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Abstract

Background

In intensive pig husbandry systems, antibiotics are frequently administrated during early life

stages to prevent respiratory and gastro-intestinal tract infections, often in combination with

stressful handlings. The immediate effects of these treatments on microbial colonization

and immune development have been described recently. Here we studied whether the

early life administration of antibiotics has long-lasting effects on the pig’s intestinal microbial

community and on gut functionality.

Methodology/Principal Findings

To investigate the long-lasting effect of early-life treatment, piglets were divided into three

different groups receiving the following treatments: 1) no antibiotics and no stress, 2) antibi-

otics and no stress, and 3) antibiotics and stress. All treatments were applied at day four

after birth. Sampling of jejunal content for community scale microbiota analysis, and jejunal

and ileal tissue for genome-wide transcription profiling, was performed at day 55 (~8 weeks)

and day 176 (~25 weeks) after birth. Antibiotic treatment in combination with or without ex-

posure to stress was found to have long-lasting effects on host intestinal gene expression

involved in a multitude of processes, including immune related processes.

Conclusions/Significance

The results obtained in this study indicate that early life (day 4 after birth) perturbations have

long-lasting effects on the gut system, both in gene expression (day 55) as well as on micro-

biota composition (day 176). At day 55 high variance was observed in the microbiota data,

but no significant differences between treatment groups, which is most probably due to the

newly acquired microbiota during and right after weaning (day 28). Based on the observed
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difference in gene expression at day 55, it is hypothesized that due to the difference in im-

mune programming during early life, the systems respond differently to the post-weaning

newly acquired microbiota. As a consequence, the gut systems of the treatment groups de-

velop into different homeostasis.

Introduction
The efficient uptake of nutrients and maintenance of immune homeostasis are major prerequi-
sites for a healthy pig gut. Both characteristics are influenced by so far unknown host genetic
factors, components in the animal feed, and the composition and diversity of the microbiota
residing in the lumen as well as associated with the mucosal surfaces of the gut. During life,
pigs eat animal feeds that differ significantly in composition. Milk, for example, is an important
feed constituent during early life, whereas dietary fibres become important at older age. It is
known that such dietary changes greatly affect the composition and diversity of the microbiota
in the gut [1,2]. Although different feeds display different effects, usually in the period between
weaning and slaughter pigs get one feed at the farm.

Immediately after birth, the gut of piglets is colonized by microbiota derived from the sow
and the environment. From studies in model organisms (rodents), but also in pigs, it has be-
come clear that this primary colonization is important for the right development and program-
ming of the animal’s local and systemic immune system [3,4]. Since at this stage the necessary
regulatory and epigenetic processes underlying gut immune homeostasis have probably not
been fully programmed yet, the composition and diversity of the colonizing microbiota is high-
ly susceptible to environmental variations [5–9]. Experimentally induced changes in early life
environmental factors have been associated with variations in the microbial composition at
later ages [10], with variations in immune characteristics [11], and with differences in the sus-
ceptibility to immunological disorders [12–15].

In modern pig husbandry systems, piglets experience a variety of environmental factors that
change in time and/or intensity, for example during periods of weaning, transport, and mixing
of the animals, by changes in temperature, feedstuffs, the use of medicines (antibiotics, vac-
cines), and by the exposure to (pathogenic) micro-organisms. The short-term and long-term
effects of such environmental changes on physiologic and immunologic parameters have main-
ly been studied in several-weeks-old piglets. Some publications have reported on the short-
term effects of experimentally induced environmental variations during the early life stages of
piglets [6]. In a previous paper we reported on the short-term effects of an antibiotic and stress
treatment at 4 days after birth as experienced by piglets under normal intensive husbandry
conditions [16]. So far, not much is known about the long-term effects of early life environ-
mental factors as experienced by piglets under normal intensive husbandry conditions. To this
end it should be noted that one recent study looked at short and long-term effects of amoxicillin
treatment of sows, focusing on the microbial and physiological characteristics of piglets [17].

The objective of this study was to investigate the effects of the exposure of piglets to an anti-
biotic, alone or in combination with stressful management practices at day four after birth.
Such treatments belong to common practices in intensive pig farming systems. The specific ob-
jective was to identify and characterize changes in the composition and diversity of the micro-
biota in the lumen of the gut and the concomitant (immunological) effects in intestinal tissue
at 51 and 172 days after the environmental intervention. To this end, we used community-
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scale analysis of gut lumen microbiota and genome-wide transcriptome profiling of intestinal
tissue.

Material and Methods

Design
This study forms part of a larger study, the first part of which has been described previously [16].
In short, piglets of 16 sows (TOPIGS20 (GY x NL)) were divided into three treatment groups
(T1, T2, and T3). Each litter of each individual sow contained four T1, four T2, and four T3 pig-
lets (Fig. 1). Pools were made both for microbiota and host gene expression analyses. Pools con-
sisted of four piglets of different litters, and in total four pools were made for each time point and
each treatment. For microbiota and gene expression analyses pools consisted of the same piglets.
Littermates stayed with their sow before weaning independent of treatment, and after weaning
they were mixed independent of treatment. Treatment T1 consisted of no disturbance and piglets
were only handled at the time of drawing blood at day 8, 55, and 176. Piglets of treatment group
T2 were injected subcutaneously in the neck with 0,1 ml Tulathromycine (dosage was 2.5 mg/kg
[1mL/40 kg] body weight) at day 4 after birth. Piglets of treatment group T3 were injected with
0,1 ml Tulathromycine at day 4 after birth and received the standard management procedures
(i.e. docking, clipping and weighing) used at that particular farm (VIC Sterksel, The Nether-
lands). After weaning (from day 28) pigs were divided over different pens independent of treat-
ment, i.e. T1, T2, and T3 animals were still together within one pen, each pen contained up to
six piglets. Furthermore these animals were all housed in the same environment (stable/pen).

Fig 1. Schematic representation of the experimental design.

doi:10.1371/journal.pone.0116523.g001
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Animals were sacrificed at day 55 or 176 by injection of 0,5–1 ml Euthasol (20% sodium pento-
barbital; 200 mg/ml) intravenously. Intestinal tissues (jejunum and ileum) were taken and imme-
diately frozen in liquid nitrogen. From the same or adjacent locations luminal contents and
mucosal scrapings were taken, rinsed (with PBS) and frozen in liquid nitrogen as well.

Ethics Statement
This animal experiment was approved by the institutional animal experiment committee “Dier
Experimenten Commissie (DEC) Lelystad” (2011077.b), in accordance with the Dutch regula-
tions on animal experiments.

