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Abstract The tolerance to shear stress of Tetraselmis suecica,
Isochrysis galbana, Skeletonema costatum, and Chaetoceros
muelleri was determined in shear cylinders. The shear toler-
ance of the microalgae species strongly depends on the strain.
I. galbana, S. costatum, and C. muelleri exposed to shear
stress between 1.2 and 5.4 Pa resulted in severe cell damage.
T. suecica is not sensitive to stresses up to 80 Pa. The possi-
bility to grow these algae in a tubular photobioreactor (PBR)
using a centrifugal pump for recirculation of the algae suspen-
sion was studied. The shear stresses imposed on the algae in
the circulation tubes and at the pressure side of the pump were
0.57 and 1.82 Pa, respectively. The shear stress tolerant
T. suecica was successfully cultivated in the PBR. Growth
of I. galbana, S. costatum, and C. muelleri in the tubular
PBRwas not observed, not even at the lowest pumping speed.
For the latter shear sensitive strains, the encountered shear

stress levels were in the order of magnitude of the determined
maximum shear tolerance of the algae. An equation was used
to simulate the effect of possible damage of microalgae caused
by passages through local high shear zones in centrifugal
pumps on the total algae culture in the PBR. This simulation
shows that a culture of shear stress sensitive species is bound
to collapse after only limited number of passages, confirming
the importance of considering shear stress as a process param-
eter in future design of closed PBRs for microalgal cultivation.

Keywords Shear stress . Sensitivity .Microalgae .

Recirculation pump . Tubular photobioreactor

Introduction

Skeletonema, Chaetoceros, Phaeodactylum, Isochrysis,
Pavlova, and Tetraselmis are frequently used microalgae in
feed applications for shellfish in hatcheries (Muller-Feuga
2013). These species would be candidates for large scale pro-
duction given the increasing demand for microalgal feed of
constant and high quality for aquaculture. An increased level
of microalgae (components) in fish feed is interesting for the
development of fish feed with reduced environmental impact
(Draganovic et al. 2013).

For controlled large-scale cultivation of microalgae, closed
photobioreactors (PBRs) are often advocated (Borowitzka
1999; Acién et al. 2012). Closed PBRs were combine with low
contamination risk and almost no CO2 losses leading to a high
productivity. Furthermore, the cultivation can be fully automated
and culture conditions can be highly controlled (Pulz 2001).
However, hydrodynamic forces evoked by turbulent mixing in
closed PBRs may limit the application of these closed systems.
These forces must not exceed the level that would lead to detri-
mental effects (Chisti 2010; Tredici 2010), suggesting the
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importance of limiting the shear stress in such PBR systems to
levels that can be tolerated by the microalgae. This is especially
important when considering the fact that digestibility of
microalgael species is positively related to the fragility of the cells
(Gladue and Maxey 1994) and therefore to the way many
microalgal species used in aquaculture can be cultivated.

Table 1 summarizes the culture systems being employed for
the cultivation of the most frequently used microalgal species for
aquaculture. All these species can successfully be grown in bub-
ble columns, bags, and carboys; systems that use aeration for
mixing. Other types of PBRs, like horizontal tubular PBRs with
a shorter light path to produce microalgae at a higher density, are
used by aquaculture facilities more often lately (Zmora et al.
2013). Mixing in these systems is induced through recirculation
of the microalgal culture in the tubular PBR using pumps, of
which centrifugal pumps and airlift pumps are the most common
ones (Alías et al. 2004; Molina et al. 2001). Centrifugal pumps
are efficient in gas–liquid mass transfer (Fadavi and Chisti 2005)
and energy use (Norsker et al. 2011). However, microalgal pro-
ductivity can be influenced negatively by using centrifugal
pumps, due to cell damage occurring inside the pump
(Carvalho et al. 2006). This could be an explanation for the very
few records of microalgae species used in aquaculture, which
have been successfully cultivated in tubular PBRs with centrifu-
gal pumps (Table 1). It is still not clear if shear stress sensitivity of
certainmicroalgal species enables successful cultivation in closed
PBRs. Although shear stress sensitive species are being cultivat-
ed in tubular PBRs with airlift pumps, shear stress levels occur-
ring in the tubes of PBRs could already be too high resulting in
loss of productivity. Therefore, there is a need to study the rela-
tionship between shear stress sensitivity of microalgal strains and
shear stress levels encountered in closed PBRs.

