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Relaxation in two dimensions and the “sinh-Poisson” equation 
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Long-time states of a turbulent, decaying, two-dimensional, Navier-Stokes flow are shown 
numerically to relax toward maximum-entropy configurations, as defined by the “sinh- 
Poisson” equation. The large-scale Reynolds number is about 14 000, the spatial resolution is 
( 512>2, the boundary conditions are spatially periodic, and the evolution takes place 
over nearly 400 large-scale eddy-turnover times. 

Two-dimensional Navier-Stokes (2-D NS) turbu- 
lence, though a somewhat artificial construct, has contin- 
ued to generate interest for almost 50 years.‘” Suitably 
elaborated, it contains implications for areas as diverse as 
meteorology, oceanography, and liquid helium; it exhibits 
in uncluttered form effects that are important in all those 
subjects. In addition, its dynamics are isomorphic to those 
of the electrostatic guiding-center plasma, which have been 
widely extended to describe strongly magnetized plasmas. 

What we wish to report here is an additional conclu- 
sion from some recently reported4’5 high-resolution (5 12’) 
2-D NS spectral-method computations at very long times 
(many large-scale eddy-turnover times). Since Refs. 4 and 
5 were prepared, the data have led us to an additional 
conclusion which we could previously only entertain as a 
hypothesis. Namely, after a few hundred large-scale eddy- 
turnover times, decaying 2-D NS turbulence, at high large- 
scale Reynolds number (initially 14 286) in periodic 
boundary conditions, relaxes to a state quite close to the 
maximum entropy, or “most probable,” state described by 
the sinh-Poisson equation.6>7 

The sinh-Poisson equation derives from a continuum 
(or “mean field”) limit of a very large number of interact- 
ing, ideal, parallel line vortices. It is not necessary to re- 
view in detail the rather large literature that has accumu- 
lated around it.8-21 A-good bibliography has recently been 
collected by Smith.m The conclusion we report here, with- 
out being able wholly to explain it, is that the decay of 
uisco~s 2-D NS turbulence is rather well fit by this ideal 
theory: far better than any alternative theory to date. 

Our computations4~5 are of a type that have been ex- 
tensively reported: Orszag-Patterson, fully dealiased, spec- 
tral-method computations22 inside a square box of edge 27~. 
A considerably more detailed description of the computa- 

tions may be found in Refs. 4 and 5. An initially highly 
turbulent velocity distribution decays with a dimensionless 
characteristic energy-decay time at the largest scales of the 
order of 14 000. By 1979, it had become clearZ3 that like- 
sign vortex capture was the most striking dynamical pro- 
cess involved and that it led to a streamline topology that 
could be ultimately dominated by a single large convection 
cell of either sense of rotation. A “selective decay” 
hypothesis,23 based on unequal decay rates of enstrophy 
and energy, was offered as the explanation. 

In 1984, McWilliamsz4 (and later Brachet et aL25) 
produced 2-D NS decay computations that were both more 
highly resolved and of higher Reynolds number and that 
suggested to them the eventual cessation of like-sign vortex 
merger. They proposed a relaxed state consisting of dense 
highly symmetric cores of vorticity wandering about ran- 
domly, with a negligible amount of interaction and spectral 
transfer. 

Our recent computation4V5 has been chosen to have 
initial conditions as close as possible to those of 
McWilliams, differing mainly in the absence of any small- 
scale smoothing and in the presence of slightly higher spa- 
tial resolution. The only significant difference has been in 
the duration of the run (almost 400 large-scale eddy-turn- 
over times, compared to 40). During the times overlapping 
in the two sets of computations, no significant differences 
appeared. However, we found that at long times like-sign 
vortex capture did not cease, but only slowed down. By 
t = 220, all possible like-sign vortex captures had occurred, 
and only one vortex and associated convection cell of ei- 
ther sign remained. 

The various details of the two-vortex Enal state are 
displayed in the previous papers,4*5 to which we refer the 
reader for details. We describe here evidence for what 
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FIG. 1. Scatter plot of the streamfunction J, versus the vorticity’o at time 
f = 374. The curve drawn through the plotted points is c’ ’ sinh( I/? 1 Jt) . 
(For a “selectively decayed” state, there is a simple proportionality be- 
tween tl, and OJ.) 
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FIG. 2. Evolving spatially averaged cross-correlations between o and 
sinh( lpj.$) and 4 (upper and lower curves), computed as a function of 
time. C = 1 would indicate a pointwise proportionality between its argu- 
ments. (The lower curve is C for the “selective decay” hypothesis, which 
can be considered the best existing alternative theory.) 

