP/DOXP pathway

DXS 1-Deoxy-D-xylulose-5-phosphate synthase EC 2.2.1.7

DXR 1-Deoxy-D-xylulose-5-phosphate reductoisomerase EC 1.1.1.267

MDS 2-C-methyl-D-erythritol-2,4-cyclodiphosphate synthase EC 4.6.1.12

HDS 4-Hydroxy-3-methylbut-2-enyl diphosphate synthase EC 1.17.7.1

IDI Isopentenyl diphosphate isomerase EC 5.3.3.2

GPPS Geranyl-diphosphate synthase EC 2.5.1.1

GGPPS Geranylgeranyl diphosphate synthase EC 2.5.1.29

CPS Copalyl diphosphate synthase EC 5.5.1.12

KS Kaurene synthase EC 4.2.3.19

Mevalonate pathway

AACT Acetyl-CoA C-acetyltransferase EC 2.3.1.9

HMGS Hydroxymethylglutaryl-CoA synthase EC 2.3.3.10

HMGR Hydroxymethylglutaryl-CoA reductase EC 1.1.1.34

MK Mevalonate kinase EC 2.7.1.36

PMK 5-Phosphomevalonate kinase EC 2.7.4.2

MDC Mevalonate-5-pyrophosphate decarboxylase EC 4.1.1.33

IDI Isopentenyl diphosphate isomerase EC 5.3.3.2

FPPS Farnesyl diphosphate synthase EC 2.5.1.10
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other independent sources such as libraries of different
insert sizes, and we therefore did not compare the results
of various assemblers (as, e.g. Shahin et al. 2012 did) or
merged assemblies (Vicedomini et al. 2013). Our resource
was searched for genes that are expected to be involved
in production of the major compounds of the resin, which
in B. papyrifera includes diterpenes, triterpenes and nor-
triterpenes (Basar 2005; Assefa et al. 2012; Bekana et al.
2014). The contigs of our assembly gave significant hits
for most genes of the core terpene and terpenoid path-
ways. We have not carried out an in-depth analysis of
the sequences in these contigs, as extracting the com-
plete Boswellia homologues of these genes would need
more bioinformatics steps and independent validation,
e.g. by PCR and Sanger sequencing. However, the results
indicate that for many genes of interest at least partial se-
quence information is present.

Genetic information is one of the several tools that fa-
cilitate the management of populations and support ef-
forts to conserve threatened species (Moran 2002;
Edwards et al. 2011). The newly developed SSR markers
generated here for B. papyrifera can be applied for char-
acterizing the genetic diversity, population structure and
processes within populations, such as pollen and seed
dispersal distances, information which may assist in iden-
tifying conservation units for the species. A study of the
population differentiation of B. papyrifera across Ethiopia
using a subset of these SSR markers is ongoing (Addisalem
et al., in prep.). The cross-amplification and polymorph-
ism of the SSR markers in the other two Boswellia species,
B. pirrotae and B. popoviana, indicate their potential use
for genetic studies of these species and possibly also in
other Boswellia species. Boswellia popoviana is declining
and vulnerable in Yemen.

The sequence data generated form the start of a valu-
able genomic resource for various applications, including
estimating the past and present demographic parameters,
phylogenetics and phylogeography. With regard to ‘con-
servation genomics’, McMahon et al. (2014) suggested
that genomic sequences are particularly suited to study
local adaptation. For most of these applications, genomic
sequences need to be generated from several individuals
from different populations. This would complement genet-
ic differentiation studies with neutral molecular markers
such as SSRs. An exception is the estimation of the the
effective population size from SNP density data based on
the differences between the alleles at many loci of the
heterozygous tree (e.g. Halley et al. 2014).

Conclusions
Based on Illumina paired-end sequences, we have devel-
oped a set of polymorphic SSR markers for B. papyrifera

and two sister species, which will be useful for studying
genetic diversity within and differentiation between Bos-
wellia populations. We also generated the first genomic
resource in Boswellia.

Accession Numbers
Accession number in ENA/GenBank for the set of DNA
sequences on which the SSR markers were developed:
ERS403283.
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