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Abstract

Background: Relationships between individuals and inbreeding coefficients are commonly used for breeding
decisions, but may be affected by the type of data used for their estimation. The proportion of variants with low
Minor Allele Frequency (MAF) is larger in whole genome sequence (WGS) data compared to Single Nucleotide
Polymorphism (SNP) chips. Therefore, WGS data provide true relationships between individuals and may influence
breeding decisions and prioritisation for conservation of genetic diversity in livestock. This study identifies differences
between relationships and inbreeding coefficients estimated using pedigree, SNP or WGS data for 118 Holstein bulls
from the 1000 Bull genomes project. To determine the impact of rare alleles on the estimates we compared three
scenarios of MAF restrictions: variants with a MAF higher than 5%, variants with a MAF higher than 1% and variants
with a MAF between 1% and 5%.

Results: We observed significant differences between estimated relationships and, although less significantly, inbreeding
coefficients from pedigree, SNP or WGS data, and between MAF restriction scenarios. Computed correlations between
pedigree and genomic relationships, within groups with similar relationships, ranged from negative to moderate
for both estimated relationships and inbreeding coefficients, but were high between estimates from SNP and WGS
(0.49 to 0.99). Estimated relationships from genomic information exhibited higher variation than from pedigree.
Inbreeding coefficients analysis showed that more complete pedigree records lead to higher correlation between
inbreeding coefficients from pedigree and genomic data. Finally, estimates and correlations between additive
genetic (A) and genomic (G) relationship matrices were lower, and variances of the relationships were larger when
accounting for allele frequencies than without accounting for allele frequencies.

Conclusions: Using pedigree data or genomic information, and including or excluding variants with a MAF below
5% showed significant differences in relationship and inbreeding coefficient estimates. Estimated relationships and
inbreeding coefficients are the basis for selection decisions. Therefore, it can be expected that using WGS instead
of SNP can affect selection decision. Inclusion of rare variants will give access to the variation they carry, which is
of interest for conservation of genetic diversity.
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Background
The use of sequence data has increased considerably in the
past few years and is expected to further expand due to
technological improvements and a reduction in costs for
whole genome sequencing [1,2]. While Single Nucleotide
Polymorphism (SNP) chips, recently used in selection
strategies, contain only a subset of the polymorphic
variants available in a species, whole genome sequence
(WGS) data provide access to complete information on
all the variants of an individual. Most of the low Minor
Allele Frequency (MAF) variants are only accessible
through whole genome sequence data. Therefore, WGS
data are expected to yield better estimators of the true
relationships between individuals by accounting for all
the genetic variation.
Breeding decisions are partly based on estimated

relationships and inbreeding coefficients analysis of the
population from which breeding individuals will be
selected. Pedigree, SNP chips or WGS data can be used
to estimate these coefficients. Traditional pedigree re-
cords have been used in selection strategies for about
30 years and SNP data have proven their efficiency in
the last decade [2]. Nevertheless, both pedigree and
SNP chips may lead to sub-optimal selection decisions,
as pedigree is generally based on partial genealogic
records and SNP data present ascertainment bias, due
to the criteria used for the chip assembly [3,4]. As sug-
gested in a review paper by Henryon et al. [5], even
though selection has been conducted based on genomic
information for some years, the utilisation of pedigree
and SNP chip data for the estimation of relationships
and genetic variation can still be further optimised. This
may be achieved by the use of whole genome sequence
(WGS) data. One of the major advantages of WGS, is
that it not only captures all common variants in the
genome, but accesses the many variants with rare alleles
not covered by SNP chips as well. In addition, the
increasing availability of WGS data coincides with
reinforced attention for the development of long-term
selection strategies and the impact of short versus long-
term strategies on the genetic diversity of livestock
species [6]. This may open up new possibilities for the
optimisation of animal selection in the long-term per-
spective and for the prioritisation of animal selection in
a conservation focused context [7-9].
Even though whole genome sequence data are be-

coming increasingly abundant, an important question
is if it is worth investing in such a technique, or
whether traditional data, i.e. a limited number of
SNP variants and pedigree, are sufficient for long-
term selection strategies and prioritisation of animals for
genetic diversity conservation [10]. Thus, several major
questions need to be addressed. Are relationships com-
puted from WGS data, including information from rare
alleles, different from those computed from pedigree
and SNP data? Will the use of this type of data help
to further develop selection strategies that optimise
the long-term improvement and genetic diversity
conservation of livestock species? The present study
intends to answer the first question by comparing
estimated relationships and inbreeding coefficients
from three types of data: pedigree, SNP variants from
the 50 K SNP chip and sequence variants from WGS data,
as well as scenarios with different MAF restrictions. We
focused our analysis on the effect of low MAF variants
(below 5%) on estimated relationships and inbreeding
coefficients.

