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Abstract
We integrated recent research on cardinal temperatures for phenology and early leaf growth,

spikelet formation, early morning flowering, transpirational cooling, and heat- and cold-in-

duced sterility into an existing to crop growth model ORYZA2000. We compared for an arid

environment observed potential yields with yields simulated with default ORYZA2000, with

modified subversions of ORYZA2000 and with ORYZA_S, a model developed for the region

of interest in the 1990s. Rice variety ‘IR64’was sownmonthly 15-times in a row in two loca-

tions in Senegal. The Senegal River Valley is located in the Sahel, near the Sahara desert

with extreme temperatures during day and night. The existing subroutines underestimated

cold stress and overestimated heat stress. Forcing the model to use observed spikelet num-

ber and phenology and replacing the existing heat and cold subroutines improved accuracy

of yield simulation from EF = −0.32 to EF =0.70 (EF is modelling efficiency). Themain causes

of improved accuracy were that the newmodel subversions take into account transpirational

cooling (which is high in arid environments) and early morning flowering for heat sterility, and

minimum rather than average temperature for cold sterility. Simulations were less accurate

when also spikelet number and phenology were simulated. Model efficiency was 0.14 with

new heat and cold routines and improved to 0.48 when using new cardinal temperatures for

phenology and early leaf growth. The new adapted subversion of ORYZA2000 offers a pow-

erful analytic tool for climate change impact assessment and cropping calendar optimisation

in arid regions.

Introduction
Heat and cold sterility may limit rice production in the current and future climate. Together
with phenology they determine in which period rice can be grown with acceptable yield. Crop
models can be used to explore options for larger areas and future climates. The simulations by
Matthews et al. [1,2] showed large future yield reductions due to increased heat sterility for sev-
eral regions in parts Asia. Two recent global studies [3,4] show for arid regions such as the
Sahel and Pakistan very different impacts of climate change. In the Gourdji paper [3] the arid
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regions colour dark red showing large climate risks. The Texeira study [4] shows much smaller
climate risks in the same regions. We cannot discuss causes of these different outcomes here,
but the large discrepancies clearly show that large uncertainty exists in climate change impacts
on rice production in arid regions. A lot of experimental research has been conducted on heat
and cold sterility risks in rice over the past decade which has not yet been incorporated into ex-
isting crop growth models. This study focusses on the ability of the ORYZA2000 model to sim-
ulate yields in two sites in Senegal. Senegal is a country with access to river irrigation water, in
the Sahel, close to the Sahara desert. Radiation levels are high, humidity is low, temperatures
are often above 40°C for days in a row and dangerously low night temperatures (<15°C) occur
during part of the year. The large temperature differences within days and at different times of
the year make the Sahel regions an interesting site for model evaluation under a wide range of
temperature conditions.

As we will show in this paper, the original ORYZA2000 model could not accurately simulate
yields in environments with extreme temperatures. We proposed and tested a series of model
improvements based on recent experimental research. In environments without severe heat
and cold sterility and when phenology is separately calibrated for experiments, ORYZA2000
has been shown to accurately simulate yields [5–15]. On the other hand, it has been shown that
the predecessor of ORYZA2000, the ORYZA1 model [16], could not well simulate yields in
arid regions such as the Sahel. Main problems identified were poor simulation of phenology,
heat and cold sterility. A separate version of ORYZA1, called ORYZA_S, was developed that re-
solved those issues [17,18]. It included a new submodel for rice development and sterility
(RIDEV). Over the last two decades ORYZA1 was extended with ability to simulate water and
nitrogen limited production [8]. New research has led to better insights in heat and cold sterili-
ty [19,20] in arid and humid climates. These new insights have been incorporated in RIDEV2
(the successor of RIDEV) and they are currently being incorporated into the SAMARA model
(Dingkuhn, pers. comm.). At this stage we could have proceeded with either ORYZA_S or with
ORYZA2000. We chose to proceed with the ORYZA2000 because we hope that any improve-
ment in the main model can also be useful under other conditions than those tested here, i.e.
with water or nitrogen limitation [8] or in crop rotations [21]. With ORYZA_S such applica-
tions would not be possible. All parts of the model ORYZA2000 are well documented in a book
[8]. The fact that the source code of the ORYZA2000 model is freely available makes the model
easily amenable for possible improvements.

Four bodies of experimental research seemed especially relevant for incorporation into the
existing model: (1) cardinal temperatures for phenology, (2) cardinal temperatures for early
leaf growth, (3) spikelet formation and (4) heat and cold sterility. Firstly, we revisited assump-
tions on cardinal temperatures. Van Oort et al. [22] showed that phenology simulation could
be improved by assuming, for the variety considered in this paper, cardinal temperatures quite
different from the default cardinal temperatures in ORYZA2000: a higher base temperature
(14°C vs 8°C), a slightly higher optimum temperature (31°C vs 30°C) and no delay in develop-
ment above the optimum temperature. Secondly, cardinal temperatures are also relevant for
simulating early leaf growth, which is generally assumed to be temperature dependent. Under
the default settings ORYZA2000 simulates early leaf growth assuming cardinal temperatures of
8, 30 and 42°C, i.e. no leaf growth below 8°C and above 42°C and highest growth rates at 30°C.
Most publications on early leaf growth in tropical environments suggest a higher base tempera-
ture: Nishiyama et al. [23]: 7–16°C (same data are cited in [24]); Rebolledo et al. [25]: 12°C;
Sanchez et al. [26]: 11.8°C for leaf initiation and 14.5°C for shoot growth). Thirdly, we revisited
assumptions on modelling spikelet formation. In ORYZA2000, spikelet number is simulated as
the total biomass growth from panicle initiation to flowering multiplied with a constant spike-
let growth factor (SPGF). Recent work by Yoshida et al. [27] and Kato and Katsura [28]
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suggested to split up the phase into two separate phases. First, up to about two weeks after pan-
icle initiation juvenile spikelets are formed. The number of juvenile spikelets depends on total
N in the crop (kg N ha−1). Next in the approximately 2 weeks before flowering, spikelets may
be aborted if biomass growth during that period is insufficient. Fourth, we revisited assump-
tions on heat and cold sterility modelling. In the current ORYZA2000 model, sterility is simu-
lated using daily maximum temperature (Tmax), which generally occurs around 2pm (2 hours
after the sun reached its highest point above the horizon). In reality rice more often flowers late
in the morning (when temperatures are lower), an adaptive capacity to avoid heat stress
[19,29,30]. Another problem with using Tmax is that it ignores transpirational cooling. Several
studies have shown that in arid climates significant transpirational cooling of the panicle can
occur [20,31,32, 33,34], leading to panicle temperatures up to 7°C cooler than air temperature
at flowering time. Ignoring flowering time and transpirational cooling could lead to overesti-
mation of heat sterility, especially in arid environments. ORYZA2000 simulates cold sterility
with a cooling degree days approach in which a temperature sum is accumulated for days with
average temperature below a threshold temperature [35,36]. A possible drawback of this meth-
od is that in environments with a large diurnal temperature amplitude, such as in the arid cli-
mate considered in this paper, average temperature may seem “safe” while in reality the low
night temperatures have a severe impact. A second critique on the cooling degree days ap-
proach is that it uses air temperature, while using a combination of water and air temperatures
could result in more accurate predictions [20,37,38]. While this is well accepted, the challenge
for modellers is to how to model water temperature. We used the empirical equations pre-
sented in [39,40]. We are aware that more mechanistic water temperature models exist [41,42].
But since we were unsure about their validity in the environment considered here whereas the
RIDEV2 model was developed based on observations in the same environment as in which
our experiments were conducted, we chose to proceed with the RIDEV2 equation for water
temperature.

The objectives of this paper are (1) to integrate above mentioned research into the frame-
work of the ORYZA2000 model and (2) to test systematically for each of them individually and
combined how much they contribute to increased accuracy in yield simulation.

Methods
In the following sections we will describe the models used and the modifications made (§2.1
and §2.2), the experimental data (§2.3) and the methods of model comparison (§2.4)

ORYZA_S
Although we chose to proceed with ORYZA2000, we did use the ORYZA_S model [17,18] as a
benchmark. For this we used the version of ORYZA_S used in a WARDA training course in
march 1999. This version contained locally optimised parameters for variety IR64, the same as
used in this study. We performed two simulations:

1. With phenology and spikelet number forced to observed values. The method for forcing of
phenology is the same as described in section 2.2.1

2. With phenology simulated using RIDEV. Spikelet number in ORYZA_S is simulated using
the same method as in ORYZA2000, section 2.2.3 of this paper

ORYZA_S uses the RIDEV model for simulating phenology, a modification relative to the
ORYZA1 and ORYZA2000 method of simulating phenology. For RIDEV, we used the IR64 pa-
rameter values as present in the ORYZA_S code. These parameters were determined in the
early 1990s based on similar experiments as described in this paper. ORYZA_S uses modified
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heat and cold sterility equations based on Dingkuhn and Sow [17,18]. Cold sterility is calculat-
ed based on the average of minimum air temperatures in the period from development stage
0.85 to 1.0, approximately the 14 days before flowering. Heat sterility is calculated based on
daily average temperatures, averaged over the period from development stage 0.95 to 1.25,
approximately the 12 days centred around the 50% flowering date.

ORYZA2000 with modifications
Our starting point was the ORYZA2000 model version 2 number 13. Subversions of the model
were developed incorporating theories described in the following subsections. For naming con-
vention, we suggest to use ORYZA2000v2n13s1 (version 2, number 13, subversion 1), which
we will for brevity in this paper refer to as s1 to s26. All acronyms used in the sections below
are listed in a supporting table (S1 Table).

The ORYZA2000 model dynamically simulates physiological processes in interaction with
their environment [8]. The ORYZA2000 has been extensively validated in other studies (see
the list of references cited in the introduction). We used default crop parameters from the crop
file for variety IR72, which provide a good base assumption for other high yielding irrigated
lowland varieties such as IR64 [15]. Any modifications to parameter values specifically for
IR64 are discussed in the following sub sections. We simulate potential production, which is
production free from weeds, pests, diseases, water stress and nutrient stress. It is impossible to
describe the full model here but a good book and website are available [8], https://sites.google.
com/a/irri.org/oryza2000/home). In the following section we document the modifications
made.