The aim of the study is to determine the tolerance to shear
stress of four different microalgal species. Shear cylinders
were used to quantify the threshold values of shear stress for
the different microalgal species. These microalgae species
were all tested in a tubular PBR with a variable-frequency-
drive centrifugal pump to determine the capability of growth.
Growth or lack of growth of microalgae will be related to
estimated shear stress levels inside the reactor and shear tol-
erance levels determined for all four species.

Material and methods

Organisms and medium

Tetraselmis suecica, Isochrysis galbana, and Skeletonema
costatum were obtained from Seasalter Shellfish (Whitsable)
Ltd. (Kent, UK), andChaetoceros muelleri (CCMP 1316) was
provided by NIOZ (Royal Netherlands Institute for Sea
Research). Walne medium modified from Laing (1991) was
used for the cultivation of the microalgal species. The

modified Walne medium consists of solution A (macro- and
micronutrients), C (vitamins), and D (silicate, which is only
needed for diatoms). Solution A contains 0.8 g FeCl3, 0.4 g
MnCl2·4H2O, 33.6 g H3BO3, 45.0 g EDTA, 20.0 g NaH2PO4·
2H2O, 100.0 g NaNO3, 21 mg ZnCl2, 20 mg CoCl2·6H2O,
9.0 mg (NH4)6Mo7O24·4H2O, and 20 mg CuSO4·5H2O in 1 L
of distilled water, with the pH adjusted to 4.0 with concentrat-
ed HCl. Solution C consists of 1.0 g vitamin B1 and 0.05 g
vitamin B12 in 1 L of distilled water. Solution D contains
40.0 g Na2SiO3·5H2O in 1 L of distilled water. Medium for
maintaining the cultures in Erlenmeyer flasks was made by
adding 1 mL solution A, 0.1 mL solution C, and 2mL solution
D per liter of filtered and deironized saline groundwater
(30 g L−1). A double dose of solutions A, C, and D was
supplied to the culture in the tubular photobioreactor during
turbidostat operation to avoid nutrient depletion. Solution D
was only added for the cultivation of the diatoms S. costatum
and C. muelleri.

Generation of shear stress levels tolerance

Batch cultures of T. suecica, I. galbana, and S. costatum from
3-L Erlenmeyer flasks containing 2 L medium after 1 week of
growth at 20 °C under white fluorescent light (150 μmol pho-
tons m−2 s−1; PAR) were used for shear stress experiments.
The three microalgal strains were exposed to different shear
stress levels in shear cylinders as Couette devices (Van
Riemsdijk et al. 2010). Shear stress exposed to the microalgae
can be determined with:

τ ¼ γ̇⋅η

where τ is the shear stress (Pa),γ̇ is the shear rate (s−1), and η is
the apparent viscosity (Pa s). Shear stress levels can be varied
by increasing the shear rate or by increasing the apparent
viscosity of the medium. The shear rate applied in the shear
cylinders is related to the rotational speed with a conversion
factor of rotational speed (rpm) to shear rate (s−1) of 2.157
(Michels et al. 2010). Locust bean gum (LBG), which does
not affect the viability directly (Michels et al. 2010), was used
as a thickener to increase the apparent viscosity.

S. costatum and I. galbana with 0.3 % LBG in the medium
were exposed to different shear rates of 0, 8.6, 43, 216, and
1079 s−1. T. suecica also was exposed to the same shear rates,
but with two LBG concentrations: 0.5 and 0.75 % LBG, to
obtain higher viscosity. All exposures were done in triplicate
at 4 °C with an exposure time of 1 h. Since LBG solutions can
be described as non-Newtonian fluids, the apparent viscosity
was measured at the different shear rates in order to calculate
the applied shear stress levels. The shear stress levels applied
in the shear cylinders were determined with a rheometer (type
Physica MCR 301, Anton Paar) at 4 °C according to the
method described in Michels et al. (2010). The power-law
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functions that describe the relation between shear rate and
shear stress in 0.3, 0.5, and 0.75 % LBG are τ ¼ 0:034γ̇0:943

with R2=0.9998, τ ¼ 0:227γ̇0:763 with R2=0.993 and τ ¼ 1:

175γ̇0:618 with R2=0.987, respectively. These functions were
used to calculate the shear stress levels applied at different
rotational speed levels and LBG concentrations. Table 2 pre-
sents the calculated shear stress levels related to rotational
speed, shear rate, and LBG concentration.