Methods
Data
This study was performed on whole genome sequence
and pedigree data from 118 Holstein bulls. All data
used were already exiting and no animal experiments
were involved. Of these 118, 63 originated from Europe
(based on their Interbull IDs, 26 originated from the
Netherlands, 12 from France, 11 from Denmark, 10
from Germany, two from Sweden, one from Finland
and one from the United Kingdom), 19 from North-
America (12 from the United States of America and
seven from Canada) and 36 from Australia. They were
selected as being important ancestors of the current
Holstein populations in these countries. Pedigree re-
cords were available from the 1950s onwards and con-
tained 4,054 individuals, 1,538 males and 2,516
females. The most represented sire had 53 offspring
and the most represented dam had six. From the 118
bulls used for this study, 117 had birth date informa-
tion and were born between 1968 and 2004. All 118
bulls had both parents recorded in the pedigree. From
this group, 61 individuals were involved in a parent-
offspring relationship (43 parent-offspring pairs). We
counted two full sib pairs and 56 individuals were part
of half-sib families containing two to five half-sibs.
On average, individuals had partial pedigree records
(missing dams or sires after generation one) of 13 ge-
nerations and complete records of three generations
(records for all dams and sires). A subgroup of 60 out of
the 118 bulls had full pedigree records of at least two
ancestral generations (full record on parent and grand-
parent generations), of which 44 had full pedigree re-
cords at least up to four ancestral generations. These
sub-groups were used for further analysis on inbreeding
coefficients.
Whole genome sequence data for the selected bulls,

including 28,336,153 SNPs (95% of the WGS variants)
and 1,668,587 insertion-deletion variants (5% of the
WGS variant) (hereafter jointly referred to as variants),
were accessible through the 1000 bull genomes project
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(Run 3.0), and were for each individual obtained as
described by Daetwyler et al. [11]. Sequencing was per-
formed with Illumina HiSeq Systems (Illumina Inc.,
San Diego, CA). The procedure of editing the sequence
data involved: sequence alignment, variant calling,
phasing and quality controls. All called variants (SNPs
and insertion-deletions) were put through an imputa-
tion step to fill any missing genotypes. The most likely
genotypes after this imputation step were used in our
study. SNPs that are included in the commonly used
Illumina BovineSNP50 BeadChip v2 (Illumina Inc., San
Diego, CA) were selected from the WGS, to enable
computation of relationships based on SNP chip data.
The average overall sequencing coverage was 10.5X
(ranging from 3.2X to 38X), based on the 110 indivi-
duals for whom coverage information was available.
Moreover, variants with a Minor Allele Frequency
(MAF) lower than 1%, meaning that less than three
copies of the minor allele were observed in the whole
data set, were excluded from the analysis, as they may
have represented genotyping errors. Note that using
larger sample sizes may enable using lower MAF
restriction thresholds. Out of the total number of
sequenced variants present on the 29 autosomes,
18,739,233 on the WGS and 45,729 on the 50 K SNP
chip were polymorphic in the 118 Holstein bulls. After
applying the MAF quality control, i.e. remove variants
with low MAF < 1%, 15,871,933 for WGS and 44,548
for the 50 K SNP chip were used for our analysis.
Analysis of Hardy-Weinberg proportions
Hardy-Weinberg proportions analysis is traditionally
performed as part of the editing process when using
SNP data. In general, variants showing extreme depar-
ture from Hardy-Weinberg proportions are excluded
from the analysis, as they are likely to represent geno-
typing errors. In our case we estimated the fraction of
variants departing from Hardy-Weinberg proportions for
each type of data and scenario of MAF restriction
used in this study. The F-exact test was used to iden-
tify departure from Hardy-Weinberg proportions as it
is the most suitable for cases of variants with low
MAF [12]. For each segregating variant of the SNP
and WGS data used in our study, P-values for the
F-exact test were computed [13]. The fractions of
variants departing from Hardy-Weinberg proportions,
at a P-value ≤ 0.05 for the F-exact test, were calcu-
lated in each case.
Relationship estimations
Additive genetic (A) and genomic (G) relationship
matrices were computed. Two different methods were
used to calculate the G matrix:
Firstly calculations were performed according to the
Yang method [14] as follows:

Gjk ¼ 1
N

X
i

Gijk ¼
1
N

X
i
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Where N is the number of variants and Gijk is the esti-
mated relationship between individuals j and k at locus
i. At each locus i, xi. is the individual variant genotype
coded as 0, 1 or 2 and pi is the frequency of the allele
whose homozygote genotype is coded as 2 at locus i.
Allele frequencies used in this case were estimated from
the current population, as it is common practice in this
type of analysis. The equation for j ≠ k is used to com-
pute the off-diagonal elements of the G relationship
matrix and the equation for j=k is used to compute the
diagonal elements of the G relationship matrix.
Secondly, we computed relationships based on simi-

larities by counting the number of identical alleles at
segregating variants between individuals, which can be

written as G ¼ M−1ð Þ M−1ð Þ0
N=2ð Þ , where M is the genotype

matrix containing values of 0, 1 and 2 and N is the num-
ber of variants. Derivation of the formula is explained in
the Additional file 1.
According to Druet et al. [15], common variants have a

MAF higher than 5% and MAF cut-off points ranging
from 0.5% to 5% are commonly used as a lower MAF limit
to remove variants in genetic studies [16]. In this study,
we considered variants with a MAF below 5% to be va-
riants with rare alleles. Relationships were computed for
both estimators, using SNP (GSNP) and whole genome
sequence data (GWGS) in three scenarios: (1) using all
variants with a MAF higher than 5% (5+); (2) using all
variants with a MAF higher than 1% (1+); (3) using vari-
ants with a MAF between 1% and 5% (1_5) in order to
infer whether relationships based on variants with rare
alleles were different from relationships based on common
variants. After MAF restriction 41,225; 44,548 and 3,323
SNPs were kept for relationship estimation from the
50 K SNP chip (SNP), and 11,953,905; 15,871,933 and
3,918,028 from whole genome sequence (WGS) data, in
scenario 5+, 1+ and 1_5, respectively (Table 1). Insertion-
deletions represented 2.4%, 3.4% and 1% of the segregating
variants in the three scenarios 5+, 1+ and 1_5.