Phenology
In ORYZA2000 the following developmental phases are discerned:

• Basic Vegetative Phase (BVP): DVS = 0 to DVS 0.4

• Photoperiod Sensitive Phase (PSP), DVS 0.4 to 0.65, ending at panicle initiation

• Post PSP phase (PPP), DVS 0.65 to 1.0, ending at 50% flowering

• Grain Filling Phase (GFP), DVS 1.0 to 2.0, ending at maturity

We applied two approaches for simulating phenology (motivation for this is in §2.4). In
step 1 we forced phenology to observed values using the very simple approach below. Daily de-
velopment rates (unit d−1) were set to:

DVRBVP;i ¼ DVRPSP;i ¼ 0:65=ðOBSDURBVP;i þOBSDURPSP;iÞ ð1Þ

DVRPPP;i ¼ ð1:0� 0:65Þ=OBSDURPPP;i ð2Þ

DVRGFP;i ¼ ð2:0� 1:0Þ=OBSDURGFP;i ð3Þ

Where OBSDURp,i is the duration of phase p in treatment i in days. Note that the point of
transition from the BVP to PSP was not observed, therefore these phases were combined. De-
velopment stage DVS was then calculated adding up these respective development rates, accu-
mulating one DVR unit per day. This approach ensures exact reproduction of observed dates
of emergence, panicle initiation, flowering and maturity without having to go through the com-
plexities of separately calculating temperature sum dependent development rates for each
phase and each sowing date.
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In step 2 we simulated phenology using the bilinear temperature response model and hourly
air temperatures. We created one model subsversion with default parameters: cardinal temper-
atures (8, 30, 42°C for base, optimum and maximum temperature for development), no photo-
period sensitivity and a transplanting shock parameter of 0.4. We also created subversions with
optimised cardinal temperatures (14, 31, 999°C), no photoperiod sensitivity and a transplant-
ing shock parameter of 0.0. These parameters were previously determined from the same phe-
nological and climate data as used in this paper, using a phenology calibration program
described in [22]. This phenology calibration program calibrates all phenological parameters
simultaneously and minimises correlation between phenology errors and temperature. Basical-
ly this research showed that with the default cardinal temperatures, duration from emergence
to flowering was underestimated at lower temperatures and overestimated at higher tempera-
tures. We will present further on in the paper a comparison of simulated duration from emer-
gence to flowering as obtained with these different cardinal temperatures. The base and
optimum temperatures obtained by van Oort et al. [22] are consistent with a recent indepen-
dent review of base, optimum and maximum temperatures for development [26]. Note that
these base temperatures are for a bilinear temperature response model. Other studies have
shown that phenology can be more accurately simulated with a sigmoid or bell shaped function
[43,44]. In such functions we often find lower base temperatures but with hardly any increase
in development rate (low slope) up to somewhere between 10 and 16°C. So the meaning of the
base temperature is different depending on the model used. In practice nobody would grow
rice under temperatures close to the base temperature for prolonged time, in that sense this
base temperature will always remain somewhat hypothetical. Likewise uncertainty exists in the
nature of temperature response above the optimum temperature [45], The SIMRIWmodel
and cardinal temperatures calibrated by van Oort et al. [22] suggest no decrease in develop-
ment while several other phenology models show a sharp decrease in development towards a
maximum temperature. Few studies have been conducted in environments with temperatures
above the optimum for a long time. The Sahel environment is interesting for phenological stud-
ies because such contrasting temperatures occur, often for prolonged times above the optimum
temperature for development.

Leaf growth
Leaf growth in ORYZA2000 is split into two phases. When the leaf area index (LAI) is below
1.0 (m2 leaf m−2 soil) leaf growth is simulated as a function of temperature only. While LAI is
above 1.0, leaf growth is simulated as dependent on net photosynthesis and assimilate parti-
tioning to leaves. A mechanism has been implemented in subroutine SUBLAI3 to ensure a
smooth transition between temperature and radiation driven LAI growth around the LAI = 1
point. For the first (LAI<1) phase, hourly air temperatures are calculated as [8: p. 31]:

TairðtÞ ¼
ðTmax � TminÞ

2
þ ðTmax � TminÞ

2
� cosð0:2618� ðt � 14ÞÞ ð4Þ
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Hourly heat units for leaf development (HULV(t), °Ch) are calculated as [8: p. 32]:

HULV ðtÞ¼

0

TairðtÞ � TBLV

ðTOD � TBLV Þ TMD � TairðtÞ
TMD � TOD

� �
for

for

for

TairðtÞ � TBLV ; TairðtÞ � TMD

TBLV < TairðtÞ � TOD

TOD < TairðtÞ � TMD

ð5Þ

8>>>>><
>>>>>:

The same approach is used for calculating thermal time for phenology. In these equations
TBLV, TOD, and TMD are the base, optimum and maximum temperature for
leaf development.

From the hourly values, the daily average heat unit (HULV, °Cd) is calculated. Daily LAI
growth, GLAI, is calculated as:

GLAI ¼ LAI � RGRL� HULV ð6Þ

Where RGRL is the “relative growth rate of the leaves” parameter. Equation 6 results in an LAI
growing exponentially with temperature sum (= accumulated HULV over multiple days), see
Bouman et al. [8: p. 65].

For the phase when LAI is greater than 1, LAI keeps growing depending on simulated leaf
mass growth (RWLVG) and specific leaf area (SLA) and loss of leaves dues to senescence
(LLV). RWLVG depends on total net biomass growth and on the fraction assimilates parti-
tioned to the leaves FLV. In the model FLV and SLA are both functions of development stage.
It was noted during simulations that for the crops with very long periods from emergence to
flowering, LAI would reach very high values. This occurred in Fanaye with sowing in October
to December and in Ndiaye with sowings from October to April. During these periods low
temperatures ensured a long vegetative period while high radiation levels allowed for high LAI
growth. The highest simulated LAI was 22. Such LAI values are not realistic. What is more real-
istic is a maximum of around 10. Even an LAI of 10 will only be obtained under exceptional
conditions (long growing season, ample nutrition, water and radiation). The unrealistic high
LAI values may have different causes. One could be that the simulations overestimate early
growth. We first tried modifying the parameter RGRL. This lead to improved predictions for
some sowing dates but poorer prediction for the other dates. Replacing the cardinal tempera-
tures was more effective, and as we showed in the introduction, several studies [23–26] sug-
gested base temperatures higher than the default 8°C for TBLV. A second possible explanation
for the unrealistic high LAI is that the default model does not account for reduced assimilate
partitioning to the leaves (FLV) at lower temperatures [17,18]. We implemented temperature
dependent partitioning as:

FLV ¼ f
0:33 þ 0:0091 � TAV 0:0 � DVS � 0:3

0:48 � 0:49 � DVS þ 0:0091 � TAV 0:3 < DVS � 0:8

ð1�DVSÞ � ð0:45þ 0:045� TAV Þ 0:8 < DVS < 1:0

ð7Þ

TAV ¼ ðTmax � TminÞ=2 ð8Þ

With these equations FLV is higher for higher daily average temperatures (TAV, °C). FLV
decreases with development stage (DVS) to 0 at flowering (DVS = 1.0). The fraction assimilates
partitioned to the storage organ (FSO) is a fixed function of development stage. And the
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fraction assimilates partitioned to the stem is calculated as 1—FLV—FSO. Under default set-
tings FLV also decreases with DVS [8: p. 172] but FLV is not adjusted by TAV as above.

A third possible explanation for the unrealistic high LAI is that leaves in the bottom of the
canopy could die when for prolonged time insufficient radiation penetrates through the canopy
and when leaves reach a certain age. This process, which we will refer to as “shading to kill
leaves”, is not present in ORYZA2000 version 2 number 3. Following the SUCROS model
[46,47] we used the following function to kill leaves:

LLVSH ¼ maxð0:0;minð0:03; 0:03� ðLAI � LAICRÞ = LAICRÞÞÞ �WLVG ð9Þ

Where LLVSH (kg DM ha−1 d−1) is the loss of leaf dry matter (DM) due to shading, WLVG is
total green leaf dry matter (kg DM ha−1) on a given day and LAICR = 4.0 (m2 leaf m−2 soil) is
the critical LAI above which leaves start to die. According to this equation, no leaves die below
LAICR. Above LAICR the fraction of leaves dying increases linearly with LAI, up to a maxi-
mum of 3% a day at LAI = 8 and higher. A very similar shading function is used in the
WOFOST crop growth model. Version 3 of the ORYZA2000 model also has a “shading to kill
leaves” function that accounts for genetic variation in tolerance to shading and which simulates
higher death rates at lower radiation levels (Tao Li pers. comm.). We simulated with these dif-
ferent approaches for “shading to kill leaves” and found that they resulted in almost similar val-
ues for accuracy of yield simulation. Since we lacked LAI data for validation, it remains
impossible to tell which one is most correct. For simplicity we will present only results of the
Equation 9 “shading to kill leaves” function.

We created model subversions for early growth (Eq 5–7) by using either (1) the default (8,
30, 42°C) values for TBLV, TOD, and TMD or (2) the values obtained from the phenology cali-
bration exercise discussed in previous section (14, 31, 999°C). We created subversions by using
for partitioning either (1) the default non-temperature dependent function or (2) the tempera-
ture dependent partitioning function (Eq 8). We created subversions without and with the
“shading to kill leaves” function (Eq 9).

Spikelet formation
In ORYZA2000 and in ORYZA_S the number of spikelets formed during the PPP phase (pani-
cle initiation to flowering) is calculated as [8: p. 60]:

NSP ¼
X

CGR� SPGF ð10Þ

Where GCR is the gross biomass growth in kg dry matter per day simulated by the model.
SPGF, the spikelet growth factor, is a parameter indicating the number of spikelets formed per
kilogram of dry matter formed (no kg−1). Summation is over the PPP development phase
(0.65<DVS<1.0). The experimentally determined SPGF is 64900 for variety IR72 [8: p. 61].

