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Cross-validation type of methods have been widely used to facilitate model
estimation and variable selection. In this work, we suggest a new K-fold cross
validation procedure to select a candidate ‘optimal’ model from each hold-out
fold and average the K candidate ‘optimal’ models to obtain the ultimate
model. Due to the averaging effect, the variance of the proposed estimates
can be significantly reduced. This new procedure results in more stable
and efficient parameter estimation than the classical K-fold cross validation
procedure. In addition, we show the asymptotic equivalence between the
proposed and classical cross validation procedures in the linear regression
setting. We also demonstrate the broad applicability of the proposed procedure
via two examples of parameter sparsity regularization and quantile smoothing
splines modeling. We illustrate the promise of the proposed method through
simulations and a real data example.
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1. Introduction

Cross-validation (CV ) has been widely used for model selection in regression problems.
Its theoretical properties and empirical performance have been extensively discussed in
the literature including the pioneering work of Stone (1974, 1977) and Geisser (1975).
Burman (1989) studied the properties of leave-one-out CV and K-fold CV procedures.
Shao (1993) and Rao and Wu (2005) provided theoretical insights and asymptotic theo-
ries of model selection with a fixed number of variables for linear models. Wong (1983)
examined consistency of CV in kernel nonparametric regression. Zhang (1993) showed
superiority of leave-K-out CV over leave-one-out CV in linear regression. Kohavi (1995)
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assessed the performance in terms of model estimation and variable selection at various
values of K1 and K2 respectively in K1-fold CV and leave-K2-out CV . For robust model
selection, Ronchetti et al. (1997) suggested a robust loss function to measure the pre-
diction error. Substantial practical and theoretical results of traditional and newer CV
approaches were summarized in a review paper by Arlot and Celisse (2010).
In a typical K-fold CV procedure for a linear model, the data set is randomly and

evenly split into K parts (if possible). A candidate model is built based on K − 1 parts
of the data set, called a training set. Prediction accuracy of this candidate model is then
evaluated on a test set containing the data in the hold-out part. By respectively using
each of the K parts as the test set and repeating the model building and evaluation
procedure, we choose the model with the smallest cross-validation score (typically, the
mean squared prediction error MSPE) as the ‘optimal’ model. Given p independent
variables, there are in total of 2p − 1 possible models. In the K-fold CV procedure, each
model is in fact evaluated K times. Therefore, a single ‘optimal’ model is selected via
K(2p − 1) times of model evaluation.
In this work, we propose a new cross-validation procedure with the core idea of first

choosing K candidate ‘optimal’ models to build the ultimate model. On each training
set, the 2p − 1 models are fitted and the candidate ‘optimal’ model is selected with the
smallest cross-validation score obtained from the corresponding test set. This procedure
is repeated on K training and test sets to obtain K candidate ‘optimal’ models. At last,
the ultimate model is obtained with its parameter estimates as the average values across
K candidate ‘optimal’ models. Therefore, we call the proposed method K-fold averaging
cross-validation (ACV ). Due to the averaging effect, efficiency of the final parameter
estimates obtained by ACV improves over that of the traditional K-fold CV . We note
that parameter estimates of CV and ACV are identical when all the candidate ‘optimal’
models from ACV are identical to the model selected by the traditional CV .
The proposed ACV procedure is also applicable to high dimensional data to determine

the amount of penalty imposed by a regularization method, e.g., LASSO (Tibshirani
1996). In fact, the ACV procedure has broad applications as CV to problems wherein
regularization parameters associated with a penalization method need to be determined.
This will be demonstrated via an application to smoothing spline based nonparametric
modeling (Nychka et al. 1995).
The paper is organized as follows. We describe the explicit expression of the ACV

estimator and its asymptotic property in linear regression models in Section 2. We discuss
the connection and distinction between ACV and CV in the applications of LASSO and
smoothing spline based modeling in Section 3. We illustrate the proposed method through
simulation studies in Section 4 and through application to a real data set in Section 5.
And we provide some concluding remarks in Section 6.