Comparison of estimated relationships between different
scenarios
Estimated relationships using the three types of data
(pedigree, SNP, and WGS) and the different scenarios
(5+, 1+, and 1_5) were compared against each other.
The relationships were split into groups and the cut-off
points between these groups were defined according



Table 1 Overview of the different scenarios

Scenario names Type of data Minor allele frequency threshold (%) Number of segregating variants

Aped Pedigree None 0

GSNP5+ BovineSNP50 BeadChip ≥ 5 41 225

GSNP1+ BovineSNP50 BeadChip ≥ 1 44 548

GSNP1_5 BovineSNP50 BeadChip Between 1 and 5 3 323

GWGS5+ Whole genome sequence ≥ 5 11 953 905

GWGS1+ Whole genome sequence ≥ 1 15 871 933

GWGS1_5 Whole genome sequence Between 1 and 5 3 918 028
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to pedigree estimated relationships as follows: self-
relationships (relationships of the animal with itself ),
first degree relationships group such as parent-offspring
or full sib relationships (relationships ≥0.5 to <1), second
degree relationships group such as half sib, grandparents-
offspring or cousin relationships (relationships ≥0.25
to <0.5) and less-related individuals (relationships <0.25)
[17]. Only the three last groups were used for estimated
relationship analysis, the first group (self-relationship
group) was used for analysis of inbreeding. Differences
between scenario 5+, 1+ and 1_5 were tested, using the
Wilcoxon test, which is a non-parametric test of com-
parison of ranked sums between two paired groups [18].
Pearson’s correlation coefficients were computed bet-
ween the different types of data: pedigree (Aped), and
between SNP (GSNP) and WGS (GWGS) data with dif-
ferent MAF restriction scenarios in order to infer the
impact of rare alleles on estimated relationships. All
statistical analyses were conducted in R [19]. The test
for correlation significance was performed using the
R-package psych [20].

Inbreeding coefficients
Inbreeding coefficients for pedigree were computed from
the Aped matrix using the algorithm of Sargolzaei et al.
[21]. Genomic inbreeding coefficients were computed
for each individual as the G matrix diagonal elements
(self-relationship) minus 1. It should be noted that these
inbreeding coefficients represent the correlation between
uniting gametes in an individual [22]. Individuals were
sub-grouped according to their pedigree depths: all 118
bulls had at least full pedigree records on their parents
(group depth1); 60 of these 118 bulls had at least full
pedigree records on two ancestral generations (group
depth2) and finally, 44 had at least full pedigree records
on four ancestral generations (group depth4). For in-
breeding coefficients, correlations coefficients were
computed between the different types of data with the
different MAF restriction scenarios. All statistical ana-
lyses were conducted in R [19].
Results
Distribution of MAF and Hardy-Weinberg proportion analysis
A uniform distribution of MAF was observed for SNP
variants, while a L shaped distribution was observed for
sequence variants (Figure 1). As expected, all classes of
MAF were equally represented on the SNP chip, while
low MAF classes were overrepresented in sequence
data. Scenarios including rare alleles (1_5 and 1+)
showed a smaller fraction of departure from Hardy-
Weinberg proportions (Table 2). This indicated that,
contrary to our expectations, these scenarios were not
more affected by departure from Hardy-Weinberg pro-
portions than the other scenario based on common
variants.

Comparison of pedigree, SNP and sequence-based
estimated relationships for common variants, MAF ≥ 5%
Estimated relationships for the three groups of different
degrees of relationships (first, second and less-related)
ranged from 0.00 to 0.66 for pedigree data, from –0.14
to 0.60 for SNP data and from –0.11 to 0.55 for WGS
data (Table 3). Mean values for each considered degree
of relationships were close to expectation for estimated
relationships including deviations due to inbreeding.
Variances of the SNP and WGS-based estimated rela-
tionships were in general higher than for pedigree esti-
mated relationships for common variants, indicating that
genomic data were able to capture more of the existing
variance in relationships than pedigree data only.
Both GSNP and GWGS had a correlation of 0.95 with

Aped, while GSNP and GWGS had a correlation of 0.99
(Figure 2). Correlations across all relationships were
higher than correlations within groups of relationships
(Table 4). In fact, correlations across all relationships
indicated that groups of relationships were ranked
similarly, as expected, when computed from different
data. However, correlations within groups showed that
using pedigree or genetic variants yielded quite dif-
ferent individual estimated relationships. Correlation
coefficients between Aped and G were moderate (ranging



Figure 1 Distribution plot of the number of variants per class of MAF. Histograms of the number of segregating variants in each Minor
Allele Frequency category (116 bins) from 1% to 50%, with density curve. The histogram on the left represents the distribution of variants from
the Bovine 50 K SNP chip. The histogram on the right represents the distribution of variants from whole genome sequence (WGS) data.
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from 0.36 to 0.51; Table 4). Correlations between GSNP

and GWGS were similarly high for the three relationship
groups (0.98).
Inbreeding coefficients were on average close to zero

for SNP and WGS, ranging from 0 to 0.16 for pedigree
estimates, from –0.24 to 0.11 for SNP and from –0.21 to
0.07 for WGS. Correlations between pedigree and geno-
mic inbreeding increased with pedigree depth, as ex-
pected. Significant differences between correlations were
observed between depth1 and depth4, for Aped versus
GSNP5+ or GWGS5+ (P-value=0.01).