Measurement of effect of shear stress on viability

The effect of applying shear stress on the viability of
T. suecica, S. costatum, and I. galbanawas measured by using
fluorescein diacetate (FDA). Viable cells contain esterases that
convert FDA into fluorescein and diacetate. Viable cells show
fluorescence caused by fluorescein (Altman et al. 1993;
Rotman and Papermaster 1966). After exposure in the shear
cylinders, 1 mL of algae was incubated with 10 μL FDA

solution (11 mM) for 20 min. The total cell concentration
and viable cell concentration were determined with a hemo-
cytometer (DHC-B02-5 Büker Türk) using a fluorescence mi-
croscope. The viability of the sheared algae was calculated as
the percentage of fluorescing algae and compared to the shear
stress tolerance of C. muelleri (Michels et al. 2010).

Table 2 Shear stress applied in relation with rotational speed, shear
rate, and LBG concentration

Rotational
speed
(rpm)

Shear
rate
(s−1)

Shear stress
0.3 % LBG
(Pa)

Shear stress
0.5 % LBG
(Pa)

Shear stress
0.75 % LBG
(Pa)

0 0 0 0 0

4 8.6 0.26 1.2 4.5

20 43 1.2 4.0 12

100 216 5.4 14 33

500 1079 25 47 88

Table 1 Most frequently used microalgal species as feed for larvae of mollusks, shrimp, and live prey for fish larvae and their culture systems

Class Species Culture system Mixing References

Bacillariophyceae Skeletonema costatum Raceway Air Hussenot et al. (1998)

Polyethylene bags Air Pronker et al. (2015)

Airlift PBR, bubble column Airlift, air Monkonsit et al. (2011)

Chaetoceros muelleri,
Chaetoceros gracilis,
Chaetoceros calcitrans

Polycarbonate carboys Air Camus and Zeng (2012)

Polyethylene bags Air Kaspar et al. (2014); Pronker
et al. (2015)

Bubble column Air Lee et al. (2011)

Airlift PBR, bubble column Airlift, air Krichnavaruk et al. (2005)

Phaeodactylum tricornutum Polyethylene bags Air Pronker et al. (2015)

Bubble column Air Lee et al. (2011)

Tubular PBR Airlift Acién Fernández et al. (2000)

Tubular PBR Centrifugal pump Silva Benavides et al. (2013)

Prymnesiophyceae Isochrysis galbana Polycarbonate carboys Air Camus and Zeng (2012)

Polyethylene bags Air Dunstan et al. (1993); Kaspar et al.
(2014); Pronker et al. (2015)

Bubble column Air Lee et al. (2011)

Airlift PBR Airlift Loubière et al. (2009)

Tubular PBR Airlift Molina Grima et al. (1994); Van Bergeijk
et al. (2010)

Tubular PBR Centrifugal pump Van Bergeijk et al. (2010)

Pavlova lutheri,
Pavlova salina

Polycarbonate carboys Air Camus and Zeng (2012)

Polyethylene bags Air Dunstan et al. (1993); Pronker et al. (2015)

Prasinophyceae Tetraselmis suecica,
Tetraselmis chuii

Polycarbonate carboys Air Camus and Zeng (2012)

Polyethylene bags Air Moheimani (2013); Pronker et al. (2015)

Bubble column Air Lee et al. (2011)

Annular column Air Chini Zittelli et al. (2006)

Green wall panel reactor Air Bondioli et al. (2012)

Tubular PBR Centrifugal pump Michels et al. (2014)
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Because S. costatum can form chains up to 8–10 cells per
chain, the effect of shear stress on the distribution in the number
of cells per chain was also measured. The number of cells per
chain was counted for at least 50 chains per sample. TheMann–
WhitneyU test was done to determine any statistical differences
in cells per chain distribution per applied shear stress.