Microbiota Analysis
Jejunal contents of four piglets within each treatment were pooled and mixed in equal amounts.
Microbiota profiles were only determined for jejunal contents and not ileal contents because
not all piglets had actual ileal content at the time of sampling, and therefore it was not possible
to determine the microbiota. Microbial DNA was extracted from 250 mg of the pooled mixture
using a faecal DNA extraction protocol adapted from Yu and Morrison [18], as previously de-
scribed by Salonen et al. [19]. After extraction of microbial DNA, the microbial composition
was detected by the Pig Intestinal Tract Chip (PITChip) version 2.0, which is a phylogenetic mi-
croarray with 3,299 oligonucleotides based on 16S rRNA gene sequences of 781 porcine intesti-
nal microbial phylotypes, designed according to the same principles previously described for
the Human Intestinal Tract Chip (HITChip)[20] and PITChip version 1.0 [21,22]. The protocol
for hybridization and analysis of the generated data was performed essentially as described be-
fore for the HITChip [20]. Briefly, the bacterial 16S rRNA gene was amplified using the primers
T7prom-Bact-27-for (5´-TGAATTGTAATACGACTCACTATAGGGGTTTGATCCTGGCT-
CAG-3´) and Uni-1492-rev (5´-CGGCTACCTTGTTACGAC-3´) [20,23]. The PCR products
were transcribed into RNA and the purified resultant RNA was coupled with CyDye prior to
fragmentation and hybridization to the array. Microarray images were processed using Agilent’s
Feature Extraction Software version 9.5 (http://www.agilent.com). Data was retrieved from
the MySQL (version 5.1) database as described previously [20] and pre-processed using the
R (Rx64 2.12.2) microbiome package (http://microbiome.github.com/), settings on default.
Multivariate analysis was applied for PITChip data interpretation. In order to relate changes in
total microbial composition to environmental variables, redundancy analysis (RDA) was used
as implemented in the CANOCO 4.5 software package (Biometris, Wageningen, The Nether-
lands) [24]. Treatment classes were introduced as environmental (explanatory) variables. The
relative contribution for 151 genus-level phylogenetic groups targeted by the PITChip were
used as response variables. RDA was performed focusing on inter-sample correlation, and the
Monte Carlo Permutation test was applied [25] to decide whether treatment had statistically
significant influence on the microbial composition. The unrestricted permutation option (since
the experiment had a randomized design) that yields completely random permutations was
employed [26]. Treatment was considered to significantly affect microbial composition with
p-values< 0.05. Triplot diagrams were generated using CanoDraw for Windows. To test the var-
iation of an individual microbial group between treatments we performed a Mann-Whitney-
Wilcoxon signed rank test in R (version 2.14.0) with multiple testing correction (Benjamini
Hochberg). The (raw) data is available upon request by contacting one of the authors.

Microarray Analysis
RNA Extraction Tissue. Total RNA was extracted from 50 to 100 mg tissue of pooled samples
of jejunum and ileum. The jejunum and ileum samples were homogenised using the TisuPrep
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Homogenizer Omni TP TH220P) in TRizol reagent (Life Technologies) as recommended by
the manufacturer with minor modifications. The homogenised tissue samples were dissolved
in 5ml of TRizol reagent. After centrifugation the supernatant was transferred to a fresh tube.
Subsequently a phase separation with chloroform was performed as described by the manufac-
turer. The RNA was precipitated and dissolved and quantified by absorbance measurements at
260 nm.

Pools were made and QC was performed with the Agilent Bioanalyzer.
Labelling, Hybridization, Scanning and Feature Extraction. Labelling, hybridization and

washing was done as recommended by Agilent Technologies using the One-Color Microarray-
Based Gene Expression Analysis Low input Quick Amp Labelling. The input for labelling was
10 ng of total RNA and 600 ng of labelled cRNA was used for hybridization on an 8 pack array.
Hybridization was done in the G2545A hybridization oven (Agilent Technologies) at 65°C
with rotation speed 10 rpm for 17 hours, after which the arrays were washed.

The arrays where scanned using the DNAmicroarray scanner with Surescan high resolution
Technology (Agilent Technologies), with resolution of 5μm, 16 bits and PMT of 100%. Feature
extraction was performed using protocol 10.7.3.1 (v10.7) for one colour gene expression.

Data Loading and Statistical Analysis. The files generated by the feature extraction soft-
ware were loaded in GeneSpring GX 12 (also available in GEO, accession number; GSE53170,
platform; GPL18045). After log2-transformation and quantile normalization, quality control
was performed and 3 samples were removed; ileum ‘T2 day 55 pool 8’, jejunum ‘T2 day 176
pool 7’ and ileum ‘T3 day 176 pool 1’. The remaining 45 samples were analysed by principle
component analysis, which showed clustering of samples of similar treatments and no cluster-
ing of tissue samples.

The next step was filtering on expression levels in which only the (20–100)th percentile was
included and (multiple) probes were mapped to genes if possible. To calculate whether the dif-
ference between treatments was significant a 2-way ANOVA with multiple testing correction
(Benjamini-Hochberg) was performed within GeneSpring, where we compared the following
groups for both jejunum and ileum: T3 vs. T1, T2 vs. T1, and T3 vs. T2. All probes/genes,
which were significant under pcor < 0.05 and Fold Change> |1.5| in one of the six compari-
sons, were taken for further functional and enrichment analyses.

Functional Annotation Clustering. Functional annotation clustering analyses were per-
formed with Database for Annotation, Visualization and Integrated Discovery (DAVID, ver-
sion 6.7 [27,28]). With DAVID Functional Annotation Clustering, enrichment is calculated for
annotation terms of interest across multiple databases and ranked accordingly to their enrich-
ment score (ES). When a term has an ES above 1.3 it suggests that this process/these processes
are dominant within the tissue. For each comparison, i.e. T3 vs. T1, T2 vs. T1, and T3 vs. T2,
analyses were performed with up- and down-regulated genes.

The DAVID tool is using GO-annotation terminology, this GO annotation terminology is
frequently based on the first discoveries of functions of genes. This, however, does not auto-
matically imply that such a gene has the same function in other tissues, although it is likely that
it has similar or related functions in other tissues.

Gene Set Enrichment Analysis (GSEA). GSEA [29,30] was performed separately for ileum
and jejunum. We loaded the normalized intensity values of all annotated genes per treatment
and time-point. The following comparisons were analysed for both day 55 and 176, T3 vs. T1,
T2 vs. T1, and T3 vs. T2. The following settings were different from the default settings, permu-
tations were performed on the gene set, chip platform was set to gene symbol. Six gene set data-
bases (v3.0) were loaded for analysis, namely three Gene Ontology related gene sets, biological
processes, molecular function and cellular component, and three pathway related gene sets,
BioCarta, Reactome and KEGG.