Comparison of pedigree, SNP and sequence-based
estimated relationships when including rare alleles
Estimated relationships for scenario 1+ and 1_5 varied
from slightly negative (−0.13) for the less related group
to highly positive (1.06) for first degree relationships
group (Table 3). Mean values within groups of different
degrees of relationships ranged between 0.45 and 0.27
for the first degree relationships group, between 0.21
and 0.10 for the second degree relationships group and
between 0 and –0.01 for the less-related group, i.e.
slightly lower than the theoretical expectations. Vari-
ances were in general larger for SNP than for WGS.
When comparing scenarios including rare alleles, we

observed that the correlations between Aped and G esti-
mated relationships were in general lower than for
scenario 5+. Very low correlations were observed bet-
ween Aped and G for scenario 1_5 with most of the
Table 2 Hardy-Weinberg proportions analysis

SNP5+ SNP1+ SNP

Total variants 41 225 44 548 3 32

Departing variants 1 633 1 693 60

% departing variants 3.961 3.800 1.806
correlations being non-significantly different from zero.
High correlations between GSNP and GWGS data were
observed for scenario 1+ (on average 0.96) and scenario
1_5 (on average 0.83); both being lower than the value
of 0.98 observed for 5 +.
Inbreeding coefficients ranged from –0.23 to 0.18 for

SNP and from –0.27 to 0.04 for WGS across the two
scenarios including rare alleles. Correlations between
pedigree and genomic inbreeding coefficients increased
with pedigree depth. Difference in correlations was sig-
nificant between depth1 and depth4 when comparing
GSNP1+ and GWGS1+ to Aped (P-value=0.01), and bet-
ween depth1 and other depths for GSNP1_5 compared to
Aped (P-value=0.02). Similar as for the relationships,
scenario 1_5 showed important differences with scenario
1+ as correlations between Aped and GSNP1_5 for depth1
and all between Aped and GWGS1_5 were not signifi-
cantly different from zero.

Estimated relationships and inbreeding coefficients based
on common versus rare alleles
Hereafter we report correlations within GSNP and GWGS,
between the different MAF scenarios (e.g. between
GSNP5+ and GSNP1+, GSNP5+ and GSNP1_5 or GSNP1+
and GSNP1_5) (Table 4). Comparative Wilcoxon tests
showed significant differences between the estimated re-
lationships of the different scenarios (P-value <1.10−6).
Regarding inbreeding coefficients, differences between
scenarios were only significant when computed from
1_5 WGS5+ WGS1+ WGS1_5

3 11 953 905 15 871 933 3 918 028

1 105 493 1 196 346 90 853

9.248 7.537 2.319



Table 3 Descriptive statistics (Yang method)

Min Mean Max Var

First degree relationships

Aped 0.503 0.548 0.663 0.0014

GSNP5+ 0.368 0.464 0.603 0.0026

GSNP1+ 0.355 0.453 0.617 0.0032

GSNP1_5 0.069 0.315 1.055 0.0367

GWGS5+ 0.339 0.427 0.555 0.0023

GWGS1+ 0.293 0.389 0.543 0.0033

GWGS1_5 0.128 0.275 0.692 0.0154

Second degree relationships

Aped 0.250 0.302 0.406 0.0013

GSNP5+ 0.100 0.216 0.440 0.0038

GSNP1+ 0.094 0.209 0.445 0.0038

GSNP1_5 −0.022 0.113 0.517 0.0093

GWGS5+ 0.075 0.200 0.402 0.0032

GWGS1+ 0.059 0.177 0.382 0.0031

GWGS1_5 0.001 0.105 0.402 0.0048

Less-related

Aped 0.000 0.056 0.245 0.0019

GSNP5+ −0.135 −0.015 0.382 0.0021

GSNP1+ −0.126 −0.015 0.386 0.0019

GSNP1_5 −0.112 −0.012 0.432 0.0011

GWGS5+ −0.113 −0.013 0.349 0.0018

GWGS1+ −0.092 −0.010 0.321 0.0013

GWGS1_5 −0.075 −0.001 0.599 0.0008

Inbreeding coefficients

Aped 0.000 0.027 0.163 0.0009

GSNP5+ −0.244 −0.009 0.109 0.0023

GSNP1+ −0.234 −0.009 0.108 0.0021

GSNP1_5 −0.107 −0.014 0.176 0.0011

GWGS5+ −0.215 −0.037 0.068 0.0017

GWGS1+ −0.200 −0.060 0.045 0.0012

GWGS1_5 −0.273 −0.131 −0.021 0.0015
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whole genome sequence data (P-value <1.10−6). Correl-
ation between scenario 1+ and 5+ for GSNP, in almost all
group of degrees of relationships, did not show signifi-
cant difference from 1, adding variants with low MAF
did not affect estimated relationships when using SNP.
As scenario 1_5 and 1+ partly used the same variants,
they were, for both GWGS and GSNP, better correlated
(0.84 to 0.59) than 1_5 and 5+ (0.65 to 0.50). Moreover,
the correlations between scenario 1+ and 1_5 for GWGS

were higher than for GSNP, indicating that the exclusive
use of variants with a MAF between 1% and 5% gave
estimates that were closer to the estimated relationships
of WGS data, as the latter type of data contains rela-
tively more of these variants.