2. K-fold averaging cross-validation in a linear model

2.1. Basic setting

Consider a linear model

Y = Xβ + ϵ,
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where Y = (y1, . . . , yn)
′ is the response vector, X = {xij} is an n× p design matrix for

the full model, and ϵ = (ϵ1, . . . , ϵn)
′ is a vector of iid random variables with mean 0 and

variance σ2. We assume that p is fixed. All the observations are divided into K parts
such that every part is mutually exclusive. Throughout this paper, we assume that K
is finite and fixed. In this paper, we consider deterministic predictors, but when X is
random, the results are valid almost surely if the two assumptions in Section 2.3 and the
assumption on ϵ are satisfied almost surely for given X.
We use nk to denote the sample size in the kth fold, where

∑K
k=1 nk = n. We define Mk

as the selected model based on the kth hold-out fold (test set), and let its corresponding
design matrix be Xk with all observations. We further assume that Xk is full rank for
any k.
When the kth fold is a test set, a design matrix in the kth fold is defined as Xnk

, and
the design matrix of the corresponding training set is denoted as X−nk

. Yk and Y−k are
the response observations corresponding to Xnk

and X−nk
, respectively.

The choice of a candidate ‘optimal’ model is made based on the mean squared predic-
tion error in the hold-out fold. The Mk can be represented as a subset of {1, ..., p}. Let
|Mk| be the number of elements (or, equivalently the number of independent variables)
in Mk. Further, let XMk,−nk

be the design matrix composed of variables of Mk in the

training set which has a size of n− nk by |Mk|. And we denote β̃k as an estimator of β
with Mk. For example, the β̃k obtained from the least squares method can be expressed
as (X′

kXk)
−1X′

kY, which is a length-|Mk| vector.
Since the β̃ks are averaged over k to obtain the ultimate parameter estimates, we

need to ensure that each of them is of length p. For this purpose, we introduce the
transformation matrixTk, which is of size p×|Mk|. Each column vector ofTk is composed
of a 1 and (p−1) 0s. For example, if x2 and x4 are selected and p = 6, then Mk = {2, 4},
and Tk contains two column vectors of (0, 1, 0, 0, 0, 0)′ and (0, 0, 0, 1, 0, 0)′, where the
position of 1 in the ith column is specified in the ith element of Mk, and the variables not
contained inMk are indexed as 0. As a result, the size of β̃k is changed to p via multiplying
by Tk. Going back to the example, β̃k = (1, 2)′ yields Tkβ̃k = (0, 1, 0, 2, 0, 0)′. And Tk

also indicates the selected model with XTk = Xk.
To measure the discrepancy between the observations and the predicted values, we use

a squared error loss. The MSPE evaluated with the data Yk can be written as

MSPEk =
1

nk
(Yk −Xnk

β̂−nk
)′(Yk −Xnk

β̂−nk
), (1)

where the least squares estimate β̂−nk
= Tk(X

′
Mk,−nk

XMk,−nk
)−1X′

Mk,−nk
Y−k. Note that

β̂−nk
depends on the variables contained in Mk. Because β̂−nk

is not our final estimator,
convergence of (1) to 0 does not necessarily deduce consistency of the estimator defined
in (2); whereas it does in the method of leave-nk-out cross-validation described in Zhang
(1993) and Shao (1993). Rather, we choose Mk or equivalently Xk by minimizing (1), and
use it to construct the ultimate estimator. The explicit form of the proposed parameter
estimator based on the least squares method is provided below.

2.2. A new estimator

In the traditional K-fold CV , a selected model is what produces smallest prediction error
where the number of predicted values is the same as sample size. That is, K-fold CV
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selects a model which minimizes
∑K

k=1MSPEk/K.
The fundamental distinction of our method is to choose a candidate ‘optimal’ model

Xk based on the hold-out fold, and then iterate this procedure for k = 1, . . . ,K. Note
that the model selection at each iteration provides an opportunity to choose different (up
to K) plausible models, which is not the case in K-fold CV . At last, the K candidate
‘optimal’ models are averaged to yield an ultimate model.
The regression coefficient estimator of the model optimally chosen by the kth fold is

β̂k = Tk(X
′
kXk)

−1X′
kY,

where Xk is an n × |Mk| design matrix containing all the n values of the explanatory
variables in Mk selected by the kth fold according to (1). Note again that Tk is the

transformation matrix to ensure the length of β̂k to be p. Then, the ultimate estimator
of the regression coefficients in the K-fold ACV procedure is defined as

β̂ACV =
1

K

K∑
k=1

β̂k =
1

K

K∑
k=1

Tk(X
′
kXk)

−1X′
kY, (2)

Accordingly, the fitted value of Y by ACV is

ŶACV = Xβ̂ACV =
1

K

K∑
k=1

Xk(X
′
kXk)

−1X′
kY = HACV Y.