Yoshida et al. [27] and Kato and Katsura [28] split up the PPP phase into two separate
phases. First, up to about two weeks after panicle initiation, juvenile spikelets are formed. Their
number depends linearly on total nitrogen (N) in the crop (kg N ha−1). Next in the approxi-
mately 2 weeks before flowering, spikelets may be aborted if biomass growth is insufficient.
ORYZA2000 simulates the N content in leaves, in g N m−2 leaf ha−1. From this in combination
with specific leaf area (SLA) we can calculate the new variable for leaf N content (NCLV, kg N
per kg leaf). Stem N content (NCST) is assumed to be half of leaf N content (cf [8: p. 101]). We
multiply these N contents with leaf and stem biomass (kg DM ha−1) to obtain total N of the
aboveground biomass (NBIOM, kg N ha−1). At DVS 0.825, halfway between panicle initiation
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and flowering, we simulate the total number of juvenile spikelets as:

NSPJUV ¼ NBIOM � SPGFJ ð11Þ
Where SPGFJ is the spikelet growth factor for juvenile spikelets formed per kilogram of N in
the total above ground biomass. This model is a simplification of the Yoshida et al. [27] model
in which at very low NBIOM spikelet formation is higher than expected based on a linear
Equation (11). We chose for this simpler model for its simplicity and because NBIOM in our
experiments was always expected to be high. Fig. 1 shows for variety IR72 the relation between
NSPJUV and NBIOM, with SPGFJ = 4,131,400 juvenile spikelets / kg N (or 4,131 juvenile
spikelets per gram N as in Fig. 1). The NSPJUV values shown in this figure were not directly
measured, but inferred from final NSP taking into account an abortion function for which the
parameter was estimated as described in [27].

In the second phase, a fraction of the juvenile spikelets is aborted (see also [48,49]). We de-
note the days from DVS 0.825 to flowering (DVS = 1.0) as CNT2BF and the sum of daily gross
biomass growth during this period as GCR2BF = SGCR. With the Yoshida model [27] the
final number of spikelets (no ha−1) was calculated at flowering as:

NSP ¼ NSPJUV � 1� e �0:1232�0:1�GCR2BF
CNT2BFð Þ� �

ð12Þ

Where the exponential term is the fraction aborted spikelets and 0.1 is a unit conversion term.
Kato and Katsura [28] proposed an alternative model for abortion:

NSP ¼ NSPJUV � 1� e
�0:61� GCR2BF

NSPJUV�3:0�10�6

� � !
ð13Þ

In this equation NSPJUV is multiplied with floret weight, which we assumed to be 3 mg
per floret.

Broadly, the three approaches are similar in that more biomass growth from PI to flowering
results in more spikelets. Under N limitation, the Yoshida model [27] and the Kato and Kat-
sura model [28] predict lower spikelet formation. But also the default Equation 10 would pre-
dict less spikelet formation under N stress, as N stress would also reduce GCR. Also under
non-limiting conditions such as in our experiments the three approaches can give different re-
sults, due to their sensitivity to the leaf mass: stem mass ratio. Imagine two crops with the same
total leaf + stem mass, but one crop has relatively more leaves. Since N content of the leaves is
higher than that of the stems, the crop with more leaves will produce more juvenile spikelets
(Eq 11). Abortion would also be lower if the higher leaf mass results in a higher GCR2BF. To-
gether, production of mature spikelets (NSP) would be higher. We may therefore expect that
the accuracy of the spikelet formation calculation depends strongly on accurate simulation of
leaf and stem growth. We compared the three approaches for simulating spikelet number,
using either the default value for SPGF (= 64900) or SPGFJ = 4131400 from Fig. 1.

Heat fertility
Heat fertility in ORYZA2000 is simulated as a function of maximum air temperature [8: p. 61]
based on earlier work by Horie [36]:

SFHEAT ¼ 1

1þ exp 0:853�Tm;a � 36:6
� � 14

Where Tm,a is the average of maximum air temperatures from DVS 0.96 to 1.2, a period of
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approximately 10 days centred around the 50% flowering date. Equation 14 describes a sigmoid
with 90% fertility at 34°C, 50% fertility at 36.6°C and 10% fertility at 39.2°C.

Our new heat sterility model is based on recent work by Julia and Dingkuhn [19,20], van
Oort et al. [32] and Jagadish et al. [50], but inspired also by works of Matsui et al. [31] and
Weerakoon et al. [51] who showed the importance of correcting for transpirational cooling.
Improvements relative to the ORYZA2000 model include consideration of flowering time
within the day (earlier flowering leads to exposure to lower temperatures) and transpirational
cooling. First, peak flowering time was calculated based on the average of minimum tempera-
tures in the preceding 7 days (Tmin7) and sunrise time (tsunrise), a function from Julia and Ding-
kuhn [17]:

tpeakfl ¼ tsunrise þ 12:7� 0:348� Tmin7 ð15Þ

Air temperature at peak flowering time was calculated by using the Goudriaan and van Laar
[52] and Ephrath et al. [53] diurnal temperature model, with Tmin and Tmax the minimum and

Fig 1. Relation between number of juvenile spikelets as a function of total nitrogen in above ground biomass, variety IR72, based on data
presented in Yoshida et al. [27].

doi:10.1371/journal.pone.0118114.g001

Improved Climate Risk Simulations for Rice in Arid Environments

PLOS ONE | DOI:10.1371/journal.pone.0118114 March 16, 2015 9 / 27



maximum air temperature and DL the daylength (see also [32]):

TairðtpeakflÞ ¼ Tmin þ ðTmax � TminÞ � sin p� tpeakfl � tsunrise
DLþ 2�1:5

� �
ð16Þ

The vapour pressure deficit VPD (in kPa) was calculated from the early morning vapour
pressure VPA (which was calculated assuming Tdew = Tmin, see §2.3.2) and the saturated va-
pour pressure at Tair(tpeakfl), Equation 17. Panicle temperature Tpan(tpeakfl), was then calculated
based on the equation reported in Julia and Dingkuhn [18]:

VPDðtpeakflÞ ¼ 0:6107� exp
TairðtpeakflÞ � 17:4

239þ TairðtpeakflÞ

 !
� VPA

 !
ð17Þ

TpanðtpeakflÞ ¼ TairðtpeakflÞ � 1:29� VPDðtpeakflÞ � 0:01 ð18Þ

Transpirational cooling with Equation 18 can be as large as 7°C (at RH = 25%, Tair = 40°C).
A second empirical model for transpirational cooling was recently published [32]. Within the
range of relative humidities and temperatures present in our environment this second model
predicts similar magnitudes of transpirational cooling. Since the choice between the two is then
arbitrary, but the Julia and Dingkuhn [17] empirical model was based on a larger dataset, we
chose to simulate only with their model.

Different equations have been presented for the relation between panicle temperature and
heat fertility. Some of these are based on counts of germinated pollen or counts of pollen on
stigma (for example see [31,51, 54–58]). Others are based on the assumption that the fraction
filled spikelets (FFS) is the same as the fertility (e.g. [59,60,61]). The latter assumption is valid
only when the crop is sink limited, under source limitation FFS will be less than fertility
(SPFERT). Especially under favourable conditions, rice can produce more spikelets than it can
ever fill [49] leading to source limitation and hence reduced FFS values. Source limitation is
also more likely when drought stress occurs, resulting in a lower FFS value [62]. Due to difficul-
ties in quantification of source size, some doubts may always remain on the validity of the
FFS = SPFERT assumption. For these reasons, we preferred to use an equation with pollination
based parameters. The following equation was derived specifically for variety IR64 and based
on measured spikelet temperatures [50]:

SFHEAT ¼ expð14:3� 0:408�TpanðtpeakflÞÞ
1:0þ expð14:3� 0:408�TpanðtpeakflÞÞ

ð19Þ

In this sigmoid 90% of the spikelets are still fertile at 29.7°C, 50% of the spikelets are fertile
at 35.0°C and 10% of the spikelets are fertile at 40.0°C. With a sigmoid fertility decreases more
and more per unit (°C) temperature increase up to the 50% fertility point. Beyond this point,
fertility increases less and less per unit (°C) temperature increase. More realistic might be a
continuously increasing sensitivity [51]. But as in our data we never came across the 50% point
and Equation 19 was determined particularly for IR64, the variety used in our simulations, we
proceeded with this equation. Acknowledging that flowering occurs over a number of days we
counted the days from DVS 0.96 and DVS 1.2 (SIMDUR0.96–1.2) and averaged daily SFHEAT
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values over this period:

SFHEAT ¼ SFHEAT=SIMDUR 0:96�1:2 ð20Þ

Cold fertility
Cold fertility in ORYZA2000 is simulated as a function of cold temperature sum COLDTT,
accumulated from DVS 0.75 to 1.2 when daily average temperature TAV (calculated as
(Tmax—Tmin)/2)) is below 22°C:

COLDTT ¼
X

ð22� TAV Þ ð21Þ

SFCOLD ¼ 1� ð4:6þ 0:054� COLDTT 1:56Þ=100 ð22Þ

Our new method for simulating cold fertility considers two cold sensitive phases [18]. The
microspore stage starts at panicle initiation and lasts till approximately halfway flowering. The
panicle exsertion stage starts at the end of the microspore stage and continues till flowering.
According to Julia and Dingkuhn [18] cold during the microspore stage causes sterility and
cold during the panicle exsertion stage causes incomplete exsertion of the panicle. Moreover
non exserted spikelets are also infertile. During these two stages the meristem moves up in the
canopy from being at flood level at panicle initiation to in the top of the canopy at flowering.
Therefore, it would be best to simulate using flood water temperature as input at panicle initia-
tion and air temperature as input at flowering, with in between a weighted average depending
on crop stage [37,38]. ORYZA2000 does not simulate panicle position within the canopy. As a
simplification we therefore chose to simulate microspore fertility (SFCOLD1) with minimum
floodwater temperature and panicle exsertion stage fertility (SFCOLD2) with minimum air
temperature. We assumed the transition between these two phases was at DVS 0.825, halfway
between panicle initiation (DVS 0.65) and flowering (DVS 1.0). SFCOLD1 was simulated as a
function of minimum floodwater temperature, which depends on how much radiation reaches
the floodwater and diurnal air temperature amplitude. Radiation reaching the floodwater de-
pends on light transmission through the canopy. ORYZA2000 simulates the leaf area index
(LAI). We simulated the light transmission ratio (LTR) assuming an extinction coefficient of
k = 0.6 [39,40]:

LTR ¼ expð�0:6� LAI Þ ð23Þ

Minimum floodwater temperature (Tw,min) was calculated based on an empirical relation
derived based on thousands of observations across a wide range of environments [39,40]:

Tw;min ¼ Tmin þ 0:658� ðTmax � TminÞ � ð1� LTRÞþ
0:425� ðTmax � TminÞ � LTR� 0:303� ðTmax � TminÞ1:2

ð24Þ

This model (as is any model) is a simplification, it does not account for floodwater depth,
turbidity, temperature of inflowing water etcetera. At a later stage, incorporation of more so-
phisticated models [41,42] may be considered. Julia and Dingkuhn [18] described the following
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parabolic relation for cold sterility during the microspore stage:

SFCOLD1 ¼ maxð0; 1� ð0:0094� T2
w;min � 0:431� Tw;min þ 5:039ÞÞ ð25Þ

Two conceptual objections against this equation are that SFCOLD1 can never get bigger
than 0.9 (90%) and that cold sterility decreases again above Tw,min = 23°C. Julia and Dingkuhn
[18] assumed fertility was equal to the fraction filled spikelets, FFS. Here we do want to allow
our model to reach 100% fertility and we presume the remaining 10% unfilled may have been
caused by source limitation. We therefore fitted the following linear model through the data of
Julia and Dingkuhn ([18], Fig. 7 of their paper):

SFCOLD1 ¼ minð1;maxð0; 1� ð20� Tw;minÞ=ð20� 13ÞÞÞ ð26Þ

In this model fertility is 1 for Tw,min > 20°C and decreases linearly to 0 at 13°C. Since the
microspore stage lasts approximately 14 days, the question is how to calculate aggregate

SFCOLD1 over this period. We consider two alternative rules for this:

SFCOLD1 ¼ SFCOLD1=SIMDUR 0:65�0:825 ðaveraging ruleÞ ð27Þ

SFCOLD1 ¼ minðSFCOLD1Þ ðminimum ruleÞ ð28Þ

Where either the average or minimum over the duration (in days) of the microspore stage
(0.65<DVS<0.825) is taken. The approaches can have a different effect when one or few very
cold days happen to occur during the microspore stage, in that case the minimum rule will sim-
ulate lower SFCOLD1 than the averaging rule. Such conditions occur when the microspore
stage happens to occur at the start or at the end of the coldest part of the year. Such conditions
occurred for emergence months 9 and 11 (September and November) in our experiments. We
therefore simulated with both approaches and compared their effect on accuracy of yield
simulation.

For the panicle exsertion phase we assumed the same fertility function (with 20 and 13°C)
but calculated daily fertility using minimum air temperature:

SFCOLD2 ¼ minð1;maxð0; 1� ð20� TminÞ=ð20� 13ÞÞÞ ð29Þ

Again, discussion may arise on how to calculate aggregate SFCOLD2. Since panicle exser-
tion is a more continuous processes in which slow exsertion in one day can be compensated by
faster exsertion on another day we chose to calculate the aggregate SFCOLD2 as the average of
daily SFCOLD2 values over the days from DVS 0.825 to DVS 1.0:

SFCOLD2 ¼ SFCOLD2=SIMDUR 0:825�1:0 ð30Þ

Another issue is whether SFCOLD2 should be combined with SFCOLD1 to calculate final

cold fertility, or whether SFCOLD2 should be multiplied with spikelet number. Practically for
yield simulation and validation this will have no impact. But it does matter when we validate
and calibrate spikelet formation. In that case, one should take care of having consistency in def-
initions. It would be wrong if the model output showed only the exserted spikelets while obser-
vations are the sum of exserted and non-exserted spikelets. In our experiment, spikelets
observed are only the ones exserted. Non-exserted spikelets were not counted. Therefore for
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consistency we multiplied the number of mature spikelets (NSP) with SFCOLD2 and calculated

SFCOLD as SFCOLD1.

Combined fertility and effect on yield
Combined fertility in ORYZA2000 is calculated as SPFERT = min(SFHEAT, SFCOLD). We

proceeded with the same rule substituting SFCOLD (Eq 22) with SFCOLD1 (Eq 27 or 28) and

SFHEAT (Eq 14) with SFHEAT (Eq 20). Again, discussion may arise how to calculate aggre-
gate fertility. We therefore also calculated combined fertility as SPFERT = SFHEAT x SFCOLD
(product rule). In many cases the distinction between these rules may seem trivial, as it will be
very rare to find cold sterility during the microspore stage followed by heat sterility in the flow-
ering stage. In normal cases SFHEAT will equal 1 if SFCOLD is less than 1 and vice versa.
Again, with the large diurnal temperature amplitudes of our dataset, it may become an issue.
SPFERT sets the upperbound for the fraction filled spikelets (FFS) and for the simulated yield.
Yield in the model output is called WRR (weight rough rice, kg DM ha−1). From SPFERT we
calculate the highest possible WRR as:

PWRR ¼ NSP � SPFERT �WGRMX ð31Þ
Where NSP is the number of spikelets per hectare (see §2.2.3) and WGRMX is the maximum
grain weight which we assumed to be 25 mg per grain. After flowering ORYZA2000 simulates
grain filling based on assimilation and respiration, which in turn depend on environmental
conditions, amount of stem reserves, LAI at flowering, senescence and duration of the grain fill-
ing phase. When the crop is sink limited (if NSP or SPFERT are low) WRR will not become
larger than PWRR. Any excess assimilates produced are in such cases partitioned to the stems.

Experimental data
Sites and crop data. We used experimental data previously reported in de Vries et al. [59],

for variety IR64. The crop was sown once per month at two sites in Senegal, for 15 sowing dates
in a row in the years 2006–2007, thus there were 30 treatments. The site Ndiaye (16°11’N, 16°
15’W) is located in the Senegal river delta, the site Fanaye (16°32’N, 15°11’W) is located along
the same river approximately 150 km inland. The weather is more extreme in this site. Dates of
emergence, panicle initiation, 50% flowering and maturity, spikelet number, grain weight and
fraction filled spikelets were recorded. We took averages of observed values from 3 replicates for
each treatment. The crops were well fertilised and kept free from weeds. Diseases were not a
problem. With 3 replicates per treatment and 30 treatments it was practically and economically
not feasible to sample within the growing season. Consequentially calibration and validation of
LAI, organ biomass and organ N content during the growing season was not possible. No crop
data other than developmental stages (phenology) were recorded for the 18 December emer-
gence date in Ndiaye. Thus we have n = 29 treatments.

Weather data. Minimum and maximum air temperatures were measured from stations
located in a rice field adjacent to the experiment. Wind speed and precipitation, dew point tem-
perature and radiation were recorded, but instruments for dew point temperature and radia-
tion failed during part of the season, caused by a storm after which replacement took a long
time. In Fanaye, the weather station failed altogether in 2007, for that year we replaced temper-
atures with those observed for the same dates in 2006. We chose to replace all radiation with ra-
diation from the NASA POWER database. It has been shown that this satellite based dataset
provides unbiased and quite accurate radiation data when compared with radiation observed
on the ground [63]. The ORYA2000 adjusts maximum photosynthesis rate according to atmo-
spheric CO2 concentration [8: p. 48]. For atmospheric CO2 concentration we assumed a value
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of 382 ppm (taken from the Mona Lau record) which is representative for the period in which
the experiments were conducted. Since water was non-limiting during the growing season,
missing precipitation did not affect simulations. For simulation of heat sterility and transpira-
tional cooling we needed to know the actual vapour pressure. We assumed dew point tempera-
tures (Tdew) equal to minimum air temperatures, which results in RHmax being 100% early in
the morning. This is a fair assumption for rice cultivated in continuously flooded paddy fields.
The resulting annual pattern of RHmin (Fig. 2, bottom) is similar to that reported in Dingkuhn
et al. [60] for the same environment. No soil data were used for the simulations, as these are
also not needed for simulating potential production. The problems with weather data are a
common problem in much of the experimental research ongoing in developing countries.
Good weather stations are expensive and replacement can take a long time. Weather logs may
not be sent automatically to a central database and as a result malfunctioning may not be im-
mediately detected. The 2007 missing data for Fanaye in combination with reported growing
periods will have an effect on 7 out of 30 sowing dates. We compared accuracies for the first 8
and last 7 dates at Fanaye. Accuracies were not structurally different for the two periods.

Accuracy assessment and comparison
Ideally the proposed modifications in heat and cold sterility should translate into improved
yield predictions. However if other components of the model (phenology, leaf growth, spikelet
formation) are also inaccurate then effects of modifications in heat and cold sterility may re-
main obscured. For this reason we validated the model in two steps:

• Step 1: simulation of yields with observed phenology and observed spikelet number

• Step 2: simulation of yields with simulated phenology and simulated spikelet number

Forcing phenology and spikelet number to observed values allows us to assess accuracy im-
provement obtained with the different heat and cold sterility models, without results being af-
fected too much by other possible errors. It is useful for this purpose, but in the end, one wants
to know how accurate the model is if all processes are actually simulated. Therefore in step 2,
we put the model to a more rigorous test by simulating all processes and with a minimum of
additional calibration.

Fig 2. Daily minimum andmaximum temperature (left) andminimum relative humidity (right) in the two sites (RHmax is assumed to be 100%).

doi:10.1371/journal.pone.0118114.g002
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Within step 1 and 2, a series of model subversions (s1 to s26) were constructed. Each sub-
version was used to simulate yields for each of the n = 29 treatments. By changing one process
at a time in the different subversions we could clearly retrace causes of increases in accuracy.
For each subversion, goodness of fit was calculated as modelling efficiency [64]:

EF ¼ 1�
PðSi � OiÞ2Pð�O � OiÞ2

ð32Þ

Where Si is simulated Yield in treatment i, Oi is observed Yield in treatment i and Ō is the aver-
age of observed yields. A value of 1 for EF indicates perfect prediction. A value of 0 means the
model predicts no better than when we would simply take the mean of observations. Negative
values suggest that the average of observed values is a better predictor than the model.

One way of looking at the data is through metrics such as EF. Another way of looking at the
data is through visual comparison. It is possible that the model simulates the general pattern
well, but is shifted away from observed data. For example the model may be systematically a bit
too high because simulated potential yields are not so easily practically achieved, but may prop-
erly simulate the direction in which yields change with different sowing dates. Or yields may
dramatically drop within a short timespan, making the model very sensitive to relatively small
errors in phenology simulations and observations. In such cases EF can be less than 1 but visu-
ally we might still judge the model as having a good fit. We therefore also present graphics of
simulated and observed yields at different sowing dates.

Results
Fig. 2 shows the temperatures and humidity in the two sites through the year. Weather is more
extreme in Fanaye. Maximum temperatures in Fanaye are consistently higher but especially so
during days 75 to 200. From day 320 to 365, the minimum temperatures in Fanaye are lower
than in Ndiaye. Relative humidity is lower in Fanaye. Such patterns are consistent with the
more inland position of the Fanaye site. More details on weather data and site can be found in
de Vries et al. [59,65] and in Dingkuhn et al. [17,18,60] for earlier years in the same two sites.