Similarity-based estimated relationships
Alongside the Yang method, which weighs the contri-
bution of each locus by its MAF, we also computed rela-
tionships based on similarities between genotypes. This
yielded estimated relationships that were generally higher
and with smaller variances than those yielded by the Yang
method. Estimated relationships for genomic data ranged
from 0.40 to 1.94; in particular scenario 1_5 showed high
genomic estimated relationships ranging from 1.47 to 1.94
(Table 5). In fact, relationships estimated using the method
based on similarities are expected to fall in the range
from –2 to 2, –2 corresponding to two individuals
having opposing homozygote genotypes for all variants
and 2 denoting identical homozygote genotypes for all
variants. The scenario including only variants with rare
alleles showed estimates close to 2. This can be explained
by the fact that variants with low MAF in the current
population harboured a high proportion of homozygous
individuals for the common allele, compared to individuals
being heterozygous or homozygous for the minor allele.
Indeed, individuals are likely to be more similar for the
common allele when looking at low MAF variants, causing
by construction higher values for scenario 1_5.
Overall, correlations from the similarity-based method

and Yang method were similar between Aped and G esti-
mated relationships for scenarios 5+ and 1+ (0.96). The
overall correlations between the Aped and G in scenario
1_5 were smaller for similarities, which where 0.43 for
GWGS and 0.39 for GSNP (Figure 3); for the Yang method,
results were 0.93 for GWGS and for GSNP (Figure 2). The
major difference observed when using the similarity-based
method instead of the Yang method was that correlations
between Aped and GSNP or GWGS, within groups of dif-
ferent degrees of relationships, were noticeably higher. On
the other hand, when comparing scenario 1+ and 5+ to
1_5 for both GSNP and GWGS, correlations based on simi-
larities were smaller (Table 6).
Correlations between inbreeding coefficients obtained

from different data sets when using similarities were
mostly not significantly different than those yielded by
the Yang method (Table 6). Inbreeding coefficients from
pedigree were on average close to zero, for SNP and
WGS, in both scenarios 5+ and 1+, around 0.35 and
even higher (0.88) for the scenario 1_5, due to using a
value of 0.5 for all allele frequencies.

Discussion
Whole genome sequence data cover all SNP and struc-
tural variation and are therefore expected to estimate
exact relationships between individuals. With the in-
creasing availability of this source of information, one



Figure 2 Linear regressions plots for A, SNP and WGS against each other (Yang method). Plots of linear regressions of A estimated
relationships from pedigree (Aped), G estimated relationships for Single Nucleotide Polymorphism (GSNP) and whole genome sequence (GWGS)
data using the Yang method. Each linear regression was performed for the scenarios with Minor Allele Frequency (MAF)≥ 5% (5+), ≥ 1% (1+) and
between 1% and 5% (1_5). The first row represents the plots for scenario +5, the second for +1 and the third for 1_5. The first column shows
the linear regression plots of GSNP on Aped. The second column shows the linear regression plots of GWGS on Aped. The third shows the linear
regression plots of GWGS on GSNP. In black is the regression line for an exact linear model (intercept=0, slope=1) and in red is the actual overall
regression line. On the top left corner, the overall correlation coefficient for each linear regression appears.
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major question is whether relationships estimated from
whole genome sequence data are indeed different from
those computed from pedigree and SNP data, and
whether such differences justify the replacement of tra-
ditional data by WGS information. Pérez-Enciso [23]
suggested that new generation sequencing techniques
are as valuable as high density SNP chips for estimating
genomic relationships, provided that coverage and va-
riant density of SNP chips are sufficient. However, an
important benefit of using WGS instead of pedigree and
SNP data is that it enables access, without any ascer-
tainment bias, to information on all variants with rare



Table 4 Correlation coefficients for estimated relationships and inbreeding coefficients (Yang method)