Growth of microalgae in a tubular photobioreactor

Growth tests with T. suecica, I. galbana, S. costatum, and
C. muelleri were carried out in a tubular PBR with a total
volume of 40 L. The tubular PBR consists of 20-m-long loop
connected to a degasser. The loop is made of Plexiglas tubes
with an external diameter of 50 mm and an internal diameter
43.6 mm. This culture system is equipped with a variable-
frequency-drive centrifugal pump (SealPro KR-32-95,
ARBO) with an impeller diameter of 95 mm and a pressure
side diameter of 32 mm, to circulate the microalgal culture.
The location and main operating mode of the tubular PBR are
described in Michels et al. (2014).

The four microalgal species were separately used for inoc-
ulation of the tubular PBR with a minimal starting cell con-
centration of 200,000 cells mL−1. Temperature was controlled
at 20±0.5 °C. The pH ismeasured at the end of the tube before
the degasser and controlled at pH 8.40 via CO2 supply. The
initial pumping speed at which the microalgae were
recirculated was 0.37 m s−1, with a rotational speed of the
impeller of 10 s−1.

The increase in cell concentration was followed by taking
daily samples for 7 days. The run in the PBR was terminated
when the cell concentration of an algae species did not in-
crease during this period. The PBR was cleaned thoroughly
and inoculated with the same species for a second time. The
daily samples were inspected with a microscope to check the
shape of the microalgae cells, the motility of the flagellates
and potential bacterial occurrence.

The runs in which the algae concentration increased during
the first 7 days were further used to study the effect of
pumping speed on the net volumetric productivity at
turbidostat conditions, with the biomass concentration set at
about 0.5 g L−1. The pumping speed of the recirculation pump
was 2.0, 2.4, 2.8, 3.2, and 3.6 m3 h−1, respectively. Those trials
were done for a period of 14 days.

Calculation of shear stress levels in the tubular
photobioreactor

The corresponding flow velocities and Reynolds numbers
in the tubes and at the pressure side of the pump were
calculated, with a known culture density of 1024 kg m−3

and an apparent viscosity of 1.8·10−3 Pa s (Michels et al.
2010). Those conditions were used to estimate the average
shear stress levels in the tubes. The Blasius equation was

used to calculate the shear stress at the wall of the tube
where flow will be laminar (Durst et al. 1996). The equa-
tion is:

τ ¼ C f
1

2
ρu2

with Cf=0.0791Re
‐1/4

where τ is the average shear stress (Pa), Cf is the
Fanning friction factor (dimensionless), ρ is the density
(kg m−3), ū is the average flow velocity (m s−1), and Re
is the Reynolds number. The Reynolds number is
expressed by:

Re¼ρ⋅u⋅D
η

where D is the internal diameter (m).
The shear stress in the centrifugal pump depends on the

apparent viscosity, rotational speed of the impeller, and
the Reynolds number. The local shear stress adjacent to
the rotating impeller of the centrifugal pump can be esti-
mated with:

τ ¼ 6:30ηNRe0:5L

where N is the rotational speed of the impeller and the
local Reynolds number at the local diameter is defined
as:

ReL ¼ Nd2Lρ
η

where dL is the local diameter of the impeller (Chisti 2010;
Wichterle et al. 1996).

Determination of the net volumetric productivity

The net volumetric productivity (PV, g L−1 day−1) was
determined as the product of the net-specific growth rate
(μ, d−1) and the biomass concentration (CX, g L−1). At
turbidostat conditions, the net-specific growth rate is
equal to the dilution rate (D, d−1), defined as the daily
harvest volume divided by the volume of the PBR
(Michels et al. 2014).

The daily photon fluxes were derived from the measured
photosynthetically active radiation (PAR) as an average daily
incident photon flux density (PFD, mol photons m−2 day−1)
(Michels et al. 2014). The PFD was measured with a LiCor
LI190 PAR sensor.