Long-Lasting Effects of Early Treatment in Pigs

PLOS ONE | DOI:10.1371/journal.pone.0116523 February 6, 2015 5 / 18



Results

Microbiota analyses
To evaluate the impact of antibiotic treatment with and without different routinely used stress-
ful management procedures on the composition of intestinal microbiota, the PITChip was
used (S1 File). In 55 day old pigs no differences were found in the microbiota diversity (Shan-
non index based on probe-level profiles), however, in day 176 old pigs, the microbial diversity
of antibiotic treated animals (T2) was significantly lower than for the other treatments
(p<0.05) (Fig. 2). Multivariate redundancy analysis (RDA) of PITChip profiles at the approxi-
mate genus-level showed a high overlap of samples from different treatments on day 55
(Fig. 3A). The RDA diagram for day 176 showed that T2 animals could be distinguished from
the other groups, and Monte Carlo Permutation testing showed T2 significantly contributed to

Fig 2. Diversity in microbiota in the three treatment groups on day 55 and 176. The Shannon index (y-axis) was calculated for all three treatments
(T1, T2, and T3) on both days (55 and 176) (x-axis) based on probe-level data from the PITChip.

doi:10.1371/journal.pone.0116523.g002
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explaining the observed variation in microbiota composition (p = 0.028) (Fig. 3B). In order to
further investigate the changes in microbial groups between the treatments on each time-
points, genus-level phylogenetic groups for which the relative abundance significantly differed
between treatments were identified by univariate analysis, focusing on three separate compari-
sons, namely T2 vs. T1, T3 vs. T1, and T3 vs. T2 on both day 55 and day 176 separately
(Table 1). This analysis revealed that on day 55 only two microbial groups differed significantly
when comparing T3 and T2. At day 176 the relative abundance of multiple microbial groups
was different, but only when comparing T3 or T1 versus T2 (for details see Table 1).

Transcriptomic analyses
To evaluate the impact of antibiotic treatment with and without different routinely used stress-
ful management procedures on the intestinal tissue gene expression, the Agilent microarray
was used. Principal Component Analysis (PCA) was performed to get more insight into the
variability in the data. To this end, only the first and second principal components were taken
into account for both time-point analyses, because they were found to explain the largest part
of the variation in the data. The variance explained by the first two axes was 58.2% for day 55
and 45.8% for day 176. Data clustering occurred for similar treatments (Fig. 4A, red; T1, blue;
T2, and green; T3), with a more clear distinction between the treated groups (T2 and T3) and
the control group (T1). Furthermore, we observed a clear distinction between the two different
tissues, jejunum and ileum, at both day 55 and 176 (Fig. 4B). At day 55 the tissues are separated
by principal component 1 (PC1), and the different treatment groups are separated by principal
component 2 (PC2). In contrast, at day 176, more overlap between treatment groups could be
observed along PC2, due to a large variation within the treatment groups as compared to the
variation between treatment groups, indicating that there are no significant differences in gene
expression between the different treatments.

To investigate the effect of the three treatments on jejunum and ileum tissue gene expres-
sion in more detail, two approaches were performed 1) using a subset of genes that were found
to be significantly differently expressed as based on ANOVA analysis, and 2) using all ‘express-
ed’ genes. An ANOVA analysis was performed on both day 55 and 176. All probes/genes
which were significant under pcor< 0.05 and absolute Fold Change> 1.5 in one of the six com-
parisons were taken for further functional and enrichment analyses (S1 Table). The significant-
ly up- and down-regulated genes, pcor<0.05 and FC>|1.5|, were used as input for functional
analyses. First, DAVID functional annotation clustering was performed resulting in multiple
groups with a significant Enrichment Score (ES> 1.3), for jejunum and ileum at day 55 (see
Tables 2–4 for top 5 results from the DAVID functional annotation clustering).

In a second approach no pre-filtering of genes was performed, and all probes/genes were
used as input to Gene Set Enrichment Analysis (GSEA). This resulted in the identification
of similar biological processes affected by the treatments as observed by the DAVID analysis
(S2 File). In contrast, when investigating day 176, no significantly enriched clusters were found
in the DAVID analysis, however, the GSEA, in which all genes were used as input, revealed dif-
ferences between the treatments in processes related to metabolism and immunity.

Discussion
In this paper we provide evidence that a treatment at day four of life has long lasting effects on
microbial composition and diversity, as well as on host gene expression in intestinal tissue.
Due to the experimental design, all three groups were exposed to similar environmental condi-
tions, that means that during this experiment similar exposure to pathogenic load, stress (be-
sides treatment), as well as feed composition, condition and amount was encountered by these
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Fig 3. Triplot for RDA analysis of jejunal microbiota composition on day 55 and day 176.Nominal environmental variables T1, T2 and T3 are
represented by red triangles (▲). Samples are grouped by treatment: T1 (red; �), T2 (blue; □) and T3 (green; �), each symbol represents a pool of four pigs,
and numbers represent pool identifiers. A) Top-panel shows the RDA analysis of jejunal microbiota composition on day 55. Microbial groups contributing at
least 40% to the explanatory axes are represented as vectors. Both axes together explain 15% of the total variance in the dataset. B) Bottom-panel shows
the RDA analysis of jejunal microbiota composition on day 55. Microbial groups contributing at least 52% to the explanatory axes are represented as vectors.
Both axes together explain 27.8% of the total variance in the dataset.

doi:10.1371/journal.pone.0116523.g003
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pigs, suggesting that the (clinical) history of these animals is almost identical. In a previous
paper we reported on the short-term effects (eight days after birth) of an antibiotic and stress
treatment which was administered at four days after birth as experienced by piglets under nor-
mal intensive husbandry conditions on the microbial colonization and immune development
[16]. Here we show that the effects of these treatments can still be observed later in life, espe-
cially on day 55 after birth, supporting the idea that due to the used treatments, the animals
‘program’ their immune system differently at early age.

Comparisons of microbiota composition and diversity between treatment
groups
Based on the microbiota analyses, we conclude that there is an increase of diversity over time
with an average of 5.48 at day 8 [16], 5.55 at day 55 and 5.75 at day 176, which is in agreement
with similar observations in other pig studies [31,32]. In other words, the ecosystem becomes
more diverse and presumably more stable in time. Conjointly the diversity and microbiota
composition data suggest that the microbiota converge to an adult-type microbiota (more
complex ecosystem), which is also reflected in the phylum level data (S2 Table). This conver-
sion towards a ‘generic’ adult-type microbiota is strengthened by the experimental setup, be-
cause after weaning piglets were assigned to a pen which contained T1, T2 and T3 from the

Table 1. Genus-level phylogenetic groups changed in T2 and/or T3 animals.