Estimated relationships Inbreeding coefficients

First degree Second degree Less-related Depth1 Depth2 Depth4

Aped ~ GSNP5+ 0.450a,b 0.372a,b 0.511a,b 0.395a,b 0.595a,b 0.721a,b

Aped ~ GWGS5+ 0.487a,b 0.361a,b 0.512a,b 0.392a,b 0.579a,b 0.710a,b

GWGS5+ ~ GSNP5+ 0.973a,b 0.982a,b 0.979a,b 0.979a,b 0.985a,b 0.985a,b

Aped ~ GSNP1+ 0.335a,b 0.351a,b 0.516a,b 0.391a,b 0.601a,b 0.723a,b

Aped ~ GWGS1+ 0.212b 0.286a,b 0.514a,b 0.360a,b 0.570a,b 0.689a,b

GWGS1+ ~ GSNP1+ 0.948a,b 0.967a,b 0.966a,b 0.933a,b 0.936a,b 0.946a,b

Aped ~ GSNP1_5 −0.162b 0.045b 0.374a,b 0.122b 0.448a,b 0.501a,b

Aped ~ GWGS1_5 −0.170b 0.022b 0.351a,b 0.035b 0.142b 0.198b

GWGS1_5 ~GSNP1_5 0.950 a,b 0.857a,b 0.676a,b 0.515a,b 0.487a,b 0.537a,b

GSNP1+ ~GSNP5+ 0.978a,b 0.995a 0.999a 0.999a 0.999a 0.999a

GWGS1+ ~ GWGS5+ 0.888a,b 0.972a,b 0.989a,b 0.965a,b 0.969a,b 0.978a,b

GSNP5+ ~GSNP1_5 0.567a,b 0.587a,b 0.555a,b 0.446a,b 0.467a,b 0.588a,b

GWGS5+ ~ GWGS1_5 0.503a,b 0.647a,b 0.600a,b 0.263a,b 0.185b 0.315a,b

GSNP1+ ~GSNP1_5 0.725a,b 0.661a,b 0.593a,b 0.488a,b 0.494a,b 0.611a,b

GWGS1+ ~ GWGS1_5 0.844a,b 0.808a,b 0.714a,b 0.507a,b 0.423a,b 0.505a,b

a,bwhere ameans significantly different from 0 and bsignificantly different from 1 (P-value ≤0.05).
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alleles. Variants with a MAF between 1% and 5%, de-
fined here as variants with rare alleles, represented
approximately 20% of the segregating variants of the WGS
in our study, a relatively large proportion of the whole
genome sequence variants, but only 7% of the SNP data.
In this study, we showed that additional information from
rare alleles can have a significant impact on estimated
relationships and (to a lesser extent) on inbreeding coef-
ficients. Since these estimates provide the basis for
selection decisions, it can be hypothesised that using se-
quence data instead of SNP data will affect subsequent
selection and that including rare variants in the data
used for estimation will allow focusing more on the
variation carried by such rare variants.

Whole genome sequence data
Whole genome sequencing is a rapidly developing field,
making new tools available for animal breeding but
some limitations are still to be reported. One issue with
WGS is the variant calling accuracy, that tends to be low
at variants showing extreme minor allele frequencies
[24]. The current approach taken for WGS in cattle, is
to sequence key ancestors in the population [11], and
then impute this sequence data for other animals in
the population that are genotyped with high density
SNP chips [24]. Results of imputation of WGS show
poor accuracy for variants with low MAF of 5% and
lower, the accuracy of imputation decreases to below
0.5 [11]. Pérez-Enciso [23] argued that high density
SNP chips are cheaper and more reliable than data
from sequencing followed by imputation. The issue
of low imputation accuracy may be overcome by
using a larger sample size [15]. Further investigations
and applications of whole genome sequence data are
expected to benefit from the growing number of avai-
lable sequences, and the development of better impu-
tation strategies [15,25].
Accuracy of the estimated allele frequencies may

affect estimated relationships, in the sense that small
sample sizes might lead to increased estimation error.
To asses the impact of this issue on our results we per-
formed a simulation study (details in Additional file 2).
Allele frequencies, for each variant of the WGS selected
in scenario 1+, were drawn 100 times from a normal
distribution with mean and variance measured from the
observed allele frequencies. Using each of the 100 sets
of simulated allele frequencies, we computed the rela-
tionships with the Yang method, and correlated them
with the estimated relationships using the observed
allele frequencies. These correlations were all greater
than 0.999, showing that our results were not affected
by innaccuracy of estimated allele frequencies due to
limited sample size.
Finally, in addition to our analysis of the complete

WGS variants set, we performed the relationship com-
putations excluding insertion-deletion variants. Correla-
tions between estimates from all variants or excluding
insertion-deletions were equal to 1 (results not shown).
This observation supported our conclusion that changes
between scenarios and type of data were due to low
MAF variants, and not because the sequence data also
included insertion-deletion variants.



Table 5 Descriptive statistics (based on similarities)