Let Pk = Xk(X
′
kXk)

−1X′
k, then HACV =

∑K
k=1Pk/K. Since X is deterministic predic-

tors, we have,

E(Xβ̂ACV ) = HACV E(Y) = HACV Xβ,

V ar(Xβ̂ACV ) = V ar(HACV Y) = H′
ACV HACV σ

2.
(3)

Although each Pk is a projection matrix, HACV is not a projection matrix in general.
This implies that β̂ACV is likely a biased estimator (Hoaglin and Welsch 1978). However,
efficiency of the estimator can be substantially gained from averaging. To account for
variability induced by randomly splitting the data, we repeat the splitting step several
times in both CV and ACV procedures. Alternatively, we can use a balanced split. Note
that there are n!/(n1!n2! · · ·nK !) different ways of splitting data. Then, all observations
have equal probability of being included in the training set and in the test set, thus there
is no random variation arises from the splitting. In practice, the random variation from
the split is ignorable, and only a few times of splitting observed to be enough in the
simulation studies.
Connection with Bagging: The bootstrap aggregating approach (Bagging) suggested

by Breiman (1996) is similar to our proposed method in terms of the repeated parameter
estimation and variable selection steps. The Bagging procedure first generates a sample
of size n. Based on the generated sample, it performs model selection according to a
criterion such as K-fold CV and obtains the least squares estimator, β̂Bagging

1 . After

repeating this processB times, (β̂Bagging
1 , . . . ,β̂Bagging

B ) are obtained and averaged to form
a final estimate. The distinction is that Bagging procedure requires generating bootstrap
samples from the original data set, while the proposed ACV always use original data
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set and average only ‘optimal’ models obtained from each hold-out fold to form a final
model.
Connection with BMA: The ACV method also shares some similarity with Bayesian

model averaging (BMA) (Raftery et al. 1997) where the posterior distribution of β given
data D is

Pr(β|D) =

V∑
v=1

Pr(β|Mv, D)Pr(Mv|D),

where V = 2p − 1. This is a weighted average of the posterior distribution of β, wherein
the weight corresponds to the posterior model probabilities. Based on this formulation,
we can view ACV as a special case of BMA by setting Pr(Mv|D) = 1/K if Mv ∈
{M1, . . . ,MK} and Pr(Mv|D) = 0 otherwise. Thus, we average those ‘optimally’ selected
models based on the MSPEk defined in (1) with the equal weight, instead of averaging
across all 2p − 1 possible models as in BMA. In fact, ACV can be modified to obtain
the similar form of BMA. We define β̂FMA

k =
∑V

v=1wk,vβ̂k,v, where β̂k,v is the estimate
of the vth model and its corresponding weight is wk,v. Because we concern finding the
smallest MSPEk among 2p − 1 possible ones using data in the kth hold-out fold, we use
the MSPEk values from the vth model, MSPEk,v, to estimate wk,v. For example, we can
use wk,v = 1/

√
MSPEk,v that is normalized to sum up to 1. Hence, we can build a new

version of model averaging as 1/K
∑K

k=1 β̂
FMA
k . The properties of this model averaging

method will not be pursued in this work.
Remark: The ACV procedure can be integrated with robust model estimation. For ex-

ample, instead of the mean one may consider using a component-wise median estimation
among the candidate models. M-estimator (Huber and Ronchetti 2009) or other types
of robust estimators can also be used.

2.3. Theoretical Properties

We denote the true model as M∗. A model M can be classified into two categories (Shao
1993):

• Category I: M ⊇ M∗
• Category II: At least one component of M∗ is not contained in M .

Now, we introduce the following assumptions :
Assumption A. n/nk → K for all k = 1, . . . ,K.
Assumption B. For Mk in Category II,

lim inf
n→∞

n−1β′X′(In −Pk)Xβ = bk > 0, and n−1β′X′PkXβ → 0.

Assumption B is adopted from Zhang (1993). Notice that bk is non-zero when Mk is in
Category II, but becomes zero when Mk is in category I.
We define the mean squared error (MSE) of ACV as

MSEACV =
1

n
E((Xβ −Xβ̂ACV )

′(Xβ −Xβ̂ACV )). (4)
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Note that MSEACV is defined based on the ultimate parameter estimates and uses all
the explanatory variables, which is different from MSPEk used to select the candidate
‘optimal’ model in the hold-out fold k. Using (3), (4) is expressed as

MSEACV =
1

n
tr(V ar(Xβ̂ACV )) +

1

n
∥E(Xβ̂ACV −Xβ)∥2 (5)

=
1

n
tr(H′

ACV HACV )σ
2 +

1

n
β′X′(In −HACV )

′(In −HACV )Xβ,

where In is an identity matrix of size n, and tr(·) is a trace.
Now, let the model chosen by the traditional K-fold CV as Xo. Then, the MSE of

the traditional K-fold CV (MSECV ) is obtained by replacing HACV with the projection
matrix of Xo.