T2 vs T1 T3 vs T1 T3 vs T2 ARC1

Day 55 p2 q3 p q p q T1 T2 T3

Coprococcus eutactus et rel. 0.69 0.94 0.34 0.54 0.03# 0.09 0.42±0.13 0.49±0.1 0.37±0.03

Uncultured Prevotella 0.20 0.34 0.69 0.94 0.03# 0.09 0.34±0.17 0.58±0.25 0.24±0.05

Day 176 p q p q p q T1 T2 T3

Actinomyces et rel. 0.03" 0.09 0.34 0.54 0.11 0.24 0.12±0.02 0.16±0.01 0.13±0.01

Allofustis et rel. 0.03" 0.09 0.89 1.00 0.06 0.13 0.19±0.02 0.24±0.02 0.2±0.02

Bacillus et rel. 0.49 0.73 0.89 1.00 0.03" 0.09 0.39±0.17 0.27±0.02 0.37±0.06

Bacteroides distasonis et rel. 0.11 0.24 1.00 1.00 0.03" 0.09 0.51±0.31 0.15±0.04 0.52±0.24

Bifidobacterium et rel. 0.03# 0.09 1.00 1.00 0.06 0.13 0.74±0.3 0.43±0.02 0.67±0.19

Eggerthella et rel. 0.03" 0.09 0.06 0.13 0.20 0.34 0.11±0.01 0.13±0.01 0.12±0.01

Fusobacterium et rel. 0.03# 0.09 0.89 1.00 0.03" 0.09 0.62±0.35 0.16±0.03 0.56±0.24

Neisseria et rel. 0.03# 0.09 1.00 1.00 0.06 0.13 0.3±0.11 0.17±0.01 0.28±0.08

Oxalobacter et rel. 0.03# 0.09 0.20 0.34 0.20 0.34 0.34±0.11 0.2±0.02 0.25±0.05

Prevotella melaninogenica et rel. 0.06 0.13 1.00 1.00 0.03" 0.09 0.21±0.12 0.08±0.01 0.2±0.09

Ruminococcus ganvus et rel. 0.34 0.54 1.00 1.00 0.03 0.09 0.15±0.03 0.17±0.01 0.14±0.02

Streptococcus salivarius et rel. 0.20 0.34 0.69 0.94 0.03" 0.09 0.3±0.19 0.1±0.05 0.36±0.18

Streptococcus suis et rel. 0.11 0.24 0.69 0.94 0.03" 0.09 2.6±1.67 0.68±0.4 3.06±1.62

Sutterella wadsorthia et rel. 0.03# 0.09 0.49 0.73 0.20 0.34 0.3±0.05 0.23±0.02 0.28±0.07

Uncultured Mollicutes 0.06 0.13 1.00 1.00 0.03# 0.09 0.52±0.06 0.6±0.05 0.52±0.03

Uncultured Prevotella 0.06 0.13 1.00 1.00 0.03" 0.09 1.11±0.64 0.43±0.07 1.08±0.46

1. ARC: average relative contribution [%] of a microbial group. Values represent means ± SD. The microbial groups with a relative abundance lower than

0.1% in all three treatments are not shown.

2. “"” or “#” indicates whether the average relative contribution of the microbial group was increased or decreased in the particular comparison.
3q is the corrected p-value (Benjamini Hochberg)

doi:10.1371/journal.pone.0116523.t001

Long-Lasting Effects of Early Treatment in Pigs

PLOS ONE | DOI:10.1371/journal.pone.0116523 February 6, 2015 9 / 18



Fig 4. Principal Component Analysis of jejunal and ileal tissue gene expression for three different
treatments at day 55 and 176. Each symbol represents all expressed genes (approximately 44k probes) of
a particular sample. A) top-panel represents day 55 and B) bottom-panel represents day 176. Three different
treatments are depicted, T1 (red), T2 (blue) and T3 (green) and two different tissues, jejunum (JEJ, triangles)
and ileum (IL, squares).

doi:10.1371/journal.pone.0116523.g004
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same and different litters. Interestingly, at day 176, we found a significant difference in micro-
biota diversity and composition of the pigs only treated with the antibiotic (T2) in comparison
to the other treatment groups. Since all three groups were exposed to similar environmental
conditions, the differences in microbiota diversity and composition observed at day 176 after
birth can only be explained by group specific intrinsic animal factors. One could argue that the
intestinal immune cells of the T2 animals were programmed differently from the T1 and T3 an-
imals, due to the antibiotic treatment at day 4 after birth. Differences in immune programming
may then lead to differences in immunologic and microbial homeostasis. Why these differences
in microbial homeostasis cannot be observed at day 55 is not clear, but it could be explained by
the fact that at day 55 the composition and diversity of the gut microbiota have not been stabi-
lized yet due to the relative proximity to the weaning period, which occurred around day 26 in
this study. The weaning period is known to cause a large shift in the composition and diversity
of gut microbiota [33,34]. In this short time-period of weaning the gut ecosystem must prog-
ress from a rather simple stable equilibrium to a more complex stable equilibrium. Another ex-
planation could be that in the life history between day 55 and 176 the T2 animals have reacted
differently to an unknown external factor because the intestinal immune cells of the T2 animals
were programmed differently from T1 and T3 animals, due to the antibiotic treatment at day 4
after birth. Because the clinical data (not shown) from this study did not suggest any signs of

Table 2. Significantly enriched DAVID clusters (ES > 1.3) comparing T2 vs. T1 at day 55.

Tissue Down Up

# Generalized Term ES Generalized Term ES

Jejunum 1 x x vacuole/lysosome 4.1

2 x x gene expression epigenetic / gene silencing 3

3 x x nucleotide binding 2.9

4 x x organelle lumen 2.7

5 x x (positive) regulation of protein kinase activity (metabolic) 2.7

Ileum 1 protease inhibitor 1.48 TNF/cytokine activity 1.5

2 Serine/threonine protein kinase 1.36 x x

doi:10.1371/journal.pone.0116523.t002

Table 3. Significant enriched DAVID clusters (ES > 1.3) comparing T3 vs. T1 at day 55.

Tissue Down Up

# Generalized Term ES Generalized Term ES

Jejunum 1 transcription / nucleotide metabolic process 1.57 nucleotide binding 7.22

2 transcription regulation 1.45 vacuole/lysosome 4.95

3 oxidative phosphorylation / electron
transport

1.30 organelle lumen 4.57

4 x x protein kinase activity 4.14

5 x x protein localization / transport 3.81

Ileum 1 (sex) differentiation 1.72 tight junction/cell adhesion 2.26

2 extracellular region 1.45 vesicle (cytoplasmic) 1.83

3 x x Pleckstrin homology 1.63

4 x x (positive) regulation of protein kinase activity 1.57

5 x x regulation of cell migration /motility (leukocytes) / response to external
stimulus