Min Mean Max Var

First degree relationships

Aped 0.503 0.548 0.663 0.0014

GSNP5+ 0.815 0.876 0.974 0.0011

GSNP1+ 0.891 0.949 1.040 0.0010

GSNP1_5 1.686 1.851 1.939 0.0026

GWGS5+ 0.957 1.008 1.080 0.0006

GWGS1+ 1.165 1.209 1.265 0.0005

GWGS1_5 1.719 1.822 1.876 0.0013

Second degree relationships

Aped 0.250 0.302 0.407 0.0013

GSNP5+ 0.617 0.693 0.847 0.0021

GSNP1+ 0.705 0.778 0.921 0.0019

GSNP1_5 1.622 1.830 1.910 0.0028

GWGS5+ 0.786 0.864 1.009 0.0013

GWGS1+ 1.034 1.096 1.207 0.0009

GWGS1_5 1.661 1.807 1.859 0.0016

Less-related

Aped 0.000 0.056 0.245 0.0019

GSNP5+ 0.405 0.502 0.746 0.0017

GSNP1+ 0.501 0.597 0.829 0.0017

GSNP1_5 1.477 1.773 1.925 0.0040

GWGS5+ 0.634 0.715 0.911 0.0010

GWGS1+ 0.889 0.976 1.132 0.0009

GWGS1_5 1.576 1.771 1.868 0.0017

Inbreeding coefficients

Aped 0.000 0.027 0.163 0.0009

GSNP5+ 0.003 0.251 0.347 0.0015

GSNP1+ 0.059 0.298 0.390 0.0014

GSNP1_5 0.706 0.886 0.974 0.0020

GWGS5+ 0.163 0.342 0.417 0.0010

GWGS1+ 0.321 0.473 0.537 0.0007

GWGS1_5 0.764 0.873 0.930 0.0009
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Relationship estimators
Differences between pedigree and marker-based estima-
tors have three main causes. Firstly, pedigree estimators
rely on the fact that 50% of the genome is transmitted
from parents to offspring. Likewise, two non-inbred full
sibs theoretically are expected to share 50% of their gen-
ome. Marker-based methods, however, give access to the
actual shared proportion. In the case of full sibs, for
example, the share of genome might vary from the 50%
value due to Mendelian sampling [26]. Secondly,
pedigree-based methods assume that individuals with
unknown parents do not have alleles in common.
Therefore, pedigree-based estimators measure the
proportion of genome shared by two individuals de-
scending from an assumed unrelated founder po-
pulation; Identical By Descent (IBD). Marker-based
methods, on the other hand, estimate the proportion
of the genome that is Identical By State (IBS). Marker-
based estimators, such as the Yang method, apply cor-
rection for allele frequencies that increases the weight
of low MAF variants. Such estimators are therefore ex-
pected to be more similar to IBD estimators, relative to
the base population from which the allele frequencies
are defined. Finally, the estimators differ in the way
that this base population is assigned. Pedigree estima-
tors assume an arbitrary base population, defined as
the founder individuals in the pedigree. Marker-based
estimators define the base populations depending on
the allele frequencies used for the estimation. The
similarity-based method is defined as being an estima-
tor of relationships when founder alleles are unique
[27]. It is equivalent to defining the founder population
further back in time, as confirmed by the high inbreeding
coefficients obtained in this study. As argued by VanRaden
[28], estimated relationships should be computed using
allele frequencies from the founder population. Since
the actual founder population is usually unknown, these
estimates may be computed from the base population in
the pedigree. One way to do this is described by Gengler
et al. [29]. In practice, due to difficulties for coping with
discrepancies in pedigree completeness and depth, allele
frequencies from the current population are mostly
used. Likely because such frequencies had been used to
compute the Yang estimator in our study, the consid-
ered base population when computing similarities was
closer to the base population of the pedigree than to the
one used in the Yang estimator. Evidence can be seen in
our results; more similar relationships, so higher corre-
lations, were observed between pedigree-based and
similarity-based estimators than between pedigree-
based and the Yang estimator. As suggested by Luan
et al. [30], different estimators capture different ages of
relationships and when the earliest relationships are of
interest, IBS estimators will be more accurate than esti-
mators based on pedigree.
Analogous to our similarity-based method, Pérez-

Enciso [23], in a simulation study, estimated relation-
ships based on the fraction of alleles shared by two indi-
viduals without accounting for differences in allele
frequencies. Forni et al. [31] also compared different sce-
narios based on similarities, or allele frequencies when
using SNP data. Both Forni et al. [31] and Pérez-Enciso
[23] argued that the use of estimators scaled by the allele
frequencies, such as achieved by the Yang estimator used
in our study, provide standardised diagonal and off-
diagonal estimates, which are more appropriate for fur-
ther application in selection strategies.



Figure 3 Linear regressions plots for A, SNP and WGS against each other (based on similarities). Plots of linear regression of A estimated
relationships from pedigree (Aped), G estimated relationships for Single Nucleotide Polymorphism (GSNP) and whole genome sequence (GWGS)
data, based on similarities. Each linear regression was performed for the scenarios with Minor Allele Frequency (MAF)≥ 5% (5+), ≥ 1% (1+) and
between 1% and 5% (1_5). The first row represents the plots for scenario +5, the second for +1 and the third for 1_5. The first column shows the
linear regression plots of GSNP on Aped. The second column shows the linear regression plots of GWGS on Aped. The third shows the linear regression
plots of GWGS on GSNP. In black is the regression line for an exact linear model (intercept=0, slope=1) and in red is the actual overall regression line. On
the top left corner, the overall correlation coefficient for each linear regression appears.
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By correcting for allele frequencies, the Yang estimator
puts relatively more emphasis on low MAF variants.
Rare alleles are either recent mutations or ancient alleles
driven to low allele frequencies through time due to
drift, or natural and artificial selection. These alleles
have a higher risk for disappearing after a few gene-
rations; thus in the framework of genetic diversity
conservation, it may be desirable to put a higher priority
on rare compared to common alleles in order to balance
the potential loss of genetic diversity. This suggests that
the Yang estimator may also be most appropriate when
computed relationships are used for genetic diversity
conservation decisions, which aim to conserve variation
at low MAF variants as much as possible.