MSECV =
d

n
σ2 +

1

n
β′X′(In −PCV )Xβ, (6)

where d = tr(PCV ) ≤ p and PCV = Xo(X
′
oXo)

−1X′
o. Then, it is readily seen that

MSECV = d
nσ

2 = O(n−1) when Xo is in Category I, since the second term on the right-
hand side (RHS) of equation (6) is 0. When Xo is in Category II, MSECV is dominated
by 1

nβ
′X′(In −PCV )Xβ, which is greater than 0 by Assumption B.

In Theorem 1, we show that the two estimates chosen by CV and ACV are asymptot-
ically equivalent as the sample size increases.

Theorem 2.1 : Let Mf = ∪K
k=1Mk be a union of Mk for k = 1, . . . ,K. Under Assump-

tions A and B,
(a) MSEACV = MSECV +O(n−1) if Mf and Xo are in Category I.
(b) MSEACV = MSECV + o(1) if Mf and Xo are in Category II.

Note that the rate of decrease in both MSEACV and MSECV is subject to inclusion
of the true model. This implies that inclusion of the true model will determine the
asymptotic behavior of ACV and CV , even though the two sets of parameter estimates
are asymptotically equivalent.
Remark: Some existing work use a slightly different but more realistic definition of
MSE, since β is unknown in practice, which can be written as MSEACV = 1

nE((Y −
Xβ̂ACV )

′(Y−Xβ̂ACV )), and MSECV =
1
nE((Y−Xβ̂CV )

′(Y−Xβ̂CV )). Using this def-

inition, we can derive the same asymptotic equivalence of β̂ACV and β̂CV .
Now, we show the reduced variance of β̂ACV under the finite sample.

Lemma 2.2: Under the setting in Section 2.1, we have

det(var(β̂ACV )) = det(var(
1

K

K∑
k=1

β̂k)) ≤ det(var(β̂CV )).

The inequality holds when β̂ks are all identical.

This implies that the variance of β̂ACV is smaller than β̂CV (as
√

det(Ak) measures the

volume of Ak) due to the averaging effect except for the case when β̂ks are all identical.
Under our empirical experiments in Section 4, the magnitude of the reduced variance
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tends to be larger than the allowed bias, thus results in more accurate model selection by
ACV . This indicates the proposed method could take advantage of bias-variance tradeoff.

3. Integration of ACV with other methods

Lasso penalization: we introduce some applications of ACV beyond the traditional
linear regression problem with a fairly small p as discussed in Section 2. When the
number of variables p is large, it is impractical to fit all 2p − 1 models. Rather, we use a
penalization method such as LASSO (Tibshirani 1996), which is widely used for handling
high-dimensional data. Such penalization methods convert a model selection problem to
controlling the amount of regularization applied to the parameter estimates. Specifically,
LASSO is defined as

β̂LASSO(λ) = arg min
β∈Rp

(||Y −Xβ||2 + λ

p∑
j=1

|βj |).

Because λ takes a real number in [0,∞), we cannot consider all the possible models. We

examine some candidate values of λ in a reasonable range. With K-fold CV , a λ̂CV that
produces the smallest cross validated score is claimed as ‘optimal.’
In this case, ACV intends to select K candidate ‘optimal’ values of λ̂k based on the

cross-validated score from hold-out fold k = 1, . . . ,K. Let β̂LASSO
−nk

(λ) be a LASSO esti-

mate that is obtained based on all the samples excluding the ones in the kth fold. The
ultimate estimate of λ follows as λ̂ACV = 1

K

∑K
k=1 λ̂k, where

λ̂k = arg min
λ∈[0,∞)

(
1

nk
||Yk −Xnk

β̂LASSO
−nk

(λ)||2).