With observed phenology and spikelet number
Yields were very poorly simulated when using the default heat and cold subroutines, resulting
in a modelling efficiency of −0.32 (Table 1, s1), which means that predictions were worse than
would be obtained by simply taking the average of observed yields. Modelling efficiency in-
creased to 0.70 (Table 1, s5) with new heat and cold subroutines. Yields versus emergence dates
with the old and new sterility models are shown in Fig. 3. The main cause of poor prediction
with the default model appears to be the prediction of near zero yields on several emergence
dates in Fanaye when observed yields were 4 to 11 t/ha. As a result, EF values for Fanaye are
markedly lower than for Ndiaye (Table 1, s1). Fig. 4 shows in the top panes simulated old fertil-
ity and in the bottom panes new fertility. From these we can see that the large errors in Fanaye
are due to gross overestimation of heat sterility. Fig. 4 also reveals large differences in simulated
cold sterility. According to the default model, cold fertility is always 1, while the new cold fertil-
ity model predicts severe cold sterility for sowings in the months September (9) and October
(10). Replacing the default with the new cold sterility submodel increased overall accuracy
from EF 0.43 to 0.70 (s3 to s5) and increased accuracy in both sites (Fanaye: EF 0.25!0.62,
Ndiaye EF 0.55!0.76).

The minimum rule for SFCOLD (Eq 28, s5, EF = 0.70) gave more accurate simulations than
the averaging rule (Eq 27, s4, EF = 0.56). The minimum rule for SPFERT gave slightly more ac-
curate results than the product rule (s5 vs s6). We therefore proceeded with the minimum rule
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Table 1. Simulations with observed phenology and observed spikelet number.

Model
sub-version

Phenol-ogy cold
fertility

heat
fertility

combined
fertility

early
leaf
growth

partitioning
to leaves

shading
to kill

NSP Modelling Efficiency (EF) max()
LAIMAX

Fanaye
+ Ndiaye

Fanaye (F) Ndiaye (N)

s1 OBS DEF DEF MIN. DEF DEF NO N/A −0.32 −1.73 0.59 22

s2 OBS NEW, min. DEF MIN. DEF DEF NO N/A −0.19 −1.63 0.75 22

s3 OBS DEF NEW MIN. DEF DEF NO N/A 0.43 0.25 0.55 22

s4 OBS NEW, avg. NEW MIN. DEF DEF NO N/A 0.56 0.51 0.59 22

s5 OBS NEW, min. NEW MIN. DEF DEF NO N/A 0.70 0.62 0.76 22

s6 OBS NEW, min. NEW PROD. DEF DEF NO N/A 0.67 0.53 0.76 22

s7 OBS ORYZA_S ORYZA_S MIN. DEF* NEW NO N/A 0.63 0.56 0.67 17

Phenology: observed. Cold sterility: default (Eq 22), new with minimum rule (Eq 28) or new with averaging rule (Eq 27). Heat fertility: default (Eq 14) or

new (Eq 20). Combined fertility: minimum or product of heat and cold fertility. EF = modelling efficiency (Eq 32) for the two sites combined and separately

for the two sites. max() LAIMAX is the maximum LAI recorded over all 30 simulations.

doi:10.1371/journal.pone.0118114.t001

Fig 3. Simulated and observed yields (WRR = weight of rough rice in kilogram dry matter per hectare) for simulations with observed phenology
and spikelet number. Top: with default heat and cold sterility sub-models (Table 1, s1). Bottom: with new heat and cold sterility sub-models (Table 1, s5).
X-axis starts on the left (Ndiaye) mid februari 2006 and on the right (Fanaye) early march 2006. Month 14 corresponds with month 2 (February) of the next
year 2007, 16 is April 2007.

doi:10.1371/journal.pone.0118114.g003
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for both. All simulations showed unrealistically high maximum LAI values (Table 1). Addi-
tional simulations with different settings for leaf growth (not shown) had little to no effect
on accuracy of yield simulations. This is somewhat surprising as we would expect assimilate
supply during grain filling to be strongly affected by maximum LAI at flowering and so we
would expect stronger effects on accuracy of yield simulation. The only explanation for the
absence of sensitivity to pre-flowering leaf growth is that in almost all simulations the crop
was sink limited. Indeed this is what we found when we compared simulated WRR and
PWRR values. The comparison with ORYZA_S (s7) shows that the new model (s5) is slightly
more accurate (EF 0.70 vs 0.63), in both sites. The small difference in accuracy should come
as no surprise considering the shared origins of the both models and the fact that their heat
and cold sterility sub-models were, at least partially, calibrated for the Sahelian environment.
Although the accuracies are similar, we may hope the new ORYZA2000 subversion is more
accurate than ORYZA_S when applied in more humid environments. Because the new ver-
sion explicitly accounts for transpirational cooling, which will be less in humid environ-
ments, whereas ORYZA_S does not account for transpirational cooling.

Fig 4. Simulated heat and cold fertility for simulations with observed phenology and spikelet number. Top: with default heat and cold sterility sub-
models (Table 1, s1). Bottom: with new heat and cold sterility sub-models (Table 1, s5). X-axis starts on the left (Ndiaye) mid februari 2006 and on the right
(Fanaye) early march 2006. Month 14 corresponds with month 2 (February) of the next year 2007, 16 is April 2007.

doi:10.1371/journal.pone.0118114.g004
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With simulated phenology and spikelet number
Forcing the model with observed phenology and spikelet number allowed us to inspect heat
and cold sterility without being troubled by errors in biomass simulation. Now we put the
model to a more severe test, by also simulating phenology (Fig. 5) and spikelet number. For six

Fig 5. Simulated duration from emergence to flowering. Top: with default cardinal temperatures (Table 2, s8). Middle: with optimised cardinal
temperatures (Table 2, s9) and Bottom: with RIDEVmodel (Table 2, s17). X-axis starts on the left (Ndiaye) mid februari 2006 and on the right (Fanaye) early
march 2006. Month 14 corresponds with month 2 (February) of the next year 2007, 16 is April 2007.

doi:10.1371/journal.pone.0118114.g005
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sowing dates the observed yields were much lower than expected, shown as the encircled data
points in Fig. 6. We suspect that low observed yields on these dates were due to birds or other
animals. Bird damage at similar dates on the same two sites was reported before by Dingkuhn
and Sow [17,18] and is a known problem in the region [66]. Tables 2 and 3 show that EF values
were much higher with these six outliers removed. Also striking was the fact that observed
yields in Ndiaye were systematically lower than in Fanaye, while our simulations showed high-
est yields in Ndiaye. Previous simulations by [17,18] and observations in the same two sites
[67] showed yields for Ndiaye consistently higher than yields in Fanaye. This suggests manage-
ment or soil conditions were less optimal in our Ndiaye experiment, despite all efforts to avoid
this. In any case, the cause of the relatively low observed yields in Ndiaye is unclear and so the
issue cannot be resolved through modelling. Considering the differences between the two sites
we chose to report accuracies also separately for the two sites. Given the strong evidence of
improvements on the heat and cold sterility we proceeded with the new heat and cold
subroutines.

First, we assessed how well the different model subversions simulated phenology. Fig. 5
shows observed and simulated number of days from emergence to flowering, simulated with
ORYZA2000 default (top) and optimised (middle) cardinal temperatures and with the RIDEV
model (bottom). Fig. 2 shows that the Fanaye environment is systematically hotter than Ndiaye
and that crops emerging in the period from September to December will be exposed to the cool
weather in the months November to March. The default cardinal temperatures overpredicted
the duration from emergence to flowering in the hotter environment of Fanaye (Fig. 5 top
right) and underpredicted the duration in the cooler Ndiaye (Fig. 5 top left), especially in the
coolest period (emergence months 9 to 12). In an earlier paper with the same phenology and
weather data van Oort et al. [22] plotted observed and simulated duration (y-axis) against aver-
age temperature during the pre-flowering phase (x-axis). These plots showed that with average
temperature during the pre-flowering phase around 24°C, the default cardinal temperatures
systematically underpredicted the duration by*20 days [22: Fig. 3A]. With average tempera-
ture during the pre-flowering phase around 31°C, the default cardinal temperatures predicted
systematically a*20 days too long duration [22: Fig. 3A]. The RIDEV model (Fig. 4C)

Fig 6. Simulated and observed yields (WRR = weight of rough rice) in Fanaye (left) and Ndiaye (right).With simulated phenology and spikelet number
(Table 3 s25). WRR = weight of rough rice (kilogram dry matter per hectare). Encircled data points are outliers discussed in §3.2. X-axis starts on the left
(Ndiaye) mid februari 2006 and on the right (Fanaye) early march 2006. Month 14 corresponds with month 2 (February) of the next year 2007, 16 is April
2007.

doi:10.1371/journal.pone.0118114.g006
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reproduces as similar pattern as the ORYZA2000 phenology sub model with optimised cardi-
nal temperatures. Note that the parameters for RIDEV were determined in the early 1990s for
the same variety and sites. The validation presented here shows that this model for this variety
RIDEV still provides reasonable estimates of duration from emergence to flowering. We pro-
ceeded with the most accurate out of three phenology models, in this case the ORYZA2000
phenology sub model with optimised cardinal temperatures. Yield prediction was greatly im-
proved when phenology was simulated with optimised instead of default cardinal temperatures
(Table 2, s8 vs s9, EF 0.14 vs 0.41).

Next we compared, stepwise, the impact of leaf growth simulation methods on accuracy of
yield simulation (Table 2, s9-s16). New (higher) cardinal temperatures for early leaf growth im-
proved yield prediction, with overall EF increased from 0.41 to 0.48 and an increase in EF was
noted in both sites. Temperature dependent partitioning and shading to kill leaves had no ef-
fect on accuracy of yield prediction. Adding these two components did lower maximum LAI to
more realistic values (s10 vs s13,s14,s16). The maximum attainable modelling efficiency with
revised leaf growth was 0.48 (s10, s14 and s16).

The ORYZA_S model is in terms of process functions most similar to the s9 subversion of
ORYZA2000. Yet predictions with this model (Table 2, s17) were less accurate than with the
newly developed subversions (s9 to s16). Since ORYZA_S differs in a number of ways from the
other models it was not possible to exactly pinpoint the causes of the lower accuracy. However
a visual comparison of yields over time (not shown) indicated that the main cause of the poorer
accuracy was due to less accurate modelling of cold sterility.