Table 6 Correlation coefficient for estimated relationships and inbreeding coefficients (based on similarities)

Estimated relationships Inbreeding coefficients

First degree Second degree Less-related Depth1 Depth2 Depth4

Aped ~ GSNP5+ 0.703a,b 0.531a,b 0.698a,b 0.474a,b 0.618a,b 0.665a,b

Aped ~ GWGS5+ 0.618a,b 0.508a,b 0.633a,b 0.394a,b 0.544a,b 0.616a,b

GWGS5+ ~ GSNP5+ 0.936a,b 0.935a,b 0.916a,b 0.928a,b 0.950a,b 0.962a,b

Aped ~ GSNP1+ 0.700a,b 0.542a,b 0.707a,b 0.484a,b 0.622a,b 0.660a,b

Aped ~ GWGS1+ 0.610a,b 0.551a,b 0.660a,b 0.425a,b 0.565a,b 0.601a,b

GWGS1+ ~ GSNP1+ 0.915a,b 0.909a,b 0.905a,b 0.914a,b 0.934a,b 0.947a,b

Aped ~ GSNP1_5 0.259b 0.286a,b 0.474a,b 0.269a,b 0.269a,b 0.237b

Aped ~ GWGS1_5 0.222b 0.277a,b 0.423a,b 0.242a,b 0.248b 0.201b

GWGS1_5 ~GSNP1_5 0.869a,b 0.791a,b 0.813a,b 0.782a,b 0.697a,b 0.666a,b

GSNP1+ ~GSNP5+ 0.994a 0.996a 0.995a 0.996a 0.998a 0.999a

GWGS1+ ~ GWGS5+ 0.922a,b 0.947a,b 0.949a,b 0.960a,b 0.970a,b 0.983a,b

GSNP5+ ~GSNP1_5 0.346a,b 0.260a,b 0.521a,b 0.280a,b 0.307a,b 0.508a,b

GWGS5+ ~ GWGS1_5 0.194b 0.115b 0.398a,b 0.195a,b 0.185b 0.367a,b

GSNP1+ ~GSNP1_5 0.449a,b 0.343a,b 0.603a,b 0.362a,b 0.365 a,b 0.543a,b

GWGS1+ ~ GWGS1_5 0.559a,b 0.427a,b 0.668a,b 0.462a,b 0.417a,b 0.533a,b

a,bwhere ameans significantly different from 0 and bsignificantly different from 1 (P-value ≤0.05).
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Comparison of pedigree, SNP and sequence-based
standardised estimates
In our study, correlations were high only between GSNP

and GWGS (ranging from 0.68 to 0.98 for all scenarios),
in agreement with a correlation of 0.92 between both
scenarios reported by Pérez-Enciso [23]. Additionally, in
our study, the correlation between GSNP and GWGS on
one hand and A on the other hand were considerably
lower and variances of estimated relationships were
generally higher for both GSNP and GWGS than for A,
comparable to results found in other studies [31-34].
Grouping individuals according to their pedigree

depths showed that longer pedigree records led to
closer correlation between pedigree and genomic in-
breeding coefficients. Negative inbreeding coefficients,
i.e. self-relationships lower than one, were also ob-
served. With ‘inbreeding’ defined as the mating of in-
dividuals that are more related than the average of the
population [34], negative inbreeding coefficients occur
when individuals have an excess of observed hetero-
zygous genotypes, compared to the expected number
based on the allele frequencies of the population [35].
Finally, in this study we observed that inbreeding co-
efficients computed from whole genome sequence data
were significantly different depending on the MAF
restriction chosen.
Pérez-Enciso [23] argued that relaxing the MAF cut-

off point for variants array design, which are customised
according to a population, can be used for more accu-
rate relationship estimation. Edriss et al. [16] also argue
that a MAF restriction between 0.01 and 0.02, instead of
a higher threshold, may lead to an improvement in the
accuracy of genomic predictions. Rare alleles are of
interest in genetic diversity conservation. From our re-
sults it can be speculated that including variant with low
MAF, by using WGS information, may impact prioritisa-
tion for genetic diversity conservation. Further studies
are needed to confirm this hypothesis.

Conclusions
Relationships computed from whole genome sequence
data are expected to reflect the true relationships between
individuals; therefore, sequence data are considered a valu-
able resource for improving estimated relationships. In
this study, estimated relationships and inbreeding coeffi-
cients from pedigree and genomic information were
hardly correlated; when from SNP and WGS data they
were shown to be strongly correlated. Nevertheless, when
using the sequence data, neglecting rare alleles, i.e. vari-
ants with a MAF below 5%, led to significant changes in
the estimated relationships. Such changes may affect selec-
tion strategies for long-term selection and genetic diversity
conservation. If conservation of genetic diversity is geared
towards safeguarding all accessible variation, then rela-
tionship estimators that weigh genotypes by their allele
frequencies are to be preferred, possibly combined with
the use of sequence data. The following question, however,
remains un-answered: to what extent will the use of whole
genome sequence data and rare allele information affect
selection strategies such as Optimal Contribution Selec-
tion in optimising long-term genetic improvement and
genetic diversity conservation?
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