Such way of averaging enables obtaining a more stable estimate of the penalization
parameter. Because the possible number of λ values is infinite, a manageable solution
is to use several values of λ on a discrete grid for assessment. Note that λ̂ACV is likely
to be more accurate than the estimate of CV using the same grid, due to the averaging
effect of ACV .
Moreover, the computational efficiency of ACV is similar to CV . In both the methods,

the major computation comes from estimating model with the (K − 1) folds of training
data and from evaluating the performance with the hold-out fold. For ACV , the addi-
tional steps of choosing K candidate ‘optimal’ values and averaging could significantly
improve the performance at trivial additional computation cost. We make comparisons
between β̂LASSO(λ̂CV ) and β̂LASSO(λ̂ACV ) via simulation studies that will be described
later.
Quantile smoothing splines: The cross-validation method is also frequently used in

many different versions of smoothing splines to control the amount of roughness of the
fitted function. Quantile smoothing splines are developed for targeting conditional quan-
tiles in a nonparametric fashion. There are several different definitions of such smoothing
splines; we use the method proposed by Bloomfield and Steiger (1983) and Nychka et al.
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(1995). Basically, a quantile smoothing spline is taken as the minimizer of

1

n

n∑
i=1

ρq(yi − g(xi)) + λ

∫
{g′′(x)}2dx,

where ρq(u) = u{q − I(u < 0)} is the check function of Koenker and Bassett (1978)
and 0 < q < 1. With a conditional probability density of fY |X(Y |X), the qth conditional

quantile function gq(x) is a function of x such that q =
∫ gq(x)
−∞ fY |X(y|x)dy. Here, the

roughness of the fitted curves is determined by the value of λ. We define λ̂q
CV as the

minimizer of the cross-validated score where the check loss function is used for validation.
Similar to the procedure of conducting ACV under LASSO, we can obtain the ACV
version of λ̂q

ACV for quantile smoothing splines. We use simulations to investigate the

empirical properties of λ̂q
CV and λ̂q

ACV .

4. Simulations

In empirical studies, it is desirable for K, the number of folds, to be reasonably large
in order to receive the benefit of averaging. We consider K = 5 and 10 throughout the
simulation studies. We investigate the performance of CV and ACV in three scenarios:
the traditional linear regression model, LASSO regularization method, and quantile
smoothing splines. For these scenarios, the corresponding ACV methods described in
Section 2 and Section 3 are used. The classical CV procedure is described as follows.

The CV Procedure

(1) Randomly and evenly split the data set into K folds.
(2) Use K − 1 folds of data as a training data set to fit the linear model (or, LASSO,

and quantile smoothing splines).
(3) With the fitted models in (2), predict the value of the response variable in the

hold-out fold.
(4) From the response variable in hold-out fold (say, kth fold), calculate mean squared

prediction error by MSPEk =
∑

i∈ℵk
(yi− ŷpredi )2/nk, where ŷ

pred
i is the predicted

value for yi and ℵk is the data set in kth fold.
(5) Repeat (2) through (4) for K times so that each of K fold is used as a hold-out

fold from which we obtain MSPE1, . . . ,MSPEK .
(6) Each candidate model obtains a prediction performance measure∑K

k=1MSPEk/K. The ‘optimal’ model which minimizes
∑K

k=1MSPEk/K
will be selected.

4.1. Linear model

Assume a linear model Y = Xβ + ϵ as described in Section 2.1 with ϵis following an iid
standard normal distribution. We consider the number of samples n = 200. The X is gen-
erated from a multivariate normal distribution with mean 0 and the correlation between
the ith and jth covariates ρ = 0.5|i−j|. We consider three cases of the true values of β: (i)
β = (3, 0, 0, 0, 0, 0, 0, 0)′; (ii) β = (3, 1.5, 0, 0, 2, 0, 0, 0)′; and (iii) β = (2, 2, 2, 2, 2, 2, 2, 2)′

that represent sparse, intermediate, and dense parameter space, respectively.
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Table 1. Estimate of MSE (multiplied by 102) and its standard error (in parentheses, multiplied by
102) based on 1000 MC samples for CV , ACV and Bagging.

β=(3,0,0,0,0,0,0,0)’ β=(3,1.5,0,0,2,0,0,0)’ β=(2,2,2,2,2,2,2,2)’
CV , K = 5 516.4 (13.6) 593.1 (13.3) 806.3 (13.0)
ACV , K = 5 405.8 (8.7) 521.1 (5.8) 806.3 (13.0)
reduction(%) 21.43 12.15 0
CV , K = 10 509.3 (13.7) 590.9 (13.3) 806.3 (13.0)
ACV , K = 10 370.1 (7.6) 553.4 (5.8) 806.3 (13.0)
reduction(%) 27.34 6.35 0
Bagging 811.4(13.1) 808.3(13.1) 810.6(13.0)

To measure accuracy of the estimates, we use the mean squared error (MSE) defined
as

MSE = Eβ̂||Xβ̂ −Xβ||2

= Eβ̂{(β̂ − β)′X′X(β̂ − β)}.
(7)