Next we compared different methods of spikelet growth simulation (Table 3, s18-s26).
Spikelet growth depends on biomass accumulation and hence on leaf area during the period
from panicle initiation to flowering. Therefore we also assessed interaction with leaf growth
modelling. Consistently the Yoshida et al. model led to poorer predictions than the default
(GCR based) model. The Kato and Katsura model gave similar or slightly more accurate

Table 2. Simulations with modified leaf growth.

Model
sub-version

Phenol-ogy cold
fertility

heat
fertility

combined
fertility

early
leaf
growth

Partitioning
to leaves

shading
to kill

NSP EF Fanaye
+ Ndiaye

EF excl
outliers

max()
LAIMAX

Fanaye +
Ndiaye

Fanaye (F) Ndiaye (N)

s8 DEF NEW NEW MIN. DEF DEF NO GCR −0.20 0.14 −0.22 0.35 15

s9 NEW NEW NEW MIN. DEF DEF NO GCR 0.01 0.41 0.49 0.36 21

s10 NEW NEW NEW MIN. NEW DEF NO GCR 0.06 0.48 0.57 0.42 15

s11 NEW NEW NEW MIN. DEF NEW NO GCR 0.01 0.43 0.53 0.37 18

s12 NEW NEW NEW MIN. DEF DEF YES GCR −0.09 0.37 0.46 0.32 13

s13 NEW NEW NEW MIN. DEF NEW YES GCR −0.09 0.39 0.48 0.34 10

s14 NEW NEW NEW MIN. NEW DEF YES GCR 0.06 0.48 0.60 0.42 9

s15 NEW NEW NEW MIN. NEW NEW NO GCR 0.04 0.47 0.57 0.41 13

s16 NEW NEW NEW MIN. NEW NEW YES GCR 0.05 0.48 0.59 0.42 8

s17 RIDEV ORYZA_S ORYZA_S MIN. DEF* NEW NO GCR −0.62 −0.13 0.18 −0.31 13

Phenology: simulated with default (DEF) cardinal temperatures (8,30,42°C), simulated with new cardinal temperatures (14, 31, 999°C), or with RIDEV.

Cold sterility: new with minimum rule (Eq 28). Heat fertility: new (Eq 20). Combined fertility: minimum of heat and cold fertility. Early leaf growth: simulated

with default cardinal temperatures (8,30,42°C) and RGRL (0.0085oCd in ORYZA2000 (DEF) or 0.0080°Cd in ORYZA_S (DEF*)) or simulated with new

cardinal temperatures (14, 31, 999°C, RGRL 0.0085°Cd). Partitioning to leaves: default as a function of development stage only or new as a function of

development stage and average day temperature (Eq 7). Shading to kill: no = default, yes = leaves start to die above LAI = 4 (Eq 9). EF = modelling

efficiency (Eq 32) and EF with 6 outliers with suspected bird damage removed (see Fig. 6). max() LAIMAX is the maximum LAI recorded over all

29 simulations.

doi:10.1371/journal.pone.0118114.t002
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predictions than obtained with the (GCR based) default model. Both the Yoshida and the Kato
and Katsura model produced a large number of juvenile spikelets (Eq 11), the Yoshida model
simulated lower abortion than the Kato and Katsura model. The Yoshida model gave lower ac-
curacies for yield simulation and this was related to overestimation of the number of mature
spikelets per m2. Due to lack of data, it is impossible to identify the cause(s) of this overestima-
tion. Fig. 6 shows simulated and observed yields with the most accurately simulating model
subversion.

Discussion

Main findings
Our research integrates insights from recent experimental work into an improved subversion
of the ORYZA2000 model. The main findings are:

1. The default model overestimates heat sterility and underestimates cold sterility in
arid environments.

2. Yield prediction was greatly improved with the new heat and cold subroutines.

3. The key mechanisms of rice to avoid heat sterility are transpirational cooling and early
morning flowering. These adaptive mechanisms allow rice to be grown in arid environ-
ments with extreme heat (provided that there are enough water and nutrients).

4. The default model overpredicted the length of growing seasons at high temperatures and
underpredicted the length of growing seasons at lower temperatures, for the variety consid-
ered here (IR64).

5. Use of different cardinal temperatures, in particular a higher base temperature and higher
maximum temperature, improved phenology simulation and this in turn lead to improved
yield simulation.

6. Although LAI development could not be compared with observed values, the yield simula-
tions were improved when for early leaf growth higher cardinal temperatures than default
were used

Table 3. Simulations with modified spikelet formation.

Model
sub-version

Phenology cold
fertility

heat
fertility

Comb.
fertility

early
leaf growth

partitioning
to leaves

shading
to kill

NSP EF excl
outliers

EF Fanaye
+ Ndiaye

Fanaye
+ Ndiaye

Ndiaye + (F) Ndiaye + (N) max()
LAIMAX

s18 NEW NEW NEW MIN. DEF DEF NO GCR 0.01 0.41 0.49 0.36 21

s19 NEW NEW NEW MIN. DEF DEF NO NBIOM(Y) −0.20 0.17 0.51 −0.04 21

s20 NEW NEW NEW MIN. DEF DEF NO NBIOM(K) 0.00 0.40 0.45 0.37 21

s21 NEW NEW NEW MIN. NEW DEF NO GCR 0.06 0.48 0.57 0.42 15

s22 NEW NEW NEW MIN. NEW DEF NO NBIOM(Y) −0.06 0.34 0.57 0.20 15

s23 NEW NEW NEW MIN. NEW DEF NO NBIOM(K) 0.07 0.48 0.56 0.44 15

s24 NEW NEW NEW MIN. NEW DEF YES GCR 0.06 0.48 0.60 0.42 9

s25 NEW NEW NEW MIN. NEW DEF YES NBIOM(K) 0.07 0.50 0.60 0.44 9

s26 NEW NEW NEW MIN. NEW NEW YES NBIOM(K) 0.06 0.50 0.59 0.44 9

Definition of columns same as in Table 2. Additional column NSP: simulated based on GCR (Eq 10), simulated based on NBIOM (Eq 11) with (Y) Yoshida

abortion function (Eq 12) or (K) Kato & Katsura abortion function (Eq 13).

doi:10.1371/journal.pone.0118114.t003
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7. New methods for simulation of spikelet formation led to little or no increase in accuracy of
yield simulation.

8. The adapted subversion of ORYZA2000 was more accurate than a previously developed
model for rice in the same environments (ORYZA_S).

The model was validated with a relatively large dataset in an arid environment and a wide
range of temperatures. Additional validations in other environments are still needed. We ex-
pect that with the incorporation of environment dependent transpirational cooling and early
morning flowering and with cold sterility simulated with minimum rather than average tem-
perature, the adapted subversion of ORYZA2000 presented in this paper will be more robust
than its predecessors which did not account for these processes.

Interpretation of the results
Amodel is always a simplification of reality. Perfect prediction is suspect, may be caused by
over parameterisation on a limited dataset and runs a risk of adjusting parameter values with-
out sound ecophysiological justification. We have tried to avoid this by using a large dataset, by
making only modifications substantiated by solid experimental research and by keeping cali-
bration to a minimum. Only phenological parameters were calibrated. In our experiments we
were confronted with missing data and practical difficulties in realising potential production. It
is interesting to see that despite these uncertainties and with a minimum of calibration, the
adapted model subversions predicted yields reasonably well. The systematic stepwise incorpo-
ration of new model components allowed for assessing the effect of different individual and
combined changes in the model on accuracy of yield simulation. Some modifications did con-
tribute to improved yield simulation (heat and cold sterility; cardinal temperatures for phenol-
ogy; cardinal temperatures for early leaf growth). Other modifications did not contribute to
improved yield simulation (temperature dependent assimilate partitioning to leaves; shading
effects on leaf death; spikelet formation).

This study is not a new validation of individual processes (phenology, early leaf growth, as-
similate partitioning, leaf senescence, spikelet formation, heat sterility, cold sterility). For phe-
nology, calibration by van Oort et al. [22] was on the same dataset as used in this paper. For the
other processes: we did not measure leaf area during growth, biomass growth and nitrogen
from PI to flowering and pollination, so we could not directly test the model components eval-
uated here. What we did was asking the question “suppose that this is a better description of re-
ality for a processes at level n-1, then does this help us better predict yield? (an emerging
property at level n)”. If so, it adds credibility, but not proof, to the new process description. The
results call for further research into the model components addressed in this paper. For exam-
ple, we propose dedicated experiments on LAI growth at different sowing dates and in different
environments to estimate the early growth parameters (TBD, TOD, TMD, RGRL) instead of
simulating them as we did in this paper by assuming the same cardinal temperatures as ob-
tained for phenology and using the default value for RGRL. The fact that modifications such as
shading to kill leaves and new methods of spikelet formation did not lead to increased accuracy
in yield simulation does not invalidate these processes. Possibly if fed with observed crop nitro-
gen contents in the current study, or in other environments for example with less nitrogen, the
Yoshida et al. [27] and Kato and Katsura [28] models would lead to better predictions than the
default model. Such hypotheses can be tested more easily now that these sub-models have been
incorporated in a larger model. In summary, the modelling work presented here has generated
new hypotheses that can be subsequently tested experimentally. This paper has shown the rele-
vance of testing these hypotheses for increased accuracy of yield prediction.
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As we noted in the introduction, the default ORYZA2000 model has been calibrated and
validated in many environments before, with high accuracies. How is this possible considering
the poor performance reported here? There are a number of underlying reasons why issues
raised in this paper were not previously detected. Firstly, the arid environment considered here
is quite uncommon in Asian countries where ORYZA2000 has mostly been used. As we dis-
cussed (and shown before in [17,18]) the arid climate creates some typical conditions affecting
heat sterility (strong transpirational cooling) and cold sterility (dangerously low night tempera-
ture, acceptable average temperature, due to large diurnal temperature amplitude). The model
has rarely before been tested in environments as extreme as considered in this paper and it is
only in these extreme environments that errors in the phenology and sterility models become
apparent. Secondly the sowing dates considered here were far off from the optimum, exposing
the crop to severe cold sterility. Normally in agronomic experiments one would never sow in
some of the sowing dates considered in this paper. Then normally also the failures of the model
under such cold conditions would not be discovered. They would only be detected in experi-
ments dedicated to impose cold stress. Thirdly, the conditions under which extremely high
LAI were simulated are exceptional: low temperatures during the vegetative stage leading to a
long duration from emergence to flowering (up to 130–140 days) combined with high radiation
levels and high daytime temperatures during this period allowing for high leaf biomass accu-
mulation. Fourthly, acknowledging that any model is a simplification of reality Bouman et al.
[8: p. 196] identified those parts of the model which they thought to be less generic, requiring
additional calibration specifically for the variety and environment at hand. This list amongst
others includes the development rates and the relative leaf growth rate. Possibly the issue of the
validity of the cardinal temperatures was never detected because people were resolving the
issue through calibration of the rates. Especially when calibrating separately for different envi-
ronments and varieties, or when calibrating for a limited number of experiments, errors in car-
dinal temperatures may remain undetected. The interesting question is whether more generic,
variety specific development rates and relative leaf growth rates can be found once we recalcu-
late them with more appropriate cardinal temperatures. It seems unlikely that there would
exist one unique set of cardinal temperatures valid for all rice varieties; genetic variation is sim-
ply too large for this [22,43,44]. What we hypothesise is that once a set of cardinal temperatures
has been appropriately estimated for a particular variety, recalibration of development rates
and relative leaf growth will not be necessary every time again when the model is applied in
new environments. So that parameters become truly genetic parameters, not needing to be re-
calibrated when applied in different environments. Large datasets for the same varieties in con-
trasting environments are needed to test the hypothesis that more generically valid crop
parameters exist.

Implications
In the previous section we highlighted how modelling exercises such as presented in this paper
can be used to increase insights in a particular system and to narrow knowledge gaps. A second
more common role for modelling is in decision support. Models can be used in this role if they
are sufficiently accurate. In ideotyping, genetic parameters are changed and it is assessed
whether these lead to desirable changes such as crop yield [68], in some cases also tailored to
specific environments [69]. Models can also be of use for investigating different management
options, such as irrigation scheduling and amount, fertilisation scheduling and amount, effects
of bund height, etc [5,11,12,13,14,70]. Models can be used to simulate if it is more economical
to growth one or two crops per year and for deriving the optimum sowing dates for different
sites [17,18]. At the farm level, models can be used to investigate economically optimal water
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allocation strategies, dividing available water among different crops [21]. Models can be used
for climate change impact studies and can in this role help shape the research agenda into ad-
aptation strategies [1,2]. All such model applications are contingent on the accuracy of the
model. The most thorough and wide spanning climate change impact assessment in rice was
by Matthews et al. [1,2] for Asia. In different parts of Asia negative effects of climate change
were predicted with the ORYZA2000 and SIMRIWmodels which used the same heat sterility
subroutines. Analyses of yield declines identified heat sterility as the main cause of yield de-
clines in Southern Japan, India, South Korea and China. Other studies [24,26,71] report tem-
perature thresholds similar to those used in the default ORYZA2000 model. Such temperature
thresholds have recently been used in global climate change assessments [3,4]. The recent stud-
ies on rice adaptive mechanisms to heat stress [19,20,29,30,32] and the findings of this study
call for a re-assessment of climate risks for rice production, in the current and future climate. It
is known that genotypic differences exist in cardinal temperatures, heat tolerance and heat
avoidance. Selection for appropriate varieties adapted to their climate is therefore possible.

Conclusions
ORYZA2000 could not well simulate yields in two arid environments. New research on several
model components was systematically and stepwise incorporated into the existing model and
effects on increased accuracy were investigated. The most important finding is that in arid en-
vironments the model overestimates heat sterility and underestimates cold sterility. The cause
for overestimation of heat sterility was that the default model ignored early morning flowering
and transpirational cooling. The cause for underestimating cold sterility was that the default
model calculated with daily average rather than daily minimum temperatures. Other model
improvements were on cardinal temperatures for phenology [22] and cardinal temperatures
for early leaf growth. Alternative models for simulation of spikelet formation did not lead to
improved yield prediction.

Supporting Information
S1 Table. List of variables and parameters.
(DOCX)

Acknowledgments
We wish to thank Naomie Sakane, Mandieye Top and Malick Sarr for excellent technical assis-
tance and B.V. Bado & A. Sow for support in designing the experiments.

Author Contributions
Conceived and designed the experiments: MEDV HY. Performed the experiments: MEDV HY.
Analyzed the data: PAJVOMEDV HY KS. Wrote the paper: PAJVOMEDV HY KS.

References
1. Matthews RB, Kropff MJ, Bachelet D, van Laar HH (eds) (1995). Modeling the Impact of Climate

Change on Rice Production in Asia. IRRI/CAB International.

2. Matthews RB, Kropff MJ, Horie T, Bachelet D (1995) Simulating the Impact of Climate Change on Rice
Production in Asia and Evaluating Options for Adaptation. Agric Syst. 54(3): 399–425.

3. Gourdji SM, Sibley AM, Lobell DB. Global crop exposure to critical high temperatures in the reproduc-
tive period: Historical trends and future projections. Environ Res Lett. 8(2): 24–41.

4. Teixeira EI, Fischer G, Van Velthuizen H, Walter C, Ewert F (2013) Global hot-spots of heat stress on
agricultural crops due to climate change. Agric For Meteorol. 170: 206–215.

Improved Climate Risk Simulations for Rice in Arid Environments

PLOS ONE | DOI:10.1371/journal.pone.0118114 March 16, 2015 24 / 27

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0118114.s001


5. Belder P, Bouman BAM, Spiertz JHJ (2007) Exploring options for water savings in lowland rice using a
modelling approach. Agric Syst. 92(1–3): 91–114.

6. Boling AA, Bouman BAM, Tuong TP, Konboon Y, Harnpichitvitaya D (2011) Yield gap analysis and the
effect of nitrogen and water on photoperiod-sensitive jasmine rice in north-east Thailand. Neth J Agr
Sci 58: 11–19.

7. Boling AA, Bouman BAM, Tuong TP, Murty MVR, Jatmiko SY (2007) Modeling the effect of groundwa-
ter depth on yield-increasing interventions in rainfed lowland rice in Central Java, Indonesia. Agric Syst.
92(1–3): 115–139.

8. Bouman BAM, Kropff MJ, Tuong TP, Wopereis MCS, ten Berge HFM, et al. (2001) ORYZA2000:
Modeling Lowland Rice. International Rice Research Institute, Los Baños, Philippines andWageningen
University and Research Centre, Wageningen, The Netherlands.

9. Bouman BAM, van Laar HH (2006) Description and evaluation of the rice growth model ORYZA2000
under nitrogen-limited conditions. Agric Syst. 87(3): 249–273.

10. Bouman BAM, Feng L, Tuong TP, Lu G, Wang H, Feng Y (2007) Exploring options to grow rice under
water-short conditions in northern China using a modelling approach. II: quantifying yield, water bal-
ance components, and water productivity. Agric Water Manage. 88: 23–33.

11. Feng L, Bouman BAM, Tuong TP, Cabangon RJ, Li Y, Lu G, Feng Y (2007) Exploring options to grow
rice under water-short conditions in northern China using a modelling approach. I: Field experiments
and model evaluation. Agric Water Manage. 88(1–3): 1–13.

12. Jing Q, Bouman BAM, Hengsdijk H, Van Keulen H, CaoW (2007) Exploring options to combine high
yields with high nitrogen use efficiencies in irrigated rice in China. Eur J Agron. 26(2): 166–177.

13. Jing Q, Bouman BAM, Van Keulen H, Hengsdijk H, CaoW, et al. (2008) Disentangling the effect of envi-
ronmental factors on yield and nitrogen uptake of irrigated rice in Asia. Agric Syst. 98(3): 177–188.

14. Soundharajan B, Sudheer KP (2009) Deficit irrigation management for rice using crop growth simula-
tion model in an optimization framework. Paddy andWater Environ. 7(2): 135–149.

15. Li T, Raman AK, Marcaida M, Kumar A, Angeles O, et al. (2013) Simulation of genotype performances
across a larger number of environments for rice breeding using ORYZA2000. Field Crops Res. 149():
312–321.

16. Kropff MJ, van Laar HH, ten Berge HFM (1993) ORYZA1, a basic model for irrigated lowland rice.
SARP report, International Rice Research Institute, Manila, Philippines.

17. Dingkuhn M, Sow A (1997) Potential yields of irrigated rice in the Sahel. In: Miézan KM, Wopereis
MCS, DingkuhnM, Deckers J, Randolph TF (Eds.), Irrigated rice in the Sahel: Prospects for sustainable
development. WARDA, ADRAO, Bouaké, Côte d'Ivoire; pp. 361–379.

18. Dingkuhn M, Sow A (1997) Potential yields of irrigated rice in arid environments. In: Kropff MJ, Teng P,
Aggarwal PK, Bouma J, Bouman BAM, Jones JW, Van Laar HH (Eds.). Applications of Systems Ap-
proaches at the Field Level. Volume 2: Proceedings of the Second International Symposium on Sys-
tems Approaches for Agricultural Development, held at IRRI, Los Baños, Philippines, 6–8 December
1995, pp. 79–100.

19. Julia C, DingkuhnM (2012) Variation in time of day of anthesis in rice in different climatic environments.
Eur J Agron. 43: 166–174.

20. Julia C, DingkuhnM (2013) Predicting temperature induced sterility of rice spikelets requires simulation
of crop-generated microclimate. Eur J Agron. 49: 50–60.

21. Gaydon DS, Meinke H, Rodriguez D, McGrath DJ (2012) Comparing water options for irrigation farmers
using Modern Portfolio Theory. Agric Water Manage. 115: 1–9.

22. van Oort PAJ, Zhang T, de Vries ME, Heinemann AB, Meinke H (2011) Correlation between tempera-
ture and phenology prediction error in rice (Oryza sativa L.). Agric For Meteorol. 151(12): 1545–1555.

23. Nishiyama I (1976) Effect of temperature on the vegetative growth of rice. In: “Climate and Rice, Inter-
national Rice Research Institute, Los Banos, Phillipines; pp. 159–186.

24. Yoshida S (1981) Fundamentals of Rice Crop Science. International Rice Research Institute, Los
Banos, Philippines.

25. Rebolledo MC, DingkuhnM, Péré P, Mcnally KL, Luquet D (2012) Developmental Dynamics and Early
Growth Vigour in Rice. I. Relationship Between Development Rate (1/Phyllochron) and Growth. J
Agron. Crop Sci. 198(5): 374–384.

26. Sánchez B, Rasmussen A, Porter JR (2014) Temperatures and the growth and development of maize
and rice: A review. Glob Change Biol. 20(2): 408–417. doi: 10.1111/gcb.12389 PMID: 24038930

27. Yoshida H, Horie T, Shiraiwa T (2006) A model explaining genotypic and environmental variation of rice
spikelet number per unit area measured by cross-locational experiments in Asia. Field Crops Res. 97
(2–3): 337–343.