The average daily photon flux density during culture
ranged from 0.69 to 13.3 mol photons m−2 day−1.
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Results and discussion

Shear stress tolerance

Figure 1 shows the effect of shear stress on the viability of
T. suecica, I. galbana, S. costatum, and C. muelleri. An ad-
verse effect was found for I. galbana, where viability de-
creased suddenly to 74.9 % evoked by a shear stress level of
5.4 Pa. The viability of I. galbanawas not reduced any further
when the shear stress increased to 25 Pa. I. galbana is a flag-
ellate and a member of the non-calcified coccolithophytes
with only a plasma membrane covering, which makes the
naked cell fragile (Graham et al. 2009b; Zhu and Lee 1997).

The effect of shear stress on S. costatumwas a bit different.
The viability of S. costatum decreased further from 80.5 to
73.4 %, when the shear stress increased from 5.4 to 25 Pa.
This observation can be ascribed to a change in morphology
of S. costatum due to the increased shear stress. Since this
diatom forms chains, breakages of the chains were expected
at higher shear stress levels (Sauriau and Baud 1994). The
effect of shear stress on the distribution of cells per chain is
shown in Fig. 2. The distribution of cells per chain of unex-
posed S. costatum and cells exposed to shear stress of 0.26 Pa
did not differ, while significant differences in distribution of
cells per chain were found between all the exposed shear stress
levels. Shear stress levels higher than 0.26 Pa caused a signif-
icant reduction in the average chain length with a progressive
increase of chains with 1–3 cells. The average chain length
reduced linearly on a semi-logarithmic scale from 3.46±0.18
to 2.49±0.04 cells per chain with corresponding shear stresses

of 0.26 and 25 Pa. Although a shear stress of 1.2 Pa already
caused a reduction of the average number of cells per chain,
the viability did not decrease significantly (Fig. 1). Shear
stress probably has first an impact on the intercellular junc-
tions causing chain breakage, which is then followed by other
cell structures like the siliceous frustules being damaged caus-
ing mortality (Sauriau and Baud 1994).

Data of C. muelleri were used as reference and were ob-
tained fromMichels et al. (2010). C. muelleri was found to be
shear stress sensitive with a threshold value of shear stress
between 1 and 1.3 Pa. Higher shear stress levels caused a
decrease in viability with a certain fraction of the cells being
sensitive to shear stress (Michels et al. 2010).

T. suecica exposed to shear stress levels up to 88 Pa did not
show any adverse effects on the viability (Fig. 1). The toler-
ance to high shear stress of T. suecica is probably caused by
the rigid cell wall composed of layers of scales attached to the
cell membrane (Graham et al. 2009a).

For the algae species that were susceptible to shear
stress, the viability was decreased with 20 to 40 %. The
fact that not all cells were inactivated could be explained
by the fact that cells are not equally susceptible to shear
damage during the full growing cycle. It has been report-
ed that microalgae are more vulnerable to shear stress
during cell division (García Camacho et al. 2007;
Stoecker et al. 2006). This will cause a loss of viability
of only a certain percentage of the shear stress sensitive
species I. galbana, S. costatum, and C. muelleri (Fig. 1).
A plausible explanation why the flagellate T. suecica is
not shear stress sensitive during cell division, is that the

Fig. 1 Effect of shear stress on Tetraselmis suecica (Ts), Isochrysis galbana (Ig), Skeletonema costatum (Sc), andChaetoceros muelleri (Cm). Data from
effect of shear stress on Chaetoceros muelleri were obtained from Michels et al. (2010)
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flagella are shed during the division prior to mitosis, and
cytokinesis takes place within the rigid parental wall
(Graham et al. 2009a).

Growth tests with shear stress sensitive and tolerant
microalgal species

T. suecica, I. galbana, S. costatum, and C. muelleri were all
tested for their capability to grow in a tubular PBR in which
the culture is recirculated using a centrifugal pump. T. suecica
was the only species tested that grew well in the tubular PBR.
The net volumetric productivity of T. suecica cultivated at
different pumping speeds is shown in Fig. 3. The biomass
concentration was kept constant at 0.52±0.05 g L−1 applying
turbidostat conditions. The net volumetric productivity

linearly increased with the daily photon flux received.
During the entire experiment, the microalgae were exposed
to relatively low light intensity. At these low light intensities,
no light saturation or light inhibition occurs. A linear increase
of productivity with light input is therefore to be expected
(Geel et al. 1997).