With L Monte Carlo (MC) samples (L = 1000), the estimate M̂SE can be computed as

1/L
∑L

l=1{(β̂l − β)′X′
lXl(β̂

l − β)}, where β̂l is the estimate of β for the lth MC sample.
In addition, Bagging procedure is applied to the same MC samples. Since CV and

ACV choose a model from 28 − 1 = 255 possible models, we let Bagging procedure
to select from 255 re-sampled (with replacement) data sets from one MC sample. The
size of re-sampled data set is 200. The results of both CV and ACV are reported in
Table 1. In Table 1, “reduction(%)” denotes the reduction of MSE achieved by ACV in
comparison to CV . We see that the largest reduction is attained in case (i) which is the
sparse scenario, while no reduction is made in the dense case (iii). In the dense case (iii),
ACV is able to select the true model K times which leads to the accurate ultimate model
via averaging, and thus results in the identical values of MSE as CV . Performance of
Bagging is consistent over the three cases, and thus relatively works fine in the dense
case, but is outperformed by CV and ACV .

4.2. Lasso penalization

We also investigate the performance of CV and ACV in the case of large p with the
usage of sparsity penalization. We use the similar simulation set-up with n = 200 in the
previous section, but increase p to 1000 and set ρ = 0. The β is set to have 50 non-zero
values and 950 zeros. Two different sets of non-zero values are considered as follows: (i)
25 values are randomly generated from Unif(1, 2), and the other 25 from Unif(−2,−1);
and (ii) 25 values are taken to be 1 and the others are with values of −1. We interrogate
200 equally spaced values of λ in (0.001, 0.4) with K = 10.
We compare CV and ACV in terms of parameter estimation and identification of true

non-zero parameters. We again use MSE in (7) to measure the estimation accuracy. The
mean and its standard error of 1000 MSE values, respectively, obtained from 1000 MC
samples in each case are reported in Table 2. We see that ACV reduces MSE by about
30% comparing to CV in each case. To investigate accuracy of detecting the 50 true
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Table 2. Estimates of MSE and its standard error (in parentheses) based on 1000 MC samples for CV
and ACV .

CV ACV reduction(%)
case (i) 573.2 (17.8) 381.3 (6.3) 33.5
case (ii) 487.4 (13.3) 342.8 (5.6) 29.7

Table 3. The distribution of the number of detected true non-zero βs of CV subtracted from that of
ACV , based on 1000 MC samples.

-6 to -4 -3 -2 -1 0 1 2 3 4 5 to 7 8 to 15
case (i) 14 17 51 140 352 170 108 62 31 39 16
case (ii) 14 15 61 138 306 181 112 58 46 48 21

non-zero parameters, we focus on the 50 variables with the largest absolute values of the
parameter estimates, and record the number of detected true non-zero ones among them.
In Table 3, we report the distribution of the number of detected true non-zero βs of CV
subtracted from that of ACV . In case (i), ACV and CV show the identical detection
accuracy for 352 times out of 1000 runs. Note that ACV performs better than CV for
426 times, while CV outperforms ACV for 222 times. In case (ii), ACV detects more
true non-zero βs than CV for 466 times, but fewer for 228 times. It is also noticeable
that ACV outperforms CV with the number of accurate detection as high as 15, while
CV outperforms ACV with no more than 6 accurate detection.

4.3. Quantile smoothing splines

In this section, we investigate applicability of the proposed method ACV in the problem
of quantile smoothing splines. We consider the mean of the observations from a sinusoid
curve with period 1, which is expressed as

yi = sin(2πxi) + ϵi, i = 1, ..., n,

where xis are iid from the standard uniform distribution with n = 200. We consider two
distribution settings for the iid ϵi’s: (i)N(0, 0.22); and (ii) shifted exponential distribution
with the median 0 and the standard deviation 0.2. A fine grid search of the smoothing
parameter is conducted to select the ‘optimal’ value by CV and ACV with LMC samples
(L = 1000) and K = 5. We adopt the empirical estimate of MSE by MC samples as,

MSE =
1

L

L∑
l=1

1

n

n∑
i=1

(g(xi)− ĝl(xi))
2,

where g(xi) is the true underlying function, and ĝl(xi) indicates the fitted value at xi
from the lth MC sample. The results at several quantiles are shown in Table 4, where
reduction(%) stands for the percentage of reduction in the average value of MSE
achieved by ACV comparing to CV . Under the normal error distribution in case (i),
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Table 4. Estimate of MSE and its standard error (in parentheses) based on 1000 MC samples for CV
and ACV . All numbers are multiplied by 104.