W 
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t=l06 

FIG. 3. Three-dimensional perspective plot of the computed vorticity versus x and y at four different times. (For clarity, the origin of coordinates has 
been consistently translated so that both the large vortices in the final state will lie entirely within the basic periodic box.) 
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t =I06 

t=196 t =374 
FIG. 4. Three-dimensional perspective plot of the computed streamfunction versus x and y at four different times. 

could previously only be suggested. Namely, between tz 
292 and t = 374, and presumably on to the large-scale en- 
ergy-decay time of ta; 14 000, the streamfunction and vor- 
ticity obey, to a good approximation, a local relationship 

tions involving tc, and w as measures of the extent to which 
solutions of the sinh-Poisson equation have been reached. 
We may define 

(1) ((f- (f))(g-- W>) 
“f9g%f- u>>2>((g- k))2>1”2’ 

where w is the vorticity and rj is the streamfunction. The 
constants c and ]fi] are determined, at t = 374, by a least- 
squares fit, to be ~~7.7 and pr - 2.1. This is the neces- 
sary and sufficient condition that a sinh-Poisson equilib- 
rium has been reached. 

Figure 1 is a scatter plot of the computed 4 versus the 
computed w, taken pointwise over (xg) space. The solid 
curve drawn through the points is Eq. ( 1) . (A “selectively 
decayed” state would have exhibited a simple proportion- 
ality between tj and w.) 

It is easy to multiply evidence of the kind displayed in 
Fig. 1, which changes little from one instant to the next. 
We may consider, for example, cross-correlations of func- 

where the angle brackets indicate a spatial average. Figure 
2 is a computed plot of the cross-correlations 
CJw,sinh( 181 $)I and C(w,$) versus time; C = 1 would 
indicate a perfect proportionality for the two arguments of 
C. It is seen that CJw,sinh( l/3/ $)I increases with time to 
rrO.97 and is throughout a significantly better predictor 
than C(w,$), becoming particularly good after the final 
vortex merger. The values of c and fi drift only a little. It is 
also possible to make the fit even better by permitting a 
slight asymmetry between the positive and negative vortic- 
ity regions, “pi but we have not done that here. In partic- 
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ular, the slight separation of the curve and the scatter plot 
at the largest values of $I can be significantly reduced in 
Fig. 1. 

Figures 3 and 4 provide a less quantitative but perhaps 
nonetheless valuable picture of the evolution toward the 
quasistationary final state. Figure 3 shows several three- 
dimensional perspective plots of vorticity versus x and y at 
times ranging from early ones, in which the initially ran- 
dom turbulence is present, to late ones in which the two 
dominant vortices have assumed what seem to be their 
late-time profiles. Figure 4 is a similar sequence of plots of 
the streamfunction. The visual displays perhaps make 
more vivid and accessible the information implicit in the 
97% correlation level of Fig. 2. 

The more difficult problem is how to account convinc- 
ingly for the result. The sinh-Poisson equation is derived in 
the simplest way by assuming statistical-mechanical behav- 
ior, of an information-theoretic or Jaynesian26 kind, for a 
system which conserves energy, total amount of positive 
and negative vorticity separately, and nothing else. If we 
define two non-negative vorticity fields w + , w - with 2-D 
equations of evolution 

atif --g + v*vcd* =vv2co*, 

then w=o+ -w- obeys the 2-D NS vorticity equation if 
v = VJ/X& and V2$ = - w + + w -- = --w. (The geom- 
etry is the conventional one with the activity lying in the 
x-y plane. ) 

In periodic boundary conditions, Eqs. (2) conserve 
.fw* dx dy separately, and these two integrals need not 
vanish (only their difference vanishes). In 2-D NS flow, 
energy is not conserved, but decays very slowly at high 
Reynolds numbers. For instance, in the run reported, over 
80% of the initial energy remains after t = 292, while less 
than 2% of the enstrophy remains. 

Thus, with these three constants of the motion, two 
rigorous (Sw* dx dy) and one approximate [energy = ( l/ 
2)Sw$ dx dy], the conservation conditions for the applica- 
bility of the maximum entropy theory are met. What is 
missing is a clear sense of the quasiergodic, or “mixing,” 
behavior that the continuous, viscous Navier-Stokes fluid 
must exhibit. Some such behavior would appear to provide 
a basis for the entropy maximization which leads to the 
sinh-Poisson equation. The behavior is not familiar, and 
may require time to elucidate. But is appears to us as a fact 
of life which the theory of decaying 2-D Navier-Stokes 
turbulence will hereafter need to deal with. 

It would be desirable to investigate the details of the 
relaxation process’s dependence on a variety of initial con- 
ditions, and to some extent this has been done, but only at 
significantly lower resolution.4*5 The single run reported 
here consumed over 600 h of Cray YMP time and required 
three years to complete. Extensive exploration of the effects 
of a wide variety of initial turbulence must await the de- 
velopment of a great deal more computational capacity. 
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