No differences in net volumetric productivity of T. suecica
receiving similar light were found between the cultivation
periods at different pumping speeds. Higher pumping speed
evokes increased shear stress and could affect the net produc-
tivity negatively by its potential detrimental effects on the
microalgae. On the other hand, it can also have a positive
effect on the net volumetric productivity due to a better mass
and gas transfer and shorter light/dark cycles that are produced
whenmixing is increased (Contreras et al. 1998; Leupold et al.
2013; Vejrazka et al. 2012). Neither negative nor positive
effects of pumping speed on the productivity of T. suecica,
however, were found during this study.

The average net volumetric productivities with correspond-
ing average daily photon flux densities for the five runs with a
different pumping speed are given in Table 3. During the
experimental period at limiting light conditions during the fall,
the maximum net volumetric productivity of the microalgae
receiving a daily photon flux density of 11.8 mol photons
m−2 day−1 was 0.34 g L−1 day−1, while daily light inputs lower

Fig. 2 Effect of shear stress on the distribution of cells per chain of
Skeletonema costatum

Fig. 3 Net volumetric productivity of Tetraselmis suecica versus the
daily photon flux density at different pumping speeds

Table 3 Average net volumetric productivity and average daily photon
flux density at different runs

Pumping speed
(m3 h−1)

Net volumetric
productivity (g L−1 day−1)

Daily photon flux density
(mol m−2 day−1)

2.0 0.25±0.06 8.76±2.17

2.4 0.09±0.05 3.02±1.58

2.8 0.20±0.09 7.14±3.35

3.2 0.07±0.05 2.94±2.23

3.6 0.17±0.08 6.66±3.56
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than 1 mol photons m−2 day−1 resulted in a zero or close to
zero productivity (Fig. 3). The daily photon flux density of
1 mol photons m−2 day−1 was obviously the compensation
point of photosynthesis, at which the rate of photosynthesis
equals the respiration rate. The compensation point of photo-
synthesis of T. suecica was similar to the value of
Chlamydomonas reinhardtii (Takache et al. 2010).

Biofouling at high pumping speed

Although the highest pumping speed did not lead to a lower
net volumetric productivity, the culture of T. suecica was af-
fected negatively. Biofouling started to occur in the tubes
1 day after the pumping speed was set at 3.6 m3 h−1, at which
the average shear stress in the tubes and at the pressure side of
the pump were 1.60 and 5.10 Pa, respectively (Table 4). Due
to the presence of most of the biofouling at the bottom of the
tubes, the cells were still able to receive light, which did not
result in a lower net volumetric productivity. Biofouling in the
tubes increased enormously during the 2 weeks T. suecicawas
cultivated at this high pumping speed. Therefore, T. suecica
should be cultured at lower pumping speeds to ensure cells
will not be damaged. An additional benefit of applying a low-
er pumping speed is the lower energy costs.

Growth of recirculated I. galbana, S. costatum, and
C. muelleri in the tubular PBR was not observed, not even
at the lowest pumping speed of 2.0 m3 h−1. The cell concen-
tration of these three microalgae species did not increase dur-
ing the 7 days tested. General observations in chronological
order were a decrease of cell concentration within 1 or 2 days,
an increase of number of bacteria, followed by foam formation
and finally biofouling. In the case of I. galbana, the remaining
viable cells did not lose their motility and no alteration of the
shape could be observed. Regarding S. costatum, longer
chains disappeared after 1 day with more short chains and
single cells as a result. Broken and disintegrated cells of
S. costatum were seen after a few days. The shape of the
remaining cells of C. muelleri did not change immediately,
but after only a few days the cells became spherical and lost
their spines. Shear stress most likely caused the incapability of

I. galbana, S. costatum, and C. muelleri to grow in the tubular
PBR.

Relative high shear-stress levels encountered
in the photobioreactor

Lack of growth of these microalgae strains could be correlated
to the shear stress sensitivity of the cells investigated.
Unfortunately, exact shear stress values are difficult to predict
in turbulent flow, but the stress at the wall can be calculated
easily, due to the fact that flow is laminar at the wall. The shear
stress at the wall is 0.57 Pa at a pumping speed of 2.0 m3 h−1.
A similar calculation leads to a wall shear stress of 1.82 Pa in
the pressure side of the pump (Table 4). It can be expected that
even higher shear stress values can occur in other parts of the
reactor. For example, maximum shear stress levels of about
2 Pa were reported in bends of tubes with similar diameters
(5 cm) and at similar velocity (0.35 m s−1) in the tubes based
on computational fluid dynamics (Ramírez-Duque and
Ramos-Lucumi 2011). Even higher shear stress levels will
occur in the cavity of the centrifugal pump, where the shear
forces are not equally distributed. With an impeller of 95 mm
and rotational speed of 10 s−1, the maximum shear stress oc-
curring in the centrifugal pump could be calculated. The max-
imum shear stress at the tip of the impeller in the centrifugal
pump at a pumping speed of 2.0 m3 h−1 is 26 Pa. Comparing
this shear stress level with the shear stress that evokes loss of
viability of the cells (Fig. 1), it is obvious that local shear stress
in the pump must have been detrimental to the shear stress
sensitive microalgae species. However, a large part of the
reactor might still have favorable conditions for cell cultivation.

Simulation of the possible damage caused by high circulation
rates

Unfortunately, the high circulation rate of the culture will in-
evitably lead to the situation that all cells will pass a high shear
zone and most of them will pass the zone several times. This
can be demonstrated by a simple simulation as shown below.
In this simulation, it is assumed that a shear sensitive cell will

Table 4 Flow velocities,
Reynolds numbers, and average
shear stress levels in tubes and at
pressure side of the pump at
different pumping speeds

Tubes Pressure side of pump

Pumping
speed (m3 h−1)

Flow
velocity (m s−1)

Reynolds
number

Average
shear
stress (Pa)

Flow velocity
(m s−1)

Reynolds
number

Average s
hear stress (Pa)

2.0 0.37 9.2·103 0.57 0.69 1.3·104 1.82

2.4 0.45 1.1·104 0.79 0.83 1.5·104 2.51

2.8 0.52 1.3·104 1.03 0.97 1.8·104 3.29

3.2 0.60 1.5·104 1.30 1.11 2.0·104 4.15

3.6 0.67 1.7·104 1.60 1.24 2.3·104 5.10
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be damaged if the cell enters a high shear stress zone inside a
certain part of the reactor (e.g., in the cavities of the circulation
pump), where the shear stress level is beyond the threshold of
the algae. Computational fluid dynamics (CFD) analyses on
shear stress in centrifugal pumps show that the probability of
cells entering regions inside the pump with shear stress levels
that damage the cells depends on the residence time of the
cells inside the pump, the rotational speed of the impeller,
and the shape of the impeller (Song et al. 2003; Takiura
et al. 1998; Zhou et al. 2003). The magnitude of the damage
is therefore related to the proportion of the cells, φ, that pass
this high shear stress zone per passage and the amount of
passages (n) over time:

N r

N0
¼ 1−φð Þn

where Nr is the cell concentration of the sensitive algae re-
maining viable and N0 is the cell concentration of sensitive
algae before exposure. Figure 4 shows the percentage of intact
cells remaining over time assuming that 1, 5, or 10 % of the
cells are being damaged per passage.

The number of passages through the pump depends on the
length of the tubular PBR and the flow velocity. At a pumping
speed of 2 m3 h−1, the culture is recirculated 50 times per hour
in the PBR. This means that the number of passes per day is
about 1200. Even when only 1 % of the cells pass a high shear
zone, it is clear that all sensitive cells would be inactivated
within 1 day. However, not all cells might be shear stress
sensitive. Most likely, the cells which are in the dividing stage
are especially vulnerable to shear stress. Assuming that at a
given time about 30 % of the microalgal cells are in the divid-
ing stage (Coats and Heinbokel 1982) and that the generation
time is about 1 day, the time that a cell is vulnerable to shear
stress is about 7.2 h per day. In those 7.2 h, the number of
passages is 360, which leads to an inactivation of 97 % of the
sensitive cells. Only 3%will remain for further growth, which

is clearly too low to maintain or even increase the number of
microalgae cells. This means that in the tubular PBR, almost
all cells are expected to be inactivated within one or a few
days, which is in line with the experimental observations.

Design of closed photobioreactor systems for shear sensitive
microalgae

Theoretically, two possible routes are possible to avoid cell
damage due to shear stress. The first one is reducing or
avoiding high shear stress zones in the reactor. This option,
however, might be quite difficult to achieve. Lowering the
flow rate too much will lead to other problems, because high
turbulence is needed for keeping the microalgae suspended
and the use of light and nutrients is enhanced by turbulent
mixing (Richmond 2013). Another option is to reduce the
number of passages. Many commercial tubular PBRs consist
of longer tubes with a length of 100 m (Pulz et al. 2013) and
with flow velocities applied in PBRs between 0.3 and
0.5 m s−1 (Norsker et al. 2011). This reduces the number of
passages of the shear stress sensitive cells, which are in the
dividing stage, to about 90 per day. In the case of 1 % of the
cells being affected per pump passage in a commercial PBR,
60 % of the sensitive cells would still be damaged. It is obvi-
ous that more cells will be damaged, if a higher percentage of
the cells is affected per passage through the pump (Fig. 4).
Considering that the time needed for cell proliferation is about
1 day, the time is too short to overcome the damage done by
high shear stress, even if the high shear stress region is small.

The tolerance to shear stress of various strains seems to be
selective to the choice of recirculation pumps. Microalgae
with rigid cell walls are shear stress tolerant, while species
lacking a cell wall, coccolithophores with calcium carbonate
containing coccospheres and diatoms with fragile siliceous
frustules are sensitive to shear stress (Leupold et al. 2013;
Moheimani et al . 2011; Vandanjon et al . 1999) .
Phaeodactylum tricornutum is an exception among the dia-
toms. Its cell wall structure does not contain siliceous valves
but rather the cells hace a more rigid polysaccharide cell wall
(Borowitzka and Volcani 1978; Tesson et al. 2009). It there-
fore can be successfully cultivated in tubular PBRs with cen-
trifugal pumps, although some reduction of productivity has
been reported at higher flow rates causing high shear zones in
the reactor (Alías et al. 2004; Silva Benavides et al. 2013).

The fact that I. galbana, S. costatum, and a species of the
genusChaetoceroswere reported to be successfully cultivated
in tubular PBRs recirculated with airlift pumps (Molina Grima
et al. 1994; Krichnavaruk et al. 2005; Loubière et al. 2009;
Monkonsit et al. 2011; Van Bergeijk et al. 2010) suggests that
hydrodynamic forces exerted in the tubes of PBRs were prob-
ably not high enough to negatively affect the growth. Airlift
pumps, which are causing lower shear stress than centrifugal
pumps (Carvalho et al. 2006), seem to be the best option for

Fig 4 Percentage of remaining cells as an effect of passages through a
pump and proportion of cells being damaged per passage
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the recirculation of shear stress sensitive microalgae.
Peristaltic pumps, eccentric rotor pumps, and diaphragm
pumps may be interesting alternatives as well. These pumps
have been shown to bemore gentle than centrifugal or positive
displacement rotary vane pumps (Jaouen et al. 1999).
However, further research on the actual shear stress levels
occurring in these pumps is recommended in order to find
whether shear stress levels are sufficiently low to allow suc-
cessful algae cultivation in PBRs.

Conclusion

Four different microalgae species used as feed for shellfish in
hatcheries were tested for their shear stress sensitivity.
T. suecica was found to be the only shear stress tolerant spe-
cies tested, which viability was not negatively affected by a
maximum applied shear stress level of 88 Pa. T. suecica was
also successfully grown in a tubular PBR driven by a centrif-
ugal pump. I. galbana, S. costatum, and C. muelleri were not
able to grow in the tubular PBR recirculated by a centrifugal
pump at its lowest speed. Shear stress levels between 1.2 and
5.4 Pa caused a reduction in viability of the shear stress sen-
sitive species I. galbana, S. costatum, andC. muelleri. In order
to increase the feasibility of the production of microalgae for
aquaculture in fully-automated PBRs, high shear stress zones
in the reactor (including the pump) should be avoided when
designing a culture system for shear stress sensitive microalgal
species.
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