1.40

doi:10.1371/journal.pone.0116523.t003
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an infection, it is more likely due to the differences in immune programming that lead to differ-
ences in maintenance of immunologic and microbial homeostasis upon exposure to that pre-
sumed external factor. However, the results of more detailed analysis of the microbiota data are
more supportive for our first explanation/hypothesis. When zooming in on the differences in
microbial composition and diversity by the use of univariate analysis, we observed that two mi-
crobial groups differed significantly (p<0.05) when comparing antibiotic treated pigs with an-
tibiotic and stress treated pigs, namely Coprococcus eutactus et rel. and uncultured Prevotella
(Table 1). At day 176 a larger number of significant differences (p<0.05) in the relative abun-
dance of genus-level microbial groups was found (8 groups each when comparing T2 versus T1
and T2 versus T3 pigs, respectively). It is striking that in T2 pigs almost in all cases the average
relative contribution of these groups was lower compared to that found in T1 or T3 pigs. For
example the following microbial groups were lower in T2, Streptococcus suis et rel., uncultured
Prevotella, Fusobacterium et rel., Bacteroides distasonis et rel., and Prevotella melaninogenica et
rel. (for details see Table 1). It has previously been shown that Streptococcus suis, a potential
pathogen, is more abundant in the pig intestine directly after weaning [35]. Several species of
Prevotella, including Prevotella melaninogenica, are also potential pathogens that mostly occur
in the upper digestive tract [36,37]. Bacteroides spp. are in general mutualistic, and have been
described to benefit their host by excluding potential pathogens from colonizing the gut [38].
However, other studies have also shown possible negative effects of increased Bacteroides spp.
in the gut [39,40]. So all these bacteria described above have both beneficial and pathogenic
characteristics. It should be noted, however, that in general, relative abundance of the phylum
Bacteroidetes, encompassing both genera Prevotella and Bacteroides, was decreased in T2 ani-
mals at day 55, whereas it was increased at day 176 (S2 Table). Fusobacteria have a potent lipo-
polysaccharide (LPS), and are classified as pathogenic [41]. In conclusion the data presented
here may indicate that the specific microbial composition in the T2 animals kept under the ex-
perimental conditions, i.e. antibiotics and environment (farm), is unfavourable for these
microbial species.

Comparison of gene expression in intestinal tissues between treatment
groups
Whereas at day 176 no differential gene expression could be observed, the transcriptomics data
showed differential gene expression at day 55, in both jejunum and ileum, which could be
translated to (significant) differences in functional processes/pathways. To see which biological

Table 4. Significant enriched DAVID clusters (ES > 1.3) comparing T3 vs. T2 at day 55.

Tissue Down Up

# Generalized Term ES Generalized Term ES

Jejunum 1 muscle tissue development 1.96 protein transport / localization 3.23

2 transcription / nucleotide metabolic process 1.53 vacuole/lysosome 1.86

3 metabolic process (vitamin/hormone) 1.47 x x

4 apoptosis 1.42 x x

Ileum 1 regulation of apoptosis 1.76 organelle lumen 2.85

2 axon/cell projection 1.73 regulation of cell migration / motility 2.80

3 negative regulation apoptosis 1.52 SH3 domain 2.01

4 x x vacuole/lysosome 1.97

5 x x Lymphocyte/leukocyte homeostasis / apoptosis 1.94

doi:10.1371/journal.pone.0116523.t004
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processes were affected by the treatment in these tissues, functional analyses were performed
by DAVID analysis. This revealed higher expression of a number of processes, including im-
munological processes, in ileal tissue of T2 and T3 pigs compared to T1 pigs at day 55. In the
ileum of T2 animals, the most prominent higher expressed immune-related process was; ‘TNF/
cytokine activity’, and in T3 animals; ‘regulation of cell migration / motility (leukocytes) /
response to external stimulus’, but also processes involved in intestinal barrier function (‘tight
junctions/cell adhesion’). These data support our hypothesis that the programming of the im-
mune system is altered due to the different treatments in early life, which is shown by the gene
expression and/or microbiota changes of the intestinal system in the young adult (d55) and
adult phase (d176) of life.

Despite the differences in gene expression at day 55 in both ileum and jejunum between the
treatment groups, only the ileum displayed differences in immune related processes after
DAVID analysis. This contrasts our previous data obtained for day 8 after birth that showed a
major down-regulation of immune related processes in both jejunal and ileal tissue in the ani-
mals treated with antibiotic [16]. These observations are in agreement with the fact that differ-
entiation of ileal and jejunal tissue occurs, and that in differentiated and matured ileum
immunological structures like Peyer’s patches are much more abundant as compared to jeju-
num. To have a more complete picture of the different processes being affected by the treat-
ments, we in addition performed functional Gene Set Enrichment Analysis (GSEA), and
superimposed gene expression values over known (immunological) pathways for ‘adult’ life
time-points. The GSEA results for day 55 were in concordance with the DAVID functional
analyses. However, by taking into account the entire transcriptome, we observed that GSEA
analyses showed additional enriched immunological processes compared to DAVID for
T3 pigs.

To investigate whether the immune processes observed locally in ileal tissue at day 55 were
also present systemically, we performed transcriptomic analyses on blood samples (data not
shown). These blood transcriptomics data showed no dominance of immune processes in the
different comparisons between treatments.

For 176 day old pigs, similar functional analyses were performed using DAVID and GSEA.
However, the DAVID analyses did not result in any significantly enriched functional annota-
tion clusters, which is likely due to the fact that almost no genes were significantly differently
expressed between the treatments. In contrast, the GSEA for pigs of day 176 resulted in multi-
ple significantly enriched gene sets, indicating that despite the more pronounced differences in
microbial composition in adult life (176 vs. 55 days), host gene expression is not always chang-
ing accordingly. This might, in part, be explained by the fact that these pigs were ‘healthy’, and
thus cells could simply perform ‘regular’, non immune-related functions. Nevertheless, in T1
and T3 pigs more enriched gene sets involved in immunity were observed compared to T2
pigs, suggesting that a higher microbial diversity in adult life is accompanied by more active
genes involved in immunity, e.g. communication (cross-talk host-microbe), surveillance and
response. However, these differences in gene set enrichment were only observed at the func-
tional process level.

Link between microbiota composition and tissue gene expression
The microbiota diversity and composition was highly similar at day 55 for all three treatments,
whereas the gene expression showed markedly different processes when comparing the differ-
ent treatment groups. This suggests, that the observed gene expression differences were due to
the altered immune programming in early life. Interestingly, it was recently found that tran-
sient differences in piglets’ gut microbiota caused by amoxicillin treatment of sows before and
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after birth was associated with differences in intestinal physiology not only early in life, but also
in adult pigs [17]. It is known that the microbiota have an important role in the development
of (intestinal) immunity in the neonatal period [42]. Germ-free mice, for example, do not de-
velop a proper working immune system because they lack microbial stimuli in early life [43].
Indeed, at day 8 early life environmental factors influenced the microbial colonization of these
piglets, reflected in differences in microbial diversity and composition [16]. Thus altering the
composition and/or diversity of microbiota in early-life by antibiotic treatment, or antibiotic
treatment in combination with stressors, influences the programming of the (intestinal) im-
mune development and consequently the immune homeostasis later in life. This alternate pro-
gramming of the immune system, due to early life environmental factors, could have an impact
on the (intestinal) health status of these pigs. In human studies it has already been shown that
different early life environmental factors can lead to a higher risk of diseases such as asthma
and allergy [44–46]. We did not subject these pigs to a pathogenic challenge, for example en-
terotoxigenic Escherichia coli, to test the putative differences in immune response between the
different treatments groups in the adult stage.

The gut is a complex (eco)system, where many interactions between host, microbiota and
environment occur simultaneously. The state of the system is thus determined by internal and
external conditions, and all these conditions are dynamic. If there would be a single steady
state in this system, essentially after each perturbation the system would return to the same
steady state. However, one could envisage that the gut has multiple alternative stable states,
and that sufficiently severe perturbations to the system may lead to other steady states of the
system. This way of thinking was visualized by Scheffer et al. [47] by generating stability land-
scape(s), where hills depict unstable states and valleys steady states. Deeper valleys are more re-
silient to perturbations, in other words more ‘energy’ is needed to push the system out of the
steady state. The occurrence of several stable states has recently been confirmed for the human
intestinal microbiota by the discovery of bimodal distributions of a number of microbial
groups, the abundance of which is associated with host factors such as ageing and overweight
[48]. Our hypothesis is that weaning (d28) of the piglets introduces a ‘newly’ acquired microbi-
al community and is followed by an instable period, because of the introduction of solid feed
and separation from the sow. This leads to high variance between individuals and could eclipse
the differences between the treatment groups regarding the microbiota analyses. However, be-
cause the immune programming at young age was found significantly different between the
treatment groups [16], the system still responds differently towards this ‘newly’ acquired mi-
crobial community. After weaning, during this instable period, the system will advance towards
a stable state (homeostasis). Yet, the difference in immune programming between the gut sys-
tems, due to the treatments, enforce the systems to pursue different paths to reach a steady
state (homeostasis) (Fig. 5). In these different steady states, the microbiota diversity and com-
position is different. However, this does not result in differential gene expression in the host in-
testinal tissue, because the system has adapted by constant cross-talk between host and
microbiota to the new steady state.

Conclusion
The use of antibiotics in combination with or without stressors in early life (day 4) affects
‘adult’ animals, both with respect to their microbiota as well as intestinal gene expression, such
as differences in immunological processes displayed by ileal tissue. These differences on tran-
scriptomic level are likely due to microbiota-induced differences in immune programming
during the neonatal period, opening avenues to steer these and other processes through modu-
lation of the microbial colonization process in the early days of an animal’s life.
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Supporting Information
S1 File. Normalized microbiota data of jejunum on days 55 and 176 on probe, phylum,
class, and genus/species level.
(XLSX)

S2 File. Results of Gene Set Enrichment Analysis (GSEA) comparing treatment groups at
day 55 and 176.
(XLSX)

S1 Table. Overview of probes, annotated genes and DAVID identifiers significantly differ-
ent between different treatments in both tissues at day 55 and day 176.
(DOCX)

Fig 5. Schematic representation of results.Overview of the time-line, birth (day 0), administration of the treatments (day 4), measurements days 8, 55, and
176, as well as the hypothetical interpretation of all results from the whole experiment, results from the previous paper about day 8 are included too [16]. On
the left we categorized the gut system in three different ‘blocks’, immune programming which occurs in early life, followed by an instable period which
includes weaning and later in life a stable period (homeostasis). Note that the treatments, antibiotic and/or stress, were at day 4 during the immune
programming period. Next to this the significant findings of microbiota or gene expression data between treatments per time-point are depicted by “+”, and
no differences between treatments with a “-”. On the right a metaphorical landscape of the gut system in time is depicted, where the top is day 0 (birth) and
bottom is day 176 (slaughter). Spheres depict the current state of the system for day 8, 55, and 176, and colours correspond to the different treatments
(T1; red, T2; blue, and T3; green).

doi:10.1371/journal.pone.0116523.g005

Long-Lasting Effects of Early Treatment in Pigs

PLOS ONE | DOI:10.1371/journal.pone.0116523 February 6, 2015 15 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0116523.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0116523.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0116523.s003


S2 Table. Average relative abundance of phylum level microbial groups for each treatment
at day 55 and 176.
(DOCX)

Acknowledgments
We want to thank the whole team of VIC Sterksel for their expertise and involvement in
this research.

Author Contributions
Conceived and designed the experiments: JMJR MAS. Performed the experiments: SAV
HGHJH. Analyzed the data: DS JZ. Wrote the paper: DS JZ HS JMJR MAS.

References
1. Haenen D, Zhang J, Souza da Silva C, Bosch G, van der Meer IM, et al. (2013) A diet high in resistant

starch modulates microbiota composition, SCFA concentrations, and gene expression in pig intestine.
Journal of Nutrition 143: 274–283. doi: 10.3945/jn.112.169672 PMID: 23325922

2. Starke IC, Pieper R, Neumann K, Zentek J, VahjenW (2013) The impact of high dietary zinc oxide on
the development of the intestinal microbiota in weaned piglets. FEMSMicrobiol Ecol.

3. Yao K, Sun Z, Liu Z, Li Z, Yin Y (2013) Development of the Gastrointestinal Tract in Pigs. Nutritional
and Physiological Functions of Amino Acids in Pigs: 3–18.

4. Pfefferle PI, Renz H (2014) The mucosal microbiome in shaping health and disease. F1000Prime Rep
6: 11. doi: 10.12703/P6-11 PMID: 24592323

5. Geuking MB, McCoy KD, Macpherson AJ (2011) The continuum of intestinal CD4+ T cell adaptations
in host-microbial mutualism. Gut Microbes 2.

6. Lewis MC, Inman CF, Patel D, Schmidt B, Mulder I, et al. (2012) Direct experimental evidence that
early-life farm environment influences regulation of immune responses. Pediatr Allergy Immunol.

7. Ohnmacht C, Marques R, Presley L, Sawa S, Lochner M, et al. (2011) Intestinal microbiota, evolution of
the immune system and the bad reputation of pro-inflammatory immunity. Cell Microbiol 13: 653–659.
doi: 10.1111/j.1462-5822.2011.01577.x PMID: 21338464

8. Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during
health and disease. Nat Rev Immunol 9: 313–323. doi: 10.1038/nri2515 PMID: 19343057

9. Wagner RD (2008) Effects of microbiota on GI health: gnotobiotic research. Colon Cancer Prevention
635: 41–56.

10. Mulder IE, Schmidt B, Lewis M, Delday M, Stokes CR, et al. (2011) Restricting microbial exposure in
early life negates the immune benefits associated with gut colonization in environments of high microbi-
al diversity. PLoS One 6: e28279. doi: 10.1371/journal.pone.0028279 PMID: 22216092

11. Sommer F, Backhed F (2013) The gut microbiota—masters of host development and physiology. Na-
ture reviews Microbiology 11: 227–238. doi: 10.1038/nrmicro2974 PMID: 23435359

12. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated
with obesity. Nature 444: 1022–1023. PMID: 17183309

13. Penders J, Stobberingh EE, van den Brandt PA, Thijs C (2007) The role of the intestinal microbiota in
the development of atopic disorders. Allergy 62: 1223–1236. PMID: 17711557

14. Penders J, Thijs C, van den Brandt PA, Kummeling I, Snijders B, et al. (2007) Gut microbiota composi-
tion and development of atopic manifestations in infancy: the KOALA Birth Cohort Study. Gut 56:
661–667. PMID: 17047098

15. Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, et al. (2008) Innate immunity and intestinal
microbiota in the development of Type 1 diabetes. Nature 455: 1109–1113. doi: 10.1038/nature07336
PMID: 18806780

16. Schokker D, Zhang J, Zhang LL, Vastenhouw SA, Heilig HG, et al. (2014) Early-life environmental vari-
ation affects intestinal microbiota and immune development in new-born piglets. PLoS One 9:
e100040. doi: 10.1371/journal.pone.0100040 PMID: 24941112

17. Arnal ME, Zhang J, Messori S, Bosi P, Smidt H, et al. (2014) Early changes in microbial colonization se-
lectively modulate intestinal enzymes, but not inducible heat shock proteins in young adult Swine.
PLoS One 9: e87967. doi: 10.1371/journal.pone.0087967 PMID: 24505340

Long-Lasting Effects of Early Treatment in Pigs

PLOS ONE | DOI:10.1371/journal.pone.0116523 February 6, 2015 16 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0116523.s004
http://dx.doi.org/10.3945/jn.112.169672
http://www.ncbi.nlm.nih.gov/pubmed/23325922
http://dx.doi.org/10.12703/P6-11
http://www.ncbi.nlm.nih.gov/pubmed/24592323
http://dx.doi.org/10.1111/j.1462-5822.2011.01577.x
http://www.ncbi.nlm.nih.gov/pubmed/21338464
http://dx.doi.org/10.1038/nri2515
http://www.ncbi.nlm.nih.gov/pubmed/19343057
http://dx.doi.org/10.1371/journal.pone.0028279
http://www.ncbi.nlm.nih.gov/pubmed/22216092
http://dx.doi.org/10.1038/nrmicro2974
http://www.ncbi.nlm.nih.gov/pubmed/23435359
http://www.ncbi.nlm.nih.gov/pubmed/17183309
http://www.ncbi.nlm.nih.gov/pubmed/17711557
http://www.ncbi.nlm.nih.gov/pubmed/17047098
http://dx.doi.org/10.1038/nature07336
http://www.ncbi.nlm.nih.gov/pubmed/18806780
http://dx.doi.org/10.1371/journal.pone.0100040
http://www.ncbi.nlm.nih.gov/pubmed/24941112
http://dx.doi.org/10.1371/journal.pone.0087967
http://www.ncbi.nlm.nih.gov/pubmed/24505340


18. Yu Z, Morrison M (2004) Improved extraction of PCR-quality community DNA from digesta and fecal
samples. Biotechniques 36: 808–813. PMID: 15152600

19. Salonen A, Nikkila J, Jalanka-Tuovinen J, Immonen O, Rajilic-Stojanovic M, et al. (2010) Comparative
analysis of fecal DNA extraction methods with phylogenetic microarray: effective recovery of bacterial
and archaeal DNA using mechanical cell lysis. J Microbiol Methods 81: 127–134. doi: 10.1016/j.mimet.
2010.02.007 PMID: 20171997

20. Rajilić‐StojanovićM, Heilig HGHJ, Molenaar D, Kajander K, Surakka A, et al. (2009) Development and
application of the human intestinal tract chip, a phylogenetic microarray: analysis of universally con-
served phylotypes in the abundant microbiota of young and elderly adults. Environmental microbiology
11: 1736–1751. doi: 10.1111/j.1462-2920.2009.01900.x PMID: 19508560

21. Haenen D, Zhang J, da Silva CS, Bosch G, van der Meer IM, et al. (2013) A Diet High in Resistant
Starch Modulates Microbiota Composition, SCFA Concentrations, and Gene Expression in Pig Intes-
tine. The Journal of nutrition 143: 274–283. doi: 10.3945/jn.112.169672 PMID: 23325922

22. Perez-Gutierrez O (2010) Unraveling piglet gut microbiota dynamics in response to feed additives:
[Sl: sn].

23. Salonen A, Nikkilä J, Jalanka-Tuovinen J, Immonen O, Rajilić-StojanovićM, et al. (2010) Comparative
analysis of fecal DNA extraction methods with phylogenetic microarray: effective recovery of bacterial
and archaeal DNA using mechanical cell lysis. Journal of microbiological methods 81: 127–134. doi:
10.1016/j.mimet.2010.02.007 PMID: 20171997

24. Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO: Cambridge Univer-
sity Press. PMID: 25057689

25. Ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivari-
ate direct gradient analysis. Ecology 67: 1167–1179.

26. Ter Braak CJF (1990) Update notes: CANOCO version 3.1. p. GLW-Agricultural Mathematics Group,
Wageningen.

27. Huang daW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists
using DAVID bioinformatics resources. Nat Protoc 4: 44–57. doi: 10.1038/nprot.2008.211 PMID:
19131956

28. Huang daW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the com-
prehensive functional analysis of large gene lists. Nucleic Acids Res 37: 1–13. doi: 10.1093/nar/
gkn923 PMID: 19033363

29. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, et al. (2003) PGC-1alpha-responsive
genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat
Genet 34: 267–273. PMID: 12808457

30. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. (2005) Gene set enrichment
analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl
Acad Sci U S A 102: 15545–15550. PMID: 16199517

31. Zhang Q, Widmer G, Tzipori S (2013) A pig model of the human gastrointestinal tract. Gut Microbes 4:
193–200. doi: 10.4161/gmic.23867 PMID: 23549377

32. Kim HB, Borewicz K, White BA, Singer RS, Sreevatsan S, et al. (2011) Longitudinal investigation of the
age-related bacterial diversity in the feces of commercial pigs. Vet Microbiol 153: 124–133. doi: 10.
1016/j.vetmic.2011.05.021 PMID: 21658864

33. Bauer E, Williams BA, Smidt H, Verstegen MW, Mosenthin R (2006) Influence of the gastrointestinal
microbiota on development of the immune system in young animals. Curr Issues Intest Microbiol 7:
35–51. PMID: 16875418

34. Konstantinov SR, Awati AA, Williams BA, Miller BG, Jones P, et al. (2006) Post-natal development of
the porcine microbiota composition and activities. Environ Microbiol 8: 1191–1199. PMID: 16817927