case (i) q=0.1 q=0.2 q=0.3 q=0.4 q=0.5
CV 84.25(1.8) 63.39(1.2) 55.72(1.1) 51.63(1.0) 50.92(1.0)
ACV 83.13(1.8) 58.83(1.2) 50.55(1.0) 46.78(0.9) 45.10(0.8)
reduction(%) 1.32 7.21 9.28 9.4 11.42
case (ii) q=0.1 q=0.25 q=0.5 q=0.75 q=0.9
CV 2.21(0.06) 5.02(0.12) 13.14(0.28) 35.84(0.08) 89.67(2.0)
ACV 1.81(0.04) 4.28(0.09) 11.81(0.23) 33.68(0.07) 90.41(2.3)
reduction(%) 18.28 14.75 10.08 6.03 -0.82

the result for q > 0.5 is not reported because of the similarity to q < 0.5. The consider-
able reductions achieved by ACV indicate that its averaging strategy results in better
selection of the penalization parameter. For both the cases, quantiles in the region of high
conditional density of the errors lead to greater reduction (%) in MSE, comparing to
the low density regions. The rationale is that fewer observations are available to estimate
the targeted quantile in the low density regions, and thus the advantage of ACV is not
as prominent. This can be seen at q = 0.9 in case (ii) that the performances of these two
methods are very similar with n = 200. To verify this finding, we increase the sample
size to 400 and observe 5% reduction in MSE by using ACV . Thus, it is important to
keep a sufficient number of observations in the hold-out fold to take advantage of ACV .
Another phenomenon often observed is data over-fitting by CV . In Figure 1, we demon-

strate this point by two plots of the fitted curves that produce the maximum (left panel)
and minimum (right panel) values of MSEACV /MSECV among 1000 MC samples, re-
spectively. In the left panel, ACV in fact performs similarly to CV . In contrast, the right
panel shows the obvious over-fitting by CV , manifested by its jagged curve.

5. A real example

Isaacs et al. (1983) established the reference percentiles of children for the serum con-
centrations of immunoglobulin-G (IgG) in grams per liter, based on 298 children of ages
6 months to 6 years. They considered various polynomial regressions treating IgG as the
response and age (in month) as an explanatory variable. The best-fit model provided by

Isaacs et al. (1983) is IgG
1

2 = 1.16+0.2715∗age
1

2 −0.01195∗age for the 50th percentile,
which is drawn as a dashed line in Figure 2. Royston and Altman (1994) revisited this
data and used additive polynomial regressions with smoother fitted lines to eliminate the
jaggedness near the boundary ages of 6 months and 6 years. Herein, we target selecting
an appropriate smoothing penalty parameter for quantile smoothing splines to obtain
well-behaved reference percentiles.
To find the ‘optimal’ λ̂, we examined 2000 log(λ) values within (-35,-0.2). First, the

data is randomly divided into 5 (nearly) equal parts, among which one contains 58
observations and each other part contains 60 observations. To account for the variability
due to random split, we iterate the procedure 200 times for both ACV and CV . The
penalization parameter values, denoted by λ̂ACV and λ̂CV , are obtained by averaging
their respective 200 estimates of λ. The fitted conditional quantile lines of the IgG data
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Figure 1. Under a normal error distribution, the fitted model selected byACV performs relatively
‘worst’ compared to that selected by CV (left), and ACV performs relatively ‘best’ compared to
CV (right) among 1000 simulated data sets.

Table 5. Average values of log(λ̂CV ) and log(λ̂ACV ) at various quantiles over 200 different random splits.

q=0.05 q=0.1 q=0.25 q=0.5 q=0.75 q=0.9 q=0.95
CV -15.49 -15.59 -16.73 -19.86 -4.02 -3.85 -3.84
ACV -1.58 -1.62 -1.7 -1.64 -1.42 -1.5 -1.52

at q = 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, and 0.95 are plotted in blue from the bottom to the
top in Figure 2 .
In the data set, we find mild heteroscedasticity of increasing variance as Age increases.