Improved Climate Risk Simulations for Rice in Arid Environments

PLOS ONE | DOI:10.1371/journal.pone.0118114 March 16, 2015 25 / 27

http://dx.doi.org/10.1111/gcb.12389
http://www.ncbi.nlm.nih.gov/pubmed/24038930


28. Kato Y, Katsura K (2010) Panicle architecture and grain number in irrigated rice, grown under different
water management regimes. Field Crops Res. 117(2–3): 237–244.

29. Ishimaru T, Hirabayashi H, Ida M, Takai T, San-Oh YA, Yoshinaga S, et al. (2010) A genetic resource
for early-morning flowering trait of wild rice Oryza officinalis to mitigate high temperature-induced spike-
let sterility at anthesis. Ann Bot. 106(3): 515–520. doi: 10.1093/aob/mcq124 PMID: 20566680

30. Kobayasi K, Matsui T, Yoshimoto M, Hasegawa T (2010) Effects of temperature solar radiation, and
vapor-pressure deficit on flower opening time in rice. Plant Prod Sci. 13: 21–28.

31. Matsui T, Kobayasi K, Yoshimoto M, Hasegawa T (2007) Stability of rice pollination in the field under
hot and dry conditions in the Riverina Region of New South Wales, Australia. Plant Prod Sci. 10: 57–
63.

32. van Oort PAJ, Saito K, Swart SJ, Shrestha S. (2014) A simple model for simulating rice heat sterility as
a function of flowering time and transpirational cooling. Field Crops Res. 156: 303–312.

33. Yoshimoto M, Fukuoka M, Hasegawa T, Utsumi M, Ishigooka Y, et al. (2011) Integrated micrometeorol-
ogy model for panicle and canopy temperature (IM2PACT) for rice heat stress studies under climate
change. J Agr Meteorol. 67: 233–247.

34. Yoshimoto M, Oue H, Takahashi H, Kobayashi K (2005) The effects of FACE (Free-Air CO2 Enrich-
ment) on temperatures and transpiration of rice panicles at flowering stage. J Agr Meteorol. 60: 597–
600.

35. Uchijima T (1976) Some aspects of the relation between low air temperature and sterile spikelets num-
bers in rice plants. (In Japanese.). Jpn J Agric Meteorol. 31:199–202.

36. Horie T. (1993) Predicting the effect of climate variation and elevated CO2 on rice yield in Japan. Jpn J
Agric Meteorol. 48: 567–574.

37. Farrell TC, Fox KM, Williams RL, Fukai S (2006) Genotypic variation for cold tolerance during reproduc-
tive development in rice: screening with cold air and cold water. Field Crops Res. 98: 178–194.

38. Shimono H, Okada M, Kanda E, Arakawa I (2007) Low temperature-induced sterility in rice: Evidence
for the effects of temperature before panicle initiation. Field Crops Res. 101(2): 221–231.

39. Dingkuhn M, Julia C, Soulie JC (2012) Development of RIDEV V.2 Rice Model of Phenology and Ther-
mal Sterility of Spikelets. Terminal Report (preliminary version). CIRAD/IRRI, 07/04/2012

40. Julia C (2012) Thermal stresses and spikelet sterility in rice: sensitive phases and role of microclimate.
PhD thesis University of Montpellier.

41. Confalonieri R, Mariani L., Bocchi S. (2005) Analysis and modelling of water and near water tempera-
tures in flooded rice (Oryza sativa L.). Ecol. Modell. 183: 269–280.

42. Kuwagata T, Hamasaki T, Watanabe T (2008) Modeling water temperature in a rice paddy for agro-en-
vironmental research. Agric For Meteorol. 148: 1754–1766.

43. Yin X, Kropff MJ, Horie T, Nakagawa H, Centeno HGS, Zhu D, Goudriaan J (1997) A model for photo-
thermal responses of flowering in rice. I. Model description and parameterization. Field Crops Res. 51:
189–200.

44. Yin X, Kropff MJ, McLaren G, Visperas RM (1995) A nonlinear model for crop development as a func-
tion of temperature. Agric. Forest Meteorol. 77, 1–16.

45. Zhang S, Tao F (2013) Modeling the response of rice phenology to climate change and variability in dif-
ferent climatic zones: Comparisons of five models. Eur J Agron. 45: 165–176.

46. Spitters CJT, van Keulen H, van Kraalingen DWG (1995) A simple and universal crop growth simulator:
SUCROS87. In: Rabbinge R, Ward SA, van Laar HH (Eds.) Simulation and systems management in
crop protection. Simulation Monographs, Pudoc, Wageningen, The Netherlands.

47. Van Laar HH, Goudrian J, van Keulen H (1997) SUCROS97: Simulation of potential and water-limited
production situations. Quantitative Approaches in Systems Analysis no. 14, Wageningen, The
Netherlands.

48. Horie T (2001) Increasing yield potential in irrigated rice: breaking the barrier. In Peng S. and Hardy B.
eds.Rice Research for Food Security and Poverty Alleviation. Proc. Int. Rice Res. Conf., 31 Mar.–3
Apr. 2000, Los Baños, Philippines, IRRI; 2001.

49. Sheehy JE, Dionora MJA, Mitchell PL (2001) Spikelet numbers, sink size and potential yield in rice.
Field Crops Res. 71(2): 77–85.

50. Jagadish SVK, Craufurd PQ, Wheeler TR (2007) High temperature stress and spikelet fertility in rice
(Oryza sativa L.). J Exp Bot. 58 (7): 1627–1635. PMID: 17431025

51. WeerakoonWMW, Maruyama A, Ohba K (2008) Impact of humidity on temperature-induced grain ste-
rility in rice (Oryza sativa L). J Agron Crop Sci. 194(2): 135–140.

52. Goudriaan J, van Laar HH (1994) Modelling potential crop growth processes. Current Issues in Produc-
tion Ecology, Kluwer Academic Publishers, Dordrecht, The Netherlands.

Improved Climate Risk Simulations for Rice in Arid Environments

PLOS ONE | DOI:10.1371/journal.pone.0118114 March 16, 2015 26 / 27

http://dx.doi.org/10.1093/aob/mcq124
http://www.ncbi.nlm.nih.gov/pubmed/20566680
http://www.ncbi.nlm.nih.gov/pubmed/17431025


53. Ephrath JE, Goudriaan J, Marani A (1996) Modelling diurnal patterns of air temperature, radiation wind
speed and relative humidity by equations from daily characteristics. Agric Syst. 51(4): 377–393.

54. Matsui T, Omasa K, Horie T (1997) High temperature-induced spikelet sterility of Japonica rice at flow-
ering in relation to air temperature, humidity and wind velocity conditions. Jpn J Crop Sci. 66: 449–455.

55. Matsui T, Omasa K (2002) Rice (Oryza sativa L.) Cultivars tolerant to high temperature at flowering: An-
ther characteristics. Ann Bot. 89(6): 683–687. PMID: 12102523

56. Matsui T, Omasa K, Horie T (1999) Mechanism of anther dehiscence in rice (Oryza sativa L.). Ann Bot.
84(4): 501–506.

57. Matsui T, Omasa K, Horie T (2000) High temperature at flowering inhibits swelling of pollen grains, a
driving force for thecae dehiscence in rice (Oryza sativa L.). Plant Prod Sci. 3(4): 430–434.

58. Jagadish SVK, Craufurd PQ, Wheeler TR (2008) Phenotyping parents of mapping populations of rice
for heat tolerance during anthesis. Crop Sci. 48(3): 1140–1146.

59. de Vries ME, Leffelaar PA, Sakan É N, Bado BV, Giller KE (2011) Adaptability of irrigated rice to tem-
perature change in Sahelian environments. Exp Agric. 47(1): 69–87.

60. Dingkuhn M, Sow A, Samb A, Diack S, Asch F (1995) Climatic determinants of irrigated rice perfor-
mance in the Sahel—I. Photothermal and micro-climatic responses of flowering. Agric Syst. 48(4):
385–410.

61. Kobata T, Akiyama Y, Kawaoka T (2010) Convenient Estimation of Unfertilized Grains in Rice. Plant
Prod Sci. 13(3): 289–296.

62. Jagadish KSV, Cairns JE, Kumar A, Somayanda IM, Craufurd PQ (2011) Does susceptibility to heat
stress confound screening for drought tolerance in rice? Funct Plant Biol. 38(4): 261–269.

63. White JW, HoogenboomG,Wilkens PW, Stackhouse PW Jr., Hoel JM (2011) Evaluation of satellite-
based, modeled-derived daily solar radiation data for the continental United States. Agron J. 103:
1242–1251.

64. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—A discussion of
principles. J Hydrology 10(3): 282–290.

65. de Vries ME, Rodenburg J, Bado BV, Sow A, Leffelaar PA, et al. (2010) Rice production with less water
is possible in a Sahelian environment. Field Crops Res. 116: 154–164.

66. de Mey Y, Demont M, Diagne M (2012) Estimating Bird Damage to Rice in Africa: Evidence from the
Senegal River Valley. J Agr Econ. 63(1): 175–200.

67. Haefele SM, Wopereis MCS,Wiechmann H (2002) Long-term fertility experiments for irrigated rice in
the West African Sahel: agronomic results. Field Crops Res. 78(2–3): 119–131.

68. Peng S, Khush GS, Virk P, Tang Q, Zou Y (2008) Progress in ideotype breeding to increase rice yield
potential. Field Crops Res. 108(1): 32–38.

69. Heinemann AB, Dingkuhn M, Luquet D, Combres JC, Chapman S (2008) Characterization of drought
stress environments for upland rice and maize in central Brazil. Euphytica 162(3): 395–410.

70. ten Berge HFM, Thiyagarajan TM, Shi QH, Wopereis MCS, Drenth H, et al. (1997) Numerical optimiza-
tion of nitrogen application to rice. 1. Description of MANAGE-N. Field Crops Res. 51(1–2): 29–42.

71. Wassmann R, Jagadish SVK., Heuer S, Ismail A, Redona E, et al. (2009) Chapter 2 Climate Change
Affecting Rice Production. The Physiological and Agronomic Basis for Possible Adaptation Strategies.
Adv Agron. 101: 59–122.

Improved Climate Risk Simulations for Rice in Arid Environments

PLOS ONE | DOI:10.1371/journal.pone.0118114 March 16, 2015 27 / 27

http://www.ncbi.nlm.nih.gov/pubmed/12102523


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <>
    /SLV <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