35. Su Y, YaoW, Perez-Gutierrez ON, Smidt H, ZhuWY (2008) Changes in abundance of Lactobacillus
spp. and Streptococcus suis in the stomach, jejunum and ileum of piglets after weaning. FEMSMicro-
biol Ecol 66: 546–555. doi: 10.1111/j.1574-6941.2008.00529.x PMID: 18554303

36. Brook I, Foote PA, Slots J (1997) Immune response to Fusobacterium nucleatum, Prevotella intermedia
and other anaerobes in children with acute tonsillitis. J Antimicrob Chemother 39: 763–769. PMID:
9222046

37. Mager DL, Haffajee AD, Devlin PM, Norris CM, Posner MR, et al. (2005) The salivary microbiota as a di-
agnostic indicator of oral cancer: a descriptive, non-randomized study of cancer-free and oral squa-
mous cell carcinoma subjects. J Transl Med 3: 27. PMID: 15987522

38. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the
human intestine. Science 307: 1915–1920. PMID: 15790844

Long-Lasting Effects of Early Treatment in Pigs

PLOS ONE | DOI:10.1371/journal.pone.0116523 February 6, 2015 17 / 18

http://www.ncbi.nlm.nih.gov/pubmed/15152600
http://dx.doi.org/10.1016/j.mimet.2010.02.007
http://dx.doi.org/10.1016/j.mimet.2010.02.007
http://www.ncbi.nlm.nih.gov/pubmed/20171997
http://dx.doi.org/10.1111/j.1462-2920.2009.01900.x
http://www.ncbi.nlm.nih.gov/pubmed/19508560
http://dx.doi.org/10.3945/jn.112.169672
http://www.ncbi.nlm.nih.gov/pubmed/23325922
http://dx.doi.org/10.1016/j.mimet.2010.02.007
http://www.ncbi.nlm.nih.gov/pubmed/20171997
http://www.ncbi.nlm.nih.gov/pubmed/25057689
http://dx.doi.org/10.1038/nprot.2008.211
http://www.ncbi.nlm.nih.gov/pubmed/19131956
http://dx.doi.org/10.1093/nar/gkn923
http://dx.doi.org/10.1093/nar/gkn923
http://www.ncbi.nlm.nih.gov/pubmed/19033363
http://www.ncbi.nlm.nih.gov/pubmed/12808457
http://www.ncbi.nlm.nih.gov/pubmed/16199517
http://dx.doi.org/10.4161/gmic.23867
http://www.ncbi.nlm.nih.gov/pubmed/23549377
http://dx.doi.org/10.1016/j.vetmic.2011.05.021
http://dx.doi.org/10.1016/j.vetmic.2011.05.021
http://www.ncbi.nlm.nih.gov/pubmed/21658864
http://www.ncbi.nlm.nih.gov/pubmed/16875418
http://www.ncbi.nlm.nih.gov/pubmed/16817927
http://dx.doi.org/10.1111/j.1574-6941.2008.00529.x
http://www.ncbi.nlm.nih.gov/pubmed/18554303
http://www.ncbi.nlm.nih.gov/pubmed/9222046
http://www.ncbi.nlm.nih.gov/pubmed/15987522
http://www.ncbi.nlm.nih.gov/pubmed/15790844


39. Jalanka-Tuovinen J, Salojarvi J, Salonen A, Immonen O, Garsed K, et al. (2013) Faecal microbiota
composition and host-microbe cross-talk following gastroenteritis and in postinfectious irritable bowel
syndrome. Gut.

40. Ou J, Carbonero F, Zoetendal EG, DeLany JP, Wang M, et al. (2013) Diet, microbiota, and microbial
metabolites in colon cancer risk in rural Africans and African Americans. Am J Clin Nutr 98: 111–120.
doi: 10.3945/ajcn.112.056689 PMID: 23719549

41. Hakansson A, Molin G (2011) Gut microbiota and inflammation. Nutrients 3: 637–682. doi: 10.3390/
nu3060637 PMID: 22254115

42. WengM, Walker WA (2013) The role of gut microbiota in programming the immune phenotype. J Dev
Orig Health Dis 4. doi: 10.1017/S2040174413000068 PMID: 25054844

43. Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, et al. (2012) Gut immune maturation depends on
colonization with a host-specific microbiota. Cell 149: 1578–1593. doi: 10.1016/j.cell.2012.04.037
PMID: 22726443

44. Kozyrskyj AL, Bahreinian S, Azad MB (2011) Early life exposures: impact on asthma and allergic dis-
ease. Curr Opin Allergy Clin Immunol 11: 400–406. doi: 10.1097/ACI.0b013e328349b166 PMID:
21772139

45. Russell SL, Gold MJ, Hartmann M, Willing BP, Thorson L, et al. (2012) Early life antibiotic-driven
changes in microbiota enhance susceptibility to allergic asthma. EMBORep 13: 440–447. doi: 10.
1038/embor.2012.32 PMID: 22422004

46. Russell SL, Gold MJ, Willing BP, Thorson L, McNagny KM, et al. (2013) Perinatal antibiotic treatment
affects murine microbiota, immune responses and allergic asthma. Gut Microbes 4: 158–164. doi: 10.
4161/gmic.23567 PMID: 23333861

47. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature
413: 591–596. PMID: 11595939

48. Lahti L, Salojarvi J, Salonen A, Scheffer M, de VosWM (2014) Tipping elements in the human intestinal
ecosystem. Nat Commun 5: 4344. doi: 10.1038/ncomms5344 PMID: 25003530

Long-Lasting Effects of Early Treatment in Pigs

PLOS ONE | DOI:10.1371/journal.pone.0116523 February 6, 2015 18 / 18

http://dx.doi.org/10.3945/ajcn.112.056689
http://www.ncbi.nlm.nih.gov/pubmed/23719549
http://dx.doi.org/10.3390/nu3060637
http://dx.doi.org/10.3390/nu3060637
http://www.ncbi.nlm.nih.gov/pubmed/22254115
http://dx.doi.org/10.1017/S2040174413000068
http://www.ncbi.nlm.nih.gov/pubmed/25054844
http://dx.doi.org/10.1016/j.cell.2012.04.037
http://www.ncbi.nlm.nih.gov/pubmed/22726443
http://dx.doi.org/10.1097/ACI.0b013e328349b166
http://www.ncbi.nlm.nih.gov/pubmed/21772139
http://dx.doi.org/10.1038/embor.2012.32
http://dx.doi.org/10.1038/embor.2012.32
http://www.ncbi.nlm.nih.gov/pubmed/22422004
http://dx.doi.org/10.4161/gmic.23567
http://dx.doi.org/10.4161/gmic.23567
http://www.ncbi.nlm.nih.gov/pubmed/23333861
http://www.ncbi.nlm.nih.gov/pubmed/11595939
http://dx.doi.org/10.1038/ncomms5344
http://www.ncbi.nlm.nih.gov/pubmed/25003530