It is reflected by the fit from both CV and ACV . It is clear that the fitted line at q = 0.5
provided by CV appears to be less smooth than ACV . We notice that ACV shares
more similarity with the model given by Isaacs et al. (1983) which is the dashed line.
At q = 0.25, the non-monotonic fitting line of CV implies that the IgG level of 3-year-
old children is higher than that of 4-year-old children, which seems insensible from the
perspective of biology. Overall, ACV provides smoother fit to data than CV . We also
summarize the logarithm-transformed λ̂CV and λ̂ACV at various quantiles in Table 5.
We can see that λ̂CV changes considerably across the quantiles, whereas λ̂ACV is stable
(around -1.5) due to the averaging effect.
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Figure 2. Fitted quantile smoothing splines at q=0.05, 0.1, 0.25, 0.5, 0.75, 0.9, and 0.95, high-
lighted in blue from the bottom to the top, in the immunoglobulin-G data set. The dashed fitting
line is obtained from the model given by Isaacs et al. (1983). The results of CV and ACV are
shown in the left and right panels, respectively.

6. Conclusion

In this work, we propose aK-fold averaging cross-validation procedure for model selection
and parameter estimation. We establish its theoretical property and show its promise
via empirical investigation. Since cross-validation is actively employed in many areas of
statistics,ACV can also be applied to a broad range of modeling procedures. For example,
ACV can be easily used with penalized model selection method, for which selection
of penalty parameters is of interest. Demonstrated through simulations with usage of
LASSO, the ACV method outperforms the CV method in terms of mean squared error
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and selection accuracy. We also investigate its applicability in quantile smoothing splines,
and demonstrate its capability of providing more smooth data fit than the traditional
CV method.
One shall pay attention to the size of the test set and selection of K when implement-

ing ACV . A large value of K combined with a small sample size may cause insufficient
fit of the data since K-fold ACV performs model selection based on 1/K of the data.
We recommend including a sufficient number of observations in a test set. Note that
the desirable size of the test set also depends on complexity of the underlying true model.
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Appendix

Proof of Theorem 2.1

Proof :

tr(H′
ACV HACV ) =

1

K2
tr((

K∑
k=1

Pk)
′(

K∑
k=1

Pk)) ≤
1

K
tr(

K∑
k=1

P′
kPk) (1)

Since P′
kPk = Pk, and tr(Pk) = |Mk|, we have,

σ2

n
tr(H′

ACV HACV ) ≤
σ2

n

1

K

K∑
k=1

|Mk|, (2)

where 1
K

∑K
k=1 |Mk| ≡ d∗ is the mean number of selected variables from ACV . Thus,

|d − d∗| ≤ p, which leads to |d − d∗|σ2

n = O(n−1). The second term on the RHS of (5)
will disappear when Mf is in Category I, which completes the proof of (a).
When Mf is in Category II, the second term on the RHS of (5) will be

1

n
β′X′(In −HACV )

′(In −HACV )Xβ ≤ max
1≤k≤K

1

n
β′X′(In −Pk)Xβ. (3)

When it is subtracted by the second term on the RHS of equation (6), we have

1

n
β′X′(In−HACV )

′(In−HACV )Xβ− 1

n
β′X′(In−PCV )Xβ ≤ max

1≤k≤K

1

n
β′X′(PCV −Pk)Xβ.

(4)
By Assumption B, the RHS of equation (4) is o(1), which completes the proof of (b). �

Proof of Lemma 2.2

Proof : First, define max1≤k≤K Ak to be Ak with maximum determinant for k = 1, ...,K,
where Ak is a positive definite matrix. Note that det(Ak) > 0 as a property of positive
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definite matrix, and this is the case here since we assume Xk is full column rank. From
the facts that the value of correlation is always between -1 and 1, and det(AkAk′) =
det(Ak) det(Ak′), we have

det(cov(β̂k, β̂k′)) ≤ det

(√
var(β̂k)

√
var(β̂k′)

)
= det

(√
var(β̂k)

)
det

(√
var(β̂k′)

)
≤ det( max

1≤k≤K
var(β̂k)),

where the last inequality directly comes from the definition. Therefore, we have,

det(var(
1

K

K∑
k=1

β̂k)) = det

 1

K2

K∑
k=1

var(β̂k) +
2

K2

∑
1≤k<k′≤K

cov(β̂k, β̂k′)


≤ det

(
1

K
max

1≤k≤K
var(β̂k) +

K(K − 1)

K2
max

1≤k≤K
var(β̂k)

)
= det( max

1≤k≤K
var(β̂k)) = det(var(β̂CV ))

When β̂ks are identical for k = 1, . . . ,K, the above inequality becomes equality. Further,
when the selected models from all the folds {β̂k} are identical, it is in fact the same

as a selected model by the traditional K-fold CV . Thus, we have β̂ACV = β̂CV , which
confirms the last equality. �


